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ABSTRACT
For more than two decades, capacitive sensing has played a
prominent role in human-computer interaction research. Ca-
pacitive sensing has become ubiquitous on mobile, wear-
able, and stationary devices—enabling fundamentally new
interaction techniques on, above, and around them. The re-
search community has also enabled human position estima-
tion and whole-body gestural interaction in instrumented en-
vironments. However, the broad field of capacitive sensing
research has become fragmented by different approaches and
terminology used across the various domains. This paper
strives to unify the field by advocating consistent terminology
and proposing a new taxonomy to classify capacitive sens-
ing approaches. Our extensive survey provides an analysis
and review of past research and identifies challenges for fu-
ture work. We aim to create a common understanding within
the field of human-computer interaction, for researchers and
practitioners alike, and to stimulate and facilitate future re-
search in capacitive sensing.
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INTRODUCTION
Capacitive sensing has become so ubiquitous that it is hard
to imagine the world without it. We are surrounded by ca-
pacitive sensors—from the touchscreens and touchpads on
our phones, tablets, and laptops, to the capacitive “buttons”
frequently used on consumer electronics devices and com-
mercial equipment. In addition to widespread adoption in
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Figure 1. Capacitance ( ) naturally exists between people, their devices,
and conductive objects in the environment. By measuring it, capacitive
sensors can infer the position and proximity of users and other objects,
supporting a range of different applications. However, this inherent
capacitive coupling between objects also increases ambiguity of sensor
readings and adds noise.

products, the use of capacitive sensing is common in human-
computer interaction research, with examples ranging from
grasp detection to the estimation of human positioning.

As shown in Figure 1, a plethora of natural capacitances exist
between the people, devices and objects in the environment.
It is important to realize that the capacitances shown in the
figure are not capacitor components purchased from an elec-
tronics supplier. Instead, they represent the natural capacitive
coupling between various objects. By measuring these ever-
changing values it is possible to infer relative position, motion
and more—supporting a multitude of interaction techniques
and applications. The small size, low cost, and low power
aspects of capacitive sensing make it an appealing technol-
ogy for both products and research prototypes. Furthermore,
its ability to support curved, flexible, and stretchable surfaces
has enabled interaction designers to work with non-rigid ob-
jects and surfaces. The human-computer interaction commu-
nity has developed numerous interaction modalities using ca-
pacitive sensing to operate devices from a distance, including
gesture recognition and whole-body interaction.

With such a long history and so many different applications
and instantiations of the technology, it is not surprising that
the field has spawned research across many different do-
mains, and with it a variety of different terminologies. For ex-
ample, the terms capacitive sensing and electric field sensing



refer to the same basic technique. In this paper, we will exclu-
sively use the former. Similarly, various terms are used to de-
scribe the different types of capacitive sensing systems, such
as self-capacitance and mutual-capacitance, both of which
in conjunction with x/y grids are commonly referred to as
projected-capacitive sensing. Other common terms include
capacitive loading, shunt, and transmit modes; passive and
active sensing; and static electric field sensing. This varied
terminology can make it difficult to recognize the similarities
and differences between established capacitive sensing sys-
tems, or to understand the contributions of new techniques.

In this paper we summarize and reflect on past work in the
field with the aim of providing a resource for others working
in the area of capacitive sensing. The contributions of this
paper include: (1) a unified taxonomy to describe and classify
capacitive sensing technologies, (2) a discussion of guidelines
for reproducibility and challenges for future research, and (3)
a thorough review and analysis of past work.

BACKGROUND ON CAPACITIVE SENSING

History
While some animal species including electric fish and sharks
have evolved organs capable of natural capacitive sensing
[84], human exploitation only dates back about a century. In
1907, Cremer reported using a string electrometer—a sensi-
tive current measuring device—to measure the physical mo-
tion of a beating frog heart [39]. The heart was placed be-
tween the plates of a capacitor, and as it moved with each
beat a change in capacitance was observed. Later, in 1920,
Léon Theremin demonstrated a gesture-controlled electronic
musical instrument known as the the Theremin, consisting of
two capactively tuned resonant circuits controlling pitch and
volume [56]. While capacitive sensing grew to be an impor-
tant tool for many engineering applications, such as sensing
distance, acceleration, force, pressure, etc., its use in HCI was
limited at first. In 1973, engineers at CERN implemented a
capacitive touch screen [11], and further work on touch sur-
faces grew rapidly in the 1980s and 1990s, including the in-
troduction of the multi-touch capacitive tablet in 1985 [121].
In 1995, Zimmerman et al. [236] introduced new capacitive
sensing approaches for HCI that went far beyond touch sens-
ing on surfaces. With the widespread use of capacitive touch
pads, displays, and other interactive devices on desktop, mo-
bile, and wearable computers, the impact of capacitive sens-
ing has exploded over the past 20 years.

Physical Principles of Capacitive Sensing
Capacitive sensing can be used to estimate physical properties
such as touch, proximity, or deformation by measuring the
capacitance (i.e., the ability to store charge in an electric field)
between two or more conductors. These conductors, often
called electrodes, are commonly solid metal parts, but they
can also be made from other conductive materials including
foils, transparent films (e.g., indium tin oxide, ITO), plastics,
rubbers, textiles, inks, and paints. In other cases, electrodes
include the human body or objects in the environment.

Figure 2 depicts a lumped circuit model consisting of a trans-
mit electrode, a receive electrode, part of a human body (to
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Figure 2. Lumped circuit model of capacitive sensing as introduced by
Smith et al. [186]. Depending on the sensing mode, different capaci-
tances are controlled or measured.

be sensed), and a simplified view of the natural capacitances
between them—each usually no more than several 100 pFs
[64, 190]. Most capacitive sensing systems work by measur-
ing changes in capacitive coupling between the human body
and these transmit and receive electrodes. The role of ground
is also important—it simply refers to a common potential to
which all of the objects relevant to the system are electrically
coupled. Without this common ground, capacitive sensing
systems do not have a shared reference, which is critical to
operation in many cases. Ground may refer to the electric
potential of the floor, as depicted in Figure 1, or to the Earth
itself. However, it is important to realize that in some cases,
the ground potential is not the floor or the Earth, but simply a
local common reference such as the human body itself, or the
ground plane of a circuit board.

A capacitance exists whenever two electrodes are separated
by some distance. When the conductors are at different elec-
tric potentials, an electric field exists between them. Capaci-
tance C is the measure of the charge Q (i.e., number of elec-
trons) that a capacitor holds when a certain electric potential
V is applied: C = Q/V . The SI unit of capacitance is the
farad (F). Typical capacitances in HCI applications are on the
order of picofarads (pF or 10−12 F) and primarily depend on
three properties: the size and shape of the electrodes [133],
the distance between them, and the dielectric properties of
any material which lies between them. Furthermore, when
the electric potentials on the conductors are time-varying, a
current known as the displacement current flows through the
capacitor. We refer to related work for simple [225] and de-
tailed [10] explanations of this general principle.

Capacitance is often measured by observing the displacement
current that flows when the electrodes are driven by time-
varying voltages with frequencies below 1 MHz [40]. How-
ever, some capacitive sensing approaches leverage higher fre-
quencies, e.g., by detuning an RFID antenna [108, 124], mea-
suring phase differences of signals capacitively coupled to the
human body [231], or measuring reflections caused by capac-
itive changes along a transmission line [81, 105, 222].

