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Analytic Solution for the Birefringence Produced
by Thermal Stress in Polarization-Maintaining
Optical Fibers

MALCOLM P. VARNHAM, DAVID N. PAYNE, ARTHUR J. BARLOW, anp ROBIN D. BIRCH

Abstract—Polarization-maintaining optical fibers are usually made by
inducing a large anisotropic thermal stress in the core so that it appears
highly birefringent. A simple analytic solution has been found for the
birefringence in terms of the cross-sectional distribution of the high-
expansion material used to create the thermal stress. The analysis is
able to predict optimal structures which efficiently utilize the avail-
able stress and thus maximize the birefringence. It is shown that the
optimum structure has a cross-sectional geometry resembling a bow-
tie. Design rules are given whereby the dimensions may be chosen and
these are verified in a simple experiment.

I. INTRODUCTION

OHERENT transmission systems using the optical hetero-

dyne principle require a stable polarization state for both
the local oscillator and incoming signal waves [1]. Interfer-
ometric fiber sensors similarly require colinearity between the
polarization states emerging from the sensor and reference
arms [2]. Unfortunately, bends, twists, and side pressure [3]
introduce small amounts of birefringence into the fiber which
vary with time, causing the output polarization state to vary
accordingly. Thus for a conventional monomode fiber the
output polarization state is indeterminate and this causes con-
siderable difficulties in a number of applications.

A fiber may be designed to be relatively immune to environ-
mental effects by deliberately increasing its intrinsic birefrin-
gence A to a level far greater than that produced by external
perturbations. External variations are then swamped and highly
birefringent fibers can transmit linearly polarized light aligned
with one of the principal axes [4] over long distances. Although
core ellipticity alone can contribute a waveguide-related bire-
fringence [5], fibers are normally made birefringent by intro-
ducing a large thermal-stress anisotropy in the core. This
can be achieved by employing materials having a large expan-
sion coefficient embedded asymmetrically within the fiber
cross section. For example, a common approach is to employ
an elliptical stress-producing region of highly doped silica
material within a circular silica substrate. Such fibers have
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exhibited very high birefringence and good polarization-
holding ability [6] .

Photo-elastically induced birefringence has been analyzed by
several authors. The first analysis [7] was based on a slab model
with an infinite substrate. More recently, fibers with an ellipti-
cal core surrounded by 1)an infinite cladding [8] and 2)a finite
cladding, [9] have been analyzed in elliptical coordinates. So
called side-pit, elliptical core, elliptical jacket, and azimuthally
inhomogeneous optical fibers have also been analyzed using
finite elements [10]-[14]. The limitation of all these analyses
is that they are either specific to a given geometry, or compu-
tationally cumbersome to the extent that optimization of the
birefringence and performance of new structures is difficult
to predict.

We present here a new and remarkably simple analysis [15]
of thermal-stress birefringence in optical fibers. The approach
has the advantage that it provides an intuitive formulation,
leading directly and obviously to the optimum structure which
maximizes the birefringence for a given expansion coefficient
mismatch. It is shown that this optimum structure resembles
a bow-tie in cross-sectional shape. Furthermore, some results
are presented on bow-tie fibers which have been fabricated by
a new and novel technique, reported elsewhere [15], [16].

Elliptical core, elliptical jacket, and circular side-pit fibers
are also analyzed, and the results, though very simply derived,
are shown to agree with specific cases previously reported
[9]1-[14]. In addition, it is confirmed that the dimensions of
the substrate within which the stress-producing region is em-
bedded has a considerable effect on the birefringence, a finding
which was reported in [13]. This effect is verified in an experi-
ment where the birefringence of a fiber was measured as the
substrate material was successively removed.

II. DERIVATION OF THE FORMULA FOR
THERMAL-STRESS BIREFRINGENCE

When a composite glass fiber is drawn at high temperature
from a viscous melt or preform, thermal stresses can develop
once the fiber cools through the temperature at which the glass
sets. Further cooling results in an increase in stress owing to
the different thermal contraction of the materials within the
fiber. Thermal stresses in fibers of circular cross-sectional
coordinates (7, ®) (Fig. 1(a)) containing asymmetrically dis-
posed regions of a different thermal-expansion coefficient
(Fig. 1(b)) may be calculated by solving the differential equa-
tion for plane strain [17]. The solution is accomplished in
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Fig. 1. (a) Coordinate system. (b) Cross section of fiber containing
mirror-symmetric regions having differing expansion coefficients.

three parts, as follows.

