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ABSTRACT

Many metrology systems involve more than one sensor and the analysis of
the data produced by these systems has to take into account the character-
istics of the data arising from the different sensors. For well-characterized
systems in which the behaviour of the sensors is known a priori, appropriate
methods for estimating the parameters of the system from measurement data
can be derived according to maximum likelihood principles. For systems
subject to unknown or unpredictable variations, estimation methods that
can adapt to these variations are required. In this report, we show how
a class of such methods based on Bayesian approaches can be defined and
illustrate their behaviour on a number of examples relevant to metrology.
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1 Introduction

In order to improve the accuracy of measurement systems more factors have
to be included in the model and monitored through a number of sensors.
We use the term data fusion [19] for the aggregation and analysis of the
resulting multi-sensor measurement data. Data fusion problems can arise in
metrology in a number of ways, including the following:

Fusion across sensors. In this situation, a number of sensors measure
nominally the same quantity, as, for example, in the case of a number of
temperature sensors measuring the temperature of an object.

Fusion across attributes. In this situation, a number of sensors measure
different quantities associated with the same experimental situation, as, for
example, in the measurement of air temperature, pressure and humidity to
determine air refractive index.

Fusion across domains. In this situation, a number of sensors measure the
same attribute over a number of different ranges or domains. This arises, for
example, in the definition of the temperature and pressure scales, geodesy,
triangulation, photogrammetry, and theodolite metrology.

Fusion across time. In this situation, current measurements are fused with
historical information, for example, from an earlier calibration [12]. Often
the current information is not sufficient to determine the system (accurately)
and historical information has to be incorporated to determine the system
(accurately).

Consider, for example, the measurement of the length of a gauge block by
a laser-interferometric system. The displacement measured by the interfer-
ometer depends on the refractive index of air which in turn depends on air
temperature, pressure and humidity. The length of the gauge block also
depends on its own temperature so this also has to be monitored. Thus, in
order to estimate the gauge block length, at least five sensors are required
to measure interferometer fringe counts, air temperature, pressure, humidity
and artefact temperature.

In this report we consider parameter estimation techniques for analyzing
data associated with measurement systems subject to a number of differ-
ent random effects. In determining the parameter estimates the nature of
these random effects have to be taken into account. For well-characterized
systems, it is usually possible to design an estimation algorithm that gives
appropriate weight to the different types of data in order to arrive at these
estimates. For systems that are only partially characterized, the way forward
is less straightforward and it is possible that our prior expectations could
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lead to an analysis method that makes poor use of the data. We look instead
for methods that take into account our prior expectations but are flexible
enough to make adjustments in the light of the data to hand. As with
all parameter estimation methods in metrology, we are required to provide
uncertainties associated with the estimates of fitted parameters.

This report is organized as follows. In section 2, we give an overview
of parameter estimation in the context of data fusion and describe the
generalized maximum likelihood estimation approach (GMLE). In sections 3
to 6, we illustrate how the GMLE approach can be applied to problems
relevant to metrology. In section 7, we discuss the algorithmic and software
requirements for GMLE. In section 8, we present a summarizing discussion.

2 Data fusion and parameter estimation

In this section we give an overview of an approach to data fusion that
generalizes standard approaches used in metrological data analysis. We
suppose we are interested in a finite set of parameters α = (α1, . . . , αn)T

and that we wish to provide estimates of α and associated uncertainties
derived from measurement information. We illustrate standard approaches
to parameter estimation on a response calibration.

2.1 Classical least-squares analysis for linear models

Suppose we have a linear model in which the response η = φ(ξ,α) depends
on a variable ξ and parameters α = (α1, . . . , αn)T with

φ(ξ,α) =
n∑
j=1

αjφj(ξ).

We assume that measurements yi of ηi = φ(ξi,α) are made corresponding
to known values ξi, i = 1, . . . ,m, m ≥ n. To model the random effects
associated with the measurements of η, we suppose that

yi = ηi + εi,

where εi is an observation of a random variable Ei and E = (E1, . . . , Em)T

is such that its expectation E(E) = 0 and it variance Var(E) = σ2I [24].
Equivalently, yi is an observation of the random variable Yi with Yi = ηi+Ei.
Let C be the fixed, m× n observation matrix with Cij = φj(ξi) and let cT

i

be the ith row of C. The least-squares estimate a of α, given y, minimizes

F (α|y) = (y − Cα)T(y − Cα) =
m∑
i=1

(yi − cT
i α)2.
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The solution estimate is a = C†y, where C† = (CTC)−1CT is the pseudo-
inverse of C. If C has QR decomposition

C = QR =
[
Q1 Q2

] [
R1

0

]
= Q1R1, (1)

where Q is an orthogonal matrix and R is upper-triangular [8, 17], then
C† = R−1QT

1 . We note that the estimate a does not depend on σ.

2.1.1 Uncertainty matrix associated with the least squares esti-
mate

For fixed C and Y an m-vector of random variables, the equation A = C†Y
defines the n-vector A of random variables as linear combinations of Y .
Taking expectations, we have

E(A) = E(C†Y ) = C†η = C†Cα = α,

and the covariance matrix associated with A is

VA = Var(A) = C†σ2I(C†)T = σ2(CTC)−1. (2)

We note here that VA does not depend on the observations y. If y is sampled
from Y with E(Y ) = Cα, Var(Y ) = σ2I, then a is sampled from A with
E(A) = α, Var(A) = VA.

2.1.2 Posterior estimate of σ

IfXi ∼ N(0, 1), i = 1, . . . ,m, are independent normal variates then
∑m

i=1X
2
i

has a χ2
m distribution with E(χ2

m) = m and Var(χ2
m) = 2m. Let R be the

random vector of residuals so that

R = Y − CA = Y − CC†Y = (I − CC†)Y .

If C = Q1R1 as in (1), then CC† = Q1Q
T
1 and I −Q1Q

T
1 = Q2Q

T
2 , so that

S2 = RTR =
(
QT

2 Y
)T
QT

2 Y .

Now Q is orthogonal so setting Ỹ = QY we have Var(Ỹ ) = I also.
Therefore, S2 =

∑m
i=n+1 Ỹ

2
i is a sum of squares ofm−n independent, normal

variates and has a χ2
ν distribution with ν = m− n degrees of freedom, with

E(S2) = ν, Var(S2) = 2ν. From this analysis, we see that given a least
squares solution a, a posterior estimate of the input σ is s with

s2 =
rTr
m− n

. (3)
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While this estimate is derived under the assumption that the random effects
are governed by a Gaussian distribution, it is likely to be a good approxima-
tion for distributions with similar features, e.g., unimodal (that is, having
one peak). A posterior estimate of the uncertainty matrix associated with
a is

Va = s2
(
CTC

)−1
. (4)

We note that this estimate, in contrast to VA in (2), does depend on the
observed data y.

2.2 Maximum likelihood estimation

We now make the further assumption that Ei are normally distributed
with E ∈ N(0, σ2I). Then, the probability p(yi|α, σ) of observing yi given
parameters α and σ is

p(yi|α, σ) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(yi − cT

i α)2
}
,

and, since the random variables Ei are independently distributed, the prob-
ability of observing y is the likelihood function

l(α, σ|y) = p(y|α, σ) =
m∏
i=1

p(yi|α, σ)

=
1

(2πσ2)m/2
exp

{
− 1

2σ2

m∑
i=1

(y − i− cT
i α)2

}
. (5)

(The notation suggests that the likelihood function is viewed as a function
of α and σ with the observed data regarded as fixed. The notation p(y|α, σ)
indicates the probability density function p(Y |α, σ), a function of Y depend-
ing on parameters α and σ, evaluated at Y = y.) The log likelihood function
is given by

L(α, σ|y) = −m log σ − m

2
log(2π)− 1

2σ2

m∑
i=1

(yi − cT
i α)2.

The likelihood is maximized by a and s if a minimizes

F (α|y) =
m∑
i=1

(yi − cT
i α)2,

and s is such that

s2 =

√
rTr
m

, (6)
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Figure 1: Log likelihood surface −L(α, σ|y) associated with the estimation
of α and σ for data yi ∈ N(0, 1) with 20 data points, plotted as a function
of α and log σ2.

where r = y−Ca are the residuals at the solution. We note that ML estimate
of a for normally distributed Ei is the same as the least squares estimate
estimate while (6) differs (slightly) from that derived from the expectation
of the χ2 distribution in (3). Figures 1 and 2 graph the negative likelihood
surfaces associated with determining a constant α and standard deviation
σ from 20 and 100 data points sampled from a normal distribution. The
surface for 20 points is flatter than that for 100, so that the minimum is less
well defined for 20 points.