Advantages and Limitations
Capacitive sensors can be used for a wide variety of applica-
tions because the electrodes—where the interaction occurs—
can be physically decoupled from the location of the sensing
circuitry. This enables extremely large (e.g., room sized) or
extremely small (e.g., microscopic) electrodes which can be



fabricated from a variety of materials, including curved, flex-
ible, and stretchable substrates. They can often be prototyped
quickly using everyday materials, then subsequently mass-
produced at low-cost. They typically have a minimal height
profile and can be hidden under opaque, non-conductive ma-
terials, and can be arranged in large, high-resolution scanned
arrays. Capacitive sensing is purely electrical, low power, and
requires only cheap driving electronics with no moving parts
or mechanical intermediaries [87]. A major advantage over
other sensing modalities is the ability to sense a wide field of
view at very close distances without a lens.

Although this “lens-less” property is a great advantage, it
also serves as a limitation since capacitive sensors can-
not “focus” their sensing on a specific area, which can re-
duce range [73, 190, 225] and introduce ambiguous read-
ings [188, 66]. Additional limitations include electromag-
netic noise [67, 38, 37] in the face of insufficient grounding,
particularly on wearable devices [36]. Furthermore, touch in-
teraction using capacitive sensing lacks inherent tactile feed-
back and can therefore result in inadvertent activation [87].

A TAXONOMY FOR CAPACITIVE SENSING
In the 1995 landmark paper, Zimmerman et al. proposed a
taxonomy to describe types of capacitive sensing by intro-
ducing three active operating modes [236]. Over the follow-
ing two decades, there has been a significant body of work
in the field of capacitive sensing, including new methods of
sensing that do not fit into the taxonomy originally outlined.

Having provided a background on capacitive sensing in the
previous section, we now define consistent terminology and
describe a new taxonomy which extends the classification
proposed by Zimmerman et al. This new taxonomy defines a
method for clearly grouping and classifying capacitive sens-
ing approaches using two independent dimensions, as shown
in Figure 3. Sensing techniques can be described as either ac-
tive or passive. They can also be grouped into four different
operating modes: loading, shunt, transmit, and receive.

Active vs. Passive Sensing
Zimmerman et al. conducted their initial research in the field
of active capacitive sensing. In active capacitive sensing, a
known signal is generated on the transmit electrode(s), capac-
itively coupled onto the body part, and then coupled into the
receive electrode(s). The presence and movement of the body
part can be sensed by measuring the strength of the signal
coupled onto the receive electrode(s). Most of the past work
in capacitive sensing has focused on active sensing, including
capacitive touch buttons, touchpanels, and touchscreens.

In addition to active sensing, there is a growing body of work
using passive capacitive sensing. While active sensing sys-
tems must actively generate an electric field, passive sensing
systems rely on existing—external or ambient—electric fields
which are passively sensed. The active vs. passive termi-
nology is used analogously for other sensor types (e.g., pas-
sive infrared sensors, which receive infrared energy radiated
by warm objects). Passive capacitive sensing is sometimes
referred to as ambient or opportunistic electric field sens-
ing. Some examples of ambient electric field sources include
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Figure 3. Capacitive sensing techniques can be divided into four oper-
ating modes: loading, shunt, transmit and receive. Except for loading
mode, each mode may be implemented using active or passive sensing.
The dashed line represents the boundary between the sensing system
(bottom) and the environment (top).

power lines and appliances, and the low frequency electro-
static fields produced by the triboelectric effect when a user
moves. Since the sensing system does not control the trans-
mit signal, passive systems tend to be less precise and more
susceptible to changes in their environment. Despite these
limitations, passive capacitive sensing has shown promise in
its ability to sense human activities with minimal power and
infrastructure [36, 37, 38, 67, 156].

Operating Modes
The operating mode of a capacitive sensing system depends
on the relative position between the human body and the
transmit and receive electrodes, which in turn defines the rel-
ative magnitudes of the capacitances shown in Figure 2. This
is independent of the system being either active or passive.
In all cases an electric field is generated between the trans-
mit electrode and ground, and a field is sensed between the
receive electrode and ground. Although Figure 3 depicts only
a single transmit and receive electrode, many capacitive sens-
ing systems have multiple transmit and/or receive electrodes.

Loading Mode
Loading mode is the simplest and most common type of ca-
pacitive sensing. Here, the same electrode is used for both
transmit and receive. The body capacitively loads the elec-
trode and causes a displacement current to flow through the
body to ground. As the body gets closer to the electrode, the



capacitive coupling (CTB) increases and so does the displace-
ment current, which allows the system to sense the proximity
of the body. Since the transmit and receive electrodes are the
same, and are both part of the sensing system, there is no pas-
sive variant of loading mode. Due to its simplicity, loading
mode is widely used for touch sensing, including capacitive
buttons and touch panels. Commercial touch panels that use
loading mode are often labeled as self-capacitance sensors.
Electrodes are easy to shield [165, 213, 220], which makes
for large detection ranges, e.g., in 3D gesture recognition [63]
or noise-resilient touchscreens [11].

Shunt Mode
In shunt mode, the transmit and receive electrodes are dis-
tinct, and thus there is some capacitive coupling between
them (CTR). When the human body is in proximity to the
electrodes, it will capacitively couple to both the transmit and
receive electrodes with about the same order of magnitude
as the coupling between the electrodes (i.e., CTR ≈ CTB ≈
CRB). This will cause a displacement current to flow through
the body to ground (iBG), and will thus reduce the displace-
ment current flowing from the transmit to the receive elec-
trode (iTR). By measuring the decrease in displacement cur-
rent at the receive electrode, the body’s proximity can be de-
termined. In active capacitive sensing, shunt mode is often
used for grid-based touch sensors [9] and interactive surfaces
[161]. This is because all combinations of the grid electrodes
can be exploited to yield high resolution sensing [73, 236].
As a result, shunt mode is often used for commercial touch
panels, which are commonly labeled as mutual-capacitance
sensors. In passive sensing, it is possible to detect when the
human body shunts an electric field emitted by the infrastruc-
ture (e.g., power lines and appliances). This enables indoor
localization and gesture recognition [38, 156].

Transmit Mode
Transmit mode is similar to shunt mode, except that the body
is very close to the transmitter. This proximity means that
the coupling between the body and the transmitter is much
greater than the coupling between the body and the receiver or
between the transmitter and the receiver (i.e., CTB � CRB ,
CTB � CTR). In this mode, the body essentially becomes
an extension of the transmit electrode. When the body gets
closer to the receive electrode, the displacement current into
the receive electrode (iRB) increases. In active capacitive
sensing, transmit mode allows for a human-mediated detec-
tion of an electric field, e.g., to identify the floor tiles being
occupied with remote sensors on the ceiling [207]. In passive
capacitive sensing, transmit mode corresponds to the class of
off-body sensors, e.g., detecting a change in body potential
when a person takes a step using remote sensors [4, 197].

Receive Mode
Receive mode is the inverse of transmit mode—the body is
very closely coupled to the receive rather than the transmit
electrode (i.e., CRB � CTB , CRB � CTR). In this case,
the body acts as an extension of the receive electrode and can
pick up nearby electric fields, using the same operating prin-
ciple as transmit mode. In active capacitive sensing, receive
mode is mostly used when multiple transmit electrodes emit

different fields [40]. In passive sensing, on-body sensors use
receive mode, to enable gesture recognition [37], touch sens-
ing [38, 58], and object identification [117].

Transmit + Receive Mode (Intrabody Coupling)
A combination of transmit and receive mode occurs when the
body has similar coupling to both the transmit and receive
electrodes, yet the direct coupling between the electrodes is
much less (i.e., CTB ≈ CRB � CTR). In this case, the hu-
man body acts as a conductor between both electrodes [49],
and since this hybrid-mode is common, we refer to it as in-
trabody coupling. Past work used many terms to describe
this hybrid-mode, including active intrabody communication,
body channel communication [235, 7], passive bioelectrical
measurements [157], and active bioimpedance sensing [97].