1) The particular integral is sought via the thermoelastic
displacement-potential function Y(r, ©), which is defined by
the polar displacements u = 3y/dr and v=(1/r) 0Y/90. The
thermal stresses and strains can be found from u and v, for
example, the radial strain €, is given by €, = du/ér.

2) The complementary function is found from the general
stress function ¢(r, ©) for cylindrical bodies by assigning values
to arbitrary constants which satisfy the boundary conditions.
The stress function ¢(r, ©) is defined by the relations o, =
(1/r) 3¢/0r and og = 3%¢/dr?, where 0, and og are the radial
and hoop stresses, respectively.

3) The total solution is the sum of the particular integral
and complementary function.

Once the stresses have been found, the normalized birefrin-
gence B =(\2m) 88=-C(o, - 0,) can be evaluated, where
C is the stress-optic coefficient and o, - 0y, is the stress dif-
ference in the core. For any fiber having one axis of mirror
symmetry, a very simple equation results relating B to the
expansion- coefficient profile.

A. Calculation of Thermal Stresses in Fibers

Following the method outlined by Timoshenko [17], the
thermal stresses in a body with circular cross-section can be
found from the thermoelastic displacement potential Y (r, ©)
which satisfies the differential equation for plane strain

(1+v)
1-»)

Here a(r,®) is the thermal-expansion coefficient of the
material located at position (7, @) in the fiber and v is the Pois-
son’s ratio, assumed to be the same for each component glass.
T is the difference between ambient temperature Ty, and the
temperature at which the glass sets, i.e., begins to behave
elastically (the fictive temperature).

In practice, T depends on glass composition and is typically
several hundred °C higher in the substrate than in the core.
Thus the substrate sets before the core. Further cooling results
only in hydrostatic stresses within the fluid core, until it in

V2y(,8)= a(r,©)T. O]
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turn sets at temperature 7, and is then able to support aniso-
tropic stresses. Since we are concerned here exclusively with
the calculation of core anisotropic stress, the appropriate value
of T is given by the setting point of the core, i.c.,

T=T,-T, )]

where T, is the core fictive temperature. Note, however, that
if on cooling some regions of the fiber remain fluid after the
core has set, it is strictly necessary to take into account the
relatively large change in expansion coefficient which occurs as
they pass through their respective setting temperatures. For
simplicity, we shall ignore these induced stresses and assume
that all constituent glasses set at or above the setting point of
the core.

If a(r, ©) has mirror symmetry about the x-axis (see Fig.
1(b)), it can be expressed in Fourier series form

ar,0) =)+ 3" p(r) cosm® 3)

m=1

where ao(r) is the average value of the expansion coefficient
found at radius 7 and @, (r) is the mth harmonic of a(r, ©)
as a function of radius, given by

1 2n
ay(r) = ;j a(r,®) cosm®do, 0))
0

Substituting (3) into (1) leads to the Fourier series expansion
of the thermoelastic displacement potential ¥/(r,0)

VE.8)= Yo+ 3 V() cosm®

m=1

®)

where V,,(r) is given by the solutions of the differential equa-
tion
Ym@) , 1 dYm@) m?
dr? r adr

(1 +v)
(1-»)

The solution of (6) is the sum of the particular integral and
complementary function.

In the fiber, normalized radius r = 1, we now define an annu-
lar area @ >r > b which bounds the asymmetrically 'disposed
regions having different expansion coefficients (see Fig. 1(b)).
In regions r >a and r < b the harmonic content of a(r) is zero
(a(r) =0 for m #0), and the following particular integral is
obtained [17]:

T ¥m®) =S 0@ T. (6)

1+») rm (° o
wm(r)=-El_v;%f () Tr* ™dr=G,r™ (7)
b
forr<b,m+#0,and
1+v)r a -
b=~ e et @
forr>a,m+0.

As in all differential equations, the complementary function
is given by a general equation containing arbitrary constants
which are determined by the boundary conditions. Here, the
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stresses arising from the complementary function can be de-
scribed by a general stress function ¢(r,®) form #0 [17]

.0 =b;r>cosO+ Y @pur™ tbyur™*Hcosm®

m=2

®

where a,, and b, are the arbitrary constants found by satis-
fying the boundary conditions at r =1, namely that the nor-
mal and shear stresses are both zero [17].