2.3 Bayesian formulation

Both least squares and maximum likelihood methods are based on a so-called
classical approach to statistical inference. In this model, the parameters α
we are trying to determine are fixed but unknown. The measurements y
are assumed to have been generated according to a statistical model whose
behaviour depends on α. (We assume here that α represents all the relevant
parameters, including σ.) On the basis of the measurements y estimates a
are found for α. These estimates are regarded as a sample from a vector
of random variables A and the uncertainty associated with a is determined
from the distribution associated with this random vector.
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NPL Report CMSC 38/04

Figure 2: As Figure 1 but with 100 data points.

In a Bayesian formulation [3, 20, 25], our knowledge about α is encoded in
a probability distribution p(α|I) derived from the information I we have to
hand. As more information is gathered through measurement experiments,
for example, these distributions are updated.

In the context of data analysis, we assume a prior distribution p(α) and that
data y has been gathered according to a sampling distribution depending on
α from which we can calculate the probability p(y|α) of observing y. This
probability is the same as the likelihood function l(α|y) used in maximum
likelihood estimation. Bayes Theorem states that the posterior distribution
p(α|y) for α after observing y is related to the likelihood and the prior
distribution by

p(α|y) = kp(y|α)p(α), (7)

where the constant k is chosen to ensure that the posterior distribution
integrates to 1, i.e, ∫

p(α|y) dα = 1.

In this form, Bayes theorem says that the posterior distribution is the
likelihood weighted by the prior distribution.

Page 6 of 45 http://www.npl.co.uk/ssfm/download/documents/cmsc38 03.pdf
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2.3.1 Generalized maximum likelihood estimate

The posterior distribution represents all the information about α taking
into account the measurement data y and the prior information. In practice,
summary information about this distribution is required and in metrology it
is usual to provide parameter estimates along with associated uncertainties.
Ideally, this would be in the form of the mean (expectation) and variance
of the posterior distribution. However, both these quantities require inte-
gration of multivariate functions and for problems involving even a modest
number of parameters, 10 say, this integration is computationally expensive.
For large problems it becomes impractical.

An alternative to providing estimates that require global knowledge of the
distribution is to provide an approximation to the distribution on the basis
of local knowledge. This is the approach taken in generalized maximum
likelihood estimation (GMLE), also known as maximizing the posterior
(MAP) [20]. The main idea is to determine a quadratic approximation
to the logarithm L(α) = log p(α|y) of the posterior distribution about its
mode a:

L(α) ≈ L(a) +
1
2
(α− a)TH(α− a), (8)

where

Hjk =
∂2L

∂αj∂αk

is the Hessian matrix of second partial derivatives of L evaluated at the max-
imum a. (The linear term in this approximation is absent since ∂L/∂αj = 0
at the maximum.) This approximation is sometimes referred to the Laplace
approximation [20]. Taking exponentials of (8), we approximate the poste-
rior distribution by

p(α|y) ≈ k exp
{

1
2
(α− a)TH(α− a)

}
,

where k is a normalizing constant. Recognizing this as a multivariate normal
distribution, setting V = −H−1, we have

p(α|y) ≈ 1
|2πV |1/2

exp
{
−1

2
(α− a)TV −1(α− a)

}
,

i.e., α ∼ N(a, V ). (The notation |V | denotes the determinant of V .) This
approach provides parameter estimates a and associated uncertainty matrix
V using standard nonlinear optimization techniques. We note that we can
determine these terms without knowing the constant of proportionality in
(7). In practice, we minimize − log p(α|y) so that V is set to be the inverse
of the Hessian matrix.
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As with most approximating methods, this approach has to be used with
some care. The multivariate normal distribution is unimodal and symmet-
ric. If the true posterior distribution is multimodal or skewed, then the
approximation could well provide poor information. (There may also be
numerical difficulties in implementing the approach in these circumstances.)

2.3.2 GMLE method for linear responses

For the case of the linear response considered above in section 2.1, the like-
lihood is given by (5). The prior p(α, σ) should reflect what is known before
the experiment takes place. If nothing is known, then an non-informative
prior should be assigned which is essentially constant so that the posterior
distribution is proportional to the likelihood. In metrological examples it
is likely that some prior information is available, based on nominal values
or previous experience using the measuring instrument, for example. In
these circumstances, we may propose a prior distribution for α of the form
p(α) = N(α0, τ

2I) and one for σ of the form

log σ2 ∼ N(log σ2
0, (log ρ)2), ρ ≥ 1,

where α0, τ , σ0 and ρ are specified. Roughly, this says that we are 95%
certain that σ2

0/ρ
2 ≤ σ2 ≤ σ2

0ρ
2. (We might prefer to use, for example, a

beta or gamma distribution instead of a log normal distribution to represent
our knowledge about in σ, but the general approach would be essentially the
same.) Assuming α and σ are independently distributed, the logarithm of
the prior distribution is given by

− log p(α, σ) =
1
2

log
(
2πτ2

)
+

1
2τ2

n∑
j=1

(αj − α0,j)2 +

1
2

log
(
2π(log ρ)2

)
+

1
2(log ρ)2

(log σ2 − log σ2
0)

2.

The generalized ML estimate is found by minimizing

− log p(α, σ|y) =
m

2
log σ2 +

1
2σ2

m∑
i=1

(yi − cT
i α)2 +

1
2τ2

n∑
j=1

(αj − α0,j)2 +
1

2(log ρ)2
(log σ2 − log σ2

0)
2,

with respect to α and σ.
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2.4 GMLE applied to data fusion problems

In the following sections, we illustrate how generalized maximum likelihood
estimation can be used for parameter estimation in data fusion on a number
of examples. A common feature in all the examples is the requirement to
weight different sources of information appropriately so that best use is made
of the data and the prior information.
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3 Multiple random effects

In many measuring instruments, the variance of the random effects associ-
ated with the measurements has a dependence on the response value. As an
example, suppose the model is

η = Cα, Yi = ηi + Ei, Ei ∼ N(0, (σ1 + σ2ηi)2), (9)

with the random variables Ei independently distributed and that y is a set
of observations of Y . The likelihood of observing yi given α and σ is

p(yi|α,σ) =
(
φi
2π

)1/2

exp
[
−φi

2
(yi − cT

i α)2
]
,

where φi = φi(α,σ) = 1/(σ1 + σ2ηi)2. The log likelihood L(α,σ|y) =
log p(y|α,σ) is given by

−L(α,σ|y) = −
m∑
i=1

log p(yi|α,σ),

=
1
2

{
−

m∑
i=1

log φi +
m∑
i=1

φi(yi − cT
i α)2

}
.

For a prior distribution, we set

− log p(α,σ) = u2(log σ1 − log σ1,0)2 + v2(σ2 − σ2,0)2 + Const.,

where u and v are weights that reflect our confidence in the prior estimates
σk,0, k = 1, 2. This distribution reflects some prior information avout σ
but none about α since with σ fixed, p(α,σ) is constant. The use of a log
normal prior distribution is intended to reflect our belief that the estimate
σ0 is equally likely to be an under- or overestimate by a multiplicative
factor. As defined, p(α,σ) is an improper distribution as its integral over
α is infinite. We could instead choose a prior which was zero outside some
region Ω ⊂ Rn of sufficiently large but finite volume. However, since our
approximation to the posterior distribution is based only local information,
both priors would lead to the same parameter estimates and uncertainties
(so long as the region Ω contained the solution estimate of α).

Estimates of α and σ are found by minimizing

F (α,σ|y) = −L(α,σ|y) + u2(log σ1 − log σ1,0)2 + v2(σ2 − σ2,0)2,

with respect to α and σ. If H is the Hessian matrix at the solution (a, s)
and V = H−1 its inverse, then the standard uncertainties associated with
the estimates of the fitted parameters are the square roots of the diagonal
elements of V .

Page 10 of 45 http://www.npl.co.uk/ssfm/download/documents/cmsc38 03.pdf



NPL Report CMSC 38/04

Figure 3: Data generated for a quadratic response and model (9) with α =
(0.0, 1.0, 2.0)T and σ = (0.10, 0.02)T.

Figure 4: Data generated for a quadratic response and model (9) with α =
(0.0, 1.0, 2.0)T and σ = (0.02, 0.10)T.

http://www.npl.co.uk/ssfm/download/documents/cmsc38 03.pdf Page 11 of 45
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To illustrate the GMLE approach we have generated data according to the
model (9) for a quadratic response η = α1+α2ξ+α3ξ

2 to data generated with
α = (0.0, 1.0, 2.0)T and firstly with σ = (0.10, 0.02)T: see Figure 3. We have
set prior estimates σk,0 = 0.05, k = 1, 2, and weights 1) u = v = 0.0001 and
2) u = v = 10000.0, corresponding to weakly and strongly weighted prior
information, respectively. Table 1 gives the resulting estimates a and s along
with their associated uncertainties u. Table 2 gives corresponding results for
data generated with σ = (0.02, 0.10)T, Figure 4, with all other parameters
as above. The tables show that for the weakly weighted prior information,
the posterior estimates of σ are reasonable while for the strongly weighted,
the posterior estimates are close to the prior values, as to be expected.

