

Universität Regensburg

Fakultät für Wirtschaftswissenschaften

Lehrstuhl für Wirtschaftsinformatik I - Informationssysteme

Secure Information Sharing with Distributed Ledgers

Dissertation

zur Erlangung des akademischen Grades eines

Doktors der Wirtschaftswissenschaft

eingereicht an der Fakultät für Wirtschaftswissenschaften

der Universität Regensburg

vorgelegt von:

Benedikt Putz, M.Sc. with Honors

Berichterstatter:

Prof. Dr. Günther Pernul

Univ.-Prof. Dipl.-Ing. Mag. Dr. techn. Edgar Weippl

Tag der Disputation: 29.06.2022

Erstgutachter (Betreuer): Prof. Dr. Günther Pernul

Zweitgutachter: Prof. Dr. Edgar Weippl

Tag der Prüfung: 29 Juni 2022

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen

Nationalbibliografie. Detaillierte bibliografische Daten sind im Internet unter http://dnb.dnb.de

abrufbar.

ISBN (Print): 978-3-88246-473-3

ISBN (PDF): 978-3-88246-474-0

DOI: 10.5283/epub.52636

Link zur Online-Version: https://epub.uni-regensburg.de/52636

Satz und Layout: Benedikt Putz

Umschlaggestaltung: Peter Brünsteiner

Herstellung: Universitätsbibliothek Regensburg

Erscheinungsort: Regensburg, 2022

Druck und Bindung: Digital Print Group o. Schimek GmbH, Nürnberg

Dieses Werk ist mit Ausnahme der Kapitel II.1.1 (Springer), II.1.2

(Elsevier), II.1.4 (Elsevier), II.2.1 (Springer), II.2.2 (IEEE), II.2.3

(Springer), II.3.1 (HICSS Proceedings: CC-BY-NC-ND) unter der

Creative Commons-Lizenz Namensnennung - Weitergabe unter

gleichen Bedingungen 4.0 International (CC-BY 4.0) veröffentlicht.

Acknowledgement

For the past three years, many people have supported me on my way to finishing this

cumulative dissertation. While it may appear as a single book in print, it is in fact the result

of countless hours of discussions, idea exchanges and co-programming/writing with fellow

researchers and friends. This page is dedicated to these people.

First, I’d like to thank my supervisor Prof. Dr. Günther Pernul for the continued support

and feedback on my research. Several multi-faceted discussions about the topic of blockchain

eventually lead to my sincere belief that blockchain and DLT can and will improve this

world, despite their public misperception as mere subjects of financial speculation. Besides

the professional guidance towards finding a research topic and focus, his mentoring was also

invaluable to my personal development. In addition, I would like to thank my secondary

supervisor Prof. Dr. Weippl for the advice and feedback on the research topic and method.

Second, but no less important, I’d like to thank the IFS research team for all the support,

collaboration and recreational fun. Flori, for the mentoring during my Master’s thesis, subse-

quent publications and the countless discussions about crypto and blockchain (speculation,

crypto dogs, or otherwise). Petra and Werner, for all the support and coffee talks. Fabi, for

the honest interest in my work, our startup ideas and of course for all the memes. Fred, for

being there during COVID times and for the extensive survival bike tours. Marietheres, for

the extensive and prolific research collaboration and for introducing me to Yoga. Dani, for

perservering throughout the years as my office mate and workout partner. Philip, for the

contribution to EtherTwin and the thoroughly entertaining Greece trip. Ludwig and Sabrina,

for supporting me in the TRIO project, but also on Strava. Lena, for the motivation, the

feedback on this dissertation, and the many enjoyable hours out climbing.

Third, I am thankful for the professional support and social community of the Honors

program at the University of Regensburg, initiated by Prof. Dr. Michael Dowling. Without

the Honors program, I would not have started the PhD project in the first place. Throughout

the years I took on various roles as student, webmaster, coordinator and alumnus.

Finally, this work is dedicated to my parents Josef and Angelika, for being the foundation

I can count on to climb ever taller mountains.

Abstract

In 2009, blockchain technology was first introduced as the supporting database technol-

ogy for digital currencies. Since then, more advanced derivations of the technology have

been developed under the broader term Distributed Ledgers, with improved scalability and

support for general-purpose application logic. As a distributed database, they are able to

support interorganizational information sharing while assuring desirable information security

attributes like non-repudiation, auditability and transparency. Based on these characteristics,

researchers and practitioners alike have begun to identify a plethora of disruptive use cases

for Distributed Ledgers in existing application domains. While these use cases are promising

significant efficiency improvements and cost reductions, practical adoption has been slow

in the past years. This dissertation focuses on improving three aspects contributing to slow

adoption. First, it attempts to identify application areas and substantiated use cases where

Distributed Ledgers can considerably advance the security of information sharing. Second,

it considers the security aspects of the technology itself, identifying threats to practical

applications and detection approaches for these threats. And third, it investigates success

factors for successful interorganizational collaborations using Distributed Ledgers.

v

Contents

Table of contents i

List of figures iii

List of tables iv

I Outline of the dissertation 1
1 Motivation . 1

2 Related research . 3

3 Research Questions . 5

3.1 Methodology . 6

3.2 Research Process . 6

3.3 Research plan . 7

4 Results . 8

4.1 RQ1: Novel DLT applications for secure information sharing 9

4.1.1 A distributed ledger approach to digital twin secure data sharing . 10

4.1.2 Ethertwin: Blockchain-based secure digital twin information man-

agement . 11

4.1.3 DEALER: Decentralized Incentives for Threat Intelligence Re-

porting and Exchange . 13

4.1.4 A secure and auditable logging infrastructure based on a permis-

sioned blockchain . 15

4.2 RQ2: Protecting DLT applications from threats 17

4.2.1 Trust Factors and Insider Threats in Permissioned Distributed

Ledgers . 17

4.2.2 Detecting Blockchain Security Threats 19

4.2.3 HyperSec: A Visual Analytics approach to blockchain monitoring 20

4.3 RQ3: Secure Information Sharing in a DLT Consortium 24

4.3.1 Comparing Successful DLT Consortia: A Lifecycle Perspective . 24

4.4 Complementary publications . 27

5 Conclusion and future work . 29

II Research papers 37
1 RQ1: Novel DLT applications for secure information sharing 38

1.1 A distributed ledger approach to digital twin secure data sharing 38

i

1.2 Ethertwin: Blockchain-based secure digital twin information management . 59

1.3 DEALER: Decentralized Incentives for Threat Intelligence Reporting and

Exchange . 83

1.4 A secure and auditable logging infrastructure based on a permissioned

blockchain . 105

2 RQ2: Protecting DLT applications from threats 116

2.1 Trust Factors and Insider Threats in Permissioned Distributed Ledgers . . . 116

2.2 Detecting Blockchain Security Threats 143

2.3 HyperSec: A Visual Analytics approach to blockchain monitoring 152

3 RQ3: Secure Information Sharing in a DLT Consortium 169

3.1 Comparing Successful DLT Consortia: A Lifecycle Perspective. 169

Academic CV 181

ii

List of Figures

1 Architecture and integration of an enterprise DLT application. 2

2 DSRM according to Peffers et al. 6

3 Mapping of research questions to business problems and publications. . . . 9

4 Architecture framework for digital twin data sharing using distributed ledgers. 10

5 Entity relationship data model of EtherTwin. 12

6 Sequence diagram of write interactions in EtherTwin. 12

7 Architecture of the secure logging prototype. 16

8 Aspects of the NIST Cybersecurity Framework covered by contributions. . 17

9 Trust actors and layers within scope. 18

10 DLT vulnerability injection attack scenario. 19

11 Monitoring architecture for detection of blockchain security threats. 20

12 Attack tree of permissioned blockchain threats. 21

13 Architecture of the HyperSec prototype. 22

14 DLT consortium lifecycle phases. 25

iii

List of Tables

1 Publication overview. 8

2 Comparison of CTI sharing platforms. 14

3 Security expert tasks and related attacks. 22

4 Overview of selected case studies (in alphabetical order). 25

5 Overview of complementary publications. 27

iv

Part I

Outline of the dissertation

1 Motivation

In a highly interconnected world, information sharing among collaborating organizations

has become a necessity. Complex supply chains require several months to years of advance

planning, making timely information sharing critical toward meeting the stakeholders’ needs.

Information asymmetry resulting from poor sharing practices can lead to shortages, ineffi-

ciency and overall poor supply chain performance [18, 57]. This is apparent in application

domains like agrifood [17, 58], where transparency, provenance, and traceability are impor-

tant to consumers. Similar information sharing requirements exist in other sectors, including

industrial supply chains, financial services, government services, and healthcare [5].

Existing information systems have limitations in addressing the requirements of these

information sharing practices, especially concerning security aspects. Current practices

rely on two approaches: ad-hoc exchange and trusted third parties. For ad-hoc exchange,

standards such as EDI (electronic data interchange) are commonly used. There are several

issues with such standards: connections are bilateral only (unicast), there is no single valid

interaction history, and it is difficult to assure integrity [21]. Using trusted third parties

(i.e. cloud providers) solves these problems, but requires complete trust in the third-party

provider regarding both organizational and technical elements. Confidentiality, integrity and

availability of the information are at the hands of the third-party provider. In times where

data breaches, malware infections and denial of service attacks are widespread [16], such

trust can quickly prove unfounded if the aforementioned security goals are compromised

while the data is stored at the third party. In fact, information security threats, unauthorized

access and cyberattacks are common concerns in supply chain information sharing [35].

Distributed Ledger Technology (DLT) is a recently introduced technological artifact that

promises to solve these information sharing issues. First introduced with the proposal of the

Bitcoin blockchain in 2008 [45], blockchain technology has since evolved to cover additional

use cases beyond cryptocurrencies. Since the term blockchain no longer fits all instantiations

of the technology, the more abstract term Distributed Ledger has been introduced.

Distributed Ledgers are replicated databases, kept up to date by a network of peers

using a consensus algorithm. The key novelty compared to traditional databases is that

1

I. OUTLINE OF THE DISSERTATION 2

Figure 1: Architecture and integration of an enterprise DLT application.

transaction updates are stored as an append-only sequence of blocks. These blocks are

immutably linked through a hash-chain, where each block includes the predecessor’s block

hash. Each peer permanently stores all transactions starting with the first block. If the

consensus algorithm tolerates byzantine faults, the network can be operated by parties that

do not fully trust one another, given an honest majority [55]. Transactions are observed

and agreed on by all participants, which means updates are non-repudiable. Business logic

is executed verifiably through smart contracts. Additional supportive contracts provide

authorization and external data integration (referred to as oracles). Besides the Distributed

Ledger itself, DLT applications, like traditional web applications, use client and server

applications to integrate with existing systems. In addition, DLT applications are supported

by organizational functions, which ensure stable and secure operations, governance and

analytical insights. An overview of a typical enterprise DLT application is given in Figure 1.

Despite their promise, Distributed Ledgers have not yet reached widespread adoption

for secure information sharing. At the time of this writing, there are still few examples

where Distributed Ledgers are successfully used in business operations (i.e. Tradelens [30],

we.trade [28]). Both technical and organizational factors contribute to the slow adoption

and development of DLT. On the one hand, several unsolved or only partly solved technical

problems regarding scalability, security and privacy remain to date [40]. On the other hand,

unlike most traditional enterprise software, DLT applications must be developed in collabo-

ration with other organizations in the same industry to realize their full potential. This leads

to organizational challenges regarding collaboration, decision-making and responsibilities

[36]. Information Systems Research (ISR) is uniquely suited to solve such challenges arising

at the intersection of organization and technology.

Hence, using ISR methodology, this dissertation aims to develop applications and con-

comitant foundations for secure interorganizational information sharing based on DLT. To

highlight the relevance and importance of the research conducted in this dissertation and to

point out influencing works, Section 2 gives an overview of related research concerning DLT

and its applications. Section 3 establishes the structure of the research work by outlining

the main research questions, the three derived research areas and the corresponding business

problems addressed in the research. Section 4 details the papers published as part of the

cumulative dissertation, and how they address the research questions and business problems.

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 3

2 Related research

Since the inception of Bitcoin in 2008, numerous DLT frameworks have been developed.

While at first many alternatives were derivative cryptocurrencies with only minor modifica-

tions, later frameworks focused on developing additional features and improving performance.

The first milestone on this path was the development of Ethereum in 2014, the first blockchain

supporting complex application logic through Turing-complete smart contracts [64]. Smart

contracts enable the verifiable execution of business logic on decentralized ledgers without

intermediaries. This innovation allows interorganizational information exchange without

ceding computation or data sovereignty to a single trusted partner or intermediary. To make

smart contracts accessible to users, decentralized applications emerged as the decentralized

counterpart to traditional web applications [68, 63]. Other novel DLT frameworks like IOTA

[49] focused on alternative data structures, using directed acyclical graphs as opposed to

chains of blocks to improve scalability. Another approach to improve scalability is consensus

protocol innovation, where research developed novel protocols like Proof of Stake [33]. The

aforementioned frameworks are referred to as permissionless, meaning that they do not

restrict participation to a fixed set of nodes. Permissionless blockchains such as Bitcoin and

Ethereum inspired the notion of permissioned blockchain networks, where a limited set of

authorized participants operates the network [66]. Limiting the set of participants is ideal for

enterprise applications that do not want to share data beyond the network of business partners.

Thus, starting in 2016, several open-source frameworks were developed for permissioned

blockchains. The most widely used frameworks in enterprises [51, 61] are Hyperledger

Fabric [3], Corda [22], the Bitcoin-based Multichain [19] and the Ethereum-based Quorum

[31]. In research, permissionless Ethereum clients are commonly used for prototypes [34],

with Quorum offering additional privacy-preserving features such as private transactions and

smart contracts.

Based on these DLT frameworks, numerous applications have been developed by re-

searchers [7, 26]. Financial use cases such as cryptocurrencies and decentralized finance

were the first ones to be investigated by research and practice [42]. Supply chain and logistics

traceability is another major area where DLT is aptly suited to advance digitization [30].

Other research areas of interest include health [13], education [2] and the Internet of Things

(IoT) [52]. Within the scope of this dissertation, two application areas are of particular

interest for the development of novel applications: the industrial IoT and Cybersecurity. As

a subset of IoT research, the industrial IoT is particularly concerned with the security and

analytics of industrial data. Thereby, the Digital Twin is a novel concept to map physical

objects to digital counterparts [14]. At the start of this dissertation, DLT-based twins had not

yet been investigated as a possible solution to the aforementioned challenges [56]. Therefore,

this dissertation studies the suitability of DLT as a solution for sharing Digital Twin data in

the industrial IoT. In Cybersecurity research, sharing information about threats is essential

to improve preparedness for future attacks [41]. However, during the first years of DLT

application research, the sharing of Cybersecurity-related information using DLT was studied

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 4

by comparatively few researchers [54]. Therefore, DLT-based Cybersecurity information

sharing presents another research opportunity and focus area for this dissertation.

To build DLT applications for security purposes, the security of DLT itself is paramount.

DLT security research extends to all layers of a Distributed Ledger. The most common four-

layer model includes the Network, Consensus, Replicated State Machine and Application

layers [25]. Each of these layers is subject to threats from malicious actors. Attacks differ

based on the DLT framework used, but most research has focused on popular blockchain

frameworks like Ethereum [27, 50]. Most attacks unique to the blockchain ecosystem focus

on the Replicated State Machine layer, specifically smart contract programming languages

and the corresponding virtual machines. Ethereum’s Solidity and the associated Ethereum

Virtual Machine are the most popular and widely used smart contract programming envi-

ronment [4]. Due to the intricacies of smart contract development, they have been widely

exploited in attacks on permissionless blockchains [8] and still today represent an attractive

target for attackers [32]. Hence, a plethora of primary studies and surveys have been con-

ducted concerning smart contract vulnerabilities in recent years [50]. Besides documenting

vulnerabilities, researchers have focused on programming best practices, automated vulnera-

bility detection tools, and both proactive and reactive mitigation efforts [8]. Consequently,

mitigation tools for these attacks are subject to research [59, 46, 9]. Other attack examples

beyond smart contracts include attacks related to social engineering [29] and attacks on

network communication such as denial of service [38] and eclipse attacks [23]. Besides

Ethereum, Hyperledger Fabric security has been focused by researchers, as it is the most

popular permissioned blockchain platform [11]. Its smart contracts, also called chaincodes,

have been the subject of several studies [12, 69]. Due to the use of established programming

languages (Go, Node.js) and the lack of cryptocurrency as an incentive for attacks, fewer

vulnerabilities are known and exploited. Nevertheless, a significant amount of both internal

and external attack vectors exist [11]. Despite these threats, research regarding their detection

and mitigation is still sparse. Therefore, this dissertation focuses on understanding threats to

permissioned networks, while developing approaches for detection and mitigation. Due to

its popularity, Hyperledger Fabric serves as the primary evaluation target.

To build secure applications based on DLT, solid technological and organizational

foundations are needed to disincentivize and prevent malicious attacks. There is a large body

of literature regarding the architecture of blockchain-based applications [66, 68, 63] and

corresponding software patterns [67, 62]. However, there is still a need for research at the

intersection of organization and technology [53]. At this intersection, blockchain governance

research is concerned with the distribution of responsibilities and power among blockchain

network participants [73]. For enterprise blockchain applications, these participants are

organizations, which organize as part of a consortium [71]. While research exists on the

formation of business consortia [37], little is still known about the formation and development

of consortia focused on information sharing with DLT beyond isolated case studies [30, 71].

To this end, this dissertation also considers factors for stable and secure interorganizational

relations to underpin networked DLT applications.

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 5

3 Research Questions

As an emerging technology, DLT opens up a plethora of new research opportunities. Section 2

has given an overview of these new research streams, while highlighting challenges that

remain on the path to adoption of secure DLT applications. To address remaining research

gaps, this dissertation focuses on developing applications for secure interorganizational

information sharing based on secure DLT foundations. This objective leads to the main

research question:

Main Research Question. How can organizations apply Distributed Ledger Technology

to improve the security of interorganizational information sharing (IIS)?

This research question points toward several perspectives on DLT adoption. The term

"apply" implies a focus on novel DLT-based applications. These may supplement or replace

existing information sharing systems to reach benefits like non-repudiation, improved process

efficiency, or improved transparency. "improving the security" of IIS implies designing

secure systems and protecting these systems from threats. DLT’s built-in cryptographic

mechanisms enable enhanced security, but the realization of these benefits depends on the

proper security foundations and processes of the adopting organizations. The subject matter

of "interorganizational information sharing" points to the need to securely collaborate with

other organizations to gain the desired application benefits.

Based on these considerations, the main research question is segmented into three focus

research questions RQ1, RQ2 and RQ3. These focus research questions are addressed in

publications as part of the cumulative dissertation.

RQ1. How can DLT improve the security of IIS in existing application domains?

RQ2. How can DLT applications be protected from internal and external threats?

RQ3. How can organizations securely share information as part of a DLT consortium?

The research questions logically build upon one another. RQ1 represents the application

of a novel technological artifact (DLT) towards existing research areas and business prob-

lems. This represents the Improvement strategy of the Design Science Research Knowledge

Contribution framework [20], i.e. developing knowledge by developing new solutions for

existing problems. RQ2 ensures the technical security of the applications developed for

RQ1 by modeling applicable threats. RQ3 looks at the longer-term strategic development

perspective of the consortium required to support functional and secure DLT applications.

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 6

3.1 Methodology

The research conducted in this dissertation is part of the domain of Information Systems

Research (ISR). Publications in ISR mostly follow one of two complementary research

paradigms: behavioral science and design science. Behavioral science develops theories to

explain and predict human and organizational behavior. Design science seeks to create novel

Information Systems (IS) artifacts to solve practical problems. [24]

To address the challenges posed by the main research question, design science is aptly

suited. Solving technical challenges and demonstrating improvement over existing systems

necessitates the development of IS artifacts. Thus, the main research method utilized for the

design of the technological artifacts is the Design Science Research (DSR) paradigm for ISR

[24]. More specifically, the DSR methodology (DSRM) process model [48] is utilized in

many works of this dissertation and shown in Figure 2.

To address the organizational aspects of secure foundations for DLT information sharing

(RQ2), Case Study Research methods present an adequate tool [70].

3.2 Research Process

To answer the research questions, the dissertation follows the rigorous 6-step iterative process

model of the DSRM [48] shown in Figure 2. Its steps and their relevance to problem-solving

in the DLT context are outlined below.

Problem identification. Based on current trends in industry and academia, distinct con-

temporary business problems with respect to the research questions are identified.

Objective definition. The artifact objective is defined based on the benefits DLT can

bring to the application context over existing solutions (RQ1). For RQ2, the artifact ob-

jective is centered around improving DLT security, while for RQ3 it focuses on improving

interorganizational collaboration towards the successful application of DLT.

Design & development. The research artifact is designed based on the requirements

demanded by the objective. Development of an instantiated artifact is performed if an

implementation is needed for the following stages. The implementation follows secure-by-

design principles [39].

Demonstration. The artifact is applied to the domain problem to demonstrate its ability to

solve the problem and to do so more effectively and/or efficiently than previous solutions.

Figure 2: DSRM according to Peffers et al. [48]

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 7

Evaluation. The evaluation determines how well it meets the objectives established in

step 2. For qualitative measurement, semi-structured expert interviews are used to assess how

well the artifact addresses the problems of the intended user group. For quantitative measure-

ment, performance-related technical characteristics of the prototype are benchmarked.

Communication. The act of publishing research results in scholarly publications is an

explicit objective of this cumulative dissertation. Appropriate venues are chosen based on

the context of the addressed DLT problem. To ensure full research transparency, the artifacts

are published open-source if an implementation was performed.

3.3 Research plan

To address RQ1 through RQ3, specific business problems (BP) are identified within the

problem space of each research question, corresponding to the Problem Identification step

of the DSRM outlined in the previous section. These problems represent contemporary

challenges that are currently faced by researchers or industry, which are in need of a new or

improved solution. This dissertation performs research actions to respond to the challenges,

yielding a single or several publications per business problem as part of the Communication

step.

Main RQ. How can organizations apply Distributed Ledger Technology to improve the

security of interorganizational information sharing (IIS)?

RQ1. How can DLT applications improve the security of IIS in existing application domains?

– BP1-1 How can Distributed Ledgers improve the security of industrial IIS?

– BP1-2 How can Distributed Ledgers improve IIS for cybersecurity?

RQ2. How can DLT applications be protected from internal and external threats?

– BP2-1 What internal and external threats are Distributed Ledgers susceptible to?

– BP2-2 How can attacks on Distributed Ledgers be detected?

RQ3. How can organizations securely share information as part of a DLT consortium?

– BP3-1 Is there a lifecycle for the development of DLT applications for IIS in a

consortium?

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 8

4 Results

The research questions proposed in Section 3 were addressed in a total of eight publications.

A complete publication overview is given in Table 1, including the ranking of the respective

conference or journal in the CORE rankings1.

Table 1: Publication overview.

No Title CORE

P1 Marietheres Dietz, Benedikt Putz, and Günther Pernul. 2019. A
Distributed Ledger Approach to Digital Twin Secure Data Sharing. In
Data and Applications Security and Privacy XXXIII, Simon N. Foley
(ed.). Springer International Publishing, 281–300.

B

P2 Benedikt Putz, Marietheres Dietz, Philip Empl, and Günther Pernul.
2021. Ethertwin: Blockchain-based secure digital twin information
management. Information Processing & Management 58, 1 (2021).

A

P3 Florian Menges, Benedikt Putz, and Günther Pernul. 2020. DEALER:
decentralized incentives for threat intelligence reporting and exchange.
International Journal of Information Security (2020).

C

P4 Benedikt Putz, Florian Menges, and Günther Pernul. 2019. A
secure and auditable logging infrastructure based on a permissioned
blockchain. Computers & Security 87, (November 2019), 101602.

B

P5 Benedikt Putz and Günther Pernul. 2019. Trust Factors and Insider
Threats in Permissioned Distributed Ledgers. Transactions on Large-
Scale Data- and Knowledge-Centered Systems XLII, (2019), 25–50.

-

P6 Benedikt Putz and Günther Pernul. 2020. Detecting Blockchain
Security Threats. In 2020 IEEE International Conference on
Blockchain (Blockchain), IEEE, 313–320.

-

P7 Benedikt Putz, Fabian Böhm, and Günther Pernul. 2021. HyperSec:
Visual analytics for blockchain security monitoring. In ICT systems
security and privacy protection - 36th IFIP TC 11 International
Conference, SEC 2021, Oslo, Norway, June 22-24, 2021, Proceedings
(IFIP Advances in Information and Communication Technology),
Springer, 165–180.

B

P8 Benedikt Putz and Günther Pernul. 2022. Comparing Successful
DLT Consortia: A Lifecycle Perspective. In 55th Hawaii International
Conference on System Sciences 2022, 4591–4600.

A

Each publication addresses a specific business problem from Section 3.3. For some

business problems multiple publications address distinct sub-problems. It should be noted

that these publications do not fully exhaust the problem space of the research question.

As is common in research, other complementary publications exist that address similar

sub-problems. In addition to the Related Work chapter within each publication, a summary

1http://portal.core.edu.au

Dissertation Benedikt Putz, 2022

http://portal.core.edu.au

I. OUTLINE OF THE DISSERTATION 9

of other related research is given in Section 2. Nevertheless, each publication in Table

1 provides a significant contribution towards solving the larger business problem and its

superordinate research question.

Figure 3: Mapping of research questions to business problems (BP*) and publications (P*).

4.1 RQ1: Novel DLT applications for secure information sharing

Distributed Ledgers go beyond existing distributed databases by providing a shared storage

platform without intermediaries. Availability, integrity and non-repudiation guarantees are

built into the technology through a verifiable replicated data structure. These properties

make it an attractive candidate to replace existing information sharing applications based on

bilateral exchange or intermediaries. For reasons mentioned in Section 2, this dissertation

focuses on applying DLT-based information sharing to two application areas: the Industrial
Internet of Things (IIoT) and Cybersecurity.

The IIoT is an emerging network of internet-connected devices and machines, which

interact across industrial organizations to share data and create business value. It is in need of

a secure way to store and share data across organizational boundaries, without intermediaries

and while maintaining privacy as needed. Publications P1 and P2 focus on the development

of DLT-based artifacts for this purpose (cf. BP1-1).

As the digitization of society advances, the number and impact of cybersecurity threats

have kept pace. Correspondingly, researchers have focused on developing more efficient

means to anticipate, prevent and mitigate threats. As a secure information sharing technology,

DLT can help store and share cybersecurity-related data while providing availability and

integrity guarantees. P3 and P4 focus on applying DLT to improve IIS for cybersecurity

(BP1-2). With regard to the anticipation of threats, Publication P3 demonstrates how it can

be applied to sharing Cyber Threat Intelligence (CTI) among organizations. To support

mitigation and prosecution of cybersecurity threat actors, Publication P4 develops a DLT

solution for non-repudiation of log entries. Immutable time-stamped log entries can then be

used as evidence for the prosecution of attackers in court.

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 10

4.1.1 A distributed ledger approach to digital twin secure data sharing [P1]

P1 develops a framework to securely share Digital Twin data using DLT. The Digital Twin

paradigm refers to a digital representation of a real-world asset. Throughout this lifecycle,

the twin’s data needs to be shared with various stakeholders – e.g. manufacturer, owner,

distributor and maintainer. With conventional sharing techniques it is challenging to share

this data securely, so a DLT-based approach is proposed to fulfill all requirements.

The article follows the DSRM by first formally defining the problem as part of the

Problem Identification step. The formal definition is based on ensuring two main goals:

data confidentiality (authentication, authorization) and integrity (auditability, traceability).

For Objective Definition, five requirements are derived from the formal basis and practical

challenges:

R1 Multi-party sharing

R2 Data variety support

R3 Data velocity support

R4 Data integrity and confidentiality mechanisms

R5 Read and write operations

R2 and R3 originate in the different data formats and throughput requirements needed

for IoT data, which can be challenging to handle for data sharing systems. Thereafter,

in the Design & Development stage, appropriate technologies are selected, and a system

architecture is developed. A Demonstration is not part of P1 and instead performed in

the follow-up publication P2, which builds on the results of P1. A critical evaluation and

discussion of the resulting architecture provide directions for future research.

Figure 4: Architecture framework for digital twin data sharing using distributed ledgers.

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 11

The proposed application architecture is shown in Figure 4. After evaluating if DLT is a

good fit for the use case using the framework by Wüst and Gervais [65], a Distributed Ledger

is chosen as a decentralized storage platform. It stores the specification metadata about

the physical asset, as well as references to all other shared documents on external systems.

Access control is enabled through a dedicated Authorization smart contract. To store and

share larger documents, a Distributed Hash Table (DHT) is introduced as off-chain storage. It

also enables low latency sharing of sensor data, which avoids the longer latencies associated

with DLT transactions. Users interact with the Digital Twin using a client application, where

they can modify specification data and upload documents. A device agent connects the

Digital Twin to its physical counterpart. Sensor data is provided by this device agent, which

monitors the physical asset and pushes measurements to the DHT. The concept also allows

for two-way interaction, for example through PLC program calls issued on the Digital Twin,

which are then forwarded to the asset by the device agent using a pull model.

The intended functionality of the architecture is demonstrated as part of a bottling plant

use case. The use case highlights the advantages of the decentralized solution, such as

improved transparency and integrity guarantees. These are enabled by the lack of a trusted

third party, which might manipulate the data for personal gain.

Contribution of P1: The paper introduces a novel framework for secure Digital Twin

data sharing. Based on a definition of practical requirements for multi-party sharing, the

applicability of DLT to Digital Twin data sharing is evaluated and affirmed. A distributed

architecture is developed using DLT-based smart contracts and DHT off-chain storage. The

suitability of the design is evaluated in an exemplary industrial use case, demonstrating the

fulfillment of the requirements.

4.1.2 Ethertwin: Blockchain-based secure digital twin information management [P2]

P2 builds on the results of P1 by implementing a prototype for Digital Twin information

management and sharing on a blockchain. The goal is to demonstrate the practical feasibility

by implementing a fully working prototype. The publication follows the DSRM, utilizing

the results of P1 with regard to Problem Identification and Objective Definition. A ten-step

decision path [47] is used to evaluate the applicability of blockchain to the DT use case.

For application design, P2 uses the requirements established in P1 to develop a component

diagram and detailed entity-relationship data model (ERM) (see Figure 5) for the industrial

data sharing use case. To ensure data integrity and confidentiality, a fine-grained access

control model is developed and implemented as part of a smart contract system. The

resulting prototype is published open-source on GitHub2 and made available publicly for

demonstration purposes3. It is evaluated in quantitative technical experiments and qualitative

expert interviews with industry professionals.

The ERM is shown in Figure 5. The on-chain component implements the access control

model using the Specification and Authorization smart contracts shown in Figure 4. A

2https://github.com/sigma67/ethertwin
3https://ethertwin.ur.de

Dissertation Benedikt Putz, 2022

https://github.com/sigma67/ethertwin
https://ethertwin.ur.de

I. OUTLINE OF THE DISSERTATION 12

1:n

On-Chain (Smart Contract) Off-Chain (DHT)

Authorization

Role

Registry

Document

Version

1:n1:n

1:n1:n

1:11:1

Sensor

Entry

Specification
Specification

Version
1:n1:n1:11:1

DocumentPermission

n:mn:m

Sensor1:n1:n

1:n1:n

Twin

1:n1:n

1:n1:n

External

Source
1:n1:n

ComponentUser n:mn:m

Attribute

n:mn:m

Figure 5: Entity relationship data model of EtherTwin.

Contract Registry keeps track of all deployed Specification contracts (1:n relation), which

allows creating multiple Twins with a single deployment. Each Twin is mapped to a single

Specification, which provides information about its Components. Each Component can be

associated with Sensor data and Documents. The Authorization contract implements the

access control model and maps Users to Attributes and Roles. The off-chain component is

used to store the full data associated with the versioned references stored in the Specification

smart contract.

The fine-grained access control model is based on the RBAC-A model, which describes

a role-centric model enhanced with attributes [10]. The base permissions are defined by

roles, which can be limited by the user’s attributes. Write permissions are enforced on-chain

by limiting which transactions a user can perform when interacting with the Specification

contract. Read permissions are enforced off-chain, by encrypting data stored on the DHT

with a file key. This key is provided to all participants using their blockchain public key

identities based on a key distribution algorithm specified in the paper.

:Registry

Contract

:Authorization

Contract

:Specification

Contract

new Authorization Contractnew Registry Contract

deploydeploy

registerContract(meta, hashspec)
new Specification Contract

address

updateTwin(meta, hashspec)

(create/update/delete) (spec/doc/sensor) authorize()

grant/reject

address

[grant]
store state change

shareTwin(address, role)
authorize()

[grant]
addRole(address, role)

DHT

upload(spec)

hashspec

DApp

upload(doc)

hashdoc

opt

createDoc
updateDoc

opt

createDoc
updateDoc

Twin

Creation

Twin

Sharing

Twin

Data

Sharing

Figure 6: Sequence diagram of write interactions in EtherTwin.

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 13

Two complementary technologies were chosen for the open-source implementation:

the Ethereum blockchain framework and the Swarm DHT. The Ethereum blockchain is

widely used in research due to its popularity and developer tools, enabling swift creation and

evaluation of prototypes. We use it to implement our smart contract system. The Swarm

DHT is well integrated with Ethereum, as it uses the same public key identities based on the

Elliptic Curve Digital Signature Algorithm (ECDSA). This facilitates the integration of both

systems and the implementation of the access control model. A sophisticated frontend was

developed using the single page application framework Vue.JS4. Figure 6 shows the complex

interactions among components for the write operations Twin Creation, Twin Sharing and

Twin Data Sharing. In total there are five distinct components: three smart contracts, the

DApp (frontend) and the DHT.

Technical evaluation of the prototype is performed using quantitative measurements of

transaction cost and algorithmic latency. The results show that an implementation in an

industry use case is feasible, although transaction costs may be prohibitively high when using

the public Ethereum main net due to cryptocurrency exchange rates. A private blockchain can

provide a cost-efficient alternative. Qualitative evaluation is performed as part of a use case

with an industry partner, as well as structured expert interviews with domain experts from

the industry. The prototype’s user interface and the use of access control and encryption was

lauded by the experts. There was some skepticism regarding the scalability of a decentralized

system when used with the large volumes of sensor data occurring in practice. Overall, the

experts considered the prototype a good starting point for enabling industrial information

sharing based on Digital Twins.

Contribution of P2: P2 develops EtherTwin, an open-source decentralized application

prototype designed to address the requirements of multi-party industrial data sharing using

Digital Twins. It follows an owner-centric sharing model involving all lifecycle participants,

while ensuring appropriate access with a fine-grained RBAC-A access control model. The

EtherTwin prototype shows how to overcome practical challenges associated with decen-

tralized data sharing, while addressing throughput and latency requirements at manageable

cost.

4.1.3 DEALER: Decentralized Incentives for Threat Intelligence Reporting and Ex-
change [P3]

With the advance of digitization, cybersecurity threats have been proliferating along with

the increasing use of information systems. Sharing information about existing threats

improves organizations’ awareness of the current threat landscape, and can be used to

better defend against future attacks (voluntary reporting). However, the sensible nature of

threat information often has an inhibitory effect on an organization’s willingness to share its

incidents. A sustainable platform for CTI exchange should provide such adequate incentives.

