HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON
Faculty of Engineering, Science and Mathematics
School of Electronics and Computer Science

Self-Adapting Agent Organisations

by Ramachandra Kota

Supervisors: Prof. Nicholas R. Jennings and Dr. Nicholas Gibbins
Examiners: Prof. Mark d’Inverno and Dr. Enrico H. Gerding

A thesis submitted in partial fulfillment for the degree of
Doctor of Philosophy

November 2009

UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Ramachandra Kota

Autonomic systems, capable of self-management, are being advocated as a solution to the
problem of maintaining modern, large, complex computing systems. Given this, we believe
self-organising multi-agent systems provide a convenient paradigm to develop these autonomic
systems because such self-organising systems can arrange and re-arrange their structure au-
tonomously, without any external control, in order to adapt to changing requirements and en-
vironmental conditions. Furthermore, such systems need to be decentralised, so that they are
robust against failures; again, this characteristic fits with the multi-agent paradigm. With this
motivation, this thesis explores the area of self-organisation in agent systems, and particularly

focuses on the decentralised structural adaptation of agent organisations.

In more detail, self-organisation has been generated in agent systems using various approaches
like stigmergy, reinforcement mechanisms, cooperative actions of agents and reward based
mechanisms for selfish agents. However, none of these are directly applicable to agent organ-
isations because they cannot be incorporated into deliberative agents working towards organi-
sational goals. The few adaptation mechanisms that are applicable are either centralised or are
based on restricted settings and also ignore the resources being used by the adaptation process.
Here, we particularly focus on such problem solving agent organisations because they provide
a suitable representation for autonomic systems. We investigate and develop mechanisms to

incorporate decentralised structural adaptation in organisations to improve their performance.

More specifically still, we provide a generic framework for representing problem solving agent
organisations. This serves as the platform on which we investigate approaches for structural
adaptation. Following this, we demonstrate a robust, decentralised adaptation method that
enables the agents to modify the organisational structure. As the method is based on self-
organisation principles, the agents use only their local views to change their structural relations
to achieve a better allocation of tasks in the organisation. Particularly, the agents reason about
when and how to adapt using only their history of interactions as guidance. We empirically show
that, in a wide range of closed, open, static and dynamic scenarios, the performance of organisa-
tions using our method is close (70 — 90%) to that of an idealised centralised allocation method

and is considerably better (10 —45%) than the current state of the art decentralised approaches.

Contents

Declaration of Authorship

Acknowledgements

1 Introduction

2

3

1.1
1.2
1.3

1.4
1.5

Problem-solving Agent Organisations
Decentralised Structural Adaptation
Research Requirements
1.3.1 Agent Organisation Framework
1.3.2 Self-Organisation based Adaptation Method
1.3.3 Empirical Evaluation,
Research Contributions o
Thesis Structure oo

Literature Review

2.1

22

23
24

Agent Organisationso e
2.1.1 ModellingTasks
2.1.2 Modelling Organisational Characteristics
2.1.3 Modelling Agents
2.1.4 Evaluating Organisation Performance
Self-Organisation in Multi-Agent Systems
2.2.1 Mechanisms of Self-Organisation
2.2.2 Self-Organisation by Cooperative Agents
2.2.3 Self-Organisation by Self-Interested Agents
2.2.4 Self-Organisation inspired from Social Domains
2.2.5 Self-Organisationin Networks
Adaptation in Agent Organisations
Summary e e e

Agent Organisation Framework

3.1
32

33
34

Task Environment Representation
Organisation Representation
3.2.1 AgentRepresentation.
3.2.2 Organisation Structure
3.2.3 Agent Decision Mechanism
3.2.4 Open and Dynamic Organisations
Evaluation of Organisation Performance
Summary e

vii

viii

O 0 N 1 B~ W -

10
12

14
14
15
16
21
21
22
23
25
26
27
28
29
33

CONTENTS iii
4 Decentralised Structural Adaptation 52
4.1 Fundamentals of the Adaptation Method 55
4.1.1 Value Function Calculation 58

4.1.2 Meta-Reasoning 64

413 Example 65

4.2 Adaptation for Open and Dynamic Organisations 68
421 Open Organisations v v v v v v v vt e 68

4.2.2 Dynamic Organisations 70

43 Summary .. o. ... e e e e e e 73

5 Empirical Evaluation 74
5.1 Experimental Setup 74
5.1.1 Methods for Comparison 75

5.1.2 Simulation Parameters 0oL 77

5.1.2.1 Distribution of services across agents 77

5.1.2.2 Similarity betweentasks 79

52 Results. o 82
5.2.1 Static Closed Organisations 82

5.2.2 Static Open Organisations« . o v v v v v v v, 84

5.2.3 Dynamic Closed Organisations 87

5.2.4 Dynamic Open Organisations 88

5.2.5 Varying Task Environments 89

53 Summary ... e 90

6 Conclusions and Future Work 91
6.1 Summary 91

6.2 Future Work 95

A Additional Results 98
A.1 [Initial Structure of the Organisation 98
A.2 Distribution of Start-times and Life-times 100
A.3 Open Organisations with upto 100 agents 100
A4 Exponential Decay Methods o oL 104
AS Summary e e e 104

B Glossary 106
Bibliography 112

List of Figures

1.1

3.1
32
33

4.1
4.2
4.3
4.4
4.5

5.1
52
53
54
5.5

A.l

A2

A3

A4

An example of structural adaptation

Representation of an example task
An example organisation graph oL oo L
Distribution of service instances of the task in Figure 3.1 across the agents . . .

Allocation of a sample task in the organisation for three structural scenarios

State transition diagram L. Lol
The assignment chain formed by the allocation of an SI across the organisation
Allocation and execution of the service instances by the agents
Organisation structure after geo; had reorganised

Patterns composing tasks oo
Average organisation profit for static closed organisations as SP increases
Average organisation profit for static closed organisations as R increases
Average organisation profit for static open organisations as SP increases

Showing changes to pending load and reorganisation rate when agents are added
andremoved

Average organisation profit for static closed organisations with different initial
SLIUCTUIES . . . o e e e e e e e e e e e e e e e e
Average organisation profit for static open organisations with start-times of the
temporary agents chosen from uniform distribution
Average organisation profit for static open organisations with start-times of the
temporary agents chosen from normal distribution
Average organisation profit for static open organisations with a maximum of 100
AZENLS © . . o e e e e e e e e e e e e

v

53
56
59
66
68

80
83
84
85

List of Tables

4.1
4.2

5.1
52
53
54
55
5.6

5.7

5.8

A.l
A2

Attribute functions for the reorganisation actions
Mapping of the organisation type to the algorithm required

Values of the control variables
Profit for dynamic closed organisations with dissimilar tasks (NoP =)
Profit for dynamic closed organisations with similar tasks (NoP =5)
Profit for dynamic open organisations with dissimilar tasks (NoP =o0)
Profit for dynamic open organisations with similar tasks (NoP =5)
Profit for organisations facing tasks with NoP = 5 out of a total 10 patterns,
changed gradually, one atatime
Profit for organisations facing tasks with NoP = 2 out of a total 10 patterns,
changed gradually, oneatatime
Profit for organisations facing tasks with NoP = 5 out of a total 15 patterns,
changed suddenlyinsetsof 5 L L.

Profit for dynamic closed organisations with dissimilar tasks (NoP = 0)
Profit for dynamic closed organisations with similar tasks (NoP =5)

List of Algorithms

3.1

3.2

4.1

4.2

4.3

4.4

4.5

Act(): action mechanism of agent a, inatime-step 39
Assigned (si;): assignment of a service instance si; by agenta, 45
Adaptation algorithm in terms of agenta, 56
Algorithm in terms of agent a, applying WoLF 69
Algorithm for calculating the value of a term while evaluating the value function

using the decay mechanism 71
Linear decay function within a time window 72
Exponential decay function 72

vi

Declaraction of Authorship

I, Ramachandra Kota declare that the thesis entitled Self-Adapting Agent Organisations and the

work presented in it are my own. I confirm that:

this work was done wholly or mainly while in candidature for a research degree at this

University;

where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated;
where I have consulted the published work of others, this is always clearly attributed;

where I have quoted from the work of others, the source is always given. With the excep-

tion of such quotations, this thesis is entirely my own work;
I have acknowledged all main sources of help;

where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself;

parts of this work have been published in a number of publications (see Section 1.4 for a
list).

Signed:

Date:

vii

Acknowledgements

Research is not generally possible in solitude. As any other person, I have been greatly helped in
the course of my PhD by several people and I am thankful to all of them. Foremost, I would like
to express my heartfelt gratitude to my supervisors Prof. Nick Jennings and Dr. Nick Gibbins for
their immense contribution towards this thesis. Their constant support, peppered with insightful
advice and suggestions, not only refined my research direction but also enhanced my outlook
and the way of perceiving the various aspects involved in any topic or issue. Their inputs and
comments (often in the form of “why?’s” and “justify’s”) on the versions of my papers and
reports have sharpened my writing and made it more lucid and precise. Frankly, this thesis

would not have been possible without their guidance and supervision.

I would also like to acknowledge Dr. Enrico Gerding for his invaluable remarks as the examiner
for both my nine-month report and the MPhil to PhD transfer report. I also owe thanks to my
research group within the IAM lab which is filled with outstanding individuals possessing both
a great research acumen and an extremely friendly and helpful nature. Particularly, working
with Archie Chapman has been a very good learning experience and also acted as a productive
diversion from my research topic. He has also helped me on several occasions on a variety of
issues ranging from latex to administrative procedures. I am also thankful to my other two “PhD
batch-mates” and “bay-mates” of 3 years, Simon Williamson and Athanasios Papakonstantinou
for making my work environment more fun and enjoyable. Dr. Sebastian Stein and Dr. Pe-
rukrishnen Vytelingum have always been readily helpful whenever I approached them with any

doubts or questions.

My PhD experience was not just about the research but also about living in the UK. My time
here was made comfortable and pleasant by the wide circle of friends I luckily managed to
possess. You all know who you are, and I thank each one of you for the camaraderie. Working
on a computer, most of the time, can also get quite lonely but that never happened because of all
my friends, who despite being spread over different parts of the world, were ever present online.
The daily chats with them provided not just the much needed respite but also acted as a constant

source of motivation to work.

Finally, I cannot sufficiently thank my parents and brother for all the love that they have show-
ered upon me throughout my life. Without their unflinching faith, abundant care and the encour-
agement to pursue whatever I chose, writing a PhD thesis would not have even been a dream,

let alone a reality!

viil

Chapter 1

Introduction

As computing systems get ever larger and more complex, they are becoming increasingly in-
terconnected and correspondingly more difficult to maintain. Due to the increase in the size,
complexity and the number of components, it is no longer practical to anticipate and model all
possible interactions and conditions that the system may experience at design time. Similarly,
the systems are becoming too large and too complex for system managers to maintain them
at run-time. To tackle these problems, several researchers have argued that such large com-
plex systems should be autonomic — that is, the computing systems should manage themselves
(Kephart and Chess, 2003; Mainsah, 2002). Specifically, autonomic systems are expected to
maintain and adjust their operations according to changing requirements, demands, resources,
other external conditions and failures. In short, autonomic systems possess the capability of self-
management. Moreover, this self-management behaviour of autonomic systems should arise in
a decentralised manner, through the interactions between its individual components along with
the internal self-management properties of the components. By so doing, the autonomic system
will be more robust as there won’t be a single point of failure. Such decentralised autonomic sys-
tems exhibiting self-management properties, by definition, have to be autonomous and proactive.
Therefore, a multi-agent systems approach is well suited for developing autonomic computing
systems (Tesauro et al., 2004) as agents are also autonomous and proactive by nature. Multi-
agent systems also provide a suitable paradigm for decentralised systems in which autonomous
individuals engage in flexible high-level interactions. Thus, the self-management principles of
autonomic systems can be mapped onto the notion of agents by considering the components
of the system to be autonomous agents engaging in interactions to produce an autonomous
self-managed system (De Wolf and Holvoet, 2003). This naturally gives rise to the need for
developing agents that are capable of self-management both individually and collectively. Thus,

it becomes necessary to explore multi-agent systems that can exhibit this self-management.

Now, the area of research that deals with self-management in agent systems is self-organisation,
the mechanism or the process enabling the system to change its organisation without explicit
external command during its execution time (Di Marzo Serugendo et al., 2005a). Building on

this, we contend that self-organising multi-agent systems provide a suitable paradigm to develop

1

Chapter 1 Introduction 2

autonomic systems. Specifically, such self-organising systems can arrange and re-arrange them-
selves autonomously, without any external control, in order to adapt to changing requirements
and environmental conditions, similar to the self-management expected in autonomic systems.
Therefore, to further aid the development of autonomic systems, our work explores the area of
self-organisation in systems of autonomous agents. In more detail, any self-organising system

is expected to have the following properties (Di Marzo Serugendo et al., 2005b):

e No external control: all of the adaptation process is initiated internally, that is, only by the

components of the system and only changes the internal state of the system.

e Dynamic operation: the system is expected to evolve with time; self-organisation is a

continuous process.

e No central control: the organisation is maintained only through local interactions of the

individual components with no central guidance.

Given that the self-management properties ought to arise in the system through the interactions
between the individual components, it is required that the components of the system are allowed
the freedom to adapt their interactions with the other components. In particular, adapting these
interactions is necessary because, purely changing the internal characteristics of the compo-
nents will not be sufficient for improving performance as most of the tasks and goals facing a
distributed system involve multiple components and interactions across them. For example, con-
sider the interconnected network of a university as a form of an autonomic grid system. Being
a university, it contains various labs with their own specialised computing systems, as part of
the overlaying network of the university. That is, there might be a graphics lab containing com-
puters with some high end graphics cards and drivers for rendering rich and intensive images or
videos. Similarly, some computers in the geography lab might contain various GIS maps and
specialised software for their interpretation. In the same way, there would be such distinct ser-
vice providing computers in the other departments like sociology, mathematics, physics and so
on. In this context, there will be complex computing tasks that need several computers (possibly
situated in different labs) providing specialised services for their accomplishment. A task might
need statistical analysers from the mathematics department for analysing data available from the
sociology department in order to predict natural resource, like water and wood, usage as needed
by the institute on environmental conservation. Thus, the computers on the university network,
providing different services, need to interact with one another to perform these complex tasks.
Moreover, as these individual computers are controlled by different people in different labs, the
respective loads on them, at any time, cannot be known or predicted. Also, some might go
offline when they are disconnected, some might be upgraded and so on. Hence, the computers
need to continuously adapt their interactions with others in the university network to keep up

with the changes and, at the same time, optimise the overall performance.

Chapter 1 Introduction 3

Having established the usefulness and necessity of developing self-organisation for distributed
computing systems, in the next section, we show that representing such systems as a problem-
solving agent organisation will aid in the development of the required self-organisation tech-
niques. Following that, in Section 1.2, we argue that decentralised structural adaptation is an
appropriate approach for incorporating self-organisation characteristics into such organisations.
With that, we motivate the purpose of this thesis and state the research objectives in Section 1.3.
Following that, we discuss our research contributions in Section 1.4 and conclude this chapter

with a description of the structure of the thesis in Section 1.5.

1.1 Problem-solving Agent Organisations

In the context of distributed systems, the social interactions of the components can be quite ad-
hoc and not guided by definite regulations or they can be structured using an explicitly depicted
network or organisation. In the latter case, the individual components of the system will be
modelled as autonomous agents participating in an organisation and the interactions between
the components are governed by the structure of this organisation. We focus on this approach
because, regulating the interactions in the system through the organisation structure will aid in
the design of adaptation techniques by suitably representing the recurring interactions between
the components. For example, consider the autonomic system being used to maintain the com-
puting systems in a university, as discussed earlier. Now, given the large number of computers or
components in the system, one computer can hope to maintain links with just a limited number
of those present in the network. Therefore, say a computer in the geography lab regularly needs
computers equipped with good graphics capabilities for rendering its maps. It has to choose
between maintaining links with just one computer or with many in the graphics lab. The former
case will lead to less processing at the geography computer because it doesn’t have to choose
which graphics computer to allocate its tasks, but at the same time, might lead to delays when
that particular graphics computer is busy or reallocates the task to another computer. In contrast,
the latter case of maintaining links with all graphics computers will require more processing at
the geography computer every time it has to allocate a task, as it has to specifically evaluate the
capability of each linked computer before deciding the allocation. At the same time, it might
help in getting quicker outputs once the task is allocated well to a suitable computer. Now, if
provided with the structure, the geography computer can smartly choose how many graphics
computers to maintain links with, by evaluating the possible delays that might occur when ac-
cessing most of the graphics computers indirectly and compare that with the resources saved at

itself in terms of processing cycles per each allocation task.

Once the social interactions are explicitly depicted by the organisation structure, any approach
seeking to embed adaptation into the system can then use and focus on this organisation as a
whole rather than working on each of the individual components separately. Thus, the organ-

isation model will provide a better overview of the global performance of the system without

Chapter 1 Introduction 4

compromising on the individuality of the constituent entities. That is, when the example sys-
tem presented above is provided with an organisation model, the individual computers in the
different labs need not be meddled with for bringing in autonomic properties into the system.
Rather, only the overlying middleware, used to interact with the network, that is common to
all the computers, needs to be worked on. On this basis, we argue that a formally modelled
organisational representation of the components will help in managing their social interactions
(Zambonelli et al., 2003), and, at the same time, provide insights into possible avenues for self-
organisation and adaptation towards improving global behaviour. More specifically, we contend
that depicting the distributed computing systems, including the service providers, their social
interactions and the task environment, using an abstract organisation framework will provide a
suitable platform to develop and evaluate self-organisation and other techniques attempting to

bring about autonomic characteristics like self-management into the system.

Against this background, we are primarily interested in multi-agent systems that act as cooper-
ative problem-solving organisations (i.e. those comprising cooperative autonomous agents that
receive inputs, perform tasks and return results). The problem-solving part of this definition is
in contrast to organisations that just provide guidelines to be obeyed by agents participating in
the organisation to achieve their individual goals (an example of such an organisation model
is provided by Sierra et al. (2004)). Specifically, these organisations do not have any particu-
lar goals to achieve, but only act as regulating authorities. Thus, they do not look to accom-
plish any defined tasks, and are not suitable to be mapped onto distributed computing systems.
The cooperative part of the definition is in contrast to those comprising self-interested and of-
ten competing agents (Nisan et al., 2007). We chose to use such cooperative problem-solving
agent organisations because they can be decentralised with autonomous and independent agents
which accomplish tasks by providing services and collaborating with each other through social
interactions governed by the organisation’s structure. Thus, it models the salient features of
distributed computing systems and, at the same time, contains the flexibility required to make
them autonomic. Hence, we focus on developing self-organisation techniques for such agent

organisations. Next, we discuss the specifics of the self-organisation method that we seek.

1.2 Decentralised Structural Adaptation

Given the aim of achieving self-organisation in agent organisations, we believe that decentralised
structural adaptation provides the most suitable approach (other approaches include modifying
the agents sets (Kamboj and Decker, 2006) or their internal characteristics (Klein and Tichy,
2006)). As mentioned before, the structure of an organisation is a manifestation of the relations
between the agents, which, in turn, determine their interactions. Consequently, adapting the

structure involves changing the agent relations, and thereby, redirecting their interactions.

Furthermore, autonomic systems are expected to be deployed in uncertain and changing envi-

ronments where, in addition to the tasks facing the system, neither the components nor their

Chapter 1 Introduction

<—= relation
-------- transmission

GlSLabs Graphics Labs

(a) Initial configuration

. Online
. Offline

GlSLabs Graphics Labs

(b) X3 goes offline, Y, redirects queries

GlSLabs Graphics Labs
(c) Y» and X; adapt by forming a relation
GISLabs Graphics Labs

(d) Changed structure when Y>’s project changes

FIGURE 1.1: An example of structural adaptation

Chapter 1 Introduction 6

characteristics will remain constant. In more detail, the system will be expected to continue per-
forming well in scenarios where agents might be added or removed from the organisation, the
properties of the existing agents might be changed with time (they might start providing new ser-
vices, lose services or gain more resources), and similarly, the characteristics of the task stream
(the type and rate of tasks) might also vary with time. In such cases, structural adaptation will
enable the agents to reorganise their interactions to better suit the changed circumstances. For
example, consider the earlier described university scenario by focusing only on a few computers
in the GIS labs and the graphics labs, as depicted in Figure 1.1(a). Initially, computer Y> is work-
ing on some project involving the city Seoul, whose GIS information is present in X3. Thus, ¥>
maintains relations with ¥ and X3. Similarly, ¥; and X; have a relation and so on. However, X3
was switched off by its owner when she went on vacation, as in Figure 1.1(b). Then, Y, left with
no other resort, starts enquiring for its GIS information from ¥; who then redirects the queries
to its relation X; and sends back the information to Y,. In such circumstances Y, and X; should
realise this and start maintaining a relation directly between them to reduce both the computa-
tion load and memory usage on Y;, also saving bandwidth and resulting in faster passage of the
information considering that the GIS data, which tends to be huge, need not be copied to Y7 in
between (see Figure 1.1(c)). With time, that Seoul based project is finished and Y; is then being
used for a newer project relating to SaoPaolo. This GIS information is not present with X; but
with X5. Thus, instead of interacting indirectly via Xi, ¥, and X; should then form a direct rela-
tion. At the same time, ¥> and X; should realise that their interactions are not frequent anymore
and dissolve their relation, as shown in Figure 1.1(d). Thus, structural adaptation is especially
critical in such situations to help the organisation cope with both internal changes and those in

the external environment.

Moreover, as the adaptation process itself will require some computation, meta-reasoning is
also needed by the agents to decide ‘whether to adapt’ (in addition to ‘how to adapt’) or to
continue performing the tasks without adaptation. As a sample scenario, considering our earlier
example. Y, has limited computational resource (processor cycles and memory) available to
it. Given that it has to process a continuous stream of tasks for its projects, it has to make the
best possible use of the resources for a good performance (in terms of tasks completed for the
project). In addition to those computational tasks, we have seen that ¥> also needs to maintain the
best set of relations to help in its task allocation. This evaluation and modification of relations
(structural adaptation) by Y, takes up its limited computational resources as well. Thus, Y»
will have to balance its limited resources between doing its actual tasks and this adaptation
reasoning. Therefore, it becomes imperative for ¥, to choose smartly between when to evaluate
the structure for adaptation and when to continue with the current structure (that is, the current
relations) without evaluation, thereby needing meta-reasoning. Now, such meta-reasoning in a
multi-agent systems context has been shown to be particularly important for resource-bounded
agents in uncertain environments (Raja and Lesser, 2004) because the agents will have to smartly
choose how to use their limited resources especially since they cannot predict the future tasks
or environmental changes. Thus, it is another important issue that needs to be addressed in our

context because we also deal with agents adapting in the face of limited computational resources

Chapter 1 Introduction 7

and present in dynamic environments where the tasks and agent properties are unpredictably

changing with time.

Against this background, we seek to develop a novel structural adaptation method for problem-
solving agent organisations placed in dynamic environments. Following self-organisation prin-
ciples, the method should be a decentralised and continuous process that is followed by every
agent to decide on when and how to adapt its relations, based only on locally available informa-
tion. Furthermore, we attempt to develop techniques that can even be applied to scenarios where
the agents and/or their internal characteristics are not alterable by the adaptation process. Thus,
our mechanism can serve as a self-management tool similar to those envisioned in autonomic

systems. We further elucidate our research objectives in the next section.

1.3 Research Requirements

The focus of this thesis is to design a decentralised structural adaptation method for problem-
solving agent organisations based on self-organisation principles. This overarching objective
entails several requirements including the design of a suitable agent organisation framework
along with a performance evaluation mechanism for such organisations, the self-organisation
based structural adaptation method, and the demonstration of its effectiveness on various sce-

narios. Next, we discuss each of these requirements in detail.

1.3.1 Agent Organisation Framework

We seek a problem-solving agent organisation model that serves as a fitting abstract represen-
tation of distributed computing systems. Hence, it should provide an appropriate simulation
framework for distributed systems by modelling the task environment, the computational enti-
ties, and their interactions. Also, in line with our primary objective, the model should focus on
the inter-agent interactions; that is, the organisation structure and its effect on the system. More-
over, we also need an evaluation mechanism for the performance of the organisation based on
the tasks or goals achieved by it. This method should be such that the critical role played by the
organisation structure on the performance is made explicit and clear. In addition, the framework
should possess the flexibility to allow agent based adaptation of the organisation. Therefore, any
designer of self-organisation techniques, especially those focusing on the structure or network,
will be able to see their method in action and evaluate its performance by using this framework,
before being transported and put in the actual domain specific autonomic systems. At the same
time, we do not require a highly sophisticated model, because this is not the main focus of
this thesis, but just enough to satisfy our needs. Moreover, a minimal model is more generic
and capable of representing wider range of systems than a sophisticated and specialised model.
Towards developing such a generic framework, we seek the representations to be abstract and

contain only the essential characteristics. Therefore, the task environment just needs to contain a

Chapter 1 Introduction 8

stream of tasks requiring some services and the agents should be providing these services using
some resources, as these are the basic characteristics of any distributed computing system. Also,
since such systems are placed in dynamic environments where it is not possible to predict the
future goals or tasks requirements, even our modelled task environment has to be unpredictable
with no information available a priori. In addition, since our focus is the agent interactions,
the model should contain a basic representation of them using the organisation structure. Fi-
nally, a method for measuring an organisation’s performance will be useful while evaluating
the effectiveness of any adaptation approach. More specifically, the design requirements are as

follows:

1. Task Environment: Contain a dynamically incoming stream of tasks requiring multiple

services with no advance information available about the tasks.

2. Agent Model: Suitably represent the individual components of a distributed computing
system by accomplishing the incoming tasks through interaction and execution using their

limited resources.

3. Organisational Characteristics: Govern the agent interactions through the structure and

thus, play an important role in the performance of the system.

4. Performance Evaluation Measures: Evaluate the performance of the agent organisation

in terms of the tasks accomplished and the resources consumed.

1.3.2 Self-Organisation based Adaptation Method

The primary objective of this thesis is to develop a self-organisation based structural adaptation
method that can be employed by the agents in a problem-solving agent organisation to improve
the performance of the organisation as a whole. Since the purpose of this research is guided by
the concept of autonomic systems, the adaptation should target the organisational characteristics
like the structure rather than the individual agent characteristics. This is critical because, chang-
ing the characteristics and internal configurations of these components may not be possible on
all occasions due to physical and accessibility limitations (e.g data-centres located in remote
places cannot easily be replicated) and such changes might be beyond the control of the agents
or components themselves. Also, as argued earlier, since the computing systems will be placed
in dynamic environments, structural adaptation is necessary to manage the system with regards
to the changes affecting it. Therefore, a structural adaptation method will be more widely ap-
plicable than those involving changes to the particular agent properties. As discussed before,
the adaptation method should enable the agents to choose when and how to adapt, especially
when placed in the rapidly changing environments. We elaborate on all of these requirements as

follows:

Chapter 1 Introduction 9

1. Decentralisation: The adaptation method needs to be agent-based and be employable by
any agent, at any level of the organisation, solely on the basis of its limited local view.

This makes the adaptation robust without any critical points of failure.

2. Continuous: The method should be a perpetual process, striving to improve the organi-
sation’s performance continuously. This property is important because the system might

be placed in a highly dynamic environment where changes are taking place at any time.

3. Local Adaptation: The agents can adapt only locally and change only those elements of
the structure that are under their direct influence, that is their own links and relations only.
This enhances the robustness of the method because then, no part of the system will be

dependent on any others for their management.

4. Benefit Globally: Though based on local adaptation by the agents, the method should
lead to the benefit of the organisation as a whole.

5. Meta-Reasoning: The method should not only enable the agents to decide on how to
adapt, but it should also aid them in choosing when to reason about adaptation. Therefore,
the agents should be able to smartly decide when to divert resources for reasoning about

adaptation and when to use them solely for task completion.

6. Open Organisations: The organisation can be closed, wherein the agents are always
present, or open, in which agents might be entering and/or leaving the system as time
progresses. These open organisations represent those distributed computing systems in
which resources are added or removed with time. Thus, the existing agents in the system
should also be able to adapt the structure to deal with these incoming and outgoing agents

in the case of open organisations.

7. Dynamic Organisations: The organisation can also be either static, wherein the internal
properties of the agents are fixed, or dynamic, in which the these internal properties of
the agents might be changing with time. The dynamic organisations representing the
distributed systems in which the resources are changed and updated with time. The agents

will also have to adapt to these changes in the system.

8. Varying Task Environment: The characteristics of the task environment facing the sys-
tem might also be changing with time and the adaptation method should be effective in

these scenarios as well.

1.3.3 Empirical Evaluation

Self-organisation based approaches tend to not have a theoretical foundation because the global
product of the several simultaneous local actions cannot be predicted or modelled theoretically.
As a consequence, a theoretical approach towards evaluation of self-organisation is not plausible

in most cases (unless all the actions and their interdependencies are all modelled mathematically

Chapter 1 Introduction 10

based on some theoretical model). Hence, the efficacy of self-organisation inspired methods can
mainly be evaluated by thorough experimentation. To this end, we also seek an appropriate ex-
perimental setup which will let us create the wide-ranging scenarios that the system is expected
to face, and then evaluate its performance in those settings. This requirement entails coming
up with suitable simulation parameters and methods for comparison. In detail, the following

aspects will need to be addressed:

1. Simulation Parameters: The empirical evaluation will be based on various simulation
scenarios to represent the various cases that an autonomic system might possibly face.
Generation of these scenarios will depend on the relevant simulation parameters. These
need to be identified and designed for effective experimentation. In particular, these pa-
rameters should enable us to model the openness and dynamism of organisations along

with the variance in the task environments.

2. Methods for Comparison: The utility of the adaptation method can be obtained by com-
paring its performance with that of the existing state of the art. In addition, a suitable
theoretical upper bound is required to place the performance of the method in terms of the

limits on the performance that is possible to be achieved by the system.

1.4 Research Contributions

To achieve the above listed goals, we designed an agent organisation framework and used it
as the basis to develop a novel structural adaptation method based on the principles of self-
organisation. Our adaptation method enables pairs of agents to continuously and locally reeval-
uate their structural relations on the basis of their past interactions. Using the method, every pair
of agents can calculate the utility of the possible relations between them and choose the most
beneficial one. Additionally, the agents are also able to decide when to initiate such calculation
and with which other agents. Specifically, they meta-reason for the adaptation by considering
the current free resources at their disposal and the number of successful adaptations in the imme-
diate past, along with a randomised approach for choosing which relations are to be considered
for adaptation. Furthermore, our method also aids the agents to adapt in open organisations. Us-
ing simple principles based on the current context of the existing agents, newer agents are easily
assimilated into the structure by the method. Similarly, agents in dynamic organisations are
able to adapt the structure to the quickly changing circumstances by associating time-decaying

weights to the past interactions while calculating utilities.

By so doing, we claim to advance the state of the art in the domain of adaptation mechanisms

for agent organisations in the following ways:

1. We present an abstract representation of distributed computing systems by modelling them

as a problem-solving agent organisation. Particularly, our framework is the first one to

Chapter 1 Introduction 11

highlight the organisational structure and its importance in terms of the system’s perfor-

mance, in such a context. Doing this satisfies all the requirements stated in Section 1.3.1.

2. We provide the first structural adaptation mechanism that is completely decentralised and
generically applicable to models with a broad range of inter-agent relations. It is also
the first self-organisation inspired approach for adaptation in formally specified agent
organisations (as opposed to structure-less systems like swarms and ant-colonies). By
this, we satisfy the first four requirements stated in Section 1.3.2 as we have developed a
decentralised and continuous adaptation method that is applicable locally for the overall

benefit of the system.

3. Our method is the first to consider and address the meta-reasoning aspects involved in the
adaptation of agent organisations. Particularly, this satisfies the fifth requirement stated in
Section 1.3.2 as our method enables the agents to meta-reason by aiding them to decide

when and how to utilise resources for reasoning about adaptation.

4. Our adaptation method is the first one suitable for open and dynamic organisations where
the agents and their internal characteristics change with time. It is also the first method that
adapts to the changing characteristics of the overall task environment as well. Through
this, the rest of the requirements stated in Section 1.3.2 are satisfied because the method
helps the agents adapt the structure when some agents enter or leave the system, or their
properties are changed over time. Also, using the method, the agents are able to maintain
their performance even when the characteristics of the task environment are changed over

time.

The third major requirement of this thesis, as identified in Section 1.3.3, is satisfied implicitly
during the evaluation of the above described adaptation method. In particular, we highlight the
simulation parameters necessary for generating various scenarios like open or dynamic systems
and also provide a suitable upper bound and other methods for comparison. Overall, these

contributions have led to a number of peer-reviewed publications:

¢ Kota et al. (2008): R. Kota, N. Gibbins and N. R. Jennings (2008). Decentralised struc-
tural adaptation in agent organisations. In: Proceedings of the International Workshop on
Organised Adaptation in Multi-Agent Systems (OAMAS) at AAMAS’08, Estoril, Portugal.
pp- 1-16.