RESEARCH CHALLENGES
Having provided a common context for work in the domain of
capacitive sensing via the taxonomy in the previous section,
we now describe a number of ongoing research challenges.
We first discuss challenges that generally relate to methodol-
ogy and then move on to specific topics.

Towards Better Reproducibility
Throughout our literature review, we regularly observed that
reconstructing a particular sensing approach would prove dif-
ficult due to missing details (e.g., the number of sensors or
the type of grounding). Only 68 of the surveyed papers re-
port sensing range (27× touch, 29× <50 cm, 12× 100 - 300
cm). The employed metrics vary widely. Of course, the nec-
essary level of detail depends on the type of contribution—
fewer details are needed for new applications of well-known
capacitive sensing principles, but new approaches to capaci-
tive sensing demand more detailed descriptions.

To enable reproducibility, we suggest that papers describing
applications of capacitive sensing include: (1) whether active
or passive sensing is used, (2) the operating mode, (3) the
number of transmit and receive electrodes, as well as their
material and shape, and (4) the hardware and software be-
ing used to conduct the measurement (e.g., Arduino using
CapLib). We suggest that new approaches in capacitive sens-
ing additionally include: (5) how the sensor, the human body,
and related objects in the environment are grounded, (6) a de-
tailed description of hardware, including a schematic, (7) the
sensor operating frequency, (8) the sample or scan rate, sam-
ple bit-depth, and any other relevant details that will enable
others to understand the physical setup. If proximity is being
measured, we suggest that the reported range corresponds to
the state in which the detection accuracy for a human body
part is expected to be greater than 95% (derived from [102]).

Sensitivity to Grounding
As mentioned earlier, the grounding of the sensor(s) and
user(s) is a critical aspect of capacitive sensor behavior.
This is especially important in battery-powered applications,
which often rely on a very weakly coupled ground reference,
e.g., to measure external electric fields [36, 37, 38, 68, 235].
When battery-powered devices are connected to grounded
measurement equipment or long test leads, the performance



is artificially improved by the enhanced ground coupling, as
a small grounded sensor tends to work better than a large un-
grounded sensor [6]. Some wearable prototypes in the litera-
ture make use of external ground connections while prototyp-
ing, but would not work as standalone wearables.

To realize applications that suffer from insufficient ground-
ing, two options exist. One is to enlarge the size of the ground
plane [68, 235], but that can be a problem for some wear-
able applications. The other option is using a sensor with
very high input impedance to detect small displacement cur-
rents [50, 79]. We refer the reader to additional literature on
the various aspects of grounding [68, 100, 176, 202].

Implications for Real-World Deployments
Today’s widely available machine learning models have en-
abled researchers to make inferences on potentially high-
dimensional capacitive sensor data relatively easily. How-
ever, much of this research—particularly N-fold cross-
validation applied to data collected in relatively static lab-
oratory settings—has treated these learning models as a
black box. It is often hard to judge whether these classi-
fiers would generalize effectively in a more realistic setting
than in the specific experimental conditions reported. The
concern is that these models are fragile, and therefore will
likely break if any environmental changes occur [179]. Un-
fortunately, such changes are inherent in capacitive sensing
through varying ground-coupling [119], changing user be-
havior over time [180], or environmental noise [38, 37, 225].
Although real-world deployments are very challenging, espe-
cially in terms of collecting ground-truth data, they are essen-
tial to demonstrate feasibility beyond a controlled lab setting.

As a complement to machine learning, we see a challenge
of future research in models that are motivated by the under-
lying physics of capacitive sensing, the physical structure of
the human body, and the sensing environment. For example,
spatial models [66, 67, 168] help recognize the underdeter-
mination of a problem [168], and produce inferences that are
less dependent on users [198, 138] and environments. Using
these models, a spatial representation of the surroundings can
be obtained much like a 3D camera [53, 186]. This area of
research is often called free space electric field tomography
and was extensively researched in the 1990s [190, 186, 188].
Since then, little work has followed on developing spatial
models that leverage electric field imaging [66]. A renewed
effort around physically-motivated spatial models could en-
able capacitive sensing to truly ‘see’ the world, as such mod-
els provide an intermediary layer between raw sensor read-
ings and machine learning by reconstructing human body
parts in full 3D to provide an even richer context.

Support for End-to-End Prototyping
Over the last several years, researchers have made capacitive
sensing—particularly electrode design—more accessible by
developing systems that support rapid prototyping and evalu-
ation. A study by Unander et al. showed good performance
using electrodes printed with both silver- and carbon-based
ink [203]. New silver nanoparticle [105] and microparti-
cle [170] ink technologies now allow electrode shapes and

configurations to be prototyped rapidly. We are also begin-
ning to see the emergence of stretchable electrodes [217],
which is ideal for wearable applications. Software systems,
such as Midas [175] support the integration of electrode pat-
terns with sensing electronics. Several works incorporate
electrodes into 3D printed structures, enabling fast prototyp-
ing [20, 149, 177] and easy personalization [61].

While the integration of electrodes is much easier now than
a few years ago, compact integrated end-to-end capacitive
systems remain difficult to prototype. For example, Cu-
pidMZ [27] and NailO [103] required custom PCB circuitry
to achieve wearable form factors. Other researchers have ap-
plied off-the-shelf electronic hardware for wearable systems
(particularly Arduino [126, 208]), but this comes at the ex-
pense of form factor. In the future, we envision electronics
prototyping tools (e.g., CircuitStickers [91]) to support the
integration of capacitive sensing electronics and electrodes
into 2D and 3D printed structures. This would enable better
miniaturization and robustness, and thus facilitate real-world
deployments and longitudinal studies in realistic settings.

Reducing Form Factor & Instrumentation
Due to the emergence of wearable interactive devices, such
as augmented tattoos [98] and finger rings [215], the physi-
cal size of batteries is becoming a limiting factor for many
capacitive systems [103]. To move beyond batteries as the
determining factor for device size, researchers have been opti-
mizing power consumption, for example by using low-power
passive sensors for motion [36] and touch [45, 58]. However,
for many applications, passive sensing does not offer suffi-
cient fidelity in the sensor readings. Hence, the opportunity to
combine active and passive sensing systems exists, in which
the passive sensor runs in a low-power state and enables the
higher-power active sensor only when it detects a signal of in-
terest [36]. Gong et al. used a similar approach to implement
power-efficient indoor localization [57]. Exploring sensible
combinations of both sensing types can enhance battery life,
enable harvested energy sources, extend perceptive capabili-
ties, and allow for smaller form factors in the future.

Besides reducing the form factor of the electronics, it is of-
ten hard to achieve the same with electrodes. For exam-
ple, in many capacitive indoor localization systems, a sig-
nificant amount of instrumentation is needed underneath the
floor [15, 194, 205]. Reusing parts of the environmental
infrastructure for active sensing seems promising. For ex-
ample, by injecting a signal into the power line of a house
[148, 195], it can act as a transmit electrode for an indoor
localization system. Other unused conductive structures in-
clude door knobs [173] or even floating water [41].

Enabling Flexible and Stretchable Applications
The ability to use capacitive sensors on non-rigid substrates
has enabled touch sensing in a number of new application
domains, including wearables. Flexible and stretchable in-
terfaces enable new types of interaction [60, 77] and support
ubiquitous deployments, e.g., in fabric and clothing [8, 30,
152, 185] or directly on the human body [98, 103, 217].