Besides voluntary reporting, obligatory reporting is mandated for critical infrastructure

providers by regulatory requirements such as the IT-Sicherheitsgesetz5. To fulfill these
4https://vuejs.org
5https://www.gesetze-im-internet.de/bsig_2009/BJNR282110009.html

Dissertation Benedikt Putz, 2022

https://vuejs.org
https://www.gesetze-im-internet.de/bsig_2009/BJNR282110009.html

I. OUTLINE OF THE DISSERTATION 14

Table 2: Comparison of CTI sharing platforms with regard to reporting and sharing requirements.
not addressed, G# insufficiently addressed, explicitly addressed

FB-TX X-Force MISP OpenCTI Trident DEALER

Platform availability G# G# G#

Data availability # G#

Integrity # # # # G#

Non-repudiation # # # G#

Incentives # # # #

Fairness # # # # G#

Quality Assurance # # # # G# G#

regulatory requirements, a CTI exchange platform must provide availability, integrity and

non-repudiation for stored data. Trusting a third-party provider to operate such a platform

is not ideal, as they may violate data confidentiality or seek to profit from the stored data

through reselling. To avoid such a trusted third party, P3 proposes the DEALER threat

intelligence sharing platform based on DLT. DEALER is designed to provide decentralized

incentives for sharing data, while preserving the confidentiality of shared threat intelligence

through encryption.

The paper follows the DSRM by first defining problem and objective, as detailed in

the previous paragraph. Thereafter, P3 defines seven requirements based on the need for

incentives and regulation-compliant reporting. These requirements are shown in Table 2

and subsequently addressed in the design of the DEALER platform. To demonstrate the

design, an appropriate blockchain platform and distributed storage technology are selected

to implement a decentralized application prototype. For evaluation, the demonstrator is then

shown to information security experts in semi-structured expert interviews.

The design of a platform for incentivized data exchange involves a) developing mecha-

nisms to protect the data from unauthorized access, and b) ensuring fairness for both trading

parties. Smart contracts can be used to implement such protocols without a trusted third

party [15]. DEALER uses smart contracts for the escrowed sale of data. To protect data

confidentiality, all data is encrypted and only made accessible to authorized participants (i.e.

sellers and buyers) using off-chain file keys. Fairness is ensured through dispute resolution

protocols and sign-up collateral, which may be claimed in case of misbehavior. Besides

buyers and sellers, verifiers ensure the data quality of newly uploaded threat intelligence.

They also act as dispute resolution agents in case of disagreement over a purchase.

The design is implemented using the permissionless blockchain platform EOS6. EOS is

chosen mainly due to its unique property of not requiring transaction costs. Instead, it only

requires staking currency in return for a daily transaction allotment. Paying a fee for each

transaction could disincentivize sharing threat intelligence and threaten cost fairness for the

participants. For data storage, the DHT network IPFS is used to share the encrypted incident

data and encryption keys. The evaluation of the prototype shows reasonable staking costs for

execution of the smart contract on the EOS blockchain, even when scaled to all institutions

6https://eos.io

Dissertation Benedikt Putz, 2022

https://eos.io

I. OUTLINE OF THE DISSERTATION 15

with legal incident reporting obligation. The measured latencies for write interactions are on

the order of one to two seconds, which is high but still tolerable. Semi-structured interviews

with security experts yield positive results regarding the platform’s incentive structure,

integrity features and usability. A detailed security discussion describes how various threats

to the platform are dealt with (free-riding verifiers, content reselling, verifier collusion and

sybil attacks).

Contribution of P3: DEALER provides a decentralized marketplace for the incentivized

sharing of threat intelligence, fulfilling both voluntary and obligatory sharing needs. Quality

assurance and dispute resolution is provided by independent verifiers. The platform provides

transactional fairness for both seller and buyer. An open-source prototype demonstrates the

concept’s feasibility in a fully decentralized setting using the EOS blockchain and IPFS

decentralized storage.

4.1.4 A secure and auditable logging infrastructure based on a permissioned blockchain
[P4]

Log data is another form of security information that is ubiquitous today. It is produced by

most enterprise applications and often provides critical information for identifying the source

of a security incident. While sharing the contents of the logs is undesirable due to sensitive

information within, sharing a proof of existence can prove useful for non-repudiation. An

immutable time-stamped proof can later be used to prove that the contents of the log entry

have not been modified, which can provide indisputable proof of the origin and procedure of

an attack (i.e. IP address, command sequence).

P4 designs a logging infrastructure for storing such immutable proofs of existence

using DLT. To this end, the generic process of a non-repudiation service [1] is adopted

to enumerate requirements for a DLT-based approach. The main challenges are ensuring

adequate throughput in a decentralized network, and storing large volumes of log data. The

resulting architecture stores log data off-chain to ensure availability and confidentiality, while

storing proofs of existence (hash values) on a permissioned blockchain. The formal logging

procedure follows three basic steps: S1 Client application processing, S2 Blockchain node

processing and optionally S3 Verification. During S1, the log is received from the producing

system and processed into a hash. That hash is then signed and packaged into a blockchain

transaction. In S2, blockchain nodes store the hash along with a consensus-based timestamp.

To prove a log entry’s non-repudiation property retrospectively, S3 may be used to verify its

origin and integrity.

The formal procedure is implemented using an extended client-server architecture as

shown in Figure 7. The client represents the user-facing frontend, while the server performs

task S1. The transaction is submitted to a node of a public permissioned Exonum blockchain

framework, which performs S2 and S3.

The prototype is evaluated regarding security and performance. A threat analysis re-

garding fundamental distributed systems threats shows no major concerns, provided that

operational security concerns are met before deployment (such as code audits, proper config-

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 16

Figure 7: Architecture of the secure logging prototype.

uration). A performance benchmark demonstrates sufficient throughput of the blockchain

network on the order of 3,000 transactions per second. Further scalability improvements can

be achieved by batching entries.

Contribution of P4: The paper investigates the suitability of DLT for the purpose of secure

logging. It goes beyond extant work by providing non-repudiable proofs of existence using

a customized high-throughput and byzantine-fault tolerant blockchain network. A formal

secure logging procedure and threat analysis ensure the non-repudiation of the proofs in

audits by external stakeholders such as courts and insurance providers.

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 17

4.2 RQ2: Protecting DLT applications from threats

A significant amount of trust is placed into DLT applications due to their reputation for

security. However, despite this reputation, successful attacks on DLT are widespread. This is

most apparent in permissionless blockchains such as Ethereum. There, smart contract hacks

are frequent with cryptocurrency thefts equivalent to millions of dollars [8]. Similar attacks

apply to permissioned blockchains, even though they are rarely publicized due to their private

nature. Besides smart contract threats, there are other types of attacks concerning identity

management (e.g. credential theft) and networking (e.g. denial of service). In addition, in

permissioned networks insiders from competing organizations on the network may behave

maliciously. For example, if the network only uses a crash-fault tolerant consensus algorithm,

it is ill-equipped to handle the intentional misbehavior of insider attacks. To manage these

various threats and risks, organizations must know which threats DLT applications are facing

(cf. BP2-1) and how to detect them (cf. BP2-2). This dissertation focuses on these aspects

of DLT security management.

The contributions of this dissertation toward the aforementioned business problems

are highlighted based on the NIST Cybersecurity Framework [6] shown in Figure 8. P5

focuses on the Identify and Protect areas by outlining threats and mitigation options. It

focuses specifically on insider threats, which have received far less attention in research

than external threats to DLT networks. P6 and P7 focus on the permissioned blockchain

framework Hyperledger Fabric, which is the most frequently used platform for permissioned

enterprise DLT applications [34]. Both publications enumerate and structure existing threats

based on prior work, thus contributing to Identify. Their main contribution, however, lies

in analyzing the feasibility of detecting threats, thereby addressing the Detect category. P6

examines the detectability of attacks using existing metrics. P7 uses the applicable metrics

to build visualizations tailored for security experts to detect threats.

Figure 8: Aspects of the NIST Cybersecurity Framework covered by contributions.

4.2.1 Trust Factors and Insider Threats in Permissioned Distributed Ledgers - An
analytical study and evaluation of popular DLT frameworks [P5]

DLT is often regarded as trust-free, while in fact there are many trusted components that

are part of a typical DLT architecture. P5 focuses on this fact and analyzes the trust actors,

layers and components that humans rely on when interacting with a DLT application. Trust

relationships can be exploited by insiders for malicious attacks, which are explored in-depth

in the second part of the publication.

The paper explores the known threat category of insider threats within the novel context

of distributed ledgers. It structures the results of prior research and builds theory on trust

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 18

Figure 9: Trust actors and layers within scope.

factors and insider threats by synthesizing extant literature. The theoretical model is evaluated

through an analytical study on the technical components of widely used DLT frameworks.

The first part focuses on establishing a trust model for DLT. The model is shown in

Figure 9. Three groups of actors are defined: Users, Operators and Software Service

Providers, representing trustor-trustee relationships in this order. Peripheral actors such as

industry initiatives (i.e. Hyperledger) and research institutions also contribute open-source

trust components. These actors use or develop DLT software, which consists of three abstract

trust layers. Protocols define the low-level storage, cryptography and network related tasks

occurring behind the scenes. They are used by the Overlay Network to manage identity

and establish consensus, where operators trust one another to behave honestly. Finally,

applications with on- and off-chain components are built on top of this network, representing

the user-facing abstraction layer.

Based on this trust model, P6 further examines how different trust actors may act as

malicious insiders to exploit trust assumptions. Four types of outcomes may be achieved

with an attack on specific data: Modification, Destruction, Disclosure and Denial of Use.

Software service providers have extensive possibilities due to source code access and may

achieve all of these consequences through vulnerability injection and abuse. Other trust

actors are more limited in the scope of any single attack type. Operators may perform Denial

of Service, Data Manipulation, Credential Compromise and Malicious Misconfiguration

attacks. Users are limited to Unauthorized Operations. However, the design of DLT limits

the impact of most attacks due to the built-in fault-tolerance, integrity preservation and

replication characteristics. For example, insider threats by Operators and Users target only a

single node or application. On the other hand, injected vulnerabilities can be considered one

of the most significant threats, since all DLT nodes of the network are running the same or

similar software versions. This could result in attacks that affect all nodes at the same time,

potentially voiding the aforementioned safeguards and resulting in permanent disclosure,

modification or destruction of data. This attack scenario is shown in Figure 10.

To build the insider threat model, each of the threats is mapped to the DLT components it

affects. To provide guidance for practice, the components of four popular DLT frameworks

are evaluated: Hyperledger Fabric, Hyperledger Sawtooth, go-ethereum and Corda. Each

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 19

Figure 10: DLT vulnerability injection attack scenario.

framework’s components are investigated for applicable insider threats based on the extant

framework-specific literature. Finally, appropriate operational and technical mitigations

are developed for each of the insider threats. On the operational side, legal agreements

ensure liability for insider attacks. Code review and manual activity monitoring help detect

malicious activity. Technical measures involve typical security practices such as identity

and access management and timely software updates. In addition, automated detection of

manipulation attempts and anomalies (i.e. using dedicated scanners) can help with detection.

Contribution of P6: P6 provides a detailed trust model for DLT frameworks, highlighting

the relationships among trust actors and trusted DLT components. Based on the trust model,

possible insider attacks for each trust actor are enumerated and categorized. These attack

vectors are mapped to vulnerable DLT components in an analytical study of four popular

DLT frameworks. Operational and technical mitigation options are highlighted for each

attack vector category to provide guidance for practice.

4.2.2 Detecting Blockchain Security Threats [P6]

P6 focuses on threat detection for permissioned DLT. This subject has received far less

attention by researchers than smart contract attack detection in permissionless DLT [8]. As

detailed in P6, permissioned DLT systems are subject to various attacks unique to a permis-

sioned environment, i.e. insider threats. These attacks require specialized monitoring systems

designed for distributed networks. In addition, DLT nodes consist of multiple components

(networking, consensus, execution) with different threats and monitoring requirements. P7

provides an overview of these threats and develops corresponding threat indicators. Due

to its relevance in practice, the permissioned blockchain framework Hyperledger Fabric

is chosen for evaluation. As part of the evaluation, the feasibility of measuring the threat

indicators is examined based on the available data sources in Hyperledger Fabric.

To lay the groundwork for security monitoring in permissioned blockchains, P6 estab-

lishes a threat model of blockchain actors. The threat actors in the threat model are detailed

through data flow diagrams. They indicate the relationship among blockchain components

and blockchain actors. The threats themselves are categorized into vulnerabilities and attacks

of malicious intent. Vulnerabilities may be due to misconfiguration, or caused by developers

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 20

Figure 11: Monitoring architecture for detection of blockchain security threats.

in the form of vulnerable software. Malicious intent based threats vary in scope depending

on the threat actor, which can be internal or external.

A systematic literature review is conducted to gather known threats in permissioned

blockchains, yielding tens papers with relevant threats. Nine attack categories are deter-

mined by applying the threat model to the individual threats. Vulnerabilities are grouped

into Contract, Framework, Dependency and Cryptographic Vulnerabilities, depending on

the vulnerability type. Malicious Intent concerns Denial of Service, Network Partitioning,

Consensus manipulation (behavior and configuration) and Identity Provider compromise.

For each of these categories, one or multiple monitoring targets are defined for a total of 16

threat indicators. For example, Denial of Service threats can be detected through significant

anomalies in transaction throughput/latency, incoming network messages and outstanding

transactions. To collect and process the data needed for the threat indicators, a monitoring

architecture is proposed, shown in Figure 11. It consists of the three steps Log Collection,

Enrichment & Normalization and Correlation & Analysis.

The 16 threat indicators are evaluated using Hyperledger Fabric data sources. For 11

indicators, sufficient data was available to detect relevant threats. For three, namely Threat

intelligence, Discarded blocks and Consensus leader election frequency, data availability

was limited. For Scanned vulnerabilities and Outstanding transactions, insufficient data was

available. These results lead to suggestions for future research and proposed improvements

for Hyperledger Fabric APIs.

Contribution of P6: P6 investigates threats for permissioned blockchains and their detection

feasibility. A systematic literature review leads to an overview of existing threats, which

are used to develop applicable threat indicators. To measure these indicators, a monitoring

pipeline is proposed for aggregating and processing the applicable data sources.

4.2.3 HyperSec: A Visual Analytics approach to blockchain monitoring [P7]

P6 examined the feasibility of detecting attacks and determined available data sources in

Hyperledger Fabric. P7 builds on these results and goes one step further. It develops a

task-appropriate visualization assistance for DLT security experts to support the practical

detection of threats. Prior to P8, extant blockchain security research mainly focused smart

contract and threat research. This work goes beyond existing work on automated threat

detection by integrating human security experts as part of DLT threat monitoring. In practice,

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 21

humans are always involved in the incident response process [60], hence task support tools

are a necessary step toward practical threat monitoring for DLT.

To develop an appropriate task support tool, the paper follows the DSRM [48] by defining

the problem, objective and requirements. Subsequently, an artifact is designed and developed

(task-oriented visualizations). The artifact is then implemented in a prototype for evaluation.

As the design methodology, P7 uses the nested blocks and guidelines model (NBGM) [43]

to develop comprehensive and task-oriented visualizations. The NBGM is based on the

definition of the domain problem (blockchain security monitoring) and derives intended

users, their tasks and applicable data elements. Based on these building blocks, design

requirements are defined for a prototype to support the users’ tasks with data visualizations.

Blockchain Network

Threat Model

Authentication

and Access

ControlNetwork

Smart Contracts Consensus

N3 MITM

N2 Distributed

DoS

N1 Network

partitioning

C4 Collusion

C3 Denial of

Service

C2 Block

Withholding

C1 Transaction

Reordering

AC4 Sybil attack

AC3 Private Key

Theft

AC2 Cryptographic

Vulnerability

AC1 Insider attack

SC4 Dependency

vulnerability

SC3 Dependency

injection

SC2 Language

vulnerability

SC1 Denial of

Service

Figure 12: Attack tree of permissioned blockchain threats.

First, the domain problem is characterized based on the detection process (see Figure 8).

P7 focuses on the Detect function, which consists of the four steps Collection, Aggregation,

Visualization and Analysis. The intended users of the framework are the domain experts,

i.e. security professionals with knowledge about blockchain threats. Their tasks are defined

based on relevant threats. Threats are determined based on the results of P5, P6 and related

literature surveys. The result is shown in attack tree form in Figure 12. An overview of tasks

for detecting these threats is given in Table 3. Each task is suitable to detect several types of

threats. In the event of an attack, domain experts intuitively combine these tasks during an

in-depth investigation.

Five design requirements are determined based on the domain problem and objective of

the design. Users should be able to view General Security Information (R1). This refers to

configuration changes and known vulnerabilities (T1 ,T2, T7). A Network View (R2) provides

information about network activities and metrics (T4, T8). To view block and transaction

activity, a dedicated Transaction View (R3) is needed (T5, T6). The mentioned views need to

support Interactivity and Details(R4) to permit in-depth investigations, i.e. by viewing log

files (T3).

Based on these requirements, a prototype is developed termed HyperSec (Hyperledger

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 22

Table 3: Security expert tasks and related attacks (adapted from P7).

Task Description Related attacks

T1 Identify vulnerable smart contracts SC1, SC2, SC3
T2 Identify blockchain framework vulnerabilities SC4, AC2
T3 Inspect log files of running services on demand SC4, N1, N3, C3, C4
T4 Review networking activity N1, N2, N3
T5 Compare transaction metrics over time N2, C2
T6 Explore block and transaction history SC1, SC2, C3, AC1
T7 Review configuration changes C1, AC1
T8 Detect identity abuse AC1, AC3, AC4

Security Explorer). The prototype builds on the open-source Hyperledger Explorer, a general

blockchain explorer to view blockchain data. It is enhanced with additional data sources

and views to support the design requirements. The resulting architecture is shown in Figure

13. To support the required tasks, the backend is enhanced with Hyperledger Fabric metrics

sourced through Prometheus and Docker logs from the Docker API.

Regarding the frontend, a new Chaincodes view is added and vulnerability information is

shown on the Dashboard view to fulfill R1. The Network view is enhanced with a node-link

diagram of the network showing current metrics in fulfillment of R2. The Transactions view

is enhanced with interactive transaction activity charts to support R3. R4 is built into each of

these three views through interactivity and detailed data inspection features (transaction/log

search and detail view).

Finally, three attacks are simulated on a test network and evaluated using the HyperSec

prototype: a chaincode vulnerability (SC2), a distributed denial of service attack (N2) and

insider credential abuse (AC1). Each attack can be clearly distinguished from regular activity

using the enhanced visualization and inspection capabilities of HyperSec.

Figure 13: Architecture of the HyperSec prototype.

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 23

Contribution of P7: P7 contributes a task-centered design and prototype to detect blockchain

security threats. The design consists of interactive visualizations based on adequate

blockchain data sources. It is tailored towards the tasks necessary for security monitor-

ing, carried out by domain experts. P7 includes a prototypical implementation of the design

targeting the blockchain framework Hyperledger Fabric. The prototype demonstrates the fea-

sibility of detecting attacks through the structured, comprehensive and concise aggregation

of data in tables and visualizations. An evaluation is performed for three specific attacks,

highlighting the relevant tasks and views in the prototype.

In addition to the conference presentation, this paper was presented as a technical talk at the

industry conference Hyperledger Global Forum 2021.

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 24

4.3 RQ3: Secure Information Sharing in a DLT Consortium

The institutionalized form of a collaboration with the goal of sharing resources and know-

how among businesses is referred to as a consortium [71]. Collaboration in a consortium

is non-trivial and requires the partners to navigate conflicting needs and tensions [72].

These tensions can be the result of competitive behavior or merely opportunism in an

otherwise beneficial collaboration [44]. Eventually, these organizational tensions may evolve

into severe technical security issues such as insider threats, which were pointed out in

Section 4.2. To prevent escalating tensions and ensure healthy collaboration, it is vital for

consortium partners to establish a solid foundation for their partnership. A key part of

this process is establishing governance mechanisms, legal foundations and a joint vision.

Hence, to prevent the development of security threats from internal partners, this dissertation

investigates contributing factors toward successful and secure consortium collaboration

(BP3-1). Conclusively, the development of collaboration principles, standards and guidelines

also contributes toward the overall goal of fostering DLT adoption.

The topic is addressed in publication P8 as part of a multiple case study. While this

methodology departs from the DSRM used in most other works in this dissertation, it is

necessary to study these behavioral organizational phenomena. Based on empirical work

with literature and expert interviews, the publication derives the foundations of existing

successful interorganizational collaborations. A lifecycle provides a guideline for developing

consortia towards fruitful evolution and expansion.

4.3.1 Comparing Successful DLT Consortia: A Lifecycle Perspective [P8]

P8 considers DLT consortia from a strategic development perspective. It researches success-

ful DLT consortia to find commonalities and differences. The overall goal is the development

of guidance for newer consortia. Different to previous publications in this dissertation, it

does not use design science research. Instead, it relies on case study methodology to find

and analyze relevant cases. Case studies are well suited to study contemporary phenomena

in a real-life context [70] and thus ideal to investigate current DLT consortium development.

Specifically, a holistic multiple-case design is chosen to compare several consortia. A com-

parison of these consortia is used to determine a common lifecycle. The case study data and

lifecycle are evaluated using expert interviews with representatives of the selected consortia.

The paper is structured along the two research questions, which are addressed in separate

sections after introducing the methodology and selected cases. The first research question

addresses commonalities and differences between operational DLT consortia. The second

analyzes the different phases which DLT consortia undergo during their lifecycle.

First, successful consortia are identified based on the Information Quality (IQ) framework.

Intrinsic and contextual IQ are used to filter relevant data from the wealth of information

about DLT consortia in gray and white literature. The filtering criteria focus on information

availability, consortium age and the number of organizations operating DLT nodes. In total,

33 consortia were found and analyzed. After filtering, a total of nine cases remained as

subjects of study. They are shown in Table 4.

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 25

Table 4: Overview of selected case studies (in alphabetical order).

Name Lead Partner Platform Sector Nodes
B3i Re B3i Services R3 Corda Insurance 21

Bakong NBC Soramitsu Iroha CBDC 16

Cardossier cardossier AdNovum Corda Vehicles 8

Contour Contour Contour Corda Trade Finance 8

covantis Covantis ConsenSys Quorum Agriculture 18

DL Freight Walmart Canada DLT Labs Fabric Logistics 30

MediLedger Chronicled Chronicled Ethereum Pharma 10

TradeLens Maersk IBM Fabric Logistics 14

we.trade we.trade IBM Fabric Trade Finance 16

For each consortium, all available white and gray literature is aggregated and filtered for

quality. The information obtained from data collection is used to prepare key findings for

expert interviews. As part of the interviews, the consortium representatives were asked to

provide their opinion on the findings and an initial version of a consortium lifecycle. The

feedback is then used to further improve the accuracy of the results, which are described in

the following.

Six comparison dimensions are derived from blockchain governance literature: Platform

choice, Network size, Incentives, Legal Form, Disintermediation and Interoperability. The

results showed Hyperledger Fabric and R3 Corda as the most common platforms of choice

with network size varying between 8 and 30 operators. The main incentive for businesses to

join were the business benefits. The legal form was less clear, albeit most consortia founded

a separate entity to handle platform development. Interoperability was of growing concern in

all consortia, but only few had implemented prototypes at the time of study.

Figure 14: DLT consortium lifecycle phases.

Research for the 9 selected consortia yielded several common milestones during their

development: the Foundation, Institutionalization, Pilot and Launch. Based on these mile-

stones, four lifecycle phases for DLT consortia are developed (shown in Figure 14). The

Formation phase involves first software prototypes, a search for partners, and optionally in-

stitutionalization if the partners decide to incorporate a separate entity. During the following

Pilot phase, requirements for the target business case are settled, along with development

and testing of a prototype for the pilot experiment. Depending on the success of the pilot,

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 26

multiple pilots may be carried out. Eventually, consortia proceed to the Launch phase,

with successful commercialization of the software product and first business value being

delivered. Subsequently, during the Expansion phase the scope of the product is increased

to include other business cases. Additional partners are added to the ecosystem beyond

the main consortium shareholders to improve integration and transparency throughout the

business network.

Beyond the development lifecycle, two characteristics were observed during the case

study. First, consortium management tends to fall either in the category of democratic

governance or benevolent dictatorship. Benevolent dictatorship was the case when there

was a dominant actor within the supply chain (i.e. Walmart for DL Freight). Consortia with

organizations of comparable size (i.e. Cardossier) tended to behave more democratic.

Contribution of P8: P8 provides collaboration and development guidelines for new and

existing blockchain consortia. The guidelines are based on empirical case study and interview

data. Specifically, commonalities and differences among successful consortia are highlighted.

A consortium lifecycle is proposed based on common milestones, and all results are verified

in expert interviews. The lifecycle is intended to foster successful consortium development

and thereby general adoption of DLT.

This publication was invited for submission of an extended version to the Electronic Markets

special issue on "Enterprise and organizational applications of distributed ledger technolo-

gies" during the HICSS conference presentation session.

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 27

4.4 Complementary publications

Besides the main publications P1 through P8, two additional publications emerged as part of

the dissertation, shown in Table 5. These publications can be seen as complementary, since

they do not answer the research questions directly, but contribute towards improving security

in the DLT ecosystem.

Table 5: Overview of complementary publications.

No. Title Venue

A1 SSIBAC: Self-Sovereign Iden-
tity Based Access Control

The 3rd International Workshop on Blockchain
Systems and Applications (BlockchainSys2020),
in Conjunction with IEEE TrustCom 2020

A2 BISCUIT - Blockchain Secu-
rity Incident Reporting based
on Human Observations

not yet published

Paper A1
Title: SSIBAC: Self-Sovereign Identity Based Access Control

Status: published

Publication: The 3rd International Workshop on Blockchain Systems and Applications
(BlockchainSys2020), in Conjunction with IEEE TrustCom 2020

Submitted: 28 July 2020

Accepted: 14 October 2020

Citation: Rafael Belchior, Benedikt Putz, Günther Pernul, Miguel Correia, André
Vasconcelos, and Sérgio Guerreiro. 2020. SSIBAC: Self-Sovereign Identity
Based Access Control. In The 3rd International Workshop on Blockchain
Systems and Applications (BlockchainSys2020), in Conjunction with IEEE
TrustCom 2020, IEEE.

Paper A1 explores the concept of Self-Sovereign Identity (SSI). SSI represents a novel

decentralized identity approach, which enhances user privacy and control. It is realized

through decentralized identifiers (DIDs) and verifiable credentials (VCs). Issuers provide

these VCs to users, who can then present them to Verifiers to prove some fact, for example

that the age is within a specific range. These credentials are comparable to attributes in

traditional attribute-based access control (ABAC). Paper A1 investigates if VCs can be used

to implement an access control model for cross-organizational identity management. The

research result is the SSIBAC prototype based on Hyperledger Aries, which demonstrates

that access control policies can be enforced based on VCs. Aries relies on the blockchain

framework Hyperledger Indy as its Verifiable Credential Registry. A technical evaluation

demonstrates good throughput and latency for credential generation/revocation and access

control requests.

Research work on Paper A1 was conducted jointly with the Instituto Superior Técnico in

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 28

Lisbon, Portugal. It was published at the 3rd International Workshop on Blockchain Systems

and Applications (BlockchainSys2020), held in conjunction with IEEE TrustCom 2020.

Paper A2
Title: BISCUIT - Blockchain Security Incident Reporting based on Human Obser-

vations

Status: under review

Submitted: 23 March 2022

Citation: Benedikt Putz, Manfred Vielberth, and Günther Pernul. 2022. BISCUIT
- Blockchain Security Incident Reporting based on Human Observations.
Working Paper, University of Regensburg, 2022.

Paper A2 investigates human aspects of blockchain security. Its main goal is to improve

the incident response process by integrating human observations. The presented approach

enables structured security incident reporting by security novices and subsequent incident

discussion by security experts. To enumerate and structure existing threats, the paper first

develops a taxonomy of blockchain security threats based on a literature review. The

taxonomy is then used to build an interactive form to report threat sources, events and

affected entities. The form is part of the frontend of a larger prototype called BISCUIT. The

prototype also includes processing and storage backends to support the reporting process. A

Python API processes incidents and matches them with previously reported similar incidents

to assist users in filling out the form. The reported incident is then kept in local storage

until it is approved by a security expert. On approval, incident metadata is stored on the

blockchain to preserve its integrity and to enable decentralized discussion. Full incident data

is stored off-chain in a distributed hash table. A security committee consisting of multiple

security experts discusses on-chain incidents using a comment-based discussion system to

reach a decision on incident response. A user study evaluates the usability of the user-facing

frontend and the contained taxonomy.

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 29

5 Conclusion and future work

The overall objective of this dissertation was the development of DLT applications for secure

interorganizational information sharing. Applications are needed to bring the various benefits

of DLT for organizations to practice contexts - i.e. transparency, non-repudiation, auditability

of shared data. Finding such use cases is not trivial, as specific prerequisites must be met for

DLT to be a reasonable and cost-effective fit [65, 40].

To meet this objective, RQ1 focuses on developing such novel use cases of DLT. Two

sectors are identified that presented research opportunities for DLT applications: the In-

dustrial Internet of Things (IIoT) and Cybersecurity. Within the IIoT, the Digital Twin

paradigm is found to be well suited for development as an information sharing artifact using

DLT. In Cybersecurity information sharing, two use cases are identified: the sharing of

non-repudiation proofs for auditable logging and the sharing of threat intelligence.

RQ2 focuses on protecting these applications from threats. Hence, the first work to

address this question identifies trusted actors and components specific to the permissioned

interorganizational environment. Research results include a list of insider threats and potential

mitigations. Subsequent research works address the detection of these internal threats and

known external threats. These are first aggregated in a threat model and taxonomy, before

determining metrics to detect them on the permissioned DLT platform Hyperledger Fabric.

Based on these results, DLT threat monitoring is further developed by designing custom

visualizations for threat detection, to be used by DLT security experts.

The final research question RQ3 tackles the topic of consortium collaboration. The

management of interorganizational tensions and the temporal development of consortia are

studied in a comparative multiple case study. The results of a literature review are verified in

expert interviews, yielding an overview of the development of nine successful DLT consortia.

Based on the milestones of their development, a lifecycle for DLT consortium development is

abstracted and elaborated in detail. This lifecycle and the lessons learned by these consortia

serve as guidance for new and developing consortia. The intent is to permit avoidance of

tensions and to increase the security of shared information through mutual trust. While DLT

shifts some trust towards cryptographic assurances, increased trust is nevertheless beneficial

to avoid any insider threats.

In summary, this dissertation advances the state of the art in DLT research by addressing

various research gaps. It develops novel applications for organizational use cases in the IIoT

and Cybersecurity domains. Furthermore, it establishes foundations for the secure adoption

of DLT in organizations by studying DLT threats and developing methods for detecting

attacks. Beyond technical security, it also studies and derives guidelines for the establishment

of sound and successful DLT consortia.

There are several directions for future research enabled by the works of this dissertation.

Many avenues are mentioned in the individual works, but hereafter we give a high-level

perspective. To improve DLT-based digital twins, researchers should investigate enhanced

functionality and performance artifacts to enhance their usability in practice. For example,

data analytics functionality and compensation could become part of the Digital Twin. Re-

Dissertation Benedikt Putz, 2022

I. OUTLINE OF THE DISSERTATION 30

garding scalability, integration in an industrial environment can demonstrate the practical

feasibility and constraints of handling large amounts of sensor data. In Cybersecurity
information sharing, threat intelligence sharing using DLT has emerged as a promising

area of research. While P4 demonstrated the feasibility of sharing critical infrastructure CTI,

the design space of possible solutions is not yet exhausted. Researchers should investigate

other DLT frameworks and data sharing protocols to find appropriate solutions for all types

of CTI sharing contexts. Protecting DLT from internal and external threats remains

especially relevant with the emergence of interoperability among distributed ledgers. The

security of interoperability constructs among multiple permissioned and among permissioned

and permissionless networks remains unclear. Threats to individual ledgers have received

significant amounts of attention, but most research has focused on Ethereum and Hyperledger

Fabric, resulting in a need to study other DLT frameworks. Beyond threat identification, this

dissertation has focused in part on threat detection. The next step in the response process is

DLT incident mitigation, which provides avenues for research in both the permissioned and

permissionless environments. To enable secure DLT consortium collaboration, this work

has established a lifecycle for consortium development. Future work should investigate not

just successful consortia but also failed or troubled consortia to determine antecedents of fail-

ure and interorganizational tensions. In addition, empirical research and theory development

is needed regarding decision paths for consortium mergers and consortium interoperability.

Overall, this dissertation develops a sound basis for future research, enabling both

incremental improvements and novel research directions.

Dissertation Benedikt Putz, 2022

Bibliography

[1] ACCORSI, R. Log data as digital evidence: What secure logging protocols have to

offer? Proc. of the International Computer Software and Applications Conference 2

(2009), 398–403.

[2] ALAMMARY, A., ALHAZMI, S., ALMASRI, M., AND GILLANI, S. Blockchain-based

applications in education: A systematic review. Applied Sciences 9, 12 (2019).

[3] ANDROULAKI, E., BARGER, A., BORTNIKOV, V., CACHIN, C., CHRISTIDIS, K.,

DE CARO, A., ENYEART, D., FERRIS, C., LAVENTMAN, G., MANEVICH, Y.,

MURALIDHARAN, S., MURTHY, C., NGUYEN, B., SETHI, M., SINGH, G., SMITH,

K., SORNIOTTI, A., STATHAKOPOULOU, C., VUKOLIĆ, M., COCCO, S. W., AND

YELLICK, J. Hyperledger Fabric: A Distributed Operating System for Permissioned

Blockchains. In Proceedings of the Thirteenth EuroSys Conference (New York, NY,

USA, 2018), ACM, pp. 30:1–30:15.

[4] AYMAN, A., AZIZ, A., ALIPOUR, A., AND LASZKA, A. Smart Contract Development

in Practice: Trends, Issues, and Discussions on Stack Overflow. CoRR abs/1905.0

(2019).

[5] BERDIK, D., OTOUM, S., SCHMIDT, N., PORTER, D., AND JARARWEH, Y. A

Survey on Blockchain for Information Systems Management and Security. Information

Processing & Management 58, 1 (Jan. 2021).

[6] CALDER, A. NIST Cybersecurity Framework. 2018.

[7] CASINO, F., DASAKLIS, T. K., AND PATSAKIS, C. A systematic literature review of

blockchain-based applications: Current status, classification and open issues. Telematics

and Informatics (2019).

[8] CHEN, H., PENDLETON, M., NJILLA, L., AND XU, S. A Survey on Ethereum

Systems Security: Vulnerabilities, Attacks, and Defenses. ACM Comput. Surv. 53, 3

(2020), 67:1–67:43.

[9] CHEN, T., CAO, R., LI, T., LUO, X., GU, G., ZHANG, Y., LIAO, Z., ZHU, H.,

CHEN, G., HE, Z., TANG, Y., LIN, X., AND ZHANG, X. SODA: A Generic Online

Detection Framework for Smart Contracts. In 27th Annual Network and Distributed

System Security Symposium, {NDSS} 2020 (2020), The Internet Society.

31

BIBLIOGRAPHY 32

[10] COYNE, E. J., AND WEIL, T. R. ABAC and RBAC: Scalable, Flexible, and Auditable

Access Management. IT Professional 15, 3 (2013), 14–16.

[11] DABHOLKAR, A., AND SARASWAT, V. Ripping the Fabric: Attacks and Mitigations

on Hyperledger Fabric. In Applications and Techniques in Information Security -

10th International Conference, ATIS 2019, Thanjavur, India, November 22-24, 2019,

Proceedings (2019), V. S. S. Sriram, V. Subramaniyaswamy, N. Sasikaladevi, L. Zhang,

L. Batten, and G. Li, Eds., vol. 1116 of Communications in Computer and Information

Science, Springer, pp. 300–311.