To obtain an indication of the validity of the uncertainty estimates u, we
have repeated these numerical simulations N times, recording the estimates
aq, sq and uq, q = 1, . . . , N , and then calculating the sample means ā, s̄
and ū and sample standard deviations s(a) and s(s). At the same time
we compare the behaviour of the GMLE algorithm with a weighted least
squares algorithm (WLS) which we now describe.

Given a model of the form

η = Cα, Yi = ηi + Ei, Ei ∼ N(0, σ2
i ), (10)

with σi known, the appropriate least squares estimate a of α is found by
solving the weighted linear least squares problem

min
α

m∑
i=1

w2
i (yi − cT

i α)2, (11)

with wi = 1/σi. The difficulty with applying (10) to the problem formulated
by (9) is that the standard deviations σ1 + σ2ηi depend on the unknowns
α through η. However, we can use the observed yi as an estimate of ηi
and solves (11) with ci = (1, xi, x2

i ) and wi = 1/(σ1,0 + σ2,0yi) to provide a
solution estimate aWLS .

For the N Monte Carlo trials we record estimates aWLS,q, sample mean
āWLS and sample standard deviation s(aWLS). Tables 3 and 4 give the
results for N = 5000 Monte Carlo trials for data generated with α =
(0.0, 1.0, 2.0)T, σk,0 = 0.05, k = 1, 2, u = v = 0.0001, and σ = (0.10, 0.02)T

and σ = (0.02, 0.10)T, respectively. The tables show i) the GMLE algorithm
produces good estimates of both α and σ, ii) the estimated uncertainties
ū are in line with the sample standard deviations s(a) and s(s) and iii) on
average, the GMLE algorithm produces better estimates of the parameters
α than the WLS algorithm.

For both types of dataset illustrated by Figures 3 and 4, the data has
provided sufficient information from which to provide point estimates of
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u, v = 0.0001 u, v = 10000.0
a, s u a, s u

α1 0.00 0.0338 0.028 0.0471 0.018
α2 1.00 0.8400 0.145 0.7673 0.115
α3 2.00 2.1643 0.153 2.2375 0.138
σ1 0.10 0.0874 0.012 0.0502 0.001
σ2 0.02 0.0247 0.010 0.0547 0.006

Table 1: Estimates a and s of α and σ determined by the GMLE algorithm
and associated uncertainties u for data generated with α = (0.0, 1.0, 2.0)T,
σ = (0.10, 0.02)T, prior estimates σk,0 = 0.05, k = 1, 2, and weights 1)
u = v = 0.0001 and 2) u = v = 10000.0 .

u, v = 0.0001 u, v = 10000.0
a, s u a, s u

α1 0.00 0.0142 0.008 0.0082 0.018
α2 1.00 0.8899 0.078 0.9182 0.120
α3 2.00 2.1537 0.119 2.1311 0.147
σ1 0.02 0.0145 0.004 0.0499 0.001
σ2 0.10 0.0997 0.010 0.0638 0.006

Table 2: As Table 1 but for data generated with σ1 = 0.02, σ2 = 0.10.

α1 α2 α3 σ1 σ2

α, σ 0.0000 1.0000 2.0000 0.1000 0.0200
ā, s̄ 0.0001 0.9990 2.0011 0.0977 0.0198

s(a), s(s) 0.0311 0.1572 0.1618 0.0131 0.0107
ū 0.0303 0.1541 0.1589 0.0128 0.0104

āWLS -0.0187 1.0085 1.9990
s(aWLS) 0.0341 0.1794 0.1871

Table 3: Results of 5000 Monte Carlo trials comparing GMLE and WLS
algorithms on datasets generated with σ1 = 0.10 and σ2 = 0.02.

α1 α2 α3 σ1 σ2

α, σ 0.0000 1.0000 2.0000 0.0200 0.1000
ā, s̄ 0.0000 1.0005 1.9990 0.0185 0.0998

s(a), s(s) 0.0092 0.0882 0.1307 0.0051 0.0113
ū 0.0086 0.0849 0.1259 0.0047 0.0109

āWLS -0.0007 0.9942 1.9566
s(aWLS) 0.0120 0.1142 0.1609

Table 4: Results of 5000 Monte Carlo trials comparing GMLE and WLS
algorithms on datasets generated with σ1 = 0.02 and σ2 = 0.10.
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the parameters σ. If we consider instead data as in Figure 5, the fact
that the responses ηi are approximately constant means that there is little
information from which to determine both σ1 and σ2. Increasing σ1 has
the same effect as increasing σ2, for example. For this dataset, the results
corresponding to Table 1 are presented in Table 5. For tje case of the weakly
weighted prior information, the estimate s of σ differs significantly from the
values used to generate the data but are consistent with the data. The
correlation matrix associated with the estimates s of σ is[

1.0000 −0.9874
−0.9874 1.0000

]
showing that σ1 is negatively correlated with σ2.
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Figure 5: Data generated for a quadratic response and model (9) with α =
(1.0, 0.0, 0.1)T and σ = (0.10, 0.02)T.

u, v = 0.0001 u, v = 10000.0
a, s u a, s u

α1 1.00 1.0319 0.032 1.0330 0.031
α2 0.00 -0.1340 0.149 -0.1362 0.146
α3 0.10 0.2304 0.147 2.2319 0.143
σ1 0.10 0.0011 0.050 0.0500 0.001
σ2 0.02 0.1078 0.050 0.0571 0.005

Table 5: Estimates a and s of α and σ determined by the GMLE algorithm
and associated uncertainties u for data generated with α = (1.0, 0.0, 0.1)T,
σ = (0.10, 0.02)T, prior estimates σk,0 = 0.05, k = 1, 2, and weights 1)
u = v = 0.0001 and 2) u = v = 10000.0 .
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4 Weighted least squares problems

In this section we consider the case where we wish to determine estimates of
parameters α from measurements arising from different sources. We assume
a model of the form

η = Cα, Yi = ηi + Ei, Ei ∼ N(0, σ2
i ),

where C is an m × n matrix, the random variables Ei are independently
distributed and y are a set of observations of Y . Associated to each mea-
surement yi is an estimated standard uncertainty σi,0.

The likelihood of observing yi given α and σ is

p(yi|α,σ) =
(

1
2πσ2

i

)1/2

exp
[
− 1

2σ2
i

(yi − cT
i α)2

]
,

The log likelihood L(α,σ|y) is given by

−L(α,σ|y) = −
m∑
i=1

log p(yi|α,σ),

=
1
2

∑
i

log 2πσ2
i +

1
2

∑
i

1
σ2
i

(yi − cT
i α)2.

Notice that the maximum likelihood estimate of α and σ is not well defined
since there are m+n parameters and only m observations. In order to arrive
at such estimates it is necessary to add further information. This can be in
the form of prior distributions for σ. For example we can propose that

log σi ∼ N(log σi,0, (log ρ)2), ρ ≥ 1.

The generalized ML estimate is found by minimizing

F (α,σ|y) = −L(α,σ|y) +
1

2(log ρ)2)

m∑
i=1

(log σi − log σi,0)
2 ,

with respect to α and σ. We note that if the prior distribution does not
involve α the posterior estimate of α is the same as the least squares estimate
with weights wi = 1/si, where si is the posterior estimate of σ.

4.1 Example: measurement of the Newtonian gravitational
constant

We wish to determine a (combined) estimate of the Newtonian constant of
gravitation G from ten measurements as considered by Weise and Wöger
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Figure 6: Data yi along with intervals yi±σi,0 and yi± si, where σi,0 and si
are the prior and posterior estimates for σi, associated with measurements
of G. The dashed line represents the weighted least squares estimate
determined from σ0 while the solid line is that determined from s.

[26]. Figure 6 plots the estimates yi and, on the left, the intervals yi± 2σi,0.
Observations 4 and 7 have relatively large prior estimates of σi. Observation
10 has a small estimate of σ10 but a value considerably different from the
other measurements. The dashed line corresponds to the weighted least
squares estimate of G based on the data y and weights wi = 1/σi,0. It is
seen that observation 10 has skewed the least squares estimate away from
the majority of the data. In order to obtain a more consistent view of the
data we regard σi,0 not as exact but as defining the mean for a log normal
distribution for σi. The righthand set of intervals are yi±2si where si is the
posterior estimate of σi. It is seen that the posterior estimate associated with
observation 10 is greatly increased. The solid line represents the posterior
estimate of G and is seen to be consistent with y and s. The issue of
adjusting uncertainty matrices V associated with the measurement data in
order to obtain data and model conformity is discussed in [6].
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5 Random effects associated with more than one
variable: generalized regression

We now consider the case where two sensors are required to measure the x
and y variables. Both sensor measurements are subject to random effects
independently distributed according to a Gaussian model so that the model
equations are of the form

ηi = φ(ξi,α),
xi = ξi + δi, yi = ηi + εi,
δ ∈ N(0, σ2

1I), ε ∈ N(0, σ2
2I).