B. Formula for the Thermal-Stress-Induced Birefringence

The ¥ component of (5) leads to symmetric thermal stresses
which are independent of © [17] and, therefore, do not af-
fect the birefringence. These stresses will not be considered
further in this derivation, although they should not be for-
gotten since they contribute to the overall fiber and preform
stress level. They may ultimately determine whether the pre-
form shatters during fabrication and should, therefore, be
minimized along with any other stresses which do not con-
tribute to the birefringence.

To derive the birefringence produced by the anisotropic
stress distribution we will sum the contributions from the
particular integral and complementary function at the fiber
center (r =0). In principle the stresses in the whole fiber should
be calculated and the birefringence found using coupled-mode
theory [3], [9]. This approach is more rigorous since the
optical field extends over core and cladding regions, in which
the stresses vary slightly. The optical spot size depends on
the fiber V-value and consequently so will the birefringence.
However, in this section we will make the simplifying assump-
tion that the field is confined at r =0, and, therefore, is only
affected by stresses at the fiber center. This assumption has
also been used in the finite element analyses, and is known to
give good results [9] -[14] if the core is circular and the field
well confined (i.e., V ~2.4).

The radial strain €, which results from the particular integral
(7)is given [17] from (3) and (7) by

2 w
e,(r,®)=%(r,®)= > m@m-1)G,r™ ?cosm®.

m=2

(10)

Approximating the strains €, and €, in the core by €,(0,0)
and €,(0, m/2), respectively, we obtain for the birefringence
B, resulting from the particular integral

) 4CE

By (- &)= 1 G, an

where C and E are the stress-optic coefficient and Young’s

modulus, respectively. Note that focusing our attention on

the birefringence alone has reduced the problem such that only
the 2nd harmonic coefficient G, in G, need be considered.

Similarly, the radial stress o, resulting from the comple-

mentary function (9) is given by [17]

199,
r or

1 9%

o"(r’@))= r2 392

which, from (9) leads to

0,(r,©)=2b,rcos © + i {m-m*)a,rm?

m=2

+Q2+m-m¥)by,r"} cosm®.

(12)

Again, approximating o, and o, in the core by 0,(0, 0) and
6,(0, m/2), respectively, we obtain for the birefringence B,
resulting from the complementary function

B, =-C(0ox - 0,)=4Ca,. (13}

Again, it is only the arbitrary constant a, associated with the
second-haromonic stress component which is of importance.

The constant a, can be found from the boundary condition
that the net radial stress o, =0 at r = 1, which, by the unique-
ness theorem of Fourier analysis, implies that o, = 0 for each
stress harmonic. The second-harmonic stress contribution to
g, from the complementary function is given by the term m =
2 in (12). Similarly, the second-harmonic stress contribution
to 0, from the particular integral in 7 >a is found by substi-
tuting ¥, = H,r™? cos 2@ into

o B [ 3, (109, 13%,
a'_(l-2v)(1+v) [(1 V) or? +l}{r or +r2 20? }]

(14)

where H, is defined by (8). The net second-harmonic stress
contribution to g, inr >4 is then given by the sum of the con-
tributions from the complementary function and particular
integral, which from the above is

6EH.,
0, =-2a; cos 20 + I +:r'4 cos 20, (15)

Inserting the boundary condition ¢, =0 atr =1 yields a, and,
hence, from (13)

_12CE 6
(4 (1 + V) 2. ( )

Thus we have the final result from (7), (8), (11), and (16)
that the thermal-stress-induced modal birefringence B =B, +
B, in a circular fiber of normalized radiusr =1 is

B=(n,-ny)= (I_C—E;v;,‘: (M TE™! - 3r¥)dr 17)

where a,(r) is the second-harmonic component of a(r,©) as a
function of r, and is given by

2w
a,(r)=—11;f a(r,®)cos 20d0. (18)
0

It should be noted that these equations are only valid for
circular fibers having mirror symmetry about the x-axis. The
derivation could be extended to cover a more general case
[17], but at the expense of the simplicity of (17) and (18).
Moreover, this symmetry restriction is not a serious one, since
the present analysis holds for most fibers of practical interest.