[12] DAVENPORT, A., SHETTY, S., AND LIANG, X. Attack Surface Analysis of Permis-

sioned Blockchain Platforms for Smart Cities. In 2018 IEEE International Smart Cities

Conference, ISC2 2018 (2019).

[13] DE AGUIAR, E. J., FAIÇAL, B. S., KRISHNAMACHARI, B., AND UEYAMA, J. A

survey of blockchain-based strategies for healthcare. Acm Computing Surveys 53, 2

(Mar. 2020).

[14] DIETZ, M., AND PERNUL, G. Digital Twin: Empowering Enterprises Towards a

System-of-Systems Approach. Business & Information Systems Engineering 62, 2

(2020), 179–184.

[15] DZIEMBOWSKI, S., ECKEY, L., AND FAUST, S. FairSwap: How To Fairly Exchange

Digital Goods. In Proceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018

(2018), D. Lie, M. Mannan, M. Backes, and X. Wang, Eds., ACM, pp. 967–984.

[16] ENISA. ENISA Threat Landscape - Top 15 Threats. Tech. rep., ENISA, 2019.

[17] FERGUSON, M., AND KETZENBERG, M. E. Information Sharing to Improve Retail

Product Freshness of Perishables. Production and Operations Management (2006).

[18] FIALA, P. Information sharing in supply chains. Omega (2005).

[19] GREENSPAN, G. MultiChain Private Blockchain - White Paper. 1–17.

[20] GREGOR, S., AND HEVNER, A. R. Positioning and Presenting Design Science

Research for Maximum Impact. MIS Q. 37, 2 (2013), 337–355.

[21] GUGGENBERGER, T., SCHWEIZER, A., AND URBACH, N. Improving Interorganiza-

tional Information Sharing for Vendor Managed Inventory: Toward a Decentralized

Information Hub Using Blockchain Technology. IEEE Transactions on Engineering

Management (2020).

[22] HEARN, M. Corda: A distributed ledger. Corda Technical White Paper 2016 (2016).

[23] HENNINGSEN, S. A., TEUNIS, D., FLORIAN, M., AND SCHEUERMANN, B. Eclipsing

Ethereum Peers with False Friends. In 2019 IEEE European Symposium on Security

Dissertation Benedikt Putz, 2022

BIBLIOGRAPHY 33

and Privacy Workshops, EuroS&P Workshops 2019, Stockholm, Sweden, June 17-19,

2019 (2019), IEEE, pp. 300–309.

[24] HEVNER, A. R., MARCH, S. T., PARK, J., AND RAM, S. Design science in informa-

tion systems research. MIS Quarterly: Management Information Systems (2004).

[25] HOMOLIAK, I., VENUGOPALAN, S., REIJSBERGEN, D., HUM, Q., SCHUMI, R.,

AND SZALACHOWSKI, P. The Security Reference Architecture for Blockchains:

Towards a Standardized Model for Studying Vulnerabilities, Threats, and Defenses.

IEEE Communications Surveys and Tutorials (2020).

[26] HUANG, H., KONG, W., ZHOU, S., ZHENG, Z., AND GUO, S. A Survey of State-of-

the-Art on Blockchains: Theories, Modelings, and Tools. ACM Comput. Surv. 54, 2

(2021), 44:1–44:42.

[27] HUANG, Y., BIAN, Y., LI, R., ZHAO, J. L., AND SHI, P. Smart Contract Security: A

Software Lifecycle Perspective. IEEE Access 7 (2019), 150184–150202.

[28] IBM. We.trade | IBM. https://www.ibm.com/case-studies/wetrade-blockchain-fintech-

trade-finance, 2020.

[29] IVANOV, N., LOU, J., CHEN, T., LI, J., AND YAN, Q. Targeting the Weakest Link:

Social Engineering Attacks in Ethereum Smart Contracts. In ASIA CCS ’21: ACM

Asia Conference on Computer and Communications Security, Virtual Event, Hong

Kong, June 7-11, 2021 (2021), J. Cao, M. H. Au, Z. Lin, and M. Yung, Eds., ACM,

pp. 787–801.

[30] JENSEN, T., HEDMAN, J., AND HENNINGSSON, S. How TradeLens delivers business

value with blockchain technology. MIS Quarterly Executive (2019).

[31] JP MORGAN CHASE. Quorum Whitepaper. Tech. rep., 2016.

[32] KACHERGINSKY, P. Blockchain Threat Intelligence | Peter Kacherginsky | Substack.

https://www.blockthreat.io/, 2022.

[33] KIAYIAS, A., RUSSELL, A., DAVID, B., AND OLIYNYKOV, R. Ouroboros: A

Provably Secure Proof-of-Stake Blockchain Protocol. In Advances in Cryptology -

CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA,

USA, August 20-24, 2017, Proceedings, Part I (2017), J. Katz and H. Shacham, Eds.,

vol. 10401 of Lecture Notes in Computer Science, Springer, pp. 357–388.

[34] KOLB, J., ABDELBAKY, M., KATZ, R. H., AND CULLER, D. E. Core Concepts,

Challenges, and Future Directions in Blockchain: A Centralized Tutorial. ACM

Computing Surveys 53, 1 (Feb. 2020), 9:1–9:39.

[35] KUMAR, R. S., AND PUGAZHENDHI, S. Information sharing in supply chains: An

overview. In Procedia Engineering (2012).

Dissertation Benedikt Putz, 2022

BIBLIOGRAPHY 34

[36] LACITY, M., AND VAN HOEK, R. What we’ve learned so far about blockchain for

business. MIT Sloan Management Review 62, 3 (2021), 48–54.

[37] LARSON, A. Partner networks: Leveraging external ties to improve entrepreneurial

performance. Journal of business venturing 6, 3 (1991), 173–188.

[38] LI, K., CHEN, J., LIU, X., TANG, Y. R., WANG, X., AND LUO, X. As Strong As

Its Weakest Link: How to Break Blockchain DApps at RPC Service. In 28th Annual

Network and Distributed System Security Symposium, NDSS 2021, Virtually, February

21-25, 2021 (2021), The Internet Society.

[39] LIPNER, S. Security development lifecycle. Datenschutz und Datensicherheit-DuD

34, 3 (2010), 135–137.

[40] MEIKLEJOHN, S. Top Ten Obstacles along Distributed Ledgers Path to Adoption.

IEEE Security Privacy 16, 4 (July 2018), 13–19.

[41] MENGES, F., AND PERNUL, G. A comparative analysis of incident reporting formats.

Computers & Security 73 (2018), 87–101.

[42] MEYER, E., WELPE, I. M., AND SANDNER, P. G. Decentralized Finance—A

Systematic Literature Review and Research Directions. SSRN Scholarly Paper 4016497,

Social Science Research Network, Rochester, NY, Nov. 2021.

[43] MEYER, M., SEDLMAIR, M., QUINAN, P. S., AND MUNZNER, T. The nested blocks

and guidelines model. Information Visualization 14, 3 (2015), 234–249.

[44] MISHRA, D. P., KUKREJA, R. K., AND MISHRA, A. S. Blockchain as a gover-

nance mechanism for tackling dark side effects in interorganizational relationships.

International Journal of Organizational Analysis 30, 2 (Jan. 2021), 340–364.

[45] NAKAMOTO, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 9.

[46] NGUYEN, T. D., PHAM, L. H., AND SUN, J. SGUARD: Towards Fixing Vulnerable

Smart Contracts Automatically. In 42nd IEEE Symposium on Security and Privacy, SP

2021, San Francisco, CA, USA, 24-27 May 2021 (2021), IEEE, pp. 1215–1229.

[47] PEDERSEN, A. B., RISIUS, M., AND BECK, R. A ten-step decision path to determine

when to use blockchain technologies. MIS Quarterly Executive 18, 2 (2019), 99–115.

[48] PEFFERS, K., TUUNANEN, T., ROTHENBERGER, M. A., AND CHATTERJEE, S. A

Design Science Research Methodology for Information Systems Research. Journal of

Management Information Systems 24, 3 (2007), 45–77.

[49] POPOV, S. The Tangle, IOTA Whitepaper. 1–28.

[50] RAMEDER, H., DI ANGELO, M., AND SALZER, G. Review of Automated Vulnerabil-

ity Analysis of Smart Contracts on Ethereum. Frontiers in Blockchain 5 (2022).

Dissertation Benedikt Putz, 2022

BIBLIOGRAPHY 35

[51] RAUCHS, M., BLANDIN, A., BEAR, K., AND MCKEON, S. B. 2nd Global Enterprise

blockchain benchmarking study. Available at SSRN 3461765 (2019).

[52] REYNA, A., MARTÍN, C., CHEN, J., SOLER, E., AND DÍAZ, M. On blockchain and

its integration with IoT. Challenges and opportunities. Future Generation Computer

Systems 88 (Nov. 2018), 173–190.

[53] RISIUS, M., AND SPOHRER, K. A Blockchain Research Framework. Business &

Information Systems Engineering 59, 6 (2017), 385–409.

[54] SALMAN, T., ZOLANVARI, M., ERBAD, A., JAIN, R., AND SAMAKA, M. Security

Services Using Blockchains: A State of the Art Survey. IEEE Communications Surveys

Tutorials 21, 1 (2019), 858–880.

[55] STIFTER, N., JUDMAYER, A., AND WEIPPL, E. Revisiting Practical Byzantine

Fault Tolerance Through Blockchain Technologies. In Security and Quality in Cyber-

Physical Systems Engineering: With Forewords by Robert M. Lee and Tom Gilb, S. Biffl,

M. Eckhart, A. Lüder, and E. Weippl, Eds. Springer International Publishing, Cham,

2019, pp. 471–495.

[56] SUHAIL, S., HUSSAIN, R., JURDAK, R., ORACEVIC, A., SALAH, K., HONG, C. S.,

AND MATULEVIČIUS, R. Blockchain-based Digital Twins: Research Trends, Issues,

and Future Challenges. ACM Computing Surveys (Feb. 2022).

[57] TONG, P. Y., AND CROSNO, J. L. Are information asymmetry and sharing good,

bad, or context dependent? A meta-analytic review. Industrial Marketing Management

(2016).

[58] TRIENEKENS, J. H., WOGNUM, P. M., BEULENS, A. J., AND VAN DER VORST,

J. G. Transparency in complex dynamic food supply chains. Advanced Engineering

Informatics (2012).

[59] TSANKOV, P., DAN, A. M., DRACHSLER-COHEN, D., GERVAIS, A., BÜNZLI, F.,

AND VECHEV, M. T. Securify: Practical Security Analysis of Smart Contracts. In

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications

Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018 (2018), D. Lie,

M. Mannan, M. Backes, and X. Wang, Eds., ACM, pp. 67–82.

[60] VIELBERTH, M., BÖHM, F., FICHTINGER, I., AND PERNUL, G. Security Operations

Center: A Systematic Study and Open Challenges. IEEE Access 8 (2020), 227756–

227779.

[61] WAN, Z., XIA, X., LO, D., CHEN, J., LUO, X., AND YANG, X. Smart Contract Secu-

rity: A Practitioners’ Perspective. In 2021 IEEE/ACM 43rd International Conference

on Software Engineering (ICSE) (2021), IEEE, pp. 1410–1422.

Dissertation Benedikt Putz, 2022

BIBLIOGRAPHY 36

[62] WÖHRER, M., AND ZDUN, U. Smart contracts: Security patterns in the ethereum

ecosystem and solidity. In 2018 International Workshop on Blockchain Oriented

Software Engineering (IWBOSE) (Mar. 2018), pp. 2–8.

[63] WÖHRER, M., ZDUN, U., AND RINDERLE-MA, S. Architecture Design of

Blockchain-Based Applications. In 2021 3rd Conference on Blockchain Research

Applications for Innovative Networks and Services (BRAINS) (Sept. 2021), pp. 173–

180.

[64] WOOD, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum

Project Yellow Paper (2014), 1–32.

[65] WÜST, K., AND GERVAIS, A. Do you Need a Blockchain? In 2018 Crypto Valley

Conference on Blockchain Technology (CVCBT) (2018), pp. 45–54.

[66] XU, X., PAUTASSO, C., ZHU, L., GRAMOLI, V., PONOMAREV, A., TRAN, A. B.,

AND CHEN, S. The blockchain as a software connector. In Proceedings - 2016 13th

Working IEEE/IFIP Conference on Software Architecture, WICSA 2016 (Apr. 2016),

IEEE, pp. 182–191.

[67] XU, X., PAUTASSO, C., ZHU, L., LU, Q., AND WEBER, I. A pattern collection for

blockchain-based applications. In ACM International Conference Proceeding Series

(2018).

[68] XU, X., WEBER, I., AND STAPLES, M. Architecture for Blockchain Applications.

2019.

[69] YAMASHITA, K., NOMURA, Y., ZHOU, E., PI, B., AND JUN, S. Potential Risks

of Hyperledger Fabric Smart Contracts. In 2019 IEEE International Workshop on

Blockchain Oriented Software Engineering (IWBOSE) (2019), pp. 1–10.

[70] YIN, R. K. Case Study Research: Design and Methods. 2009.

[71] ZAVOLOKINA, L., ZIOLKOWSKI, R., BAUER, I., AND SCHWABE, G. Management,

governance, and value creation in a blockchain consortium. MIS Quarterly Executive

(2020).

[72] ZIOLKOWSKI, R., MISCIONE, G., AND SCHWABE, G. Decision Problems in

Blockchain Governance: Old Wine in New Bottles or Walking in Someone Else’s

Shoes? Journal of Management Information Systems (2020).

[73] ZIOLKOWSKI, R., PARANGI, G., MISCIONE, G., AND SCHWABE, G. Examining

gentle rivalry: Decision-making in blockchain systems. In 52nd Hawaii International

Conference on System Sciences, HICSS 2019, Grand Wailea, Maui, Hawaii, USA,

January 8-11, 2019 (2019), T. Bui, Ed., ScholarSpace, pp. 1–10.

Dissertation Benedikt Putz, 2022

Part II

Research papers

The second part of this dissertation contains publications P1 through P8, with a brief

introductory metadata summary of each publication followed by the full text.

37

II. RESEARCH PAPERS 38

1 RQ1: Novel DLT applications for secure information sharing

1.1 A distributed ledger approach to digital twin secure data sharing [P1]

Status: published

Publication: Data and Applications Security and Privacy XXXIII (DBSec’19)

Submitted: 11 March 2019

Accepted: 14 April 2019

Citation: Marietheres Dietz, Benedikt Putz, and Günther Pernul. 2019. A Distributed
Ledger Approach to Digital Twin Secure Data Sharing. In Data and
Applications Security and Privacy XXXIII, Simon N. Foley (ed.). Springer
International Publishing, 281–300.

Conference Description: DBSec is an annual international conference covering research

in data and applications security and privacy. It is affiliated with the IFIP WG 11.3 Working

Group on Data and Applications Security and Privacy.

Dissertation Benedikt Putz, 2022

A Distributed Ledger Approach to Digital
Twin Secure Data Sharing

Marietheres Dietz(B), Benedikt Putz, and Günther Pernul

University of Regensburg, Regensburg, Germany
{marietheres.dietz,benedikt.putz,guenther.pernul}@ur.de

Abstract. The Digital Twin refers to a digital representation of any
real-world counterpart allowing its management (from simple monitor-
ing to autonomy). At the core of the concept lies the inclusion of the
entire asset lifecycle. To enable all lifecycle parties to partake, the Digital
Twin should provide a sharable data base. Thereby, integrity and confi-
dentiality issues are pressing, turning security into a major requirement.
However, given that the Digital Twin paradigm is still at an early stage,
most works do not consider security yet. Distributed ledgers provide a
novel technology for multi-party data sharing that emphasizes security
features such as integrity. For this reason, we examine the applicability
of distributed ledgers to secure Digital Twin data sharing. We contribute
to current literature by identifying requirements for Digital Twin data
sharing in order to overcome current infrastructural challenges. We fur-
thermore propose a framework for secure Digital Twin data sharing based
on Distributed Ledger Technology. A conclusive use case demonstrates
requirements fulfillment and is followed by a critical discussion proposing
avenues for future work.

Keywords: Trust frameworks · Distributed systems security ·
Distributed ledger technology · Digital twin

1 Introduction

Hardly anything has revolutionized society as much as digitization. At its begin-
ning, data from everyday life was captured and stored digitally. After reaching
significant amounts of digital data, recent years have been devoted to gaining
relevant insights into data by leveraging Big Data Analytics, Artificial Intelli-
gence and so on. A next step in digitization is now emerging in the form of the
Digital Twin (DT) paradigm.

The Digital Twin refers to a digital representation of any real-world counter-
part, at most times an enterprise asset. Its core building blocks are asset-specific
data items, often enhanced with semantic technologies and analysis/simulation

The first two authors have contributed equally to this manuscript.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. N. Foley (Ed.): DBSec 2019, LNCS 11559, pp. 281–300, 2019.
https://doi.org/10.1007/978-3-030-22479-0_15

II. RESEARCH PAPERS 39

Dissertation Benedikt Putz, 2022

282 M. Dietz et al.

environments to explore the real-world asset digitally. The DT thus allows man-
agement of such an asset ranging from simple monitoring to autonomy. An essen-
tial part of the concept is the inclusion of the whole asset lifecycle. To integrate
all lifecycle participants, the DT should provide comprehensive networking for
its data, allowing it to be shared and exchanged [4].

Although the DT concept certainly advances digitization, it nevertheless
poses new challenges in terms of IT security, especially in industrial ecosys-
tems [10,18]. Most notably, security must be maintained during the exchange of
DT data between different, non-trusting parties. For instance, consider the DT
of a power plant. Synchronizing tasks between twins should uphold integrity to
avoid manipulated operations on the power plant. Also, involved parties should
not be able to read every shared data element (e.g. the manufacturer of the
power plant need not know the plant’s current status), resulting in confidential-
ity requirements. To the best of our knowledge, current DT frameworks do not
permit secure data sharing. Bridging this gap, our work provides a framework
introducing security-by-design in DT data sharing.

To achieve this goal, we consider Distributed Ledger Technology (DLT). DLT
is the umbrella term for distributed transaction-based systems, shared among
several independent parties in a network. Distributed Ledgers have built-in mech-
anisms for access control and asset management, including authentication and
authorization mechanisms. We focus on permissioned distributed ledgers, which
target enterprise usage by restricting access to fixed set of independent and semi-
trusted participants. One of the main reasons for using a Distributed Ledger
is disintermediation, replacing the need for trust in a third party or central
operator through a replicated and integrity-preserving database. Inherent trans-
parency and auditability are additional advantages over centralized solutions.
Due to these properties, DLT is uniquely suited to solve the challenges of DT
secure data sharing.

Accordingly, this work proposes a framework for secure DT data sharing
across an asset’s lifecycle and collaborating parties based on DLT. We contribute
to the body of knowledge by offering a solution without a trusted third party
(TTP) based on security-by-design. The remainder of this paper is organized as
follows: Sect. 2 introduces the background of our work. Afterwards, we proceed
to the description of the current problems in DT data sharing and name the
resulting requirements for secure DT data sharing (Sect. 3). In Sect. 4, we provide
a framework for secure DT data sharing for multiple parties based on DLT. To
show practical relevance and the functionality of our framework, a use case is
provided in Sect. 5. In Sect. 6, we evaluate our approach in terms of fulfillment
of the stated requirements. To conclude, Sect. 7 sums up the main contributions
and gives an outlook for future work.

2 Background

At present, the Digital Twin phenomenon is still in its infancy. Nevertheless,
implementation and design of this concept are addressed to date, especially in

II. RESEARCH PAPERS 40

Dissertation Benedikt Putz, 2022

A Distributed Ledger Approach to Digital Twin Secure Data Sharing 283

the area of Industry 4.0. With strong focus on the industrial domain, the major
part of research suggests DT implementation through AutomationML-formatted
descriptive data of the real-world counterpart, e.g. [2,6,20]. The XML-based
AutomationML (AML) format describes industrial assets and provides object-
orientation for modeling the asset’s physical and logical components [20]. Eck-
hart and Ekelhart [6] propose a framework for using a DT’s simulation mode
for security purposes such as pen testing. While these works focus on an initial
development of a DT, the consideration of data sharing functions are still miss-
ing. However, exchanging data is vital for enabling the lifecycle integration and
collaboration [4]. Our work builds on existing DT propositions, resulting in a
concept that can be applied in a complementary way to enable secure DT data
sharing.

Regarding DT data sharing, both the communication between lifecycle par-
ties and the bidirectional communication between the DT and its real-world
asset counterpart need to be considered. Bidirectional communication consists
of the DT’s instructions for the asset and the asset’s status update for the DT.
To uphold integrity among multi-domain DT models, Talkhestani et al. [21]
offer a solution. They detect model changes by applying anchor points, and
upon detection synchronize the DT while keeping model dependencies consis-
tent. However, this includes drawbacks such as the manual creation of anchor
points and reliance on a Product Lifecycle Management (PLM) system, while
our solution offers platform-independence. Security aspects, such as the guaran-
tee for all lifecycle partners to access the data while upholding confidentiality,
are not considered to date, but integrated in our solution.

DT management is a form of enterprise asset management, which is one of the
prime use cases of Distributed Ledgers [1]. Distributed Ledgers are able to track
events and provenance information along an asset’s lifecycle and increase trans-
parency for all participants. For example, Litke et al. [12] studied the benefits
of Distributed Ledgers for different actors in supply chain asset management, a
research area closely related to DT asset management. In another study, Meroni
and Plebani [14] investigate how the blockchain technology can be used for pro-
cess coordination among smart objects. Smart objects are similar to DTs in that
they are applied for monitoring physical artifacts. An issue with their proposed
approach is that sensor data is also stored on the blockchain, which can be
detrimental to performance and scalability. We consider this issue and provide
a solution to overcome this obstacle.

3 Problem Statement

On the one hand, DTs should facilitate the access to asset information for dif-
ferent stakeholders along its lifecycle [17]. It is a task which enables feedback
loops, while stepping towards a circular economy [3]. On the other hand, the
involved parties do not necessarily trust each other, resulting in a confidential-
ity dilemma. A useful example is given in [13]: Two separate standalone DTs
exist for a single device instance, one for the manufacturer and the other at the

II. RESEARCH PAPERS 41

Dissertation Benedikt Putz, 2022

284 M. Dietz et al.

customer site – due to information security reasons. Additionally, current works
state that enterprise infrastructures need to overcome the following obstacles to
provide secure DT data sharing:

– application of different tools [13,24]
– usage of various data formats [13]
– missing standards [4]
– broken information flow across lifecycle phases [13,24]
– clarification of the ownership of information [13].

This calls for a holistic approach that provides confidentiality and integrity, two
central security dimensions in networks [26].

3.1 Digital Twin Model

ni
wTl atigi

D
elcycefiL

access control

descriptive data sensor data

Physical device

sync

MaintainerDistributorOwnerManufacturer

simulationmonitoring analysis ...

information flow
system flow

Fig. 1. Overview of the asset lifecycle participants interacting with the DT.

Figure 1 illustrates DT data sharing and an exemplary set of lifecycle stake-
holders. The depicted DT model comprises different capabilities and two types
of asset-specific data. Descriptive data refers to static properties of the device
and infrequently changing state information. This data is mainly produced by
users. Sensor data occurs frequently and should be available in near real-time.
It is generated by sensors of the physical asset or in its proximity, which provide
valuable information on the asset’s environmental conditions. Moreover, data of
both types needs to be synchronized with the physical counterpart. Therefore,
the sync capability compares the state of the DT to its real-world counterpart
and resolves possible discrepancies.

The access control capability provides authentication and authorization mod-
ules to enable data sharing of involved parties without hampering confidentiality.
The monitoring, simulation and analysis capabilities represent advanced opera-
tions of the DT. Depending on the extent of the operations present in a DT, DT
status data can be returned to the participant or the real-world counterpart’s
state can be modified.

II. RESEARCH PAPERS 42

Dissertation Benedikt Putz, 2022

A Distributed Ledger Approach to Digital Twin Secure Data Sharing 285

The depicted information flows show how information about the physical
device is gathered from and sent to the lifecycle parties. Generally, the type of
data accessed and shared by the different lifecycle parties depends on the real-
world twin, the parties’ roles in its lifecycle and thus, the specified access control
mechanisms in the DT. The system flows represent necessary bidirectional syn-
chronization between the DT and its real-world counterpart as stated in Sect. 2.
Both flows contribute to making the data sharing activities of the involved par-
ties traceable. This enables feedback from the latest stages of the asset lifecycle
to the earliest ones [17].

3.2 A Formal Basis for Secure Digital Twin Data Sharing

Although a methodological literature analysis to establish requirements is the
state-of-the-art approach, it is currently not sensible to carry out with regard to
our research focus. On the one hand, this is due to the fact that only a small
number of publications exist. In addition, data sharing has not yet been a focus
in DT literature to date. Moreover, security-by-design concepts have not been
considered yet. Therefore, we establish a formally valid basis in order to create
a uniform understanding of DT data sharing. To derive the requirements, the

Fig. 2. Control flows for a single DT.

mechanisms to achieve the central goal of secure DT data sharing have to be
examined in detail. Figure 2 illustrates the formal functions required to achieve
this goal, which are also described hereafter.

DT Data: We see DT data twofold: At first, there is a set of descriptive data
elements Ddesc := {d1, ..., dm} varying from documents to models or analytic
outcomes. Its essential data element is the specification of the DT dspec ∈ Ddesc.
The second set contains environmental, device-produced data, namely sensor
data Dsensor := {d1, ..., dn}, whereby Ddesc � Dsensor.

II. RESEARCH PAPERS 43

Dissertation Benedikt Putz, 2022

286 M. Dietz et al.

Sharing: A finite set of lifecycle parties N := {n1, ..., nk|k ≥ 2} can share the
respective data elements of Ddesc (write operation) or access the data elements of
Ddesc, Dsensor (read operation). This results in the following necessary functions:

write(ni, dj |dj ∈ Ddesc) and read(ni, dj |dj ∈ Ddesc ∨ dj ∈ Dsensor).

Note that 1 ≤ i ≤ k as well as j

{
1 ≤ j ≤ m if j ∈ Ddesc

1 ≤ j ≤ n if j ∈ Dsensor

.

Security-by-design: Security-by-design infers introducing security mechanisms
at the very beginning of a system’s design [22]. In terms of DT data and sharing
security, data integrity and confidentiality mechanisms are of special interest.
Confidentiality in terms of securing data from view of non-trusted third parties
can be reached by access control mechanisms [19]:

authentication:
authenticate(ni)

authorization:
authorize(read(ni, dj))

authorize(write(ni, dj))

Integrity of data can be achieved by auditability and traceability of write
operations. Given Ddesc as the origin set of data, D′

desc is the set of data after
a data element dj is added to the origin set. The following functions can cover
integrity aspects:

auditability:

audit() : Ddesc → D′
desc ⇐⇒ write(ni, dj) ∧

Ddesc � D′
desc ⇐⇒ ¬write(ni, dj)

traceability:
trace() : Ddesc → D′

desc =⇒ Ddesc ◦ D′
desc

Thereby, auditability guarantees that Ddesc is transformed to D′
desc in case of

an authorized write operation whereas other operations are not able to transform
the data in any way. Traceability ensures that authorized writes of data elements
and thus, transformations of Ddesc to D′

desc, are chained up. In conclusion, data
integrity is ensured as the data cannot be manipulated or tampered with in
retrospect.

3.3 Requirements for Secure DT Data Sharing

To provide a sound solution for secure DT data sharing, the following require-
ments were derived from the formal basis and the aforementioned challenges
identified in the literature analysis.

R1. Multi-party Sharing. To enable lifecycle inclusion, a vital characteristic
of the DT paradigm [4], the multiple stakeholders N involved in the lifecycle

II. RESEARCH PAPERS 44

Dissertation Benedikt Putz, 2022

A Distributed Ledger Approach to Digital Twin Secure Data Sharing 287

have to be considered. As described in Fig. 1, parties can vary from manufac-
turer to maintainer. However, all involved parties are pre-registered and therefore
determinable.

R2. Data Variety Support. At the heart of the DT lie the relevant digital
artifacts Ddesc, Dsensor, which vary from design and engineering data to oper-
ational data to behavioral descriptions [4]. Thus, different data types and data
formats [13] need to be supported during data sharing. For instance, Schroeder
et al. claim that using the semi-structured AutomationML format to model
attributes related to the DT (dspec) is very useful for DT data exchange [20]. In
addition to semi-structured data, structured data (e.g. sensor tuples in Dsensor,
database entries) and unstructured data such as human-readable documents can
be asset-relevant and shared via the DT.

R3. Data Velocity Support. Often, DT data is distinguished between descrip-
tive, rather static data, and behavioral, more dynamic data (see Fig. 1). The
latter changes with time along the lifecycle of the real-world counterpart [20]:
With each lifecycle stage the asset-related information evolves, resulting in dif-
ferent versions and a dynamic information structure [17]. Naturally, dynamic
data includes sensor data Dsensor – which mostly refers to the actual state of
the real-world counterpart [8]. While the infrequently changing data Ddesc might
not require high throughput, sensor and dynamic data Dsensor accrues in inter-
vals ranging from minutes to milliseconds. Therefore, the solution must support
high throughput and low sharing latency for efficient sharing of dynamic data –
thus supporting data velocity.

R4. Data Integrity and Confidentiality Mechanisms. An important
requirement is taking into account data security features, especially integrity and
confidentiality. At first, this requirement aims at safeguarding data integrity to
avoid wrong analytic decisions based on manipulated data. It can be ensured by
audit() and trace() mechanisms. The second main security objective is to avoid
confidentiality and trust problems while enabling multi-party participation. This
calls for restricted data access dependent on the party through authenticate()
and authorize() functions, while ideally keeping the effort for user registration
low. Different levels of confidentiality should be possible for different data ele-
ments. For instance, Dsensor might need a lower level of protection than Ddesc,
as the latter might include sensitive corporate information such as blueprints.
Detailed authorize() functions, providing access-restrictions for each data ele-
ment, can cover this aspect.

R5. Read and Write Operations. To interact with DT data, a DT data
sharing solution must provide read() and write() data operations for the sharing
parties. The allowance of operation modes for the data elements should be chosen
carefully for each party to ensure R4 (cf. Fig. 2).

Overall, we do not claim that these requirements are complete. There may be
other requirements of importance, but regard these as essential for the following
reasons. On the one hand, these requirements were found to be mentioned most
often in the reviewed literature, while others were less frequently mentioned and

II. RESEARCH PAPERS 45

Dissertation Benedikt Putz, 2022

288 M. Dietz et al.

are therefore considered of lower importance (see Sect. 6.2 for further explana-
tion). On the other hand, the stated requirements were also the main focus in
various practitioners reports (e.g. [9,16,25]) and during discussions with experts.

4 Solution Architecture

In order to develop a framework for secure DT data sharing, we first evaluate the
suitability of DLT in Sect. 4.1. Afterwards, Sect. 4.2 explains the system archi-
tecture and Sect. 4.3 explains how the various data types are stored. Section 4.4
details the inclusion of the DT capabilities as part of the DLT solution. Finally,
Sect. 4.5 explains the initial setup procedure for our framework.

4.1 Technology Selection

To develop a solution architecture, we first evaluate different data storage solu-
tions’ properties to select the technology best suited to fulfill the requirements.

A centralized solution could be created in the form of a portal, operated
by a third party or the operator of the twinned device. This requires trust of
the participating parties towards the portal maintainer, as the maintainer could
manipulate data or revoke access to the DT for other parties. A distributed
approach jointly operated by all participants could solve this trust issue. Dis-
tributed Ledgers represent such a distributed solution. They permit verifiable
decentralized execution of business logic via smart contracts, ensuring that rules
and processes agreed upon by the lifecycle participants are followed.

We evaluate the applicability of Distributed Ledgers to our DT data shar-
ing requirements based on the blockchain applicability evaluation framework by
Wüst and Gervais [28]. As illustrated in Fig. 1, there is a need to store vari-
ous types of data as part of the DT state. Multiple parties interact with the
twin during its lifecycle who do not fully trust each other. These writers are
usually known in advance or change infrequently (i.e. the maintenance service
provider changes). These characteristics lead to the choice of a public or private
permissioned blockchain in the framework [28]. In our case, this choice depends
on whether public auditability is required or not. While use-case dependent, we
focus on private permissioned blockchains for the rest of this paper. If needed,
public read-only access to blockchain data can be enabled during implementation
for most permissioned blockchain frameworks (i.e. through a REST API).

4.2 System Architecture

The proposed DLT-based architecture for secure DT data sharing is shown
in Fig. 3. Every participant runs three components: a node of a Distributed
Hash Table (DHT), a node of the Distributed Ledger and a client appli-
cation. The DHT and Distributed Ledger make up the shared data storage,
while the client application is responsible for the user interface and backend logic
for retrieving and processing the data stored on the ledger and DHT. For owners

II. RESEARCH PAPERS 46

Dissertation Benedikt Putz, 2022

A Distributed Ledger Approach to Digital Twin Secure Data Sharing 289

Fig. 3. DLT-based architecture for DT data sharing.

of twinned physical devices, a Device agent manages the physical devices and
coordinates their interactions with the system. As part of operational technol-
ogy, the Device agent functions as a bridge between the cross-organizational asset
management system and the physical devices controlled by a single organization.

Data storage systems based on distributed ledgers have two ways of storing
data: on-chain and off-chain [29]. On-chain storage is restricted to transactions
and the internal state storage of smart contracts. Due to full replication of on-
chain data, items larger than a few kilobytes in size need to be stored in a
different, off-chain location. Using a traditional database would however result
in a single point of failure or reintroduce a trusted party.

For this reason, we resort to a structured DHT for large data items. DHTs
are distributed key-value stores, where all key-value pairs are mapped to one or
more nodes. The DHT entries can be linked to the corresponding on-chain asset
based on the DHT key hash. By storing the hash on the blockchain, integrity of
the off-chain data can be verified after retrieving it from the DHT. To maintain
confidentiality and availability, data stored on the DHT is encrypted, sharded
and replicated. Correspondingly, an access control mechanism is needed to allow
authorized parties to access the data. The k-rAC scheme illustrates how a DHT
can implement the required functionality [11]. In k-rAC, access control is imple-
mented using access control lists (ACL) stored along with each key-value pair on
the DHT. We propose reusing the Distributed Ledger’s public key identities for
DHT authentication. A symmetric key is used for encryption, which is then avail-
able to authorized parties by encrypting it with their public key. The encrypted
access keys are distributed with each data item’s ACL. Manipulation of the ACL
is prevented by requiring a quorum of 2k + 1 nodes for write operations, where
k is the number of tolerated malicious nodes.

II. RESEARCH PAPERS 47

Dissertation Benedikt Putz, 2022

290 M. Dietz et al.

4.3 Data Storage

There are two types of descriptive data that need to be stored by the sys-
tem: a machine-readable specification and device-related unstructured data (i.e.
human-readable documents). The specification includes a description of the
device’s hardware components as well as their functions. The DT’s physical
properties are derived from this specification. For our work we assume that AML
is used to describe the physical asset. The AML specification is stored on the
ledger in a modifiable way. This approach guarantees that updates to the device
specification are observed by all parties. Distributed Ledgers can store complex
modifiable state by using smart contracts. We thus refer to the resulting contract
as the specification contract.

Unstructured data can be uploaded to the system and may subsequently
be annotated or modified by other parties. Due to its size it cannot easily be
parsed and stored in contracts. For this reason, it is stored off-chain and regis-
tered in the smart-contract with a document title and a hash of the contents.
To update a document, a new version must be uploaded to the DHT and the
smart contract reference updated. This ensures that changes to the documents
are traceable.