 (12)

The probability p(xi, yi|ξi,α,σ) of observing data point (xi, yi), given ξi, α
and σ is

p(xi, yi|ξi,α,σ) =
1

2πσ1σ2
exp

[
− 1

2σ2
1

(xi − ξi)2 −
1

2σ2
2

(yi − φ(ξi,α))2
]
.

The log likelihood function L associated with X = {(xi, yi)} is given by

−L(ξ,α,σ|X) = m log 2π +m log σ1 +m log σ2 +

1
2σ2

1

m∑
i=1

(xi − ξi)2 +
1

2σ2
2

m∑
i=1

(yi − φ(ξi,α))2.

If σ is known, then least squares estimates a of α are found by solving the
nonlinear optimization problem

min
ξ,α

{
1

2σ2
1

m∑
i=1

(xi − ξi)2 +
1

2σ2
2

m∑
i=1

(yi − φ(ξi,α))2
}
.

The MLE is found by minimizing −L(ξ,α,σ|X) to determine estimates x∗,
a and s. The solution a and x∗ minimize

1
s21

m∑
i=1

(xi − x∗i )
2 +

1
s22

m∑
i=1

(yi − φ∗i )
2,

where φ∗i = φ(x∗i ,a), and depend on the ratio s1/s2. We also have

s21 =
1
m

m∑
i=1

(xi − x∗i )
2, s22 =

1
m

m∑
i=1

(yi − φ∗i )
2.

In a GMLE approach, we incorporate prior information about the variables
ξ, α and σ.
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Figure 7: Data generated according to model (13) with α = (0.0, 0.0, 1.0)T

and σ = (0.02, 0.08)T.

5.1 Example: circle fitting

To illustrate the GMLE approach, we consider the case of fitting a circle
specified by centre coordinates (α1, α2) and radius α3 to xy-data in which the
x− and y− coordinates are subject to random effects drawn from Gaussian
distributions with potentially different standard deviations. The model is

ξi = α1 + α3 cos θi,
ηi = α2 + α3 sin θi,
xi = ξi + δi, yi = ηi + εi,
δ ∈ N(0, σ2

1I), ε ∈ N(0, σ2
2I).

 (13)

Figure 7 illustrates 120 data points generated with α = (0.0, 0.0, 1.0)T and
σ = (0.02, 0.08)T. The log likelihood L(θ,α,σ|X) associated with data
points X = {(xi, yi)} is therefore

−L(θ,α,σ|X) = m log 2π +m log σ1 +m log σ2 +

1
2σ2

1

m∑
i=1

(xi − x∗i )
2 +

1
2σ2

2

m∑
i=1

(yi − y∗i )
2,

where x∗i = α1 + α3 cos θi and y∗i = α2 + α3 sin θi. We choose a prior
distribution p(θ,α,σ) of the form

− log p(θ,α,σ) = u2(log σ1 − log σ1,0)2 + v2(log σ2 − log σ2,0)2 + Const.,
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reflecting prior knowledge about σ which is weighted by u and v. GMLE
estimates t, a and s of the parameters θ, α and σ are determined by
minimizing

F (θ,α,σ|X) = −L(θ,α,σ|X) +
u2(log σ1 − log σ1,0)2 + v2(log σ2 − log σ2,0)2,

with respect to θ, α and σ. If H is the Hessian matrix at the solution
(t,a, s), V = H−1 its inverse, then the standard uncertainties associated
with the estimates of the fitted parameters are the square roots of the
diagonal elements of V .

Table 6 shows the results of applying the GMLE approach to data generated
as for Figure 7 with σ0 = (0.04, 0.04)T and different weights u and v. For
u = v = 100, the posterior estimate of σ is essentially the same as the prior
estimates σ0. As u and v become smaller the ratio s2/s1 becomes larger
and for u, v = 5.0 this ratio is close to that σ2/σ1 = 4.0 used to generate
the data. For u, v = 2.5, however, the posterior estimate of σ1 becomes very
small, 0.0003 compared to the value of 0.02 used to generate the data. If we
look at the solution estimates t for this case we find that they are such that
x∗i is very close to xi so that the estimate of σ1 can become small without
the likelihood becoming small. We will return to this point below.

Up to now we have found GMLE parameter estimates on the basis of prior
information that is accorded a fixed weight. We can introduce further
flexibility by assigning prior distributions rather than fixed values to these
weights. We can therefore consider a prior distribution of the form

− log p(θ,α,σ,ω) = ω2
1(log σ1 − log σ1,0)2 + ω2

2(log σ2 − log σ2,0)2 +
u2(logω1 − logω1,0)2 + v2(logω2 − logω2,0)2

+Const.,

where the weights ω themselves have a log normal prior distribution. The
last two lines of Table 6 give the parameter estimates and their associated
uncertainties obtained from using this augmented prior distribution with
ω0 = (10.0, 10.0)T and u = v = 5.0. The posterior estimates w of ω were
w = (8.70, 8.47)T.

One problem we have encountered is that if the prior information is given
too small a weight, the posterior estimate of σ1 can be unrealistically small.
This suggests that the prior distribution does not encapsulate all our prior
expectations about σ. Suppose that in addition to our prior estimates σ0

we also have minimum and maximum values for σ: σmin ≤ σ ≤ σmax. We
use the beta distribution to encode this information.

The probability density function for a beta distribution B(φ, ψ, a, b) defined
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a1 a2 a3 s1 s2
u, v = 100.0

0.0043 -0.0035 1.0085 0.0400 0.0401
0.0052 0.0052 0.0037 0.0002 0.0002

u, v = 20.0
0.0040 -0.0036 1.0079 0.0391 0.0423
0.0051 0.0054 0.0037 0.0010 0.0010

u, v = 10.0
0.0032 -0.0037 1.0062 0.0345 0.0484
0.0049 0.0058 0.0038 0.0018 0.0020

u, v = 5.0
0.0033 -0.0016 1.0047 0.0154 0.0672
0.0033 0.0069 0.0030 0.0016 0.0035

u, v = 2.5
0.0073 0.0028 1.0166 0.0003 0.0933
0.0007 0.0085 0.0007 0.0001 0.0053

ω = (10.0, 10.0)T, u, v = 5.0
0.0028 -0.0037 1.0056 0.0320 0.0513
0.0047 0.0060 0.0037 0.0030 0.0029

Table 6: Estimates a and s of α and σ determined by the GMLE algorithm
and associated uncertainties u for data generated with α = (0.0, 0.0, 1.0)T,
σ = (0.02, 0.08)T, prior estimates σk,0 = 0.04, k = 1, 2, and different
weights u and v for the prior information. For each set of weights, the first
row gives the parameter estimates and the second the associated standard
uncertainties.
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Figure 8: Graphs of beta probability density functions with a = 0, b = 1
and different values of the shape parameters (φ, ψ): a) (0.5,0.5), b) (2.0,2.0),
c) (2.0,4.0) and d) (12.0,4.0).

on an interval [a, b] is

p(x|φ, ψ, a, b) =
(x− a)φ−1(b− x)ψ−1

(b− a)φ+ψ−1

Γ(φ+ ψ)
Γ(ψ)Γ(ψ)

, a ≤ x ≤ b, α, β > 0,

If X ∼ B(φ, ψ, a, b) then

E(X) = µ = a+ (b− a)
φ

φ+ ψ
,

and
Var(X) = σ2 = (b− a)2

φψ

(φ+ ψ)2(φ+ ψ + 1)
.

Conversely, given a, b, mean µ and standard deviation σ, it is possible
to calculate the corresponding φ and ψ values. Figure 8 graphs the beta
probability density functions for a number of values of φ and ψ. As φ and ψ
get large the beta distribution approximates a Gaussian. Figure 9 compares
a beta pdf and Gaussian pdf both with mean µ = 0 and standard deviation
σ = 0.1. On the righthand side is the logarithm of the pdfs showing that the
beta distribution approaches zero more quickly as x approaches a = −0.5
or b = 0.5.

Given σ0, σmin and σmax and standard deviations ρ, we can assign a prior
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Figure 9: On the left, graphs of a beta probability density function with
a = −0.5, b = 0.5, µ = 0.0 and σ = 0.1 and a Gaussian pdf with the
same mean and standard deviation. The Gaussian has the higher peak. On
the right, are graphs of the logarithms of these pdfs. The beta function
approaches zero more quickly as x approaches ±0.5.
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distribution to σk of the form

log σk ∼ B(φk, ψk, log σk,min, log σk,max),

where φk and ψk are such that the expected value of log σk is log σk,0 and
its standard deviation is ρk.