Note also that the stress difference 0, - 0, can be shown to
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be constant for r <b and m = 2. Thus the stress-induced bire-
fringence will also be constant within the region. This fact in-
creases the validity of our assumption that the optical field is
confined at r = 0, since in many fiber designs the optical power
will be totally contained within » <b and will, therefore, ex-
perience a uniform stress-field, even if the core is not exactly
centrally located.

IIl. PHYSICAL INTERPRETATION OF THE ANALYSIS

A. Two Important Results

1) Consider a fiber with an arbitrary mirror-symmetric dis-
tribution of material with expansion coefficient a(r,®), em-
bedded within a fiber of circular cross section, such as that
shown in Fig. 1(b). The intuitive nature of (17) can be readily
seen by noting that to determine the birefringence we need
only consider the azimuthal second-harmonic content a,(r)
(i.e., frequency 20) of the expansion coefficient a(r, ®) within
the annular region bounded by a > r > b. The second-harmonic
content o, (r) can be visualized from plots such as that in Fig.3,
which charts the expansion coefficient as a function of azimuth
O around a circle of radius 7. We are interested solely in the
magnitude of the 2@ frequency component of a(r,8)(i.e.,
period 7 rad); consequently it is immediately clear that fibers
with triangular, square, etc., high-expansion regions centered
on-axis contribute no birefringence at all, since they possess no
component of frequency 20. Similarly, concentric circular
regions can be ignored. These structures merely add to the
general level of stress within the fiber or preform and should
be avoided, since they increase the probability of the preform
shattering.

As an example, let us take a fiber with an elliptical stress-
producing region, as shown in Fig. 2(d). The value of a,(r)
is zero for b>r>a and we, therefore, consider only the
annular region @ >r>b. In this region a,(r) increases from
zero around the circle defined by 7 = b, to a maximum at the
radius where the ellipse intersects the straight line y = x, and
then decreases to zero again. Consequently, a large proportion
of the elliptical high-expansion jacket does not contribute to
the birefringence (i.e., that contained within the circle r <b)
and, furthermore, the section confined within the annular
region a >r>b has a poor second-harmonic content. This
structure clearly utilizes the available high-expansion material
inefficiently.

Since the preform can only support a given level of stress
before shattering, stresses from “waste” harmonics (i.e.,
fourth, sixth, etc. which are present, for example, in the ellipti-
cal jacket fiber), and regions with circular symmetry,should be
minimized to enable all the available stress to contribute to the
birefringence.

2) The two terms 7~* and - 3r2 in (17) come from the partic-
ular integral and complementary function, respectively,and are
of opposite sign. Consequently, they sum to zero at fiber radius
ro =(3)4=0.76. This is an important result, since it indi-
cates that any asymmetry present at a radius greater than ry
reduces the birefringence. The asymmetrically disposed high-
expansion material should, therefore, always be contained
within a radius less than 0.76 of the fiber outer radius.

(a)

@

Fig. 2. Cross-sectional distribution of high-expansion material for vari-
ous stress-producing structures reported in the literature.

B. The Optimum Structure for Maximum Birefringence

We define the optimum structure as that distribution of high-
expansion coefficient material which will maximize the bire-
fringence for a given maximum expansion-coefficient mis-
match Aa=(apmax - ammn). We chose this criterion since
the maximum mixmatch is normally limited by material con-
straints, for example, the maximum dopant concentration
which can be incorporated in the high-expansion regions is
usually limited. From (17) we have seen that to optimize
the birefringence it is only necessary to maximize o, (r), the
second-harmonic content of a(r,®). It is well known that the
waveform which has highest second-harmonic content for a
given peak-to-peak value A« is a square wave of frequency 20
with equal mark-space ratio, for which a,(r) =2(Aa)/m. The
material distribution represented by such a waveform resembles
a bow-tie with 90° sectors and is illustrated in Fig. 2(a). The
outer radius a of the sectors must be less than 0.76 of the fiber
radius, as noted earlier. However, some additional birefringence
can be achieved by changing the sense of a(r, ©) at radius r, as
illustrated in Fig. 2(b).