Sensor data needs to be stored off-chain due to its frequent updates and
the considerable amount of generated data. A history of the sensor data is kept
to allow for further analysis, e.g. predictive maintenance or troubleshooting.
The link to the on-chain data is established via a pointer to the off-chain storage
location, stored on-chain in the specification contract. To avoid having to update
the storage location hash every time new sensor data is uploaded to the DHT, we
take advantage of DHT feeds. This concept is inspired by the Ethereum network’s
DHT Swarm [7]. In Swarm, a feed is defined by a feed manifest with a unique
address on the network. The feed manifest’s owner (i.e. the physical device) is
the only user permitted to upload signed and timestamped data to this address.
Any data format can be used and a history of uploaded data is kept. The DHT
feed enables frequent sensor data sharing without having to update an on-chain
reference. Based on the feed, the client application may compare sensor updates
with expected values derived from the specification contract to detect anomalies.
Additionally, there is no need for directly accessing the physical device, which
may reside in a protected network. Instead, data updates are readily available
on the DHT for authorized participants.

Many organizations also have additional internal data sources or microser-
vices that provide structured data relevant to the Digital Twin. These data
sources can be included in the twin by adding references (i.e. an URI) to the
DT specification contract. This allows inclusion of legacy data sources and com-
plex data which cannot easily be stored on a DHT (i.e. relational data). If the
external data source requires authentication, it is the responsibility of the data
source provider to ensure access rights for the DT ledger’s identities.

Listing 1.1 shows a pseudocode representation of the data types stored in
the specification contract. The syntax is inspired by Ethereum’s Solidity smart
contract programming language. All data stored on the contract is readable

II. RESEARCH PAPERS 48

Dissertation Benedikt Putz, 2022

A Distributed Ledger Approach to Digital Twin Secure Data Sharing 291

by all lifecycle participants. Besides general device metadata, the contract also
includes a program call queue for interaction with the physical device’s program
interfaces (see also Sect. 4.4). Since smart contracts must be deterministic and
thus cannot interact with files, the AML specification is stored in a string vari-
able. This variable can later be parsed and modified, as illustrated in Sect. 4.4.
Hash references to new original documents on the DHT are kept track of in
the documents mapping. The hash serves as an identifier, while the document

struct provides metadata. Updated versions of each document are stored in the
documentVersions mapping. The componentID and corresponding feed reference
of the sensor data stream on the DHT are stored in the sensorFeeds mapping.

/* metadata and specification*/
string deviceName

string deviceID

string deviceAML

string[] callProgramQueue

/* additional descriptive data */
struct Document {

uint timestamp

string description

address owner

}

struct ExternalSource{

string URI

address owner

}

mapping(string=>Document) documents

mapping(string=>string[]) documentVersions

ExternalSource[] externalSources

/* sensor data */
mapping(string=>string) sensorFeeds

Listing 1.1. Data structures of the
specification contract

/* descriptive data interfaces */

function addDocument(document)

function addDocumentVersion(string hash)

function removeDocument(string hash)

function addExternalSource(string URI)

function removeExternalSource(string URI)

/* sensor data interfaces */

function addSensorFeed(string componentID,

string reference)

function removeSensorFeed(string componentID)

/* interaction with the specification */

function insertAML(string amlCode, string

parentID, string afterID)

function removeAML(string ID)

function callProgram(string programName,

string parameters[])

Listing 1.2. Function interfaces of the
specification contract

4.4 Capabilities

We focus on the three capabilities required for accessing and publishing DT data:
DT interaction, access control and sync.

DT interaction refers to the information flows in Fig. 1, which allow users to
interact with the twin’s data. The specification contract implements this func-
tionality. It allows users to read and potentially modify the DT instance. The
relevant interfaces that can be called with transactions are shown in Listing 1.2.
New or updated references to documents may be appended by any authorized
user. The same applies to external data sources and sensor feed references to the
DHT. The specification can be manipulated by inserting or removing specific
AML segments, which are identified by their ID. To determine the position of
a new AML code segment in the AML document, the parent ID and the ID
of the preceding element need to be passed as parameters. The twin’s program

II. RESEARCH PAPERS 49

Dissertation Benedikt Putz, 2022

292 M. Dietz et al.

interfaces for setting device parameters can be accessed via callProgram. This
function checks authorization, finds the requested program in the AML specifi-
cation and places it in a queue for the Device agent to retrieve. The agent then
forwards the program call to the device for execution.

The access control capability is responsible for authentication and autho-
rization of user interactions with the DT data. For user authentication, accounts
are created on the blockchain and represented by their public key. An initial
solution could be provided by the framework’s built-in identity management,
for example Hyperledger Fabric’s Membership Service Provider (MSP) [1]. The
MSP lists the certificate authorities who may issue digital identities for the Dis-
tributed Ledger. The same identity can then be reused for authentication in
the DHT. Authorization is realized in a separate access control smart contract.
Any protected interaction with the Digital Twin is first authorized through that
contract. Such interactions are for example modifications of the twin’s proper-
ties, like changing parameters or modifying its specification. A query from the
client application provides an identity to the specification contract, which then
interacts with the authorization contract to determine if the user is allowed to
perform the action. Authorization is then granted or denied based upon a stored
role-permission mapping. Accordingly, the contract’s interfaces are based upon a
Role-based Access Control (RBAC) scheme. We do not describe the access con-
trol contract in detail here, as there are other works describing blockchain-based
access control schemes [5].

The sync capability requires regular interaction between the Device agent and
the Distributed Ledger. For synchronization, the Device agent pulls updates from
the real-world asset and uploads them to the off-chain DHT sensor data feed.
The Device agent monitors the ledger and pushes any modifications instructed
by committed on-chain transactions to the asset. The synchronization interval
depends on the use case.

Other DT capabilities like monitoring, simulation and analysis can be exe-
cuted off-chain by interacting with the local copy of the ledger. Simulation or
analysis instructions and results can be shared on the ledger as documents. This
would allow other parties to verify the results, should they desire to do so.

4.5 Setup Process

Initially, each lifecycle participant sets up one network node running both a DHT
and a Distributed Ledger node. These serve as local replicas of ledger data and
access points for off-chain data. They may also be used for transaction-based
interaction with the smart contracts. Additionally, an identity provider must be
set up to allow federated identities from all participating organizations based on
public key certificates.

Once the network is set up, a Digital Twin instance can be created on the
ledger by the device owner. The manufacturer should first provide the AML file
to the owner, who then proceeds to set up a Digital Twin sharing instance on
the ledger. The client application provides the interface to upload the file and
create a smart contract based on it. Before uploading, the owner also needs to

II. RESEARCH PAPERS 50

Dissertation Benedikt Putz, 2022

A Distributed Ledger Approach to Digital Twin Secure Data Sharing 293

specify the access rights associated with the various parts of the specification.
Although use case dependent, sensible default values could be write access by
owner and maintainer and read access by everyone else.

In this way, any number of Digital Twin instances can be created by the
various parties on the network. Each instance is represented by a specification
contract. Subsequent modifications take place via authorized on-chain transac-
tions and are stored as part of the contract’s internal state. As a result, auditing
the twin is possible by (actively or retroactively) monitoring smart contract
transactions for anomalies.

5 Use Case

This chapter intends to show how the theoretical framework developed in Sect. 4
is traversed in a use case. To begin with, the overall setting of the use case
is described in Sect. 5.1, while the subsequent Sect. 5.2 iterates the use case
through the solution architecture. At last, a summary is given, focusing on the
automation degree in data sharing and the reading operation (Sect. 5.3).

5.1 Setting

The setting is chosen close to reality. The asset, the real-world counterpart to
the DT, is a bottling plant, where bottles are filled with beverages. The parties
involved in the asset lifecycle are a manufacturer, an owner, a maintainer of the
bottling plant and an external auditor that audits the safety of our bottling plant.
For our use case, we consider the following scenario: The bottles are flooding due
to a broken sensor in the bottling plant. Consequently, the maintainer detects
the damage and changes the broken sensor in the bottling plant.

This entails the following shared data interactions. At first, the specification
of the plant needs to be updated by replacing the broken sensor’s specification
entry with the newly added sensor. Additionally, the new sensor’s data stream
has to be integrated in place of the old sensor stream. Other documents concern-
ing the maintenance task might also be shared, such as a maintenance report.

While the maintainer is the only party sharing data in this scenario, the
owner should also be updated on the state of the bottling plant. Furthermore,
the manufacturer needs to be informed that the sensor is broken, so that an
analysis of the time and circumstances can be conducted. This way relevant
insights for future plant manufacturing can be gained. Additionally, the external
auditor needs to access the information about the maintenance task to review
the procedure in terms of safety compliance.

5.2 Framework Iteration

This use case triggers a specific logical order of events in the framework, which
are highlighted in Fig. 4 and described hereafter. The framework first comes into
play when the maintainer replaces the broken sensor.

II. RESEARCH PAPERS 51

Dissertation Benedikt Putz, 2022

294 M. Dietz et al.

Fig. 4. Use case tailored architecture for DT data sharing.

1. All devices are connected with the Device agent, which registers the
exchange of the broken sensor. Additionally, it gathers information about
the new sensor.

2. Following the new sensor connection, the Device agent forwards the new
incoming data stream of the sensor into the DHT. The location of the stored
sensor stream in the DHT is registered by the Device agent.

The Device agent then sends a transaction containing the new sensor
specification to the Distributed Ledger. This transaction invokes the spec-
ification contract, resulting in several updates. First, the old sensor entry
is removed and the new sensor specification given by the Device agent is
added. Secondly, the storage location of the sensor stream on the DHT is
added by a reference to the location. These three transactions concerning the
specification are stored on the Distributed Ledger.

3. Having performed the maintenance task, the maintainer writes a maintenance
report and pushes it onto the Client application.

4. The Client application adds the maintenance report by performing two
actions. Firstly, it adds the report to the off-chain DHT. Secondly, it stores
the reference to the DHT location of the report on the specification contract.
Thereby, the location is added to the entry of the sensor specification.

5.3 Results

In a nutshell, the recognition of new sensor and the AML update with the new
component is already accomplished by the Device agent without requiring
human interaction. The new data stream is automatically forwarded to the DHT
and the reference to the new storage location of the component’s data stream
is added to the specification contract. Additional unstructured non-specification

II. RESEARCH PAPERS 52

Dissertation Benedikt Putz, 2022

A Distributed Ledger Approach to Digital Twin Secure Data Sharing 295

data (e.g. the maintenance report) can be added manually. The Client appli-
cation takes care of the necessary background work by inserting the file into the
DHT and adding the respective storage reference into the specification contract.

All participating parties can view the latest transactions on the ledger –
presented in a comprehensive way in the Client application. Advanced Client
applications could also notify the user whenever an ledger update takes place.

Considering security, the advantages of this framework shine when compared
to the alternative solution: A TTP could deliberately transfer shared informa-
tion and know-how to rival enterprises. For instance, confidential sensor data
or blueprints could be leaked to competitors, which may then deduce quality
issues of the rival product. The service of the TTP could also be compromised
by attackers, resulting e.g. in a violation of integrity so that the sharing parties
receive inconsistent asset versions.

6 Evaluation

To evaluate our framework, Sect. 6.1 discusses the suitability of the framework
in reference to the requirements. Finally, the results are discussed in Sect. 6.2.

6.1 Requirements Fulfillment

To sum up, our approach fulfills the requirements R1–R5. The following para-
graphs explain how each requirement was addressed in our solution architecture.

R1. Multi-party Sharing. The main argument for using Distributed Ledgers
is the involvement of multiple parties N who produce and consume data. Next to
the ledger, our approach provides a client application for all parties that accesses
the data on the ledger and the DHT. Therefore, our approach clearly fulfills R1.

R2. Data Variety Support. To enable the sharing of different data in various
formats, our approach provides a central documentation and two storage options.
The standardized asset description dspec is included in the Distributed Ledger
and serves as the basis of the DT within the specification contract. All other
data of Ddesc as well as the sensor data Dsensor are stored off-chain in the
DHT. Moreover, each stored data element in DHT is registered in the central
specification contract as a reference to the storage location of the data element.
For instance, a sensor in the specification contract contains a reference to the
storage position of its data stream in the DHT. Hence, R2 is met.

R3. Data Velocity Support. Modern sensor data streams’ frequency and
volume exceed the performance characteristics of current Distributed Ledger
frameworks. Since the data streams Dsensor do not describe main features of the
DT (dspec), they are stored off-chain in the DHT. This way, high throughput of
Dsensor is supported, while the sharing latency is also kept low (seconds). The
Distributed Ledger maintains verifiability by storing the hash reference to the
data stream on the DHT in the specification contract. This ensures no loss in
performance and data access through the DHT, supporting R3.

II. RESEARCH PAPERS 53

Dissertation Benedikt Putz, 2022

296 M. Dietz et al.

R4. Data Integrity and Confidentiality Mechanisms. With respect to data
integrity, the Distributed Ledger attaches every new data element (trace()) and
prevents manipulation of the data by replicating it among all involved parties. A
manipulation would result in a version mismatch or loss of consensus and could
be detected easily (audit()). The second storage component (DHT) also supports
integrity by storing the respective hash values to the data. A manipulation of
DHT data would also be detected by a mismatch between the hashes in the
nodes (audit()). However, there remains the problem of adding non-valid data,
which is a common issue in the area of DLT. Here, we rely on the parties’ interest
in sharing valid data and on mechanisms ensuring quality of input data that the
respective responsible party applies.

In terms of data confidentiality, our approach ensures that the data is read
only by authenticated and authorized parties. Authentication is ensured through
lifecycle party login to the client application (authenticate()). Access control
concerning the party and the data elements is realized through an ACL and
encryption for off-chain data and an authorization smart contract for on-chain
data (authorize()). In concrete terms, the ACLs specify access rights on a per-
document basis, while the smart contract stores authorization information for
all involved parties. Therefore, different confidentiality levels can be realized.

To conclude, our approach provides data integrity and confidentiality mech-
anisms (R4) – reinforcing data security in DT data sharing.

R5. Read and Write Operations. Read and write operations are managed
through the Client application. For read() operations, the Client application
fetches the requested data from the DHT and the ledger and presents the data
in a comprehensive way adjusted for the demanding party. In case of a write()
operation, the Client application triggers the right procedure to alter the smart
contract with a transaction and uploads additional asset-relevant data beyond
specification to the DHT. Consequently, our approach also fulfills R5.

6.2 Discussion

Keeping the requirements variety (R2) and velocity (R3) in mind, the question
arises why data volume is not considered a requirement. As literature is currently
not at consensus regarding the relevance of the Big Data feature volume [15] for
Digital Twins, we consider explicit support for data volume to be non-necessary.
Nevertheless, by storing documents off-chain, our approach can handle consid-
erable amounts of data. Future implementations of our concept may conduct
benchmark studies to explore scalability limits with regard to big data volumes.

It should be noted that our approach depends on multi-party participation.
The more independent parties maintain the Distributed Ledger and DHT, the
less vulnerable the data sharing is to manipulation. With regard to the access
control capability, a decentralized identity management solution with a shared
identity database could be an even more holistic, next-generation solution.

While we are aware that our approach currently lacks an implementation,
we nevertheless believe that the use case shows suitability for practice. Future

II. RESEARCH PAPERS 54

Dissertation Benedikt Putz, 2022

A Distributed Ledger Approach to Digital Twin Secure Data Sharing 297

work will focus on implementing the framework. Here, challenges might include
adjusting a DHT framework to support authorization and data feeds (although
Swarm shows promise in this regard [7]), as well as selecting a suitable Dis-
tributed Ledger framework.

The Distributed Ledger and the concomitant smart contracts could also be
handled in a different way. For instance, the AML could be transformed into
classes and types in the smart contract, similar to the BPMN to Solidity trans-
formation in [27]. However, the effort clearly outweighs the utility as AML is
a very powerful standard allowing very complex descriptions. Moreover, not all
of the hypothetically generated classes and functions might be needed. Plus,
functions or classes might be newly added later on, which results in the need to
re-create the smart contract as they are currently not represented in the smart
contract. This clearly increases effort and downgrades utility.

Another issue is entailed by the possibility to directly alter variable values
referring to an actual function in our current version of the ledger. For instance,
consider a PLC device with various functions such as setting a conveyor belt’s
velocity (with an integer parameter). Without constraints, the changed velocity
could exceed safety bounds. Safety threats like this one, be they malicious or
accidental, need to be mitigated in a production system. Therefore, we suggest
integrating safety and security rules as proposed in [6]. They could be integrated
as part of the specification contract, with the Device agent checking conformance
of program calls on synchronization.

With respect to the current problems hampering secure DT data sharing,
our approach tackles the issues stated in Sect. 3 in the following ways:

– The usage of different tools that can be connected with our main data sharing
approach (External data sources, Fig. 3) is possible (application of different
tools)

– Our approach is tailored for the integration of data in multiple formats and
variety as stated in Sect. 4.3 (usage of various data formats)

– An agreement only on the standard describing the asset (e.g. AML) is required
to transform the main description of the asset into the specification smart con-
tract, while other standardized or non-standardized data can still be shared
via the DHT (missing standards)

– The proposed shared collaborative data basis is distributed among all involved
parties and the information flow is universal across the lifecycle phases (broken
information flow across lifecycle phases)

– The Distributed Ledger registers the data as well as the involved party sharing
the data, while mechanisms such as access control (Authorization contract,
Fig. 3) support confidentiality issues (clarification of the ownership of infor-
mation).

To sum up, the major part of the identified issues in the literature referring to
DT data sharing are diminished or solved by our approach.

II. RESEARCH PAPERS 55

Dissertation Benedikt Putz, 2022

298 M. Dietz et al.

7 Conclusion

DT data not only ties physical and virtual twin [23], it also enables integration
of the whole asset lifecycle, which is essential for realizing the DT paradigm.
Moreover, the exchange of asset-relevant data (DT data) is vital for achieving
the effects of a feedback loop. Closing the feedback loop in turn favors the devel-
opment of a circular economy.

However, maintaining data security becomes a major requirement when shar-
ing DT data between multiple parties, especially as the parties do not necessar-
ily trust each other. Our approach of applying DLT can clearly solve this issue
and enable secure multi-party data sharing. It provides confidentiality through
access control arranged by usage of a smart contract. Moreover, data integrity is
implicitly supported through the immutability of the original data in the ledger.

To conclude, our approach fulfills the requirements R1–R5 for secure DT
data sharing. Nevertheless, there remain minor drawbacks that need to be
addressed in future research (see Sect. 6.2). Our upcoming work will focus on
implementing our theoretical concept to demonstrate its feasibility in practice.

References

1. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference,
EuroSys 2018, pp. 30:1–30:15. ACM, New York (2018). https://doi.org/10.1145/
3190508.3190538

2. Banerjee, A., Dalal, R., Mittal, S., Joshi, K.P.: Generating digital twin models
using knowledge graphs for industrial production lines. In: Workshop on Industrial
Knowledge Graphs, No. June, pp. 1–5 (2017). http://ebiquity.umbc.edu/paper/
html/id/779/Generating-Digital-Twin-models-using-Knowledge-Graphs-for-
Industrial-Production-Lines

3. Baumgartner, R.J.: Nachhaltiges Produktmanagement durch die Kombina-
tion physischer und digitaler Produktlebenszyklen als Treiber für eine Kreis-
laufwirtschaft. In: Interdisziplinäre Perspektiven zur Zukunft der Wertschöpfung
(2018). https://doi.org/10.1007/978-3-658-20265-1 26

4. Boschert, S., Heinrich, C., Rosen, R.: Next generation digital twin. In: Proceed-
ings of TMCE 2018, No. May (2018). https://www.researchgate.net/publication/
325119950

5. Di Francesco Maesa, D., Mori, P., Ricci, L.: Blockchain based access control. In:
IEEE Blockchain Conference 2018, pp. 1379–1386 (2018). https://doi.org/10.1007/
978-3-319-59665-5 15

6. Eckhart, M., Ekelhart, A.: Towards security-aware virtual environments for digi-
tal twins. In: Proceedings of the 4th ACM Workshop on Cyber-Physical System
Security - CPSS 2018, pp. 61–72 (2018). https://doi.org/10.1145/3198458.3198464

7. Ethereum Swarm Contributors: Swarm 0.3 documentation (2019). https://
readthedocs.org/projects/swarm-guide/downloads/pdf/latest/

8. Glaessgen, E., Stargel, D.: The digital twin paradigm for future NASA and U.S.
air force vehicles. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference (2012). https://doi.org/10.2514/6.2012-1818

II. RESEARCH PAPERS 56

Dissertation Benedikt Putz, 2022

A Distributed Ledger Approach to Digital Twin Secure Data Sharing 299

9. Greengard, S.: Building a Better Iot (2017). https://cacm.acm.org/news/218924-
building-a-better-iot/fulltext

10. ICS-CERT: Overview of cyber vulnerabilities. Technical report (2017). https://ics-
cert.us-cert.gov/content/overview-cyber-vulnerabilities

11. Kieselmann, O., Wacker, A., Schiele, G.: k-rAC - a fine-grained k-resilient access
control scheme for distributed hash tables. In: Proceedings of the 12th International
Conference on Availability, Reliability and Security, ARES 2017, Reggio Calabria,
Italy, pp. 1–43. ACM, New York (2017). https://doi.org/10.1145/3098954.3103154

12. Litke, A., Anagnostopoulos, D., Varvarigou, T.: Blockchains for supply chain man-
agement: architectural elements and challenges towards a global scale deployment.
Logistics 3(1) (2019). https://doi.org/10.3390/logistics3010005

13. Malakuti, S., Grüner, S.: Architectural aspects of digital twins in IIoT systems. In:
Proceedings of the 12th European Conference on Software Architecture Compan-
ion Proceedings - ECSA 2018, pp. 1–2 (2018). https://doi.org/10.1145/3241403.
3241417

14. Meroni, G., Plebani, P.: Combining artifact-driven monitoring with blockchain:
analysis and solutions. In: Matulevičius, R., Dijkman, R. (eds.) CAiSE 2018.
LNBIP, vol. 316, pp. 103–114. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-92898-2 8

15. Negri, E., Fumagalli, L., Macchi, M.: A review of the roles of digital twin in CPS-
based production systems. Procedia Manuf. 11(June), 939–948 (2017). https://
doi.org/10.1016/j.promfg.2017.07.198

16. Ovtcharova, J., Grethler, M.: Beyond the Digital Twin - Making Analytics come
alive. visIT [Industrial IoT - Digital Twin], pp. 4–5 (2018). https://www.iosb.
fraunhofer.de/servlet/is/81714/

17. Ŕıos, J., Hernández, J.C., Oliva, M., Mas, F.: Product avatar as digital counterpart
of a physical individual product: literature review and implications in an aircraft.
In: Advances in Transdisciplinary Engineering (2015). https://doi.org/10.3233/
978-1-61499-544-9-657

18. Rubio, J.E., Roman, R., Lopez, J.: Analysis of cybersecurity threats in industry 4.0:
the case of intrusion detection. In: D’Agostino, G., Scala, A. (eds.) CRITIS 2017.
LNCS (LNAI and LNB), vol. 10707, pp. 119–130. Springer, Heidelberg (2018).
https://doi.org/10.1007/978-3-319-99843-5 11

19. Sandhu, R.S., Samarati, P.: Access control: principles and practice. IEEE Commun.
Mag. (1994). https://doi.org/10.1109/35.312842

20. Schroeder, G.N., Steinmetz, C., Pereira, C.E., Espindola, D.B.: Digital twin
data modeling with automationML and a communication methodology for data
exchange. IFAC-PapersOnLine 49(30), 12–17 (2016). https://doi.org/10.1016/j.
ifacol.2016.11.115

21. Talkhestani, B.A., Jazdi, N., Schloegl, W., Weyrich, M.: Consistency check to syn-
chronize the Digital Twin of manufacturing automation based on anchor points.
Procedia CIRP (2018). https://doi.org/10.1016/j.procir.2018.03.166

22. Tankard, C.: The security issues of the Internet of Things. Comput. Fraud Secur.
2015(9), 11–14 (2015). https://doi.org/10.1016/S1361-3723(15)30084-1

23. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F.: Digital twin-driven
product design, manufacturing and service with big data. Int. J. Adv. Manuf.
Technol. 94(9–12), 3563–3576 (2018). https://doi.org/10.1007/s00170-017-0233-1

24. Uhlemann, T.H., Lehmann, C., Steinhilper, R.: The digital twin: realizing the
cyber-physical production system for industry 4.0. Procedia CIRP (2017). https://
doi.org/10.1016/j.procir.2016.11.152

II. RESEARCH PAPERS 57

Dissertation Benedikt Putz, 2022

300 M. Dietz et al.

25. Usländer, T.: Engineering of digital twins. Technical report, Fraunhofer IOSB
(2018). https://www.iosb.fraunhofer.de/servlet/is/81767/

26. Voydock, V.L., Kent, S.T.: Security mechanisms in high-level network protocols.
ACM Comput. Surv. (1983). https://doi.org/10.1145/356909.356913

27. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.:
Untrusted business process monitoring and execution using blockchain. In: La
Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4 19

28. Wüst, K., Gervais, A.: Do you need a blockchain? In: 2018 Crypto Valley Confer-
ence on Blockchain Technology (CVCBT), pp. 45–54 (2018). https://doi.org/10.
1109/CVCBT.2018.00011

29. Xu, X., Pautasso, C., Zhu, L., Gramoli, V., Ponomarev, A., Tran, A.B., Chen,
S.: The blockchain as a software connector. In: Proceedings - 2016 13th Working
IEEE/IFIP Conference on Software Architecture, WICSA 2016, pp. 182–191. IEEE
(2016). https://doi.org/10.1109/WICSA.2016.21

II. RESEARCH PAPERS 58

Dissertation Benedikt Putz, 2022

II. RESEARCH PAPERS 59

1.2 Ethertwin: Blockchain-based secure digital twin information management
[P2]

Status: published

Publication: Information Processing & Management

Submitted: 15 May 2020

Revised: 26 October 2020

Accepted: 27 October 2020

Citation: Benedikt Putz, Marietheres Dietz, Philip Empl, and Günther Pernul. 2021.
Ethertwin: Blockchain-based secure digital twin information management.
Information Processing & Management 58, 1 (2021).

Journal Description: Information Processing and Management publishes cutting-edge

original research at the intersection of computing and information science concerning theory,

methods, or applications in a range of domains, including but not limited to advertising, busi-

ness, health, information science, information technology marketing, and social computing.

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

0306-4573/© 2020 Elsevier Ltd. All rights reserved.

EtherTwin: Blockchain-based Secure Digital Twin
Information Management

Benedikt Putz *, Marietheres Dietz, Philip Empl, Günther Pernul
Universitätsstraße 31, Regensburg 93051, Germany

A R T I C L E I N F O

Keywords:
Distributed ledgers
Blockchain
Digital twin
Industry 4.0
Decentralized application

A B S T R A C T

Digital Twins are complex digital representations of assets that are used by a variety of organi
zations across the Industry 4.0 value chain. As the digitization of industrial processes advances,
Digital Twins will become widespread. As a result, there is a need to develop new secure data
sharing models for a complex ecosystem of interacting Digital Twins and lifecycle parties.
Decentralized Applications are uniquely suited to address these sharing challenges while ensuring
availability, integrity and confidentiality. They rely on distributed ledgers and decentralized
databases for data storage and processing, avoiding single points of trust. To tackle the need for
decentralized sharing of Digital Twin data, this work proposes an owner-centric decentralized
sharing model. A formal access control model addresses integrity and confidentiality aspects
based on Digital Twin components and lifecycle requirements. With our prototypical imple
mentation EtherTwin we show how to overcome the numerous implementation challenges
associated with fully decentralized data sharing, enabling management of Digital Twin compo
nents and their associated information. For validation, the prototype is evaluated based on an
industry use case and semi-structured expert interviews.

1. Introduction

Industrial control systems (ICS) such as supervisory control and data acquisition (SCADA) systems, human machine interfaces
(HMI), programmable logic controllers (PLCs) and other field devices are able to control physical processes within industrial envi
ronments. Traditionally, they form the core of industrial infrastructures. In the course of the Industry 4.0, however, these industrial
environments further converge with information technology Rubio, Roman, and López (2017). For instance, sensors measuring the
conditions of the respective physical processes to control are increasingly installed. This sensor data as well as the ICS systems are
integrated to corporate IT systems in order to centrally analyze and manage information about the industrial environment.

The Digital Twin (DT) presents one of the key concepts reflected in the Industry 4.0 movement. In Industry 4.0, the DT can generally
be defined as a digital representation of an industrial asset over its entire lifecycle Boschert, Heinrich, and Rosen (2018). To represent
and to further monitor its counterpart, the DT incorporates all kinds of asset-relevant information. This includes a multitude of
generated sensor data from Industry 4.0 assets, which are united in DTs. Depending on the underlying asset, different lifecycles are
covered by the digital twin. From this follows that different participants involved in the lifecycle might provide information for the DT

* Corresponding author.
E-mail addresses: benedikt.putz@ur.de, benedikt.putz@wiwi.uni-regensburg.de (B. Putz), marietheres.dietz@ur.de (M. Dietz), philip.empl@ur.

de (P. Empl), guenther.pernul@ur.de (G. Pernul).

Contents lists available at ScienceDirect

Information Processing and Management

journal homepage: www.elsevier.com/locate/infoproman

https://doi.org/10.1016/j.ipm.2020.102425
Received 15 May 2020; Received in revised form 26 October 2020; Accepted 26 October 2020

II. RESEARCH PAPERS 60

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

2

or need to gather data managed by the DT (DT data sharing) Dietz and Pernul (2020a).
To achieve information management and sharing in Industry 4.0 with DTs, some obstacles arise. To manage DT data, involved

lifecycle parties need access to the DT. Although the different parties participating in these processes work together, they each pursue
different goals. Consider the lifecycle parties involved in an industrial plant, where a DT incorporates all relevant data. The manu
facturer of the plant’s motors should not gain access to the data about the plant’s current status, but should get feedback whenever the
motor is maintained in order to optimize the motor’s construction and enhance its manufacturing process. In contrast, the maintainer
of the plant’s motors should only get access to the motor’s current status and the components the maintainer is not responsible for, but
not to any other component’s status of the plant. Thus, the trust when sharing data via the DT is not given per default Malakuti and
Grüner (2018). As a result, confidentiality and access control issues arise Dietz and Pernul (2020b). These issues cannot be resolved
with a centralized authority, especially in multi-tenant and large-scale environments Esposito, Tamburis, Su, and Choi (2020).

This work addresses the lack of trust and security among multiple parties in DT data sharing by focusing on the following research
question:

RQ1. How can the data of Digital Twins be shared among multiple untrusted lifecycle parties while ensuring confidentiality, integrity
and availability?

Blockchains and their smart contracts possess various characteristics that can support the security of data sharing Berdik, Otoum,
Schmidt, Porter, and Jararweh (2021). For instance, single and multi-party authentication can be implemented in a decentralized way
Khan and Salah (2018) – without requiring trust in a central party. Moreover, blockchain solutions enable decentralized management
of an asset’s lifecycle and supply chain Khan and Salah (2018). Blockchain solutions rely on Decentralized Applications (DApps),
user-friendly web-based interfaces to interact with blockchains and their smart contracts. These characteristics offer a novel oppor
tunity to solve the aforementioned obstacles in DT information management.

In this work, we show why a blockchain-based solution is suitable for DT data sharing and propose a blockchain-based information
management solution for the DT and the involved lifecycle parties. We go beyond the state-of-the-art research by including DT
components with fine-grained access control and providing scalability for sensor data sharing. Finally, our approach is evaluated with
a DApp prototype implementation (EtherTwin), an industry use case, expert interviews as well as performance and cost measurements.

The remainder of this work is organized as follows. We introduce related work in Chapter 2. The background of our research is laid
in Chapter 3. Afterwards, we outline the logical design of our concept in Chapter 4. Chapter 5 describes the implementation of our
EtherTwin DApp, which is subsequently evaluated in Chapter 6. Chapter 7 discusses our prototype in respect to the evaluation and
future work. Finally, a conclusion is drawn in Chapter 8.

2. Related work

As DT research began to grow only during recent years, current works mainly propose theoretical frameworks. To date, various
works mention the issue of the DT requiring strong security Kaur, Mishra, and Maheshwari (2020); Rubio et al. (2017); Uhlemann,
Lehmann, and Steinhilper (2017), however applicable solutions are not provided yet. Especially, the secure management of DT data
storage and exchange is important for practical use Malakuti and Grüner (2018).

There have been few other works exploring the blockchain-based accompaniment of assets in supply chain processes with DTs
Mandolla, Petruzzelli, Percoco, and Urbinati (2019) and smart objects Meroni and Plebani (2018). Still, a comprehensive imple
mentation of decentralized and secure data sharing for DTs is missing. Moreover, past works have shown the feasibility and advantages
of blockchain-based access control for decentralized data sharing Di Francesco Maesa, Mori, and Ricci (2019); López-Pintado, Dumas,
García-Bañuelos, and Weber (2019). However, there is no blockchain-based access control model tailored to the requirements of the
DT lifecycle.

In the following, we compare previous works that focused on blockchain-based data management in connection with the DT.
Table 1 summarizes the comparison by considering organizational aspects of data management as well as implementation charac
teristics: The first few characteristics are of organizational nature, the following are implementation-related.

Table 1
Comparison of blockchain-based DT-related approaches by considering organizational as well as implementation characteristics. ○ not considered, ◐
partially considered, ● fully implemented.

Huang et al. (2020) Hasan et al. (2020) Angrish et al. (2018) Dietz et al. (2019)

DT definition product any asset machine events any asset
Components ○ ○ ○ ○

Lifecycle phases early & medium early medium early & medium
BC suitability ○ ○ ○ ◐
Implementation ○ ◐ ◐ ○

Open Source ○ ● ○ ○

Blockchain unknown Ethereum Ethereum unknown
Off-chain storage ○ ◐ ◐ ◐
Encryption ◐ ○ ○ ◐
Access control ○ ○ ◐ ◐
User Interface ○ ○ ○ ◐

B. Putz et al.

II. RESEARCH PAPERS 61

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

3

So far, few works have tackled blockchain-based data management in connection with DTs. Angrish et al. develop a prototype for a
peer-to-peer network of manufacturing nodes Angrish, Craver, Hasan, and Starly (2018). Hasan et al. propose a blockchain-based data
management approach for the DT creation process Hasan et al. (2020). Huang et al. Huang, Wang, Yan, and Fang (2020) propose a
management approach to store all relevant DT data on a custom blockchain. Dietz et al. propose a conceptual approach for
blockchain-based DT data management Dietz, Putz, and Pernul (2019).

Thereby, the organizational aspects of the related works vary. While Huang et al. consider the DT being a product Huang et al.
(2020), Angrish et al. define the DT as a mere collection of machine events Angrish et al. (2018). The majority of the works, as well as
our work, see the DT as a representation of any asset Dietz et al. (2019); Hasan et al. (2020), be it a system, product or another physical
object. Moreover, so far, none of the related works have tackled the DT as being a complex representation of an asset with
sub-components. In contrast, we include components of the DT in our data model. In terms of lifecycle phases (cf. Table 2), we are the
first to consider the DT management as beneficial for later lifecycle phases as well. Works to date have tackled either early Hasan et al.
(2020), medium Angrish et al. (2018) or both of these phases Dietz et al. (2019); Huang et al. (2020). Additionally, we are the first to
fully investigate the suitability of blockchains for DT data management by following a research methodology, while other works either
neglect this aspect Angrish et al. (2018); Hasan et al. (2020); Huang et al. (2020) or only mention, but do not describe a method Dietz
et al. (2019).