An inherent challenge arises when flexible interfaces are
worn in close proximity to the body, as human motion causes
substantial capacitance changes between the electrodes and
the body [76, 152]. To prevent false activation, it becomes
necessary to sense the deformation or motion of the electrode
to compensate for artifacts in the signal. This can be achieved
by using multiple types of capacitive sensing [58], biphasic
electrode configurations [191], or other sensor types (e.g., re-
sistive pressure and bend sensors [58, 164]). While the use of
electro-optic crystals is largely unexplored in HCI, their sen-
sitivity to electric field changes appears promising, especially
on or around the human body [50, 183].

Another significant challenge is the fabrication of conductive
materials that are durable while still remaining flexible and
stretchable. Recent advances in material science and chemi-
cal engineering have resulted in conductive polymers for the
creation of flexible and stretchable electronics [128], conduc-
tive yarns [152], foils [137], liquid metals [44, 128, 125], and
non-rigid micro and nano-structures [83, 193]. These new
materials are well suited for interfacing with the organic and
dynamic contours of the human body. As such techniques
become more available, the HCI community should leverage
them for creating novel applications in on-body capacitive
sensing using flexible and stretchable electrodes.

Unifying Approaches to Interpret Electric Fields
Within buildings, power lines and appliances emit an al-
most omnipresent ambient electric field [37, 38, 156]. Sim-
ilarly, electric fields generated by mobile devices, such as
smartphones [99] and household electronics [117] have been
leveraged in passive capacitive sensing systems. An exten-
sion of this approach can be used to detect touches and ges-
tures around uninstrumented appliances by leveraging unique
properties of their operation, e.g., through compact fluores-
cent lamps [72] or liquid crystal displays [28].

Electric fields are also produced due to human motion—the
result of static charging, explained by the triboelectric ef-
fect [23], and by very low frequency changes in the capac-
itive coupling between the body and the environment during
motion [36, 47, 67, 116, 197]. Furthermore, extremely weak
electric fields are produced by the human body itself, includ-
ing those generated by the human heart and other muscles.
Although challenging to detect, heart activity has been sensed
capacitively at distances of 40–100 cm [79, 157].

The electric field in our environment results from a super-
position of fields produced by all the sources listed above and
more. To date, most research has drawn from just one of these
for specific applications [37, 38, 67, 117, 157, 156]. A chal-
lenge arises when analyzing multiple electric field sources
with the same technical system. Ultimately, we envision
miniaturized devices that detect indoor locations, user identi-
ties, user actions, and physiological signals — all at the same
time. We also expect future wearables to distinguish between
indoor and outdoor activities and to reliably count footsteps.

Enriching Sensing with Communications
In the early 2000s, Rekimoto et al. introduced combining
sensing and communications using touch-sensitive surfaces,

clothing, and wearable devices [159, 161]. More recent work
has used wearables to communicate with touchscreens for
token-based [214, 215] and biometric [97] authentication.
However, the data rate of these approaches is limited by the
slow update rates of commercial touchscreen controllers.

While through-body transmissions between surfaces and de-
vices been demonstrated using other modalities [160, 219],
enabling them using capacitive sensing requires rethink-
ing mobile devices as a medium for both sensing touches
and emitting signals for two-way communication. A recent
project prototyped this by switching the touchscreen scanning
on and off, achieving up to 50 bits per second [85]. If touch-
screens were to be intentionally designed for the purpose of
communication, much higher data rates could result.

On larger interactive surfaces, messages could be encoded
and decoded locally in certain areas to exploit spatial corre-
spondences in interaction design [161]. Applications range
from transferring data from displays to smartwatches or us-
ing sensor-augmented tangible objects in proximity to touch-
screens for gaming applications. Even when a screen is off,
embedded electrodes can act as a hub for intrabody communi-
cations of data to other users [235] or touched devices [146].

LITERATURE REVIEW
In this section, we describe the literature review which in-
formed our taxonomy and discussion of outstanding research
challenges. In the review we focus on novel research on
capacitive sensing techniques and applications in human-
computer interaction. Thus, we exclude technologies that
measure the intrinsic properties of a material (e.g., capaci-
tive pressure sensors), as well as uses of commercial sensing
systems, such as common touch screens.

In our experience, most HCI-related capacitive-sensing re-
search is indexed by ACM and IEEE digital libraries.
Therefore, we conducted an initial full-text search in these
databases in June 2016. To avoid overlooking relevant
publications, we searched for occurrences of electric field
or capacitive together with search terms indicating human-
computer interaction (activity, gesture, interaction, move-
ment, touch). This search resulted in over 5,900 papers,
which we loaded into a custom-developed paper management
system. In the next stage, each paper was examined by at
least one reviewer. Most papers were dismissed as off-topic
as they did not fit the aforementioned criteria. By scanning
the referenced literature of the papers matching our criteria,
we added another 26 papers. The resulting 255 papers were
then reviewed by at least two authors and tagged in various
dimensions to allow us to identify trends among all papers.

Overall, our literature review comprises the 193 papers that
we identified through our filtering process. Tagging all pa-
pers has allowed us to identify trends across this large body
of work. Unsurprisingly, the majority of papers (125/193)
present novel applications of capacitive sensing, while 100
papers include a hardware contribution. About one quarter
of all papers present a quantitative study (54) or an algorithm
contribution (45). About 32 papers include a model of the
electrical properties, while 12 present simulation results. In-



terestingly, 22 papers present toolkits for capacitive sensing,
but only 3 of them are open-source [64, 175, 225].

As we noted before, a multitude of terms has been applied
to different types of capacitive sensing; however, the existing
HCI literature shows significantly less variance. While many
surveyed papers do not explicitly mention the sensing princi-
ple used, 75 papers use the generic term “capacitive sensing,”
while 11 of them use the term “electric field sensing.” Be-
sides these terms, a long but thin tail of alternative terms exist,
such as “skin potential level,” “projected capacitance,” “elec-
trostatic induction,” and “human body electric potential.”

Earlier in the paper, we presented a taxonomy for describ-
ing and classifying the different types of capacitive sensing.
We have grouped much of the past literature using our tax-
onomy and distinguishing by application domain to present
an overview of the research space, organized as in Table 1.
As shown in the table and detailed throughout this section,
capacitive sensing has been used to enable a wide variety of
HCI applications using a variety of sensing techniques.

Sensing Goal

Touch Sensing
The most ubiquitous form of capacitive sensing is the touch-
sensitive surface and the touchscreen [9], which emerged
from early prototypes in the 1970s [11]. Through the 1980s,
the HCI community made significant advancements by devel-
oping custom hardware to enable multi-touch screens [121].
Later projects, including SmartSkin [161] and Diamond-
Touch [40] have highlighted the interaction potential of this
emerging technology. More information on the large space
of capacitive touch sensing can be found in surveys by Bux-
ton [21], Barrett and Omote [9], and Schoening et al. [178].
Due to the broad availability of commercial touchscreen de-
vices today, HCI research on fundamentally new touchscreen
hardware is rare. Some exceptions exist, such as interactions
based on a combination of capacitive sensing techniques in a
novel device (e.g., Pretouch [86] on a Fogale display) or new
low-latency touch screens [122].

Touch sensing on surfaces other than displays has been in-
vestigated to create more expressive computing devices and
peripherals, including mice [210], keyboards [13, 45], tablet
PCs [88], pens [192], and tangibles [52, 68, 118]. Sensors
distributed around the screen can help to avoid visual occlu-
sion [139] or to enable interaction on near-eye displays [130].

As high-resolution touch input has become ubiquitous for
desktop and mobile computing, lower resolution capacitive
touch solutions have also been widely used in wearable tech-
nologies. Some wearable applications include touch surfaces
on belts [43], finger rings [26, 218], devices worn near the
ear [126], on fingernails [103], or even implanted underneath
skin [96]. Following the emergence of flexible conductive
materials, such as conductive paint and yarn, wearable inter-
faces have made hair extensions touch-sensitive [208] and en-
abled touch sensing on clothing [76, 92, 152]. Sensing touch
input directly on the human body has recently been explored
through augmenting skin with tattoos [98, 217].