This paper presents a preliminary version of the organisation framework and a decen-
tralised structural adaptation method for closed and non-dynamic organisations by ig-

noring the meta-reasoning aspects (Contribution 2).

e Kota et al. (2009c): R. Kota, N. Gibbins and N. R. Jennings (2009). Self-Organising
Agent Organisations. In: Proceedings of the 8th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS ’09), Budapest, Hungary. pp. 797-804.

Chapter 1 Introduction 12

The paper extends Kota et al. (2008) by describing a more sophisticated adaptation
method which also includes meta-reasoning and strategies for dealing with open organi-

sations (Contributions 2, 3 and part of 4).

e Kota et al. (20095): R. Kota, N. Gibbins and N. R. Jennings. A Generic Agent Organisa-
tion Framework For Autonomic Systems. In: /st International Workshop on Agent-Based
Social Simulation and Autonomic Systems (ABSS @Autonomics 2009), Limassol, Cyprus.

This paper presents, in detail, our agent organisation framework for representing dis-
tributed computing systems and shows how it is suitable for modelling autonomic systems
(Contribution 1).

e Kota et al. (2009a): R. Kota, N. Gibbins and N. R. Jennings. Decentralised Approaches
for Self-Adaptation in Agent Organisations. Submitted to: ACM Transactions on Au-

tonomous and Adaptive Systems.

This is an extended version of Kota et al. (2009¢) and gives a more detailed description
of the adaptation method and also enhances it to deal with dynamic organisations and

varying task environments (Contribution 4).

e Chapman et al. (2009): A. C. Chapman, R. A. Micillo, R. Kota and N. R. Jennings
(2009). Decentralised Dynamic Task Allocation: A Practical Game—Theoretic Approach.
In: Proceedings of the 8th International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS ’09), Budapest, Hungary. pp. 915-922.

This paper was nominated for the AAMAS Pragnesh Jay Modi Best Student Paper Award.

Additionally, it has been invited to appear in a special issue of: The Computer Journal.

This paper was produced alongside this research by working on the related problem
of dynamic task allocation. It reports on a novel decentralised technique for planning
agent schedules in dynamic task allocation problems and demonstrates the approach over
the RoboCup Rescue simulation platform. In particular, it formulates the problem as a
Markov game and approximates it using a series of static potential games, which are then
solved in a decentralised fashion using the Distributed Stochastic Algorithm. However,
this work does not form a part of this thesis, because it pertains to a different problem do-
main and uses a different approach to the one we present here. Nevertheless, it is relevant
to this thesis because while the focus of the thesis is to adapt the agent interactions to
facilitate better task allocation, this paper focuses on the correlated problem of dynamic

task allocation among the sets of agents

Next, we describe the structure of this thesis by outlining the contents of the subsequent chapters.

1.5 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 1 Introduction 13

o In Chapter 2, we review the existing literature in the areas of interest which are organi-
sation modelling and adaptation mechanisms. Particularly, we discuss the current tech-
niques for modelling organisations by studying its features individually— task environ-
ment, agent modelling, organisational characteristics and performance evaluation mea-
sures. Following that, we focus on self-organisation techniques and also other adaptation

mechanisms that are relevant in our context.

e In Chapter 3 we present our framework of agent organisation by describing the task en-
vironment representation and the organisational characteristics with particular focus on
the structure. We also introduce and explain an evaluation mechanism to measure the

performance of the organisation.

e Following that, we present the fundamentals of our adaptation method in Chapter 4 by
first detailing the constraints and assumptions placed on the organisation model and then
describing our decentralised structural adaptation method for static closed organisations.
Later in the chapter, we enhance our method so that it is suitable for open and dynamic
organisations as well. In addition, we also discuss how this enhanced method is also

useful in task environments with changing properties.

o This is then followed by Chapter 5 in which we record the empirical evaluation conducted
on the adaptation method by first detailing the comparison methods and the simulation

parameters for all the various scenarios and then analysing the obtained results.

e We conclude in Chapter 6 with a summary of our research and an outlook on future
work. It is followed by Appendix A which contains additional sets of results to justify the
experimental parameters used in Chapter 5. Finally, Appendix B gives a glossary of all

the terms used in this thesis.

Chapter 2

Literature Review

This chapter provides an overview of the current research in the fields of organisation mod-
elling and self-organisation in multi-agent systems. The first section surveys the existing work
in modelling agent organisations and evaluates their suitability with respect to our first require-
ment, stated in Section 1.3.1 which refers to developing a framework for problem-solving agent
organisations to represent distributed computing systems. The next section presents the motiva-
tion and characteristics of self-organisation in multi-agent systems and follows them up with a
description and analysis of the various techniques developed in this particular field. Following
that, in Section 2.3, we also look at the prevalent adaptation mechanisms designed particularly
for agent organisations. Then, the final section summarises the chapter by highlighting the work
that provides the point of departure for this study and also drawing attention to the open issues

that need to be addressed to meet the requirements laid out in Section 1.3.

2.1 Agent Organisations

As we are seeking to develop an organisation framework that suitably represents distributed
computing systems, it should provide an abstract representation of the components of the sys-
tem, their social interactions and the tasks that they perform along with the environment that
they are based in (discussed in Section 1.1). Correspondingly, organisation modelling involves
modelling the task environment, the organisational characteristics (structure and norms), the
agents and the measures for evaluating the performance of the organisations (as debated in Sec-
tion 1.3.1). To this end, in the following subsections, we study the current literature in each of

these aspects and evaluate them with respect to the requirements outlined in Section 1.3.1.

14

Chapter 2 Literature Review 15

2.1.1 Modelling Tasks

Typically, agent organisations execute some task(s). Therefore, the tasks of an organisation form
an integral part of its description. Specifically, the set of tasks can be considered to be the prob-
lem space of the organisation (Carley and Gasser, 1999). Hence, developing a representation

model for the tasks is a necessary step in the process of modelling an organisation.

In more detail, the tasks can be atomic or made up of two or more tasks (or subtasks) which, in
turn, may be composed of other tasks. The tasks may have dependencies among them, result-
ing in a temporal ordering of the tasks in the organisation. In this context, Thompson (1967)
identifies three kinds of such dependencies — pooled, sequential and reciprocal. Two or more
tasks whose results are jointly required to execute another task are said to be in a pooled depen-
dency relation with each other. A sequential dependency exists between tasks if they have to
be performed in a particular sequence. Finally, a reciprocal dependency exists if the tasks are
mutually dependent on each other and have to be executed at the same time. However, the tasks
dependencies as suggested by Thompson have subsequently been interpreted in different ways

in different models.

In particular, Jin and Levitt (1996) model the task dependencies in their ‘Virtual Design Team
(VDT)’ closely following Thompson’s model. However, they extend the sequential dependency
by representing it as a successor relationship between the tasks and further classifying it as
a finish-to-start successor (if the task can only be started on the completion of the other task
comprising the dependency) or a start-to-start successor (if the task can be started after the start
of the other task). Similarly, they consider two types of reciprocal dependencies — information-
related and work-related. The former is present between two tasks when some information
from the execution of one task is required by another and vice versa. The latter is present in
those cases where a change in the execution of one task effects the other and vice versa. This

representation is particularly useful if the dependencies are to be modelled in detail.

In contrast, in the PCANS model, Krackhardt and Carley (1998) demonstrate that both pooled
and reciprocal dependencies, as described by Thompson, can be derived from sequential depen-
dencies. For example, if task 1 is dependent on the completion of tasks 2 and 3, then tasks 2
and 3 share a pooled dependency relationship. But that also means that task 1 is sequentially
dependent on task 2 and task 3. Thus, all the tasks that form the sequential dependencies of a
particular task are in a pooled dependency. Similarly, two tasks sharing a reciprocal dependency
with each other can be broken into smaller tasks which have a series of sequential dependencies.
For example, let there be two tasks, 1 and 2, having a reciprocal dependency with each other.
They can be divided as, say, task 1a and task 1b (representing the first task) and task 2a and task
2b (representing the second one) such that task 1a is sequentially dependent on task 2a, which
is sequentially dependent on task 1b, which, in turn, is sequentially dependent on task 2b. Thus,

their representation enables the designer to model just a single dependency.

Chapter 2 Literature Review 16

Other than the task dependencies, the task environment of an organisation can be further char-
acterised on the basis of the degree of repetition, volatility, bias, and complexity (Carley and
Gasser, 1999). Thus, tasks could be repetitive, quasi-repetitive (same type of tasks, but some
details in the specific instances are different) or non-repetitive. Volatility denotes the rate of
change of the tasks. Bias represents the extent to which all possible tasks may have the same
outcome, while complexity denotes the amount of processing required by the tasks. Changes
in the task environment can also be classified as — sudden change, oscillating, and gradual
change. In sudden change, the task environment changes considerably in a short span of time.
Oscillating environments are those in which the tasks keep fluctuating between two or more
types at fairly regular intervals of time. In gradually changing environments, the change in tasks

is uniformly distributed over a considerable period of time.

For the requirements of this work, we just need a simple task model containing dependencies,
and hence we will use the PCANS model to represent our tasks. This is because this dependen-
cies model reflects most of the tasks in real-life and the allocation of these dependencies among
the components of a distributed system is the driving force behind their social interaction, which
is the focus of this thesis. Also, the characteristics of the task environment, as described above,
will be considered while generating the input tasks during experimentation. In particular, we
use scenarios containing quasi-repetitive tasks and also vary the volatility in some scenarios
(see Section 5.1.2).

2.1.2 Modelling Organisational Characteristics

Approaches towards organisational design in multi-agent systems can be considered to be either
agent-centric or organisation-centric (Lematre and Excelente, 1998). The former focus on the
social characteristics of agents like joint intentions, social commitment, collective goals and so
on. Therefore, the organisation is a result of the social behaviour of the agents and is not created
explicitly by the designer (Gasser et al., 1988; Cohen and Levesque, 1991). On the other hand,
in organisation-centric approaches, the focus of design is the organisation which has some rules
or norms which the agents must follow. Thus, the organisational characteristics are imposed on
the agents. Dignum and Dignum (2005) show that an explicit organisation structure helps in the
achievement of the objectives of the organisation as these goals may be wider than an individual
agent can perceive. Also, the structure will impose restrictions on the interactions of the agents,
thus preventing any combinatorial explosion that might happen in structure-less systems. Due
to this, but mainly because our requirements relate primarily to problem-solving agent organ-
isations (see Section 1.3.1), we only study organisations in multi-agent systems whose design
is modelled explicitly. This means we exclude those approaches based on agent-centric organ-
isation design, as described earlier. In this context, several models for depicting computational
organisations have been developed by researchers in the multi-agent systems community. We
examine the main ones by considering their ease at representing real-life distributed computing

systems, particularly agent interactions as the social interactions between the agents based on the

Chapter 2 Literature Review 17

structure and their adaptation forms the focus of this thesis. For the same reason, we also study

how straightforwardly adaptation methods can be embedded into these organisational models.

e Opera and OMNI: The OperA framework (Dignum, 2003) is useful for formal specifica-
tion of agent societies. Its organisational model specifies the organisational characteristics
on the basis of the social structure (role characteristics including skills and relations), in-
teraction structure (agent interactions constitute scenes), normative structure (describing
expectations and boundaries for agent behaviour) and communication structure (ontology
for knowledge representation and communication language). This work is then extended
by the OMNI framework (Vazquez-Salceda et al., 2005) which enables the designer to
specify the organisational structure, the interactions between the agents and the norma-
tive structure independent of the design of the agents. So, it provides a much broader
framework for designing agent organisations. However, in both of these frameworks, the
agents are not permitted to modify the organisational characteristics that have been pre-
designed and, hence, they do not provide a suitable platform for self-organisation, thereby

not meeting our requirements.

e Norms based: Lopez Y Lopez et al. (2006) present a framework for open agent societies
by using a norm based approach. Particularly, they analyse the different properties of the
norms required in such open systems to regulate agent behaviour and then discuss how
to model a normative multi-agent system. Using the formal definition of the norms in
the system, the agents are able to reason about the norms and take decisions regarding
their actions with respect to the prevailing norms in the system. While such a model
is useful for systems in which independently designed agents possessing self-interested
goals need to interact with each other, it is not applicable to our scenario where the agents

are cooperative towards the system-wide goals.

o Islander: Islander (Sierra et al., 2004) uses the following elements to model the organ-
isation — dialogic framework, scenes, performative structure and norms. The dialogic
framework defines the roles that can be adopted by the agents. Every role defines a fixed
pattern of behaviour expected from the agent playing that role. The dialogic framework
also defines the relationships between the roles and the communication ontology. The ac-
tivities in the organisation are called scenes and involve instances of interactions between
the agents playing the roles. A collection of related scenes form a performative structure.
The norms represent the commitments, obligations and rights of the participating agents.
All these are defined during design time and cannot be changed during execution. Hence,

this model too is not flexible enough to incorporate adaptation.

e ODML and KB-ORG: In contrast to the above, ODML (Horling and Lesser, 2008) was
developed as a quantitative framework for representing organisations. It uses a mathe-
matical syntax, rather than the commonly used structures and norms representation for
denoting organisations. The organisational models produced by ODML can be quantita-

tively compared against each other for a given set of requirements. Therefore, a search

Chapter 2 Literature Review 18

space of organisation instances can be explored to arrive at the most befitting design. An-
other work on similar lines is KB-ORG (Sims et al., 2008), which is an automated knowl-
edge based process for designing organisations. KB-ORG searches and prunes the design
search space by using a search algorithm that utilises the levels of knowledge provided
by the requirements specification. Nevertheless, both of these methods for designing or-
ganisations are very complex and require an elaborate specification of the organisational
requirements. As noted by the authors themselves, a significant amount of domain knowl-
edge and effort is also required to build the models. However, the method only produces
an instantiated organisation but not a generic model like we seek. That is, the method
needs to be provided the particular set of requirements (like tasks and goals) to produce
an organisation suited to them. Thus, the method is not useful for us as our model is ex-

pected to function and adapt in a dynamic environment which is not known before-hand.

e FORM: In work that has similar aims to our own, Schillo et al. (2002) aim at an organisa-
tion framework that is flexible enough for self-organisation. However, they take a strictly
emergent view of self-organisation and focus mainly on the social delegation aspects (gift
exchange, voting and so on) in agent organisations. Furthermore, their method specifies
a set of organisation models, and the participating agents choose, whether or not, to join
such organisations. Therefore, this framework does not inherently aid the development of

problem-solving agent organisations.

e NMAS: Another work that focuses on developing organisation models that permit reor-
ganisation is by Vazquez and Lépez Y Lépez (2007). They follow a norm based approach
for modelling hierarchical agent organisations in which every role has a position profile
associated with it. This profile is specified in terms of positional norms and an agent can
take up a role by changing its own set of norms to conform to these positional norms.
Therefore, their model allows the agents to change their organisational roles at run-time.
However, the model requires that all positions and norms are specified at the outset itself
and, thus, does not allow flexibility in the interactions between the positions as sought by

us.

e OMACS: A more recently developed work towards models for adaptive organisations is
presented by Deloach et al. (2008). Their framework allows for specification of roles,
and goals in the organisation. Agents can play a role if they possess the necessary capa-
bilities and an agent playing a role is expected to achieve the goals associated with the
roles. Therefore, similar to the NMAS model described above, reorganisation here in-
volves reassigning agents to roles and to goals given changes to the circumstances like
modifications to the agent capabilities or the goal set. However, the framework requires
advance information and complete specification of all the possible dynamics in the organ-
isation. That is, the framework specification includes functions that specify how well a
role can perform towards achieving a goal, how well an agent can fit a role and so on.
Thus, reorganisation on such a framework reduces to finding the best assignment given

these functions specifying the outcome of any assignment. It is not realistic to assume

Chapter 2 Literature Review 19

that such information will be available at the design stage of the distributed systems that

we seek to represent. Therefore, this framework also does not match our requirements.

e AGR: An earlier and simpler model is provided by Ferber and Gutknecht (1998) and later
extended by Ferber et al. (2003). They define an organisation as a structural relationship
between a collection of agents. Specifically, a meta-model is presented to describe organ-
isations based on agents, groups and roles (AGR). Agents are part of one or more groups
and play specific roles within the groups. These groups are created by the agents and the
creating agent assumes the group manager role. The structure of the group identifies all
the roles and interactions that can appear in the group. The group structure consists of
a tuple containing all the possible roles, an interaction graph specifying all valid interac-
tions between the roles in the group and an interaction language that should be followed
by the group. The organisation structure contains the set of groups and the possible inter-
actions between the roles belonging to different groups. Therefore, this model provides
a reasonable representation for an organisation containing several groups or departments.
While we do not require several groups in our organisation, we conform to their idea
of the organisation structure determining the interactions between the members, as this

interpretation emphasises the importance of the structure.

e Moise: A somewhat similar approach is followed by Moise (Hannoun et al., 2000), which
considers an organisation structure as a graph defined by a set of roles, a set of different
types of links and a set of groups. A role consists of a set of missions. Here, a mission rep-
resents a permitted behaviour in the system and is defined by a set of goals, plans, actions
and resources. An agent playing a role must obey some permitted behaviours which are
specified by the missions comprising the role. The missions may be viewed as the set of
services that should be provided by the agent playing the role. Organisation links are arcs
between the roles and represent the interactions between the roles. The model suggests
three types of links — communication, authority and acquaintance. Communication links
specify the kind of communication that can exist between the roles, the protocols to be
followed and the particular missions for which they can be used. Authority links represent
the subordination of one role to another along with the context for which it is valid. The
context is defined by the missions associated with the link. The acquaintance links of a
role specify all the roles about which the agent playing this role can possess information
and use in its decision mechanism. The definition of groups contains a set of roles, a set of
missions (which is a subset of the combined set of missions of the roles belonging to the
group) and a set of links which exist between roles belonging to the group. These ideas
of relations and interactions with their corresponding graphs provide a good insight into
the influence of a structure on the organisation’s performance and is therefore helpful to
us. However, the links here have a context associated with them and are valid within that
context only. We seek an organisation structure that is not so specific or bounded. Never-
theless, some of the ideas used in this model, especially those relating to the organisation

structure will be used while developing our model.

Chapter 2 Literature Review 20

e VDT: A slightly different approach is followed by the Virtual Design Team (VDT) frame-
work (see Section 2.1.1). Its purpose is to develop a computational model of real-life
project organisations (an organisation involved in completion of a project or set of tasks).
It does not use the agent-role paradigm. Instead, the agents are fixed to their duties and
are called actors. The organisation structure is composed of two structures — a control
structure and a communication structure. The former determines the supervision and au-
thority between the members and specifies who reports to whom, while the latter specifies
who can talk to whom. An additional parameter representing the formalisation of the
organisation determines the frequency of communication between the actors. Evidently,
VDT attempts to model a problem-solving organisation, and therefore, very relevant for
our requirements. However, it lacks flexibility in the organisation structure, as it only per-
mits purely hierarchical organisations. Therefore, we do not directly use the whole VDT

model but only some parts of it (explained later in this section).

To sum up, the OperA, OMNI and Islander frameworks allow for an elaborate specification of
an agent organisation and the interactions in it. The designer is expected to specify, in detail,
the scenes and the interactions between the agents. These models are most suited for creating
organisations in an open environment where external agents can enter, participate and leave the
organisation. This is because they provide rigid guidelines for the organisation, which the par-
ticipating agents need to obey, leading to regulation of the organisation. But they are not suitable
for our purposes because the agents are not empowered to modify the organisation and have to
abide by predefined structure and norms. They are also not apt for specifying organisation-level
goals or activities as these organisations only restrict agent interactions, but do not strive to
solve any problems or achieve any goals as such. On the other hand, the models that were devel-
oped to permit reorganisation (like the frameworks of Schillo et al. and Vazquez et al.) follow
norm based approaches to enable the agents to change between specified roles. Therefore, any
possible reorganisation process will be restrained to the few configurations visualised at design
time. Moreover, these models are also not very suitable for problem-solving organisations in
which the agents are internal to the system and with specified capabilities. The mathematical
methodologies like ODML and KB-ORG specify frameworks to come up with efficient organ-
isation designs given a quantifiable set of requirements. However, our set of requirements are
too simple to warrant these complex algorithms. Moreover, they produce an instantiated, math-
ematically defined rigid organisation but not a generic model or framework of an organisation.
Fortunately, we see that AGR and Moise organisation models are useful to develop goal driven
organisations in which agents are part of the structure and perform some tasks, somewhat like
the one we seek. Furthermore, while they provide a qualitative model, VDT models a problem-
solving agent organisation quantitatively including the load and costs in the organisation. Given
this, as our requirements span more than the features offered by any one of these models, we
will choose and incorporate the suitable concepts introduced by all of them (see Section 3.2.2
for the details).

Chapter 2 Literature Review 21

2.1.3 Modelling Agents

An overview of modelling agents in the context of organisations is presented by Carley and
Gasser (1999). From this, it is apparent that the modelling of agents varies across different or-
ganisation models. In particular, agents in the organisation may be homogeneous or belong to
different classes. The agent’s knowledge and cognition capability may be quite basic and primi-
tive or highly sophisticated. The agents within the organisation may be selfless and cooperative
or selfish and competitive. The abilities of the agents may be represented as a simple vector
or as a complex combination of skills, decision strategies, preferences, modes of behaviour and
so on. However, as we are more interested in the social interactions between the agents than
the internal agent characteristics, a simple agent model with skills and standard behaviour will

suffice.

In this context, while all the organisation design approaches described in the previous subsec-
tion, with the exception of VDT, leave the agent development to the designer, VDT models the
members of the organisation called actors in great detail. The main characteristics of the actors
are attention allocation (determines the decision making behaviour of how the actor chooses
among several task alternatives) and information processing (determines the skills, capacity and
other processing characteristics). This design of agents will be partly used in our organisation
model as it meets our requirements for modelling agents in the context of problem-solving or-
ganisations. Another concept that we will use is obtained from Gershenson (2007) where the
agents are required to perform task assignment but can only address one request per time-step.
Thus, we will also make use this of representation of agents possessing limited computational

capacities so that efficiency of the agents plays a prominent role in the organisation performance.

2.1.4 Evaluating Organisation Performance

Organisation characteristics play a major role in the performance of the organisation (Galbraith,
1977). Here, the criterion we will use for measuring the performance of the organisation is how
well it performs its task (Fox, 1988) as we believe this provides a good indication of the organi-
sation’s efficiency. Other evaluation methods include a qualitative comparison of the character-
istics of commonly used organisation structures in multi-agent systems as presented by Horling
and Lesser (2005). A somewhat quantitative method is presented by Grossi et al. (2006) for
evaluating the structures of agent organisations. Using graph theory, they quantify the structural
features of the organisation and then suggest how the values thus obtained can be used to anal-
yse a number of properties of organisational structure (like robustness, efficiency and flexibility).
However, both the above works are completely independent of the tasks that are being handled
by the organisation. As a result, they fail to capture the suitability of a structure according to the
task environment that it is situated in. Therefore, both these approaches are not appropriate for
our second requirement which refers to developing an evaluation function for an organisation

on the basis of the tasks executed by the organisation.

Chapter 2 Literature Review 22

On the other hand, in VDT (see Section 2.1.1), the measure of the performance of the organisa-
tion is on the basis of the load on the organisation. The load on the organisation is represented
in units of work volume, thereby providing a common calibration for different tasks. The total
work volume of a task is taken as the sum of the production work volume and coordination
work volume. The former is further divided into planned work (which is pre-defined in the task
description) and production rework (arising due to exceptions). The production rework and the
coordination work depend upon the characteristics of the organisation along with the particular
task. Therefore, the resultant load on the organisation is a function of the tasks and the organ-
isational characteristics and acts as an performance indicator. Hence, this approach chosen by
VDT is more suitable for our requirements, as it is based on the task load of the organisation,

and will be taken into account while designing our evaluation mechanism.

2.2 Self-Organisation in Multi-Agent Systems

The concept of self-organisation is inspired from natural systems which function without any ex-
ternal control and adapt to changes in the environment through spontaneous reorganisation. This
self-organising ability makes these natural systems robust to changing environmental conditions,
thus enhancing their survivability. In the context of computing systems, self-organisation refers
to the process of the system autonomously changing its internal organisation to handle changing
requirements and environmental conditions (see Chapter 1 for the formal definition). It may
involve creating an organisation from a set of un-organised agents or could mean reorganising
an already existing organisation of agents or both, creating an organisation and continuously
reorganising it as the environmental conditions vary. Further, self-organisation can be classified
(Di Marzo Serugendo et al., 2005a) as:

¢ Strong self-organising systems — these function without any explicit central control

e Weak self-organising systems — these have a central controller or planner, internal to
the system, that supervises the (re-)organisation process.

The concepts of strong self-organisation and emergence are closely coupled. Emergence is a
phenomenon in which some properties and structure appear at the macro level which are not
present at the micro level (Di Marzo Serugendo et al., 20055, 2006). The structure appearing
at the macro level is a result of the actions at the micro level, though no such order is observed
at the micro level. Relevant examples include the foraging action of ants and appearance of
moving patterns in the game of life (Holland, 1998). Often, self-organisation, when occurring
in a decentralised manner through local interactions, is an emergent phenomenon. However,
it can exist without emergence and vice versa. For our purposes, we study self-organisation
mechanisms, irrespective of whether they are an emergent phenomenon or not. Since strong

self-organising systems do not have any central control and hence no single point of failure,

Chapter 2 Literature Review 23

they provide the most suitable paradigm for developing autonomic systems. In particular, they

have the following characteristics:

e No External Control: The primary characteristic of self-organisation is that there is no
external control of any kind. Reorganisation processes are initiated internally and result
in changing the internal state of the system. Thus, the system manages itself. Also, the
process of self-organisation implies that some kind of order be present in the resultant

system after organisation or reorganisation.

e Dynamic Operation: A self-organising system is expected to evolve over time. There-
fore, self-organisation is a continuous process. The property of self-organisation exists

permanently in the system.

e No Central Control: Strong self-organising systems have no central authority to guide
the reorganisation process. This lends robustness to the system as there is no single point
of failure. Often, the organisation emerges through the local interactions of the individual

components.

Thus, any strong self-organising approach will have to possess these characteristics. In this
context, we see that these properties have been captured by the first two requirements stated in

Section 1.3.2. Next, we look at the different mechanisms of developing self-organising systems.

2.2.1 Mechanisms of Self-Organisation

Several approaches have been explored by researchers for developing self-organising multi-
agent systems. The different approaches can be classified on the basis of the mechanisms em-

ployed by them. Di Marzo Serugendo et al. (2006) identify the following categories:

1. Direct interaction based mechanisms: These are based on local interactions and com-
putations of the agents that lead the system to converge to a coherent stable state. The
focus is on generating an organisation from disordered agents. It is mainly applicable to
the structural aspects of organisation like topological placement and communication of
the agents (Mamei et al., 2004).

2. Stigmergy-based mechanisms: In a stigmergic process, global system behaviour emerges
from the indirect interactions of the agents that occur by modifying the environment
(Bourjot et al., 2003; Steels, 1990). It is difficult to predict the outcome of self-organisation
methods based on these mechanisms as the global behaviour emerges through interactions

with the environment.

3. Reinforcement-based mechanisms: In reinforcement mechanisms, a reward function
catalyses the reorganisation. Agent behaviours are rewarded on the basis of some parame-

ters and, consequently, agents adapt their behaviours to achieve better rewards. Therefore,

Chapter 2 Literature Review 24

self-organisation emerges from the adaptive behaviour of the agents. This mechanism is
commonly used to create specialisations and divisions of labour among agents (Mano
et al., 2006). Some reinforcement mechanisms, broadly classified as collective intelli-
gence (COIN), follow a distributed reinforcement learning approach (Tumer and Wolpert,
2004). A collective, in this context, is a system in which the agents making up the system
have private utilities, while the system has a global utility. Such a system is factored if
increasing any agent’s private utility cannot decrease the global utility. Furthermore, the
system will have high learnability if any agent’s actions do not affect the private utilities
of the other agents. However, in general, a completely factored system cannot have com-
plete learnability and vice-versa (Wolpert and Tumer, 2001). This is because if the system
is perfectly factored and the agent’s utility is precisely aligned with the global utility, then
such a utility function of the agent will be highly influenced by the other agents that also
influence the global utility thereby leading to low learnability. Therefore, achieving the

requisite balance between the two is a major challenge.

4. Cooperation-based mechanisms: Self-organisation can be achieved through locally co-
operative interactions between the agents that modify their behaviour on the basis of their
local perceptions resulting in system-wide reorganisation. Locally cooperative interac-
tions refer to agents behaving in such a way that they are benevolent towards other agents
in the organisation. Two commonly used mechanisms are Organisational Self Design
(OSD) and Adaptive Multi-agent Systems (AMAS). These two methods along with their

advantages and drawbacks are discussed, in detail, in Section 2.2.2.

5. Architecture-based mechanisms: These mechanisms are based on the architectures or
meta-models of the organisation. The commonly used method is holarchies which are hi-
erarchies made up of holons. Holons are entities that can exist independently or can join
with other holons to form bigger holons. Such holons dynamically altering the holarchy
according to changes in the environment, forms the basis of self-organisation (Bongaerts,
1998; Fischer, 2005). Therefore, holon based approaches focus on forming and disband-
ing groups of agents with a strict hierarchy between the groups. For example, Hilaire
et al. (2008) use a holonic architecture for decentralised decision making in the agent sys-
tem. However, such holarchy based approaches focus on forming and disbanding groups
of agents and require a strict hierarchy between the groups of holons. Also, while this
approach helps the agents in decision making regarding the tasks, it does not assist with

reasoning about the structure itself.

The above described mechanisms are not completely disjoint from one another. Rather, the clas-
sification is based on the behaviours in the agents that lead to self-organisation. In mechanisms
using direct interactions like broadcasts, the interactions are responsible for resulting in self-
organisation while in those using stigmergy, it arises from the effects left on the environment. In
contrast, in the reinforcement mechanisms, the agents modify their internal behaviour based on

the feedback received by their actions, while in cooperation-based mechanisms, the behavioural

Chapter 2 Literature Review 25

change occurs through the observations of the agents about the environment and prevailing sit-
uation. Finally, in architecture-based mechanisms, the self-organisation characteristics are built

into the model itself.

All these mechanisms have been used on several occasions, in different ways, to develop self-
organisation systems. Using a combination of these mechanisms, a number of applications have
been developed that use self-organisation in multi-agent systems to address real-life problems
like information retrieval, resource allocation and so on (Bernon et al., 2006). These applications
employ a variety of techniques, some of which can be put into one of the above mentioned
types and some cannot, because they cut across the classifications. Even we will end up using a
mixture of these mechanisms. Since we require adaptation in explicitly defined problem-solving
organisations, the agents will need to be cooperative and also have direct interactions with each
other. Moreover, we intend to apply the mechanism of using past information for adaptation,

somewhat similar to reinforcement methods.

In the following, we shall study some of the implementations spanning across the various types
of self-organisation mechanisms and discuss their usefulness with respect to our requirements
(stated in Section 1.3.2) which refer to developing a decentralised structural adaptation method
for agent organisations. For lack of a clear and distinct classification, we divide the different
implementations into those containing cooperative agents, containing self-interested agents, in-
spired from the social domains and those applied in computer networks. We study each of them

in turn.

2.2.2 Self-Organisation by Cooperative Agents

One of the earliest multi-agent systems to employ self-organisation was developed by Gasser
and Ishida (1991). It uses an organisation self-design (OSD) mechanism to provide the agents
with the ability to reorganise themselves. Specifically, OSD uses agent composition and decom-
position to restructure the organisation. Gasser and Ishida employ OSD in a problem-solving
organisation embedded in an environment. The agents split themselves into two or merge with
a neighbour depending upon the changing conditions. The agents decide on the reorganisation
actions (merging or splitting) on the basis of heuristic rules which are triggered by changes
to the requirements or the environment (Ishida et al., 1992). This work was then extended by
Kamboj and Decker (2007) to use a more detailed representation for tasks and resources. How-
ever, OSD mechanisms function by spawning and merging agents and would not be suitable in
scenarios where the agents cannot be merged or divided. Hence, the OSD mechanism doesn’t
satisfy our requirements as we aim to develop adaptation techniques that change the structure

and interactions within the organisation, but not the agents themselves.