To date, prototypical implementations have been either neglected Dietz et al. (2019); Huang et al. (2020) or only partially
accomplished Angrish et al. (2018); Hasan et al. (2020). Our work is the first to fully implement a proposed DT data sharing approach.
Next to our work, only one other work has made the implementation open source Hasan et al. (2020). All works with an imple
mentation part, however, make use of the Ethereum blockchain. In terms of off-chain storage, related work either do not suggest using
it Huang et al. (2020), or suggest to use off-chain storage, but do not implement this part Angrish et al. (2018); Dietz et al. (2019);
Hasan et al. (2020). In our EtherTwin prototype, a fully implemented off-chain storage is present. Encryption is proposed in two of the
four related works Dietz et al. (2019); Huang et al. (2020), but is not described in detail and implemented – in comparison to our work.
Likewise, access control mechanisms are mentioned in two works Angrish et al. (2018); Dietz et al. (2019) but are also not imple
mented. A user interface is only suggested by a single work Dietz et al. (2019), but we are the first to design and implement one.

The present work develops a component-based data model and an access control model for common lifecycle participants. To
summarize, we contribute to DT and blockchain research by providing:

• fine-grained access control for DT data sharing in a decentralized setting without a trusted third party (TTP), ensuring confi
dentiality through encryption

• full-featured open source prototype EtherTwin based on blockchain design patterns and state of the art DApp technologies
(Ethereum, Swarm) with performance/cost measurements

• evaluation based on an industry use case and expert interviews

3. Background

The background of this work is divided into three sections. Section 3.1 describes the foundations of DT research. Subsequently, the
background of DApps is laid in Section 3.2.

3.1. Digital twins

The DT is an emerging paradigm focusing on an enterprise asset – usually, a system, product or process, along its lifecycle Boschert
et al. (2018). Its core goal is to virtually represent this asset as close to reality as possible Boschert et al. (2018). The lifecycle phases
covered by a DT strongly depend upon its corresponding asset. Nevertheless, common early phases are Idea, Planning and Design, while an
asset’s Operation can be considered one of the medium phases and the asset’s Demolition is one of the final phases Dietz and Pernul
(2020b). Thereby, each phase can span many years. For instance, planning a complex asset like global satellite networks could take up to
10 years until Operation, while some legal regulations may command to safely store the asset after its decommission. Especially, these
long and safety-oriented lifecycle phases require a tamper-proof data storage solution. By including various data sources and by

Table 2
General lifecycle characteristics (involved parties and data) of an industrial asset. Potentially involved lifecycle parties are highlighted in italic.

Early Phases Medium Phases Later Phases

Lifecycle phases Idea, Planning, Manufacturing Operation, Maintenance Demolition, End of Existence
Accruing Data • Sketches • Sensor data • Condition of the components

• Blueprints • System logs
• Manuals • Maintenance reports • Component’s location
• Design models • Simulations

Involved parties Owner, Manufacturers, Distributors Owner, Manufacturers, Distributors, Maintainers Owner, Manufacturers, Distributors, Maintainers

B. Putz et al.

II. RESEARCH PAPERS 62

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

4

integrating the multiple parties involved in these lifecycle phases, the DT unifies asset-specific data from previously separated domains
Ríos, Hernández, Oliva, and Mas (2015). For instance, the asset’s composition, sensor data of the asset’s environment as well as simu
lation models can be included centrally in a DT Dietz and Pernul (2020a). This further promotes the complete traceability of assets and
their components, especially if the assets (e.g. industrial plants, cars) comprise components from several manufacturers. Thereby,
feedback loops across different lifecycle phases can be realized that support the concerned lifecycle parties when looking for improve
ment of their components Boschert et al. (2018). For instance, manufacturers can get insights from the operational phase of the asset and
draw conclusions about the effectiveness of their components.

For the remainder of this work, we put the person that owns the physical asset in the role of the Owner. Whenever this kind of
Owner is meant, it is written in capitals. We further claim that the ownership of the physical asset implies the ownership of the digital
twin. Otherwise, two different parties respectively owning either one of them would commonly not trust each other. Thus, the
interaction of digital twin and physical twin would not be achieved.

Table 2 summarizes the common lifecycle phases and points out the potentially involved lifecycle parties and the accruing data in
the respective phases. Note that the data is continuously transformed along the lifecycle phases. For example, sketches of an industrial
asset might exist from the Idea phase, transform into a blueprint in the Design phase. Also, design models might be created in the Design
phase and elaborated towards fully-fledged simulations in the Operation and Maintenance phase. In terms of the involved parties,
italicized parties are only potentially involved. For instance, consider the Owner sketching the asset during the Idea phase. Afterwards,
the manufacturer elaborates this sketch towards a blueprint (Design) and manufactures the asset (Manufacturing). Later on, the Owner
commissions the maintainer to put the asset into Operation.

Nevertheless, there are still some obstacles to overcome. Commonly, an industrial asset represents a complex system, product or
process. As a consequence, a multitude of parties are involved. Consider an industrial plant consisting of various ICSs. Each of these
systems potentially has its own manufacturer and in business life, they might be competitors. This leads to enormous trust issues, and
towards current practices of each lifecycle party building their own DT Malakuti and Grüner (2018). Meanwhile, this practice con
tradicts the very idea of DTs. Furthermore, it results in the disappearance of the DT’s core benefits like feedback loops to other lifecycle
phases and parties. To overcome current malpractices and to motivate users to share their data among parties with different trust
levels, our research aims to provide a strong platform with sufficient security (i.e. access control mechanisms) among untrusted parties.

3.2. Blockchain and decentralized applications

To address the complex issues of the DT sharing ecosystem, we investigate if blockchain technology is suitable. Pedersen et al.
propose a ten-step decision path to determine if blockchain is a good fit Pedersen, Risius, and Beck (2019). The ten requirements are
outlined in Fig. 1. For the DT lifecycle, there are multiple parties with the need for a shared database, which may have conflicting
interests and thus, varying trust levels (steps 1–3). While in theory the lifecycle parties could rely on a TTP service, the dynamics and
variety of DT data sharing hamper the management through a TTP. As Table 2 highlights, various data and data types are involved with
varying velocity and integrity requirements. Integrity of stored data is an especially important security concern in IoT environments
Zhao, Chen, Liu, Baker, and Zhang (2020). A TTP represents a single point of failure and an attack could interfere with the integrity of
the data, making it preferable to avoid third parties. Related research on data auditing has shown that blockchain technology is able to
remove the need for trusted third parties Li, Wu, Jiang, and Srikanthan (2020), which suggests that it could be a good fit for our work.
(step 4). Moreover, the participants of the lifecycle require different access privileges depending on their role and characteristics, which
means there are differing rules governing system access (step 5). Although system access rules differ in practice, the rules of transacting
with DT data do not change frequently (step 6). The blockchain’s immutable log is helpful to ensure integrity and traceability of all

Fig. 1. Blockchain decision path by Pedersen et al. Pedersen et al. (2019).

B. Putz et al.

II. RESEARCH PAPERS 63

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

5

changes to the DT data, for example, in case of security issues or malfunctions. Furthermore, the documentation of changes made to
data items is required to meet compliance requirements for some DTs (step 7). The need for public access largely depends on the DT’s
underlying asset and industry (steps 8 - 10). We do not make an assumption in this regard and design our application to work with both
permissionless and permissioned networks.

After determining that blockchain is suitable, we explain the software components required for building a DT information man
agement application. DApps are a new paradigm for developing distributed applications Xu, Weber, and Staples (2019). Application logic
is fully decentralized, since front end code runs in the user’s browser and back end code runs in smart contracts on the blockchain nodes.
Decentralization comes with the advantage of full transparency of the application code as well as auditability of changes to a smart
contract state. Dynamic smart contract access control models can be used to authorize state changes Di Francesco Maesa et al. (2019).

Full replication of blockchain data necessitates storing complex data elsewhere Baig and Wang (2019), leading to the concept of
off-chain storage. A common approach is to use Distributed Hash Tables (DHTs), since they fit the decentralized paradigm well. Data
items are content-addressed and replicated within the network based on a routing layer. Modern DHTs such as Swarm1 are based on the
established and secure DHT routing technology S/Kademlia Baumgart and Mies (2007) and integrate well with blockchains such as
Ethereum2.

Blockchain smart contracts also need to ensure sufficient access control to prevent unauthorized modification of smart contract
state. Numerous authors have developed access control concepts based on smart contracts. These are based on the existing access
control models role-based (RBAC) Cruz, Kaji, and Yanai (2018) or attribute-based access control (ABAC) Rouhani, Belchior, Cruz, and
Deters (2020), but there are also proposals for ciphertext-policy attribute-based encryption Badsha, Vakilinia, and Sengupta (2020).
Zhang et al. present an access control framework for the Internet of Things (IoT) supporting flexible access control methods Zhang,
Kasahara, Shen, Jiang, and Wan (2019). Rouhani et al. also provide a comprehensive overview of smart contract based access control
approaches Rouhani et al. (2020).

4. System model

The following sections describe the logical structure of our DApp. Section 4.1 provides an overview of the DApp’s entities. Section
4.2 explains the twin and its subparts, while Section 4.3 focuses on the authorization of participating parties.

4.1. Overview

To capture context, the component diagram in Fig. 2 provides an overview of the DT sharing approach. In our system model, a
component diagram defines physical as well as logical components and their dependencies. Therefore, it is well suited to put software
architectures like our DApp into context.

Fig. 2 illustrates the connection between real-world asset, DT and the developed DApp. These components represent a greater
architectural unit (subsystems). The first two subsystems present the sole DT paradigm, consisting of the DT and its real-world asset
connected by the bi-directional communication interface. One of the two artifacts within the DT is asset data, e.g. the specification of the
asset with its compositional structure and documents about the asset. The other artifact is the sensor data produced in the asset’s
environment. To enable data sharing, the DApp is added. It includes the components Smart Contract, DHT and User Interface. The
dependency relations show the association of the DT data to the DApp. For instance, the Smart Contract requires the specification data
of the asset in order to be built (usage dependency). Moreover, the shared DT data is stored in the DHT: The manifest dependency shows

Fig. 2. Component Diagram describing the Digital Twin Sharing Context.

1 swarm.ethereum.org
2 ethereum.org

B. Putz et al.

II. RESEARCH PAPERS 64

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

6

that the logical DT artifacts physically manifest in the DHT of our proposed DApp. Finally, the user interface component provides
access to the data for all participating lifecycle parties.

4.2. Entity relationship model

Fig. 3 illustrates entities and relationships for DT sharing with a DApp. The dashed borders show a logical grouping into three main
components: Registry, Authorization and Twin Data. To keep track of all available twins, a single access point is needed, referred to as the
Registry. Similarly, the Authorization group of entities represents the access control model, which is explained in detail in Section 4.3.
Twin Data is derived from DT sharing requirements elaborated in our previous work Dietz et al. (2019).

The on-chain entities contain metadata about the DT. The main entity of a DT is the Specification, comprising the Components of the
real-world asset it is representing. Sensors and other data (abstracted with the term Document) are managed by associating them with
the corresponding component. Moreover, for each DT External Sources such as legacy systems can be integrated. These can provide
additional data to the already incorporated documents and sensor feeds.

Off-chain entities (Specification Version, Sensor Entries, Document Version) contain full data and are linked to on-chain entities, as
indicated by 1:n relationships in Fig. 3.

4.3. Access control

In order to share data securely, an authorization and access control policy is required. This way access to data items can be
restricted to certain parties. For instance, a maintenance report of an asset’s component (e.g. of a PLC) should only be shared with the
lifecycle parties of this component (e.g. the PLC’s manufacturer). Access control addresses this need by restricting the user operations
for data objects. In our approach we follow a hybrid access control model, combining RBAC and ABAC. While a role refers to a certain
organizational function, a particular attribute refers to a specific characteristic of a user. During the DT lifecycle, each user interacts
with certain twin components, which constitute the user’s attributes in our model. While roles are predefined, these attributes allow
access control on-the-fly.

Our proposed approach is modeled after the RBAC-A (role-centric) combination strategy, where attributes are applied to constrain
RBAC Coyne and Weil (2013); Kuhn, Coyne, and Weil (2010). Thereby, the user’s assigned role defines the base permissions, while the
user’s additional attributes can further limit these permissions. The exclusive use of ABAC would create an unnecessary overhead of
rules, which control the access of the user. This would further increase complexity, both in terms of attribute combination for the user
and the subsequent access granting decisions. Our hybrid access control model for DT data sharing upholds essential RBAC advantages
(e.g. ease of user provisioning) and enhances flexibility by integrating attributes.

To provide a profound basis for later implementation, we elaborate a formalism of the access control used in our DT sharing
approach. Italicized terms refer to entities from Fig. 3. Every sharing party is considered a User U := {u1,⋯,un}. In our hybrid access
control approach, each user can have one Role R := {r1,⋯, rn} as well as several Attributes A := {a1,⋯, an} per DT. Components C :=

{c1,⋯, cn} serve a special purpose in this access control model, as they are used for modeling Attributes: A := a1,⋯,an | ai = c1 ∨ … ∨ cn.
To continue, Permissions P := {p1,⋯, pn} are mainly derived from the user’s role but also from its attribute(s). This underlines the

hybrid RBAC-A mode in a role-centric realization Kuhn et al. (2010): Roles determine the basic permissions, while some of these
permissions are limited by the users’ attribute(s). The permissions usually specify the access to an object O := {o1,⋯, on} and the
allowed operation Op := {op1,⋯,opn}. Objects are always associated to a component to link the asset-relevant data to the component
they belong: o → c | o ∈ O ∧ c ∈ C. This results in the following definition of Permissions: P = Op × O, whereby it can be concluded
that p → c.

The n-m relation of users to roles is expressed by UR = U× R. Likewise, the user to attributes relation can be described as UA = U ×

Fig. 3. Entity Relationship Model of the DApp.

B. Putz et al.

II. RESEARCH PAPERS 65

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

7

A. Mapping the role-attribute combination to a user results in:

assign users(r, a) = u ∈ U | (u, r) ∈ UR ∧ (u, a) ∈ UA

Thereby, the mapping MUR describes the set of actual assignments of users to roles, while MUA determines the set of assigned at
tributes to users. Similar to the mapping above, the m-n relation between permissions and roles are specified by PR = P × R. Finally,
permissions are mapped to role-attribute combinations while the attribute restricts the role permission and MPR describes the set of
actual assignments of users to permissions:

assign permissions
(
r, a

)
= p ∈ P | (p, r) ∈ PR ∧ p → c | c ≡ a

5. Decentralized application architecture

Based on the system model elaborated in Section 4, we choose appropriate technologies and standards to implement a DApp for DT
data sharing in Section 5.1. We implement our entities by leveraging several blockchain design patterns (Section 5.2). To showcase the
inner workings of the DApp, the most important data flows for DT management are described in Section 5.3. The concomitant access
control implementation is detailed in Section 5.4.

5.1. Technology selection

For the DApp prototype we rely on the Ethereum blockchain, which is commonly used for research, e.g. in blockchain-based
business process management Haarmann, Batoulis, Nikaj, and Weske (2018). It offers the Turing complete smart contract program
ming language Solidity and has a large developer community, resulting in advanced development tools and vulnerability scanners
Ayman, Aziz, Alipour, and Laszka (2019).

Fig. 4 depicts the technical architecture of the EtherTwin DApp. A User Interface simplifies the interactions of the DT lifecycle
participants, such as creating twins and uploading data. For trustless interaction with the blockchain it is implemented using the single
page application JavaScript framework Vue.JS3 – a server is only needed to serve static assets. The module ethereumjs-wallet is used
for managing the user’s blockchain account, providing access to the user’s public and private key. Key pairs are dynamically created on
first access and stored in the browser’s local storage for future visits.

Web3.JS is used to send transactions signed with the private key to the Smart Contracts on the Ethereum blockchain. The front end
is connected to an Ethereum blockchain node through a WebSocket connection. WebSockets improve performance over HTTP con
nections by providing a two-way communication channel between the client and the Ethereum node. This avoids the need to set up
individual HTTP connections for each request Fette and Melnikov (2011). WebSockets also enable subscription to smart contract
events (publish-subscribe style), which is utilized by the Device Agent for synchronization purposes. During development, we observed
a significant speed up in page load times after switching to an RPC connection based on WebSockets.

The erebos module4 reuses the blockchain account to upload data to the Off-chain Storage based on the Swarm DHT. While Swarm
is mostly known for its permissionless test network, it can also be deployed as a private DHT with a fixed set of peers. Swarm reuses
Ethereum accounts as its identity system, which simplifies its integration as off-chain storage. Additionally, the data types used in both
systems are compatible: References to Swarm data are encoded as 32 byte SHA3 hashes, which can be stored in a Solidity bytes32
variable in the smart contract. For dynamic content, Swarm provides Feeds. Feeds have a fixed address specified by user (Ethereum
account) and topic (any SHA3 hash). They can only be updated by their owner with a public-key signature. Any Swarm user can read-
access the most current and past updates. This concept is useful for sharing file keys and real-time sensor data under a fixed address,
despite Swarm’s content-addressed storage. Ethereum Swarm Contributors (2019)

Fig. 4. Technologies used in our prototypical implementation of DT data sharing.

3 vuejs.org
4 erebos.js.org

B. Putz et al.

II. RESEARCH PAPERS 66

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

8

The Device Agent bidirectionally synchronizes the DT’s underlying Asset with the decentralized DT on Ethereum and Swarm. It
runs as a node.JS5 background process and monitors new sensor data from the asset, which is then uploaded to Swarm.

Like other authors creating DTs Eckhart and Ekelhart (2018); Schroeder, Steinmetz, Pereira, and Espindola (2016), our work relies
on Automation Markup Language (AML), which is defined in the industrial standard IEC 62714. AML describes the specification of the
asset including its components and their logic. Components are derived by parsing the AML-based asset specification.

5.2. Design patterns

Several blockchain application design patterns Xu, Pautasso, Zhu, Lu, and Weber (2018) are used in our prototype to address the
requirements of DT data sharing. A Contract Registry pattern keeps track of individual DT contracts. A Factory Contract pattern is used to
instantiate individual DT sharing instances. The access control model from Section 4.3 is implemented using the Embedded Permission
pattern and implemented in the separate Authorization contract. The Multiple Authorization pattern is used to ensure that all sharing
parties agree before changes to a DT contract are made. The Off-chain Data Storage pattern is used to meet the data volume and latency
requirements. The Device Agent implements the Reverse Oracle pattern to mediate between the industrial asset and the distributed
ledger. It monitors events occurring on the asset and publishes sensor data for authorized parties. Additionally, the agent is responsible
for managing and distributing the symmetric file keys used for encrypting off-chain data, as detailed in 5.4.

5.3. Data flow

Fig. 5 shows how the contracts interact during the deployment, twin creation and sharing phases of the DT lifecycle.
Deployment. Initially, the Registry and Authorization contracts are deployed by the blockchain consortium initiator. The Spec

ification contract template is deployed, but not yet instantiated as it is twin-specific.
Registration. When a user first opens the app, a new Ethereum account is created, represented by an Ethereum public-private key

pair. The public key is shared off-chain by publishing it on the account’s Swarm Feed. This avoids on-chain storage costs and allows
anyone to retrieve the public key from the corresponding Swarm Feed. To improve usability and to avoid the need to share addresses
out-of-band, we also register a mapping of the user’s Ethereum address to a username on the Authorization contract.

Twin Creation and Sharing. On twin creation, the Owner provides a specification, which is parsed to extract the twin’s com
ponents. A transaction is sent to the Registry Contract, which creates a new Specification Contract instance based on the provided data.
In the authorization contract, the access control attributes of the newly created twin are initialized with the provided components. The
AML-formatted specification is stored on the DHT and included with a hash reference. After a twin has been created, the Owner may
share it by adding a role to the lifecycle participant’s blockchain account.

Twin Data Sharing. Each transaction intending to create, update or delete an entity of the twin must first be authorized through
the Authorization contract. It should be noted that deletion only removes the entry from the current state; the state’s history is

Fig. 5. Sequence diagram showing initial deployment and user interactions with the smart contracts and DHT.

5 nodejs.org

B. Putz et al.

II. RESEARCH PAPERS 67

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

9

preserved on the blockchain. If the action is authorized, the corresponding state change is registered in the smart contract state. For
documents and specification version updates, the same procedure applies, except that metadata such as the filename remains
unchanged.

Sensor Feed Updates. Due to latency requirements and to reduce the number of costly smart contract transactions, sensor data is
shared off-chain. After a sensor is registered on-chain, the Device Agent connects to the corresponding component sensor and sub
scribes to its sensor data. Each new sensor entry is encrypted with the component’s sensor encryption key and published to the sensor’s
Swarm Feed.

5.4. Access control implementation

In the following the decentralized implementation of the formal access control model detailed in Section 4.3 is described.
Authentication. Authentication is based on blockchain accounts, which consist of a private key and an address. Identities are

represented by addresses, which are created by hashing the public key. They are used for signing transactions and sharing confidential
data intended for specific participants.

Authorization. Data stored on-chain is implicitly accessible to all participants storing the blockchain. For this reason, only met
adata and off-chain references are stored in smart contract state. State change transactions require authorization by the Authorization
contract authorization, with component-based entities (documents, sensors) also requiring the corresponding component attribute.
The append-only nature of the blockchain ensures traceability of all changes.

The default mapping of permissions to roles is shown in Table 3. Permissions comprise the CRUD operations for each of the main
sharing objects Twin, Document and Sensor. The entities External Source and Specification do not have separate permissions and instead
inherit the Twin permissions. Role and attribute mappings are controlled by the DT Owner and can be modified for each individual DT.
For example, permissions may be removed from a role or attributes added to a user. These permissions are enforced on-chain by the
Authorization contract. Read permissions for off-chain data are enforced by encrypting all data related to off-chain entities (Specifi
cation Version, Sensor Entry and Document Version). The encryption key is shared only with authorized users.

Encryption. All data is AES-256-encrypted before being uploaded to the Swarm DHT. Permissions are enforced by sharing a public-
key encrypted version of the symmetric file key. Since Ethereum uses public keys based on elliptic curve cryptography, we rely on the
Elliptic Curve Integrated Encryption Scheme (ECIES). However, Ethereum addresses are hashes of the public key and not the public key
itself, which means they cannot be used for encryption. Therefore, participants additionally share their public key on their personal
Swarm Feed (identified by their account address).

The file keys are then distributed on a Swarm Feed, which allows dynamic off-chain updates when new users gain permission. For
the specification file, the asset Owner manages the file keys. For component-based entities, the file keys are managed by the Device
Agent. The Device Agent must be trusted, since it has full access to the asset. It is thus able to enforce on-chain permissions for off-chain
data continuously.

The Device Agent creates two unique symmetric keys for each component (for documents and sensors). File key recipients are
determined based on roles and attributes stored on-chain. The corresponding algorithm for creating file keys is shown in Algorithm 1.
The formal notation is based on Section 4.3. The algorithm must be executed for each twin before any files can be uploaded, since it
distributes the symmetric keys needed for encryption. For this reason the Device Agent continuously monitors the blockchain for newly
created twins managed by its address and associated permission updates. This is achieved by subscribing to contract events emitted by
the Authorization contract. The Device Agent also subscribes to attribute and role change events. On each event, on-chain permissions
are retrieved and the corresponding file keys are added/removed accordingly.

6. Evaluation

To evaluate the proposed DApp architecture, we follow a methodological approach based on Venable et al.’s framework for
evaluation in Design Science Research Venable, Pries-Heje, and Baskerville (2012). The goal is to ensure both rigor and efficiency of
our research. In our ex-post evaluation, we utilize both artificial (prototype, technical simulation) and naturalistic (case study, expert
interviews) evaluation methods.

Table 3
Role mapping for entity Create/Read/Update/Delete permissions. ∼: Permission depends on presence of component attribute.

Permission Twin Document Sensor

C R U D C R U D C R U D

Device ⨯ ✓ ⨯ ⨯ ⨯ ✓ ⨯ ⨯ ⨯ ✓ ✓ ⨯
Owner ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Manufacturer ⨯ ✓ ⨯ ⨯ ∼ ∼ ∼ ⨯ ⨯ ∼ ⨯ ⨯
Maintainer ⨯ ✓ ⨯ ⨯ ∼ ∼ ∼ ⨯ ∼ ∼ ∼ ⨯
Distributor ⨯ ✓ ⨯ ⨯ ∼ ∼ ∼ ⨯ ⨯ ⨯ ⨯ ⨯

B. Putz et al.

II. RESEARCH PAPERS 68

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

10

We first describe the EtherTwin prototype and its user interface in Section 6.1. The prototype is evaluated with several technical
experiments concerning latency and cost in Section 6.1. Its practical application is explained via an industry use case in Section 6.3.
Finally, we interview several industry experts regarding the prototype’s benefits and remaining challenges in Section 6.4.

6.1. Prototype

The EtherTwin prototype is available on GitHub6, including a video demonstrating the use case illustrated in Section 6.1. It consists
of about 3000 single lines of code (SLOC) for the DApp and Device Agent, as well as 400 SLOC for the smart contracts. We analyzed all
smart contracts for vulnerabilities using the SmartCheck vulnerability scanner Tikhomirov et al. (2018). Hereafter, screenshots are
presented to show the prototype’s functionality.

The prototype’s start page is illustrated in Fig. 6. It gives an overview of the twins the user is involved with, and shows the role of
the user for each twin. The navigation bar shows the available pages for the selected twin that is highlighted in gray. Navigation to the
respective pages is handled by clicking on the respective icon in the twin’s row. The icon shown on the very right of the navigation bar
provides a visual representation of the user’s network address. It leads to the account page, containing information about the network
and current user.

Fig. 7 contains three screenshots that show the component-based organization of the prototype per twin. The screenshot on the

Fig. 7. Screenshots of the prototype’s component-based structure and information management.

Fig. 6. Screenshots of the prototype’s home menu.

6 https://github.com/sigma67/ethertwin

B. Putz et al.

II. RESEARCH PAPERS 69

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

11

right shows the composition of the selected asset/twin with its components and sub-components. This structure is parsed from the AML
specification, which is required for twin creation. The upper left screenshot illustrates the sensor feed capabilities. The screenshot on
the lower left shows the existing documents per twin. Each document is thereby assigned to a component. For each component,
documents from each lifecycle-phases can be uploaded. However, users can only download, upload or update a document to a
component if they have the respective component attribute in the smart contract. In practice, each user should be assigned the
component attributes that the user is involved with in the lifecycle.

Fig. 8 shows the prototype’s role and attribute management page. In the EtherTwin prototype, the Owner of a twin can see all other
involved users and their lifecycle involvement. Furthermore, the Owner can handle the access to the resources as shown in the
screenshots below. The screenshot on the bottom left side shows how the user’s role can be changed, while the screenshot on the right
side illustrates the adjustment of the user attributes.

Further screenshots of the prototype can be found in Appendix A (Figure A1, Figure A2, Figure A3) and in our GitHub-repository7.

6.2. Technical experiments

To evaluate the performance of our prototype, we first consider latency of the interactions described in the prototype. Our pro
totype environment is set up on a Raspberry Pi using Parity Ethereum 2.7.2 and Swarm 0.5.7. The DApp and Device Agent were run on
an i7-8550U CPU.

When a new twin is created, the Device Agent must create the twin’s symmetric encryption keys before any data can be shared. To
evaluate this latency, we benchmarked the runtime of Algorithm 1. The algorithm runs every time a DT is created or its permissions are
updated. It only runs once the transaction is included in the blockchain, since it is triggered by smart contract events. The results in
Fig. 9 show that the runtime is on the order of one to three seconds. This is sufficient for real-world scenarios, since sharing interactions
are not immediate. The runtime is not significantly affected by the number of users the DT is shared with. It increases only slightly with
the complexity of the asset specification (number of components).

To ensure user adoption, interactions with the user interface should have low latency. Each time a smart contract transaction is
issued, the user needs to wait for a blockchain confirmation. Therefore, we measured the latency of interactions with private and public
blockchains in Table 4.

Another aspect relevant for public blockchain deployments are transaction costs for the Ethereum smart contracts. The

Fig. 8. Screenshots of implemented access control mechanisms.

7 https://github.com/sigma67/ethertwin/tree/master/misc/Screenshots

B. Putz et al.

II. RESEARCH PAPERS 70

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

12

cryptocurrency costs are shown in Table 4. Sub-second latencies demonstrate that the user experience is fluid, despite client-side
encryption/decryption and network delays. Costs are also quite low except for Twin Creation, since a new contract is instantiated.
The use case costs include each action once, except for Document Creation, since two documents are created. In practice, lifecycle
participants should decide based on usage cost projections to either jointly run a private network with operational costs, or use the
public Ethereum network with the associated transaction fees.

6.3. Use case

This use case illustrates how our EtherTwin DApp is used in practice by creating a DT based on real enterprise data that is provided
during the Secure Industrial Semantic Sensor Cloud (SISSeC) project8. The SISSeC project focuses on introducing Industry 4.0 in small
and medium enterprises (SME) and aims at securely unifying and analyzing machine data. The industrial assets targeted in the project
are part of the manufacturing process of printed circuit board (PCB) panel prototypes of a small German enterprise. The central goal for
the PCB panel manufacturer is to gather all data available about the machines, to unite and analyze the data. Thereby, novel insights
such as the determination of flaws in the manufacturing process present the desirable outcome.

Our DApp prototype unifies the available data of an industrial asset throughout all lifecycle phases. In this use case, we create a DT
for the boring and milling machine that gouges holes into the PCB panels. The demonstration of the implemented use case can be found
online9 and its manifestation can be gathered from the screenshots of the prototype (Section 6.1 and Appendix A).

At first, the machine specification in the form of an AML-file is implemented to set up the respective smart contracts for the use case
(cf. Fig. 2). Then the feed data from the machine is integrated from sensors, ranging from sensors determining the position of the drill to
logs of the PLCs concerning the running program. Moreover, we unified asset-relevant documents like manuals of the machines’ ICSs10

Thereby, the documents are assigned to their corresponding component. For instance, a manual of a Siemens S5 PLC is assigned to
the PLCs of the boring and milling machine. Currently, we created user accounts for the PLC’s manufacturer, the machine operator and
the maintainer of the machine’s motors for demonstration. However, there are other users that can be included, e.g. the manufacturer
of the motors, the maintainer of the PLCs and HMI or the distributor of the barcode reader.

Based on an interview with the CEO and the CIO of the firm that currently operates the boring and milling machine, we gather that
our EtherTwin prototype meets their current needs for central collection of data about their machine. For example, when service is
required, the operator usually has trouble providing the right information to the maintainer. However, this information is needed for
the maintenance service to bring the right tools and rapidly assesses the machine’s state and problem. In their view, EtherTwin poses a
solution to this issue. Moreover, they consider the component-based data management a useful strategy that facilitates their search of

Table 4
Latency (ms) and cost (ETH, €) for contract deployment and interactions. Gas price: 10 Gwei, 120 € /ETH.

Action ms Gas ETH €
Initial Deployment - 14,548k 0.14548 17.46

Twin Creation 896 4576k 00.4576 5.49
Twin Sharing 353 144k 00.0144 0,17
Specification Version Creation 262 94k 00.0094 0,18
Document Creation 485 254k 00.0254 0,50
Document Version Creation 365 99k 00.0099 0,19
Sensor Creation 374 95k 00.0095 0,18
Attribute Update 276 50k 00.0050 0,10

Fig. 9. Runtime values for Algorithm 1 for varying numbers of users and components.

8 https://www.it-logistik-bayern.de/produktionslogistik/projekt-sissec
9 http://ethertwin.ur.de. The use case can be tested with a demo Owner account with the private key 1bed7

c10358ece007522558c4801b84424750f5a626ce5c9093411c9fc197a6f, to be entered on the account page (top right icon)
10 Please note that the SISSeC project is at an early stage, where more data about the machine is still to be gathered.

B. Putz et al.

II. RESEARCH PAPERS 71

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

13

information about sub parts. Nevertheless, the interviewees also state that EtherTwin’s access control mechanisms are very valuable to
prevent knowledge drain. Nevertheless, it is uncertain whether lifecycle participants have the required knowledge to install the
proposed solution.

This use case shows that our DApp supports our goal of unifying asset-relevant data among its lifecycle with its participants. This
results in enabling a feedback loop among the machine’s lifecycle phases. The participants of the lifecycle phases can harness this
information to optimize their own business.

6.4. Expert interviews

To validate our prototypical implementation of blockchain-based DT information management, we conducted semi-structured
interviews with industry experts. The goal of the interviews is to determine the prototype’s conformance to practical requirements
and to identify potential adoption barriers.

Participants We conducted semi-structured interviews with ten industry experts from six different enterprises. The industrial do
mains the experts have experience with include engineering industries (4 experts), manufacturing (2 experts), logistics (1 expert) and
IT firms and blockchain corporations (3 experts). Four of the investigated experts have a security background, while two of these are
security information architects, whereby one is designing secure blockchain architectures. Another expert is responsible for security
lifecycle and governance and the last one is tackling IoT security in particular. Two of the remaining experts work exclusively on
blockchain technology and another works as an information architect. The last three experts are IT consultants.

The experts have a cumulative 101 years of experience, ranging from 2 to 25 years with an average value of 10.1 years and a median
of 7.5 years. This experience was gained in companies of various sizes, including both SMEs (with up to 249 employees) and large
enterprises (up to 500,000 employees). The average enterprise size the interviewees are familiar with is 164,583 with the median at
30,000 employees.

Procedure To identify the opportunities and challenges of using our blockchain-based DT data management approach and to
evaluate the implemented prototype, we develop three categories of questions for the interview. These categories are based on DT
lifecycle aspects (1), the suitability of the blockchain approach (2) and the characteristics of the developed prototype (3). The
questions for the interview are based on relevant literature. We follow Dietz et al. (2019) and Dietz and Pernul (2020a) to identify DT
lifecycle aspects (1). For (2), we rely on Malakuti and Grüner (2018) and Rubio et al. (2017) that provide the problem area to which
our approach poses a solution. To derive the questions for category (3), we derive the questions from the distinct features of our
prototype (cf. Table 1).

To evaluate and gain additional practical insights on the categories (1), (2) and (3), we conduct a semi-structured expert interview
according to Lazar, Feng, and Hochheiser (2017). The interview is structured in the following phases:

• Phase 1) Introduction. At the start, the participants are questioned about their expertise and practical experience. Subsequently, an
introduction to our research problem and approach is given. Additionally, we guide each interviewee through our EtherTwin
prototype. Before the experts are interviewed, we encourage them to mention any issues that emerge during the following phases.

• Phase 2) Interview. In this phase, the set of questions corresponding to the three categories are posed. Thereby, the interview
questions are deliberately stated in a generic way to enable experts to share their individual experience Lazar et al. (2017). The
questions start off with lifecycle aspects (1), which represent the most generic questions, followed by requesting the experts’
opinion on the underlying blockchain approach (2). The last category contains the least generic questions and tackles our
EtherTwin prototype (3).

• Phase 3) Wrap-up. We summarize he experts’ main feedback. The expert is encouraged to state additional feedback on our research
and EtherTwin prototype to help validate our approach. Moreover, areas requiring revision can be identified.

The guideline to the expert interview, including the interview questions, procedure and research purpose, can be found in
Appendix B. Each interview participant received a copy of the guideline in advance of the interview.

Results We briefly describe the results of the interviews below, before discussing the experts’ suggestions for improvement in
Section 7.