Table 7 shows the parameter estimates a and s for the circle fitting problem
corresponding to prior estimates σ0 = (0.04, 0.04)T, σmin = (0.01, 0.01)T,
σmax = (0.16, 0.16) and values of standard deviations ρ corresponding to the
same choices of weights u and v as in Table 6. Comparing the two tables,
we see that for small standard deviations/large weights the two types of
prior information lead to very similar parameter estimates a and s but as
the weight given to the prior information decreases, the estimate s1 tends
to the lower bound σ1,min for the beta prior distribution rather than to zero
as for the case of the log normal prior.

As for the case of log normal prior distributions, instead of fixing the stan-
dard deviations ρk for the prior beta distributions, we can assign prior distri-
butions for them. For the choice of σ, σmin and σmax, the associated beta
distributions are necessarily symmetric with φk = ψk. The results in Table 8
are for the case where log φk ∼ N(log φk,0, ν2) where φk,0 corresponds to a
standard deviation of 0.1, i.e., φk,0 ≈ 383.9. The table gives the estimates
a, s and p of α, σ and φ, respectively. As ν gets larger, the parameters φk
are more free to move from the prior value of 383.9. The results show that
the posterior estimates of φk ( = ψk) become smaller as ν becomes larger,
indicating that the prior value for σk,0 = 0.04 is accorded less weight.
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a1 a2 a3 s1 s2
ρ = 1/100.0

0.0043 -0.0035 1.0085 0.0400 0.0401
0.0052 0.0052 0.0037 0.0002 0.0002

ρ = 1/20.0
0.0040 -0.0036 1.0079 0.0391 0.0423
0.0051 0.0054 0.0037 0.0010 0.0010

ρ = 1/10.0
0.0032 -0.0037 1.0063 0.0346 0.0483
0.0049 0.0058 0.0037 0.0018 0.0019

ρ = 1/5.0
0.0025 -0.0027 1.0045 0.0200 0.0638
0.0037 0.0067 0.0033 0.0014 0.0032

ρ = 1/2.5
0.0044 0.0004 1.0059 0.0122 0.0787
0.0032 0.0077 0.0029 0.0005 0.0046

Table 7: Estimates a and s of α and σ determined by the GMLE algorithm
and associated uncertainties u for data generated with α = (0.0, 0.0, 1.0)T,
σ = (0.02, 0.08)T, prior estimates σk,0 = 0.04, k = 1, 2, and different
standard deviations ρ for the prior information. For each standard deviation,
the first row gives the parameter estimates and the second the associated
standard uncertainties.

a1 a2 a3 s1 s2 p1 p2

ρ = 0.1, ν = 0.1
0.0032 -0.0037 1.0062 0.0344 0.0485 376.3775 371.0084
0.0049 0.0058 0.0038 0.0019 0.0020 26.9774 26.3756

ρ = 0.1, ν = 0.2
0.0031 -0.0037 1.0060 0.0338 0.0494 349.7008 332.1989
0.0048 0.0059 0.0038 0.0021 0.0023 52.9476 47.9455

ρ = 0.1, ν = 0.3
0.0028 -0.0037 1.0056 0.0318 0.0514 278.1896 264.1674
0.0047 0.0060 0.0037 0.0030 0.0029 79.0253 58.8185

ρ = 0.1, ν = 0.4
0.0037 -0.0010 1.0049 0.0134 0.0655 32.1921 115.0501
0.0030 0.0066 0.0028 0.0011 0.0037 7.7530 26.8746

Table 8: Estimates a and s of α and σ determined by the GMLE algorithm
and associated uncertainties u for data generated with α = (0.0, 0.0, 1.0)T,
σ = (0.02, 0.08)T, prior estimates σk,0 = 0.04, k = 1, 2, and different
standard deviations ρ for the prior information. For each standard deviation,
the first row gives the parameter estimates and the second the associated
standard uncertainties.
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6 Laser tracker case study

A laser tracker is a co-ordinate measuring instrument that determines the
location of a target in three dimensions from measurements of azimuth and
elevation angles and radial distance. The radial distance measurement is
made using a laser interferometric transducer that records changes in optical
displacement. In order to arrive at a geometric displacement, it is necessary
to correct for the refractive index of the air. Both angle and interferometric
measurements are subject to random effects due to changes in the refractive
index of the air along the light path. A uniform increase in the refractive
index increases the optical distance measurement but has no effect on the
angle measurement. On the other hand, a uniform gradient in the refractive
index orthogonal to the light path will cause the light path to bend affecting
the angle measurements significantly with little effect on the displacement
measurement. In order to determine the appropriate correction factor for
the interferometric measurements it is necessary to estimate the average
refractive index along the light path. For angle measurements, to make the
appropriate correction it is necessary to know the refractive index at every
point along the light path. In practice, the refractive index is estimated
from pressure and temperature measurements made at a small number of
locations and so the lack of knowledge about the refractive index is a major
source of uncertainty. Furthermore, because the environmental conditions
affect the angle and displacement measurements in different it ways it is
very difficult to assign a priori estimates of the relative uncertainties for a
given set of environmental conditions.

In order to improve the accuracy of such measurements NPL, and others,
have assembled multi-station systems, combining measurements from up
to four laser tracker systems. While trackers may have similar measuring
characteristics, their performance will depend on their calibration history
and on their position within the measuring environment, leading to different
uncertainties associated with their measurements. Again, it is difficult to
assign these uncertainties a priori.

We look for a GMLE approach that will help assign appropriate uncer-
tainties on the basis of the measurements themselves along with any prior
information.

6.1 Model for a two-dimensional system

In order to describe the basic approach more compactly, we consider a two
dimensional system involve measurements of angle and distance. If a tracker
is located at p = (p, q)T and the target is at ξ = (ξ, η)T, the angle θ is given
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Figure 10: Example target ‘+’ and station ‘o’ locations for a three station
laser tracker system.

by

θ = tan−1

(
η − q

ξ − p

)
,

and the distance is
λ = ‖ξ − p‖.

We assume that the tracker records measurements u = (t, l)T with

t = θ + δ, l = λ+ ε, δ ∈ N(0, σ2
1), ε ∈ N(0, (σ2 + σ3λ)2).

Therefore, the likelihood of observing u given ξ and σ = (σ1, σ2, σ3)T is

p(u|ξ,σ) =
1

(2πσ2
1)1/2

exp
{
− 1

2σ2
1

(t− θ)2
}

× 1
(2π(σ2 + σ3λ)2)1/2

exp
{
− 1

2(σ2 + σ3λ)2
(l − λ)2

}
.

We assume we have nT trackers at locations pk, k = 1, . . . , nT , that take
measurements U = {ui, i = 1, . . . ,m} associated with targets {ξj , j =
1, . . . , nX}. We associate to the ith measurement indices (j(i), k(i)) that
specify the corresponding target and station. Figure 10 shows example
station and target locations.

We assign beta prior distributions for the logarithm of the parameters σk =
(σk,1, σk,2, σk,3)T associated with the kth station in terms of maxima σk,max,
minima σk,min, prior estimates σk,0 and standard deviations ρk.
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6.2 Numerical simulations

Below we report the results of experiments with nX = 10 targets with
data generated with σk = (1.0e − 5, 1.0e − 3, 1.0e − 6)T. The prior beta
distributions were specified by σk,0 = (5.0e − 6, 2.0e − 3, 2.0e − 6)T which
represents an over-weighting of the angle measurements relative to the length
measurements by a factor of four, σk,max = 20.0 × σk,0 and σk,min =
σk,0/10.0.

In Table 9 we present the solution estimates sk of σk, k = 1, 2, 3, for various
values of the standard deviation ρ. Each group of nine rows holds the
estimates sk, k = 1, 2, 3. For small values of ρ, the solution estimates sk
are close to the prior estimates σk,0 as is to be expected. As ρ becomes
larger the posterior estimates become more in line with the values σk used
to generate the data. For large values of ρ, the values of sk associated with
the length measurements using trackers 2 and 3 become small relative to the
values of the other parameters. As in the case of generalized regression, if
the prior information is accorded too low a weight, the optimization scheme
finds a local minimum that corresponds to regarding two of the sensors as
very accurate and all others inaccurate.

We also examine in Table 10 the uncertainties associated with the estimated
target locations xi for different values of ρ. The pairs of columns correspond
to the uncertainties associated with the estimates of the x− and y− co-
ordinates. The groups of the rows correspond to the ten targets. As ρ
increases, the GMLE has more flexibility to make better use of the data
and the uncertainties associated with the targets reduce. For large values,
however, these estimates become unrealistically small since the posterior
estimates sk correspond to having two very accurate length measurements
which are sufficient to determine the targets accurately.