Another self-organising mechanism for cooperative agents is based on Adaptive multi-agent sys-
tems (AMAS) theory (Picard and Gleizes, 2002). This theory aims to achieve self-organisation

in problem-solving multi-agent systems through the locally cooperative actions of the agents

Chapter 2 Literature Review 26

(Capera, George, Gleizes and Glize, 2003; Capera, Gleizes and Glize, 2003). The agents are
supplied with skills, communication, knowledge about other agents and criteria to detect non-
cooperative situations (NCS). The NCS are those that are adverse to the organisation. They are
classified into three kinds— (i) incomprehensible signals from the environment, (ii) perceived
information does not initiate any activity in the agent and (iii) the conclusions are not useful
to others. The specific list of NCS needs to be pre-defined at design time by the designer. An
agent on perceiving a NCS, tries to return to a cooperative situation through actions selected by
its decision mechanism. Therefore, through the socially cooperative behaviour of the agents,
an organisation emerges and is maintained. However, this approach relies on the designer be-
ing able to identify all possible non-cooperative situations and building the agents so that they
handle them locally. Thus, this approach cannot be applied in environments where all the states
of the organisation cannot be identified or classified at design time. Therefore, AMAS theory
is also not suitable for our purpose as it will not fit into the dynamic environments that we will
deal with (look at the requirements stated in Sec 1.3.1). However, the concept of cooperative
agents working towards the benefit of the organisation matches the self-organisational goals that
we seek. In this context, Sims et al. (2003) show that adaptation among cooperative agents
which use a kind of social utility through sharing of values between the agents performs better
than self-utility based methods in which the agents do not exchange their information. There-
fore, in our method, we will be using a similar joint-utility of the agents rather than isolated

utility-measures.

2.2.3 Self-Organisation by Self-Interested Agents

While the approaches discussed in the previous subsection are based on agents that are co-
operative in nature, self-organisation can also be present in multi-agent systems made up of
self-interested agents. Virtual organisations (VOs) (Norman et al., 2004) are an example of such
self-interested agents autonomously organising and reorganising into groups depending upon
the circumstances in a market-place. Similarly, Knabe et al. (2003) use a holonic approach
(see Section 2.2.1) to develop agents that form and disband virtual enterprises (VEs), according
to their trade volume with the other agents. Both VEs and VOs are applicable in open environ-
ments wherein independent agents compete to provide services, but cannot be applied to a single
problem-solving organisation of agents as they do not aim towards an efficient organisation as
a whole. Self-organisation by competitive agents within an organisation is also used by Klein
and Tichy (2006) to develop a fault-tolerant multi-agent system. In their case, fault tolerance is
achieved through the agents dynamically reconfiguring their task specialisations to obtain better
rewards. Therefore, every agent uses a simple decision theoretic approach by estimating the
rewards for performing any of the other services and then chooses that service which predicts
the highest reward to the agent. This reward function is designed such that when there are more
agents than the demand requires, the reward is negative and vice versa. However, this work, as
such, is also not suitable for our objectives as it is based on the assumptions that tasks do not

have dependencies and that all agents have the ability to perform all services. While the ideas

Chapter 2 Literature Review 27

presented in this work are quite useful to us in terms of the agents reasoning based on rewards,
they cannot be directly applied to our scenario as in our case, the primary goal of adaptation is
improving the efficiency of the organisation without changing the agents. Nevertheless, we pick
the idea of using a decision theoretic approach and use it in our method as it provides a good

method of representing and evaluating the action choices faced by the agents.

2.2.4 Self-Organisation inspired from Social Domains

Stigmergy and reinforcement based mechanisms, mainly inspired from biology, have been used
in reactive agents to develop self-organising multi-agent systems (Mano et al., 2006). The major
problem with these mechanisms is that being emergent, the agent design does not guarantee
particular global behaviour. Thus, the connection between local behaviours and global results
is difficult to obtain. Therefore, the design of the agents is based on extensive experimentation
to arrive at the correct parameters that result in useful global behaviour, thereby, making it an

unreliable and lengthy approach.

In more detail, a stigmergic self-organisation approach that has been successfully applied in a
multi-agent system is demonstrated by Schlegel and Kowalczyk (2007). They tackle the problem
of resource allocation by proposing a distributed algorithm that does not require any central
controller. Agents need to dynamically allocate tasks to servers that are shared between all
the agents. The agents attempt to optimise their task allocations by forecasting the future task
load on the servers on the basis of the history of server utilisation, obtained from the completed
tasks at those servers. Every agent maintains a set of predictors per server. In every such
set, one predictor is anointed as the active predictor and is used to forecast the future load on
that server. On the basis of the forecasts on each of the servers, the agent chooses the server
with the maximum capacity forecasted. Thus, the decision mechanism is based on standard
decision theory. Also, using the feedback from the time taken to complete its tasks, the agent
evaluates the active predictor for each server and switches to a different predictor, if necessary.
The various strategies followed by the predictors are fixed at design time, only the method of
selecting the active predictor is affected by the agent’s history. In this way, efficient resource
allocation emerges from the indirect interactions between the agents (as the agents only interact
with the servers). Some of the ideas presented in this work, mainly the utilisation of the histories
of task allocations and the use of decision theory, will be useful for our adaptation method. The
major difference between this work and our requirements is that here, the agents do not interact
directly and take all decisions independently; while in our model, the agents need to interact
with each other to collectively decide about their relations. Furthermore, in this case, the self-
organisation process influences the task allocations on a case-to-case basis, while we require

self-organisation at the higher level of agent relations that, in turn, influence the task allocations.

Apart from stigmergic self-organisation seen in the biological domain, self-organisation that is
seen in social and economic domains like trust behaviour of humans, gossipping and markets

can also be applied to develop self-organising computing systems (Hassas et al., 2006). For

Chapter 2 Literature Review 28

example, the T-MAN protocol (Jelasity and Babaoglu, 2005) uses a gossip based mechanism
to construct network topologies. The nodes are modelled as agents and select their neighbours
through a ranking function that is based on local messages (gossip). This technique is useful to
create an organisation, but not to dynamically adapt it according to changing conditions. Hence,

it does not satisfy our criteria.

2.2.5 Self-Organisation in Networks

Network related problems provide a suitable scenario for employing self-organisation tech-
niques and are especially important to us as they also focus on the interactions and structure.
In this context, Mills (2007) presents a survey of various self-organisation techniques being
used in wireless sensor networks. However, these methods are specific to network problems like
query-routing and internal power management and cannot readily be ported to generic optimi-
sation problems in multi-agent systems. Nevertheless, one particular work that is relevant to
the current study is by Itao et al. (2002) in which autonomous components provide network ser-
vices by forming relationships with other components based on a reward mechanism. However,
the rewards are based on the feedback provided by the end-user for every query. This kind of
direct user feedback cannot be expected in the autonomic domains that we intend to deal with.
The neighbour selection problem in self-organising networks can also be tackled by using a ma-
chine learning approach (Beverly and Afergan, 2007). However, this method requires running
the system initially over the training samples to obtain the model that can then be used to pre-
dict neighbour suitability. Therefore, it is not an online approach and not suitable for dynamic

environments either.

A more relevant network-based approach is presented by Forestiero et al. (2008) for informa-
tion dissemination in a dynamic grid computing system. In their case, agents travel through
the grid replicating information and discovering new resources based on some biology-inspired
algorithms. However, their method is specifically applicable to resource discovery and update
only, while we seek a self-organisation approach for the very different problem of structural
adaptation. Nevertheless the usefulness of a self-organisation mechanism in a dynamic envi-
ronment is amply demonstrated by their work. More specifically, we seek a mechanism that
will enable the agents to locally adapt the structure in a dynamic environment. Such methods
are generally developed for peer-to-peer networks. To this end, Biskupski et al. (2007) survey
the existing self-organising methods for such systems by comparing them against their model
of agent-based self-organisation. Specifically, their localised mechanisms incorporate concepts
of feedback, local evaluation functions and decay. Although our domain is more complex, as
it deals with agent organisations (rather than networks) which contain several possible types
of relations or links between agents influencing both task allocation and load balancing in the
organisation, the ideas of feedback, decay and local evaluation functions are useful to us too.

Thus, we will be including these basic ideas into the design of our approach.

Chapter 2 Literature Review 29

After analysing the various self-organisation techniques in multi-agent systems, we find that
most of them cannot be applied to explicitly modelled problem-solving organisation of agents.
This is because they cannot be incorporated in deliberative agents working towards common
goals as are present in such organisations. Those that can be applied either self-organise by cre-
ating and deleting the agents (OSD) or by enumerating all the possible scenarios (AMAS). But,
our requirement is to develop decentralised adaptation techniques without the addition/deletion
of agents in a non-deterministic environment. Now, having studied the various self-organisation
techniques for multi-agent systems in general, we turn our attention to our problem domain, that
is, problem-solving agent organisations. Particularly, in the following section, we look at the
various adaptation mechanisms (irrespective of them being self-organising) developed specifi-

cally for agent organisations.

2.3 Adaptation in Agent Organisations

Though the works described previously can be applied to agent organisations, they do not deal
with explicitly modelled organisations. On this note, Mathieu et al. (2002) suggest that an adap-
tation method is important to improve the performance (in terms of costs and task completion
times) of organisations, though they do not actually provide such a method. In a similar vein,
Dignum et al. (2004) discuss reorganisation in agent organisations by examining and classify-
ing the various motivations for reorganisation and the different kinds of reorganisation possible.
They broadly classify reorganisation into two types— (i) behaviour change involving short term
behaviour modification of some agents and (ii) structural change involving long term changes
in the structure of the organisation. Moreover, they emphasise on the necessity of concretely
determining the complete utility of an organisation and its structure, which can thereby indicate
the benefits of a given type of reorganisation. Thus, while their suggestions further justify our
requirement of needing an evaluation mechanism for the organisations, they do not indicate any
possible solutions. Along the same lines, Ashri et al. (2003) discuss how managing the relation-
ships between the agents are important for regulating agent interactions. They further present a
method for identifying the inter-agent relationships on the basis of the influence of one’s actions
over the other’s environment. However, in our context, the relations between the agents are

explicitly defined by the structure.

Moving on to reorganisation designed for formally modelled organisations, Horling et al. (2001)
use the TEMS (Decker and Lesser, 1993) representation to model an agent organisation and
propose a diagnostic subsystem to be incorporated inside the agents. Such a subsystem would
help the agents identify deficiencies in the organisation and suggest reorganisation measures.
In particular, their proposed architecture has three layers— symptoms, diagnosis and reactions.
Symptoms are observations of the environment, the diagnosis layer identifies deficiencies on
basis of the symptoms, while the reactions layer suggests suitable measures based on the diag-
nosis. Though this work provides a means for the agents to detect the need for reorganisation, it

does not elaborate on concrete reorganisation steps. A mapping between the diagnosis and the

Chapter 2 Literature Review 30

reactions is assumed. Thus, all the adaptation steps have to be pre-designed which is not always
possible. In a similar work, Hoogendoorn et al. (2007) present a formal description of the re-
design process of organisations based on the AGR organisation model (see Section 2.1.2). Their
work suggests an approach to represent the reorganisation process based on the requirements
and goals of the organisation. However, it requires a global view of the organisation and does

not explicitly specify how to reorganise either.

However, Zhong and DeLoach (2006) do present a preliminary mechanism for centralised re-
organisation on the OMACS framework (see Section 2.1.2). Using that framework, adaptation
reduces to changing the assignment between agents, roles and goals. The value of any assign-
ment is provided by a given function (acting as a blackbox) and the algorithm provided to choose
the best assignment is exponential on the number of agents, roles and goals. This is not applica-
ble to us as, in our case, we do not assume that the utility of any assignment is available a priori

through some function. Moreover, we seek a decentralised mechanism.

Similarly, Hubner et al. (2004) incorporate a controlled reorganisation mechanism into the
MOISE framework (see Section 2.1.2). Controlled reorganisation follows a top-down approach
in which a group of specialised agents carry out the reorganisation process which includes moni-
toring the organisation, designing the changes and implementing them. Thus, it is not bottom-up
or completely decentralised as only some of the agents have reorganising capability. It also re-
quires designing some agents with complex reorganisation modules. While this work addresses
the same problem that we are interested in, the approach does not satisfy our requirements as
we are interested in a completely decentralised approach in which all agents have reorganisation

ability.

Bou et al. (2006a,b) also incorporate an adaptation mechanism into the Islander organisation
model (see Section 2.1.2). In it, a central authority named an ‘autonomic electronic institution’
modifies the norms of the organisation to accomplish institution level goals. Thus, this mecha-
nism is centralised and is based purely on modifying the organisational level features like norms,
without changing the agents or their relationships (structure). Another centralised mechanism
developed by Hoogendoorn (2007) uses a max-flow network based approach to dynamically
adapt organisations according to environmental fluctuations. It uses the AGR model (see Sec-
tion 2.1.2) and specifies a mapping between this model and max-flow networks. In this case, the
agents are regarded as nodes and their relationships as links of the network. The task require-
ments are modelled as the environmental pressure on the organisation which is mapped onto the
source-sink paradigm of max-flow networks. The adaptation mechanism is based on identifying
and adding capacities to the bottlenecks in the system and duplicating roles and the associated
links to improve the max-flow of the system. However, again this approach requires a central
authority to carry out the reorganisation. Also, it aims at improving the capacity by adding links

and nodes but does not attempt to optimise by removing redundant links or nodes.

Chapter 2 Literature Review 31

Another such graph based approach for reorganisation is presented by Wang and Liang (2006).
They represent the organisation structure using three graphs— (i) a role graph denoting the rela-
tions between the roles (ii) an agent graph, which is an instantiation of the role graph, depicting
the relations between the agents depending on the roles allocated to them and (iii) a connector
graph which links the agent graph to the role graph. The reorganisation process is based on
graph transformation that occurs as agents shift between the roles. However, this transforma-
tion takes place according to predefined changes that correspond to different possible scenarios.
Therefore, like AMAS, this method also requires that all the situations are anticipated at design

time.

Apart from methods designed specifically for particular agent organisations, as studied above,
social networks (Watts, 2001; Jackson and Watts, 2002) also provide a suitable domain to inves-
tigate the structural adaptation methods that we seek. Particularly, social networks containing

agents as the nodes are somewhat similar to the agent organisational structures that we focus on.

A good example this is seen in the work by Gershenson (2007) who demonstrates a self-
organisation approach for the problem of task assignment in agent networks (these comprise
a set of agents with some undirected acquaintance links between them). An agent, that receives
a task, needs to send out some dependency requests to its neighbouring agents. Once it receives
the responses to these dependencies, its task will be complete. In this way, every agent will
receive several such dependency requests from its neighbours, which it stores in a queue and
solves in a first-come, first-served basis. Furthermore, an agent can respond to only one request
per time-step. Therefore, the performance of the network is measured by the number of tasks
that are completed. This depends on the time ‘wasted’ by the agents waiting for the responses to
their dependency requests from agents having long queues. The self-organisation process works
by first identifying the agent (say A) with the longest queue. Then, among the agents dependent
on A, the one with the largest waiting period chooses another agent (one with the shortest queue)
to replace A as its neighbour. Therefore, the global knowledge of the queues of every agent is
required in this method. This does not conform with our requirements, as in our case, the agents
will only possess local information. However, another method that is mentioned in this work,
but not expanded, relates to dynamically creating direct links between frequently interacting
nodes to ‘cut out’ the intermediaries and shorten the communication time. This idea, originally
presented by Bollen and Heylighen (1996) in the context of the world wide web, will be built on
in our adaptation process as we also seek to improve the efficiency of the structure in a similar

fashion.

Miralles et al. (2009) use a meta-level approach for adaptation in a P2P network of agents. The
agent at the meta-level is in charge of a cluster of agents and collects information about them.
It then uses this information for adapting their local structure. Thus, this approach requires
special agents and is partially centralised, both of which are in contrast to the self-organisation

principles we intend to follow.

Chapter 2 Literature Review 32

In a similar vein, Gaston and desJardins (2005) also focus on agent networks. Their work
deals with agent-based rewiring of the links in order to improve dynamic team formation, thus
somewhat resembling structural adaptation in organisations. In particular, they present two
strategies— (i) an agent probabilistically replaces one of its current neighbours with a neigh-
bour’s neighbour, chosen through preferential attachment (the probability of choosing a node is
proportional to its degree) and (ii) an agent wanting to change a link requests information from
its neighbours about their best performing neighbour and forms the link with the best performer
from among all its neighbours’ neighbours. However, their model assumes that only one type of
relation exists in the system, and that the number of relations possessed by an agent has no effect
on its computational resources. Under these assumptions, their strategies always result in scale-
free network structures, which are unrealistic in cases when agents have to expend resources for

managing and delegating tasks based on their relations.

This work was followed up by Glinton et al. (2008) who improved over this approach by limiting
the number of links at an agent and using a token-based adaptation approach for a better spread
of links across the network. However, the model still ignored load due to the existing links
and the meta-reasoning aspects of adaptation and is also restricted to single link-type between
the agents. Having only a single link-type makes all inter-agent links homogeneous, thereby
restricting the model by not allowing for any kind of classification of the links on the basis of
any characteristics like say, amount of interaction or speed of interaction, and leading to a poorer
representation. Also, as seen in Section 2.1.2, many organisation models tend to be composed

of multiple link-types or relations.

Another work on similar lines, by Abdallah and Lesser (2007), deals with task allocation in
agent networks. They use the “Weighted Policy Learner’ algorithm for learning task alloca-
tion where agents are connected to each other via a network. These agents use the information
gained from the learning mechanism to guide each other into changing their set of neighbours,
thereby reorganising the network. Particularly, whenever an agent receives a task request, it pro-
poses a neighbour to that requesting agent who then accepts this proposal with some probability.
Similarly, an agent chooses to remove a neighbour based on probability. The selection of the
neighbour for these actions is done by utilising the information present in the action policies of
the learning mechanism. However, as in the above work, their network supports only one type
of link. Moreover, every type of task has its own separate agent network. Hence, the method
does not adapt the same network when faced with various kinds of tasks. Also, since the num-
ber of incoming or outgoing links of an agent is assumed to not affect its resources, an agent
is able to form a link to another agent without requiring the consent of the other agent. Such
an assumption is not always valid and more generic organisation models would require that two
agents agree on the relation between them. Finally, the fact that an agent’s resources might be

expended by the reorganisation process is also ignored.

In the above study of various mechanisms, we observe that none of them consider the meta-
reasoning aspect involved in adaptation. As suggested in Section 1, as the adaptation pro-

cess also requires computation, meta-reasoning is needed by the agents to decide whether and

Chapter 2 Literature Review 33

when to adapt. Meta-reasoning, in general, has been explored in a multi-agent systems context
(Alexander et al., 2007; Hogg and Jennings, 2001), but has not previously been applied to self-
organisation scenarios. In particular, Conitzer (2008) emphasises that generic meta-reasoning
problems tend to be computationally hard and it is more productive to focus on individually
solving the particular cases where meta-reasoning is required. With this knowledge, we seek to
only solve our particular meta-reasoning problem and thereby our approach may or may not be

applicable to other meta-reasoning scenarios.

We see that most of the adaptation techniques developed for organisations are centralised in
nature, while we seek a completely decentralised approach in which all the agents are capable
of adaptation without having to hold the complete view of the organisation. The few techniques
that are decentralised are applicable only to agent networks supporting just one kind of link
between the agents. Moreover, these adaptation methods ignore both the load added onto the
agents’ reasoning process due to their links and the meta-reasoning involved in the adaptation
process. Finally, none of the mechanisms discuss how to adapt when the system is open and

dynamic with the agents and their properties changing with time.

2.4 Summary

In this chapter, we have studied several existing approaches for modelling agent organisations
which include modelling the tasks, the agents and the organisation characteristics (like structure
and norms). We then examined some methods for evaluating the performance of an organisa-
tion. Next, we provided the definition and features of self-organisation in multi-agent systems.
We followed that by enumerating the various mechanisms of self-organisation. Finally, we con-
cluded by providing a survey of the various self-organisation and adaptation techniques that
have been developed and used in multi-agent systems and analysed them with respect to our

requirements.

To sum up, we find the PCANS model for task representation suitable for our needs and simi-
larly, the agent model of VDT is appropriate for designing the agents. However, for organisation
modelling, we will pick up ideas from a number of organisation models like AGR, MOISE and
VDT because none of them individually satisfy all our requirements. Particularly, the organisa-
tion structure and characteristics will be built on the AGR and MOISE approaches. Similarly,
the performance evaluation mechanism used by VDT will be modified to suit our requirements.
It should be noted that none of the models present a way of representing the effect of the relations
on the performance of an agent and it is an issue that we will be addressing in our framework as

our focus is on the organisation efficiency.

On the other hand, most of the self-organisation techniques that we studied do not meet our
requirements, as either they cannot be applied to agent organisations (like stigmergy or network
related) or they work by modifying the agents. Most of those that reorganise by changing the

structure or norms of agent organisations are centralised in nature. But, as already stated, we

Chapter 2 Literature Review 34

want to explore completely decentralised methods for adaptation. The few decentralised mech-
anisms developed for agent networks are not applicable to organisations and also do not satisfy
our requirements stated in Section 1.3.2. Nevertheless, we can still reuse some of the concepts
that have been used in the various self-organising systems. Particularly, we will also use the
idea of agents being cooperative and sharing utility values with each other. Similarly, the ideas
behind the mechanism based on rewards and the history of the agents will be helpful to us while
designing these utility functions. In the same vein, we also pick up the idea of using a deci-
sion theoretic approach to represent the adaptation. Building on these preliminary ideas and
combining them with more problem-specific solutions (that we will be explaining in the specific
contexts), we hope to obtain the same kind of structural adaptation as displayed by some of the

centralised approaches in agent organisations.

We now move onto our framework for agent organisations and adaptation methods. The next
chapter presents our organisation framework in detail, which is then followed by Chapter 4

which describes our adaptation method.

Chapter 3
Agent Organisation Framework

This chapter describes our model of an agent organisation. As mentioned in Section 2.1, this
involves modelling the task environment, the agents and the organisational characteristics. Fur-
thermore, it also includes a method for evaluating the performance of an organisation in terms
of its efficiency. Therefore, this chapter addresses all the requirements detailed in Section 1.3.1

which refer to developing a framework for problem-solving agent organisations.

In more detail, the purpose of our organisation framework is to serve as a platform for demon-
strating adaptation techniques (as argued in Section 1.1). Hence, we seek to develop a minimal
organisation model without attempting to include all the possible features that an organisation
might have. Specifically, our model of an agent organisation is a problem-solving group of
agents situated in a dynamic task environment. By problem-solving agents, we mean agents that
receive some input (task), perform some actions on the basis of that input (processing or execu-
tion) and return a result. Correspondingly, the task environment presents a continuous dynamic
stream of tasks to be performed. This environment also has other parameters, independent of
the task stream, which have a bearing on the organisation. These can be considered to be the
costs associated with the environment. The task stream and the environmental costs are used as
the basis for evaluating the performance of the organisation. So, we proceed by first describing

the task environment, then the agent organisation and finally the evaluation mechanism.

Specifically, the next section details our task environment. The following section presents our
model of the organisation and its characteristics by describing the agents and the organisation
structure. Our mechanism for evaluating the performance of the organisation for a given set
of tasks and environmental parameters is explained in the third section. The final section sum-

marises the chapter.

35

Chapter 3 Agent Organisation Framework 36

3.1 Task Environment Representation

The task environment contains a continuous dynamic stream of tasks that are to be executed by
the organisation. A task can be presented to the organisation at any point of time and the pro-
cessing of the task must start immediately from that time-step. Thus, the organisation of agents
is presented with a dynamic incoming stream of tasks that they should accomplish. In detail,
the organisation of agents provides a set of services which is denoted by S. Every task requires
a subset of this set of services. Services are the skills or specialised actions that the agents are
capable of. We model the tasks as work flows composed of a set of several service instances
(SIs) in a precedence order, thereby representing a complex job as expected in autonomic sys-
tems. We define a service instance si; to be a 2-tuple: (s;, p;) where s; € S (i.e. s; is a member of
the services set S) and p; € N denotes the amount of computation required, measured in terms

of the processing required to accomplish that SI.

Following the PCANS model of task representation (see Section 2.1.1), we only consider se-
quential dependencies between the service instances. Thus, the service instances of a task need
to be executed following a precedence order or dependency structure, which also ought to be
specified in the task representation. This dependency structure is modelled as a tree in which the
task execution begins at the root node and flows to the subsequent nodes. The task is deemed
complete when all its SIs have been executed in the order, terminating at the leaf nodes. The
complete set of tasks is denoted by W and contains individual tasks w; which are presented to
the organisation over time. As we model the task as a tree, every node or SI in the task will only
have one parent (according to the properties of trees) and thus can be reached through only one

particular SI for allocation. This also means that any SI occurs only once in the task.

Formally, a task w is defined as a tuple containing a set of service instances and a set of depen-
dency links:
w= ({si; €SI,},H,) 3.1

where SI,, is the set of SIs required by w and H,, is the set of dependency links containing
links between the various si; of the task. These links are directed arcs between any two service
instances depicting a sequential dependency from the source to the destination. So an element
h; of H,, is of the form: h; = (si,,si,) Where si, and sij, are the service instances at the origin

and the destination of the link.

To illustrate our task model, we will use it to represent a sample task possibly faced by the
autonomic university grid network system discussed in Section 1.1. Assume that a project in-
volves producing a predictive model of the infrastructure of a given city. Such a task will involve
analysing the GIS data of the required city, obtaining the population density of the city over the
past years and then using some kind of statistical analysers on this data to estimate the popu-
lation distribution in the future. It will also involve predicting the changes to the city transport
system using the GIS information on this estimated population, and alongside render the map of
the city graphically.

Chapter 3 Agent Organisation Framework 37

draw_city(graphics ,12)

geo_map(gis-analyser ,20)

get_census(census-data ,3)

transport_flow(gis-analyser ,11)

analyse_census(stat-analyser ,9)

leaf node Sls

FIGURE 3.1: Representation of an example task

In more detail, let us assume that the first part of this task will be to obtain the geographical
data of the city and analyse it. In terms of our model, this can be designated as SI geo_map
needing service gis-analyser with computation 20 (very intensive job). After this, let us say
that the subsequent sub-tasks are obtaining the historical population data of the city and render-
ing the city-map graphically. These will form SIs get_census and draw_city requiring services
census-data (getting and cleaning the census information from the archives) and graphics

(graphically modelling to result in an image). Finally, execution of get_census might reveal that
further statistical analysis is required to properly predict the population growth in the future and
also that the growth caused by immigration depends on the transport incoming to the city. These
can be designated as analyse_census and transport_flow requiring services stat-analyser and
gis-analyser (as the transport network of the city can be obtained by analysing the GIS data)
respectively. Also, note that the computation required for geo_map is much higher than that
required for transport_flow even though both SIs need the same service. The task structure for
this scenario, including the SIs and the dependencies is shown in Figure 3.1. As evident above,
we are using the ‘sf” font to represent SIs and ‘tt” font for denoting services. Now, representing

this task formally:

model_city = ({geo-map, get_census, draw_city, analyse_census, transport_flow}, Huoder city)
(3.2)
where Hy4ei_ciry 18 the dependency links graph. Thus:

Hypodel city = { (ge0-map, get_census), (geo_map, draw_map),

(get_census,analyse_census), (get_census, transport_flow) }

In summary, our model of the task environment consists of a stream of tasks in which each task is
made up of a set of service instances and a set of dependency links between the service instances.
Every service instance specifies the service and the amount of computational required. Next, we

describe the representation of our agent organisation.

Chapter 3 Agent Organisation Framework 38

3.2 Organisation Representation

Since we wish the agent organisation to represent a distributed computing system, our organi-
sation framework consists of a set of computational agents representing the individual compo-
nents. In this context, an agent is an independent computational entity that can provide one or
more services. Specifically, we model our agents by simplifying the agent model used by VDT
(see Section 2.1.3). In particular, we consider only the information processing characteristics of
the agents by overlooking the attention allocation characteristic. The attention allocation char-
acteristic enables an agent to schedule its allocated tasks, however an agent’s task scheduling
algorithms will depend on the system that is being represented. But, this aspect is internal to an
agent and independent of the organisational dynamics which is our primary focus. Therefore,
we do not need to model this aspect. Rather, we will simply assume that the agents do not have a
choice and have to execute all the service instances allocated to them on a first-come-first-served
basis. Next, we describe the agent model in detail, and following that, present the organisation

structure and its effect on the allocation mechanism.

3.2.1 Agent Representation

The agents are associated with particular sets of services (like say, in the example university grid
system, a computer contains both a GIS data analysing capability and a high end graphics ren-
dering ability, thus containing two services in its service set). These sets can be overlapping; that
is, two or more agents may provide the same service. Also, building on the agent model used by
Gershenson (see Section 2.1.3), every agent also has a computational capacity associated with it.
The computational load on an agent (explained later), in a time-step, cannot exceed this capac-
ity. This modelling of resource constrained agents is necessary because, often the components
of an autonomic system can be small embedded devices with low computational power. Also,
more generally, all real systems are bounded in their processing capabilities. Formally, let A be

the set of agents in the organisation. Every element in this set is a tuple of the form:
ay = (Sy,Ly) 3.3)

where the first field, Sy C S denotes a set of services that belong to the complete service set S
and L, € N denotes the capacity. The agents, their service sets and their capacities may change

during the lifetime of the organisation (see Section 3.2.4 for details).

The other features of an agent organisation, in general, are its structure and norms. The structure
of an organisation represents the relationships between the agents in the organisation, while the
norms govern the kind of interactions and messages possible between the agents. However, since
we are developing a problem-solving organisation, the agents are all internal to the organisation
and share the same goals. Moreover, all the agents will be designed in the same way, and

therefore, their interaction protocol will be similar and can be internally specified. Therefore,

Chapter 3 Agent Organisation Framework 39

an explicit definition of norms is not required to regulate their interactions. Thus, in our model,
the relationships between the agents (denoted by the structure) also determine the interactions
between the agents. Formally, an organisation is defined as consisting of a set of agents and a

set of organisational links. It can be represented by a 2-tuple of the form:
ORG = (A,G) (3.4)

where A, as stated above, is the set of agents and G is the set of directed links between the agents

(will be described later in this section).

As mentioned previously, the organisation is presented with a continuous stream of tasks which
are completed by the agents through their services. Tasks come in at random time-steps and
the processing of a task starts as soon as it enters the system. Task processing begins with
the assignment of the first SI (root node). The agent that executes a particular SI is then also
responsible for the allocation of the subsequent dependent SIs (as specified by the task structure)
to agents capable of those services. Thus, the agents have to perform two kinds of actions:
(i) execution and (ii) allocation. Moreover, every action has a load associated with it. The
load incurred for the execution of a SI is equal to the computational amount specified in its
description, while the load due to allocation (called management load) depends on the relations
of that agent (will be explained later). As every agent has a limited computational capacity, an
agent will perform the required actions on a first-come first-served basis, in a single time-step,
as long as the cumulative load (for the time-step) on the agent is less than its capacity. If the load
reaches the capacity and there are actions still to be performed, these remaining actions will be
deferred to the next time-step and so on. This action mechanism of an agent is presented in a

pseudocode form in Algorithm 3.1.

11, «0; // load initialised to zero
2 while [, <L, AND WF £ 0 do // WP is queue of pending SIs
3 sij,type «— WF .dequeue(); // get first element in task queue
4 if type == to_assign then
5 Assign(si;);

else
6 Execute(si;);
7 Ly=L+pi; // load increased by executing the SI
8 foreach si; € si;.get_dependents() do
9 WP enqueue(si j»to_assign); // enqueue dependent SIs for allocation

end
end
end

Algorithm 3.1: Act(): action mechanism of agent a, in a time-step

We allow the agents to perform more than one action in a time-step to de-couple the time-step of
the simulation with the real-time aspect of the actual computing systems. Thus, the time-step of
the model places no restrictions whatsoever and can represent one or several processor cycles in

the actual system. In contrast, there is no limit to the number of messages that agents can send

Chapter 3 Agent Organisation Framework 40

or receive in a single time-step. However, the task-related messages received in a particular
time-step can only be interpreted by the agent in the next time-step, thus helping to discretise

the system.

Next, we present our representation of the organisation structure and follow that with a descrip-

tion of the task allocation mechanism used by the agents.

3.2.2 Organisation Structure

As stated earlier, agents need to interact with one another for the allocation of the service in-
stances. The interactions between the agents are regulated by the structure of the organisa-
tion. Inspired from the Moise approach (see Section 2.1.2), we adopt the organisational links
paradigm to represent the structure. However, unlike in Moise, the links in our case are not task-
specific because we do not assume that the agents will be aware of all the tasks at the outset.
Moreover, instead of using several graphs to represent particular aspects like communication,
connectivity and so on, we use an organisation graph (denoted by G) to represent the structure.
The nodes in the graph represent the agents of the organisation while the links represent the
relations existing between them. Thus, the structure of the organisation is based on the relations

between the agents that influence their interactions.