User identification and biometrics
[95, 97, 215, 132, 214]

Loading mode
Augmenting clothes & fabric [8, 43, 76, 152, 158, 159, 185]
Augmenting the human body [75, 98, 103, 126, 208, 218, 232]

[1, 2, 16, 46, 64, 63, 120, 103, 126, 152, 185, 209, 224, 226]
[25, 33, 32, 41, 86, 87, 138, 139, 162, 107, 112, 129, 168, 223]

[3, 15, 42, 69, 75, 112, 194, 220]
[20, 91, 108, 120, 105, 140, 149, 175, 184, 177, 201, 203]
[12, 18, 16, 64, 127, 112, 126, 153, 173, 208, 226]
[40, 95]

Gesture recognition
Grip & grasp recognition
Indoor localization & whole-body movements
Prototyping user interfaces
Ubiquitous touch interfaces
Shape sensing

N
ot

ap
pl

ic
ab

le

Augmenting clothes and fabric

Augmenting the human body

Touch and gesture recognition

Grip & grasp recognition
Prototyping user interfaces
Whole-body motions

Gesture recognition
Indoor localization

Indoor localization

User distinction

Indoor localization
Step detection
User identification
Input controller
Prototyping user interfaces

Activity/physiological sensing
Intrabody communication (HCI)

Indoor localization

Identifying objects & users
Step detection
Whole-body movements

User distinction
Whole-body movements

[92, 172, 159, 169]

[30, 96, 217, 234]

[66, 93, 119, 120, 122, 189, 190, 187]

[150]
[207]

[111, 205, 204]

[31, 216]

[58]

[68, 85, 97, 132, 146, 196, 235]

[40]
[40]

[36, 37, 109]
[117]

[37, 38, 57]
[36]

[57]

[163]
[36, 109]

[85, 97, 117]

[67, 136]
[67, 116, 115, 155, 197, 233]

[67]
[45] 

[78, 131, 210, 229]
[57, 58, 64, 142]

[54, 55, 162, 183, 194]

[37, 38, 136]
[156, 37, 57, 38, 136]

Touch and gesture recognition Gestures
Identifying touched objects
Indoor localization
Whole-body movements

Active Capacitive Sensing Passive Capacitive Sensing

Shunt mode

Transmit mode

Transmit + receive mode (intrabdoy coupling)

Receive mode

Table 1. Past work on capacitive sensing grouped using our taxonomy.
Most works apply active loading mode, whereas we found few papers
that use active receive mode.

Capacitive sensing has also been used to detect user interac-
tion with the environment. Active sensing approaches instru-
ment objects in the environment to sense user input, including
plants [153] and household objects, such as door knobs [173].
Other work has passively sensed electric fields that are gener-
ated by the power lines and appliances in the environment,
and monitored changes to observe touch events on instru-
mented objects [45, 58], walls [38], or appliances [117].

User Grip & Grasp
Beyond sensing mere touch locations, capacitive sensors
yield a rich enough signal to determine the shape of grasps
on instrumented objects and devices [221]. Since capacitive
sensors can adapt to arbitrary surfaces, researchers have sens-
ing for grasp detection on mice for gesture input to desktop
computers [87, 210] and interactive balls [78, 199].

In recent years, research has focused on mobile devices that
detect the user’s grasp to support interaction [32, 33, 107, 198,
223]. To distinguish between commonly-used grasps, a rela-
tively large number of sensors is often needed. Either high-
resolution active shunt mode grids [88, 131, 192, 199, 210,
229] or a multitude of loading mode sensors [33, 107] de-



liver enough information to determine grasp. Some specific
applications have used fewer sensors, for example to adapt
the screen rotation depending on the user’s grip [32], to start
an application [118], or to sense a small number of different
grasps through only a few sensors [223]. While the sensor
data is often fed into a machine-learning classifier to estimate
the grasp, specialized spatial sensors deliver the actual shape
of grasps from estimated finger and hand proximities [86].

Sensing Tangibles on the Touchscreen Surface
Recognizing tangible objects on the surface of touchscreens
has been shown to enrich the interactive experience by pro-
viding physicality [24]. These tangible interfaces are often
realized by adding passive components to the bottom of the
tangible. Fake touch points that spread across the bottom
surface of the object allow the touchscreen to detect the ob-
ject’s position, orientation and identity it much like a 2D bar-
code [24, 101, 113, 161]. However, this approach only works
while a user is touching an object and thus a capacitance to
ground is present through the body. Voelker et al. demon-
strated a modified approach that bridges multiple touch points
to enable ungrounded detection of tangibles [211, 212].

To communicate dynamic information between devices,
touch events have been triggered on the screen using nearby
voltage sources, e.g., to perform biometric [97] or token-
based [215] authentication. While the former sends a sig-
nal through the user’s body, the latter is part of the class of
direct capacitive communication. Similarly, Yu et al. uses
active tags to encode information with high-voltage signals,
which touchscreens receive when tags are placed on the sur-
face [230]. Today’s commercial styli are similar in their im-
plementation, such as the Atmel maxStylus [5] or the Mi-
crosoft Surface Pen [135]—both use the capacitive sensor of
the touch device for detecting and distinguishing touch from
pen input. These devices are effectively grounded through
the user when touched, and they transmit a signal through an
electrode that couples to the screen.

3D Gesture Sensing
Capacitive sensing can be extended beyond surface interac-
tions to enable proximity-based recognition of objects, which
has been explored for 3D gesture interaction since the mid-
1990s [236]. Early gesture recognition systems include the
the compact Field Mice [187] and Lazy Fish [190] platforms,
which evolved into the modular School-Of-Fish [188] plat-
form. The latter detects gestures at distances up to 1 m [190].
This early work focused on gestural interactions for ma-
nipulating 3D objects [187], new forms of musical expres-
sion [144], and enabling tangible interactions [190].

More recent work has investigated generic proximity-sensing
surfaces that sense 3D input to control computers [1, 2, 14,
16, 48, 66, 78, 120] and home automation systems [62]. More
specialized deployments recognize proximity-based gestures
in cars [17, 46] or on clothing [185]. Proximity-sensing sur-
faces deployed on or near displays [86, 119, 167, 168, 190]
enable smartphones to show context-dependent menus before
the touch contact [86], launch apps based on grasp [25], or
detect 3D gestures above the surface [119]. Systems that op-

erate near displays are particularly challenging due to noise
and nearby-conductive structures [224].

Indoor Localization
Active sensing approaches for indoor localization commonly
involve embedding large loading mode electrodes under-
neath floor tiles to determine on which tile the user is stand-
ing [15, 57, 194]. Alternatively, the entire floor can act as a
single transmit electrode using transmit mode. In such a con-
stellation, the signal from several receive electrodes around
the environment has been shown to determine the user’s lo-
cation [206, 207]. To reduce the required instrumentation,
signals can be injecting directly into existing powerlines in
place of dedicated transmit electrodes [19].

Similarly, some passive sensing systems leverage the ambi-
ent electric fields generated by the power lines and appli-
ances to estimate the user’s location [38, 57, 136, 156]. As
these systems rely on ambient fields, they require prior train-
ing and are sensitive to changes in the environment. By
detecting changes in the characteristic body electric poten-
tial during walking motions [47], passive capacitive sensors
can detect indoor locations [67, 136], recognize gait pat-
terns [36, 115, 116, 197, 233], or identify users [67].