In terms of relevant lifecycle aspects (1), the experts mentioned that there are additional roles at each operator that need separate
permissions, for example engineers, managers, developers, analysts and security employees. Half of the experts believe that including
relevant participants such as auditors and regulatory authorities could be beneficial. Moreover, 30% of the experts think it would be
beneficial to include roles for public authorities, e.g. to manage the compliance to environmental law. Two experts mention that the
Owner and operator may not be the same. For instance, the operator might only have leased the industrial asset, while the Owner
might still be the integrator or another lifecycle participant. Moreover, some of the roles should be further distinguished between
manufacturers of the components, the integrator of the components (the manufacturer of the machine) and the operator. Another
helpful remark, mentioned by two experts, is that modeling sub-roles might be required.

Six out of ten experts see the data for managing an industrial asset as dependent on various aspects, including the industrial asset
itself, the lifecycle phases involved as well as the use case, as also other non-industrial devices could be modeled with our approach.
However, the most important data was:

B. Putz et al.

II. RESEARCH PAPERS 72

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

14

• sensor and operating data (50%)
• cumulative information & analytics including dashboards (50%)
• master data categorized into mechanical, electrical and IT-related (30%)
• the relations among the components, e.g. dependencies, network (20%)
• as well as information about hardware- and software and their modifications (10%)

Three experts reckon the sensitivity of the data as a very important aspect, esp. when critical infrastructures and functions are
involved.

Information about an industrial asset is currently shared, but only in a limited way. According to the experts, Industry 4.0 sharing
practices are currently still in an early stage. For example, ICSs are integrated to corporate IT systems in order to communicate with
enterprise resource planning (ERP) and e-commerce systems. Moreover, according to the experts, current sharing practices involve only
strategic partners. Nevertheless, the creation of greater collaboration platforms is planned – leaning towards the notion of an ecosystem of
DTs. In practice, our sharing approach is thus seen as a future issue, while security is and will remain a pressing challenge.

Thereby, the most important advantages of information sharing are collaboration opportunities and product improvement (70%),
followed by transparency and recording (40%). Using the blockchain, the experts expect a very low rate of failure (availability) and
manipulation (integrity). The greatest disadvantage are data ownership issues and the potential loss of valuable corporate trade secrets
(70%). Four experts expect the risk of industrial espionage (esp. among the supply chain), resulting in an increase of the substitutability
potential through rivals and in a reduction of lock-in effects. Nevertheless, two experts emphasized that the benefits certainly outweigh
the downsides.

Regarding blockchain suitability (2), the answers are summarized in Fig. 10. Most experts agreed that blockchain is suitable for
managing DT data along its lifecycle. Nevertheless, some experts were skeptical and preferred a TTP over a blockchain solution for its
simplicity. One expert noted that this solution should not be used for machine operations since that would require millisecond la
tencies. Another interviewee suggested that it should be used to track machine interactions, i.e. firmware upgrades and part changes.

Finally, the user interface of the EtherTwin prototype (3) was received positively. All participants agreed that it was well suited to
the task at hand. Adjectives used for description were intuitive, clear and modern. One expert argued that the developed user interface is
not needed in practice, since the backend should be fully integrated with existing systems, such as condition-based maintenance
systems, ERP and product data management (PDM).

When asked for estimates of practical performance requirements, the experts provided varying estimations based on their expe
rience. While an SME with 10 manufacturing machines may create two twins of these machines per year, an automotive manufacturer
may create one per produced car, or as many as 10,000 per month. Estimates for shared documents for a twin also ranged from one
document per day to a few documents per year, depending on the amount of shared documentation (i.e. aircraft production requires a
large number of accompanying documentation material). For sensor data, raw sensor logs can result in significant data volume and
velocity (up to terabytes/day), but not all of this data requires sharing. Experts suggested that only non-nominal or aggregated sensor
data needs to be shared, resulting in a volume around hundreds of entries per hour.

7. Discussion

Hereafter we discuss the results of the evaluation, the resulting limitations and how the experts’ feedback can be used to improve
the prototype in the future. We start with discussing the lifecycle aspects in Section 7.1. At last, performance (Section 7.2) and security
(Section 7.3) aspects are discussed.

7.1. Lifecycle

Access Control. Additional lifecycle roles (e.g. an auditor or government authorities) could be implemented by updating our
Authorization Contract. This includes the possibility for sub-roles and inheritance, for example to separate permissions for a technician
and financial controller at the manufacturer. Delegation of rights could be achieved by including permission delegations in ABAC, for
which several strategies have been proposed Servos and Osborn (2016). Another suggestion concerned the need for time or

Fig. 10. Expert evaluations regarding the suitability of the presented solution.

B. Putz et al.

II. RESEARCH PAPERS 73

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

15

event-based access to data by lifecycle parties. The access control model could be expanded to include an expiry time for each attribute,
which is validated whenever access is requested. EtherTwin provides a starting point that can be extended and specialized to fit
practical use cases individually. Another recurring suggestion made by experts was a role-specific user interface. In addition to
tailoring the available roles to the practical use case, a role-specific twin overview page could help users find the needed information
faster.

Data Governance. For collaboratively run applications, governance aspects are important to consider. Future software updates to
the deployed smart contracts may be necessary to incorporate additional DT features. Code changes to deployed smart contracts are
not trivial and require specific application patterns to avoid data loss. Upgradability of smart contracts can be achieved using a
Contract Registry or a Data Contract pattern Xu et al. (2018). To create new twins with enhanced functionality, the existing Registry
contract can be upgraded to allow for modular Specification contract templates.

Data structure. Additionally, a data structure might be established that is not only based on the components (cf. Fig. 3), but
categorizes mechanical, electrical and IT information as well. Future work could investigate how to integrate this categorization, e.g.
as an alternative structure or as sub-structure for each component.

Additional Data. Our prototype has few restrictions regarding data volume and variety. The additional information deemed
relevant by the experts could thus be easily integrated. Additionally, simulation is a key part of DTs. EtherTwin currently supports
upload of simulation data, but future work could investigate how simulations can be directly deployed in the user interface. For better
usability, future work could also extend our prototype by including analytical dashboards. Experts suggested that each role should be
able to get an at-a-glance overview of the asset’s state. Such a dashboard could include out-of-range sensor values, recently updated
documents, asset performance metrics and risk indicators.

Asset Control. Similarly, DTs should provide some control over the industrial asset. Firmware management and updates were
suggested by experts as a potential use case for EtherTwin. Program code of PLCs could be uploaded through the user interface by
permissioned users and automatically installed by the Device Agent, documenting all actions in the smart contract. This enables
traceability and accountability of participants for each modification made to the physical asset.

7.2. Performance

On-chain. The twin and document creation rates estimated by the experts do not present a challenge for a prototype, as even the
maximum values are within the performance limits of Ethereum and Swarm. Private Ethereum blockchains support between 50 and
100 transactions/second Dinh et al. (2017), which implies that more than 4 million twin interactions are possible per day (i.e.
document creation, sensor creation).

Off-chain. Experts mentioned that multiple events might need to be shared per second for a specific sensor. However, Swarm is
currently restricted to one update per feed per second. To deal with this restriction, sensor feeds are updated once per second with
batched sensor updates from the Device Agent. Thus, no data is lost and failure data is shared in a timely fashion. This restriction
precludes real-time monitoring and control of assets, as pointed out by an expert.

7.3. Security

Research Question. With our research question we aim to develop secure lifecycle information management for DTs:

RQ1. How can the data of Digital Twins be shared among multiple untrusted lifecycle parties while ensuring confidentiality, integrity
and availability?

Our prototype provides confidentiality by including fine-grained access control as well as encryption. All experts agreed that access
control and the concomitant encryption are essential for business adoption (cf. Fig. 10). On-chain data integrity is assured by the
immutability of the blockchain and the full replication of data among the participating nodes. Off-chain data integrity is provided by
maintaining the DHT encryption key and sensor feeds through the Device Agent controlled by the Owner. Additionally, Swarm feed
updates must be signed and are append-only, so integrity of past entries is maintained. In terms of availability, our decentralized
approach enables the participants to manage their own nodes to maintain fully replicated copies of on-chain and off-chain storage. The
proposed architecture relies on three distinct systems to function properly: the blockchain network, the DHT and at least one Device
Agent per organization. Due to the resulting complexity, consequences of failure should be properly considered:

• Blockchain node failure: If an organization’s blockchain node crashes, it will be unable to access the DApp as it relies on the
blockchain node as a data source. This would not affect other organizations. If > 1

3 of all blockchain nodes in the network fail, write
transactions are no longer available for all participants

• DHT node failure: If the DHT node is unavailable, the organization will be unable to retrieve the DT specification, documents and
sensor data. Other organizations are unaffected, unless they are trying to retrieve Twin data of the crashed organization for the first
time

B. Putz et al.

II. RESEARCH PAPERS 74

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

16

• Device Agent failure: A failed Device Agent implies that encryption keys will not be updated on permission changes while it is
down. Thus, newly shared data for its twins will not be available to the sharing recipients. Additionally, sensor data will not be
updated.

Encryption. Despite these already built-in security measures, sharing business data with external entities bears risks for enterprise
security. While data is encrypted, loss of the encryption key or compromise of the elliptic curve/AES encryption schemes could lead to
access by unauthorized parties. Since data cannot be removed from other nodes once uploaded to the DHT, there is an inevitable loss of
control that comes with sharing encrypted data. Due to the distributed nature of the DHT, read access to shared data cannot be
revoked, and it is not possible determine which users actually accessed DHT data. Safeguarding the Device Agent and the encryption
keys are thus paramount to data security in our approach. The prototype could be improved in this regard by hiding private key
information in the user interface and using the Web Cryptography API11 instead of the browser’s local storage. In addition, the sharing
enterprise must rely on the recipients to protect the encryption keys and data as well. Future research could also investigate future-
proofing the encryption procedures by utilizing quantum-proof schemes.

Misuse. Another consideration mentioned by an expert is misuse potential at the time of data entry. For a decentralized appli
cation, besides signature checks there is no way of checking the authenticity of uploaded data. A malicious lifecycle participant could
thus upload false information that cannot be deleted. Nevertheless, the versioning system in EtherTwin ensures that past versions of
data remain available.

Public blockchains. If a public blockchain is used, confidentiality of on-chain metadata becomes a concern. Since on-chain data is
not encrypted, participants should avoid including confidential information in metadata. If this is maintained, the contracts can be
deployed on the public Ethereum blockchain and there is no need for participants to operate a blockchain infrastructure. To ensure
infrastructure control and data confidentiality, both the Ethereum blockchain and the Swarm DHT can also be set up as private
networks. Permissioned Ethereum networks may use a more resource-efficient byzantine-fault tolerant consensus algorithm such as
IBFT 2.0 Saltini and Hyland-Wood (2019).

Identity Management. Usability could be improved by mapping Ethereum addresses to human-readable names. Organizations
may associate employee identities in existing identity management systems with Ethereum key pairs to enable single sign-on. Future
research could investigate how to best implement a mapping of enterprise identity to blockchain identity.

8. Conclusion

To conclude, the EtherTwin DApp implements the complex DT sharing requirements of the Industry 4.0 landscape without the need
for a TTP. This is achieved through a fine-grained blockchain-based access control model coupled with encrypted off-chain data
storage. The open source prototypical implementation is based on Ethereum and Swarm. Additionally, we evaluate our model through
use case elaboration and performance testing. Interview responses by industry experts validate the prototype’s practical suitability and
provide avenues for future research.

For example, our work on blockchain-based information sharing and access control may be extended to other areas, i.e. health DT
data sharing, data marketplaces and machine certifications. Business processes can also be interpreted as DTs Dietz and Pernul
(2020a). Approaches for blockchain-based business process management involving physical assets could thus be integrated with
blockchain-based DTs modeled in our work. Additionally, our prototype could be enhanced by enabling data flow from the twin to the
industrial asset. These interactions could involve calling PLC functions through the smart contract, or installing firmware updates.
Finally, simulation environments could be directly integrated in the decentralized sharing platform, instead of only sharing simulation
results as documents.

Declaration of Competing Interest

The authors declare that they do not have any financial or nonfinancial conflict of interests

Acknowledgements

We would like to thank the interviewed experts for their time and valuable contributions. Furthermore, we would like to express
our thanks to our reviewers for their helpful suggestions. Part of this work was performed under the ZIM SISSeC project12, which is
supported under contract by the German Federal Ministry for Economic Affairs and Energy (16KN085725).

11 https://www.w3.org/TR/WebCryptoAPI/
12 https://www.it-logistik-bayern.de/produktionslogistik/projekt-sissec

B. Putz et al.

II. RESEARCH PAPERS 75

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

17

Appendix A. Screenshots of the prototype

Fig. A2. Screenshot of the user’s account page.

Fig. A1. Screenshot of the ”share twin”-functionality.

B. Putz et al.

II. RESEARCH PAPERS 76

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

18

Fig. A3. Screenshot of the AML-structured specification of the asset.

B. Putz et al.

II. RESEARCH PAPERS 77

Dissertation Benedikt Putz, 2022

InformationProcessingandManagement58(2021)102425

19

Data: A set of twins T = (t1, . . ., tn) with mappings for roles MUR
t , permissions MPR

t , attributes MUA
t and a set of components Ct.

Result: A set of encrypted file keys f ktcu∀t ∈ T, c ∈ C, u ∈ Ut used to decrypt data Dtcn∀n ∈ 1.N and uploaded to DHT feeds owned
by the Device Agent.

1: function createFileKeys(t)
2: Ct ← getComponents(t) . retrieve permissions from smart contract
3: MUR

t ← getRoleAssignment(t)
4: MPR

t ← getPermissionAssignment(t)
5: MUA

t ← getAttributeAssignment(t)
6: for each c ∈ Ct do . generate two symmetric keys sk per component
7: (skdoctc , sksensortc) = Genc
8: end for each
9: for each u ∈ (MUR

t ∩ MUA
t) do . prepare file keys f k for users

10: pku ← (DHT) getUserPublicKey(u)
11: for each c ∈ Ct do
12: r ← MUR

tu
13: for each d ∈ {doc, sensor} do
14: if (c ≡ a | a ∈ MUA

tu) ∧ (pdread ∈ MPR
tr) then

15: f kdtcdu = ECIES _enc(pku, sk
d
tc)

16: (DHT) updateFeed(c, f kdtcu)
17: end if
18: end for each
19: end for each
20: end for each
21: end function

Algorithm 1. Create off-chain file keys based on read permissions.

B. Putz et al.

II. RESEARCH PAPERS 78

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

20

Appendix B. Guideline of the expert interview

B. Putz et al.

II. RESEARCH PAPERS 79

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

21

B. Putz et al.

II. RESEARCH PAPERS 80

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

22

References

Angrish, A., Craver, B., Hasan, M., & Starly, B. (2018). A case study for blockchain in manufacturing: ǣfabrecǥ: A prototype for peer-to-peer network of
manufacturing nodes. Procedia Manufacturing, 26, 1180–1192. https://doi.org/10.1016/j.promfg.2018.07.154.46th SME North American Manufacturing
Research Conference, NAMRC 46, Texas, USA

Ayman, A., Aziz, A., Alipour, A., & Laszka, A. (2019). Smart contract development in practice: Trends, issues, and discussions on stack overflow. CoRR.
Badsha, S., Vakilinia, I., & Sengupta, S. (2020). BloCyNfo-Share: Blockchain based Cybersecurity Information Sharing with Fine Grained Access Control. 10th annual

computing and communication workshop and conference, {ccwc} 2020, las vegas, nv, usa, january 6–8, 2020 (pp. 317–323). IEEE. https://doi.org/10.1109/
CCWC47524.2020.9031164.

Baig, F., & Wang, F. (2019). Blockchain enabled distributed data management - A vision. 35th IEEE international conference on data engineering workshops, ICDE
workshops 2019, macao, china, april 8–12, 2019 (pp. 28–30). IEEE. https://doi.org/10.1109/ICDEW.2019.00-39.

Baumgart, I., & Mies, S. (2007). S/Kademlia: A practicable approach towards secure key-based routing. International conference on parallel and distributed systems (pp.
1–8). https://doi.org/10.1109/ICPADS.2007.4447808.

Berdik, D., Otoum, S., Schmidt, N., Porter, D., & Jararweh, Y. (2021). A survey on blockchain for information systems management and security. Information Processing
and Management, 58(1), 102397. https://doi.org/10.1016/j.ipm.2020.102397.

Boschert, S., Heinrich, C., & Rosen, R. (2018). Next Generation Digital Twin. Proceedings of tmce (pp. 209–217).
Coyne, E. J., & Weil, T. R. (2013). ABAC And RBAC: Scalable, flexible, and auditable access management. IT professional, 15(3), 14–16. https://doi.org/10.1109/

MITP.2013.37.
Cruz, J. P., Kaji, Y., & Yanai, N. (2018). RBAC-SC: Role-based access control using smart contract. IEEE Access, PP, 1. https://doi.org/10.1109/ACCESS.2018.2812844.
Di Francesco Maesa, D., Mori, P., & Ricci, L. (2019). A blockchain based approach for the definition of auditable access control systems. Computers & Security, 84,

93–119. https://doi.org/10.1016/j.cose.2019.03.016.

B. Putz et al.

II. RESEARCH PAPERS 81

Dissertation Benedikt Putz, 2022

Information Processing and Management 58 (2021) 102425

23

Dietz, M., & Pernul, G. (2020a). Digital twin: Empowering enterprises towards a system-of-Systems approach. Business & Information Systems Engineering, 62(2),
179–184.

Dietz, M., & Pernul, G. (2020b). Unleashing the digital Twin’s potentials for ICS security. IEEE Security & Privacy.
Dietz, M., Putz, B., & Pernul, G. (2019). A distributed ledger approach to digital twin secure data sharing. In S. N. Foley (Ed.), Data and applications security and privacy

xxxiii (pp. 281–300). Springer International Publishing. https://doi.org/10.1007/978-3-030-22479-0_15.
Dinh, T. T. A., Wang, J., Chen, G., Liu, R., Ooi, B. C., & Tan, K.-L. (2017). BLOCKBENCH: A Framework for Analyzing Private Blockchains, . In SIGMOD’17Proceedings

of the 2017 acm international conference on management of data (pp. 1085–1100). New York, NY, USA: ACM. https://doi.org/10.1145/3035918.3064033.
Eckhart, M., & Ekelhart, A. (2018). Towards Security-Aware Virtual Environments for Digital Twins. Proceedings of the 4th acm workshop on cyber-physical system

security (pp. 61–72). https://doi.org/10.1145/3198458.3198464.
Esposito, C., Tamburis, O., Su, X., & Choi, C. (2020). Robust decentralised trust management for the internet of things by using game theory. Information Processing and

Management. https://doi.org/10.1016/j.ipm.2020.102308.
Ethereum Swarm Contributors (2019). Swarm Documentation. https://swarm-guide.readthedocs.io/en/latest.
Fette, I., & Melnikov, A. (2011). RFC6455 - The Websocket protocol. IETF Standards Track. https://doi.org/10.17487/RFC6455.
Haarmann, S., Batoulis, K., Nikaj, A., & Weske, M. (2018). DMN Decision Execution on the Ethereum Blockchain. In J. Krogstie, & H. A. Reijers (Eds.), Caise 2018 (pp.

327–341). Cham: Springer International Publishing.
Hasan, H. R., Salah, K., Jayaraman, R., Omar, M., Yaqoob, I., Pesic, S., … Boscovic, D. (2020). A blockchain-Based approach for the creation of digital twins. IEEE

Access.
Huang, S., Wang, G., Yan, Y., & Fang, X. (2020). Blockchain-based data management for digital twin of product. Journal of Manufacturing Systems.
Kaur, M. J., Mishra, V. P., & Maheshwari, P. (2020). The convergence of digital twin, IoT, and machine learning: Transforming data into action. In M. Farsi,

A. Daneshkhah, A. Hosseinian-Fa, & H. Jahankhani (Eds.), Digital twin technologies and smart cities (pp. 3–17). Springer International Publishing.
Khan, M. A., & Salah, K. (2018). IoT Security: Review, blockchain solutions, and open challenges. Future Generation Computer Systems, 82, 395–411.
Kuhn, D. R., Coyne, E. J., & Weil, T. R. (2010). Adding attributes to role-Based access control. Computer, 43(6), 79–81. https://doi.org/10.1109/MC.2010.155.
Lazar, J., Feng, J., & Hochheiser, H. (2017). Research methods in human-Computer interaction, 2nd edition. Morgan Kaufmann.
Li, J., Wu, J., Jiang, G., & Srikanthan, T. (2020). Blockchain-based public auditing for big data in cloud storage. Information Processing and Management, 57(6), 102382.

https://doi.org/10.1016/j.ipm.2020.102382.
López-Pintado, O., Dumas, M., García-Bañuelos, L., & Weber, I. (2019). Dynamic Role Binding in Blockchain-Based Collaborative Business Processes. In P. Giorgini, &

B. Weber (Eds.), Caise 2019 (pp. 399–414). Cham: Springer International Publishing.
Malakuti, S., & Grüner, S. (2018). Architectural aspects of digital twins in IIotsystems. Proceedings of the 12th European Conference on Software Architecture Companion

Proceedings - ECSA ’18, 1–2.
Mandolla, C., Petruzzelli, A. M., Percoco, G., & Urbinati, A. (2019). Building a digital twin for additive manufacturing through the exploitation of blockchain: A case

analysis of the aircraft industry. Computers in Industry, 109, 134–152. https://doi.org/10.1016/j.compind.2019.04.011.
Meroni, G., & Plebani, P. (2018). Combining Artifact-Driven Monitoring with Blockchain: Analysis and Solutions. Caise 2018 (pp. 103–114). Cham: Springer

International Publishing.
Pedersen, A. B., Risius, M., & Beck, R. (2019). A ten-step decision path to determine when to use blockchain technologies. MIS Quarterly Executive, 18(2), 99–115.

https://doi.org/10.17705/2msqe.00010.
Ríos, J., Hernández, J. C., Oliva, M., & Mas, F. (2015). Product avatar as digital counterpart of a physical individual product: Literature review and implications in an

aircraft. In R. Curran, N. Wognum, M. Borsato, J. Stjepandic, & W. J. C. Verhagen (Eds.), Advances in Transdisciplinary Engineering: 2. Transdisciplinary lifecycle
analysis of systems - proceedings of the 22nd ISPE inc. international conference on concurrent engineering, delft, the netherlands, july 20–23, 2015 (pp. 657–666). IOS
Press. https://doi.org/10.3233/978-1-61499-544-9-657.

Rouhani, S., Belchior, R., Cruz, R. S., & Deters, R. (2020). Distributed attribute-based access control system using a permissioned blockchain. CoRR, abs/2006.04384.
Rubio, J. E., Roman, R., & López, J. (2017). Analysis of cybersecurity threats in industry 4.0: The case of intrusion detection. In G. D’Agostino, & A. Scala (Eds.),

Lecture Notes in Computer Science: 10707. Critical information infrastructures security - 12th international conference, CRITIS 2017, lucca, italy, october 8–13, 2017,
revised selected papers (pp. 119–130). Springer. https://doi.org/10.1007/978-3-319-99843-5_11.

Saltini, R., & Hyland-Wood, D. (2019). IBFT 2.0: A Safe And live variation of the IBFT blockchain consensus protocol for eventually synchronous networks. CoRR, abs/
1909.1.

Schroeder, G. N., Steinmetz, C., Pereira, C. E., & Espindola, D. B. (2016). Digital twin data modeling with automationml and a communication methodology for data
exchange. IFAC-PapersOnLine, 49(30), 12–17.

Servos, D., & Osborn, S. L. (2016). Strategies for incorporating delegation into attribute-based access control (ABAC). In F. Cuppens, L. Wang, N. Cuppens-Boulahia,
N. Tawbi, & J. García-Alfaro (Eds.), Lecture Notes in Computer Science: 10128. Foundations and practice of security - 9th international symposium, FPS 2016, québec
city, qc, canada, october 24–25, 2016, revised selected papers (pp. 320–328). Springer. https://doi.org/10.1007/978-3-319-51966-1_21.

Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E., & Alexandrov, Y. (2018). SmartCheck: Static Analysis of Ethereum Smart Contracts.
2018 ieee/acm 1st international workshop on emerging trends in software engineering for blockchain (wetseb) (pp. 9–16).

Uhlemann, T. H.-J., Lehmann, C., & Steinhilper, R. (2017). The digital twin: Realizing the cyber-physical production system for industry 4.0. Procedia CIRP, 61,
335–340. https://doi.org/10.1016/j.procir.2016.11.152.The 24th CIRP Conference on Life Cycle Engineering

Venable, J. R., Pries-Heje, J., & Baskerville, R. L. (2012). A comprehensive framework for evaluation in design science research. In K. Peffers, M. A. Rothenberger, &
W. L. K. Jr. (Eds.), Lecture Notes in Computer Science: 7286. Design science research in information systems. advances in theory and practice - 7th international conference,
DESRIST 2012, las vegas, nv, usa, may 14–15, 2012. proceedings (pp. 423–438). Springer. https://doi.org/10.1007/978-3-642-29863-9_31.

Xu, X., Pautasso, C., Zhu, L., Lu, Q., & Weber, I. (2018). A Pattern Collection for Blockchain-based Applications. Proceedings of the 23rd european conference on pattern
languages of programs (pp. 3:1–3:20). ACM.

Xu, X., Weber, I., & Staples, M. (2019). Architecture for blockchain applications. Springer. https://doi.org/10.1007/978-3-030-03035-3.
Zhang, Y., Kasahara, S., Shen, Y., Jiang, X., & Wan, J. (2019). Smart contract-based access control for the internet of things. IEEE Internet of Things Journal. https://doi.

org/10.1109/JIOT.2018.2847705.
Zhao, Q., Chen, S., Liu, Z., Baker, T., & Zhang, Y. (2020). Blockchain-based privacy-preserving remote data integrity checking scheme for IoT information systems.

Information Processing and Management. https://doi.org/10.1016/j.ipm.2020.102355.

B. Putz et al.

II. RESEARCH PAPERS 82

Dissertation Benedikt Putz, 2022

II. RESEARCH PAPERS 83

1.3 DEALER: Decentralized Incentives for Threat Intelligence Reporting and
Exchange [P3]

Status: published

Publication: International Journal of Information Security

Submitted: 19 March 2020

Revised: 02 September 2020

Accepted: 11 November 2020

Citation: Florian Menges, Benedikt Putz, and Günther Pernul. 2020. DEALER:
decentralized incentives for threat intelligence reporting and exchange.
International Journal of Information Security (2020).

Journal Description: The International Journal of Information Security is an English

language periodical on research in information security which offers prompt publication of

important technical work, whether theoretical, applicable, or related to implementation.

Dissertation Benedikt Putz, 2022

International Journal of Information Security
https://doi.org/10.1007/s10207-020-00528-1

REGULAR CONTRIBUT ION

DEALER: decentralized incentives for threat intelligence reporting and
exchange

Florian Menges1 · Benedikt Putz 1 · Günther Pernul1

© The Author(s) 2020

Abstract
The exchange of threat intelligence information can make a significant contribution to improving IT security in companies
and has become increasingly important in recent years. However, such an exchange also entails costs and risks, preventing
many companies from participating. In addition, since legal reporting requirements were introduced in various countries,
certain requirements must be taken into account in the exchange process. However, existing exchange platforms neither offer
incentives to participate in the exchange process, nor fulfill requirements resulting from reporting obligations. With this work,
we present a decentralized platform for the exchange of threat intelligence information. The platform supports the fulfillment
of legal reporting obligations for security incidents and provides additional incentives for information exchange between the
parties involved. We evaluate the platform by implementing it based on the EOS blockchain and IPFS distributed hash table.
The prototype and cost measurements demonstrate the feasibility and cost-efficiency of our concept.

Keywords Threat intelligence sharing · Blockchain · Smart contract

1 Introduction

The threat landscape for IT infrastructures has grown steadily
in recent years, and this trend is continuing. At the same time,
it is becoming apparent that the countermeasures currently
available can hardly keep pace with the ongoing attacks. It
has been shown that the exchange of threat information is an
effective instrument for improving existing countermeasures
and the overall situation. It leads to more knowledge about
threats, earlier detection of attacks and thus to more effective
countermeasures. The potential benefits of the threat infor-
mation exchange have recently been recognized in the public
sector by introducing corresponding legal regulations. For
example, several countries already require the reporting of
security incidents, especially for critical infrastructure oper-
ators.

B Florian Menges
Florian.Menges@ur.de

Benedikt Putz
Benedikt.Putz@ur.de

Günther Pernul
Gunther.Pernul@ur.de

1 University of Regensburg, Universitätsstr. 31, 93053
Regensburg, Germany

While the exchange of threat information offers the afore-
mentioned benefits for the security situation, it can also
entail various disadvantages and problems that may prevent
companies from participating. These include high additional
costs for appropriately trained security personnel and infras-
tructure, possible data protection problems and the risk of
publishing sensitive data. In addition to these problems, a
complex set of reporting requirements must be taken into
account. Companies must be able to provide non-repudiable
proof of accurate reporting, both to avoid penalties and to
potentially use the data as evidence in court. Consequently,
sustained availability and integrity of the reported data must
be ensured. Sharing platforms must address these problems
by incorporating legal requirements as part of the design.
Additionally, incentive structures must be created for the
exchange of threat information, to offset costs and tomotivate
stakeholders to participate in the long term.

In doing so, we consider two use-cases separately. The
platform intends to (1) support the fulfillment of legally
obligatory reporting and (2) to create economic incentives
for voluntary reporting. While these scenarios have dif-
ferent requirements and thus follow separate processes, the
proposed platform optionally also enables sharing of oblig-
atory reports. Based on these considerations, we formulate
the research questions we intend to answer:

123

II. RESEARCH PAPERS 84

Dissertation Benedikt Putz, 2022

F. Menges et al.

• RQ1:Howcan threat intelligence informationbe exchanged
while ensuring availability, integrity andnon-repudiation?

• RQ2: How can the exchange of threat intelligence infor-
mation be incentivized?

To solve these problems, we propose a sharing concept
and application prototype for a threat intelligence sharing
platform based on Distributed Ledger Technology (DLT).
DLT provides specific security characteristics, which can
differ depending on the blockchain implementation. These
usually include availability, integrity and non-repudiation -
the three requirements of RQ1 [1]. Availability is ensured
by the underlying blockchain network, which consists of a
large number of geo-distributed nodes maintaining a repli-
cated ledger around the clock. Please note that Proof ofWork
(PoW)-based blockchains may suffer availability limitations
under heavy load [2]. At the same time, integrity assurance
is provided through a sequentially linked hash chain, which
ensures that the current world state is always the result of
all past transactions. The consensus protocol assures that
state transitions are append-only and previous entries are
non-repudiable. Distributed Ledgers enable the verifiable
decentralized execution of applications in the form of smart
contracts, which also provide the option to implement digital
currency in the form of blockchain tokens. These tokens can
be used to provide decentralized incentives by assigning real
value to threat intelligence information.

Existing work has attempted to address some of the
aforementioned problems using DLT; however, the research
questions have not been sufficiently addressed so far (Sects.
2 and 3.3). For this reason, we propose the blockchain-
based DEALER platform (Decentralized IncEntives for
ThreAt InteLligEnce Reporting and Exchange). It fulfills
requirements for obligatory Cyber Threat Intelligence (CTI)
reporting (Sects. 3.1 and 7.1), while also providing an incen-
tive structure to counteract possible participation drawbacks
and to encourage voluntary sharing of CTI. Our contribution
includes a novel protocol based on verifiers and token-
based incentives to encourage fair sharing of high-quality
threat intelligence data. To avoid trusting a third-party plat-
form provider, the architecture is fully decentralized and
maintained by independent blockchain operators and the
participants themselves. In brief, the platform provides the
following key features:

– availability, integrity and non-repudiation as require-
ments for obligatory reporting

– decentralized incentivesby leveragingblockchain tokens
for purchase and sale of threat intelligence

– transactional fairness for both seller and buyer
– quality assurance through a verifier system

The remainder of this paper is structured as follows. In
Sect. 2, we first provide an overview of approaches for plat-
forms to report threat information, in particular with a focus
on meeting the aforementioned security goals. In Sect. 3,
we define requirements for the development of our platform.
Section 4 introduces our concept for the storage and incen-
tivized exchange of threat intelligence information. In Sect.
5, we propose the system design for the application of our
concept and present the implementation of our prototype.
The cost structure and thus the practical feasibility of our
prototypical implementation are evaluated in Sect. 6. The
results of this paper are discussed in Sect. 7, and the paper is
concluded in Sect. 8.

2 Related work

The exchange of threat information has been the subject of
practical and legislative work in recent years. These include
laws in different legislations, such as the NIS Directive1 in
Europe and the IT-Sicherheitsgesetz (BSIG)2 in Germany,
which stipulate the reporting of incidents for providers of crit-
ical infrastructures. These legislations are also influenced by
data protection requirements, which are, for example, speci-
fied by the General Data Protection Regulation (GDPR)3 or
the California Consumer Privacy Act (CCPA).4 Such regula-
tions have also been addressed in the literature. Schwartz et
al. point out fundamental legal aspects of the CTI exchange
[3], while Laube and Bhme show that not reporting secu-
rity incidents may lead to fines in different countries[4]. In
addition to this, Bauer et al. have shown in their study on
Threat Intelligence Platforms that trust, data integrity, a high
platform availability, reporting functionalities as well as data
quality are among thekey characteristics ofCTIplatforms[5].
At the same time, the actual exchange of CTI data is already
being implemented in practice by various platforms. Exam-
ples are IBMX-Force [6] or Facebook threat exchange [7] as
commercial platforms as well as MISP [8] and OPENCTI
[9] as open source platforms. These platforms allow the
exchange of threat information; however, data integrity or
availability is not conclusively assured and incentive struc-
tures are not available. Central providers can advertise data
integrity and availability, but ultimately it is always necessary
to rely on the provider to ensure the protection goals are met.
This is particularly problematic in the area of possible obli-
gations to provide evidence, asmanipulation of the data stock

1 https://eur-lex.europa.eu/eli/dir/2016/1148/oj.
2 https://www.gesetze-im-internet.de/bsig_2009/BJNR282110009.
html.
3 https://eur-lex.europa.eu/eli/reg/2016/679/oj.
4 https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?
bill_id=201720180AB375.

123

II. RESEARCH PAPERS 85

Dissertation Benedikt Putz, 2022

DEALER: decentralized incentives for threat intelligence reporting and exchange

cannot be ruled out with central providers. At the same time,
a single provider usually also represents a single point of
failure when it comes to the availability of the platform. Fur-
thermore, existing providers do not yet offer functionalities
for quality-assured trading and thus an incentivized exchange
of CTI information. In this context, Liu et al. [10] showed
that a lack of incentives can even prevent the exchange pro-
cess from happening. In addition to this, Wagner et al. [11]
pointed out the risks that are associated with sharing CTI,
which in turn may prevent companies from participating in
the exchange, which in the worst case can even lead to the
information exchanged being used to attack participants in
the exchange.