According a low weight to the prior information leads, in the example
considered here, to estimates in which some of the sensors are assigned
an unrealistically small uncertainty. This is an unwelcome feature and we
would like to improve on this. The first point to make is that the maximum
and minimum values for σk in this example corresponded to a very broad
band with σk,max = 200σk,min. In practice, we would reduce the range
by an order of magnitude. This would ensure that any posterior estimate
has some feasibility. The second point is that while we may expect one
tracker to be perhaps twice as accurate as another, we do not expect there
to be an order of magnitude difference as in the case ρ = 0.20 in Table 9.
Our prior information, as it is currently formulated, does not reflect this
expectation and the unrealistic posterior estimates are the consequence of
this omission. In Table 11, we record the estimates s of σ = (σ1, σ2, σ3)T

Page 28 of 45 http://www.npl.co.uk/ssfm/download/documents/cmsc38 03.pdf



NPL Report CMSC 38/04

σk σk,0 ρ
0.001 0.01 0.05 0.07

1.0e-5 5.0e-6 5.0034e-6 6.5506e-6 7.5366e-6 8.1740e-6
1.0e-3 2.0e-3 2.0000e-3 1.9465e-3 1.8461e-3 1.7556e-3
1.0e-6 2.0e-6 1.9997e-6 1.7336e-6 1.4062e-6 1.1959e-6
1.0e-5 5.0e-6 5.0014e-6 5.9259e-6 6.9450e-6 7.7306e-6
1.0e-3 2.0e-3 1.9999e-3 1.8834e-3 1.6592e-3 1.3459e-3
1.0e-6 2.0e-6 1.9996e-6 1.6694e-6 1.2546e-6 8.9005e-7
1.0e-5 5.0e-6 5.0031e-6 6.4846e-6 7.4682e-6 8.0889e-6
1.0e-3 2.0e-3 1.9999e-3 1.9292e-3 1.7514e-3 1.4601e-3
1.0e-6 2.0e-6 1.9997e-6 1.7251e-6 1.2867e-6 8.8979e-7

0.09 0.11 0.15 0.20
1.0e-5 5.0e-6 8.5921e-6 8.8678e-6 9.1424e-6 9.3329e-6
1.0e-3 2.0e-3 1.7279e-3 1.7351e-3 1.7907e-3 2.0796e-3
1.0e-6 2.0e-6 1.1272e-6 1.1082e-6 1.0799e-6 1.0079e-6
1.0e-5 5.0e-6 8.2217e-6 8.5158e-6 8.8272e-6 9.0055e-6
1.0e-3 2.0e-3 1.0194e-3 7.5801e-4 4.6114e-4 3.0231e-4
1.0e-6 2.0e-6 6.2604e-7 4.5961e-7 3.0379e-7 2.3484e-7
1.0e-5 5.0e-6 8.4750e-6 8.7304e-6 8.9719e-6 9.1478e-6
1.0e-3 2.0e-3 1.1226e-3 8.4065e-4 5.1032e-4 3.2332e-4
1.0e-6 2.0e-6 6.1521e-7 4.5091e-7 2.9993e-7 2.3317e-7

Table 9: Estimates sk of the parameters σk determined from simulated
laser tracker measurement data using beta prior distributions with different
standard deviations ρ.
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ρ

0.001 0.01 0.05 0.07

0.0072 0.0083 0.0073 0.0085 0.0062 0.0076 0.0049 0.0059
0.0081 0.0076 0.0081 0.0076 0.0065 0.0058 0.0051 0.0043
0.0107 0.0102 0.0108 0.0103 0.0088 0.0081 0.0066 0.0062
0.0078 0.0072 0.0078 0.0072 0.0065 0.0054 0.0052 0.0041
0.0075 0.0080 0.0076 0.0081 0.0059 0.0066 0.0045 0.0053

0.0100 0.0116 0.0101 0.0117 0.0082 0.0099 0.0063 0.0076
0.0079 0.0078 0.0079 0.0078 0.0062 0.0059 0.0047 0.0045
0.0082 0.0113 0.0082 0.0115 0.0068 0.0109 0.0053 0.0086
0.0068 0.0058 0.0068 0.0058 0.0060 0.0043 0.0048 0.0032
0.0114 0.0113 0.0117 0.0115 0.0100 0.0092 0.0073 0.0069

0.09 0.11 0.15 0.20

0.0037 0.0044 0.0028 0.0033 0.0019 0.0021 0.0014 0.0016
0.0038 0.0031 0.0029 0.0023 0.0019 0.0015 0.0014 0.0011
0.0048 0.0046 0.0035 0.0034 0.0023 0.0022 0.0017 0.0017
0.0039 0.0030 0.0029 0.0022 0.0019 0.0014 0.0014 0.0010
0.0033 0.0040 0.0024 0.0030 0.0015 0.0019 0.0011 0.0014

0.0046 0.0055 0.0035 0.0041 0.0023 0.0027 0.0017 0.0020
0.0035 0.0033 0.0026 0.0025 0.0017 0.0016 0.0013 0.0012
0.0039 0.0064 0.0030 0.0048 0.0020 0.0031 0.0015 0.0024
0.0037 0.0023 0.0029 0.0017 0.0019 0.0011 0.0015 0.0008
0.0052 0.0050 0.0038 0.0037 0.0025 0.0024 0.0019 0.0018

Table 10: Estimates of the uncertainty in the target locations determined
from simulated laser tracker measurement data using beta prior distributions
with different standard deviations ρ.
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σ σ0 ρ

0.001 0.01 0.05

1.0e-5 5.0e-6 5.0014e-6 5.1364e-6 6.7309e-6
1.0e-3 2.0e-3 2.0000e-3 1.9956e-3 1.8635e-3
1.0e-6 2.0e-6 1.9998e-6 1.9821e-6 1.5709e-6

0.09 0.15 0.20

1.0e-5 5.0e-6 7.9462e-006 8.7853e-6 9.0942e-6
1.0e-3 2.0e-3 1.5522e-003 1.1174e-3 8.7857e-4
1.0e-6 2.0e-6 1.0688e-006 7.2120e-7 6.0605e-7

Table 11: Estimates s of the parameters σ determined from simulated
laser tracker measurement data using beta prior distributions with different
standard deviations ρ for the case in which all three trackers are constrained
to have the same uncertainty characteristics.

for the model in which we constrain all the trackers to have the same
behaviour, i.e., σk = σ. In this situation, increasing ρ to relatively large
values has no unexpected effect on the estimates s. This shows that having
prior distributions that better encode the prior information leads to better
posterior estimates. Table 12 gives the uncertainties associated with the
calculated target locations. As ρ becomes larger, the uncertainties become
smaller but remain realistic. It should be noted that those associated with
weaker prior information are approximately half those for the case where
the prior information is taken to be exact. In the context of large scale
co-ordinate metrology, this gain in performance is very significant.

In practice, one would want to constrain all three trackers to have similar
rather than exactly the same performance and it is straightforward to specify
prior distributions to encode this information.

The importance of prior information reflects the fact that there is little
redundancy in the measurements. To every two target parameters there are
only six observations and there is only a limited amount of information from
which to determine estimates of the statistical parameters σk. In practice,
instead of taking one set of measurements per target, we are likely to take
repeat measurements. In Table 13 we record the estimates sk of σk using the
same simulation scheme as for Table 9 but with four repeat measurements
per target. The tables show that even for relatively large values of ρ, the
estimates sk are consistent with those used to generate the data. Table 14
gives the corresponding estimates of the uncertainty associated with the
target locations. We note that the uncertainties associated with the weak
prior information are approximately 60% of those with the strongly weighted
prior information. The fact that there are repeated measurements means
that the data itself is providing strong information about the statistical
parameters σk.
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ρ
0.001 0.01 0.05

0.0072 0.0083 0.0073 0.0084 0.0069 0.0084
0.0081 0.0076 0.0081 0.0076 0.0074 0.0068
0.0107 0.0102 0.0107 0.0102 0.0099 0.0093
0.0078 0.0072 0.0078 0.0072 0.0071 0.0063
0.0075 0.0080 0.0075 0.0081 0.0067 0.0073
0.0100 0.0116 0.0101 0.0117 0.0093 0.0113
0.0079 0.0078 0.0079 0.0078 0.0070 0.0068
0.0082 0.0113 0.0082 0.0114 0.0076 0.0119
0.0068 0.0058 0.0068 0.0058 0.0066 0.0050
0.0114 0.0113 0.0115 0.0114 0.0107 0.0105

0.09 0.15 0.2
0.0053 0.0068 0.0038 0.0049 0.0032 0.0041
0.0055 0.0051 0.0039 0.0035 0.0032 0.0029
0.0075 0.0070 0.0053 0.0049 0.0044 0.0041
0.0053 0.0047 0.0037 0.0032 0.0030 0.0027
0.0050 0.0055 0.0035 0.0038 0.0029 0.0032
0.0070 0.0088 0.0049 0.0062 0.0041 0.0052
0.0051 0.0050 0.0036 0.0035 0.0030 0.0029
0.0058 0.0098 0.0041 0.0072 0.0035 0.0060
0.0050 0.0038 0.0035 0.0026 0.0029 0.0021
0.0080 0.0079 0.0056 0.0055 0.0047 0.0046

Table 12: Estimates of the uncertainty in the target locations determined
from simulated laser tracker measurement data using beta prior distributions
with different standard deviations ρ for case in which all three trackers are
constrained to have the same uncertainty characteristics.