Posture & Whole-Body Tracking
Capacitive systems that infer a user’s pose often operate
on the same principles as the indoor localization systems
mentioned above. In an instrumented space, researchers
have implemented body-pose tracking using active transmit
mode [204, 207] and loading mode [220] sensing. Dance and
athletics have been captured by transmitting signals among
multiple sensor nodes [6]. Wearable systems usually offer
a more specialized way of determining postures or motion.
Using signal fingerprinting, ambient electric fields generated
from the power lines have been used to passively recognize
postures [38] and whole-body movements [37]. Passively
perceiving changes in body electric potential through move-
ment has been used to recognize steps [36, 67, 155, 163] and
arm movements [36, 155]. By observing changes in body
impedance, researchers have detected different poses [85].

User Identification and Biometric Sensing
Beyond detecting locations, it is often desirable to identify
which user caused a touch. Systems have thus reused touch as
a channel to transmit the identity of a wrist token to the touch
device for authentication and personalization [132, 159].

Other systems distinguish simultaneous users without the
need of a wearable token. Grosse-Puppendahl et al. ’s ceil-
ing sensors reconstruct users’ electric potentials and distin-
guishes them from the characteristic changes while walk-
ing [67]. DiamondTouch configures the seats around the ta-
ble as receive electrodes and determines the user that caused
a touch through a receiver in each seat that observes the ta-
ble’s signal upon touch [40]. Similarly, measuring the user’s
impedance to ground upon touch has been shown to enable
distinguishing two simultaneous users [80]. The same ap-
proach can determine if two wearable devices are on the same
body through intrabody communication [149].



To identify and authenticate users from a touch using the
user’s fingerprint, a capacitive sensor requires an extremely
high density sensor array [182]. Such capacitive fingerprint
scanners are typically dedicated components using swipe and
area sensors for authentication on and across [94] devices.
Although in wide use, such scanners cannot currently be
made from transparent materials for integration into a screen.
To prototype interactions with touch devices that identify
each user upon touch, Holz and Knaust demonstrated a wrist-
band that measures biometric features and transmits them to
the touchscreen using intrabody communication [97].

Physiological Sensing
In addition to sensing biometrics for user identification and
authentication on touchscreens, capacitive sensors have been
used to create wearable devices that sense physiological sig-
nals during wear. Capacitive sensors have been embedded
into clothing for detecting breathing [31], swallowing [30],
and drinking [31]. Passive sensors can detect gait patterns in-
cluding limping [36, 67, 115, 116]. Capacitive sensors have
also been used to detect arm [232] and facial [158] muscle
activity as an alternative to electromyography. These sys-
tems work by sensing changes in the proximity of the skin
to a wearable during muscle flexion. Capacitive textile arrays
have also been embedded into clothing to sense gestures and
movement detection in patients with limited mobility [185]
and other health-related applications [200].

Instrumenting Everyday Objects
Clothing. The integration of capacitive touch sensors into
clothing was first explored in 1998 [143]. Researchers have
since used this approach to implement health applications [8,
30, 185] and ubiquitous touch interfaces [43, 76, 92, 143,
152]. Sensors have thereby been placed on pants [172, 185],
belts [43, 196], shoes [145], gloves [104, 209], and jack-
ets [152]. However, manufacturing techniques and long-term
deployments (i.e., surviving wash cycles) remain open re-
search areas for such systems [152].

Furniture. Due to its simplicity and ease of shielding [69,
226], active loading mode is dominantly used for posture
and touch recognition on furniture. Researchers have thereby
augmented couches [69, 110], bath tubs [89], beds [42],
chairs [112, 236], lamps [72], and tables [16, 90, 226] with
capacitive sensing. Less conventional applications include
fabric-based sensors inside bed sheets to enable low-power
communication with wearable devices [68] or to recognize
sleep postures [169].

Rooms. Room-size deployments of capacitive systems are
often used for indoor localization, but have also been used
for interactive art installations [18, 151] and gait recogni-
tion [115, 116]. To ease with the deployment of large form
factors, electrodes can be printed on flexible rolls [57].

Cars. Detecting the presence of adult passengers to ensure
the safe deployment of airbags is a common application of
capacitive sensing [54, 55, 202]. Other applications have fo-
cused on user distinction [150] and gesture recognition using
sensors in the steering wheel [46, 166] and armrests [17].

Musical Instruments. The thin profile of capacitive electrodes
allows them to be unobtrusively integrated with existing mu-
sical instruments. Paradiso et al. first explored this with a
cello bow and an augmented baton [144], and subsequent
work has been applied to guitars [59, 70] and pianos [134].

Sensor Design and Fabrication
Electrode design is a fundamental aspect of prototyping ca-
pacitive sensing applications. Besides traditional materials,
such as copper or other metal plates, a growing variety of
electrode designs have been made from conductive inks and
paints as shown in Table 2. Through the use of inkjet print-
ing, electrodes on both, flexible and cuttable substrates can
be prototyped [57, 58, 105, 108, 141, 142]. As an alternative
to inkjet printing, vinyl cutters can create customized adhe-
sive electrodes [175] or cut a substrate for composite elec-
trode materials, e.g., conductive tattoos [98]. To build larger
sensing systems, conductive paint can be used to apply elec-
trodes on wall surfaces [18, 174]. To bridge the resulting
gap between electrodes and electronics, CircuitStickers use
pre-fabricated adhesive electronic components [91].

With the emergence of 3D printing, researchers have started
to explore prototyping objects with integrated capacitive elec-
trodes. For example, capacitive sensing can be enabled on
printed objects by filling tubes inside the objects with conduc-
tive inks [174], interrupting the print process to integrate elec-
tronics [181] or combining conductive and non-conductive
print materials [20, 123, 177]. Conductive yarns and fab-
rics open new possibilities for flexible electrode design, e.g.,
the integration into clothing [8, 30, 92, 152, 185]. Conduc-
tive paint has also been applied to retrofit existing clothing
with sensing capabilities [76, 200]. The durability of textile-
based electrodes remains a challenge (e.g., to support multi-
ple washing cycles) [152].

Sensing electronics
The choice of electronics depends primarily on the operating
mode as shown in Table 3. Hardware for the shunt, trans-
mit, and receive modes is similar and usually consists of an
oscillator connected to the transmit electrode to generate an
electric field, and an amplifier and analog-to-digital converter
(ADC) connected to the receive electrode. In loading mode,

Copper - highly conductive, flexible
→Wire[15, 45, 161, 169, 197]
→Foil [32, 117, 146, 171, 78, 236]+
→Vinyl [175]
→Plate [64, 66, 120, 226, 224]+
→PCB
→Rigid [16, 35, 40, 158, 229]+
→Flex [25, 107, 138, 192, 210]+

→Tape [42, 64, 132, 162]
→Ink [59, 57, 58]
→Paint [18]
→Metalization [208]
Gold - non-corrosive, skin-friendly
→Gold leaf [98]
→Gold coating [11]
Aluminum - flexible, high availability
→Foil [70, 147, 196, 202]
→Mylar [190]

Silver - non-corrosive, flexible
→Ink [76, 87, 105, 108, 203]+
→Thread/Yarn [185]
→Plate [67]
Carbon - enabling electrical conductivity
→Ink [203]
→Carbon-filled PDMS (cPDMS) [217]
→Filament [20, 123, 177]
ITO - transparent electrodes [64, 119, 199]
Anisotropic materials - directing e-fields
→Anisotropic ’Zebra’ tape [91]
→Anisotropic ’Zebra’ rubber [24]
Other materials
→Water [41, 173] & Plants [153]
→Ionized gas [72]
→Metal objects [43, 68, 173, 207, 226]+
→Electro-optic crystal [50, 183]
→PEDOT:PSS [64, 142]

Table 2. Materials used for capacitive electrodes: Copper and silver are
the most prominent materials for realizing capacitive electrodes.