Recently we have reported a gas-phase-etching fabrication
technique [15], [16] whereby “bow-tie” fibers can be readily
manufactured. These fibers have exhibited polarization beat-
lengths as short as 0.55 mm at a wavelength of 633 nm, a figure
which at the time of writing is the shortest ever reported. The
result is attributable to the adoption of the optimum structure
developed here. Two other fibers [18], [19] with similar geom-
etry made by different techniques have also been reported.
Although not optimized for birefringence, these fibers have
given good results, further indicating the advantage of adopting
the optimum bow-tie configuration.

If the maximum value of a(r,®) is not a constraint, it is pos-
sible to define another “optimum” structure as that which most
efficiently uses the available stress to produce birefringence.
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Fig. 3. Typical azimuthal variation of expansion coefficient at a constant
radius r for the structures of Fig. 2.

A sinusoidal distribution of high-expansion material to give a
cos 20 dependence of a(r,®) has a,(r)=(Aa)/2 and no
“wasted” harmonics to add to the general stress level in the
fiber. These structures are the sinusoidal equivalents of the
square-wave distributions shown in Fig. 2(a) and 2(b). For the
same value of apqax the birefringence produced is 21-percent
lower than for the bow-tie fibers, although greater stress ef-
ficiency and thus lower net stress levels may lessen the chance
of the preform shattering.

IV. ANALYSIS OF FOUR DIFFERENT STRUCTURES

In this section we quantitatively analyze birefringence in the
bow-tie [15], [16], the elliptical core [8]-[10], the elliptical
cladding [12], [13], and the circular side-pit [11] fiber geom-
etries shown in Fig. 2. The results lead directly to suggested
dimensions for the asymmetries.

A. Analysis

From Section IlI, we note that uniform circular regions of
different a, such as cores and claddings, do not contribute to
the birefringence and thus the analysis for the elliptical core
(Fig. 2(c)) and elliptical jacket (Fig. 2(d)) fibers are identical
(neglecting the usually small contribution due to waveguide
birefringence produced by the elliptical core). Each structure
is assumed to be composed of two materials with expansion
coefficients oy and a, (Fig. 2) and have a normalized outer
radius r = 1. In each case, an asymmetry exists in the annular
region @ >r> b where, following a circle of constant r,
a(r,®) describes a square wave in © with maximum and mini-
mum amplitudes of @, and o, respectively. Fig. 3 illustrates
the value of a(r,®) as a function of © for one value of rina
typical fiber, together with the second-harmonic (cos20)
component which determines the birefringence. The latter has
an amplitude 2/n. Aasin 20, where Aa =, - , and ¢ is the
angle at which the boundary of the stress-producing region in-
intersects the circle at radius r. For the bow-tie fiber the cos2©
amplitude is constant in @ >r > b, whereas it increases from
zero to a maximum and back to zero with increasing 7 for the
other fibers. From (17) and (18), the modal birefringence is
simply

a
=C—E3(Aa)rf sin 20¢71 - 3r%) dr (19)
I-vaw b
where ¢ is constant for the bow-tie fiber, and for fibers with
elliptical stress-producing regions (Fig. 2(c) and 2(d)) is given
by
a2(r2 _ b2)

m, a>r>b. (20)

cos2¢=

Birefringence (n - ny)

40.10° 1

e
2:0-10

(; 05 10
(a- b)/(a +b)

Fig. 4. Variation of modal birefringence with cross-sectional geometry
in a bow-tie fiber plotted for various values of b, the inner radius of
the stress-producing sectors.

For fibers with asymmetric circular stress-producing regions
(Fig. 2(e)):

r’+ab
cos¢—r(a+b), a>r>b. 21
In the following, (19) has been integrated to give curves of B
versus (g - b)/(a + b) for constant values of b. In each case, we
have taken C=-3.36 X 1075 mm?/kg, E = 7830 kg/mm?, v =
0.186, and (Aa) T = 1072 to enable direct comparison between
the structures.

B. Bow-Tie Fibers
For this structure, (19) can be integrated directly to give

B=2EC (Ag)Tsin 2¢{ln (%) - 0.75@* - b“)}.