σk σk,0 ρ
0.01 0.05 0.10 0.20

1.0e-5 5.0e-6 6.0138e-6 8.9814e-6 9.6153e-6 9.8261e-6
1.0e-3 2.0e-3 1.9758e-3 1.6309e-3 1.4450e-3 1.1192e-3
1.0e-6 2.0e-6 1.8675e-6 1.0285e-6 8.7105e-7 8.7067e-7
1.0e-5 5.0e-6 6.1129e-6 9.6504e-6 1.0450e-5 1.0710e-5
1.0e-3 2.0e-3 1.9661e-3 1.5023e-3 1.1769e-3 6.5035e-4
1.0e-6 2.0e-6 1.8932e-6 1.1320e-6 1.0125e-6 1.0853e-6
1.0e-5 5.0e-6 5.7342e-6 8.1178e-6 8.6089e-6 8.7683e-6
1.0e-3 2.0e-3 1.9751e-3 1.6359e-3 1.4843e-3 1.2417e-3
1.0e-6 2.0e-6 1.8904e-6 1.1117e-6 9.6795e-7 9.6945e-7

Table 13: Estimates sk of the parameters σk determined from simulated
laser tracker measurement data using beta prior distributions with different
standard deviations ρ and four repeat measurements per target.
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ρ
0.01 0.05 0.10 0.20

0.0037 0.0044 0.0028 0.0036 0.0025 0.0032 0.0024 0.0030
0.0041 0.0038 0.0029 0.0027 0.0026 0.0023 0.0025 0.0022
0.0055 0.0052 0.0040 0.0037 0.0035 0.0033 0.0034 0.0032
0.0040 0.0036 0.0027 0.0024 0.0024 0.0021 0.0023 0.0020
0.0038 0.0040 0.0026 0.0029 0.0023 0.0025 0.0022 0.0025
0.0052 0.0061 0.0037 0.0047 0.0033 0.0041 0.0032 0.0040
0.0040 0.0039 0.0027 0.0026 0.0024 0.0023 0.0023 0.0022
0.0042 0.0062 0.0030 0.0052 0.0027 0.0047 0.0026 0.0045
0.0035 0.0028 0.0027 0.0020 0.0024 0.0017 0.0023 0.0015
0.0058 0.0058 0.0042 0.0041 0.0038 0.0037 0.0037 0.0036

Table 14: Estimates of the uncertainty in the target locations determined
from simulated laser tracker measurement data using beta prior distributions
with different standard deviations ρ and four repeat measurments per target.
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7 Algorithmic and software requirements for GMLE

The main algorithmic requirement of the GMLE approach in the minimiza-
tion of a function of several variables. This topic has received much attention
and researchers have developed reliable and effective computational tools to
solve a range of function minimization problems; see, for example, [10, 16,
21]. In this section we review the features particular to GMLE.

7.1 General form of the GMLE objective function

As we have seen, the posterior distribution p(α,σ|y) given a set of data y
satisfies

p(α,σ|y) ∝ p(y|α,σ)p(α,σ)

where p(y|α,σ) = l(α,σ|y) is the likelihood function and p(α,σ) is the
prior distribution for α and σ. Taking logarithms, we minimize a function
of the form

F (α,σ|y) = −L(α,σ|y)− log p(α,σ)

where L = log l(α,σ|y) is the log likelihood function that depends on the
data.

7.2 Minimizing a function of several variables

In this section we overview the main approaches to minimizing a function
of several variables, i.e., solving

min
a
F (a)

with respect to a = (a1, . . . , an)T. We will assume that F has continuous
first and second partial derivatives.

7.2.1 Newton’s algorithm

A first order necessary condition for a to be a minimum of F is that g =
∇aF = 0, that is gj = ∂F/∂aj = 0, j = 1, . . . , n. Given an approximate
solution a, linearizing g about a we have g(a+p) ≈ g+Hp where H is the
Hessian matrix of second partial derivatives evaluated at a, i.e.,

Hjk =
∂2F

∂aj∂ak
.
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The requirement that g(a + p) should be zero leads to the equation

Hp = −g. (14)

Given the solution p an update of the form a := a + tp is made where t is
chosen to ensure a sufficient decrease in F . Near a local minimum of a well
behaved function, H will be strictly positive definite and t can be chosen
to be unity. If the Hessian matrix in strictly positive definite then it has
a Cholesky decomposition H = TTT where T is lower triangular and the
Newton step p can be found by solving, in sequence two triangular systems
of equations,

Tq = −g, TTp = q.

It is not uncommon for H to have negative eigenvalues away from the
solution and optimization algorithms have to take appropriate action in
this case.

We note here that if F (a) is a sum of squares

F (a) =
1
2

m∑
i=1

f2
i (a),

then

g = JTf , H = JTJ +
m∑
i=1

fiHi,

where J is the Jacobian matrix with Jij = ∂fi/∂aj and Hi is the matrix
of second partial derivatives of fi. In the Gauss-Newton algorithm, H is
approximated by JTJ and the Gauss-Newton step is found by solving

JTJp = −JTf .

These are the normal equations associated with the linear least squares
problem

min
p
‖Jp + f‖2,

which can be solved stably using QR factorization techniques [8, 17]. There-
fore, estimates of a can be found by solving a sequence of linear least squares
systems. If the functions fi are linear in a, e.g., f = y−Ca, then the solution
a is found by solving the associated linear least squares problem.

In the case of GMLE (or MLE), even if the model is linear and a Gaussian
distribution is assumed, the log likelihood function is necessarily nonlinear
and cannot in general be formulated as a sum of squares objective function.
This means that more general optimization approaches are required.

Many optimization algorithms do not assume that the Hessian matrix is
available explicitly because it is often burdensome to calculate. Some algo-
rithms approximate it using finite differences. In a quasi-Newton algorithm
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an approximation to H or its inverse is built up from first order information
as the iterations progress. The use of automatic differentiation techniques [1,
2] to provide derivatives has made pure Newton approaches more accessible.
For problems with a large number of variables storing and solving equations
involving the Hessian may be computationally impractical. In these cases
large scale optimization techniques based on conjugate gradients can be
applied [9].

7.3 Likelihood functions arising from Gaussian models for
data

If the data is associated with a Gaussian model so that

y ∈ N(φ(α), V (σ))

where V (σ) is an m × m uncertainty matrix of full rank, then the log
likelihood function is given by

−L(α,σ|y) =
1
2

{
log |2πV (σ)|+ (y − φ(α))T V −1(σ) (y − φ(α))

}
.

Here, |V | denotes the determinant of V . If the matrix V is diagonal, the
calculations involving V will generally be straightforward. For the case
where V is full, in order to use standard optimization algorithms we need to
be able to calculate L and its derivatives with respect to σq. Any symmetric
positive definite matrix V has a Cholesky factorization of the form V = TTT,
where T is a lower triangular matrix. The matrix V can similarly be factored
as V = TTT where T is an upper-triangular matrix. These factorizations
can be computed in a numerically stable way using a simple algorithm. For
example, consider the factorization

TTT =
[
T11 t12

t22

] [
TT

11

tT
12 t22

]
=

[
V11 v12

vT
12 v22

]
= V.

Equating terms we have t222 = v22, t22t12 = v12 and T11T
T
11 = V11 − t12tT

12.
The problem is now reduced to finding the factorization of the modified
submatrix V11 − t12tT

12. The complete factorization can be achieved by
repeating this step:

I Set T (i, j) = V (i, j), for all i ≥ j.

II For k = n : −1 : 1, set T (k, k) = T (k, k)1/2 and

T (1 : k − 1, k) = T (1 : k − 1, k)/T (k, k).
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II.j For j = k − 1 : −1 : 1, set

T (1 : j, j) = T (1 : j, j)− T (1 : j, k)T (j, k).

Suppose now that V = V (σ) = T (σ)TT(σ), and V̇ = ∂V
∂σq

and Ṫ = ∂T
∂σq

. The

matrix Ṫ satisfies Ṫ TT+T ṪT = V̇ and can be determined by differentiating
the algorithm above to compute T :

I Set Ṫ (i, j) = V̇ (i, j), for all i ≥ j.