A great deal of research has been done on the requirements
and challenges of implementing CTI platforms. In an early
work, Serrano et al. [12] point out the fundamental prob-
lems for the exchange of threat information. Dandurand et
al. [13] defined requirements for the exchange of informa-
tion, emphasizing the necessity of assuring data integrity and
availability, which is also supported by the work of Brown
et al. [14]. Mohaisen et al. pointed out various open research
questions in that field, such as possible dangers and negative
incentives that may relate to the exchange of CTI [15]. In
addition to this, there are also works that deal with specific
implementations of CTI platforms, such as the MISP plat-
form byWagner et al. [8]. However, neither specific integrity
or availability requirements nor the integration of incentives
is considered. The literature also provides works that address
the necessity of creating incentives for the exchange of CTI.
Sauerwein et al. conducted an exploratory study that showed
a need for incentivizing stakeholders within the exchange
process [16]. This work is supported by Sillaber et al. exam-
ining the needs of stakeholders and resulting challenges [17].
While these studies provide possible starting points for the
use of incentive procedures, the actual use of such procedures
within CTI platforms is not considered. Moreover, there are
also first approaches that try to implement CTI exchange on
decentralized platforms. Alexopoulus et al. present a method
for sharing security data streams based on a smart con-
tract and data stream subscriptions [18]. Since the proposed
data streams require a direct connection between the parties,
the assurance of integrity and availability cannot be guar-
anteed. Incentive structures are also included in the work,
but the design suffers from various weaknesses. Since the
described on- and off-chain interactions of buyer and seller
are independent of each other, negative consequences for
fraud attempts during data transfer can only be implemented
to a limited extent. In addition, the quality of the incident
can vary during a stream, but only the entire stream can
be evaluated by a buyer. This increases search costs on the
marketplace because information about alerts is only avail-
able in aggregated form. Gong and Lee follow a similar
approach with the proposed BLOCIS framework[19]. Here,

incident data are also not seen as individual items, but aggre-
gated in threat intelligence feeds. Accordingly, a dedicated
assignment and a separate reporting functionality cannot be
implemented here. At the same time, the proposed concept
only provides automated quality assurance. Homan et al. pur-
sue a different approach by implementing CTI sharing on a
private Hyperledger blockchain. This work also shows the
potential of blockchains in the CTI sharing area. Although,
the possibilities of incentives are briefly described, they are
not specifically addressed. Quality assurance and reporting
requirements are not considered [20]. The papers shown
here also show how important fair and secure exchange is
for decentralized platforms. Accordingly, much research has
been done in this area in recent years. For example, Shafagh
et al. [21] show how homomorphically encrypted data can be
exchanged securely. Wagner et al. [22] propose an approach
to exchange digital goods based on mediator smart con-
tracts, which enable dispute resolution. This work provides
the means for decentralized exchange of CTI with smart con-
tracts, but does not provide a browsable platform or quality
assurance.

In summary, it can be stated that differentworks exist in the
area of threat intelligence exchange that consider the require-
ments and the application of platforms. However, to the best
of our knowledge, there is currently no work that allows
an incentive-based, fair exchange of CTI information, while
maintaining data integrity and availability to comply with
regulatory requirements. Accordingly, we briefly summarize
the novel points where our solution goes beyond existing
work:

– sharing of individual incidents on a decentralized mar-
ketplace

– quality assurance by independent and incentivized ver-
ifiers

– support of legal requirements for obligatory threat
reporting

– token-based incentives for voluntary sharing without
transaction fees

3 Objective and requirements

The exchange of threat intelligence information can be
categorized into two different areas. On the one hand, unidi-
rectional reports of security incidents are stipulated by law
and mostly concern companies that are relevant for the func-
tioning of society. On the other hand, bidirectional exchange
of security information between companies is done on a
voluntary basis. The goal is an improvement of the infor-
mation basis on security incidents for all participants and to
increase their security level. The platform developed in this
work aims to cover both use cases by enabling both report-

123

II. RESEARCH PAPERS 86

Dissertation Benedikt Putz, 2022

F. Menges et al.

ing and exchange of security incidents. We consider the use
cases obligatory reporting and incentive-based exchange
of CTI information separately, as they should be independent
features on the platform. However, a combination of both
approaches should optionally be possible. There are differ-
ent and unique requirements that result from each of these
use cases, which are described in more detail below.

3.1 Requirements for reporting security incidents

The most important requirement for reporting security inci-
dents is compliancewith the underlying legal framework.We
have taken the German IT Security Act [23] as the basis for
our requirements in this matter. In doing so, we first consider
the concrete effects of the reporting obligation and derive
reporting requirements from this before specifying them in
more detail. In principle, existing reporting obligations usu-
ally specifically oblige operators of critical infrastructures to
report possible outages. The German IT security law explic-
itly proposes a contact point for the implementation of the
reports, which can be used by various parties subject to
reporting. This ultimately corresponds to the platform pro-
posed here as a common reporting infrastructure. In terms
of content, the law specifically stipulates that failures must
be reported immediately and thus places an initial focus on
availability. The information should include various techni-
cal details as well as information on the respective operator.
Within the legislation, a further focus is put on the auditabil-
ity of critical infrastructures. This shows that ensuring the
integrity of the reports is also a key factor in the scope of
reporting. In addition, the legislation provides for penalties
for failing to report security incidents. Accordingly, it is also
important to be able to provide proof that a report has been
carried out.

According to this, the first requirement for a functioning
reporting infrastructure is that a company must be able to
provide incident data and that the legal authorities can obtain
these data. Reports on security incidents are to be regarded as
time-critical, as the judicial authorities may have to react to
reported incidents in good time. For this reason, the provision
of a very high availability is a key factor in the operation of
a reporting infrastructure.

In the context of reports, it is also of utmost importance to
be able to provewho submitted a report. On the one hand, this
is necessary so that authorities can take the necessary steps to
prevent supply bottlenecks, for example. On the other hand,
this also provides a guarantee for the reporting institution, as
it enables it to prove that the reporting obligation has been
fulfilled and thus avoid penalties. This necessity results in the
requirement of non-repudiation and unambiguous assign-
ment of reports. In addition, a further requirement results
from the actual use of the data. Besides being used to pre-
vent damage, the threat intelligence information obtained

may also be used as evidence. Specifically, recorded data
may either be used as evidence in court proceedings or as
proof of damage against contractual partners such as insur-
ance companies. Following this, ensuring data integrity is
an additional requirement in the reporting process that needs
to be taken into account. Besides regulations that stipulate
reports of security incidents, there are also regulations regard-
ing the handling of personal data in different jurisdictions,
such as the GDPR in the European Union. According to this,
the platform must also provide the necessary tools to allow
the protection exchanged data in compliance with legal reg-
ulations.

3.2 Requirements for an incentive system

In addition to requirements resulting from legislation, there
are also functional requirements for exchange platforms.
Every exchange of information on security incidents is
accompanied by various risks.When publishing information,
companies risk to accidentally leak important data. Thismay,
for example, include company secrets or information about
the company infrastructure that may, for example, simplify
attacks on that company. In addition, a reporting process
involves costs for the collection, processing and dissemi-
nation of incident data. At the same time, the benefits of
participating in an exchange platform are often difficult to
quantify, especially with comparatively low legal penalties
for omitted reports. From these points it can be concluded that
companies tend to have little intrinsic motivation to report
incidents themselves, whereas the motivation to passively
obtain information from a reporting platform is likely to be
high. As a result, an incentive system that motivates every
participant on such a platform to actively participate can be
defined as a further essential requirement for the sustainable
functioning of such a platform (RQ2).

3.3 Platform comparison

As shown above, several other platforms already exist
that enable the exchange of threat intelligence information.
Among them are both centralized and decentralized concepts
covering different use cases. This leads to the problem that
platforms offer different features and each of them offers
its own approach to addressing protection targets. In order
to demonstrate the advantages of the DEALER platform
compared to existing concepts this section compares the
DEALER platform to Facebook Threat Exchange (FB-TX),
IBM X-Force, MISP, OpcenCTI and Trident as presented
in Sect. 2. Specifically, the key features of DEALER for the
creation of incentives aswell as the implementation of report-
ing obligations are compared individually for all platforms.
More specifically, the aforementioned protection goals of
availability, integrity, non-repudiation, fairness, quality and

123

II. RESEARCH PAPERS 87

Dissertation Benedikt Putz, 2022

DEALER: decentralized incentives for threat intelligence reporting and exchange

Table 1 Comparison of CTI
sharing platforms

FB-TX X-Force MISP OpenCTI Trident DEALER

Platform availability �� � �� �� � �
Data availability � � � � � ��
Integrity � � � � �� �
Non-repudiation � � � �� � �
Incentives � � � � � �
Fairness � � � � �� �
Quality assurance � � � � �� ��
� Not addressed, �� insufficiently addressed, � explicitly addressed

the possibility of creating incentives for exchange are con-
sidered. Depending on the use case of the notification or
exchange, the availability of the platform itself as well as the
availability of the data in the specific case are also distin-
guished for the determination of the availability protection
goal. This separation is introduced since one problem within
decentralized platforms is to keep exchangeable data avail-
able for trade at all times. The full comparison made here is
shown in Table 1 and is explained in more detail below. The
comparison rates different platformprotection goalswith val-
ues from “not addressed” through “insufficiently addressed”
to “explicitly addressed”. Significant differences between
centralized and decentralized platforms are apparent at first
glance in Table 1. In the following, these are broken down in
more detail once again.

Platform availability. In the FB-TX,MISP and OpenCTI
platforms, platform availability is not given special consid-
eration. No specific statement can be made for MISP, as it is
operated independently by different communities.Moreover,
FB-TX already had several outages in Q2 2020. 5 Accord-
ingly, no increased availability can be assumed for these
platforms. X-Force addresses this problem using increased
parallelization, however, outages regularly occur here as
well. Trident and DEALER, on the other hand, are oper-
ated on decentralized blockchains ETH and EOS, on which
outages are very rare due to the high number of network
nodes.

Data availability. This property is naturally very high for
all central platforms, as data can be uploaded and is avail-
able regardless of the status of the user. In contrast, Trident
is dependent on the availability of the user and has a corre-
spondingly low data availability. Despite the decentralized
approach, DEALER tries to address this problem by sharing
the load between several users. This is explained in more
detail in Chapter 4.3.

Integrity. The data integrity is not considered in any of
the centralized approaches whereas Trident and DEALER
implement them. While this is only partially addressed in
Trident as the data exchange is based on a direct stream,

5 https://developers.facebook.com/status/dashboard.

the DEALER concept provides for a complete integrity
assurance of the data. At the same time, data integrity is a
characteristic that can be ensured particularly well by decen-
tralized platforms without the need for trust.

Non repudiation. This property is only addressed in
OpenCTI, Trident and DEALER. With OpenCTI, however,
this is only partially the case, as this is ensured by the platform
administrator and a corresponding level of trust is required.
Incentives: Both Trident and Dealer offer the possibility of
evaluating incident data and exchanging it via a marketplace.
Such incentivemechanisms are not provided for in the central
platforms.

Fairness. Within the DEALER platform exchange fair-
ness is specifically addressed. Trident also addresses this,
however, only peripherally by creating a relationship of trust
between the participants. On the central platforms this prob-
lem is currently not considered at all.

Quality assurance. This property is only addressed by
the decentralized approaches so far. Central platforms do not
yet take this into account. However, MISP names quality
assurance as an important goal for Future Work.

Overall, this comparison shows that the implementation
of a decentralized CTI exchange platform can create var-
ious advantages for the exchange. These include features
such as the creation of incentives, quality assurance and
the integration of fairness mechanisms. These were not
implemented on existing platforms although there are no
significant technical obstacles. On the other hand, they also
include criteria such as platform availability, integrity assur-
ance and non-repudiation. Due to the inherent characteristics
of decentralized platforms, these can be mapped very well
and without the need of ensuring trust. Although the concept
of the DEALER platform does not fully meet all criteria, it is
clear that such a system is superior to traditional approaches
in many respects.

3.4 Shared CTI data

In general, any data format can be used for the exchange
within the platform. Within this work as well as within the
development of the platform, we have used the state-of-

123

II. RESEARCH PAPERS 88

Dissertation Benedikt Putz, 2022

F. Menges et al.

the-art data format STIX2 for the exchange as well as the
reporting of incidents.

Listing 1 shows a shortened excerpt of such an exemplary
STIX2 data packet, which is basically provided in the JSON
data format. Such a data packet is always enclosed by the
structuring unit bundle which allows a unique assignment of
the data packet. Such a bundle contains the various STIX
objects and references between these objects. The shown
example contains with the object “indicator-1” information
about an indicator, i.e. a pattern that indicates a possible
security incident. Furthermore, the object “malware-2” con-
tains information about the detected Malware “Poison Ivy”.
Finally, a connection between the two objects is established
by the relationship object “relationship-3”, which references
both objects. In addition to an impression of the basic syntax
and design of a security incident with STIX2, this example
also gives an insight into the dynamic data model of STIX2.

A bundle object can contain any number of STIX objects,
which in turn can be dynamically connected to each other by
means of relationship objects.

4 The DEALER sharing concept

In this section we present the DEALER concept, which is
designed to fulfill the previously defined requirements and to
provide an incentives structure for sharing CTI information.
This includes an ecosystem describing the stakeholders in
the system, their roles and relationships and a marketplace
describing the processes and concepts within the ecosystem,
designed to guarantee sustainableCTI exchange.This section
provides an overview of the relationships within the system
and the overall idea of the concept. The individual processes
within the system are described subsequently.

The entire system, which is outlined in Fig. 1 consists
of five essential components. At the center of the system
is a blockchain and a distributed database. These form
the technological basis for the implementation of smart con-
tracts, integrity-secured storage of exchange processes and
provide decentralized storage structures for reported security
incidents. The starting point for reports within this system
is Critical Infrastructure Compounds. These include the
critical infrastructure operator, an IT service provider if appli-
cable, and a CTI provider. The CTI provider takes care of
external communication and acts as a so-called contact point,
a construct that can be derived from legal requirements for
incident reporting. The information collected is intended for
either Associated Institutions or Organizations. Associated
Institutions describe participants who are interested in the
reported information within the scope of reporting obliga-
tions. These can, for example, be legal authorities to which
a reporting obligation exists. These can also be other institu-
tions, such as insurance companies, to which a possible claim
can be made accessible via the platform. On the other hand,
there are Organizations that are not affected by reporting
obligations, but are nevertheless interested in participating,
for example to increase their own level of protection. Anal-
yses and services within the system are provided by the
CTI ecosystem. This enables external service providers to
bring their services into the system. For example, verifica-
tion providers can offer qualitative incident data evaluation,
or analytics providers can aggregate information on several
incidents and offer it within the system.

DEALER’s overall concept defines two central use cases:
statutory incident reporting and incentive-based threat intel-
ligence exchange. Both concepts are briefly described below
before we take a closer look at the underlying processes.

Obligatory reports are generated by the Critical Infras-
tructure Compound and transferred to the blockchain. The
transmitted data are pseudonymized and encrypted in such a

123

II. RESEARCH PAPERS 89

Dissertation Benedikt Putz, 2022

DEALER: decentralized incentives for threat intelligence reporting and exchange

Fig. 1 High level overview of the DEALER threat intelligence sharing concept

way that only the receiving authority can access it. In connec-
tion with such a report, the data can also be made available
to other users of the platform as part of the incentive-based
exchange. However, this step is explicitly optional and must
be actively selected.

The incentive-based exchange process is based on an
economic model, where participants can offer and demand
information on security incidents. For this purpose, a sep-
arate token is introduced on the platform, which functions
as an internal currency and is used as economic reward for
active participants. When threat information is provisioned,
structured incident data are transferred to the blockchain in
encrypted and pseudonymized form. The information pro-
vided can then be sold to other participants or made available
as a report. The uploaded incident information is assigned to
verifiers who ensure its data quality against a fee. After suc-
cessful verification, the data can be traded on the platform at
the previously defined price.

In addition to these two sharingmechanisms, legal author-
itiesmay additionally issue globalwarnings regarding threats
to all participants. In some legislations, such as the IT secu-
rity law inGermany [23], such global warnings are part of the
reporting obligation and thus necessary for compliance. The
warnings also represent an additional benefit for the platform
participants: the free CTI provided by the legal authority sup-
plements purchasable incident information.

After this high-level introduction to the basic concept of
DEALER, the core processes of the platform are presented in
more detail below. They include Registration (4.1), Sharing
(4.2), Verification (4.3), Purchase (4.4) and Fairness (4.5).

4.1 Registration

Initially, participantsmust register to be able to transact on the
decentralized marketplace. Each participant has an account
with a balance of fungible tokens, whichmay be used to trade
incidents. To prevent sybil attacks, we require a fixed initial
token stake si to create the participant’s balance. This prepay-
ment requires a meaningful investment, while not deterring
new users. The user balance is managed by the platform.
Withdrawals are allowed on request up to the initial fee,
which must remain until the participant closes the account.

Verifiers are treated separately during registration, as they
are given free access to incident information and must eval-
uate it. The purpose of registration is to achieve a unique
identification of the verifier, for example by requesting a tax
number, identity documents or a social security number. This
registration process is intended to prevent the risk of veri-
fier misuse (i.e. free-riding or submitting default ratings). In
contrast to regular participants of the platform, verifiers must
be approved before participating in the verification process.
During bootstrapping of the verifier pool, approval can be
conducted by the platform developer. Once the verifier pool

123

II. RESEARCH PAPERS 90

Dissertation Benedikt Putz, 2022

F. Menges et al.

has reached the minimum size (Sect. 7.3), new participants
can be approved through majority votes of existing partici-
pants.

Additionally, the platform provides an exclusion option
for malicious verifiers. Exclusion of a verifier must be
approved by a majority of the verifier pool through mul-
tisignature votes. Any verifier may initiate such a vote by
providing evidence for several instances of misbehavior
(i.e. repeatedly submitting default or unrealistic verification
reports).

Besides preventingmisuse, the goal of authenticating veri-
fiers is to ensure an intrinsic interest in the analysis of security
incidents and possession of the necessary technical exper-
tise for actual incident information assessments. Appropriate
verifiers could, for example, be threat intelligence vendors,
CERTs or security operations professionals.

4.2 Sharing

Figure 2 shows a BPMNdiagram of the sharing process from
incident detection to data upload, verification and provision-
ing on the platform. Initially, the participant locally performs
required preprocessing steps. These include anonymization
(removing private data and identifying details), addition of
public descriptive metadata and encryption of the incident
with a symmetric key k. The metadata also include a sale
price ps . A signed transaction is submitted to the platform
and the incident is uploaded to the distributed database. If
the participant decides to sell the incident to other users, a
verification fee pv must be paid once with the initial transac-
tion. We suggest pv ∼ 0.6ps to reward verifiers depending
on the value of the incident. The incident is then made avail-
able on the marketplace and verification is initiated. Three

random verifiers are chosen from the verifier pool. The seller
then uploads three keys kv1/kv2/kv3 for each chosen veri-
fier, encrypted with each verifier’s public key, and notifies
the platform at time T1. The verifiers retrieve and decrypt the
uploaded incident with their individual key file. They assign
an initial rating value based on a set of platform-provided
quality metrics (Sect. 4.3).

The verifiers submit the verification result to the platform.
If all results arrive until time T2, the verification fee pv is dis-
tributed equally among the verifiers (pv

3 = 0.2ps per verifier,
as noted above). If any verifier does not respond, the seller
may trigger a replacement of inactive verifiers. These veri-
fiers must respond until time T3 (T3 > T2 > T1), else the
seller may request a removal of the incident from the plat-
form and partial reimbursement of the verification fee (pv

3
per missing verifier).

For obligated incident reporting, the participant may want
to keep the incident confidential and not share it with veri-
fiers. In this case, the participant only uploads a key for the
regulatory authority and no verification is performed. The
platform provides a timestamp and proof of reporting for the
incident.

4.3 Verification

The data quality verification conducted by verifiers serves as
an incident reputation bootstrappingmechanism.Wepropose
a 5-point rating scale for incident quality from 1 (very low)
to 5 (great). The verification needs to be as objective and
meaningful as possible to provide guidance for buyers, since
the actual data are encrypted. The following items serve as
verification guidelines:

Fig. 2 Incident sharing process on the DEALER platform

123

II. RESEARCH PAPERS 91

Dissertation Benedikt Putz, 2022

DEALER: decentralized incentives for threat intelligence reporting and exchange

– consistency with metadata of the seller’s previous inci-
dents

– similarity check for incident metadata and verified inci-
dents

– assessment of various threat intelligence quality indica-
tors [24]

After receiving the incident data, each verifier indepen-
dently performs a verification of the contained information.
A basic consistency check using metadata of the seller’s pre-
vious incidents verifies that the incident originates from the
same industry. To avoid duplicates and resold incidents (Sect.
7), verifiers compute a similarity score to other previously
downloaded incidents (i.e. using the simhash algorithm [25]).
For apparent duplicates, verifiers then submit a low score
without additional quality assessment.

Regarding threat intelligence quality indicators, the plat-
form provides a structured assessment process. This pro-
cedure is intended to help verifiers make objective and
comparable assessments of security incidents by iteratively
processing predefined questions.

To achieve this, the implemented questions are based
on objective CTI data quality indicators developed for
STIX2 [24]. The quality criteria are divided into three major
domains. These include information about the contained
data, object representations within the data and the com-
pleteness of the available information. In particular, the data
model domain reflects information about the representa-
tional consistency of the data representations and the concise
representation of the stored information. The object metrics
area considers the objectivity of the data collected as well
as metrics about the relevancy of the stored data regarding
the situation described. The third domain addresses the com-

pleteness of the available information in more detail. This
includes the examination whether an appropriate amount of
data is used to convey the facts presented. In addition to this,
the syntactic accuracy of the data transported as well as the
schema completeness of the data is checked.

4.4 Purchase

The incident purchase in Fig. 3 process starts offwith a poten-
tial buyer browsing the repository of previously uploaded
incidents. For this purpose the platform front end offers
sophisticated search and filter functionality. Metadata and
ratings are provided for each individual incident by verifiers
and past purchases. Once an incident of interest has been
identified for purchase, the buyer retrieves the encrypted inci-
dent to verify its availability. If the incident is available, the
buyer places an order for the incident and pays tokens cor-
responding to the sale price ps to the platform escrow. After
the order has been placed successfully, the key for decrypting
the data record is released in the next step. In order to speed
up this procedure and not to have to wait for the presence
of the seller this can be done either by the seller or by the
verifiers. This is possible because all verifiers involved also
possess a valid key k1, k2 or k3, as shown in Sect. 4.2. For
successful purchases, the key is automatically issued in the
background where the decryption key is encrypted with the
public key of the buyer kb and uploaded. In case of success-
ful decryption, the buyer notifies the platform by sending a
confirmation along with an incident rating.

If the decryption fails, the buyer notifies the platformabout
the failure,which initiates the dispute resolution process.Any
verifier may then provide an independent copy of the decryp-
tion key to the buyer. In the unlikely event that the buyer is

Purchase
intention Send price to

platform escrow

Register purchase
offer

Register purchase
offer

Upload
decryption key

Upload
decryption key

Retrieve
encrypted file

Attempt to decrypt
file

Attempt to decrypt
file

Store personalized
decryption key

Store personalized
decryption key

Report decryption
failure

failure

success
Confirm successful
decryption and rate

Send escrowed
payment to seller

Initiate dispute
resolution

Upload
decryption key

Store verifier's
decryption keys

Attempt decryption
with verifier keys

Pay sellers/verifier

Confirm successful
decryption and rate

Wait for payout

buyer confirmation

Request payout
after T4

no buyer reaction

Upload
decryption key

Upload
decryption key

Fig. 3 Purchasing process on the DEALER platform

123

II. RESEARCH PAPERS 92

Dissertation Benedikt Putz, 2022

F. Menges et al.

still unable to decrypt the file, keys must be uploaded by
additional verifiers to resolve the dispute. Once the buyer is
able to decrypt the file, the buyer submits a rating for the inci-
dent and closes the dispute. For providing decryption keys,
contributing verifiers receive an equal share of the dispute
fee pd as an incentive. The dispute fee is deducted from the
sale price and should be proportionately low for two reasons.
First, by monitoring the blockchain for disputes verifiers can
upload key copies in an automated fashion, requiring little
effort and thus little incentive. Second, sellers should not lose
a large amount of the sale price in case of unwarranted dis-
putes caused by dishonest buyers. However, dishonest sellers
should still be punished to encourage honest incident sale.
We thus suggest an initial value of pd ∼ 0.10ps , subject to
further practical evaluation.

A time lock T4 is in place to allow parties to redeem their
tokens if the counterparty fails to respond. If the buyer does
not report decryption success or dispute, the seller may col-
lect the sale price after T4 has expired. If the seller never
accepts the offer, the buyer may redeem the locked tokens
after T4.

4.5 Fairness

Fairness of incident purchase must be considered from two
perspectives:

– Seller fairness: An honest seller is guaranteed to receive
the advertised sale price for providing a correct decryp-
tion key.

– Buyer fairness: An honest buyer is guaranteed to receive
the plaintext of the purchased incident, or is refunded the
deposited purchase price.

Weguarantee Fairness based on the following assumption:
There is always at least one honest verifier that provides a
valid decryption key. After verification, there are at least four
copies of the decryption key (the seller and three verifiers)
available on the platform. It is reasonable to assume that there
is at least one honest participant among these four, which
provides a decryption key in case of an issue with the seller’s
key.

We now analyze the various ways how seller and buyer
may attempt to cheat, and how the protocol mitigates these
attempts.

Buyer fairness. The honest verifier assumption means
that the buyer will always receive a decryption key, and
that there is no scenario where the buyer will not be able to
decrypt the file. Conversely, the buyer will also not receive
the deposited price back. In case the seller attempts to cheat
by uploading a wrong decryption key for the buyer, the buyer
can initiate a dispute to receive a correct key from a verifier.
Verifiers receive a dispute fee pd as participation reward for

uploading correct keys during a dispute. The seller is thus
disincentivized to send wrong keys, since that increases the
likelihood of a dispute and results in a loss of pd tokens.

In case both seller and verifier keys are incorrect, the buyer
may be unable to decrypt the item at all. This will not occur in
practice based on the assumption that themajority of verifiers
is honest and provides correct keys. This assumption can be
made based on two properties of our platform:

1. random assignment of verifiers to incidents makes seller-
verifier pairings unlikely, and repeated collusive arrange-
ments are time-consuming

2. misbehavior is disincentivized through significant veri-
fier registration requirements (Sect. 4.1) coupled with the
possibility of exclusion

Wehave thus ensured that the seller is punished for upload-
ing wrong key material, while the buyer is able to decrypt the
purchased file. To increase the buyer’s confidence in receiv-
ing a correct key, the time of last platform activity of an
incident’s verifiers can be shown in the user interface.

Seller fairness. The buyer may attempt to cheat the seller
by not responding after the seller has provided the decryp-
tion key. For this reason, there is a deadline for the buyer to
respond, which starts from the time the seller has uploaded
the key and ends after time T4. If there is no response after
expiry, the seller may redeem the purchase price.

The buyer may also collude with the verifiers to falsely
vote for seller misbehavior. In this case the honest seller
would lose out on pd tokens deducted from the sale price.
This scenario is unlikely, since the buyer has no incentive
to collude with verifier. If buyer and verifier are in contact,
they could exchange data and tokens through another chan-
nel with a reduced price. In practice, this is unlikely to occur,
since there is a large overhead for buyers to contact verifiers
for every incident they are interested in.

If not colluding with a verifier, the buyer has no incentive
to blame the seller. He cannot receive any tokens back that
were paid for the sale, and he is guaranteed to receive a correct
decryption key if at least one verifier is active.

These considerations guarantee Seller Fairness, with the
restriction that the seller may lose out on a small portion of
the sale price pd in case of a dispute. Disputes cannot be
prevented by the seller, but buyers have no incentive to start
disputes, so we expect them to be negligible in practice.

5 Application prototype

To implement the sharing concept, we choose a combination
of blockchain technology and distributed hash tables. This
avoids having to trust a single third-party service provider
to provide storage and confidentiality. A data storage dis-

123

II. RESEARCH PAPERS 93

Dissertation Benedikt Putz, 2022

DEALER: decentralized incentives for threat intelligence reporting and exchange

tributed in this way can be maintained collaboratively and
only by participants interested in sharing data. Blockchain
networks also allow utilizing virtual currencies that provide
possibilities to realize built-in sharing incentives for partici-
pants. In the following we first discuss the technologies used
for our prototype (5.1). Subsequently, we develop the con-
ceptual architecture (5.2) and briefly present our prototypical
implementation of the sharing platform (5.3).

5.1 Technology selection

In this section we will first discuss the underlying technolo-
gies for our sharing platform. This includes the permission
model, the approach for storing incident data as well as the
chosen blockchain platform.

Blockchain platform.Thefirst considerationwhendecid-
ing on a blockchain platform is the choice between a per-
missioned network and a permissionless public blockchain.
Permissioned networks consist of a fixed set of partici-
pants that each operate a node of the private network. We
experimentedwith the permissioned blockchainHyperledger
Fabric, but found many obstacles during our research that
made it unsuitable for the DEALER platform. These include
missing native token support, no means to exchange tokens
for fiat currency, and the increased barrier to entry caused by
the need to deploy and operate a private Hyperledger Fabric
node. The latter results in high initial costs and maintenance
costs for updates and monitoring, while availability is less
certain due to the limited number of blockchain nodes. Per-
missionless blockchains are operated by independent miners
that are incentivized through mining rewards distributed
by the consensus protocol (i.e. Proof of Work or Proof of
Stake). The blockchain infrastructure is thus already avail-
able, but transaction fees must be paid to the maintainers of
the platform. Public blockchains also provide a high number
of distributed nodes that guarantee high availability, while
token distribution can be handled transparently using existing
exchanges. Since high availability and incentives for par-
ticipants are essential aspects of our concept, we choose a
permissionless blockchain approach for our concept.

Commonly, researchers use Ethereum for permissionless
blockchain application prototypes due to its good tool sup-
port and large developer community [26]. Unfortunately,
the intermittently high transaction costs6 represent a bar-
rier to entry and reduce the ability to provide incentives for
participants. The low maximum transaction throughput of
around 15 transactions/second [27] amplifies this issue, as
transaction fees rise when the network is congested. This
problem is exacerbated when transaction demand increases
to extreme levels [28]. Therefore, after evaluating both per-

6 https://bitinfocharts.com/comparison/ethereum-transactionfees.
html.

missionless and permissioned blockchains, we settle on the
EOS blockchain7 for our implementation. We utilize EOS as
opposed to other permissionless blockchain platforms like
Ethereum for several reasons. First and foremost, EOS does
not charge users transaction costs. Transaction allowances
are determined based on staked EOS tokens, thus lowering
the long-term cost of using the platform. In addition, EOS
provides more scalability regarding transaction throughput
(up to 8,000 transactions/second [29]). The EOS network
itself is maintained by hundreds of nodes around the world
using delegated Proof of Stake (dPoS) consensus. 21 active
block producers are selected from a list of candidates8 based
on thevotes ofEOS tokenholders. Theblockproducers them-
selves are encouraged to participate in the network through
block rewards (EOS token), which they receive for creating
new blocks. Other nodes serve as standby nodes and store a
copy of the blockchain, ready to assist if an active produc-
ers goes offline or no longer has enough votes. Since the 21
active producers run a deterministic byzantine fault-tolerant
protocol among each other, at least 15 colluding producers
are required to take over the blockchain.

Data storage. Due to high costs associated with smart
contract data storage, larger data items are commonly stored
off-chain in blockchain applications [30]. Oneway of trading
data using blockchain is settling the trade on-chain and trad-
ing the actual data off-chain [18]. This avoids the need for
another storage platform besides the blockchain. However, it
also requires the seller to re-upload data to every buyer,which
means that both seller and buyer need to be online at the same
time. A decentralized off-chain storage platform avoids this
issue. To ensure an integrity link between the blockchain
network and the off-chain store, the database should be
content-addressable. Since only encrypted information is
stored off-chain, access control is not required. Distributed
Hash Tables (DHTs) provide these properties: they offer
public, distributed and content-addressable key-value data
storage. We opted for IPFS9 as the DHT implementation in
the prototype. IPFS is widely used in research as an off-chain
storage solution, and it provides the features needed for shar-
ing CTI data and encryption keys.

In the DEALER prototype, each participant operates a
IPFS node. IPFS nodes are simple to set up; after installation
only a single command is required to start the daemon. We
use these IPFS nodes to obtain fixed address for each peer for
sharing dynamic content, referred to as its IPNS address. The
node’s IPNS address is based on the hash of the peer’s public
key and can only be updated with a signed update from that
peer. We exploit this functionality to statically address each
user’s shared incidents and decryption keys. We leverage the

7 https://eos.io.
8 https://bloks.io.
9 https://ipfs.io.

123

II. RESEARCH PAPERS 94

Dissertation Benedikt Putz, 2022

F. Menges et al.

IPNS peer identity: QmYZ6jN… (34 byte SHA256 multihash of RSA-2048 public key)

items

keys

0ae97b… (32 byte SHA256 hash of item)
1d78d8…

0ae97b… (32 byte SHA256 hash of item)
1d78d8…

Fig. 4 IPFS off-chain storage folder hierarchy (for each user)

Off-chain Storage (IPFS)On-chain Storage (EOS)

User ItemMetadata

Assignment

Order

1 n
reports

1 n
reports

n

1

includes
n

1

includes

2

nis involved

2

nis involved

1

n

is assigned

1

n

is assigned

1

n

is assigned

1

n

is assigned

ItemContent
1

1 references

1
1 references

Complaint

1

n
relates to

1

n
relates to

ItemKey

defines

1

n

Warning

1

n

issues

1

n

issues

Fig. 5 Simplified entity relationship model of data stored on the
DEALER platform

IPFS Mutable File System to create a local folder hierarchy
corresponding to the fileswe intend to share (Fig. 4). The root
hash of this folder hierarchy changes every time an item or
key is added to a folder. Each time that happens, the updated
hash is published to the peer’s IPNS address. Other peers
can resolve this address to retrieve the latest incidents and
keys shared by other users. By pinning content hashes, veri-
fiers permanently replicate the encrypted incident shared by
the seller to ensure its availability. Verifiers are incentivized
to replicate seller content, since they potentially profit from
each sale in case of a dispute (Sect. 4.5).

5.2 Architecture and datamodel

As shown in Fig. 1, the prototype architecture consists
of a smart contract on the EOS blockchain platform and
IPFS-based decentralized storage. The blockchain platform
provides executable smart contracts that implement the Plat-
form role in the processes described in Sect. 4. IPFS provides
storage capabilities for reported incident data and encryption
keys. It also provides pseudonymous identity: Participants
sign up with blockchain accounts, which are authorized
through public-private key pairs and represented by unique
addresses. Figure 5 gives an overview of the platform’s data
model.

The model shows a distinction between on-chain and
off-chain storage. The on-chain storage manages transac-
tion information and metadata including assignments of

users (User), reports (ItemMetadata), votes Assignment and
purchases (Order) of incident data. The off-chain storage
holds the actual incident data (ItemContent) as well as the
encrypted decryption keys for the information (ItemKey). The
ItemMetadata table contains the reported incidents’ meta-
data, including a short description, the originating industry,
the price and a reference to the reporting user. ItemMetadata
also contains the CTI item’s hash, which links the metadata
to the full incident data ItemContent stored off-chain. Using
the hash reference, data can be retrieved from IPFS through
a DHT lookup and verification of the retrieved file against
its hash reference. The assignment of randomly selected ver-
ifiers is done using the Assignment table by establishing a
link between the verifying user and the respective item. This
table also stores the results of item verification, while cumu-
lative results of verification and rating processes are stored in
the ItemMetadata table. The assignment table is additionally
linked to theComplaint table, which stores complaints about
inaccurate verifications. The Order table finally contains the
transactions associated to an order, where a transaction estab-
lishes the relationship between the buyer and the seller, as
well as the item concerned. Besides storing report items, the
application also allows the issuance of warnings. These can
be inserted by authorities as a specific type of user and stored
in the table Warning on chain.

5.3 Application prototype

The prototypical implementation of the platform consists
of three major components: the smart contract on the EOS
blockchain based on EOS C++ code, the IPFS data storage
and a DApp (Decentralized Application) front end based on
Node.JS. Since Smart Contract and data storagewere already
described previously, this section focuses on the implemen-
tation of the DApp.