Shunt / Transmit / Receive Mode Loading Mode

3D gesture controllers:
→MGC3130 [119]
Electric-field receiving amplifiers:
→MCP6041 [36]
→OPA2322 [68]
→OPA2350 [64]
Electric-field sensors:
→Plessey PS25451 [67]
Capacitance-to-digital converters:
→AD7746 [96, 206]
→AD7747 [76]
Touch matrix sensors:
→QT60248 [198, 199]
→CY8CTMA463 [88, 229]
Development kits:
→Fogale display [86]
→RTL2832U SDR [85, 117]

Touch and proximity sensors:
→555 timer [19, 225, 64, 224]
→AD7142 [92]
→AD7147 [138, 73]
→Arduino + CapTouch [201, 105, 175, 208]+
→AT42QT1070 [118]
→CY8C2x [27, 59]
→Microcontroller [12, 29, 162]
→MPR121 [33, 43, 91, 139, 177]+
→QT110x [92, 13, 175]
Touch matrix sensors:
→MTCH6102 [103, 152]
Shield driver:
→THS4281 [64]
Development kits:
→SK7-ExtCS1 sensor pack [168, 167]
→Fogale display [86]
→Touché [80, 153, 173]

Table 3. Electronics hardware used in capacitive sensing literature.

MCU-based implementations (e.g., Arduino CapLib) and 555
timers are commonly used. As shown in Table 3, specialized
commercial hardware is also available specifically for capac-
itive sensing, with the MPR121 touch sensor being the most
popular device. While most of the work mentioned above
uses a single operating frequency, other recent work (e.g.,
Touché [173]) has used a multiple frequency approach [154].
In some scenarios, the use of multiple frequencies can provide
additional sensing information, though the effect on the signal
is often similar across the frequencies being sensed [22, 100],
and thus there is often little information gain.

Signal Modeling and Processing
Modeling & Physical Understanding
The first step to understanding a sensing problem is typically
to develop a representative physical model. Researchers have
traditionally used equivalent or lumped circuit models, such
as the one shown in Figure 2 [190, 235, 236]. Particularly
for loading mode, simple plate-capacitor models are domi-
nantly used to model the distance between the body and the
electrodes [30, 158, 168, 225]. In transmit mode, equivalent
circuit models describe the coupling between the transmit and
receive electrodes and the body [40, 67, 205]. Equivalent cir-
cuit models exist for shunt mode [55], which often use point
charge estimations [66, 187] to model distance relationships.
To compensate for physical inaccuracies, experimentally de-
termined correction factors [66, 67, 187] or customized fit
functions [156, 206] are applied.

When a field is measured passively, it is important to un-
derstand the electric field source. For example, a human
body accumulates charge via the triboelectric effect [23], and
thus varying electric fields are produced when the capaci-
tive coupling between the user and environment changes, e.g.,
through steps or other movements [36, 47, 67, 115, 116, 197].

Extensive research has been conducted in modeling the elec-
tric properties of the human body—most fundamentally gain-
ing an understanding of the impedance of different types of
tissues [49, 51]. Modeling such properties is important for
intrabody communications [74, 228, 235], and for exploiting
the transmit and receive modes. Equivalent circuit models
can quickly become more complex when environmental ef-
fects, such as grounding [34] or wet skin [227] are consid-

ered. Several papers have shown that the human body reacts
similarly to different frequencies [7, 22, 100], though Schenk
et al. point out that it is hard to obtain such data with statisti-
cal significance [176]. There are no indications that the elec-
tric fields typically used in capacitive sensing systems have
adverse effects on users’ health [71, 235].

Classification & Continuous Object Tracking
Capacitive sensing inherently involves inferring information
from signal data, either discrete (e.g., for touch recognition)
or continuous (e.g., for estimating user positions). Threshold-
ing is ubiquitously applied to realize discrete classifiers, e.g.,
to passively sense user foot steps [163, 197], touches [12],
or presence [42, 226]. If more than one state is being de-
tected (e.g., multiple postures on a couch), classifiers, such
as support vector machines [78, 80, 107, 117] or decision
trees [69, 109, 185, 208] are frequently used. In contrast
to classification, models that determine continuous proper-
ties are often physically motivated. Such models can be
based on pseudo-probability distributions that estimate the
most probable system state, for example 3D hand posi-
tions [66, 167, 168, 187]. Researchers have used particle
filters to enable real-time operation when multiple degrees-
of-freedom are being calculated [66, 167, 168]. Le Goc et al.
take a different approach by applying random decision forests
directly to the highly non-linear sensing problem of measur-
ing thumb positions in proximity to a touchscreen [119].

Sensor Fusion
Inertial measurement units (IMU) are often paired with ca-
pacitive systems in order to reveal more contextual informa-
tion [65, 88], or to provide an additional dimension for user
input [114, 130, 209]. IMUs have also been used to correlate
whole-body movements to capacitive sensing data [109, 194]
and avoid accidental interactions [107]. Other work has com-
bined acoustic sensors [16], cameras [48] and resistive sen-
sors [112, 140, 145] with capacitive approaches.

CONCLUSION
Capacitive sensing has been a key enabler for research in HCI
for more than two decades. It provides a sensing modality
that is cheap, easy to integrate, and enables rich interactions.
For the same reasons, capacitive sensing has become an in-
tegral part of many wearable, mobile, and stationary devices.
As such, we expect capacitive sensing to continue to have a
prominent role in the coming decades.

In this paper, we have presented an analysis and review of
the past literature as a reference for others working in this
field. As we plan future research around novel sensing tech-
nologies and interaction techniques, we think it is important
to understand the existing work, learn from its benefits and
limitations, and build upon it. The taxonomy we have pro-
posed describes and classifies the various types of capacitive
sensing found in the literature. We hope it provides a useful
baseline for the community and helps others set their work in
the context of previous research. We also hope that our dis-
cussion of research challenges will inform and inspire others
in the community to continue developing innovately capaci-
tive sensing or may in the future.
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Markus Löchtefeld, Nima Motamedi, Laurence
Muller, Patrick Olivier, Tim Roth, and Ulrich von
Zadow. 2008. Multi-Touch Surfaces: A Technical
Guide. techreport. http://drehscheibe.in.tum.de/
forschung/pub/reports/2008/TUM-I0833.pdf.gz

179. D. Sculley, Gary Holt, Daniel Golovin, Eugene
Davydov, Todd Phillips, Dietmar Ebner, Vinay
Chaudhary, and Michael Young. 2014. Machine
Learning: The High Interest Credit Card of Technical
Debt. In SE4ML: Software Engineering for Machine
Learning (NIPS 2014 Workshop).