In more detail, as we use just one organisation graph, it will contain different types of links
between the agents to represent the kind of relation present between them (instead of having
multiple graphs each with just one type of link, like in Moise). We classify the relationships
that can exist between agents into four types — (i) stranger (not knowing about the presence),
(i1) acquaintance (knowing about the presence, but having no interaction), (iii) peer (low
frequency of interaction) and (iv) superior-subordinate (high frequency of interaction). The
superior-subordinate relation can also be called the authority relation and depict the authority
held by the superior agent over the subordinate agent in the context of the organisation. The
peer relation will be present between agents who are considered equal in authority with respect
to each other and is useful to cut across the hierarchy. When two agents are not linked to each
other by a relation like acquaintance, peer or superior-subordinate, they are considered to be
strangers to each other. Also, the relations are mutual between the agents; that is, for any relation
existing between two agents, both the concerned agents respect it. Therefore, even during any
adaptation, both the concerned agents will have to agree on changing the relation. The type of
relation present between two agents determines the information that they hold about each other
and the interactions possible between them. In our context, the information associated with
an agent refers to the set of services being provided. Therefore, the service providers that an
agent is aware of depends on its relations. More specifically, an agent a, holds the following

information about the services being provided by its relations:

1. For each of its acquaintance ay, a, is aware of the service set provided by the acquaintance

(S, of each acquaintance ay).

Chapter 3 Agent Organisation Framework 41

2. For each of its peer ay, a, is aware of the service set provided by the peer (S, of each peer

ay).

3. For each of its subordinates a,, a, is aware of the accumulated service set provided by the
subordinate. The accumulated service set of an agent is the union of its own service set
and the accumulated service sets of its subordinates, recursively. Thus, the agent is aware
of the services that can be obtained from the sub-graph of agents rooted at its subordinates
though it might not know exactly which agent is capable of the service. We denote the

accumulated service set of an agent a, as AccmSet,.

The relations between the agents also help regulate their interactions by determining how agents
can allocate tasks to their related agents. This will be clear in the next subsection when we
discuss the decision mechanism of the agents. Now, formally denoting the structure, every link
gi belonging to G is of form:

gi = (ax,ay,type;) (3.5)

where a, and a, are agents that the link originates and terminates at, respectively and rype;
denotes the type of the link and can take any of the values in the set {Acqt, Supr, Peer} to denote
the type of relation existing between the two agents. The absence of a link between two agents
means that they are strangers . In this context, it should be noted that the peer or authority
relations supersede the acquaintance relation. That is, when two agents are peers or superior-
subordinate, they still count as acquaintances of each other (though the link in G is Peer or Supr

respectively).
To make it clear, we enumerate the properties of the organisation graph:
1. Itis a connected graph. That is, the transitive closure of the union of all the relation types
is a complete graph.

2. Not more than one link can be present between any two agents. Therefore, a pair of agents

cannot have both a peer relation and also an authority relation.
3. There are no self-loops. That is, an agent cannot be a peer or a superior of itself.

4. Peer and acquaintance links are undirected, that is, both the agents will be peers or ac-
quaintances of each other (as the case might be). However, superior-subordinate relation

is a directed link, in which one agent is the superior and the other is the subordinate.

5. Superior-subordinate links are acyclic. Therefore, there cannot be a loop of the directed

superior-subordinate links.

In this context, it is important to note that we do not discuss the instantiation of the organi-
sation structure. The initial structure is domain-specific and dependent solely on the designer.

Nevertheless, when a suitable adaptation process is employed by the agents (like the one we

Chapter 3 Agent Organisation Framework 42

(gis-analyser){{census-data },{gis-analyser ,graphics ,stat-analyser }}[]

€0

8§eo1 acqt = > acqt

peer =¥ -~ peer

/ stat supr —=subr

socl w2 (stat-analyser)
(census—data){} . {gis—analyser,graphics }[]
[gis-analyser,graphics] >
A () services of self

8eo2 { } accm. sets of subrs
(gis-analyser,graphics){}[census-data] [] services ofpeers

FIGURE 3.2: An example organisation graph

are presenting in this thesis), the initial structure does not hold much significance as it will be

quickly modified to suit the task and environmental conditions.

To illustrate the framework, consider a sample agent organisation to represent the autonomic
university grid system as described in Section 1.1. Taking a limited view, let us focus on only
four agents in this organisation— geo; and geo, (two computers in the geography department),
socl (a computer in the sociology department) and stat (an analyser in the statistics department).
The services provided by the agents are basically their capabilities in terms of hardware, soft-
ware and data accessible to them (we are denoting agents using italics). Therefore, let us assume
that geo; provides service gis-analyser . Similarly socl provides census-data , which is the
population data of various places in all the past years, and stat provides stat-analyser service.
However, geo, is capable of providing both gis-analyser (just like geo;) and graphics (be-
cause it also contains high end graphics cards for rendering maps). Given this, let us look at the
possible structure of the organisation. Let soc/ and geo, have a peer relationship. Also, assume
geo) has two subordinates — socl and stat (because, say, often GIS based jobs are followed by
either census information or statistical analysis). stat, in turn, has geo, as a subordinate (because
statistical analyses sometimes need to represent the results graphically). Moreover, while socl
and stat are acquaintances of each other, geo, and geo; are not aware of each other. The G for

this organisation contains 5 organisational links:
G = {(geo1,socl,Supr),(geoy,stat,Supr), (stat,geo,,Supr), (socl,geo,, Peer), (socl, stat,Acqt) }

For this organisation, the organisation graph is shown in Figure 3.2. The absence of an arrow
between two agents means that they are strangers. In addition, the information possessed by the
agents about the services provided by their relations is also shown. For example, the accumu-
lated service set (AccmSet) of agent geoy, in turn, contains three sets representing its own service
(gis—analyser), AccmSet of its subordinate socl (census-data) and of its other subordinate

stat (gis—analyser, graphics, stat-analyser).

Following this description of the organisation structure, we will explain the process followed by
an agent for allocating service instances to other agents and how this mechanism is primarily

influenced by the structure.

Chapter 3 Agent Organisation Framework 43

3.2.3 Agent Decision Mechanism

As described above, whenever an agent finishes the execution of a particular SI, it has to allocate
each of the subsequent dependent SIs to other agents (this may include itself). This mechanism
for allocating SIs to other agents is mainly influenced by the agents’ relations. Before, we
describe the mechanism, we sum up all the information present with an agent (a,) about its en-

vironment (apart from its own information like service set, capacity and other run-time values):

e The list of all its acquaintances along with their service sets (Sys).

e The list of all its peers along with their service sets (S,s).

e The list of all its subordinates along with their respective accumulated service sets (AccmSetys).
o The list of all its superiors.

e Environmental coefficients (will be explained later).

e Details of every SI allocated to it.

e Details of the dependent SIs of any SI executed by it.

Next, we present the agent’s decision mechanism for allocating SIs. While, we use this mech-
anism for our framework, it could be varied depending on the implementation domain without
affecting any other aspect of the framework. In the same vein, it will be evident later that even
our adaptation method is not dependent on the allocation mechanism per se. The decision mech-

anism of an agent for allocating a SI is as follows:

e When an agent needs to allocate a SI, it will allocate the SI to self if it is capable of the

service and has no waiting tasks (capacity is not completely used up)

e Otherwise, it will try to assign it to one of its subordinates which contains the service in
its accumulated service set. This involves the agent traversing through the accumulated
service sets (AccmSet,) of all its subordinates and then randomly choosing one subordi-
nate from among the suitable ones (since the agents do not possess information about the
available capacities of the other agents, they do not seek optimal distribution of the load

and just allocate randomly among the suitable agents).

o If the agent finds no suitable subordinate (no subordinate or their subordinates are capable
of the service) and it is capable of the service itself (but did not initially assign to self

because its capacity is filled), then it will add the SI to its waiting queue for execution.

o If neither itself nor its subordinates are capable of the service, then the agent tries to assign
it one of its peers by traversing through their service sets and choosing from among the
suitable ones (those capable of the service). However, in this case, it only checks the set
of services directly provided by the peers (since it does not hold information about the

accumulated services sets of the peers).

Chapter 3 Agent Organisation Framework 44

o If none of the peers are capable of the service either, then the agent will pass it back to one
of its superiors (who will then have to find some other subordinates or peers to execute

the service).

e On the occasions when it does not have any superiors, it checks among its acquaintances
for a suitable agent and tries to form a subordinate relation with it, if that doesn’t result in
a cycle of authority links (a cycle may result in an unending loop of assignment and hence

should be avoided). Otherwise, it forms a peer relation with that acquaintance.

The decision mechanism described above is presented in the form of a pseudocode in Algo-
rithm 3.2.

Therefore, an agent mostly delegates SIs to its subordinates and seldom to its peers. Thus, the
structure of the organisation influences the allocation of the SIs among the agents. Moreover,
the number of relations of an agent contributes to the management load that it incurs for its
allocation actions, since an agent will have to sift through its relations while allocating a SI. In
particular, one unit of management load is added to the load on the agent every time it considers
an agent for an allocation (mathematically modelled in Section 3.3). Therefore, an agent with
many relations will incur more management load per allocation action than an agent with fewer
relations. Also, a subordinate will tend to cause management load more often than a peer be-
cause an agent will search its peers only after searching through its subordinates and not finding
a capable agent. Generally, it is expected that an agent will interact more frequently with its
subordinates and superiors than its peers. Also, being cooperative agents that are part of the
same organisation, an agent accepts any SIs allocated to it by its superiors or peers. Therefore,
the agents are benevolent (Mohamed and Huhns, 2000).

This process of assigning a SI to an agent requires sending and receiving messages to/from that
agent. Thus, task allocation also requires inter-agent communication which adds to the cost of
the organisation. In more detail, when an agent is assigning a SI, it first sends an assignment
message with the SI details to the assigned agent. Every assigned agent responds with an ac-
knowledgement message comprising a list of the IDs of the agents making up the assigned agents
after it, ending with the last assigned agent (which is always the agent that is actually executing
the SI). Thus, this acknowledgement message is started by the last assigned agent and is passed
back, in sequence, by all the assigned agents to finally reach the agent that first initiated the
allocation process for that SI. Every message (assignment or acknowledgement) has a commu-
nication cost associated with it (explained in Section 3.3). Thus, the structure of the organisation
influences the allocation of SIs among the agents and also affects its efficiency. In this section,
we have seen that the agents keep track of their environment along with the models of the other
agents in the system. Moreover, they are also benevolent towards each other. All these properties
justify our use of the agent-paradigm for modelling distributed systems. These characteristics of
the agents or components like modelling the other components and benevolence towards them

are in line with an agent-based approach.

Chapter 3 Agent Organisation Framework

45

1
2

W

10
11

12
13

14

15
16

17
18

19

20
21

22
23

input: Service instance si; = (s;, p;), Agent a, = (Sx, Ly), load of a, = I,
if s; € SyAND L, — [, > p; then // 1if service and capacity is available
WxP enqueue (si;to_execute); // allocate to self

else
listOfSuitableAgents «— 0;

foreach subordinate a, do
if s; € AccmSet, then // AccmSet, is the accumulated service set of
ay
listOfSuitableAgents.add (ay) ;
end
end
if listOfSuitableAgents == 0 AND s; € S, then
WXP .enqueue (sijto_execute); // allocate to self despite filled
capacity
Return() ;
end
if listOfSuitableAgents == 0 then
foreach peer a, do

if 5; € S, then // Sy is the service set of a,
listOfSuitableAgents.add (ay) ;

end
end
end
if listOfSuitableAgents == 0 then

foreach superior a, do
listOfSuitableAgents.add (ay) ;

end

end

if listOfSuitableAgents # 0 then
assignedAgent <+ randomly selected from listOfSuitableAgents;

else
foreach acquaintance a, do // finding suitable acquaintances
if 5; € S, then
listOfSuitableAgents.add (ay) ;
end
end
assignedAgent <+ randomly selected from listOfSuitableAgents;
Form _relation _with(assignedAgent);
end
Assign(sij,assignedAgent); // “Assigned’ function of assignedAgent
end

Algorithm 3.2: Assigned (si;): assignment of a service instance si; by agent a,

Chapter 3 Agent Organisation Framework 46

Next, we illustrate the allocation process and the importance of the organisation structure using

the following example:

geo_map

analyse_census

get
census,

transport
flow

FIGURE 3.3: Distribution of service instances of the task in Figure 3.1 across the agents

As an illustration of the allocation process, consider the sample organisation in Figure 3.2 ex-
ecuting the task shown in Figure 3.1. The allocation of SIs across the agents occurs as shown
in Figure 3.3. In detail, we assume that the task arrives at agent geo;. Hence, geo; checks that
it is capable of geo_map (as it is capable of service gis-analyser and has available capacity)
and therefore, allocates geo_map to itself. After execution, geo; needs to allocate the two de-
pendencies of geo_map which are get_census and draw_city to capable agents. For allocating
get_census, it checks the accumulated service sets of its two subordinates (socl and stat) and
allocates to socl (because it is the only one capable of service census-data). Similarly, it al-
locates draw_city to stat because this subordinate contains service graphics in its accumulated
service set. However, star has to reallocate draw_city to its subordinate geo, which is actu-
ally capable of that service. Similarly, after socl executes get_census, it needs to allocate the
two dependencies (transport_flow and analyse_census) to appropriate agents. So, socl allocates
transport_flow to its peer geo; as it has no subordinates. It also hands back analyse_census to its
superior geo; as it has found no suitable subordinates or peers for that service (stat-analyser).
geo then assigns analyse_census to its subordinate stat (capable of service stat-analyser)

which then proceeds to execute it.

3.2.4 Open and Dynamic Organisations

Given an organisation, the agents in it can remain unchanged over its existence, or they might

change with time. For example, new agents might enter the organisation and/or some existing

Chapter 3 Agent Organisation Framework 47

agents might leave. In this way, the organisation can be open. Moreover, even within a given
agent, the properties can change with time. It might, for example, start providing new services
and/or lose previous services. Thus, the agents in an organisation can be dynamic. More specif-
ically, given an organisation, the set of agents A can remain static over its existence, or agents
may join and leave the organisation. The first kind of organisation, in which the set of agents
are constant, is here called closed, while the latter is called open. Another distinguishing feature
for organisations is whether the properties of the agents are constant or changing with time. The
organisations in which the properties of the agents (their service sets) are not changing are here

called static, while those in which the agent properties change are referred to as dynamic.

Thus an organisation can be closed or open and, in addition, be static or dynamic. Up to now, our
description of the organisation model is sufficient to represent closed and static organisations.

Thus, in the following, we discuss how to extend it to model open and dynamic organisations.

e Open Organisations: For this kind of organisation, the set of agents A changes with
time. In particular, we focus on those organisations that have some permanent agents
to begin with (similar to closed) and some temporary agents who join later, at specified
‘start-times’, and also leave the organisation at the expiration of their ‘life-times’. We
look at these types of open systems initially because in them, the service set S of an or-
ganisation can be kept constant (the temporary agents will offer services chosen from the
same S as the permanent ones). In this way, our method can focus solely on the changes to
the overall capacity (resulting from the temporary agents) instead of the service discovery
aspect that might have been needed. Consequently, these open organisations represent
distributed systems in which additional resources might be added to tackle the workload

and withdrawn later on (as discussed in Section 1.2).

e Dynamic Organisations: In these organisations, the properties of the agents are changing
with time. As described earlier, in our model, an agent a, has a service set S, that it
provides. Since, Sy C S, the services (s;,s;...) belonging to S, can change with time. In
particular, we look at scenarios, where the agents start with their respective service sets
and then, additional services (from) are added to these sets with time (either gradually
or suddenly). Similarly, we also look at scenarios where services are removed from the
service sets of the agents with time. The way we generate these dynamic organisations is

explained, in detail, in Section 5.1.

In summary, the authority relations impose the hierarchical structure in the organisation, while
the peer relations enable the otherwise disconnected agents to interact directly. It is important to
note that while we present only these kinds of relations, the model allows the flexibility to depict
more relation types in a similar fashion. Thus, the set of the relation types presented here can be
expanded or contracted depending on the domain that is to be represented by the organisation

model. Using this model, we abstract away the complex interaction problems relating to issues

Chapter 3 Agent Organisation Framework 48

like service negotiation, trust and coordination. This is because, in our framework, the agents are
cooperative and accept each others decisions (on allocations) without conflict and also truthfully
share information about their service capabilities. We do so, so that the model keeps the focus on

the essence of self-organisation and autonomicity and isolates its impact on system performance.

Having presented our organisational model by describing the agents, including their allocation
mechanism, and the organisation structure, we now study our method for evaluating the perfor-

mance of the organisation.

3.3 Evaluation of Organisation Performance

The performance of a computing system denotes how well it performs its tasks. In terms of
an agent organisation, this can be based on the efficiency of the organisation as it performs the
tasks (see Section 2.1.4). In terms of our model, the performance measure can be abstracted to
the profit obtained by the organisation where the profit is simply the sum of the rewards gained
from the completion of tasks when the incurred costs have been subtracted. However, the reward
from a task completion depends on how well or how quickly it has been done. This will, in turn,
depend on the load on the agents, as fully loaded agents will end up having tasks waiting for

execution.

In greater detail, our evaluation mechanism is based on the same principles that are used by
VDT (see Section 2.1.4). In our context, the load on the agents is of three types— task related
(production work in VDT), management related (coordination work in VDT) and adaptation
(not modelled in VDT). We further simplify the VDT model by not considering any production
rework and denoting coordination work as just the allocation of the SIs in a task. This load on
the agents affects the task completion, thereby affecting the rewards obtained, which in turn,
determine the profit. The other factor influencing the profit of the organisation is the costs

involved in completing the tasks.

In more detail, the cost of the organisation is based on the amount of resources consumed by the
agents. In our case, this translates to the cost of sending messages (communication) and the cost

of any reorganisation taking place within the organisation. Thus, the cost of the organisation is:

costorg =C. Y cx+D.d (3.6)
ay€A

where C is the communication cost coefficient representing the cost of sending one message
between two agents and D is the reorganisation cost coefficient representing the cost of adding
or removing a relation. ¢, is the number of messages sent by agent a, and d is the number of
relations added or removed in the organisation. Therefore, if the relation between two agents
is changed from peer to authority, it would mean dissolving the peer relation and then form-
ing the authority relation, and thus contribute 2 to d. Moreover, we associate costs with the

whole organisation rather than the individual agents because these costs may reflect the usage

Chapter 3 Agent Organisation Framework 49

of resources common to all agents, like the underlying network, instead of the resources at any

particular agent.

As stated earlier, agents have limited capacities and their computational load cannot increase
beyond this capacity. Since, an agent might perform three kinds of actions in a time-step (task
execution, task allocation and adaptation), the load on an agent is the summation of the com-
putational resources used by the three actions and can be represented by three terms. Thus, the

load [, on agent a, in a given time-step is:

L=Y pi+M Y mj.+Rr 3.7)

SiiGWXE SijGWXF

e p; is the amount of computation expended by a, for executing SI si;.

e m; , is the number of relations considered by a, while allocating SI si;.

e WE is the set of SIs (possibly belonging to many tasks) executed by a, in that time-step.
e WF is the set of SIs being allocated by a, in that time-step.

e M is the ‘management load’ coefficient denoting the amount of computational units con-

sumed by an agent to consider one of its relations while allocating a single SI.

e R is the ‘reorganisation load’ coefficient, denoting the amount of computational units

consumed by an agent while reasoning about changing a single relation.

e r, is the number of agents considered by a, for reorganisation (relation-change), in that

time-step.

In this way, M and m; , together represent the computational load for task allocation that is
affected by the relations possessed by the agent, thereby providing a simple and explicit method
of denoting the effect of the organisation structure on the individual agents. Similarly, R and r,
are used to represent the load caused by reasoning about adaptation (if any). Thus, they denote

the amount of resources at the agent that are diverted for adaptation rather than performing tasks.

Since, the load I of a, cannot exceed its capacity L, any excess SIs will be waiting for their
turn, thus delaying the completion time of the tasks. The rewards obtained by the organisation
depend on the speed of completion of tasks. In particular, the maximum possible reward b,, that

can be obtained for a task w is the sum of the computation amounts of all its SIs:

S2y|
b=} pi (3.8)
i=0
where S1, is its set of SIs. If the task is completed within the minimum required time, it would
accrue this reward. For delayed tasks, the reward degrades linearly with the extra time taken
until it reaches 0:

reward,, = b,, — (r'?e" — gread) (3.9)

Chapter 3 Agent Organisation Framework 50

where #/9°" represents the actual time taken for completing the task, while tffqd is the minimum
time needed. #°% is given by the depth of the dependency tree of the task w. This is because

every child SI can only be executed after the parent SI is executed.

Now, to obtain the maximum possible benefit, the agent should never keep any SlIs waiting for
either allocation or execution, that is, ideally, none of the agents should ever be overloaded
and all the allocations should be a one-step process. Now, the total reward obtained by the

organisation is the sum of the rewards of the individual tasks completed by the organisation:

rewardorg = Z reward,, (3.10)
wew
where W is the set of all tasks. Finally, the organisation’s performance is measured by the profit

obtained:

profitopg = rewardorc — COStoRG 3.11)

Thus, for higher profits, the reward should be maximised, while the cost needs to be minimised.
Both of these are affected by the allocation of tasks between the agents which, in turn, is influ-
enced by the organisation structure. It is important to note that the agents only have a local view
of the organisation. They are not aware of all the tasks coming in to the organisation (only those
SIs allocated to them and the immediately dependent SIs of those allocated SIs) and neither are
they aware of the load on the other agents. In spite of this incomplete information, they need
to cooperate with each other to maximise the organisation profit through faster allocation and
execution of tasks. Therefore, by modelling both the decentralisation and individual agent load
along with inter-agent dependence and global profit, this evaluation mechanism suitably models
the requirements faced by a designer while developing autonomic systems. In the same vein,
reasoning and adapting the organisation also take up resources (as denoted by R and D) in our

model, thus reflecting real-life scenarios.

3.4 Summary

In this chapter, we introduced our organisation model by presenting our representation of tasks
and organisations. The tasks are made up of service instances, each of which specify the particu-
lar service and the amount of computation required. The organisation consists of agents provid-
ing services and having computational capacities. The relationships between the agents could
be just an acquaintance, peer or superior-subordinate. The relations of the agents determine
what service information is held by the agents about the other agents and how to allocate service
instances to them. We also presented the coefficients that affect the environment (communica-
tion cost, reorganisation cost, management load and reorganisation load) and the functions for
calculating the costs incurred and the rewards obtained by the organisation on performing the

tasks. This enabled us to evaluate the performance of an organisation on the basis of the profit

Chapter 3 Agent Organisation Framework 51

generated by it. Thus, we addressed the aims of this chapter, which also form all the require-
ments stated in Section 1.3.1, that involve developing a framework for problem-solving agent

organisations.

The next chapter presents our adaptation method by using this organisation framework as the

underlying platform.

Chapter 4
Decentralised Structural Adaptation

The primary objective of this thesis, as stated in Section 1.3.2, relates to developing a self-
organisation based, completely decentralised structural adaptation method for improving the
performance of problem-solving agent organisations. In particular, the method should be con-
tinuous and employable by any agent in the organisation using only its local view. This chapter
attempts to satisfy this requirement by presenting just such an adaptation mechanism. While
developing this, we use the framework of agent organisations presented in Chapter 3 as the

underlying model.

As argued in Section 1.2, changing the interactions between the agents by modifying the struc-
ture is an effective means of adapting the organisation for a better performance. In terms of
our organisation model, as agents are performing services and finding other agents to allocate
the SIs, they may realise that they have a large number of a particular kind of interaction with
some of the agents. Thus, forming interactive relations like authority or peer with these agents
(if they are not already present) may make the organisation more efficient by resulting in shorter
assignment chains leading to lower cost and load on the agents. Similarly, dissolving existing
relations with agents, with whom little or no interaction is taking place, will also improve the
efficiency by reducing the management load on the agents as the agents will have fewer relations

to consider while allocating Sls.

To make it clearer, we revisit the sample task and organisation scenario presented in Figure 3.3
(reproduced in Figure 4.1(a)). It shows how the allocations of the SIs of a task (shown in
Figure 3.1) happens across an organisation (displayed in Figure 3.2). Now, as elaborated in Sec-
tion 3.2.3, the structure of the organisation influences the allocation of service instances among
the agents. Therefore, an efficient structure can lead to a better and faster allocation of tasks. We
see that in Figure 4.1(a), the allocation of draw_city and analyse_census was indirect and needed
intermediary agents (stat and geo respectively). Now, suppose on the basis of some adaptation
method, the agents modify their relations to form the structure as shown in Figure 4.1(b). That
is, geo| and geo, decide to form a superior-subordinate relation and so do socl and stat. Mean-

while stat ends up becoming only an acquaintance of geo; and geo; as they decide to change

52

Chapter 4 Decentralised Structural Adaptation 53

geo_map geo_map

analyse_census

get
census

transport
flow

geor

(a) Before adaptation (b) After adaptation

geo_map

transport

peer <t----T= peer
supr —= subr

/7N

dlocation of a Sl

(c) After geor loses gis—analyser service

FIGURE 4.1: Allocation of a sample task in the organisation for three structural scenarios

Chapter 4 Decentralised Structural Adaptation 54

the previously existing authority relations. With this new structure, the allocation of the SIs
turns out to be much more efficient as all the allocations end up being direct one-step process.
Therefore, they take shorter time because intermediary agents are not involved. Moreover, this
allocation process requires less computation and communication because, for any SI, only a
single agent performs the allocation and therefore sends only one message. Compared to the
previous allocation, this decreases the load on geo; and stat without putting any additional load

on the other agents.

Now, let us suppose that after some time has passed, geo, is reconfigured (perhaps, the OS is
reinstalled) such that it is no longer able to to provide service gis-analyser . Insuch a scenario,
socl will no longer be able to delegate transport_flow to geo, and will be handing back the SI to
its superior geoj. socl does so only after unsuccessfully considering its own subordinates and
peers for allocation, thus causing more load onto itself and taking more time as well. Under
these changed circumstances, socl and geo; should realise that it will be better to change their
current relation into a peer relation so that socl can delegate to geo; quicker. A peer relation is
better rather than reversing the existing superior-subordinate relation because geo; also needs to
continue delegating Sls like get_census to socl. Hence, these two agents change their relation

as shown in Fig. 4.1(c).

In this way, the performance of the organisation can be improved by continually modifying the
organisation structure through changes to the agent relationships. This will involve changes to
the organisation graph G. Here, while we showed how a more efficient structure can lead to the
better allocation of a task, we should note that the organisation is performing several tasks at any
given time and that the structure is common to all these possibly dissimilar tasks. Given this,
the adaptation method should be such that the agents are able to identify which set of relations
will be most suitable for their current context on the basis of the kind of tasks facing them in

addition to their own service sets and allocation patterns.

The following section details our work on developing a self-organisation based structural adap-
tation method that can be employed continually by all the agents in a problem-solving organisa-
tion. In particular, we first present decision theoretic modelling of the approach and then discuss
the utility functions in Section 4.1.1, before moving onto the meta-reasoning aspects in Sec-
tion 4.1.2. While this suffices for closed static organisations, further enhancements are required
to deal open and dynamic organisations scenarios. Therefore, in Section 4.2, we show how to
enhance the fundamental method for such settings. Specifically, we target open organisations
in Section 4.2.1 and dynamic organisations in Section 4.2.2. The final section summarises this
chapter. With this, we will be attempting to satisfy all the research requirements listed in Sec-
tion 1.3.2, as these pertain to developing a self-organisation based structural adaptation method

for agent organisations.

Chapter 4 Decentralised Structural Adaptation 55

4.1 Fundamentals of the Adaptation Method

In this section, we present the basics of our adaptation method which is applicable to static
closed organisations. The aim of the adaptation method is to determine and effect changes
in the organisation structure in order to improve the performance of an organisation. We will
be using the framework described earlier, in Chapter 3, as the platform on which to base our
method.

Our adaptation method is based on the agents forging and dissolving their peer and authority re-
lations with other agents, thereby modifying the organisation structure (as from our assumption,
agents will always maintain the acquaintance relation with the other agents). It uses only the
history of agent interactions since we do not assume that agents possess any information about
the tasks coming in the future!. Thus, we are only focusing on generic adaptation methods that
are not dependent on any extra knowledge about the task environment other than the tasks that

have already been processed.

Specifically, agents use the information about all their past allocations to evaluate their relations
with their subordinates, superiors, peers and acquaintances. This evaluation is based on the
possible increase or decrease of the overall load and cost in case the relation had been different
(an acquaintance had been a subordinate or a peer, a peer had been a subordinate or only an
acquaintance and so on). For example, an agent a, evaluates its relation with its subordinate a,
on the basis of the number of its SI dependencies that have been executed by a,. More specifi-
cally, a, assumes that had a, not been its subordinate, then all its delegations to a, would have
gone indirectly via some intermediary agents. Therefore, a, will check whether the possible
reduction in its own load had a, not been a subordinate (because one less subordinate will lead
to a lower management load during allocations) is more than the possible increase in the load

and cost across the organisation (due to the resultant longer allocation chains).

We present the adaptation mechanism, in pseudocode form in Algorithm 4.1, for how an agent a,
should reorganise at a given time-step. The first component (line 1) refers to the meta-reasoning
aspect of choosing the particular acquaintances for initiating the reorganisation process. The

second component (lines 3-9) explains how it should adapt its relation with one such agent a,.

The first component, that is the meta-reasoning aspect of adaptation, aids an agent in choos-
ing when to reason about reorganisation and when to solely perform the task related actions,
and is described in Section 4.1.2. Now, we start by describing the mechanism that enables an
agent to reason and change its relations with its acquaintances (that is, any other agent in the
organisation). We formulate this part using a decision theoretic approach since it provides us
with a simple and suitable methodology for representing the choices available to the decision
maker, thus enabling it to make the right selection (previously justified in Section 2.2). Since,

our adaptation method involves agents evaluating and changing their relations, it is befitting to

U1f there is some information present about the tasks coming in the future, it can be factored into the method. This
aspect is further discussed in Section 6.2

Chapter 4 Decentralised Structural Adaptation 56

1 Chosen «— selected from the acquaintances set of a,;

2 foreach a, € Chosen do
Actions < possible_actions(x, y);

3
4 Uy 0;
5 foreach e € Actions do
6 U, «— calculate_utility, ,(e);
7 Ury — Uy UUe;

end

€hest < argMaX(Ux,y);

take action epy With ay;
end

e

Algorithm 4.1: Adaptation algorithm in terms of agent a,

ml (iii)no_action

o~ =-@
ay ay

1(i)form_peer
3(iii)no_action

1. ay acqt of a, 4(ii)rem_subr
/ \ 4(iii)no_action
(\ 3(i)rem_peer /v
([J
x dy 2(i)rem_subr ax dy

<= -=-0 |

3. a, peer of a, 4. ay supr of a,

3(ii)rem_peer+ 1(i1)form_subr
form_subr

2(ii)rem_subr+

form_peer 4(i)rem_subr+
P Clx. a; form_subr
() relation state 2. ay subr of a,
— » action
——+ supr-subr 2(iii)no_action

<> peer

FIGURE 4.2: State transition diagram

represent it in terms of actions and utilities as specified by decision theory. We denote the ac-
tions available to a pair of agents as those changing the relation between them. Consequently,
the set of actions available to a pair depends on their relation (line 3). In our model, for every
pair of agents, the relation between them has to be in one of the states— purely acquaintance
relation, peer relation, superior-subordinate relation or subordinate-superior relation. For each

of these 4 states, the possible choices of action available to the agents are:

1. a, is an acquaintance of a,: (i) form_peer, ,; (ii) form_subr, ,; (iii) no_action.

,y;
2. ay is a subordinate of a,: (i) rem_subr, y; (ii) rem_subr, , + form_peer, , (to change to a

peer relation); (iii) no_action.

3. ay is a peer of a,: (i) rem_peer, ,; (ii) rem_peer, , + form_subr, y (to change to a subordi-
nate relation); (iii) no_action.

Chapter 4 Decentralised Structural Adaptation 57

4. ay is a superior of a,: (i) rem_subr,, + form_subr, ; (ii) rem_subr,,, + form_subr, , (where
a, is a (indirect) superior2 of ay); (iii) no_action.

For example, action 1(ii) (form_subr, ,) denotes that a, and a, take the action of making a,
a subordinate of a, and undergo transition from state 1 to 2. A transition from state 2 to 4
is not needed because it is equivalent to the transition from 4 to 2, by interchanging a, and a,.
Similarly, transitions from 1 to 4 or between 3 and 4 are not required. If there were more types of
relations in the organisation model, there would be correspondingly more states and transitions
to represent them. These possible actions for transitions between the various states are further
illustrated by Figure 4.2.