Tl-v

1)

The value of B is plotted in Fig. 4 for 2¢ = 90° (the optimum
sector angle). Each curve represents a constant value of b asa
is varied. From the figure, we see that the largest birefringence
occurs for small b, indicating that the bow-tie sectors should
be as close to the core as possible. The curves reach a maxi-
mum birefringence at a value of (a - b)/(a + b) corresponding
to a =ry =0.76,asnoted earlier. When a > r, the birefringence
decreases and can become negative when the sectors are posi-
tioned totally outside the radius ry (i.e.,a>b >ry). In this
case, the fast and slow axes of the birefringence are interchanged
and the effect can be used to advantage in the structure proposed
in Fig. 2(b).

It is interesting to note that if 2¢ = 30°, i.e., the bow tie is
thinner, the birefringence only halves. This is because it is
the second-harmonic component and not the degree of asym-
metry that is important. Thus precise control of the angular
shape of the sectors is not critical.

Note also that as b - 0 the fiber assumes the geometry anal-
yzed by Chu [14], called the “azimuthally inhomogeneous”
fiber. We see from (21) that for this structure the stress at r =
0 is infinite and that, therefore, the structure cannot be made
without cracking. However, if b is made small, but not zero, it
is clear that very large stresses can result. In this case, the
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Fig. 5. Variation of modal birefringence with ellipticity in an elliptical
core or jacket fiber plotted for various values of b, the ellipse minor
axis.

assumption that the optical field is concentrated at r =0 to
calculate the birefringence is clearly invalid, since the stress
varies rapidly with radius.

C. Fibers with Elliptical Stress-Producing Regions

Integrating (19) using Simpson’s rule gives the birefringence
curves plotted in Fig. 5, which are applicable to fibers in which
the stress is produced either by using a high expansion core, or
by an external elliptical stress-producing region in the cladding.
We see that the magnitude of the birefringence is somewhat
lower than that produced for the bow-tie structure (Fig. 4)
for the same value of (Aa) T, owing to the lower stress-utiliza-
tion efficiency.

Note that there is now an advantage in havinga >ry for b <
0.2, in apparent contradiction of our earlier statement that no
asymmetrically disposed material should be contained outside
a radius 7o =0.76 (unless the sense is changed as in Fig. 2(b)).
In this case, the explanation is that the negative birefringence
contribution of the material in 7 > rq is offset by the increased
positive contribution of that in r <r, when a is increased. If
we relax the artificial restriction that the stress-producing region
should be elliptical and truncate the ellipse at ro, we would
obtain a higher birefringence for b < 0.2 than indicated by
the curves.

The straight line obtained as b — 0, corresponds to the case
for infinite fiber outer dimension and is given by the contribu-
tion of the particular integral alone to (19). The equation of
this line can be obtained from (19) by neglecting the comple-
mentary function term (-3r%), substituting for r from (20)
and integrating using the substitution x =cos 2¢. The result
agrees with Chu’s analysis of an elliptical-core fiber with an
infinite cladding, and is given by [8]

@-b)
@+b)’

As shown by Chu [8], this equation shows excellent agree-
ment with Okamoto et al’s finite-element analysis of ellipti-
cal-core fibers [10]. The curves of Fig. 5 also show reasonable
agreement with the finite element analysis of the elliptical-
jacket fiber [12], [13] given by Namabhira et al.

B———(A Q)T —2 24)
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Birefringence

(n,-ny)

40-10"

2:0.10"

—

] 05 10
(a-b)/la+b)

Fig. 6. Variation of modal birefringence with cross-sectional geometry
in a fiber with circular stress-producing regions plotted for various
values of b, the inner radius of the stress-producing regions.

D. Fibers with Circular Stress-Producing Regions

Integrating equation (19) using Simpson’s rule gives the bire-
fringence curves shown in Fig. 6. For this structure (Fig. 2(e)),
small values of B are obtained for small values of (@ - b)/(a + b)
because of the sin 2¢ term in (19), while large values of B are
obtained for large values of (g - b)/(a + b), since the structure
approaches that of the bow-tie fiber. Thus from a birefringence
point of view this structure presents no advantage.

E. Discussion

Although the structures shown in Fig. 2 look very different,
the curves in Figs. 4-6 are remarkably similar. This should be
expected from (17), since the structures all have a similar
second-harmonic component. However, in terms of stress
efficiency the bow-tie fiber is best, since the structure mini-
mizes the overall stress levels for a given birefringence.