180. X. Shang, R.N.J. Veldhuis, A.M. Bazen, and W.P.T.
Ganzevoort. 2005. Algorithm design for grip-pattern
verification in smart gun. In Proceedings of ProRISC
2005, 16th Annual Workshop on Circuits, Systems and
Signal Processing. STW Technology Foundation,
Utrecht, The Netherlands, 674–678.
http://doc.utwente.nl/53692/

181. C. Shemelya, F. Cedillos, E. Aguilera, E. Maestas, J.
Ramos, D. Espalin, D. Muse, R. Wicker, and E.
MacDonald. 2013. 3D printed capacitive sensors. In
SENSORS, 2013 IEEE. 1–4. DOI:
http://dx.doi.org/10.1109/ICSENS.2013.6688247

182. S. Shigematsu, H. Morimura, Y. Tanabe, T. Adachi,
and K. Machida. 1999. A single-chip fingerprint sensor
and identifier. IEEE Journal of Solid-State Circuits 34,
12 (Dec 1999), 1852–1859. DOI:
http://dx.doi.org/10.1109/4.808910

183. M. Shinagawa, M. Fukumoto, K. Ochiai, and H.
Kyuragi. 2004. A Near-Field-Sensing Transceiver for
Intrabody Communication Based on the Electrooptic
Effect. IEEE Trans. Instrum. Meas. 53, 6 (dec 2004),
1533–1538. DOI:
http://dx.doi.org/10.1109/tim.2004.834064

184. Michael Shorter, Jon Rogers, and John McGhee. 2014.
Enhancing Everyday Paper Interactions with Paper
Circuits. In Proceedings of the 2014 Conference on
Designing Interactive Systems (DIS ’14). ACM, 39–42.
DOI:
http://dx.doi.org/10.1145/2598510.2598584

185. Gurashish Singh, Alexander Nelson, Ryan Robucci,
Chintan Patel, and Nilanjan Banerjee. 2015. Inviz:
Low-power personalized gesture recognition using
wearable textile capacitive sensor arrays. In 2015 IEEE
International Conference on Pervasive Computing and
Communications (PerCom). IEEE. DOI:
http://dx.doi.org/10.1109/percom.2015.7146529

186. J. R. Smith. 1995. Toward Electric Field Tomography.
Master’s thesis. MIT.

187. J. R. Smith. 1996. Field mice: Extracting hand
geometry from electric field measurements. IBM Syst.
J. 35, 3.4 (1996), 587–608. DOI:
http://dx.doi.org/10.1147/sj.353.0587

188. J. R. Smith. 1999. Electric Field Imaging. Ph.D.
Dissertation. MIT.

189. J. R. Smith, C. Salthouse, and N. Gershenfeld. 1999.
Code-division multiplexing of a sensor channel: a
software implementation. IEEE J. Select. Areas
Commun. 17, 4 (apr 1999), 725–731. DOI:
http://dx.doi.org/10.1109/49.761048

http://dx.doi.org/10.1002/adma.201101328
http://dx.doi.org/10.1109/rfid.2009.4911212
http://dx.doi.org/10.1145/2047196.2047235
http://dx.doi.org/10.1145/2207676.2207743
http://dx.doi.org/10.1145/2642918.2647374
http://dx.doi.org/10.1145/2380116.2380189
http://dx.doi.org/10.1109/iswcs.2008.4726053
http://dx.doi.org/10.1145/2807442.2807503
http://drehscheibe.in.tum.de/forschung/pub/reports/2008/TUM-I0833.pdf.gz
http://drehscheibe.in.tum.de/forschung/pub/reports/2008/TUM-I0833.pdf.gz
http://doc.utwente.nl/53692/
http://dx.doi.org/10.1109/ICSENS.2013.6688247
http://dx.doi.org/10.1109/4.808910
http://dx.doi.org/10.1109/tim.2004.834064
http://dx.doi.org/10.1145/2598510.2598584
http://dx.doi.org/10.1109/percom.2015.7146529
http://dx.doi.org/10.1147/sj.353.0587
http://dx.doi.org/10.1109/49.761048


190. J. R. Smith, T. White, C. Dodge, J. Paradiso, N.
Gershenfeld, and D. Allport. 1998. Electric field
sensing for graphical interfaces. IEEE Comput. Grap.
Appl. 18, 3 (1998), 54–60. DOI:
http://dx.doi.org/10.1109/38.674972

191. James R Solberg, Kevin M Lynch, and Malcolm A
MacIver. 2008. Active electrolocation for underwater
target localization. The International Journal of
Robotics Research 27, 5 (2008), 529–548.

192. Hyunyoung Song, Hrvoje Benko, Francois
Guimbretiere, Shahram Izadi, Xiang Cao, and Ken
Hinckley. 2011. Grips and Gestures on a Multi-touch
Pen. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’11).
ACM, 1323–1332. DOI:
http://dx.doi.org/10.1145/1978942.1979138

193. Lingnan Song, Amanda C Myers, Jacob J Adams, and
Yong Zhu. 2014. Stretchable and reversibly
deformable radio frequency antennas based on silver
nanowires. ACS applied materials & interfaces 6, 6
(2014), 4248–4253. DOI:
http://dx.doi.org/10.1021/am405972e

194. M. Sousa, A. Techmer, A. Steinhage, C. Lauterbach,
and P. Lukowicz. 2013. Human tracking and
identification using a sensitive floor and wearable
accelerometers. In 2013 IEEE International
Conference on Pervasive Computing and
Communications (PerCom). IEEE. DOI:
http://dx.doi.org/10.1109/percom.2013.6526728

195. Erich P. Stuntebeck, Shwetak N. Patel, Thomas
Robertson, Matthew S. Reynolds, and Gregory D.
Abowd. 2008. Wideband Powerline Positioning for
Indoor Localization. In Proceedings of the 10th
International Conference on Ubiquitous Computing
(UbiComp ’08). ACM, 94–103. DOI:
http://dx.doi.org/10.1145/1409635.1409649

196. Masato Takahashi, Charith Lasantha Fernando, Yuto
Kumon, Shuhey Takeda, Hideaki Nii, Takuji Tokiwa,
Maki Sugimoto, and Masahiko Inami. 2011. Earthlings
Attack!. In Proceedings of the 2nd Augmented Human
International Conference on - AH ’11. ACM. DOI:
http://dx.doi.org/10.1145/1959826.1959843

197. Kiyoaki Takiguchi, Takayuki Wada, and Shigeki
Toyama. 2007. Human Body Detection that Uses
Electric Field by Walking. Journal of Advanced
Mechanical Design, Systems, and Manufacturing 1, 3
(2007), 294–305. DOI:
http://dx.doi.org/10.1299/jamdsm.1.294

198. Brandon T. Taylor and V Michael Bove. 2008. The bar
of soap. In Proceeding of the twenty-sixth annual CHI
conference extended abstracts on Human factors in
computing systems - CHI ’08. ACM. DOI:
http://dx.doi.org/10.1145/1358628.1358874

199. Brandon T. Taylor and V. Michael Bove. 2009.
Graspables. In Proceedings of the 27th international

conference on Human factors in computing systems -
CHI 09. ACM. DOI:
http://dx.doi.org/10.1145/1518701.1518842

200. H. N. Teodorescu. 2013. Textile-, conductive
paint-based wearable devices for physical activity
monitoring. In E-Health and Bioengineering
Conference (EHB), 2013. 1–4. DOI:
http://dx.doi.org/10.1109/EHB.2013.6707241

201. Takahiro Tsujii, Naoya Koizumi, and Takeshi
Naemura. 2014. Inkantatory paper. In Proceedings of
the adjunct publication of the 27th annual ACM
symposium on User interface software and technology
- UIST’14 Adjunct. ACM. DOI:
http://dx.doi.org/10.1145/2658779.2659103

202. David Tumpold and Armin Satz. 2009. Contactless seat
occupation detection system based on electric field
sensing. In 2009 35th Annual Conference of IEEE
Industrial Electronics. IEEE. DOI:
http://dx.doi.org/10.1109/iecon.2009.5414836

203. Tomas Unander, Hans-Erik Nilsson, and Bengt
Oelmann. 2007. Printed touch sensor for interactive
packaging and display. In Polytronic 2007 - 6th
International Conference on Polymers and Adhesives
in Microelectronics and Photonics. IEEE. DOI:
http://dx.doi.org/10.1109/polytr.2007.4339128

204. Miika Valtonen, Lasse Kaila, Jaakko Mäentausta, and
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