As can be seen, the transition actions are composed of four atomic types— form_peer, rem_peer,
form_subr and rem_subr, which translate to forging and dissolving the peer or authority relations
(as agents are acquaintances of each other, by default). Here, form_peer denotes forming a
peer relation, while rem_peer denotes removing a peer relation and so on. The actions are
mutually exclusive and can be performed if the relation between the agents is in the requisite
state (as explained later). Obviously, each of these actions has to be jointly performed by the
two agents involved in changing the relation. Furthermore, the actions are deterministic (there
is no uncertainty regarding the outcome of an action which is the formation or deletion of a link;
only the utility of the outcome is not pre-determined). The utility of performing an action (U, in
line 6) is given by value function V (also called an ordinal utility function (Russell and Norvig,
2003)) associated with the relation.

Since our environment is characterised by various factors like the communication cost and the
load on the agents, the value function V will have multiple attributes to represent these different
factors. In terms of two agents a, and a, jointly deliberating about an action, we list the five

attributes that will constitute the value function:

—

. change to the load on a,
2. change to the load on ay
3. change to the load on other agents of the organisation
4. change to the communication cost of the organisation
5. reorganisation cost incurred by the organisation for taking the action
We selected this set of five attributes because they cover all the factors affecting the organisa-

tion’s profit (detailed in Section 3.3), but at the same time, can be calculated independent of

each other from the history of task allocations. Therefore, this set of attributes exhibits mutual

Zwhen a;, is an indirect superior of a, via ay, it is not possible for a, to have a; as its subordinate (since cycles of
authority links in the control graph are not permitted). Hence, making a, a subordinate entails dissolving its relation
with its immediate superior in the authority chain which is a,.

Chapter 4 Decentralised Structural Adaptation 58

preferential independence (MPI). That is, while every attribute is important, it does not affect
the way the rest of the attributes are compared. Hence, the value function can be represented
as simply a sum of the functions pertaining to the individual attributes. That is, it is an additive

value function of the form:
V = Aload, + Aloady, + Aloadoa + Acostcomm + AcOStreorg “4.1)

In this way, depending on the state, the agents jointly calculate the estimated utilities for the
possible actions using the value function (which are stored in U, at line 7), and then choose the
action giving the maximum estimated utility (line 8). Being cooperative, the agents do not have
conflicts as the value corresponds to the social utility of the relation to the organisation and not
to the individual agents. The evaluation for no_action will always be 0 as it does not result in
any change to the expected load or cost of the organisation. The evaluation for the rest of the
actions is obtained from Equation 4.1. In the case of the composite actions (rem_subr+form_peer,
rem_peer+form_subr or rem_subr+form_subr), the value will simply be the sum of the individual
evaluations of the comprising actions. Moreover, since any action will be taken jointly by the
two agents involved, even the evaluation is jointly conducted by the agents with each of them

supplying those attribute values accessible to them.

Against this background, we move on to discuss the calculation of the value function for the
various actions by detailing how the individual attributes are computed. Following that, in Sec-

tion 4.1.2, we deal with the meta-reasoning aspects involved.

4.1.1 Value Function Calculation

The value function is the sum of the values of the attributes as shown in Equation 4.1. To repre-
sent the performance condition of the organisation (Equation 3.11), a reduction in cost or load
(excess load adversely affects the rewards by causing delays to tasks completion) is considered
to add positively to the value and vice versa. Table 4.1 lists the calculation of the attributes of
the value function for each of the four atomic actions. These calculations use several run-time
parameters to take into account the histories of interactions of the agents. Therefore, while we
modelled and denoted the general agent properties in Chapter 3, this table uses additional nota-

tion to denote these relevant run-time parameters. We describe the notation below:

Assignment: By assignment of a SI to an agent, we mean that the agent has been allocated that
SI. It must accomplish that SI by either executing it itself or by assigning it again to some other
agent. Formally, when a SI si; is assigned to agent a,, then a, is considered an assigned agent

for si;.

Delegation: By delegation of a SI to an agent, we refer to the fact that the agent is executing

the particular SI by itself (without reassigning it to someone else). Formally, when an agent a,

Chapter 4 Decentralised Structural Adaptation 59

executes a Sl si;, it is considered as the delegated agent for si;. Thus, there could be several

assigned agents for a particular SI, but only one delegated agent.

The delegated agent, assigned agents and the assignment chain of a sample SI is illustrated in

Figure 4.3.
8¢e01
assigning agent
M star
sample_si assigned agent
u 8€02

assigned agent

socl
delegated agent

FIGURE 4.3: The assignment chain formed by the allocation of an SI across the organisation

1. Asgyy: The number of SIs assigned by an agent a, to a,. Assignment of a SI si; by a, to
ay means that a, required that si; be executed (was assigned to a, or forms dependency
of a SI executed by a,) and it reallocated si; to a,. Thus a, will have to be a subordinate,
peer or a superior of a,. Also a, need not necessarily execute si; itself, it could reassign it

to one of its own subordinates, peers or superiors.

2. Del,y: The number of SIs delegated by an agent a, to a,. Delegation of a SI si; by a,
to a, means that a, is the agent that first required that si; be executed (as it formed a
dependency of a SI executed by a,) and a, is the agent that finally executed si; (that is, a,
is the delegated agent). Note that, a, may just have an acquaintance relationship with a,.

The delegation is always achieved through one or more assignments.
3. £: The total number of time-steps that a, has been in existence.

4, t;L;’” : The number of time-steps that a, and a, had a superior-subordinate relation (that is,
time-steps that (a,,ay, Supr) € G) . Likewise, t£y denotes the amount of time that a, and

ay had a peer relation.

Chapter 4 Decentralised Structural Adaptation 60

5. filled,(t): The number of time-steps out of the total time denoted by ¢ that a, had waiting
tasks (W? # 0; capacity being completely filled by load). The variable ¢ can represent the

total time of a, (") or the time duration that a, was its peer (tf; ;er) and so on.

6. Asgysuprs The number of SIs that have been assigned by a, to any of its subordinates.

Likewise, Asgx,peer and ASgLSMPr’

7. Asgyior+ The total number of SIs that have been assigned by a, to other agents. Therefore,

Asgx.,tot = Ang,subr + Ang,peer +Ang,supr-

8. Asgk94P: The management load added onto ay because of assignments from a, (the count

of these assignments is denoted by Asg, , as stated above).

9. IA,,: The total number of times, other agents (intermediate agents) were involved in the

delegations of SIs by a, to a,. Therefore,

Del,,
Ay =Y countp,
i

where counté)A is the number of other agents involved in the delegation of si; from a, to

dy.

10. IA)EyOST: The communication cost due to the delegations from a, to a,. For every agent
in A, a cost of 2C is added because a message is once sent forward and once back.
Therefore, IA)%O,ST =1IA,,*2*C.

11. IAf;gAD : The overall management load put on all the intermediate agents involved in the
delegations from a, to a, (that is, Del, ,). The load values are reported back to a, along
with the assignment information (the assignment message). If an intermediate agent has
available capacity (no waiting tasks), it will report a 0 load value for that delegation.
Otherwise, the agent will report the actual management load that was put on it due to that

SI assignment.

Note that, the Asg, Del and IA values are calculated beginning from the time-instance the con-
cerned agents (a, and a,) came into existence. Following this notation, Table 4.1 lists how the
five attributes are calculated for each of the four basic actions. The last column in the table

denotes which agent will be performing the calculation for that particular attribute.

More specifically, Table 4.1(a) represents the form_subr, , action. When two agents, a, and a,,
need to evaluate whether forming a superior-subordinate relation will be beneficial, they need
to estimate the utility of taking such an action. As stated earlier, this utility is obtained from
the value function (Equation 4.1). However the calculation of the attributes, that make up the
value function, varies according to the action for which they are being calculated. Therefore,

Table 4.1(a) shows how the attributes are calculated for estimating the increase in value by

Chapter 4 Decentralised Structural Adaptation

61

TABLE 4.1: Attribute functions for the reorganisation actions

@ Action form_subr, , between agents a, and ay (with a, as the superior)

Attribute Function Agent

@ Aload, —Asgusor # M filled (1) /1" a,

The management load that will be added on a, due to an additional subordinate. This is
estimated by counting all the assignments that a, had to perform until now and adding a
load of M for each of those. This is because, if a, had been a subordinate of a, from the
beginning, then it will have been considered for each of the assignments of a, causing
an extra load of M for every such instance. This value is then multiplied by a factor
which represents how often this increased load will affect the rewards from tasks. This
factor is the amount of time-steps that a, had waiting tasks divided by the total time of
its existence. The reasoning is that the increased load will delay the tasks execution only
when its capacity is filled.

(i) Aload, —AsgkQ*P xfilled, (£3“0) =11 / (1547)2 or O if £ =0 ay

The management load that will be added onto a, due to possible assignments from a.
It is estimated by considering the load on a, due to a, when it was a subordinate of a,
previously and multiplying it with the fraction of time that a, had waiting tasks while in
the relation and dividing it by the fraction of total time that the relation existed. Thus,
the calculated value is normalised to correspond to the total time of the existence and not
the relation time.

(iii) Aloadoa IALOAP ay

The reduction in the management load on the intermediate agents that had been involved
in the delegations to ay by a,. As this load value is sent by an intermediate agent only if
it has waiting tasks, no time factor like the one in a(i) is required.

(iv) Acostomm IASOST ay

The reduction in communication cost that was associated with the delegations to a, by
Q.

(V) Acostreorg —-D constant

This is the reorganisation cost associated with forming or dissolving a relation. Though,
it is a one time cost, its affect is spread over the same time window that the rest of the
evaluations are valid.

Chapter 4 Decentralised Structural Adaptation 62

(v Action rem_subr, , between agents a, and ay, (a, is the superior)

Attribute Function Agent
(i) Aload, ASgtor % M filled, (£357) /13" a

Xy

The management load on a, that will be reduced because a, will no longer be a subor-
dinate. The assignments count for the total time is obtained and then multiplied by the
fraction of time that a, had waiting tasks while in the relation so that the load values
correspond to not just the total time but also reflect the factor by which they will affect
the task rewards.

(i) Aloady, Asgk9AP xfilled (13407) /1540 s 11" /1540 ay

The management load on a, that will reduce because it will no longer get direct assign-
ments from a,. It is multiplied by the fraction of time that it had waiting tasks while in
the relationship, similar to a(ii). As in that case, since the load value corresponds to the
relation time only, it is divided by the fraction of the time the relation existed so that the
calculated value corresponds to total time of existence.

(iii) Aloadox —IALOAD s gle /(rier — g3ubr ax

The management load that will be put on other agents for delegations to a, from a, if
it were not a subordinate of ay. It is estimated by considering the load on intermediate
agents, as in a(i), when the relation didn’t exist and dividing by the fraction of time that
the relation didn’t exist so that the load values correspond to the total time.

@iv) Acostomm —IA%)ST s« 1100) (110" — nfc’ff) ay

The addition to the communication cost associated with the delegation multiplied by the
time fraction as in b(iii).

(V) Acostreorg —-D constant

Similar to a(v).

taking the form_subr, , action. Similarly, Table 4.1(b) refers to rem_subr, ,, Table 4.1(c) refers
to form_peer, , and Table 4.1(d) refers to rem_peer, , action.

Note that the negative sign, whenever present in the attribute calculations, denotes that the value
represents an increase in the load or cost. Also, the attributes are calculated such that the resul-
tant value for any attribute and any action is always normalised to the total time of existence of
the two agents involved. Therefore, the utility of one action can be compared directly against
that of another action, thus allowing the agents to make a decision. For this reason, the load and
cost values are multiplied by time fractions such that the final value always corresponds to this
total time. The value function represents the expected change in the load and cost of the organ-
isation if the particular action is taken. Therefore, the intuition behind the attribute calculations
is that the past assignments and delegations between the two agents (a, and a,) will provide a
reasonable indication whether forming or dissolving their relation will reduce the overall load

and cost of the organisation and by how much.

Using the value function, every pair of agents jointly evaluates the utility for taking any of the

Chapter 4 Decentralised Structural Adaptation

63

() Action form_peer, , between agents a, and a,

Attribute Function Agent

1) Aload, — (Asgx,peer + Asgx,supr) * M *ﬁlledx (t)tcm)/t;m ax

The management load that will be added onto a, due to an additional peer. It is multiplied
by the time factor similar to a(i).

(i) Aloady - (Asg)apeer + ASgy,supr) * M *ﬁlledy (té()t)/l)tf)t ay

Similar to c(1).

(i) Aloadoa IAAP +IAGYP ay and a,

The reduction in the management load on intermediate agents involved in the delegations
from a, to a, and from a, to a,.

@av) Acosteomm IA%)ST + IAS?ST ay and a,

The reduction in the communication cost associated with the delegations in c(iii).

(V) Acostreorg —-D constant

Similar to a(v).

(@ Action rem_peer, , between agents a, and a,

Attribute Function Agent

@) Aload, (Asgx,peer + Asgx.,supr) * M filled,, (tf;er) /tf’;er ay

The management load on a, that will be reduced because a, will no longer be a peer.
Multiplied by the time fraction similar to b(i).

(i) Aload, (Asgy. peer +ASgy supr) ¥ M ﬁlledy(n%er) nhy” ay
Similar to d(i).
(i) Aloadoy — —(IAZQMP sl /(11 —t03") + IALP el /(11" — 15")) ay and ay

The management load that will be added to other agents for delegations from a, to a,
and from a, to ay. It is estimated in the same way as b(iii).

(iv) Acosteomm — (IA%)ST #1100 /(1100 — 125) + IAyC;C)ST w0, /(0" —1%")) ayand ay

The increase to the communication cost because of the delegations. It is estimated in the
same way as b(iv).

(V) Acostreorg —D constant

Similar to a(v).

Chapter 4 Decentralised Structural Adaptation 64

possible actions (depending on their relation) towards changing their relation, at any time-step
(though, newly formed relations are allowed to stabilise and are re-evaluated only after a prefixed
time interval). Here, joint evaluation means that each agent supplies only some of the attribute
values (as evident from the table), but the resultant utility for the action is applicable to both.
Being cooperative, the agents do not have conflicts as the value corresponds to the utility of the
relation to the organisation and not to the individual agents. Hence, this continuous adaptation
of the relations helps in the better allocation of SIs amongst the agents as they will maintain

relations with only those agents with whom they require frequent interactions.

4.1.2 Meta-Reasoning

We focus now on how an agent can decide which agents to choose for initiating the above de-
tailed adaptation process. In the ideal scenario, at line 1 in Algorithm 4.1, all the related agents
(acquaintances) of an agent will be chosen for reasoning about adaptation. However, as the com-
putation required for these utility calculations and reasoning depends on R (Section 3.3), it need
not be negligible and might exhaust the computational capacities of the agent that, otherwise,
would have been spent on task related actions (allocation and execution). Thus, when R cannot
be ignored, an agent will have to smartly select the acquaintances for Chosen in line 1. Thus,
effective meta-reasoning emerges as an important aspect of the adaptation process (this issue

has been previously discussed in Section 1.2 and Section 2.3).

In our case, this problem boils down to the following— at any given time-step, an agent should
decide on how many and which acquaintances to select for initiating reorganisation procedures.
This can be viewed as a form of the well-known coupon collector’s problem (Motwani and
Raghavan, 1995) and, therefore, we explore a simple randomised approach that is typically used
for such problems. In the coupon collector’s problem, there are n types of coupons and an
infinite number of coupons for each type. At each trial, a coupon is chosen at random. We
can map this problem to our scenario by considering every agent to be the collector, and all its
related acquaintances (the agents that are peers, superiors, subordinates or just acquaintances)

as the coupons. Also, in our case, there can be several trials in a single time-step.

Now, if X is the number of trials such that at least one coupon of each type is collected, then
the expectation of X is: E(X) = nin(n) 4+ O(n) (Motwani and Raghavan, 1995). This assures
us that even when chosen randomly, on average, all acquaintances of an agent will be picked
up for reorganisation deliberation in a given period of time (for 20 relations at an agent, this
translates to approximately 80 trials). Therefore, an agent can just randomly choose k agents
at a time-step (in line 1). We suggest such a randomised approach as opposed to a sequential
selection (where the agent sequentially traverses through its acquaintance list, choosing k agents
at a time) because, in general, randomised algorithms are known to provide better solutions for
such problems. Moreover, a sequential selection approach will require maintaining additional
information about which agents have already been picked, which is not required by our random

selection approach for choosing the k acquaintances. Next, even this k can be varied according

Chapter 4 Decentralised Structural Adaptation 65

to the situation. When an agent has free capacity that will otherwise be wasted, k should be such
that the whole of the remaining capacity is utilised for reorganisation. However, even when the
agent is overloaded, reorganisation might be necessary. On such occasions, k is based on the
percentage of successful reorganisations in the previous time-step. In more detail, at a time ¢, k

is determined as:
1

ke =maxq (L, —1;)/R (4.2)
acqtsy * changedy ;1 [ki—1

where acqts, represents the number of acquaintances of ay, changed, ;1 denotes the number of
relations of a, changed in the previous time-step, and k,_; is the k value used in the previous
time-step. As denoted in Section 3.3, L, is the computational capacity of the agent, [, is the
current load on the agent and R is the reorganisation load coefficient. The minimum possible
value of k is limited to 1, so that at least one agent is considered for reorganisation in any time-
step. In this way, free capacity is never wasted and, at the same time, an agent will carry out
reorganisation even when it has a huge number of pending SlIs by adapting & according to its

need for adaptation.

We further illustrate the basics of the adaptation method with the help of the following example.

4.1.3 Example

Consider the earlier example of the sample organisation in Figure 3.2 executing the task in
Figure 3.1. The allocation of service instances across the agents is reproduced in Figure 4.4
(explained in Section 3.2.3). Also, keeping in line with our assumption, all agents are at least
acquainted with each other. Let us assume, for sake of simplicity, that this is the first and only
task that has entered the system since the beginning. Also, by time-step 5, the task has been
allocated and executed across the organisation as shown. Let us look at agent geo; evaluat-
ing its relations at time-step 5. Since geo; has enough free capacity (and assuming R = 0.5),
ks = 3 at step 1 in Algorithm 4.1. For the first case, let a, in step 2 is stat. Therefore, let us
look at geo; and stat evaluating their relation. According to Figure 4.2, since stat is a subor-
dinate of geoy, their relation is in state 2 with three possible actions — (i)rem_subrgeo, star, (i1)
rem_subrgep, siar +form_peergeo, siar and (iii) no_action. Let us first focus on how they calculate

the estimated utility of rem_subrgeo, s using Table 4.1(b).

For this example, let the values of the coefficients be:
C=0.25 and M=0.5 and D =0.10

Let us assume that all agents existed since the start, that is ' = 5 for all of them. Also, we
assume that all the relations existed, as shown, from the beginning. Therefore, the time-period

for any of the existing relations (like 542"

eeor star) 18 als0 5. Moreover, assume that the capacity of

agent geo; was never filled over these 5 time-steps. Given this, let us look at the first attribute of

Chapter 4 Decentralised Structural Adaptation 66
geo_map
analyse_census

census

SOCZ .<

transport
flow

FIGURE 4.4: Allocation and execution of the service instances by the agents

the value function, Aloadgeo, = Asggeo, 1or * M xfilled,y,,, tggé’l’ stat /zgggf star- From the Figure 4.4,
we see that geo; had to perform three assignments (get_census to socl, draw_city to stat and
analyse_census also to stat). Therefore, Asggeo, 1or = 3. However, filled,,,, (154") = 0 since

geo never had any waiting tasks over this time. Hence, Aloady.,, =3 %0.5%0=0.

LOAD

Similarly, looking at the second term Aloadsiar, ASggeo, star =

= 0.5 since stat had to perform an
assignment (of draw_city) for geo; and it took up M load as stat had only one subordinate (geo;).
Let us assume that stat’s capacity was completely filled for the last time-step (when it started
executing analyse_census). Therefore, filled,,,, (") =1, while t840" _and /%!, are 5 each.

geoy ,socl geoy,sta stai
Hence, Aloadg, =1%1/5%5/5=1/5=0.20

Now, looking at the third term, we find that IAégf}gm, = 0, since there were no delegations from
geo to stat (analyse_census which is being executed by stat was delegated by socl to stat, and
not geo; which had only assigned it). As a result, Aloadps = 0. Similarly, Acost.omm = 0 too.

Finally, Acost,eorg = —0.10 as D = 0.10.

Having obtained the values of all the five attributes, the sum total of the estimated utility of
action rem_subrgeo, s1ar = 0+0.20+0+0—0.10 = 0.10.

Next, we look at the second possible transition from this state which is rem_subrgeo, sar +
form_peergeo, s1ar. The evaluation for the rem_subr action has already been obtained. So, we
focus on the form_peer action. The first term Aload,,.,, = 0 since geo| had not assigned any ser-
vice instances to any peers or Superiors (Asggeco,, peer +AS&ge0, supr = 0). Similarly, Aloadgq =0
as stat also did not assign to any peers or superiors. The third and fourth terms, Aloadpa

and Acost.omm are also 0 as above because there were no delegations between geo; and stat

Chapter 4 Decentralised Structural Adaptation 67

(as described above). Adding all the terms, the estimated utility of action form_peergeo, star =
0+0+040—0.10 = —0.10. Therefore the overall utility of the composite action of removing
the subordinate and forming the peer is: 0.10+ (—0.10) = 0.

The evaluation for the third possible action (no_action) is 0 by default. So comparing the esti-
mated utilities of all the three possible transitions, agents geo; and stat find that rem_subreo, star
provides the maximum utility (0.10) and therefore, they take that action. Thus, the superior-
subordinate link between geo| and stat is dissolved. It should be noted that the values calculated
here are very low because very little time had elapsed since the beginning of the run and only
one task has been executed, and these values will become larger as time goes on and more tasks

are processed by the organisation.

Continuing the example, let us consider geo and geo; (a, is now geo, at step 2 in the algorithm)
evaluating whether they should change their acquaintance relation to a superior-subordinate or
a peer relation according to the transitions from state 1 in Figure 4.2. Note that this evaluation

is also taking place at time-step 5 as earlier. We first observe their form_peergeo, ¢e0, €valuation.

Similar to the above form_peer calculation, Aload,.,, and Aloadg,,, will be 0 as neither agent

has assigned any service instances to peers or superiors. For the Aloadoa calculation, IAZ0D =

0 even though there was a delegation from geo; to geo, (service instance draw _city). This is be-
cause, the only intermediary agent stat’s capacity was not completely filled when it performed

the delegation. Therefore, it reported a value of O to geo; along with the acknowledgement

message. Also, IALOAP = 0 as geo, did not delegate any service instances to geo;. However,
IAgg,fZ;,wz =1%2xC=1%2%0.25 = 0.50 because the count of intermediate agents (IAg.o, geo,)

is 1 (stat). As aresult, Acosteomm = 0.50 because the other term, JAS)®" = 0. Overall then, the
estimated utility of action form_peergeo, geo, = —0—0+0+0.50 —0.10 = 0.40.

Similarly, calculating the estimated utility of the action form_subrgeo, geo, also results in 0.40.
The utility of the third possible action, no_action is default to 0, so the agents geo; and geo; can

choose arbitrarily between these two actions (in this case, let us say they chose form_subr).

Finally, geo; also evaluates its relation with socl by looking at the possible actions, which
are rem_subrgeo, socl, 7€M _SUDT oo, socl + fOrm_peerges, soci and no_action. Their calculation of
the attributes, similar to the above, reveals an estimated utility of —0.10 for rem_subrgeo, soci
and —0.20 for rem_subrge, soc1 +form_peergeo, soci. Therefore, they chose the third alternative
no_action which just has an estimated utility of 0. Thus, after geo; has re-evaluated all its re-
lations, the structure of the organisation will be as seen in Figure 4.5. The same steps will be

followed by the rest of the agents also, depending on their relations.

In this section, we have presented the basics of our adaptation method. Specifically, we de-
scribed how agents should evaluate the utility of changing their relations and also how to decide
when to calculate these utilities. This adaptation is sufficient for closed static organisations. In

the next section, we discuss the enhancements needed to tackle open and dynamic organisations.

Chapter 4 Decentralised Structural Adaptation 68

8e01

8€02

FIGURE 4.5: Organisation structure after geo; had reorganised

4.2 Adaptation for Open and Dynamic Organisations

As modelled in Section 3.2.4, organisations can be open and/or dynamic in nature. However, our
method, detailed above, might not work well for such organisations. This is because, in open
and dynamic organisations, some of the assumptions of the method will be invalidated. For
example, a new agent entering the system will not have any past interactions with the existing
agents, thereby resulting in zero value for some of the attributes of the value function. Similarly,
when the service set of an agent changes, all of its past interactions will not provide the best
picture for its usefulness in the future to other agents. Therefore, in this section, we extend our

adaptation method so that it performs well even in such open and dynamic organisations.

We first describe the extension for open organisations, where some of the agents might be enter-
ing and leaving the organisation during its existence. Next, we discuss the modification required
for dynamic organisations where the service sets of the agents will be changing with time. Ad-
ditionally, we explain how this modification also makes our adaptation method suitable for task

environments whose characteristics are changing with time.

4.2.1 Open Organisations

When a new agent joins the organisation, it needs to be assimilated into the structure by the
existing ones. However, for an agent to form a relation with a new agent, it has to be able to
predict how useful that new agent will be and in what type of relation. This is not straightforward
as there are no past interactions with the new agent on which to base any utility calculations (as
required by our method). Therefore, the agent is faced with an explore versus exploit trade-off:
whether to explore by forming an authority or a peer relation with a new agent, or to reorganise

with the past agents only by exploiting the known information about them. This choice could

Chapter 4 Decentralised Structural Adaptation 69

be tackled by employing specially designed ‘explorer agents’, whose sole task is to monitor the
performance of all the agents (including the new ones)(Maximilien and Singh, 2005). However,
we do not use such an approach because it requires special agents and that contradicts our self-
organisation principles (stated in Section 1.3.2). Thus, our intention is to imbibe the adaptation

method into the task-solving agents without needing any external help.

Against this background, we find that the principle behind ‘Win Or Learn Fast’ (Bowling and
Veloso, 2001) is well suited to our problem. The WoLF principle is— ‘learn quickly while
losing, slowly while winning’. In our context, an agent can be considered winning if it has unused
capacity and losing otherwise (when it has a pending queue of SIs). Therefore, an agent that is
not overloaded will only follow Algorithm 4.1 by ignoring the new agents joining the system.
However, an agent with pending SIs will actively seek new subordinates to be able to improve
its delegation of SIs. This addition to the fundamental method is presented as pseudocode in
Algorithm 4.2.

1 if WP £ 0 then // WP is the set of pending SIs of ay
2 s+ arg-MaxOccuring{W’} AND ¢ AccmSet,;
3 A; + agents providing service s;
4 ay < randomly chosen from Ay;
5 form_subr, y;
end

Algorithm 4.2: Algorithm in terms of agent a, applying WoLF

In more detail, an agent, when overloaded (checking in line 1), identifies which particular service
occurs the most in its waiting list that is not supplied by any of its current subordinates (line 2).
Then, in line 3, it searches through all of its acquaintances (including the newly entered agents)
for those offering that particular service. Finally, in lines 4-5, it forms a superior-subordinate
relation with one such randomly chosen agent. a, is chosen randomly as otherwise the decision
process will involve interacting and exchanging utilities with all qualifying acquaintances, thus
using up more computational capacity at a, while it is already overloaded. With this technique,
new agents will be assimilated quickly by the existing agents into the structure. Moreover, these
new agents will end up forming the relations where they are most needed, thereby leading to
a more equitable distribution of load across the organisation. In addition, a new agent offering
services which are not much in demand, will be ignored (as the agents offering those services
are winning anyway) and thus not add any unnecessary management load. In contrast, when an
agent leaves, the others can easily reorganise using the method in Algorithm 4.1 without needing
any such additional step. In summary, for open organisations, the adaptation method includes
this “WoLF’ principle based algorithm in addition to the fundamental method used for closed

organisations for structural adaptation.

Now, we illustrate this extension by continuing the example presented in Section 4.1.3. Let us
assume that after a while, a new computer comp from the computer science department joins the
organisation. It also provides service graphics . Now, consider that geo, has been receiving a

lot of SIs requiring graphics . Therefore, its capacity is being filled in the recent time-step and

Chapter 4 Decentralised Structural Adaptation 70

there is a pending queue of SIs. That is, ng;,z contains many SIs requiring service graphics .
Hence, when geo, follows the adaptation algorithm presented in Algorithm 4.2, it reaches step
2 where s = graphics . Then, at step 3, the set Agqppics contains comp (as it is the only other
agent providing graphics). So, following steps 4 and 5, it forms a subordinate relation with

comp and then start delegating the SIs containing to graphics to comp.

4.2.2 Dynamic Organisations

As explained in Section 3.2.4, the dynamism of the organisations is caused by the changing
service sets of agents. Specifically, as agents gain new services and/or lose old ones, the relations
should be changed accordingly to reflect the changed circumstances. However, our adaptation
method is based on the past interactions between the agents. In particular, the agents reevaluate
their relations on the basis of estimated utilities which they calculate on the basis of the amount
of interactions they had with the other agents since the beginning of their existence. However,
this method of using the whole history of interactions as the guidance for adaptation might not
be the most suitable approach when the agents’ service sets are changing, because the kind of

interactions (with the other agents) that they require might also change.

Against this background, we revisit the method that we presented in Section 4.1 so that it re-
mains effective even for these dynamic organisations. An obvious approach to tackle this is by
partitioning the estimated utilities on the basis of the services being provided at the agents. In
more detail, the terms in Equation 4.1 basically represent the summary of interactions relevant
to the two agents concerned (as explained in Section 4.1.1). Now, every individual interaction,
that makes up these summaries, is regarding some particular service. Therefore, the interac-
tions can be grouped on the basis of the services. Thus, while an agent calculates the values of
the terms in the value function, it will consider only those interactions that were regarding the
services that it is currently providing. Therefore, if an agent loses a service, it will ignore its
past interactions regarding that particular service for all future utility calculations (if and until it
regains the service). Similarly, when an agent gains a new service, it can either start with a ‘0’

as the initial value, or a mean of the values obtained from the other services.

The problem with such an approach is that the interactions between two agents also depend on
the other agents in the system. To make our case clear, consider a sample scenario in which
agent a, has been delegating SIs containing service s; to agent a,. a, contains service s; in its
service set Sy, but being generally filled with load, it reallocates the SIs from ay to its subordinate
a;. Now, if a, loses service s;, it will stop including all the interactions with a, involving s; and
thereby dissolve the relation with a,. However, nothing should have changed because, in reality,
the loss of s; by a, would not have affected its interactions at all. Similarly, changes to the
service sets of other agents in the system will also affect the interactions between a, and ay, but
that is not accounted for in this method. Thus, the method of partitioning utilities on the basis of
the services assumes that the interactions between any two agents are isolated and independent

from the rest of the organisation, and therefore, is not a good solution.

Chapter 4 Decentralised Structural Adaptation 71

In contrast to the above discussed approach, the extension presented earlier (Section 4.2.1) is
somewhat useful for dynamic organisations as well, particularly when agents are gaining new
services. In more detail, when some agents gain new services, they can be treated as ‘new
agents’ with respect to those services and thus considered for forming subordinate relations
by the ‘losing’ or overloaded agents, just as described earlier in Algorithm 4.2. However, the
method is not helpful when agents might be losing services. Moreover, even for the former
case of agents gaining services, just using this method will not be sufficient. This is because
the agents are already burdened with the whole history of interactions when their service sets
were different. Therefore, they might not be able to form the best relations for the changed

circumstances despite actively seeking specific-service-providing relations using the method.

In this context, a more suitable approach is to give weights to the past agent interactions de-
pending on the time elapsed since they actually took place. Unlike the earlier outlined method
of partitioning utilities based on the services, such an approach makes no false assumptions on
which particular interactions of the past are relevant and which should be excluded. However,
assigning the elapsed-time based weights to the interactions makes the adaptation more respon-
sive to changing scenarios. As recent interactions contribute more to the utility function than the
older ones, the adaptation will reflect the latest scenario rather than the summary of the whole
scenario until then. Thus, it will be suitable for dynamic environments in which the kind of

interactions required will be changing with time.

In more detail, in the fundamental method, the values for the terms in Equation 4.1 are obtained
by summing up the relevant agent interactions. During this summation, all interactions were
given the same importance. However, in this extended method, weights are assigned to the
individual interactions on basis of how far in the past they had occurred. That is, the most
recent interaction will have the maximum weight and the older interactions will have lesser
weights correspondingly. This decrease in weights will be given by a decay function. The rate
of decay can be tuned according to the rate of dynamism of the organisation. A highly dynamic
organisation (where agents are losing and gaining services at a fast rate) should have a steeper

decay function than an organisation with a slower rate of change.