From Figs. 4-6 we are now in a position to suggest relative
dimensions for the optimum internal asymmetries. For a fiber
of normalized radius 7 = 1, the asymmetry should have an inner
radius b as small as possible, consistent with the practical re-
quirement that the optical power is confined to low-loss regions
of deposited glass. This requirement normally restricts b to
about 0.1-0.2, although the use of alarge core index difference
would confine the optical power nearer to the fiber axis and
would allow the relatively lossy stress-producing regions to ap-
proach more closely. The outer radius a of the stress-producing
zones should not exceed 0.76 of the fiber radius, unless re-
stricted to a certain shape (e.g., elliptical), when some small
advantage may be gained by relaxing this rule.

For each structure, the effect on the birefringence of reducing
the substrate size can be seen by moving vertically downwards
through the curves of Figs. (4) to (6). The effect can be drastic,
more than halving the birefringence in some cases. This is an
important observation, since the fiber diameter relative to the
internal structure is often under the control of the fabricator,
for example by sleeving the preform. A suitable choice of
sleeve diameter could, therefore, considerably increase the re-
sulting birefringence, although there is a maximum diameter
above whichlittle increase is expected. The effect is emphasized
in the following experiment in which the fiber diameter was
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Fig. 7. Cross-section of the bow-tie fiber used in the experiment.
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Fig. 8. Measured variation of polarization beat length in a bow-tie fiber
as the fiber diameter was reduced by acid etching (points). The solid
line is the predicted decrease in beat length.

successively reduced by etching and the birefringence was
measured.

V. EXPERIMENT

The cross section of an early bow-tie fiber is shown in Fig. 7.
The fiber was immersed in a 40 -percent solution of hydrofluoric
acid and the polarization beat length L, = A\/B was measured
at a wavelength A =633 nm by observation of the transversely
scattered light as the fiber diameter decreased. The results
are shown in Fig. 8, together with the theoretical prediction
obtained from (19). For the latter the fiber cross-sectional
geometry was modeled using an ellipse of major and minor
axes 21 and 14 um, respectively, for the inner boundary of the
sectors, followed by straight lines y = #(0.16 X +21) um out
to a radius of 52 um. This procedure demonstrates the ease
with which (19) can handle virtually any mirror-symmetric
geometry. The fiber radius was 108 um and (Aa) T was chosen
as 2.9 X 1073, since this gave the best fit to the experimental
data. Values of £, C, and v were taken as before. The core of
the fiber was elliptical and, therefore, exhibited some shape
and stress birefringence of its own, estimated to be -7 X 1075,
Although small, this was taken into account.

Reference to Fig. 8 shows that the agreement between theory
and experiment is close and the important role of the substrate,
therefore, verified. The experiment has been performed on a
number of fibers with similar results, and can be used as a means
of determining whether a particular fiber has sufficient sub-
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strate. From Fig. 8, we see that provided this fiber had a diam-
eter greater than ~150 um the birefringence is maximized;
increasing the fiber diameter further has little effect on the
birefringence.

V1. CONCLUSIONS

A simple and intuitive formula for stress-induced modal bire-
fringence has been derived which is able to deal with virtually
any cross-sectional geometry. This formula shows the following.

1) Only the second-harmonic component of the asymmetry
contributes to the birefringence.

2) Other harmonics merely contribute to the general level of
stress in the fiber and are undesirable. They produce extra
stresses which may fracture the preform.

3) Circular regions of uniform expansion coefficient can be
ignored in analyzing new structures.

4) In a fiber of normalized radius r = 1, asymmetries inr >
0.76 have an opposite contribution to asymmetries inr < 0.76
and, therefore, subtract from the birefringence.

The theory allows prediction of the optimum structure which
maximizes the birefringence for a given expansion coefficient
mismatch. If the dopant is confined in r < 0.75 then the opti-
mum structure is the bow-tie fiber shown in Fig. 2(a) and
realized in Fig. 7. Some additional birefringence can be ob-
tained by siting dopant outside a radius of = 0.76, provided
it is located in quadrature, as shown in Fig. 2(b), or has an
expansion coefficient less than that of silica.

Bow-tie, eliptical core, elliptical jacket, and circular side-pit
fibers have each been analyzed. The results extend previous
analyses by showing how a finite substrate reduces and can
even reverse the sign of birefringence.

An etching experiment where the substrate of a bow-tie
fiber was removed by acid etching has verified the considerable
role of the substrate on the birefringence.
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