II For k = n : −1 : 1, set Ṫ (k, k) = Ṫ (k, k)/(2T (k, k)) and

Ṫ (1 : k − 1, k) = (Ṫ (1 : k − 1, k)− Ṫ (k, k)T (1 : k − 1, k))/T (k, k).

II.j For j = k − 1 : −1 : 1, set

Ṫ (1 : j, j) = Ṫ (1 : j, j)− T (1 : j, k)Ṫ (j, k)− Ṫ (1 : j, k)T (j, k).

This algorithm can be easily vectorized to compute all the partial derivatives
of T (σ) simultaneously.

With V (σ) = T (σ)T (σ)T , then

1
2

log |V (σ)| =
m∑
i=1

log tii,
∂

∂σq

(
1
2

log |V (σ)|
)

=
m∑
i=1

ṫii
tii
,

where tii (ṫii) is the ith diagonal element of T (σ) (Ṫ (σ)).

Also,

(y − φ(α))T V −1(σ) (y − φ(α)) =
m∑
i=1

f2
i (α,σ),

with
TT(σ)f(α,σ) = (y − φ(α)).

We note the partial derivatives of the inverse of T (σ) can be found by solving
triangular systems of equations of the form

T

(
∂

∂σq
T−1

)
= − ∂

∂σq
TT−1.

As an alternative to working with the inverse of T , which could introduce
numerical instabilities if T is ill-conditioned, we can introduce a new set of
variables τ which satisfy

y = φ(α) + T (σ)τ , (15)
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so that
(y − φ(α))T V −1(σ) (y − φ(α)) = τTτ .

With this approach, the generalized ML estimates are found by solving

min
α,σ

m∑
i=1

log tii(σ) +
1
2
τTτ − log p(α,σ)

subject to the constraints (15). This leads to better numerical properties
and simpler derivative calculations at the expense of introducing nonlinear
equality constraints. However, standard general purpose optimization soft-
ware such as that implemented in NAG subroutine E04UCF [22] is able to
deal effectively with this type of problem.

We note that for Gauss-Markov least squares regression problems [9, 14]
the use of the generalized QR factorization [18, 23] allows us to cope with
rank deficient uncertainty matrices V . For MLE, the inclusion of a term
corresponding to the determinant of V requires V to be full rank.

7.4 Exploiting structure in the optimization problem

For many least squares problems, including generalized regression (section 5,
[11]) and the analysis of data gathered by multi-station co-ordinate metrol-
ogy systems [4], the observation matrix has a well-defined sparsity structure
that can be exploited by the solution algorithms [7, 13]. We would like
similar gains in efficiency to be possible for GMLE approaches. In general,
this is possible. For example, both the generalized regression problem and
the laser tracker problem produce Hessian matrices which have an ‘arrow
head’ structure; see Figures 11 and 12. For such matrices, the formation of
the Cholesky factor of the Hessian can be performed in O(m) steps where
m is the number of data points/targets. Similarly, determination of the
Newton step can also be made in O(m) steps. Without exploiting structure
in some way, a Newton approach would take O(m3) steps making the GMLE
approach impractical for large data sets.

7.5 Numerical evaluation of statistical functions

The objective functions for GMLE often involve the evaluation and differen-
tiation of the logarithm of moderately complex statistical distributions such
as the gamma or beta distributions. These have to be evaluated with care if
problems with under- or overflow are to be avoided. It is best to use library
software that have been specifically designed to operate in a numerical stable
and robust way.
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Figure 11: Location of non-zero elements in the Hessian matrix associated
with generalized regression with a circle.

Figure 12: Location of non-zero elements in the Hessian matrix associated
with the laser tracker case study.
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(φ, ψ) µ ν σ s
(4.0,2.0) 0.6667 0.7500 0.1782 0.2165
(8.0,4.0) 0.6667 0.7000 0.1307 0.1449

(16.0,8.0) 0.6667 0.6818 0.0943 0.0961

Table 15: Values of i) mode ν, ii) standard deviation σ of the beta
distribution, and iii) standard deviation s of the approximating Gaussian
for different values of (φ, ψ).

8 Discussion on the GMLE approach

8.1 Approximation of the posterior distribution

As pointed out in section 2.3.1, the GMLE method approximates the pos-
terior distribution by a Gaussian determined from information obtained at
its mode (or at least at a local maximum). If the true posterior distribution
is far from Gaussian, then this approximation may be poor. Figure 13
shows the Gaussian approximations (dashed lines) so determined to beta
distributions (solid lines) on the interval [0,1] for values of (φ, ψ) = a)
(4.0,2.0) b) (8.0,4.0) and c) (16.0,8.0). As φ and ψ increases, corresponding
to increasing the number of observations, the approximation becomes better.

In Table 15, we give the corresponding values of i) mode ν, ii) standard
deviation σ of the beta distribution, and iii) standard deviation s of the
approximating Gaussian. All the beta distributions have mean µ = 0.6667.

It is generally straightforward to perform a limited test on the quality of
the Gaussian approximation. Using Bayes theorem it is possible evaluate
the actual posterior distribution from the known likelihood function and
prior distributions and this can be compared at a number of points with the
Gaussian approximation. In practice the posterior distribution will only be
known up to a multiplicative constant as in (7) but this does not prevent us
making a meaningful comparison.

If we believe that that Gaussian approximation is not adequate, what other
approaches are possible? The Gaussian approximation is derived from a
quadratic approximation to the logarithm of the posterior distribution at
its mode. We can instead take a higher order approximations, say, a cubic
approximation. This will involve calculating or estimating all third order
partial derivatives which may be feasible, particularly if automatic differen-
tiation tools are available.

Other approaches are based on sampling from the posterior distribution in
order to build up a more comprehensive information, in particular estimating
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Figure 13: Gaussian approximations (dashed lines) to beta distributions
(solid lines) on the interval [0,1] for values of (φ, ψ) = a) (4.0,2.0), top b)
(8.0,4.0), middle, and c) (16.0,8.0), bottom.

the mean and standard deviations rather than properties associated with
the mode. Standard Monte Carlo simulation approaches [5] can be applied
and will be effective for problems involving a small number of parameters.
For larger problems, the technique of choice would seem to be Markov
chain Monte Carlo simulation (MCMS) which potentially delivers posterior
estimates of mean and standard deviations (and even marginal distributions)
for all the parameters; see e.g. [15]. The advantage of MCMS over standard
Monte Carlo simulation is that the computational effort required, while
significant, is largely independent of the number of parameters so that
the analysis of large problems is feasible. It is likely that MCMS will be
used more widely once the appropriate computational tools become more
widespread and could be used to validate approximate methods.

8.2 The role of prior distributions

In situations where the measured data contains strong information about all
the parameters, the likelihood function dominates and the role of the prior
distribution is minimal. In this case, a maximum likelihood approach where
no prior information is used (or, equivalently, the prior distribution employed
is non-informative) will be effective. In situations in which the measurement
data provides only weak information about some of the parameters, the prior
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distribution comes into play more strongly. For example, we have seen in
the case of generalized regression (section 5) and the laser tracker case study
(section 6) that the choice of the prior distribution can have a significant
effect on the parameter estimates. For these examples, the ratio of number of
observations to number of parameters is modest, approximately 2 in the case
of the former, 3 in the latter. This means that the quantity of information
to determine statistical behaviour of the system that generated the data is
limited. It is therefore important in these cases that the prior distributions
reflect all the information to hand so that unrealistic estimates are precluded
on the basis of the prior information rather than relying on the likelihood
function.

With Bayesian approaches, one has to weight the prior information relative
to the measurement data. If this is done, as closely as possible, on a
probabilistic basis, the output results should be satisfactory. However, it
is not always possible to quantify vague prior information. In this case a
hierarchical approach in which the weights for the prior information is not
regarded as fixed but are themselves associated with probability distribu-
tions provides additional flexibility. The GMLE approach can then arrive
at a balance between the prior and the likelihood. The additional flexibility
has to be carefully designed so that any unrealistic behaviour is precluded.

8.3 Summary of the GMLE approach

8.3.1 Advantages

• The posterior distribution is summarized in terms of point estimates
and covariance matrices from information that is straightforward to
calculate using standard optimization techniques.

• The analysis is based on probabilistic models and statistical inference.
It is natural generalization of well-known, least-squares methods.

• Prior information can be incorporated with measurement data in order
to make maximal use of the information available.

• The method is flexible with respect to the type of likelihood functions
and prior distributions. We have concentrated on likelihood functions
based on Gaussian models but other models can be catered for easily.

• Optimization algorithms can be adapted to take into account structure
in the matrix equations that need to be solved.
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8.3.2 Disadvantages

• The optimization problems are nonlinear, even for linear models.

• The summary of the posterior distribution is based on a Gaussian
approximation which may not be appropriate in all cases.

• For data providing weak information about the model parameters, the
prior distributions have to chosen with care.
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