Interactions < set of relevant interactions;
total < 0;
time cyrrens <— current time;
foreach I € Interactions do
total — total + I.value * Decay(time yyrens, I .time);
end
6 return rotal
Algorithm 4.3: Algorithm for calculating the value of a term while evaluating the value
function using the decay mechanism

(9 I S R S I

The pseudocode for this method is presented in Algorithm 4.3. In more detail, Interactions
(line 1) contains the set of all relevant interactions, for that particular attribute, that need to

be summarised. While summing them up, each interaction is multiplied by its corresponding

Chapter 4 Decentralised Structural Adaptation 72

Decay(timecyrrent , I .time)
1 window < time-window size;

2 if I.time < (timecyyrens — window) then
3 return O;

else
4 return (I.time — (timecyyrens — window)) /window
end

Algorithm 4.4: Linear decay function within a time window

Decay(time yrrent , I .time)
1 return e~ M (timecuren—1.time). // A can be adjusted

Algorithm 4.5: Exponential decay function

weight which is obtained from the decay function (line 5). We show two sample decay functions
in Algorithms 4.4 and 4.5 for organisations changing at a slow and a fast rate respectively. In
the linear decay function (Algorithm 4.4), only those interactions that occurred within the given
time window are considered and the assigned weights decrease linearly based on how old they
are. In the exponential decay function (Algorithm 4.5), the weight value decreases exponentially
depending on how old the interactions are. These are two examples of the decay function that
can be used for dynamic organisations. The linear decay function will suffice for moderately

dynamic organisations while highly dynamic organisations might need exponential decay.

The advantage of this approach of using the decay function is that it forces the agents to learn
at a faster rate, thus reflecting the increased dynamism of these kinds of scenarios. At the same
time, unlike the earlier stated approach (partitioning of utilities), it does not make any additional
assumptions and is not specifically dependent on the type of changes to the organisation (like the
changing service sets of agents). In fact, this approach is useful not only to deal with dynamic
organisations, but also for organisations placed in task environments whose characteristics are
changing with time. These kinds of environments are detailed and used for empirical evaluation

in Section 5.1.2.

In this section, we have presented the extension and modification required for the fundamental
method presented in Section 4.1 to function well in open and dynamic organisations. More
specifically, for open organisations, the adaptation method is enhanced by including the same
principle as behind the WoLF algorithm using which agents that are overloaded will actively
seek out suitable relations among the new incoming agents. On the other hand, for dynamic
organisations, the fundamental method has to be modified such that weights are associated with
the interactions during utility calculation. These weights are highest for most recent interactions

and subsequently decay as time elapses. This section is succinctly summarised by Table 4.2.

Chapter 4 Decentralised Structural Adaptation 73

TABLE 4.2: Mapping of the organisation type to the algorithm required

Type of Organisation Closed Open
Static fundamental method | fundamental method + WoLF principle
Dynamic fundamental method with decaying weights + WoLF principle

4.3 Summary

In this chapter, we presented our structural adaptation method using a decision theoretic ap-
proach. Using the method, a pair of agents estimate the utility of changing their relation and
take the action accordingly. Moreover, our method also enables an agent to meta-reason about
when and with whom to initiate reorganisation. We also presented appropriate enhancements to

the method to deal with open and dynamic organisations.

In more detail, our adaptation method guides the agent to adapt relations with other agents
in the organisation solely on the basis of their history of interactions. Thus, it will result in
changes to the organisation structure in an attempt towards improving the performance of the
organisation. A particularly useful feature of our method is that it works purely by redirecting
agent interactions (via the organisation structure) and does not entail any modifications to the
agents themselves or their internal properties. Moreover. as the method only takes into account
the past interactions of the agents, it is not dependent on the particulars of the task allocation
mechanism used by the agents. Clearly, our method is completely decentralised as it will be
adopted by all the agents in the organisation using only their local information. Moreover,
it is used by the agents throughout their existence, thus making the adaptation a continuous
process. Therefore, our method satisfies the properties of self-organisation that we outlined in
Section 2.2. Moreover, the method is also in line with our requirement specified in Section 1.3.2,
referring to developing a decentralised agent-based structural adaptation approach. The next
chapter explains the experimental conditions used for evaluating our adaptation method and

discusses the results obtained.

Chapter 5
Empirical Evaluation

We demonstrate the effectiveness of our self-organisation based adaptation method through em-
pirical evaluation. This chapter discusses the various experiments conducted in this regard. The
first section of this chapter describes the experimental design by listing the comparison meth-
ods and the various parameters of the simulation. The next section presents and discusses the
obtained results. The final section summarises the chapter. This chapter satisfies the third and
final set of requirements, stated in Section 1.3.3, which refer to analysing and evaluating the

performance of our adaptation method.

5.1 Experimental Setup

The purpose of the experiments is to evaluate the effectiveness of our structural adaptation mech-
anism developed for problem-solving agent organisations. Therefore, we use the organisation
framework described in Chapter 3 as the simulation platform. However, we make the assumption
that all the agents are at least acquainted with each other by default. That is, in the organisation
graph G, any two agents will have either only an acquaintance link, or a peer link, or an authority
link. So, no two agents are strangers and therefore, the graph will be fully connected. As the
agents are aware of the service sets of their acquaintances, every agent is aware of the service
sets of all the other agents in the system. Additionally, in order to maintain this information,
the entry, exit and changes to the service sets of any agent is broadcast to all the other agents in
the system. We make these assumptions so that we can focus solely on evaluating the structural
adaptation method and isolate it from being affected by any service discovery aspects. More-
over, the assumption that all agents are at least acquaintances assures us that, irrespective of the
structure, every SI will end up finding some capable agent for its execution as even if an agent
has no relations other than acquaintances (therefore, not able to delegate to any subordinates or
peers), it would still be able to find a suitable acquaintance to form a relation and then allocate
a SL

74

Chapter 5 Empirical Evaluation 75

Towards evaluating our adaptation method, we compare it, in all its forms, against other intuitive
methods. Next, we discuss and justify these comparison methods and follow that up with a

description of the simulation parameters.

5.1.1 Methods for Comparison

Since our method has a basic component and other enhancements, we provide names for each

of them towards ease of reference:

e k—-Adapt: The fundamental method (without the subsequent enhancements) presented

in Section 4.1.

e wolf-k-Adapt: The extension to the fundamental method, based on the WoLF princi-

ple, as discussed in Section 4.2.1.

e decay—-Adapt: The modified method, using the decaying weights technique, presented
in Section 4.2.2.

e wolf-decay-Adapt: This method incorporates both the WoLF principle and the de-

cay mechanism, that is Sections 4.2.1 and 4.2.2 respectively.

Note that the decay function used by decay-Adapt and wolf-decay-Adapt is linear (presented
in Algorithm 4.4). We have conducted experiments by using the exponential decay function
(Algorithm 4.5) and found the resulting trends to be broadly similar (these results are presented
as part of Appendix in Section A.4); this is because our simulations have low time durations,
there is not a marked difference between the linear and exponential functions when the other
parameters (window size and decay constant) are adjusted properly to suit the environment.
Now, to determine the effectiveness of our approach, we compare its performance with two
other intuitive methods— Central and Random , that act as the benchmarks. An omniscient
centralised approach, although impractical, will gives us an indication of the performance that
can be aimed at, thereby acting as the upper bound. Similarly, a random approach represents
a simple naive solution and should be the lower bound for a smart method like ours. We also
compare with a few other variations of k-Adapt to show the importance of all the components

of our algorithm. All of these methods are described below:

e Central: Thisis a centralised allocation mechanism containing a central repository that
maintains information about the service sets and loads of all the agents in the organisation,
and is accessible without cost to any agent. The agents do not need to maintain any
relations; whenever an agent needs to allocate a SI, it looks up the repository seeking
the most suitable agent (capable of the service and having maximum free capacity, or
smallest pending tasks queue, at the time) and allocates to it. Thus, all allocations are

one-step direct delegations, and the agents do not use up any capacity for allocation. Also,

Chapter 5 Empirical Evaluation 76

the allocations lead to the best load balancing across the organisation as the every SI is
allocated to the agent with most available capacity. Hence, this method gives an upper
bound on the performance of an organisation, but is not a practical or robust solution to the
problem because it involves maintaining an up-to-date and exhaustive central repository

with costless and instantaneous access to all agents.

e Random: In terms of the k-Adapt method (Algorithm 4.1), this strategy involves an agent
randomly choosing some of its acquaintances for adaptation (line 1), and then randomly
choosing a reorganisation action (line 8). For a fair comparison, the rate of change is ad-
justed so that the number of relations in the structure is roughly equal to that produced by
our method. The number of relations in the organisation is maintained at a moderate level
through the probability of forming or dissolving a relation. This probability value for an
agent is inversely proportional to the existing number of relations of that kind at that agent.
Therefore, an agent with very few subordinates has a higher rate of forming an additional
superior-subordinate relation than an agent with more subordinates and vice versa. This
also makes sure that the performance of Random is not affected due to an aggregation of
reorganisation cost. Thus, this method represents a random structural adaptation strategy

which does not involve any reasoning and constitutes the lower bound.

e free—Adapt: For this method, the reorganisation load coefficient R is always set to 0.
It represents the case when the reorganisation can be considered resource-free. Thus, it
is the same as k-Adapt but differs only in line 1, where all the acquaintances are chosen
for reorganisation instead of just k. This makes it a theoretical upper bound for the per-
formance of k-Adapt . In the case of open organisations, free-Adapt also includes the

WoLF component and therefore, represents the upper bound for wolf-k-Adapt

e all-Adapt: Same as free-Adapt , that is, all acquaintances are chosen for reorganisa-
tion in a time-step. However, unlike in free-Adapt , reorganisation is not resource-free.

Therefore, R is set to the same value as in k-Adapt and not O.

Agents in the Random , free-Adapt and all-Adapt methods follow the same algorithm for task
allocation as detailed in Section 3.2.3, while those in Central follow the central repository
look-up method detailed above. However, the agents in all the procedures are similar in all
the other aspects (like task execution, communication, capacities and so on). We evaluate the
effectiveness of the methods on the basis of the performance of the organisations employing
the methods. The performance of an organisation is determined by the profit obtained by the
organisation (profitorc in Equation 3.11) for a simulation run. We only pick this measure
because it encompasses all aspects of the organisation including its costs, allocation efficiency
and load balancing (detailed in Section 3.3). Thus, profitorc is the experimental data variable
of interest or the dependent variable. However, there are many other variables that need to be
assigned values before running the experiments. Next, we discuss the values that are assigned

to these parameters of the simulations.

Chapter 5 Empirical Evaluation 77

5.1.2 Simulation Parameters

Simulation parameters are the attributes of the environment which are set according to the ex-
periments. In our case, the simulation parameters include the set of services, set of agents, set
of tasks, the initial organisation structure (at the beginning of simulation), the time period of
the simulation and the environmental coefficients. While some of these parameters are control
variables and assigned a constant value for all simulations, the others are independent variables
and are varied across simulations. More specifically Table 5.1 lists the constant values or the
fixed ranges assigned to some of the simulation parameters. These are the control variables and
the values listed in this table are applicable to all the simulations conducted. However, there are
other parameters that are varied across simulations to observe their effect on the organisation’s
performance and the adaptation methods. These form the independent variables for our experi-
ments. In particular, these relate to the degree of similarity of agents in the organisation and the
degree of similarity of the tasks being faced by the organisation. We only look at varying the
characteristics of the agent set and the task set because they are the only two main aspects of the

system. These two independent variables are discussed next.

5.1.2.1 Distribution of services across agents

The degree of heterogeneity of the agents in the organisation depends on the distribution of ser-
vices across them. It is a relevant parameter because the significance of the organisation struc-
ture is greater when the agents are heterogeneous. This is because, in heterogeneous agents, the
service sets of the agents will be distinct from one another and therefore an efficient structure
will need to connect every agent with all those agents providing services relevant to it and, at
the same time, also help in equitable load distribution so that tasks are completed as quickly as
possible. In contrast, for homogeneous agents, load balancing is the only feature that can be in-
fluenced by the structure because agents are all similar to each other in terms of the services that
they can provide. To this end, we distributed the services among the agents using a parameter
called service probability (SP). That is, an agent a, is allocated a service s; with a probability
SP. Thus, when SP is 0, every agent is capable of a unique service only (as every agent should
offer at least one service and every service should be offered by at least one agent). When it
is 1, every agent is capable of every service. Since, the services are allocated on the basis of a
probability, there is always randomness in the way they are allocated to the agents. It is impor-
tant to note that SP pertains to the complete service set S instead of having different values for
individual services. This is because raising or decreasing the distribution of only some services
will make the resultant trends unclear as we will not be aware of which services (those whose
SP has been changed or those whose SP hasn’t been changed) are more in demand by the tasks

and hence cannot narrow down the performance to the difference in SP alone.

In static organisations, the service sets of the agents are unchanging across a simulation run.

Hence, in our experiments for static organisations, we vary SP from 0 to 0.5 only (since we

Chapter 5 Empirical Evaluation

78

TABLE 5.1: Values of the control variables

Parameter Symb | Value assigned Justification

Number of perma- |A] chosen from a uni- | Organisations generally have at least 4

nent agents form distribution be- | members. = Though the results shown
tween 4 — 20 here contain a maximum of 20 permanent

agents, we have conducted experiments
with larger numbers of agents (upto 100)
and found broadly similar trends as shown
here (see Section A.3 for these results).

Initial organisation G randomly generated Since we experiment with thousands of

structure runs and hundreds of tasks in each run, the
initial structure will not carry much signif-
icance (see Section A.1).

Number of services S| equal to |A] The number of services possible is equal
to the number of agents as the number of
services matter only in terms of their dis-
tribution across the agents.

Computational rate Di chosen from a uni- | This values determines the other values

of a service instance form distribution be- | like capacity, so we decided to give it a
tween 1 — 10 standard range.

Capacity of an agent L, chosen from a uni- | Minimum is set to 11 so that the maximum
form distribution be- | computational rate is always less than the
tween 11 — 20 capacity. Maximum is set at 20 so that

agents’ capacities are filled up occasionally
with 2 or 3 service instances.

Arrival agent of a ay randomly chosen | The tasks enter the organisation, randomly,

task from the set of | atanyagent
agents A

Number of service | |SI,| | chosen from a uni- | An upper limit of 25 is set so that the tasks

instances per task form distribution be- | do not become too bulky.
tween 1 — 25

Arrival time of a task chosen from a uni- | Since the tasks already have several other
form distribution be- | parameters that are varied, like NoP and
tween 1 and end time | pattern sets, the rate of arrival is main-
of simulation tained uniformly.

Communication cost C 0.25 C is fixed at this value so that costs remain

coefficient lower than the rewards obtained.

Management load M 0.50 So that management causes more load than

coefficient message passing but less than actual ser-
vice instance execution

Reorganisation cost D 1 So that the adaptation process is neither too

coefficient cheap but nor is it hindered too much by
the cost of reorganisation.

Reorganisation load R 0.25 With this value, the adaptation deliberation

coefficient will consume reasonable amounts of the
capacity and require good meta-reasoning

Maximum pattern %\SIW\ In the experiments where patterns are used

size for generating similar tasks, it is set to one-

third of the maximum number of service
instances in a task so that, in general, tasks
need around three patterns.

Chapter 5 Empirical Evaluation 79

verified that beyond 0.5, when the agents are quite homogeneous, the structures did not influ-
ence the performance significantly as the problem reduces to purely a load-balancing problem).
However, in dynamic organisations, SP will be changing within a simulation run as the agents
gain or lose services. Now, agents can gain or lose services gradually or suddenly. Moreover,
they might initially lose services and then start gaining them and vice versa. To capture these

various scenarios, we vary SP in the following ways in our experiments:

1. SP increases from 0 to 0.25 at a uniform rate.

2. SP decreases from 0.25 to O at a uniform rate.

3. SP increases at a uniform rate from O to 0.25 and then decreases back to 0.

4. SP decreases at a uniform rate from 0.25 to 0 and then increases back to 0.25.
5. SP changes suddenly from 0 to 0.25 midway through the simulation.

6. SP changes suddenly from 0.25 to 0 midway through the simulation.

We only limited SP to 0.25 for such dynamic scenarios because otherwise the rate of change
becomes too high for the given limited simulation time duration and the distinction between
the various scenarios blurs. Also, we find these six scenarios to be comprehensive enough as

together they cover the general variations possible in a system, in this context.

5.1.2.2 Similarity between tasks

The other simulation parameter of importance is the kind of tasks entering the system. The tasks
presented to the organisation over the period of a simulation run may be completely unrelated
to each other or they may have some common Sls and dependency links. This is interesting
because, when tasks are similar, the organisation structure should be able to adapt to the recur-
ring task structures, thereby increasing the efficiency of the organisation. For example, if many
tasks contain a dependency linking two services, then an efficient structure will tend to contain
superior-subordinate or at least peer relations between the agents providing those two services.
Moreover, the presence of similarities in the tasks is an existing phenomenon in the real world
faced by computing systems. For our experiments, we determine the similarity between the
tasks belonging to a simulation run on the basis of what we call patterns; stereotypical task
components used to represent frequently occurring combinations of SIs and dependency links.
Like tasks, patterns are also composed of Sls, but are generally smaller in size. Instead of creat-
ing tasks by randomly generating SIs and creating dependency links between them, tasks can be
constituted by connecting some patterns by creating dependency links between the SIs belong-
ing to the patterns. In this way, the dependencies between the SIs may follow some frequent
orderings (resulting from the dependencies internal to a pattern occurring in several tasks) and

some random dependencies (due to the dependencies created between the patterns). Figure 5.1

Chapter 5 Empirical Evaluation

80

O draw _city
gCOmap/ / O transport_flow
O\

O O analyse_census

get_census

Pattern a Pattern b

O draw_city
ee0 map /
O O transport_flow

T O
get,census analyse,census

Task 1

transport_flow

__~0—=0—=0

draw_city
O geo_map
get,census\o

analyse_census

Task 2

get census/o transport.flow

O io analyse_census

O %O draw _city
geo_map

Task 3

FIGURE 5.1: Patterns composing tasks

Chapter 5 Empirical Evaluation 81

shows an example of how 2 patterns can be combined to form at least 3 different tasks. Thus,
this method of generation enables us to control the similarity between the tasks using the number
of patterns (NoP) as the parameter. Broadly speaking, tasks can be either similar or dissimilar.

Hence, in our experiments, we mainly consider two scenarios:

1. completely dissimilar tasks (NoP = o).

2. highly similar tasks (NoP = 5).

In addition to these, we also varied the set of patterns being used within a simulation run to
represent changing characteristics of the task environment. In more detail, within a simulation
over a task environment containing similar tasks composed of patterns, even these frequently
occurring patterns might change over time. That is, tasks coming in at a later time might be
composed of patterns which are different from those composing the tasks at an earlier time.
This change in the pattern set can again be either gradual or sudden. Therefore, we conducted a
set of experiments for these varying task environments by changing the set of patterns within a

simulation run in the following ways:

1. NoP =5 chosen from 10 patterns in total; The pattern set contains 5 patterns at the outset.
Each of these initial patterns is replaced with a new one at regular intervals such that
towards the end of the simulation, all the 5 patterns are different from the ones at the

beginning. Therefore, the pattern set is changed gradually.

2. NoP = 2 chosen from 10 patterns in total; same as before but only two patterns are used
at a time in the pattern set. Hence, they are replaced multiple times and at a faster rate

than before.

3. NoP =5 chosen from 15 patterns in total; all the 5 patterns are replaced by 5 new ones
suddenly at %rd of the total simulation time and the process is repeated again at %rds of

the total time.

All our experiments comprise 1000 simulation runs for every data point to achieve statistically
significant results. All the results are shown with 95% confidence intervals (the errors bars are
very close to the marking symbol in the graphs), obtained by multiplying the standard error by
1.96 (z-test). For every simulation, the set of agents and services is first generated and then
the services are assigned to the agents on the basis of SP. Next, the set of tasks is generated
using NoP. Also, static organisations face 1500 tasks (that is |[W| = 1500) over 2000 time-
steps to constitute one simulation run, while dynamic organisations face 3000 tasks (|[W| =
3000) over 4000 time-steps for one simulation run. We provided more simulation time for
dynamic organisations so that it is sufficient for the changes in the organisation (like changing
service sets or task pattern sets) to take place. Finally, the set of agents A, is kept constant for
closed organisations, while for the open ones, a randomly chosen number (up to a maximum

of |A|) of temporary agents are added, as described in Section 3.2.4. The results shown here

Chapter 5 Empirical Evaluation 82

are of experiments where the start-times and life-times are chosen from a uniform distribution.
However, we also conducted experiments with a combination of distributions for start-times
(uniform and normal) and life-times (normal and geometric) and found the resultant trends to

be same as these (see Section A.2 for these results).

5.2 Results

We present the results in terms of the percentage of the maximum profit that is obtained by
the organisation (averaged over the 1000 simulation runs as described above). The maximum
profit is the profit obtained by Central which represents the theoretical upper bound. For static
organisations, the results are presented as graphs plotting the profit obtained for the methods over
an increasing SP along the x-axis (increasing the homogeneity of agents). However, for dynamic
organisations, SP itself varies within a simulation run. Therefore, the results are presented in a
table format for each of the scenarios depicting a particular kind of variance in SP. A similar

format is used even for scenarios with varying task environments.

First we discuss the results of the experiments on static closed organisations (Section 5.2.1)
and then for static open organisations (Section 5.2.2). Later on, we move onto dynamic closed
(Section 5.2.3) and dynamic open organisations (Section 5.2.4). The final set of results refer to
static and dynamic organisations placed in varying task environments with changing task pattern

sets over time (Section 5.2.5).

5.2.1 Static Closed Organisations

Observing the results for static closed organisations, we find that in both the scenarios with
dissimilar (Figure 5.2(a)) and similar tasks (Figure 5.2(b)), k-Adapt performs consistently bet-
ter than Random . The difference in their performance narrows down (from the highest of 40%
of profit to 10%) as the similarity of the agents increases because a smart method is corre-
spondingly less useful when all the agents are homogeneous, as the significance of the structure
itself diminishes. Also, we see that k-Adapt and free-Adapt perform better when SP = 0
than for slightly higher values of SP because, as SP increases and more agents are capable of
a given service, Central continues performing perfect allocations (as it has up-to-date infor-
mation about loads on all agents), while the agents in the organisations using our method have
no way of knowing which relations have free capacities. However, the performance increases
for higher values of SP because the average capacity available for any given service becomes
larger as agents are capable of more services, thus leading to better task completion times. This
is also the reason why Random improves with increasing SP. Also, studying the performance
of all-Adapt , we see that in the case of similar tasks (Figure 5.2(b)), it performs better than
Random when SP is 0. In this particular case of having similar tasks and unique agents, adap-

tation is most effective (as evident from the wide gap between k-Adapt and Random) and even

Chapter 5 Empirical Evaluation

83

% of Maximum Profit vs SP when Tasks are Dissimilar (NoOP=c)

100 T T T T
E o
<] T
= 70 -
Dé
= LB
E 60 | & 1
5 50 1 | EI -
5
40 | E
k-Adapt ——+—
30 | Random b
free-Adapt :--*---
all-Adapt &
20 L L L
0 0.1 0.2 0.3 0.4 0.5

Service Probability
(a) Dissimilar tasks (NoP = o)

% of Maximum Profit vs SP when Tasks are Similar (NoP=5)
100 T T T T

% of Maximum Profit
(2]
o
L]
1

50 | 13 .
[| .. 5}
40 | t e
k-Adapt —+—
30 F Random 7
free-Adapt :--%---
all-Adapt &
20 L L L
0 0.1 0.2 0.3 0.4 0.5

Service Probability
(b) Similar tasks (NoP = 5)

FIGURE 5.2: Average organisation profit for static closed organisations as SP increases

Chapter 5 Empirical Evaluation 84

% of Maximum Profit vs R when Tasks are Similar (NoP=5)

100 T T T T T T T
k-Adapt ——+—
all-adapt

free-Adapt :-----:

=~§ 60 E
o
1S
>
E a4} -
3
=
©
X 20 | -

0} -

_20 1 1 1 1 1 1 1 1

0 01 02 03 04 05 06 07 08 09
Reorganisation Coefficient R

FIGURE 5.3: Average organisation profit for static closed organisations as R increases

all-Adapt is able to overcome its excessive usage of capacities for adaptation deliberation and
perform better than Random . Similarly, all-Adapt ’s performance improves greatly for higher
values of SP (0.35 — 0.5) because the resultant increase in the average capacity per service (as
explained above) helps all-Adapt to use up the capacity for the adaptation reasoning without
having to delay the tasks very much. This is also the reason that it manages to perform slightly
better than k-Adapt when SP is 0.5 for similar tasks.

We also conducted experiments by varying R from 0 to 0.9 (see Figure 5.3) to focus on the
effectiveness of the meta-reasoning aspect in the adaptation process. We found that the fall in
the performance of k-Adapt is gradual and minimal, while it is drastic in all-Adapt (though,
the result shown here is for similar tasks, the same trend is seen for dissimilar tasks as well).
In fact, for higher values of R, the profit of all-Adapt goes below 0, meaning the cost is more
than the reward obtained. This shows that meta-reasoning is a crucial aspect in an adaptation
process and cannot be ignored. Moreover, we see that the performance of k-Adapt is always

close to that of free-Adapt , thus confirming the efficacy of our meta-reasoning approach.

5.2.2 Static Open Organisations

In the case of static open organisations, we find that wolf-k-Adapt ~ performs considerably bet-
ter than Random when tasks are both dissimilar (Figure 5.4(a)) and similar (Figure 5.4(b)), thus
confirming that the adaptation method (including the WoLF principle) is helping organisations
to maintain the performance even when agents are added and removed. More importantly,
k-Adapt , which does not make use of the WoLF principle, degrades rapidly as the similarity

between agents increases. In fact, as SP increases beyond 0.2, it’s performance is worse than

Chapter 5 Empirical Evaluation

85

% of Maximum Profit

% of Maximum Profit

FIGURE 5.4: Average organisation profit for static open organisations as SP increases

100

70

60

50

40

30

20

100

60

50

40

30

20

% of Maximum Profit vs SP when Tasks are Dissimilar (NoOP=c)

T ; I |
—
) Nz T th
L 2 T W T & N
wolf-k-Adapt +—+—
_ Random _
free-Adapt :--%---:
1 | | k-Adlapt B
° 01 0.2 0.3 0.4 05

Service Probability
(a) Dissimilar tasks (NoP = oo)

% of Maximum Profit vs SP when Tasks are Similar (NoP=5)

|
_ N N o |
Wolf—k—Adapt e
L Random |
free-Adapt :--%---:
1 1 | k'Ad?pt X
0 0.1 0.2 0.3 v |

Service Probability
(b) Similar tasks (NoP = 5)

Chapter 5 Empirical Evaluation

86

Load of Pending Tasks and Reorganisation Rate vs Time

1200 : : :
| | 1 1.6
1000 k 1 12

o I 408 2
(e}

N ; J o

< 1 ! 404 =

- | | "'5

§ 600 - 4 0 %

> o4

£ &

E : 3

o} Pending Load 9}

o o4

& 400 | -

8 S

o <

= : :

‘temp agents ‘temp agents
200 3addgdg 3remgvegd
0 500 1000 1500 2000
Time

FIGURE 5.5: Showing changes to pending load and reorganisation rate when agents are added
and removed

that of Random . This shows that, without the WoLF principle, k-Adapt is unable to properly
assimilate and use the new agents entering the system. This inability does not affect the per-
formance very much when agents are mostly unique (SP is close to 0), because the new agents
will rarely be providing the services that are mainly in demand in the organisation. However,
with increasing SP as most of the new agents are capable of most of the services, distributing
the load onto the new agents becomes imperative and k-Adapt is unable to effect it. In these
scenarios, even Random is able to perform better than k-Adapt because the new agents are some-
what assimilated and allocated tasks through the randomised changes happening to the structure.
However, in all these scenarios, wolf-k-Adapt performs much better than either of these two
methods showing that the WoLF principle is very useful for assimilating new agents into the

organisation and maintaining the performance.

Furthermore, Figure 5.5 gives us an insight into what is happening to the organisation when the
agents are added and removed. For this experiment, we fixed the start-time at 500 and life-time
at 1000 for the temporary agents. The graph shows the sum of the computations of all pending
SIs in the organisation (left y-axis) across the time duration of the simulation, and shows the
corresponding reorganisation rate in terms of the number of relations in the organisation changed
in a time-step (right y-axis). For these experiments, we fixed SP = 0.20 and NoP = . We
observe a gradual fall in the load starting at time=500 corresponding to when temporary agents
are added. Also at time=1500, there is a quick drop and immediate increase because, when the
temporary agents leave, the SIs pending at them are reassigned to the permanent agents. This
reassignment requires at least a time-step after which only they are visible as pending load again.
Also, the rate of growth of pending load is higher once the agents leave (as seen by the higher

gradient). Looking at the reorganisation rate, we find that it is high in the beginning and then

Chapter 5 Empirical Evaluation

87

TABLE 5.2: Profit for dynamic closed organisations with dissimilar tasks (NoP = oo)

SP variance

wolf-decay-Adapt

wolf-k-Adapt

Random

0 — 0.25 (gradually)

93.55%(+0.30

88.65%(+0.35

76.23%(£0.46

0.25 — 0 (gradually)

88.26%(+0.40

77.93%(£0.45

72.42%(£0.56

0 — 0.25 — 0 (gradually)

92.13%(+0.33

86.52%(+0.37

74.85%(£0.49

0.25 — 0 — 0.25 gradually)

0 — 0.25 (suddenly at = 2000)

91.85%(+£0.32

87.34%(+0.37

74.27%(£0.48

0.25 — 0 (suddenly at r = 2000)

)

(0.40)
(+0.33)
90.43%(+0.33)
(+0.32)
(+0.32)

90.72%(+£0.32

80.44%(+0.40

)

(+0.45)
(+0.37)
80.96% (+0.39)
(+0.37)
(0.40)

74.80%(£0.49

|

(

(
74.68%(+0.49

(

(

TABLE 5.3: Profit for dynamic closed organisations

with similar tasks (NoP = 5)

SP variance

wolf-decay-Adapt

wolf-k-Adapt

Random

0 — 0.25 (gradually)

74.78%(+1.01

69.99%(£1.07

55.72%(+1.09

0.25 — 0 (gradually)

78.80%(+1.01

67.73%(£1.04

46.99%(£0.99

0 — 0.25 — 0 (gradually)

70.81%(£1.05

53.71%(+1.03

0.25 — 0 — 0.25 gradually)

0 — 0.25 (suddenly at r = 2000)

76.32%(£1.02

71.38%(+1.02

51.31%(%1.08

0.25 — 0 (suddenly at = 2000)

)
(x1.01)
76.52%(+1.04)
76.27%(%0.99)
(£1.02)
(£0.97)

82.11%(+0.97

)

(+1.04)
(+1.05)
66.36%(+1.03)
(+1.02)
(0.98)

71.15%(+£0.98

)

(+0.99)
(+1.03)
50.64%(£1.05)
(+1.08)
(£0.96)

50.15%(+£0.96

settles down to an almost uniform rate. Later, there is a sudden jump in the rate when the agents
are added and this gradually falls back to the earlier value at around time=700. This shows that
our adaptation process is able to reach its earlier stable state in reasonable time. As expected,
we also find another blip in the rate when the agents are removed. This time, it settles much
more quickly as the permanent agents are able to easily reform the older structure that existed

prior to the addition of the temporary agents.

5.2.3 Dynamic Closed Organisations

We see that for dynamic closed organisations, wolf-decay-Adapt
nificantly better than both wolf-k-Adapt
ble 5.2) and similar (Table 5.3) tasks. It is notable that for dissimilar tasks, wolf-decay-Adapt

is able to reach 90% of the maximum profit which is 5-10% and 15% better than wolf-k-Adapt
and Random respectively. In this context, we also observe that the performance of wolf-k-Adapt

consistently performs sig-

and Random 1in both the scenarios with dissimilar (Ta-

when the service probability SP (introduced in Section 5.1.2) is reduced is worse than when SP
is increased. This is because in organisations using wolf-k-Adapt , the agents form relations on
the basis of all of their past allocations. However, when the agents start losing services, some
of those allocations are no longer possible. Yet, the agents continue to maintain the relations
due to the burden of the long history, thereby reducing their efficiency. This is not the case with
increasing SP where agents gain services because allocations that happened in the past will still
be possible. Of course, newer kinds of allocations (allocations of services instances containing
a service to an agent which previously did not provide that service) will also be possible which
because

wolf-decay-Adapt is capable of identifying much more quickly than wolf-k-Adapt

it gives more weight to most recent interactions.

Chapter 5 Empirical Evaluation 88
TABLE 5.4: Profit for dynamic open organisations with dissimilar tasks (NoP = o)
SP variance wolf-decay-Adapt wolf-k-Adapt decay-Adapt Random

0 — 0.25 (gradually)

92.85%(+0.33)

87.90%(+0.38)

79.05%(+0.36)

72.63%(0.51)

0.25 — 0 (gradually)

87.71%(+0.42)

77.04%(+0.48)

78.87%(+0.44)

68.95%(0.61)

TABLE 5.5: Profit for dynamic open organisations with similar tasks (NoP = 5)

SP variance wolf-decay-Adapt wolf-k-Adapt decay-Adapt Random
0 — 0.25 (gradually) 75.41%(£1.08) 70.85%(+1.10) | 61.30%(+0.80) | 50.00%(1.09)
0.25 — 0 (gradually) 78.84%(+£1.02) 67.77%(£1.05) | 65.60%(+0.99) | 40.98%(0.99)

In this set of results, and also in all of the following, we find that the performance of all the
methods is better for dissimilar tasks than similar ones. This is because, for similar tasks, the
load is high on the particular agents providing those more frequent services and this load cannot
be distributed as equitably by the agents with their local views as the Central method can with
its global view. In a similar vein, we also notice that the gap in the performance between the
‘adapt’ methods and Random is much more for similar than dissimilar tasks. This reinforces our
assertion that our adaptation approach is able to identify the patterns across tasks (when they
occur) and adapt the structure according to them in an emergent fashion (since the agents are
only adapting locally). Another interesting phenomenon to observe is that varying SP gradually
over the simulation or suddenly in the middle of the simulation does not affect the performance
of any of the methods significantly. This shows that the effects of agents gaining/losing services
slowly over the total time period averages out to result in the same kind of performance when

agents are gaining/losing all of the services only at the middle of the time period.

5.2.4 Dynamic Open Organisations

For dynamic open organisations, we observe that wolf-decay-Adapt significantly outperforms
the other methods in all cases for both dissimilar (Table 5.4) and similar (Table 5.5) tasks. In
is better than wolf-k-Adapt by 5% to 10% depending on

whether SP is increasing or decreasing. This variance in the performance of wolf-k-Adapt

more detail, wolf-decay-Adapt

can be explained in the same way as in dynamic closed organisations (Section 5.2.3) discussed
above. Moreover, wolf-decay-Adapt
and 20-35% better than Random .

is consistently 10-14% better than decay-Adapt and
This shows that both the extensions detailed in Section 4.2
are critical for a good performance in these organisations with agents moving in and out and

changing properties.

Chapter 5 Empirical Evaluation 89

TABLE 5.6: Profit for organisations facing tasks with NoP = 5 out of a total 10 patterns,
changed gradually, one at a time
SP variance wolf-decay-Adapt wolf-k-Adapt Random
0 (no variance) 87.11%(+0.82 73.75%(£0.88) | 40.36(+0.92)
0.25 (no variance) 70.20%(£1.12 63.08%(£1.14) | 52.90(x1.11)
0 — 0.25 (gradually) 76.36%(+0.99 69.76%(£1.00) | 57.61%(+1.00)
0.25 — 0 (gradually) 79.36%(+0.95 66.87%(+£0.98) | 48.32%(£0.92)

~— | — [——

TABLE 5.7: Profit for organisations facing tasks with NoP = 2 out of a total 10 patterns,
changed gradually, one at a time
SP variance wolf-decay-Adapt wolf-k-Adapt Random
0 (no variance) 83.82%(+0.77) 65.15%(£0.78) | 34.08(%0.69)
0.25 (no variance) 61.83%(+1.12) 54.00%(£1.12) | 47.08(%1.00)
0 — 0.25 (gradually) 66.78%(+0.98) 56.04%(+0.98) | 43.76%(+0.88)
0.25 — 0 (gradually) 74.17%(£0.86) 58.62%(£0.87) | 39.37%(+0.73)

TABLE 5.8: Profit for organisations facing tasks with NoP = 5 out of a total 15 patterns,
changed suddenly in sets of 5
SP variance wolf-decay-Adapt wolf-k-Adapt Random
0 (no variance) 85.58%(+0.80) 70.37%(£0.85) | 43.44(%0.90)
0.25 (no variance) 69.97%(+1.10) 62.20%(£1.11) | 54.26(x1.11)
0 — 0.25 (gradually) 76.44%(£0.97) 69.01%(+0.98) | 57.76%(£1.00)
0.25 — 0 (gradually) 78.28%(+0.95) 64.96%(+£0.94) | 50.31%(£0.91)

5.2.5 Varying Task Environments

Finally, we look at the results of experiments conducted for varying task environments where
the pattern set composing the tasks is changed with time during a simulation (Tables 5.6, 5.7 and
5.8). Again we see that wolf-decay-Adapt performs significantly better than wolf-k-Adapt

and Random in all the cases and scenarios. The efficacy of the decay approach in such task en-
vironments can be clearly seen in the first two cases where SP is kept constant in all the three
scenarios. Here, we find that wolf-decay-Adapt ~ performs 7 to 15% better than wolf-k-Adapt

Moreover, by comparing the third and fourth cases of Table 5.6 with the first two cases of dy-
namic closed organisations (Table 5.3) which have the same SP variance, we observe that when
patterns are changing, the gap between the performance of wolf-k-Adapt and wolf-decay-Adapt
increases, while that between wolf-k-Adapt and Random reduces. This strengthens our claim

that the decay approach is useful to maintain performance in such changing task environments.

Furthermore, we see that the trends in the scenario when the pattern set contains only 2 patterns
at a time (Table 5.7) are similar to when it contains 5 (Table 5.6), thus assuring that the im-
provement of the performance of wolf-decay-Adapt ~ over wolf-k-Adapt is not dependent on
the degree of similarity of the tasks. In a similar vein, we also see that the respective values in
the scenario when the pattern set is changed suddenly (Table 5.8) are very close to the scenario
when they are changed gradually (Table 5.6). This mirrors the same trend observed for the dy-
namic organisations where it did not matter whether SP was changed gradually or suddenly in

Chapter 5 Empirical Evaluation 90

the middle of the simulation. Thus, these results tell us that the performance of the system is
not affected by the gradient of the dynamism as long as the total change averaged over the total

time period is the same.

In summary, we find that, on average over all the settings, our adaptation method performs at
80% of the omniscient centralised allocation method. Furthermore, on average, it is 20% better
than a random reorganisation approach (reaching up to a maximum of 45%). The results for
open and dynamic organisations show that the respective enhancements, the WoLF principle
and the decaying weights, are crucial for maintaining the performance. In particular, we see that
on average over the settings, the performance of the method with the respective enhancement is
8% better than without it.

5.3 Summary

In this chapter, we first presented the experimental setup used for evaluating our structural adap-
tation mechanism by listing the other adaptation and allocation methods for comparison and
then describing the various simulation parameters. Particularly, service probability SP is used to
determine the degree of homogeneity of the agents, and the number of patterns NoP determine
the similarity of the tasks coming into an organisation. From our experiments, we found that
our mechanism always performed better than a randomly reorganising approach. Furthermore,
its performance is comparable to the organisations in which the agents use an omniscient cen-
tral repository to perform shortest and best possible allocations without using any resources.
Therefore, it is evident that our method is successful in improving the performance of the organ-
isation and brings its performance closer to that of a centralised infinitely resourceful allocator
than a randomly adapting organisation. Furthermore, we see that for open organisations, our
enhancement to the adaptation method, using the WoLF principle, performs significantly better
than without it. Similarly, for dynamic organisations, using the decay mechanism in the adap-
tation process is better at helping in maintaining the performance than without using it, as the
properties of the agents change over time. In view of these results, we claim that our adaptation
mechanism satisfies the requirement of developing a decentralised agent-based structural adap-
tation method for improving the performance of problem-solving organisations. Hence, we have
contributed to advancing the state of the art in the domain of adaptation in agent organisations

as we mentioned in Section 1.4.

Chapter 6

Conclusions and Future Work

This chapter concludes the thesis by first summarising the research and matching it up to the
objectives and contributions to the state of the art that were laid out in Chapter 1. Following

that, we discuss the different ways of extending this research in the future.

6.1 Summary

As stated in Chapter 1, the focus of this thesis is to aid in the advancement of autonomic sys-
tems by developing decentralised structural adaptation mechanisms for problem-solving agent
organisations based on the paradigm of self-organisation. As noted in Section 1.3, we divided

this overarching research objective into three parts:

1. An agent organisation framework that serves as an abstract representation of distributed

computing systems.

2. A self-organisation based decentralised structural adaptation method that the agents can
use in an organisation to improve the performance of the overall organisation, especially

in resource-constrained dynamic environments.

3. An empirical evaluation mechanism that tests the efficacy of such an adaptation method.

In the following, we summarise this thesis by looking at our contributions towards meeting each

of these requirements.

In Chapter 3, we introduced an abstract agent organisation framework for depicting distributed
computing systems. We presented our model by detailing our representation of the task en-
vironment and the organisation along with a performance evaluation system. Specifically, the
tasks are made up of service instances, each of which specifies the particular service and the
computation required. The organisation consists of agents providing services and having com-

putational capacities. The structure of the organisation manifests the relationships between the

91

Chapter 6 Conclusions and Future Work 92

agents and regulates their interactions. Any two agents in the organisation could be strangers, ac-
quaintances, peers or superior-subordinates. The relations of the agents determine what service
information is held by the agents about the other agents and how to allocate service instances
to them. We also presented the coefficients that affect the environment (communication cost,
management load, reorganisation load) and the functions for calculating the organisation’s cost
and reward, thus enabling us to evaluate the profit obtained by it when placed in a dynamic
task environment. Hence, our organisation framework provides a simulation platform that can
be used by designers to implement and test their adaptation techniques before porting them to
real and domain-specific systems. In particular, we designed our model such that the agents,
though generic, realistically represent the components that would compose autonomic systems.
The organisation is decentralised and agents possess local views and limited capacities like any
large distributed computing system. Nevertheless, the agents interact with each other based on
the organisation structure, which also influences the task allocations and, thereby, the organisa-
tional performance. In this context, our framework provides sufficient flexibility for the agents
to modify their characteristics and social interactions, that is, manage themselves, just as ex-
pected in autonomic systems. Furthermore, we also provided the reorganisation cost (D) and
load coefficients (R) to represent the price of adaptation. Thus, we have presented an organisa-
tion framework that can be used as a platform for developing adaptation techniques, especially
focusing on the agents’ social interactions, thereby satisfying the requirements stated in Sec-
tion 1.3.1. As aresult, this chapter has helped us achieve the research contribution mentioned in

Section 1.4.

Next, in Chapter 4, we presented a structural adaptation method that can be applied individually
and locally by all the agents in order to improve the organisation’s performance. Using our
method, a pair of agents jointly calculate the utility of changing their inter-relation and take the
appropriate action accordingly. They do this through a value function whose attributes denote
the possible increase or decrease to the load on the agents and communication costs when the
action is taken. These attribute values are estimated by the two agents on the basis of their
history of interactions. Moreover, our method also enables an agent to meta-reason about when
and with whom to initiate this adaptation deliberation. Specifically, an agent varies the number
of other agents that it initiates this deliberation with, in a time-step, depending on the available
capacity at itself and the rate of adaptation occurring in the immediate past. Additionally, we
extend our method so that it performs well even in open organisations which have agents moving
in and out of the system. The extension enables poorly performing agents to actively seek out
suitable relations among the new agents entering the system and then delegate some of their
excess load to them. We also enhanced our method to tackle dynamic organisations wherein the
properties of the agents might be changing with time. For such dynamic scenarios, the weights
associated with the past interactions of the agents (during utility calculations) decay with time.
Therefore, more recent interactions contribute more to the utility than older ones, thus helping

the agents keep up with the changes to the agent properties.

Chapter 6 Conclusions and Future Work 93

It is evident that our adaptation method works purely by redirecting agent interactions, thereby,
changing the organisation structure. A key advantage of this approach is that it does not entail
any modifications to the agents themselves or their internal characteristics. Therefore, it is appli-
cable even in situations where the internal properties of the agents in the organisations cannot be
altered by the adaptation method. Moreover, the method inherently takes into account the cost of
adaptation and the cost of reasoning about adaptation in addition to the achievable improvement
to the organisation through adaptation. Also, the method does not require any feedback from
the execution of the tasks and, as a result, is applicable for a wide range of task environments.
On this note, it is also clear that, being based on the agent interactions, the method is not tied to
the task allocation mechanism used by the agents and can be similarly used in systems wherein
agents use a different allocation procedure. Finally, since the adaptation method is purely agent-
based, decentralised and continuous over time, it satisfies the principles of self-organisation
(discussed in Section 2.2) which require that the method be autonomous without any external
control, be continuous and need no central authority. By so doing, we have succeeded in meeting
the requirements listed in Section 1.3.2 which aim at an adaptation method for agent organisa-
tions that is decentralised, continuous and based on local reorganisation towards causing benefit
to the organisation as a whole. Moreover, we have also satisfied the requirements regarding the
meta-reasoning involved in aiding the agents to decide when to initiate adaptation reasoning and
also developed the method such that it continues to perform well even in open and dynamic or-
ganisations where the agents and their properties are changing with time. Through achieving all
these requirements, we have succeeded in advancing the state of the art in terms of the research
contributions listed in Section 1.4. Having been developed on an abstract organisation platform,
the method is generic and applicable to any cooperative agent organisation requiring sustained

inter-agent interactions for achieving task objectives in a resource-constrained environment.

With our adaptation method in place, we sought to demonstrate its effectiveness in Chapter 5. In
particular, we evaluated our approach empirically by varying interesting simulation parameters
like the heterogeneity of the agents and the similarity of the tasks, in addition, to the open-
ness and dynamism of the organisations. The heterogeneity of agents is represented through
the distribution of service capabilities across the agents in the organisation, while the similarity
between tasks is modelled by composing the tasks from stereotypical task components called
patterns. We found that our method performs at 80% (average over all settings) of a centralised
omniscient allocation method which is 20% (average over all settings) better than a randomly
adapting method. Both the relevant enhancements to our basic method, WoLF principle and de-
caying weights, are seen to be useful for maintaining the good performance in the face of open
and dynamic organisations. In addition, the decay approach is also seen to perform well for
varying task environments in which the kind of similarity that might exist across tasks changes
with time. With these results, we see that a smart adaptation method is needed for a consider-
ably better performance of organisations placed in dynamic environments when compared with
a random approach. Furthermore, organisations using such a decentralised adaptation method

are able to deliver performance close to those using an unrealistic centralised, all-knowing,

Chapter 6 Conclusions and Future Work 94

infinitely resourceful allocator, while also simultaneously maintaining the robustness of the sys-
tem. By demonstrating the efficacy of the adaptation method over different parameters, this

chapter satisfies the third and final set of requirements for this thesis listed in Section 1.3.3.

During the experiments, we also observed that the time taken for the simulations of organisa-
tions using our adaptation method was approximately equal to that taken by randomly adapting
organisations. This suggests that our adaptation method is not computational intensive and
uses only as much resources as a randomly adapting method does. Moreover, in general, the
computational amounts needed by an adaptation method (determined by the reorganisation load
coefficient R in our framework) will be much less than the computational amounts required for

processing the tasks (p;) in real systems.

The characteristics of our adaptation method, discussed earlier, make it suitable to be used by
the individual components of a distributed computing system to manage themselves as it will
enable them to continuously adapt their interactions with the other components in the system
in a local and robust fashion. Hence, the work documented in this paper demonstrates a practi-
cal and robust, decentralised approach for continuous self-adaptation of problem-solving agent
organisations, thereby providing an important component for the development of autonomic
systems. Specifically, our adaptation method can be incorporated into the various components
of an autonomic system to help in improving the performance of the system, as we envisaged in
Chapter 1. Using the method, all the components will be able to self-manage their interactions
with the other components in the system to optimise the performance of the system and also aid
it in facing any changes that might be taking place, both internally in the system or in the ex-
ternal environment. Particularly, any computing system which has the following characteristics

may find our method beneficial:

o A distributed system with no central authority or access to global-level knowledge.

e Containing cooperative and autonomous components working solely towards system-

wide goals.
e Placed in unknown task environments with no prior information about the tasks.

e Where task-solving requires the components to interact by collaborating with each other

for allocation and execution of the parts of the tasks.
e Where interactions between the components are not cheap. The interactions consume

resources and require regulation based on a structure.

By developing the method, we have succeeded in the advancing the state of the art in the domain

of adaptation of agent organisations.

Chapter 6 Conclusions and Future Work 95

6.2 Future Work

Though we have developed an effective adaptation method for agent organisations, there are
still a number of avenues for advancing the work presented in this thesis. In view of this, we
identify the different branches for possible extensions by revisiting each of the three primary
requirements (listed in Section 1.3) that we sought to achieve in this thesis, before broadening

out into the realms of autonomic computing in general.

First, looking at our agent organisation model, we have represented the resources at the agents
in terms of the computational capacities being used for providing services. However, there
are other aspects to resources like memory or network bandwidth. Though we have modelled
network resources through the communication costs, we have not limited it in the way we did
for the computational capacity of the agents. Therefore, future work is needed to extend the
organisation framework to consider such limited resources like memory and network in addition
to the current ones. This will not only make the framework more representative of the real
systems but also bring forth newer challenges for the adaptation method, like having to optimise
over different kinds of resources at the same time and trading off one for the other depending
on the conditions. Another stream of work in this regard can involve modelling failures in task
execution and reallocation of such failed service instances. Failures in execution are a real-life
occurrence and methods towards handling and re-provisioning of those tasks will add to the

robustness of the system.

The focus of the second branch of future work is on the adaptation method itself. Right now,
the method makes no assumptions about knowing anything about the dynamism of the system.
It functions solely on the history of interactions and does not make use of any information (if
available) about the kind of tasks that might be coming in the future or the kind of changes
expected in the organisation’s agents. Hence, the method can be extended such that the agents
can adapt in a proactive fashion when such information is available to them. For example, if
the agents are aware that there will be a sudden influx of tasks containing dependencies with
two particular kinds of services, the agents might consider it while adapting and relations might
be formed between agents providing those two services before hand, in anticipation of those
forthcoming tasks. More generally, these expectations of dynamism in the future might be
modelled using probability distributions which can then be taken into account by the agents
during adaptation. For example, the agents might model the expectant changes to the loads and
costs in the organisation due to some predicted future changes in tasks or agents, weigh these
on the basis of the probability of these changes actually taking place, and then use these values
together with the current values in the utility functions. Such a future-sensitive method will be
better at utilising all the information when available, and will also result in an organisation better

prepared to deal with any predicted changes.

Another possible avenue for extending the adaptation method involves making it a multi-step
process. Such an adaptation approach will involve three or more agents at the same time there-

fore resulting in multiple steps of restructuring. Involving a group of agents rather than just

Chapter 6 Conclusions and Future Work 96

two agents will provide them with a wider view of the system. More information, including the
corresponding structure between the group of agents (like a sub-graph) and loads on the agents
might possibly help them to adapt better. Doing this could involve some kind of planning and
deliberation within the group so that they are able to look ahead and carry out a sequence of
adaptation actions. However, there is a trade-off to such an approach as the adaptation process
might lose some of the decentralisation. This is because the information from the agents in
the group will have to be collated somewhere and the intra-group adaptation might need to be
coordinated by a temporary leader. Yet, such a concerted adaptation approach will be useful
in particular scenarios where complete decentralisation is not of a high priority and small im-
provements in performance are also highly regarded. Taking this line of thought further, such
intra-adapting groups within an organisation can be considered to be departments. Therefore, in
some cases, it might be useful to break down the adaptation process into intra-department and
inter-department and so on. Recognising and delineating such departments for adaptation is also
an interesting problem to be tackled. This might require the agents to identify which parts of
the structure are performing poorly using only their limited information. Similarly, the agents
might have to break up the structure into clusters with relatively low interaction between them.
These challenges provide impetus towards adding aspects of graph theory into the adaptation
mechanism. At the same time, this kind of group based adaptation will be useful in extremely
large organisations where most agents interact with only a small subset of the agents and are

mostly unaware of the remaining agents in the system.

The third way of extending the work presented in this thesis is through the evaluation mech-
anism. By focusing on an abstract model, we have managed to develop a generic adaptation
method and tested it empirically in a similarly generic fashion. Nevertheless, the applicability
of the adaptation methods could be tested in real-life scenarios. Though, autonomic systems are
not prevalent as yet, there exist grid systems that perform extensive work-flow based tasks like
large-scale complex scientific calculations or supply-chain and procurement processes for large
businesses. The adaptation method could be incorporated in any such suitable distributed com-
puting system and verified whether it helps in improving the performance. Doing this will not
only reaffirm the results presented here but also possibly uncover newer challenges that might

crop up during the deployment in the real-life systems.

In the above, we have proposed several ways of extending the work presented in this thesis.
However, considering the broader goals of this research, much more work is still needed before
autonomic systems become an everyday reality. The self-management property of these sys-
tems also entails characteristics like self-healing and self-protection which require more context-
aware solutions wherein the components explicitly evaluate the conditions and take appropriate
measures. Self-management not only requires maintenance of the interactions within the system
(as addressed in this thesis), but also internal reconfiguration of the individual components them-
selves. These challenges become even harder when these components are developed at different
places using different technologies and by different developers. Indeed, the need for autonomic

systems has also arisen, in part, due to the increasing openness and distributed nature of the

Chapter 6 Conclusions and Future Work 97

latest computing systems which are being based on service oriented architectures, in addition
to the increasing complexity of the traditional distributed systems. Such issues further under-
line the importance of agent-based approaches for achieving the goals of autonomic computing.
However, as rightly pointed out by Brazier et al. (2009), the ongoing development of autonomic
systems still does not use the multi-agent paradigms or the agent development toolkits to the
fullest extent. On the other hand, development of multi-agent systems also tends to be restricted
to the theoretical domain rather than being incorporated into the existing applications. There-
fore, active exchange of ideas and collaboration between these two fields is bound to unlock a
vast potential for research that will, in turn, promote quicker and faster development of both the
fields.

Appendix A

Additional Results

In this appendix, we present the set of additional results that have been mentioned in Chapter 5.
In particular, the next section discusses experiments relating to the initial structure generated
for the simulations. Following that, Section A.2 describes the results obtained by varying the
start-times and life-times of the temporary agents in open organisations. Then, Section A.3
presents the results of experiments conducted over open organisations containing a maximum
of 100 agents at a time. Finally, Section A.4, compares methods using linear and exponential

decay functions for closed dynamic organisations.

A.1 Initial Structure of the Organisation

For all the experiments presented in Chapter 5, the initial structure of the organisation was
generated randomly (as mentioned in Table 5.1). We asserted that the starting structure of the
organisation will not carry much significance as it will be modified by the adaptation process.
To prove this claim, we conducted experiments over closed static organisations by varying the
initial structure. In particular, we considered organisations starting with a completely connected
peer graph (Fully Peer Structure) and those with a complete hierarchical structure in the form
of a tree of superior-subordinate relations (Authority Tree Structure) along with the generally
used organisations consisting of a randomly generated initial structure (Random Structure). All
of these three cases use the same adaptation method (k-Adapt). From the results, we find
that for both dissimilar (Figure A.1(a)) and similar (Figure A.1(b)) tasks, there is no significant
difference in the performance of the organisation. This confirms our assertion that the initial
structure of the organisation does not play an important role in its performance when equipped

with our adaptation method.

98

Appendix A Additional Results

99

Tasks are Dissimilar (NoP=0) for diff. Initial Structures.

100 T

70

% of Maximum Profit

50 .

Random Structure ——+—
Fully Peer Structure
Authorit}/ Tree StI’UCtLIJI'e P Ko

0 0.

1 0.2 0.3 0.4 0.5
Service Probability

(a) Dissimilar tasks (NoP = 0)

Tasks

are Similar (NoP=5) for diff. Initial Structures.

100 T

90

% of Maximum Profit

60

50 .

Random Structure ——+—
Fully Peer Structure
Authorit}/ Tree StructllJre LR

0 0.

1 0.2 0.3 0.4 0.5
Service Probability

(b) Similar tasks (NoP =5)

FIGURE A.l: Average organisation profit for static closed organisations with different initial

structures

Appendix A Additional Results 100

A.2 Distribution of Start-times and Life-times

The results for static open organisations that were presented in Section 5.2.2, are based on
settings where the start-times and life-times of the temporary agents are chosen from a uniform
distribution. Here, we show the results with other distributions. In particular, Figure A.2 refers
to the settings where the start-times are chosen from a uniform distribution for a combination of
the distribution of the life-times. Similarly, Figure A.3 presents the set of results when the start-
times are chosen from a normal distribution. In each of these, we present the profits obtained by
the two methods, wolf-k-Adapt ~ and Random , when the life-times of the temporary agents are
chosen from uniform, normal and geometric distributions (as marked in the legend). In all of
these results, we find that there is no discernible difference in the performance when the start-
time or the life-time distribution is varied. This confirms our assertion that the distribution of
the start-times or life-times of the temporary agents play no significant part in the performance

of any of the methods.

A.3 Open Organisations with upto 100 agents

All the experiments discussed in Chapter 5 were based on the settings where the maximum
number of agents in the organisation was limited to 20 permanent agents (JA| <= 20) and in the
case of open organisations, the number of temporary agents additionally added was again limited
to |A|. Therefore, the number of agents in the organisation never crossed 40. In this section, we
present results of experiments conducted on open organisations, where the maximum number
of the permanent and temporary agents is set at 50 each. Therefore, these represent scenarios
wherein the number of agents in the organisation can reach upto 100. In particular, Figure A.4(a)
and Figure A.4(b) present the results for dissimilar and similar tasks respectively. Studying these
results, we observe the same trends as those seen in Section 5.2.2. However, the gap between the
various methods has comparatively widened. That is, wolf-k-Adapt obtains a lower percentage
of the maximum profit than in the earlier scenarios which contained lesser number of agents.
This shows that efficient structural adaptation is relatively harder with a greater number of agents
as it involves more entropy that needs to be countered by the method. However, it is heartening
to note that the difference in performance between free-Adapt and wolf-k-Adapt remains
the same as before, thus proving that our meta-reasoning approach performs equally well even
when the number of agents is increased greatly. On the same lines, the performance of Random

is much worse than before. In fact, we see that in the case of similar tasks (see Figure A.4(b)),
it falls below O for heterogeneous agents (when SP is close to 0). This happens because Random

finds it much more harder to link agents suitably well when there are more number of them in the
system. Moreover, when the agents have unique service sets, randomly adapting the structure is

much less likely to efficiently link useful agents together.

Appendix A Additional Results

101

% of Maximum Profit

% of Maximum Profit

FIGURE A.2: Average organisation profit for static open organisations with start-times of the

100

70

60

50

40

30

20

100

40 g BT wolf-k-Adapt (uniform) ——+— 7]

30

20

Tasks are Dissimilar (NoP=0) for "uniform" start-times

T T T T
- ‘Q :
L - S i
[@g
B wolf-k-Adapt (uniform) ——+— T
wolf-k-Adapt (geom)
wolf-k-Adapt (normal) *--x---:
B Random (uniform) &
Random (geom)
| | Rlandom (normlal) [R oS
0 0.1 0.2 0.3 0.4 0.5
Service Probability
(a) Dissimilar tasks (NoP = 0)
Tasks are Similar (NoP=5) for "uniform" start-times
T T T T

wolf-k-Adapt (geom)
wolf-k-Adapt (normal) :--%---:

B Random (uniform) & 7
Random (geom)
| | Rlandom (normlal) Be@ee
0 0.1 0.2 0.3 0.4 0.5

Service Probability
(b) Similar tasks (NoP =5)

temporary agents chosen from uniform distribution

Appendix A Additional Results

102

Tasks are Dissimilar (NoP=0) for "normal" start-times

100

70

60

% of Maximum Profit

40

20

wolf-k-Adapt (uniform) ——+—i
wolf-k-Adapt (geom)
wolf-k-Adapt (normal) :--%---:
Random (uniform) :-&
Random (geom)

| | Rlandom (normlal) [R oS

0.1 0.2 0.3 0.4
Service Probability

(a) Dissimilar tasks (NoP = 0)

Tasks are Similar (NoP=5) for "normal" start-times

100

0.5

% of Maximum Profit

30

wolf-k-Adapt (uniform) ——+—
wolf-k-Adapt (geom)
wolf-k-Adapt (normal) :--%---:
Random (uniform) &
Random (geom)

| | Rlandom (normlal) Be@ee

20

FIGURE A.3: Average organisation profit for static open organisations with start-times of the

0.1 0.2 0.3 0.4
Service Probability

(b) Similar tasks (NoP = 5)

temporary agents chosen from normal distribution

0.5

Appendix A Additional Results 103

Tasks are Dissimilar (NoP=0) for 100 agents max.

100 T T T T
.E
o
IS
]
E
g
- 40 |
]
X
< 30+ .
20 E
10 L wolf-k-Adapt —+— |
Random
free-Adapt :--%---
0 1 1 1
0 0.1 0.2 0.3 0.4 0.5
Service Probability
(a) Dissimilar tasks (NoP = 0)
Tasks are Similar (NoP=5) for 100 agents max.
100 T T T T
E
o
IS
o}
E
§ 20 |
©
X
0 - -
20 ¢ wolf-k-Adapt —— |
Random
free-Adapt :-----
-40 L L L
0 0.1 0.2 0.3 0.4 0.5

Service Probability
(b) Similar tasks (NoP =5)

FIGURE A.4: Average organisation profit for static open organisations with a maximum of 100
agents

Appendix A Additional Results

104

TABLE A.1: Profit for dynamic closed organisations with dissimilar tasks (NoP = 0)

SP variance

wolf-decay-Adapt
(exponential)

wolf-decay-Adapt
(linear)

wolf-k-Adapt

0 — 0.25 (gradually)

92.06%(+0.34

93.55%(£0.30

88.65%(+0.35

0.25 — 0 (gradually)

84.77%(+0.44

88.26%(40.40

77.93%(+£0.45

0 — 0.25 — 0 (gradually)

0.25 — 0 — 0.25 gradually)

87.62%(+0.38

90.43%(+£0.33

80.96%(+0.39

0 — 0.25 (suddenly at r = 2000)

90.00%(+0.35

91.85%(+£0.32

87.34%(+0.37

0.25 — 0 (suddenly at r = 2000)

)

(£0.44)
90.16%(+0.37)
(+0.38)
(£0.35)

)

87.13%(£0.37

(+0.30)
(+0.40)
92.13%(+0.33)
(+0.33)
(+0.32)

)

90.72%(+0.32

(

(
86.52% (+0.37

(

(

(

80.44%(+0.40

)
)
)
)
)
)

TABLE A.2: Profit for dynamic closed organisations

with similar tasks (NoP = 5)

SP variance

wolf-decay-Adapt
(exponential)

wolf-decay-Adapt
(linear)

wolf-k-Adapt

0 — 0.25 (gradually)

72.98%(£1.10

74.778%(+1.01

69.99%(£1.07

0.25 — 0 (gradually)

75.60%(£1.04

78.80%(£1.01

67.73%(£1.04

0 — 0.25 — 0 (gradually)

0.25 — 0 — 0.25 gradually)

66.36%(+1.03

0 — 0.25 (suddenly at r = 2000)

74.82%(+1.05

76.32%(£1.02

71.38%(£1.02

0.25 — 0 (suddenly at r = 2000)

)
(£1.04)
74.39%(£1.07)
72.69%(£1.03)
(£1.05)
(+1.00)

78.88%(£1.00

(+1.01)
(+1.01)
76.52%(+1.04)
76.27%(=£0.99)
(+1.02)
(+0.97)

82.11%(+0.97

(

(
70.81%(%1.05

(

(

(

71.15%(£0.98

)
)
)
)
)
)

A.4 Exponential Decay Methods

As mentioned in Section 5.1.1, the decay function used by decay-Adapt and wolf-decay-Adapt
is linear. Here, we present experiments conducted on wolf-decay-Adapt ~ when it uses an ex-
ponential decay function. In particular, Table A.1 and Table A.2 compare the performance
of wolf-decay-Adapt ~ when it uses linear decay and exponential decay function for dynamic
closed organisations with dissimilar and similar tasks respectively. As argued in Section 5.1.1,
the decay functions are dependent on other parameters like window-size and decay constant, and
when these are set appropriately, there is no marked difference in their performance. Observing
the results obtained, we find that the performance of wolf-decay-Adapt ~ with an exponential
decay function is close to that obtained by using a linear decay function. More importantly, it

performs significantly better than wolf-k-Adapt ~ for all the settings.

A.S Summary

In this appendix, we have experimentally verified our assertions mentioned in Chapter 5. Specif-
ically, Section A.1 showed that the initial structure of an organisation does not affect the perfor-
mance of the adaptation process. Section A.2 helped us verify that the distributions used for the
start-times and life-times of the temporary agents is not a significant parameter for evaluation.
Following that, Section A.3 verified that the performance trends of the comparison methods re-

main the same even when the number of agents in the organisation is increased greatly. Finally,

Appendix A Additional Results 105

Section A.4 showed that an exponential decay function performs almost as well as a linear decay

function in the case of dynamic organisations.

Appendix B

Glossary

1. Service: We define a service as a specialised atomic action that can be executed by an

agent. S is defined as the set of services provided by an organisation.

2. Service instance (also referred to as ‘SI’): An instance of a specific service has two pa-
rameters. It specifies the type of service and the amount of computation required. Hence,
we define a service instance to be s; = (s;, p;) where s; € S and p; € N denotes the amount

of computation required. S, denotes the set of all service instances of task w.

3. Dependency: A service instance is dependent on another service instance if the execution

of the former can only start after the completion of the latter.

4. Dependency links: The set of dependency links H,, contains links between the various si
of the task w. These links are directed arcs between any two service instances depicting a
sequential dependency from the source to the destination. An element /; of H,, is of the

form: h; = (siq,sip) Where si, and sij are the origin and destination of the link.

5. Task: A task is composed of a number of service instances with a precedence order. It
is defined as a tuple containing a set of service instances and a set of dependency links

between the service instances. w = ({si; € SI,,, },H,,) (Equation 3.1).

6. Agent: Agents are independent computational entities capable of providing services. Ev-
ery agent has two parameters, a set of services that it can provide and a computational
capacity. Let A be the set of agents. Every element of A is of the form a, = (S, L,) where
Sx € S denotes the services set of the agent and L, € N represents the computational ca-

pacity (Equation 3.3).

7. Computational capacity: This is defined as the maximum computational load that an

agent can undertake in a single time-step. It is denoted by L, for agent a,.

8. Stranger: Two agents that are not aware of each other’s presence are said to be strangers

to each other.

106

Appendix B Glossary 107

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Acquaintance relation: All agents whose presence is known to an agent constitute the
acquaintances of that agent. Acquaintance relations are formally represented by the Acgt

link in the organisation graph.

Superior-subordinate relation: An agent is the superior of another agent if the agent has
a superior-subordinate relation with the other agent. The superior has a Supr link to its

subordinate in the organisation graph.

Peer relation: Two agents are considered peers if they have a peer relation between them.

Peer relations are formally represented by the Peer links in the organisation graph.

Accumulated service set: The accumulated service set of an agent is the union of its own
service set and the accumulated service sets of its subordinates, recursively. For an agent

ay, it is denoted by AccmSet,.

Organisation graph: The relationships between the agents in an organisation are rep-
resented in a organisation graph G. Every link g; that belongs to G is of the form
gi = (ax,ay,type;) where a, and a, are agents that the link originates and terminates re-
spectively and type; denotes the type of link and it can take values {Acqt,Supr, Peer}
representing the three types of relations possible (Equation 3.5).

Organisation: The Organisation consists of the set of agents and a set of organisational
links. Therefore, it can be represented by a 2-tuple of the form ORG = (A, G) where A is
the set of agents and G is the set of directed links between the agents (Equation 3.4).

Communication cost coefficient: This denotes the cost in terms of the amount of re-
source used by the network to transmit one message between two agents. It is denoted by
C

Management load coefficient: This denotes the amount of computation that is spent by
an agent for evaluating whether a particular agent could be assigned a particular service

instance. It is denoted by M

Reorganisation cost coefficient: This represents the cost incurred by the organisation

while changing a relation between two agents. It is denoted by D

Reorganisation load coefficient: This represents the amount of computational units con-
sumed by an agent while reasoning about adapting a single relation and is denoted by
R.

Cost of the organisation: The cost of the organisation is the total amount of compu-
tational units utilised by the network for the transmission of the messages between the

agents and the amount of reorganisation that has taken place (Equation 3.6).

costorg = C. Z cx+D.d
ay€A

Appendix B Glossary 108

20. Load on an agent: The load on an agent is the summation of the computational resources

21.

22.

23.

24.

25.

26.

27.

used by all the actions it performs in a time-step. The load /, on agent a, in a given time-
step is (Equation 3.7):

L=Y pi+M Y mj.+Rr

SiiEWxE SijEWxF

where— (i) p; is the amount of computation expended by a, for executing SI si;, (ii) m; ,
is the number of relations considered by a, while allocating SI si;, (iii) Wy, is the set of
SIs (possibly belonging to many tasks) executed by a, in that time-step, (iv) Wy, is the set
of SIs being allocated by a, in that time-step and (v) r, is the number of agents considered

by a, for adaptation, in that time-step.

Reward from a task: The reward obtained from completing a task w depends on the
amount of computation needed by it and the speed of completion. It is calculated as
(Equation 3.9):

reward,, = b,, — (1'% — gread)

where 119" represents the actual time taken for completing the task, while 7,7 is the

minimum time needed and b,, is the sum of the computation amounts of all its Sls:

ISTw|
bw = Z pi
i=0
Reward to the organisation: It denotes the overall reward gained by the organisation for
completing the tasks. It is calculated as the sum of the rewards obtained for the individual
tasks (Equation 3.10):

rewardorg = Z reward,,
weWw

where W is the set of tasks faced by the organisation.

Profit of the organisation: It denotes the overall performance of the organisation. It is

denoted as (Equation 3.11):

profitopg = rewardorg — COStorG
form_subr, ,: It denotes the action of forming a superior-subordinate relation between
agents a, and a,, with a, as the superior.

rem_subr, ,: It denotes the action of dissolving a superior-subordinate relation between

agents a, and a, where a, was the superior.
form_peer, ,: It denotes the action of forming a peer relation between agents a, and ay.

x?.y.

rem _peer, ,: It denotes the action of dissolving a peer relation between agents a, and ay.

Appendix B Glossary 109

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Assignment: By assignment of a service instance to an agent, we mean that the agent has
been allocated that service instance. It must accomplish that service instance by either
executing it itself or by assigning it again to some other agent. Formally, when a service

instance si; is assigned to agent a,, then a, is considered an assigned agent for si;.

Delegation: By delegation of a service instance to an agent, we refer to the fact that
the agent is executing the particular service instance by itself (without reassigning it to
someone else). Formally, when an agent a, executes a service instance si;, it is considered
as the delegated agent for si;. Thus, there could be several assigned agents for a particular

service instance, but only one delegated agent.

Value function: It denotes the function that gives the values of the expected utilities of
performing a reorganisation action between agents a, and a,. It depends on the estimated
change in the load and costs of the two agents in question and the other agents involved

in the delegations between these two agents. It is calculated as (Equation 4.1):

V = Aload, + Aloady, + Aloadoa + Acostcomm + AcOStreorg

Asg, ,: The number of SIs assigned by an agent a, to ay. Assignment of a SI si; by ay to
ay means that a, required that si; be executed (was assigned to a, or forms dependency
of a SI executed by a,) and it reallocated si; to a,. Thus a, will have to be a subordinate,
peer or a superior of a,. Also a, need not necessarily execute si; itself, it could reassign it

to one of its own subordinates, peers or superiors.

Del, ,: The number of SIs delegated by an agent a, to a,. Delegation of a SI si; by a,
to ay means that a, is the agent that first required that si; be executed (as it formed a
dependency of a SI executed by a,) and ay is the agent that finally executed si; (that is, a,
is the delegated agent). Note that, a, may just have an acquaintance relationship with a.

The delegation is always achieved through one or more assignments.
t'?": The total number of time-steps that a, has been in existence.

0"y y: The number of time-steps that a, and a, had a superior-subordinate relation (that
is, time-steps that (ay,ay,Supr) € G) . Likewise, tﬁ ;er denotes the amount of time that a,

and ay had a peer relation.

filled, (z): The number of time-steps out of the total time denoted by ¢ that a, had waiting
tasks (capacity being completely filled by load). The variable ¢ can represent the total time

of a, (£1") or the time duration that a, was its peer (tf; ;er) and so on.

Asg, .- The number of Sls that have been assigned by a, to any of its subordinates.

Likewise, Asgy peer and Asgy supr-

Asg, ;.- The total number of SIs that have been assigned by ay to other agents. Therefore,

AngJot = Ang,subr + Ang,peer +Ang,supr-

Appendix B Glossary 110

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Asgﬁfy)AD : The management load added onto a, because of assignments from a, (the count

of these assignments is denoted by Asgy, as stated above).

IA,,: The total number of times, other agents (intermediate agents) were involved in the

delegations of SIs by a, to a,. Therefore,

Del,
Ay =Y count,
i

where countf)A is the number of other agents involved in the delegation of si; from a, to

dy.

IAES?ST: The communication cost due to the delegations from a, to a,. For every agent

in A, a cost of 2C is added because a message is once sent forward and once back.
coST

Therefore, IA;}°" = 1A,y 2+ C.

IAﬁgAD : The overall management load put on all the intermediate agents involved in the
delegations from a, to ay (that is, Del, ;). The load values are reported back to a, along
with the assignment information (the assignment message). If an intermediate agent has
available capacity (no waiting tasks), it will report a 0 load value for that delegation.
Otherwise, the agent will report the actual management load that was put on it due to that

SI assignment.

k—-Adapt: The fundamental method (without the subsequent enhancements) presented

in Section 4.1.

wolf-k—-Adapt: The extension to the fundamental method, based on the WoLF princi-
ple, as discussed in Section 4.2.1.

decay—-Adapt: The modified method, using the decaying weights technique, presented
in Section 4.2.2.

wolf-decay—-Adapt: This method incorporates both the WoLF principle and the de-

cay mechanism, that is Sections 4.2.1 and 4.2.2 respectively.

Central: It denotes the method in which the agents use an external, omniscient, instan-
taneously accessible and infinitely-resourceful centralised allocator to perform their task

allocations.

Random: It denotes the method in which the agents adapt their relations in a random

fashion.

free-Adapt: This refers to the method in which the reorganisation load coefficient R
is always set to 0. It is the same as k-Adapt but all the acquaintances are chosen for
reorganisation instead of a limited number. This makes it a theoretical upper bound for

the performance of k-Adapt .

Appendix B Glossary 111

49.

50.

S1.

52.

all-Adapt: Same as free-Adapt , differing only in R, which is set to the same value
as in k-Adapt and not 0.

Service Probability: It denotes the probability with which a service is assigned to an
agent. It is denoted by SP

Patterns: These are stereotypical task components used to represent frequently occurring
combinations of service instances and dependency links. Similar to tasks, patterns are

composed to service instances and dependency links, but are generally smaller in size.

Number of Patterns: It denotes the number of patterns used to compose the tasks in the
task set W. It is denoted by NoP

Bibliography

Abdallah, S. and Lesser, V. (2007), Multiagent Reinforcement Learning and Self-Organization
in a Network of Agents, in ‘Proceedings of the 6th International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (Aamas ’07)’, IFAAMAS, Honolulu, pp. 172—
179.

Alexander, G., Raja, A., Durfee, E. H. and Musliner, D. J. (2007), Design paradigms for meta-
control in multi-agent systems, in ‘Proceedings of the Workshop on Metareasoning in Agent-
based Systems at AAMAS 2007°, Honolulu, USA, pp. 92—-103.

Ashri, R., Luck, M., and d’Inverno, M. (2003), On identifying and managing relationships in
multi-agent systems, in ‘Proceedings of Eighteenth International Joint Conference on Artifi-

cial Intelligence’, Acapulco, Mexico, pp. 743-748.

Bernon, C., Chevrier, V., Hilaire, V. and Marrow, P. (2006), ‘Applications of self-organising
multi-agents systems: An initial framework of comparison ’, Informatica 30(1), 73-82.

Beverly, R. and Afergan, M. (2007), Machine learning for efficient neighbor selection in un-
structured p2p network, in ‘USENIX Tackling Computer Systems Problems with Machine
Learning Techniques (SysML’07)’, Cambridge, MA, USA.

Biskupski, B., Dowling, J. and Sacha, J. (2007), ‘Properties and mechanisms of self-organizing
manet and p2p systems’, ACM Transactions on Autonomous and Adaptive Systems 2(1), 1.

Bollen, J. and Heylighen, F. (1996), ‘Algorithms for the self-organisation of distributed, multi-
user networks. possible application to the future world wide web’, Cybernetics and Systems
'96, Austrian Society of Cybernetics pp. 911-916.

Bongaerts, L. (1998), Integration of Scheduling and Control in Holonic Manufacturing Systems,
PhD thesis, PMA/K.U. Leuven.

Bou, E., Lopez-Sanchez, M. and Rodriguez-Aguilar, J. A. (2006a), ‘Norm adaptation of au-
tonomic electronic institutions with multiple goals’, International Transactions on Systems
Science and Applications 1(3), 227-238.

Bou, E., Lopez-Sanchez, M. and Rodriguez-Aguilar, J. A. (2006b), Self-configuration in auto-
nomic electronic institutions, in ‘Coordination, Organization, Institutions and Norms in Agent
Systems Workshop at ECAI ’06’, Trentino, Italy, pp. 1-9.

112

BIBLIOGRAPHY 113

Bourjot, C., Chevrier, V. and Thomas, V. (2003), ‘A new swarm mechanism based on social
spiders colonies: From web weaving to region detection’, Web Intelligence and Agent Systems
1(1), 47-64.

Bowling, M. and Veloso, M. (2001), Rational and convergent learning in stochastic games,
in ‘Proceedings of the 17th International Joint Conference on Atrtificial Intelligence (IJCAI
’01)’, Seattle, USA, pp. 1021-1026.

Brazier, F. M. T., Kephart, J. O., Parunak, H. V. D. and Huhns, M. N. (2009), ‘Agents and
service-oriented computing for autonomic computing: A research agenda’, IEEE Internet
Computing 13(3), 82-87.

Capera, D., George, J.-P., Gleizes, M.-P. and Glize, P. (2003), The AMAS theory for complex
problem solving based on self-organizing cooperative agents, in ‘Proceedings of the 12th
International Workshop on Enabling Technologies (WETICE *03)’, IEEE Computer Society,
Washington, DC, USA, p. 383.

Capera, D., Gleizes, M. P. and Glize, P. (2003), Self-organizing agents for mechanical design,
in ‘Engineering Self-Organising Systems’, Vol. 2977 of LNCS, Springer, pp. 169-185.

Carley, K. M. and Gasser, L. (1999), Computational organization theory, in ‘Multiagent Sys-
tems: A Modern Approach to Distributed Artificial Intelligence’, MIT Press, Cambridge,
MA, USA, pp. 299-330.

Chapman, A., Micillo, R. A., Kota, R. and Jennings, N. R. (2009), Decentralised dynamic task
allocation: A practical game-theoretic approach, in “The 8th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS ’09)’, Budapest, Hungary, pp. 915—
922.

Cohen, P. R. and Levesque, H. J. (1991), Confirmations and joint action, in ‘Proceedings of the
twelfth International Joint Conference on Artificial Intelligence (IJCAI’91)’, Morgan Kauf-
mann Inc, Sydney, Australia, pp. 951-959.

Conitzer, V. (2008), Metareasoning as a formal computational problem, in ‘Proceedings of the
Workshop on Metareasoning: Thinking about Thinking at AAAI "08°, Chicago, USA.

De Wolf, T. and Holvoet, T. (2003), Towards autonomic computing: agent-based modelling,
dynamical systems analysis, and decentralised control, in ‘Proceedings of the 1st International
Workshop on Autonomic Computing Principles and Architectures’, Banff, Canada, pp. 10—
20.

Decker, K. and Lesser, V. R. (1993), ‘Quantitative Modeling of Complex Environments.’, In-
ternational Journal of Intelligent Systems in Accounting, Finance and Management. Special

Issue on Mathematical and Computational Models and Characteristics of Agent Behaviour:
2,215-234.

BIBLIOGRAPHY 114

Deloach, S. A., Oyenan, W. H. and Matson, E. T. (2008), ‘A capabilities-based model for adap-
tive organizations’, Autonomous Agents and Multi-Agent Systems 16(1), 13-56.

Di Marzo Serugendo, G., Gleizes, M.-P. and Karageorgos, A. (2005a), Self-organisation in
multi-agent systems, Rapport de recherche IRIT/2005-18-R, IRIT, Universite Paul Sabatier,
Toulouse.

Di Marzo Serugendo, G., Gleizes, M.-P. and Karageorgos, A. (2005b), ‘Self-organization in
multi-agent systems’, The Knowledge Engineering Review 20(2), 165-189.

Di Marzo Serugendo, G., Gleizes, M.-P. and Karageorgos, A. (2006), ‘Self-organisation and

emergence in multi-agent systems: An overview’, Informatica 30(1), 45-54.

Dignum, V. (2003), A model for organizational interaction: based on agents, founded in logic,
PhD thesis, Proefschrift Universiteit Utrecht.

Dignum, V. and Dignum, F. (2005), Structures for agent organizations, in ‘International Confer-
ence on Integration of Knowledge Intensive Multi-Agent Systems’, IEEE Computer Society,
Waltham, USA.

Dignum, V., Dignum, F. and Sonenberg, L. (2004), Towards dynamic reorganization of agent
societies., in ‘Proceedings of the Workshop on Coordination in Emergent Agent Societies
(WCES) at ECAI’04’, Valencia, Spain, pp. 22-27.

Ferber, J. and Gutknecht, O. (1998), A meta-model for the analysis and design of organizations
in multi-agent systems, in ‘Proceedings of the 3rd International Conference on Multi Agent
Systems (ICMAS ’98)’, IEEE Computer Society, Washington, DC, USA, pp. 128-135.

Ferber, J., Gutknecht, O. and Michel, F. (2003), From agents to organizations: An organizational
view of multiagent systems, in ‘Proceedings of the Fourth International Workshop on Agent
Oriented Software Engineering (AOSE03)’, Springer Verlag, Melbourne, Australia, pp. 214—
230.

Fischer, K. (2005), Self-organisation in holonic multiagent systems, in ‘Mechanizing Mathe-

matical Reasoning’, Vol. 2605, Springer, pp. 543-563.

Forestiero, A., Mastroianni, C. and Spezzano, G. (2008), ‘So-grid: A self-organizing grid fea-
turing bio-inspired algorithms’, ACM Transactions on Autonomous and Adaptive Systems
3(2), 1-37.

Fox, M. S. (1988), An organizational view of distributed systems, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, pp. 140-150.

Galbraith, J. R. (1977), Organization Design, Addison-Wesley, Reading, MA.

Gasser, L., Braganza, C. and Herman, N. (1988), ‘Implementing distributed Al systems using
MACE’, Distributed Artificial Intelligence pp. 445-450.

BIBLIOGRAPHY 115

Gasser, L. and Ishida, T. (1991), A dynamic organizational architecture for adaptive problem
solving, in ‘Proceedings of the Ninth National Conference on Artificial Intelligence (AAAI
’91)’, Anaheim, CA, pp. 185-190.

Gaston, M. E. and desJardins, M. (2005), Agent-organized networks for dynamic team forma-
tion, in ‘Proceedings of the 4th International Joint Conference on Autonomous agents and
multiagent systems (AAMAS °05)’, ACM, New York, NY, USA, pp. 230-237.

Gershenson, C. (2007), Design and Control of Self-organizing Systems, PhD thesis, Vrije Uni-

versiteit Brussel.

Glinton, R., Sycara, K. P. and Scerri, P. (2008), Agent organized networks redux., in D. Fox
and C. P. Gomes, eds, ‘Proceedings of the 23rd AAAI Conference on Artificial Intelligence’,
AAATI Press, Chicago, pp. 83-88.

Grossi, D., Dignum, F., Dignum, V., Dastani, M. and Royakkers, L. (2006), Structural eval-
uation of agent organizations, in ‘Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems (AAMAS ’06)’, ACM Press, New York, NY,
USA, pp. 1110-1112.

Hannoun, M., Boissier, O., Sichman, J. S. and Sayettat, C. (2000), Moise: An organizational
model for multi-agent systems, in ‘Proceedings of the International Joint Conference, 7th
Ibero-American Conference on Al, 15th Brazilian Symposium on Al (IBERAMIA/SBIA
’2000)’, Vol. 1952 of LNAI, Springer-Verlag, Berlin, pp. 152-161.

Hassas, S., Di Marzo Serugendo, G., Karageorgos, A. and Castelfranchi, C. (2006),
‘Self-organising mechanisms from social and business/economics approaches’, Informatica
30(1), 63-71.

Hilaire, V., Koukam, A. and Rodriguez, S. (2008), ‘An adaptative agent architecture for holonic

multi-agent systems’, ACM Transactions on Autonomous and Adaptive Systems 3(1), 1-24.

Hogg, L. M. and Jennings, N. R. (2001), ‘Socially intelligent reasoning for autonomous agents’,
IEEE Transactions on Systems, Man and Cybernetics, Part A 31(5), 381-393.

Holland, J. H. (1998), Emergence: from chaos to order, Addison-Wesley, Reading, MA, USA.

Hoogendoorn, M. (2007), Adaptation of organizational models for multi-agent systems based on
max flow networks., in ‘Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI ’07)’, AAAI Press, Hyderabad, India, pp. 1321-1326.

Hoogendoorn, M., Jonker, C. M. and Treur, J. (2007), Redesign of organizations as a basis
for organizational change, in ‘Coordination, Organizations, Institutions, and Norms in Agent
Systems II (COIN’06 workshops)’, Vol. 4386 of LNAI, Springer, pp. 46—62.

Horling, B., Benyo, B. and Lesser, V. (2001), Using self-diagnosis to adapt organizational struc-
tures, in ‘Proceedings of the fifth international conference on Autonomous agents (AGENTS
’01)’, ACM Press, New York, NY, USA, pp. 529-536.

BIBLIOGRAPHY 116

Horling, B. and Lesser, V. (2005), ‘A survey of multi-agent organizational paradigms’, The
Knowledge Engineering Review 19(4), 281-316.

Horling, B. and Lesser, V. (2008), ‘Using quantitative models to search for appropriate organi-
zational designs’, Autonomous Agents and Multi-Agent Systems 16(2), 95-149.

Hubner, J. F., Sichman, J. S. and Boissier, O. (2004), Using the MOISE+ for a cooperative
framework of MAS reorganisation, in ‘Proceedings of the 17th Brazilian Symposium on Ar-
tificial Intelligence (SBIA’04)’, Vol. 3171, Springer, Berlin, pp. 506-515.

Ishida, T., Gasser, L. and Yokoo, M. (1992), ‘Organization self-design of distributed production
systems’, IEEE Transactions on Knowledge and Data Engineering 4(2), 123-134.

Itao, T., Nakamura, T., Matsuo, M., Suda, T. and Aoyama, T. (2002), Service emergence based
on relationship among self-organizing entities, in ‘Proceedings of the 2002 Symposium on
Applications and the Internet (SAINT ’02)’, IEEE Computer Society, Washington, DC, USA,
pp- 194-203.

Jackson, M. O. and Watts, A. (2002), ‘The evolution of social and economic networks’, Journal
of Economic Theory 106(2), 265 — 295.

Jelasity, M. and Babaoglu, O. (2005), T-man: Gossip-based overlay topology management, in
‘Proceedings of Engineering Self-Organising Applications (ESOA’05)’, Springer, Utrecht,
The Netherlands.

Jin, Y. and Levitt, R. E. (1996), ‘The virtual design team: A computational model of project
organizations’, Computational & Mathematical Organization Theory 2, 171-196(26).

Kamboj, S. and Decker, K. S. (2006), Organizational self-design in semi-dynamic environments,
in ‘Proceedings of the 5th International Joint Conference on Autonomous Agents and Multi-
agent Systems (AAMAS ’06)’, ACM Press, New York, NY, USA, pp. 335-337.

Kamboj, S. and Decker, K. S. (2007), Organizational self-design in semi-dynamic environments,
in ‘Proceedings of the 6th International Joint Conference on Autonomous Agents and Multi-
agent Systems (AAMAS ’07)’, Honolulu, USA, pp. 1220-1227.

Kephart, J. O. and Chess, D. M. (2003), ‘The vision of autonomic computing’, IEEE Computer
36(1), 41-50.

Klein, F. and Tichy, M. (2006), Building reliable systems based on self-organizing multi-agent
systems, in ‘Proceedings of the 2006 international workshop on Software engineering for
large-scale multi-agent systems (SELMAS ’06)’, ACM Press, New York, NY, USA, pp. 51—
58.

Knabe, T., Schillo, M. and Fischer, K. (2003), Inter-organizational networks as patterns for
self-organizing multiagent systems, in ‘Proceedings of the 2nd international joint conference
on Autonomous agents and multiagent systems (AAMAS’03)’, ACM, New York, NY, USA,
pp- 1036-1037.

BIBLIOGRAPHY 117

Kota, R., Gibbins, N. and Jennings, N. R. (2008), Decentralised structural adaptation in agent
organisations, in ‘Proceedings of the Workshop on Organised Adaptation in Multi-Agent Sys-
tems (OAMAS) at AAMAS °08’, Estoril, Portugal, pp. 1-16.

Kota, R., Gibbins, N. and Jennings, N. R. (2009a), ‘Decentralised approaches for self-adaptation
in agent organisations’, Submitted to ACM Transactions on Autonomous and Adaptive Sys-

tems .

Kota, R., Gibbins, N. and Jennings, N. R. (2009b), A generic agent organisation framework for
autonomic systems, in ‘Proceedings of the 1st International Workshop on Agent-Based Social

Simulation and Autonomic Systems (ABSS @ Autonomics 2009)’, Limassol, Cyprus.

Kota, R., Gibbins, N. and Jennings, N. R. (2009¢), Self-organising agent organisations, in
“The 8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS
’09)’, Budapest, Hungary, pp. 797-804.

Krackhardt, D. and Carley, K. M. (1998), ‘A pcans model of structure in organizations’, Pro-
ceedings of the 1998 International Symposium on Command and Control Research and Tech-

nology pp. 113-119.

Lematre, C. and Excelente, C. B. (1998), Multi-agent organization approach, in ‘Proceedings of
second Ibero-American Workshop on DAI and MAS’, Toledo, Spain.

Lépez Y Lopez, F., Luck, M. and d’Inverno, M. (2006), ‘A normative framework for agent-based
systems’, Computational & Mathematical Organization Theory 12(2-3), 227-250.

Mainsah, E. (2002), ‘Autonomic computing: the next era of computing’, Electronics & Commu-

nication Engineering Journal 14(1), 2-3.

Mamei, M., Vasirani, M. and Zambonelli, F. (2004), Self-organizing spatial shapes in mobile
particles: The tota approach., in ‘Engineering Self-Organising Systems, Methodologies and
Applications (ESOA 04)’, New York, USA, pp. 138-153.

Mano, J.-P., Bourjot, C., Lopardo, G. and Glize, P. (2006), ‘Bio-inspired mechanisms for artifi-
cial self-organised systems’, Informatica 30(1), 55-62.

Mathieu, P., Routier, J.-C. and Secq, Y. (2002), Principles for dynamic multi-agent organi-
zations, in ‘Proceedings of the Sth Pacific Rim International Workshop on Multi Agents’,
Springer-Verlag, London, UK, pp. 109-122.

Maximilien, E. M. and Singh, M. P. (2005), Multiagent system for dynamic web services se-
lection, in ‘Proceedings of 1st Workshop on Service-Oriented Computing and Agent-Based
Engineering (SOCABE) at AAMAS °05°, Utrecht, Netherlands, pp. 25-29.

Mills, K. L. (2007), ‘A brief survey of self-organization in wireless sensor networks’, Wireless

Communications and Mobile Computing 7(7).

BIBLIOGRAPHY 118

Miralles, J. C., Lépez-Sdnchez, M. and Esteva, M. (2009), Multi-agent system adaptation in a
peer-to-peer scenario, in ‘Proceedings of the 2009 ACM symposium on Applied Computing
(SAC ’09)’, ACM, New York, NY, USA, pp. 735-739.

Mohamed, A. M. and Huhns, M. N. (2000), ‘Benevolent agents in multiagent systems’, Inter-
national Conference on Multi-Agent Systems 0, 0419.

Motwani, R. and Raghavan, P. (1995), Randomized algorithms, Cambridge University Press,
New York, USA.

Nisan, N., Roughgarden, T., Tardos, E. and Vazirani, V. V. (2007), Algorithmic Game Theory,
Cambridge University Press, New York, NY, USA.

Norman, T. J., Preece, A., Chalmers, S., Jennings, N. R., Luck, M., Dang, V. D., Nguyen,
T. D., Deora, V., Shao, J., Gray, A. and Fiddian, N. (2004), ‘Agent-based formation of virtual
organisations’, International Journal of Knowledge Based Systems 17(2-4), 103-111.

Picard, G. and Gleizes, M.-P. (2002), An agent architecture to design self-organizing collec-
tives: Principles and application, in ‘Adaptive Agents and Multi-Agents Systems’, Vol. 2636,
pp. 141-158.

Raja, A. and Lesser, V. (2004), Meta-level reasoning in deliberative agents, in ‘Proceedings
of the Intelligent Agent Technology (IAT °04), IEEE/WIC/ACM International Conference’,
IEEE Computer Society, Washington, USA, pp. 141-147.

Russell, S. J. and Norvig, P. (2003), Artificial intelligence : a modern approach, Prentice Hall
series in artificial intelligence., 2nd edn, Prentice Hall, Upper Saddle River, N.J. ; [Great
Britain].

Schillo, M., Bettina Fley and, M. F., Hillebrandt, F. and Hinck, D. (2002), Self-organization
in multiagent systems: from agent interaction to agent organization, in ‘Proceedings of
the 3rd International Workshop on Modeling Artificial Societies and Hybrid Organizations
(MASHO’02)’, Aachen, Germany, pp. 47-56.

Schlegel, T. and Kowalczyk, R. (2007), Towards self-organising agent-based resource allocation
in a multi-server environment, in ‘Proceedings of the 6th international joint conference on
Autonomous agents and multiagent systems (AAMAS ’07)’, ACM, Honolulu, USA, pp. 1-8.

Sierra, C., Rodriguez-Aguilar, J. A., Noriega, P., Esteva, M. and Arcos, J. L. (2004), ‘Engineer-
ing multi-agent systems as electronic institutions’, UPGRADE The European Journal for the
Informatics Professional V(4), 33-39.

Sims, M., Corkill, D. and Lesser, V. (2008), ‘Automated organization design for multi-agent
systems’, Autonomous Agents and Multi-Agent Systems 16(2), 151-185.

Sims, M., Goldman, C. and Lesser, V. (2003), Self-Organization through Bottom-up Coalition
Formation, in ‘Proceedings of 2nd International Joint Conference on Autonomous Agents and
MultiAgent Systems (AAMAS ’03)’, ACM Press, Melbourne, AUS, pp. 867-874.

BIBLIOGRAPHY 119

Steels, L. (1990), Cooperation between distributed agents through self-organization, in ‘Pro-
ceedings. IROS ’90. IEEE International Workshop on Intelligent Robots and Systems *90.
Towards a New Frontier of Applications.’, IEEE Press, New York, USA, pp. 8-14.

Tesauro, G., Chess, D. M., Walsh, W. E., Das, R., Segal, A., Whalley, 1., Kephart, J. O. and
White, S. R. (2004), A multi-agent systems approach to autonomic computing, in ‘Proceed-
ings of the 3rd International Joint Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS ’04)’, IEEE Computer Society, Washington, DC, USA, pp. 464—471.

Thompson, J. D. (1967), Organizations in Action: Social Science Bases in Administrative The-
ory, McGraw-Hill, New York, USA.

Tumer, K. and Wolpert, D. (2004), A survey of collectives, in ‘Collectives and the Design of
Complex Systems’, Springer, pp. 1-42.

Vazquez, L. E. M. and Lépez Y Loépez, F. (2007), An agent-based model for hierarchical or-
ganizations, in ‘Coordination, Organizations, Institutions, and Norms in Agent Systems II
(COIN’06 workshops)’, Vol. 4386 of LNAI, Springer, pp. 194-211.

Vazquez-Salceda, J., Dignum, V. and Dignum, F. (2005), ‘Organizing multiagent systems’, Au-
tonomous Agents and Multi-Agent Systems 11(3), 307-360.

Wang, Z. and Liang, X. (2006), A graph based simulation of reorganization in multi-agent sys-
tems, in ‘Proceedings of the IEEE/WIC/ACM international conference on Intelligent Agent
Technology (IAT *06)’, IEEE Computer Society, Washington, DC, USA, pp. 129-132.

Watts, A. (2001), ‘A dynamic model of network formation’, Games and Economic Behavior
34(2), 331 - 341.

Wolpert, D. H. and Tumer, K. (2001), ‘Optimal payoff functions for members of collectives’,
Advances in Complex Systems 4(2/3), 265-279.

Zambonelli, F., Jennings, N. R. and Wooldridge, M. (2003), ‘Developing multiagent sys-
tems: The gaia methodology’, ACM Transactions on Software Engineering Methodologies
12(3), 317-370.

Zhong, C. and DeLoach, S. A. (2006), An investigation of reorganization algorithms, in ‘Pro-
ceedings of the 2006 International Conference on Artificial Intelligence (ICAI 2006)’, Vol. 2,
Las Vegas, USA, pp. 514-517.