Figure 6 shows the implemented components (node.JS
server andEOS smart contract) and their interactionswith the
distributed system. EachDEALERparticipant runs a node.JS
server which manages the encryption keys and blockchain
wallet for the organization. It also serves the web interface to
internal users. On user requests, the node.JS server interacts
with the IPFS network and the EOS test network. CTI data
and file keys are stored at the local IPFS node and managed
through its IFPS identity. Requests for new CTI data are
resolved through the IPFS network. Blockchain transactions
are sent to the smart contract on the EOS test network, and
data are read back through the EOS node’s HTTP API.

Figure 7 shows the user interface of the DApp. The appli-
cation’s user interface offers four fundamental areas tailored
to each participant type. The area BUY allows potential buy-
ers to get an overview of offers on the platform and to buy and
download available incident information. The overview con-
tains a short description of the incident information as well

123

II. RESEARCH PAPERS 95

Dissertation Benedikt Putz, 2022

DEALER: decentralized incentives for threat intelligence reporting and exchange

Fig. 6 Prototypical implementation of the DEALER platform

Fig. 7 User interface of the DEALER platform

as its current verification status and price. Buyers can also
manage past purchases and re-download previously bought
information at any time. The area SELL, allows sellers to
report an incident to the blockchain. Such a report can con-
tain a title, a short description, the corresponding industry
sector, the actual incident data and a sale price. Incidents
are encrypted using AES-256-CBC before being uploaded
to IPFS. After the DHT upload, the hash reference and meta-
data are submitted to the smart contract. If the incident was
intended for sale, RSA-encrypted copies of theAES symmet-

ric keys are shared with the verifiers using their public keys
stored on the blockchain. Besides reporting, sellers can man-
age past reports and view the verification status and number
of their successful sales.

The VERIFY section allows the user to act as a verifier
for an incident. The verifier is presented with a list of all
incidents assigned for verification. For each individual inci-
dent, the verifier is presentedwith awizard as shown in Fig. 8.
The wizard sequentially requests input for the quality criteria
defined in Sect. 4.3. The verification results are arithmeti-

123

II. RESEARCH PAPERS 96

Dissertation Benedikt Putz, 2022

F. Menges et al.

Fig. 8 DEALER verification wizard

cally averaged after submission and sent to the platform in
a blockchain transaction. Although the prototypical applica-
tion allows a weighting of the individual quality criteria, this
was not implemented within the demonstration prototype for
reasons of clarity.

Finally, the area WARNING allows authorities to issue
warnings on current threats to platform participants. Warn-
ings contain informational text and structured incident infor-
mation for particularly dangerous threats.

The source code for the prototype can be downloaded
at the project repository.10 A live version of the DApp is
available online,11 and the deployed EOS contract can be
inspected on the EOS Kylin testnet.12

5.4 Implementation challenges

EOS. EOS developer tools posed some challenges, as the
development environment EOS Studio crashed frequently
during our tests. Some features did not work as advertised
or did not work at all. Another sticking point is that debug-
ging is not possible within the environment and even console
outputs are only accessible in a cumbersome way. However,
many of these issues were improvedwith subsequent updates
during our research.

10 https://github.com/Dealer-Platform/.
11 https://dingfest.ur.de/dealer/.
12 https://kylin.bloks.io/account/eosdealeradm.

Furthermore, achieving scalability of the smart contract
is not trivial. EOS allows a maximum of 150ms CPU
time per transaction, so performance must be kept in mind
while developing the smart contract. For example, loops
over table entries must be avoided, since they will lead
to exceeded transaction CPU time as tables grow larger.
Instead, indexes should be added on the required columns
using the multi_index table feature. Additionally, page
load times increased with an increasing number of incidents.
This issue can be resolved by setting appropriate limits on
get_table_rows queries to the EOSnode and paginating
results.

IPFS. IPFS is based on a content-addressed DHT data
structure. This means that the address of data changes when
the data are mutated by an update. It should be kept in mind
that the DEALER platform needs to provide a single address
for buyers and verifiers to retrieve decryption keys from a
seller. With IPNS, IPFS provides a way to get a single fixed
address, whose link target (i.e. a folder with keys) can be
updated dynamically.Unfortunately, this address is tied to the
IPFS node, which means that each user has to operate their
own IPFS node. While this may be seen as a limitation of our
DEALER implementation, it also comes with the advantage
of user data sovereignty. Even if other IPFS nodes go offline,
datawill remain stored locally once it has been retrieved from
the IPFS DHT.

6 Evaluation

After presenting the prototype design, we now evaluate
whether the chosen blockchain platform fits the needs of
threat intelligence reporting. Since EOS supports > 1000
transactions per second [29], we do not expect throughput
to become a bottleneck. However, there are costs associated
with transacting on a public blockchain, which we evaluate
in Sect. 6.1. Additionally, we consider computation times,
network latency and storage requirements in Sect. 6.2.

6.1 Transaction costs

Smart contracts on EOS require CPU, NET and RAM to exe-
cute. CPU and NET represent the processing and network
utilization of transactions and are acquired by staking EOS
for a fixed time. RAM is needed to store data in the smart
contract state and is purchased at a fixed price. To calculate
the required stake per user to run the contract sustainably,
we evaluate the resources consumed by our smart contract
in Table 2. Transactions were run multiple times with differ-
ing parameters on the EOS Kylin testnet. For CPU/NET, the
values represent locked currency, i.e. to share one incident
per day, EOS worth 0.20e must be staked permanently. For
RAM, the costs cumulate with each executed action and are

123

II. RESEARCH PAPERS 97

Dissertation Benedikt Putz, 2022

DEALER: decentralized incentives for threat intelligence reporting and exchange

Table 2 Resources consumed
by the EOS smart contract.

Action CPU (stake) NET (stake) RAM (purchase)

Sharing 1.76 ms, 0.201e 0.256 kb, 0.0005e 0.755 kb, 0.088e

Verification 0.58 ms, 0.067e 0.120 kb, 0.0002e 0.000 kb, 0.000e

Purchase 1.07 ms, 0.065e 0.112 kb, 0.0002e 0.153 kb, 0.018e

Warning 0.74 ms, 0.084e 1.71 kb, 0.0034e 1.896 kb, 0.221e

EOS price: 2.00e, RAM price: 0.058 EOS/kb, CPU cost: 0.05 EOS/ms, NET cost: 0.001 EOS/kb

thus much higher. For this reason we now focus on RAM
costs.

In the following we estimate the costs of the platform
based on a real-world example. Therefore,we assume that the
platform will be used for the reporting obligations of critical
infrastructures in Germany. According to the Federal Office
for InformationSecurity (BSI), it is estimated that around250
reports are carried out annually in 9 industry sectors [31]. The
EOS RAM needed to store 250 incidents costs 22e per year
at the current conversion rate. The verifications do not cost
any RAM since they only modify storage entries and don’t
add data.

We assume that participating companies are particularly
interested in information from their sector (on average 28
reports per sector). According to the BSI, 1648 institutions
in Germany are currently affected by the reporting obligation
[31]. We thus estimate about 1648 * 28 = 46,144 purchases
to be made in ongoing operations (823e). Additionally, we
assume that authorities may issue warnings about once a
month (3e). In summary, we expect a total RAM cost of
848e to store all platform interactions occurring in one year.
This is quite a feasible amount, considering that it covers
more than a thousand institutions.

6.2 Performance

We evaluate the performance of our prototype with regard to
user request latency (network latency and computation time)
as well as storage requirements.

Request latency. We evaluate the performance of the
server component locally on a machine with an i7-8550U
CPU and 16GB RAM, running node.JS v10.17. The ping
latency from the local machine to the go-ipfs v0.6.0 node
running on a Raspberry Pi 3B is μ = 0.9ms, σ = 1.3ms,
while the ping latency to the EOS Kylin network node is
μ = 12.0ms, σ = 0.9ms (100 pings). Request latency
consists of transmission latency and server-side computation
time. We measure the full request latency by timing curl
requests with a bash script. Computation time is measured by
tracking execution time of routes within the node.JS express
instance for these requests. Therefore, transmission latency
and client rendering speed are not included inmeasurements.
However, these delays are negligible after the initial down-
load of JS, CSS and image assets.

Table 3 Request Latency (RL) and Computation Time (CT) in ms

Action RL μ RL σ CT μ CT σ

W - Sharing 2185 327 2112 328
W - Verification 2453 137 2379 136
W - Purchase 2432 204 2355 202
W - Warning 1813 287 1738 286
R - Marketplace 1106 138 1041 138
R - Purchases 924 118 856 117
R - Report 65 6 1 1
R - My Incidents 1534 175 1464 168
R - Verification 1059 128 992 128
R - Dispute 930 132 863 132
R - Push Warning 404 34 338 34
R - Current Warnings 66 2 1 1
R - User Profiles 1050 95 983 95

As for the testing setup, there are 211 existing incidents in
the smart contract, 108 of which are assigned to our test user
for verification. We test each operation 100 times, includ-
ing item upload, verification and purchase operations. We
executed the tests in the order shown in Table 3.

The results show reasonable latencies of 1–2s. Generally,
the loading time for POST requests is higher, since the server
first parses the request and then also prepares thewebpage for
the returned page. For example, to obtain the effective com-
putation time ofW - Sharing, the latency of R - My Incidents
must be subtracted. In practice, the GET request latency can
be removed by offering a POST-only endpoint for automated
reporting.

In summary, the latencies should be appropriate for normal
usage. Additional front-end optimizations such as pagination
can further optimize page load times once a large number of
incidents is stored on the platform.

Storage requirements. Storage needs of the EOS plat-
form are covered in Sect. 6.1, so we now focus on off-chain
storage of incident data and file keys on IPFS. We uploaded
a small fixed-size (38 bytes) incident m times. During our
initial experiments we found that storage consumption grew
exponentially, but was significantly reduced after running
IPFS garbage collection. Garbage collection deletes local
copies for old versions of data no longer in use, for example
for updated file key entries. Therefore, we run the garbage
collector before taking each measurement. This ensures that
storage consumption is measured correctly and does not

123

II. RESEARCH PAPERS 98

Dissertation Benedikt Putz, 2022

F. Menges et al.

Fig. 9 IPFS storage consumption with increasing number of uploaded
incidents

include duplicate entries from prior versions of the user’s
shared IPNS folder.

Figure 9 shows storage consumption of a single IPFS node
with an increasing number of uploaded incidents. Storage
consumption increases linearly with each uploaded inci-
dent. The total overhead is about 22 KB for each additional
uploaded incident. 8 KB are added through preprocessing,
which consists of the AES encryption of the incident, stor-
ing the ciphertext as base64 encoded string, and uploading
file keys for the verifiers. The remaining 14 KB are due to
IPFS internal data organization and tracking. We also tested
a larger 1,032 KB incident and observed 380 KB total over-
head. 340 KB are due to preprocessing, and another 40 KB
are added by IPFS. The amount of overhead increases lin-
early with larger files, since the overhead originates largely
from encryption and encoding (i.e. 2 MB incident ∼ 2.76
MB ciphertext).

6.3 Expert interviews

In addition to the evaluation of the transaction costs and
the performance of the platform, we conducted several
expert interviews to demonstrate the overall validity of our
approach. The goal was to show that the intended imple-
mentation of the exchange platform offers real benefits for
the industry. In this context, two specific questions were
addressed.On the one hand, it was investigated towhat extent
the planned incentive system offers actual stimuli for compa-
nies to use it. On the other hand, it was investigated to what
extent the integrity assurancemeasures can offer added value
for companies in the reporting process. In addition to ques-
tions regarding the efficiency of the built-in incentive system,
a further goal of the interviews was to get an impression of
the usability of the platform as a whole in order to explore
possible optimization opportunities. Accordingly, the inter-
views also covered the exchange process, the usability of the
user interface and perceived security of the platform.

The interviewees are four security experts from differ-
ent industry sectors. We conducted interviews with a Project

Manager of a SME operating in the area of secure cloud
services, with a security expert of a large corporate data
center, with an academic researcher in the Field of Cyber
Threat Intelligence as well as with a Security Consultant of
a SME operating in the field of security consulting. We have
designed the selection in such a way that all persons inter-
viewed have extensive knowledge in the field of IT security
and can therefore adequately assess the security benefits of
the platform for their companies.

The expert interviews were designed according to the
semi-structured approach of Lazar et al. [32] and are sub-
divided into the following 5 phases.

Phase 1—Introduction. At the beginning of the inter-
views, each interviewee was first asked about his or her
knowledge as well as the extent of experience in the field of
IT security and their knowledge of currently existing report-
ing obligations. The participants were also asked about their
current position in the company and their budget responsi-
bility in the area of IT security. The participants were also
encouraged to indicate problems with the interview process
at an early stage.

Phase 2—Incentive structure. The objective of the first
thematic interview phase was to examine the benefits of
financial incentives for the exchange process. To this end, the
DEALER platformwas first presented to the participants and
the underlying idea was explained in detail. Subsequently,
the participants were asked whether such an incentive sys-
tem would be suitable for may be of interest to companies
in principle. In this context, the participants were also asked
what basic conditions would have to be fulfilled for their
active participation. Finally, we asked if the participants can
think of ways to abuse the system, or if they had concerns
that they could be cheated by other participants.

Phase 3—Integrity features. The goal of the interview’s
second thematic phase was to assess the usefulness of the
platform’s integrity assurance and non-repudiation mecha-
nisms. In order to achieve this, the participants were asked
whether they had already been confronted with reporting
obligations and whether their company is subject to report-
ing requirements. Subsequently, the participants were asked
whether they saw a concrete benefit in the provision of
integrity assurance and non-repudiation mechanisms and
how this would be useful for them.

Phase 4—Platform usability. After evaluating the basic
benefits of the concept in the previous interview phases, this
phase deals with the actual implementation of the platform.
The goal was to evaluate the usability and the benefit of the
user interface as well as the exchange and reporting process.
In order to obtain meaningful results, the participants were
given access to the platform and only a brief explanation of
the basic features of the platform was given. The participants
were then given two tasks. First, they had to post a fictional
security incident for sale on the platform and at the same time

123

II. RESEARCH PAPERS 99

Dissertation Benedikt Putz, 2022

DEALER: decentralized incentives for threat intelligence reporting and exchange

report it to an authority. In the second step, the participants
were then to get an overview of the market situation and buy
information about a security incident. In this phase we pay
special attention to how well the participants understand the
platform and how they handle it. In addition to mere obser-
vation, the participants are also asked about their experience
using the platform.

Phase 5—Wrap-up. In this last phase of the interview,
a summarizing discussion is conducted. Finally, the partic-
ipants are asked again about their overall impression of the
platform and whether they could imagine using such a con-
cept in an operational context. In addition, the participants
are asked about further points of criticism and possible sug-
gestions for improvement.

6.4 Interview results

The interviews lasted between 30 and 80min. Longer inter-
views were mainly due to extensive discussions with the
participants about the platform and possible application sce-
narios of the approach.At the same time also the large interest
of the participants in the presented beginning showed up.
All in all, the interviews led to a whole range of additional
insights regarding the incentive structure, integrity features
and platform usability.

Incentive structure. In the first part of the interview,
the participants were asked whether the proposed incentives
were interesting, whether participation in the platform was
conceivable for them and whether they had any concerns
about using it. Generally, the paid exchange of incident infor-
mation was met with great interest. However, it also became
clear that the platform would essentially be used for the
exchange of non-critical incidents. In this section of the inter-
view, most of the interviewees placed a very high value on
automation and low personnel costs. Specifically, platform
participation was considered attractive if the platform would
save time and personnel expenses. From the interviewees’
point of view, this can be achieved especially by provid-
ing high-quality reports, as this can save a lot of time in
the evaluation and use of information. It also became clear
that for companies, the verifiers and quality assurance play
the central role on the platform. To make quality assurance
transparent, interviewees suggested introducing certification
for the verifiers, which could, for example, be performed
by authorities. An essential participation prerequisite was
the availability of an API for automated incident processing,
in order to increase efficiency and avoid expensive manual
labor. Another central factor for the use of the platform is
the legal security of its use. On the one hand, it was pointed
out that incident reporting can only be carried out if legal
certainty is established. Another criterion was the possible
use of SLAs and general terms and conditions.

Integrity features. In the second part of the interview, the
participants were asked about the mechanisms of integrity
assurance and non-repudiation on the platform. Overall, the
interviewees see a significant value benefit from these func-
tionalities, which is particularly evident in the context of
reporting obligations or insurance-related claims. They see
clear potential for automation and reduction of bureaucracy.
Especially the possibility to report on time, based on facts,
irrevocably verifiable and tamper-proof were considered
important features by the interviewees. It was emphasized
that this feature is particularly interesting in cases where very
high penalties are imposed for failure to report. However, the
interviewees also pointed out various pitfalls and problems
in implementing these features. It was shown that integrity
assurance could also be carried out by public authorities and
that for a real world implementation, various funded projects
involving the authorities concerned would certainly be nec-
essary.

Platform usability. Finally, the participants were asked
about usability aspects of the platform. Overall, it can be
stated that all participants understood the platform in princi-
ple and were able to use it completely after a short time. The
interviews also consistently provided positive feedback on
the proof of concept presented. The verifier user interfacewas
particularly positively highlighted. At the same time, many
suggestions for improvementwere alsomade, especiallywith
regard to productive use of the application. For example, it
was suggested to integrate various additional information on
legal implications of actions on the platform as well as the
possibility to provide data sets with SLAs or terms and con-
ditions. Furthermore, it was pointed out that in production
use, extensive tools for the presentation of data set metadata
are necessary in order to make clear and efficient purchase
decisions. In this context, it was also suggested to introduce a
subscription function for relevant sellers and to provide API
access to increase the efficiency of the platform.

7 Discussion

In this section we discuss the results of this work. For this
purpose, the previously defined requirements are reviewed
in Sect. 7.1 and compared to the actual results achieved in
the prototype. Subsequently, we discuss security concerns
for the platform in Sect. 7.3.

7.1 Requirements

Reporting requirements. At the beginning of this work,
Sect. 3 defined various requirements for a platform that
simultaneously complies with legal requirements and offers
incentives for the exchange of CTI information. Specifically,
we defined integrity and availability of data as well as the

123

II. RESEARCH PAPERS 100

Dissertation Benedikt Putz, 2022

F. Menges et al.

non-repudiation of reports as target values for compliance
with legal requirements. The decentralized blockchain tech-
nology used provides the necessary basic conditions to build
a platform that is compliant with these requirements. One of
the most important features of a blockchain is the assurance
of data integrity using the decentralized ledger technology.
Our solution assures integrity by including a hash of the data
on-chain. Due to the EOS blockchain’s immutability, this
hash can be traced back to the original upload transaction
and authenticated with the sender’s signature.

Availability. The presented concept has, as previously
stated, increased demands on the availability of the platform.
In general, blockchains also offer a very high availability of
the network nodes as pointed out by Weber et al. [2]. This
results from the fact that the blockchain nodes are geograph-
ically distributed and run in a highly redundant manner. At
the same time, one of the main restrictions of blockchain sys-
tems is that write-access is often limited, which may result
in availability drawbacks. This is mainly the result of the
low number of possible transactions per second of the con-
sidered blockchains Ethereum and Bitcoin. Since the EOS
blockchain exceeds the possible transactions per second of
these networks by orders of magnitude [29], restrictions of
write availability are unlikely. It should also be emphasized
that the EOS network is distributed over the entire globe,13

which makes the availability of the network relatively inde-
pendent of local events. This problem can be tackled in
various ways with the EOS chain. On the one hand, it is
possible to increase the available resources for the current
project by increasing the share contributed. If you have even
higher availability requirements, the block chain can also be
set up with your own block producers. An example for such a
split with own block producers is the Ultra/UOS14 project. In
this example, an ownEOSblockchainwas created tomeet the
high demands on throughput and availability within online
games.

In the presented prototype, we store metadata of each
reported security incident on the EOS blockchain in a pub-
licly accessible manner. In order to establish a reference
for non-repudiation, a timestamp is included in the incident
metadata proving the report’s existence. A reference to the
reporting EOS wallet is included to link the report to the
reporter’s EOS wallet. The full incident data are stored on
the IPFS DHT and replicated by the incident’s seller and
verifiers, ensuring availability of off-chain data through suf-
ficient redundancy.

In addition to this, the prototype also provides the neces-
sary tools to protect personal data within reports according to
legislations such as theGDPR.To achieve this, the exchanged
information is processed in an encrypted form on the plat-

13 https://glass.cypherglass.com/map/main/top50.
14 https://www.ultra.io.

form. Each data flow is addressed to an explicit recipient and
protected with the corresponding public key. This ensures
that only the receiving authority can view the reported infor-
mation. In the case of an exchange on the marketplace, the
data are also encrypted and assigned to a buyer and verifier
as specific recipients. However, since the data are transferred
to different recipients, the mere assignment to the recipi-
ent is not sufficient for information and privacy protection.
According to this, the offering company must decide here
which data may be passed on to recipients. Both the interests
of the company and the legal situation must be taken into
account.

Incentives. As shown above, incentives represent are a
necessary condition for an active exchange between the par-
ties involved. In order to be able to implement such incentive
procedures, we created marketplace within the platform for
the mutual exchange of CTI information. Participants can
offer their incident information at the marketplace in return
for payment. This gives them the ability to compensate costs
incurred in the detection and recording process and thus
provides a financial incentive to participate in the platform.
Another focus of the platform is to ensure sustainability of
the implemented incentive structure. Verifiers ensure the data
quality of the tradedCTI information aswell as functions that
guarantee transactional fairness for both buyer and seller.
Verifiers and sellers have an incentive to host incident data
on IPFS since they profit from incident sales.

7.2 Comparison to other platforms

Overall, it can be concluded that the platform for the
exchange of CTI information presented in this work offers
several specific advantages over existing CTI sharing plat-
forms. Traditional systems usually rely on trust in a Trusted
Third Party (TTP) to implement the data protection goals. In
contrast to this, the decentralized DEALER system guaran-
tees these protection goalswithout the need for a specific trust
relationship. The availability of the platform is distributed
among different independent actors and no central actor is
required for integrity proofs. Moreover, the implemented
marketplace for the exchange of information is likewise
not dependent on the trustworthiness of actors. Within the
implemented smart contract, the sales process as well as the
selection of verifiers is predefined and transparent for all par-
ticipants.

7.3 Security

Free-riding verifiers. An important consideration is pre-
vention of free-riding verifiers. Every verifier periodically
receives free access to a randomly selected incident. As a
result, verifiers must be punished if they do not perform ver-
ification as requested. If a verifier repeatedly fails to verify

123

II. RESEARCH PAPERS 101

Dissertation Benedikt Putz, 2022

DEALER: decentralized incentives for threat intelligence reporting and exchange

Fig. 10 A pair of verifiers is assigned to the same incident every m
incidents, given n verifiers (y-axis is log scale)

assigned incidents in active status, other verifiers may start
a multisignature vote for verifier removal. This encourages
verifiers to only remain active when they intend to verify, to
avoid losing their verifier status.

Content reselling. Reselling information is a common
concern for data marketplaces [18]. As with all digital mar-
ketplaces, content reselling outside the platform cannot be
fully prevented. Both buyers and verifiers may attempt to re-
sell incidents they obtained through DEALER. In practice,
this is discouraged by the difficulty of selling digital goods
without trusted intermediaries [22]. The smart contract of
the DEALER platform replaces intermediaries and provides
certainty for buyers that they will receive the incident. There-
fore, it is more difficult for illegal re-sellers to find buyers
outside the platform without the market-making aspects of
DEALER. To prevent reselling content on DEALER itself,
the verifier system is in place to prevent it. The hash of the
shared incident data is stored in the smart contract, allowing
the identity of the original author to be clearly established
through the timestamp and the signing public key of the trans-
action. Uploading duplicate incidents with the same hash is
prevented by the smart contract, but resellers can slightly
modify the incident to change its hash. Still, in the long run
the similarity checks introduced in Sect. 4.3 reveal dupli-
cates. If a duplicate is recognized, verifiers may submit a
low rating. Similarly, buyers are likely to notice that they
received a duplicate and rate the incident poorly, leading to a
decreasing rating. This discourages potential buyers and lead
to decreasing profits from reselling attempts.

Sybil attacks. Sybil attacks involve attackers being able to
create new identities cheaply to manipulate the application.
They can be mitigated by introducing nontrivial barriers to
entry. On the DEALER platform, this threat mainly applies
to sellers and verifiers. Sybil sellers could flood the platform
with incidents to overwhelm verifiers. Sybil verifiers could
dilute the quality assurance verifiers are supposed to provide.
Therefore, as established in Sect. 4.1, both sellers and ver-
ifiers need to deposit cryptocurrency to create an account.
Verifiers additionally need to prove their physical identity on
registration. These measures present a significant obstacle
for creating Sybil users.

Verifier collusion. The platform requires a minimum
number of verifiers to ensure their assignment is sufficiently
random to deter collusion. If assignment is not random, sell-
ers may collude with verifiers to ensure incident verification.
Alternatively, a pair of verifiers may collude during dispute
resolution. The binomial coefficient determines the proba-
bility of assigning two verifiers to the same incident (n is
the number of verifiers, and k = 2). As shown in Fig. 10,
with 15 verifiers the probability is < 1%, while with 50 ver-
ifiers it is < 0.1%. Hereby we determine 15 verifiers as a
safe minimum number of verifiers to safely operate the plat-
form. Since verifiers may be temporarily inactive, a higher
number is preferable in practice. With an expected amount
of 250 reports annually (Sect. 6), each pair of verifiers shares
only 2–3 incidents per year, which provides little incentive
for collusion.

Even if an attacker is able to guess the pseudorandom
number, the potential impact of such an attack is low. The
background for this is the corresponding attacker model. At
best, the attacker could assume the seller role and choose
which verifiers are assigned to an uploaded incident. If these
verifiers are controlled by the attacker, he may generate
false ratings. By making fake incidents seem attractive, this
could trick potential buyers into purchasing the fake incident.
However, this would quickly become apparent, since buyers
would rate such incidents low. If buyer ratings significantly
diverge from verifier ratings, such incidents can be marked
as potentially fraudulent in the DApp. Colluding sellers and
verifiers are also registered by name on the platform and can
be banned through majority consensus (Sect. 4.1).

Incident confidentiality. A compromise of the RSA or
AES encryption scheme might compromise the confiden-
tiality of the incidents stored on IPFS. Since IPFS data are
stored on publicly available nodes, confidentiality is an inher-
ent problem that can only be counteracted by encryption.
This is especially the case as it is not possible to prevent
an attacker from downloading the entire history for later
decryption. However, we consider this scenario to be less
problematic for various reasons. On the one hand, the pro-
cedures are state-of-the-art encryption technology and it can
be assumed that they will be considered secure for many
years to come, while the benefit of decrypted information
on security incidents will decrease significantly over time.
On the other hand, it can be assumed that the participants
of the platform do not trade highly confidential data via the
platform, since it is known that at least the validators must
be given insight into the data and a large part of the data are
available for sale on the platform anyway. Accordingly, the
confidentiality of the data essentially relates to the protec-
tion of participation incentives. A possible compromise of
the encryption schemes can additionally be counteracted by
re-encrypting the data with a secure procedure, at least par-
tially. If it is possible to decrypt incidents without purchase,

123

II. RESEARCH PAPERS 102

Dissertation Benedikt Putz, 2022

F. Menges et al.

participation for sellers and verifiers would be eliminated.
Accordingly, such a change to newer procedures would be
necessary at an early stage.

8 Conclusion

In this work we presented a fully decentralized model
for sharing CTI. It is designed with legal and privacy
requirements in mind and ensures sustainable sharing using
cryptocurrency-based incentives. We implemented the
DEALER platform based on the EOS blockchain and
IPFS DHT and demonstrated its practical feasibility. On
the platform, structured incident information is exchanged
pseudonymously. Randomly selected verifiers use a set of
objective CTI quality indicators to bootstrap incident rep-
utation and help buyers select fitting incidents. Buyers and
sellers are protected through dispute resolution mechanisms
and exchange items based on cryptocurrency incentives.

Beyond our model and prototypical implementation, an
integration with existing incident discovery, reporting and
visualization systems is essential to the platform’s practi-
cal viability. For example, the incident information currently
available in plaintext could be enrichedby avisualization sys-
tem such as the one presented by Böhm et al. [33]. Based on
such integrations, the platform can be deployed on the pub-
lic EOS blockchain and tested with a larger number of users.
In this scenario, price discovery mechanisms and their rela-
tionship to incident data quality can be analyzed. While our
infrastructure is developed with privacy in mind, future work
should ensure privacy and compliance with legal require-
ments (i.e. GDPR) in practice.

Acknowledgements We would like to thank our reviewers for their in-
depth feedback and comments, which contributed significantly towards
the final manuscript.

Funding Open Access funding enabled and organized by Projekt
DEAL. This research was supported by the Federal Ministry of Edu-
cation and Research, Germany, as part of the BMBF DINGfest Project
(Grant No. 16KIS0501K) (https://dingfest.ur.de).

Compliance with ethical standards

Conflict of interest All authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-

cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Kannengießer,N., Lins, S., Dehling, T., Sunyaev,A.:What does not
fit can be made to fit! trade-offs in distributed ledger technology
designs. In: Bui, T. (ed.) 52nd Hawaii International Conference
on System Sciences, HICSS 2019, Grand Wailea, Maui, Hawaii,
USA, January 8–11, 2019, pp. 1–10, ScholarSpace (2019). http://
hdl.handle.net/10125/60143

2. Weber, I., Gramoli, V., Ponomarev, A., Staples, M., Holz, R., Tran,
A.B., Rimba, P.: On availability for blockchain-based systems. In:
36th IEEE Symposium on Reliable Distributed Systems, SRDS
2017, Hong Kong, Hong Kong, September 26–29, 2017, pp. 64–
73 (2017). IEEEComputer Society. https://doi.org/10.1109/SRDS.
2017.15

3. Schwartz, A., Shah, S.C., MacKenzie, M.H., Thomas, S., Potash-
nik, T.S., Law, B.: Automatic threat sharing: how companies can
best ensure liability protection when sharing cyber threat informa-
tion with other companies or organizations. Univ. Mich. J. Law
Reform 50, 887 (2016)

4. Laube, S.,Böhme,R.:Mandatory security information sharingwith
authorities: implications on investments in internal controls. In:
Ray, I., Sander, T., Yung, M. (eds.) Proceedings of the 2nd ACM
Workshop on Information Sharing and Collaborative Security,
WISCS 2015, Denver, Colorado, USA, October 12, 2015, ACM,
pp. 31–42 (2015). https://doi.org/10.1145/2808128.2808132

5. Bauer, S., Fischer, D., Sauerwein, C., Latzel, S., Stelzer, D., Breu,
R.: Towards an evaluation framework for threat intelligence sharing
platforms. In: 53rd Hawaii International Conference on System
Sciences, HICSS 2020, Maui, Hawaii, USA, January 7–10, 2020,
pp. 1–10, ScholarSpace (2020). http://hdl.handle.net/10125/63978

6. IBM Corporation: X-Force Exchange. https://exchange.xforce.
ibmcloud.com/

7. Facebook Corporation: Facebook Threat Exchange (2019). https://
developers.facebook.com/programs/threatexchange/

8. Wagner, C., Dulaunoy, A., Iklody, A.: MISP—the design and
implementation of a collaborative threat intelligence sharing plat-
form. In: Proceedings of the 2016 ACM onWorkshop on Informa-
tion Sharing and Collaborative Security, pp. 49–56 (2016)

9. Luatics: OPENCTI. https://www.opencti.io/en/
10. Liu, C.Z., Zafar, H., Au, Y.A.: Rethinking FS-ISAC: an IT security

information sharing networkmodel for the financial services sector.
CAIS 34, 2 (2014)

11. Wagner, T.D., Mahbub, K., Palomar, E., Abdallah, A.E.: Cyber
threat intelligence sharing: survey and research directions. Com-
put. Secur. 87, 101589 (2019). https://doi.org/10.1016/j.cose.2019.
101589

12. Serrano, O., Dandurand, L., Brown, S.: On the design of a cyber
security data sharing system. In: Proceedings of the 2014 ACM
Workshop on Information Sharing 38; Collaborative Security.
ACM, New York, USA (2014), WISCS ’14, pp. 61–69

13. Dandurand, L.,Kaplan,A.,Kácha, P.,Kadobayashi,Y.,Kompanek,
A., Lima, T.: Standards and tools for exchange and processing of
actionable information. November (2014)

14. Brown, S., Gommers, J., Serrano, O.: From cyber security informa-
tion sharing to threatmanagement. In: Proceedings of the 2ndACM

123

II. RESEARCH PAPERS 103

Dissertation Benedikt Putz, 2022

DEALER: decentralized incentives for threat intelligence reporting and exchange

Workshop on Information Sharing and Collaborative Security, pp.
43–49 (2015)

15. Mohaisen, A., Al-Ibrahim, O., Kamhoua, C., Kwiat, K., Njilla, L.:
Rethinking information sharing for threat intelligence. In: HotWeb
2017—Proceedings of the 5thACM/IEEEWorkshoponHotTopics
in Web Systems and Technologies (2017)

16. Sauerwein, C., Sillaber, C., Mussmann, A., Breu, R.: Threat Intel-
ligence Sharing Platforms : An Exploratory Study of Software
Vendors and Research Perspectives, 13. Internationale Tagung
Wirtschaftsinformatik, WI 2017, St. Gallen (2017)

17. Sillaber, C., Sauerwein, C., Mussmann, A., Breu, R.: Data quality
challenges and future research directions in threat intelligence shar-
ing practice. In: Proceedings of the 2016 ACM on Workshop on
Information Sharing and Collaborative Security, pp. 65–70 (2016)

18. Alexopoulos, N., Vasilomanolakis, E., Roux, S.L., Rowe, S.,
Mühlhäuser, M.: TRIDEnT: Building Decentralized Incentives for
Collaborative Security (2019). arxiv:1905.03571

19. Gong, S., Lee, C.: Blocis: blockchain-based cyber threat intelli-
gence sharing framework for sybil-resistance. Electronics 9, 521
(2020)

20. Homan, D., Shiel, I., Thorpe, C.: A new network model for cyber
threat intelligence sharing using blockchain technology. In: 10th
IFIP International Conference on New Technologies, Mobility
and Security, NTMS 2019, Canary Islands, Spain, June 24–26,
2019, pp. 1–6. IEEE (2019). https://doi.org/10.1109/NTMS.2019.
8763853

21. Shafagh, H., Burkhalter, L., Hithnawi, A., Duquennoy, S.: Towards
blockchain-based auditable storage and sharing of iot data. In: Thu-
raisingham, B.M., Karame, G., Stavrou, A. (eds.) Proceedings of
the 9th Cloud Computing SecurityWorkshop, CCSW@CCS 2017,
Dallas, TX, USA, November 3, 2017, pp. 45–50. ACM (2017).
https://doi.org/10.1145/3140649.3140656

22. Wagner, E., Völker, A., Fuhrmann, F., Matzutt, R., Wehrle, K.:
Dispute resolution for smart contract-based two-party protocols. In:
IEEE International Conference onBlockchain andCryptocurrency,
ICBC 2019, Seoul, Korea (South), May 14–17, 2019, pp. 422–430.
IEEE (2019). https://doi.org/10.1109/BLOC.2019.8751312

23. Bundestag, D.: Gesetz zur Erhöhung der Sicherheit information-
stechnischer Systeme. Drucksache des Deutschen Bundestages
18(31), 273 (2015)

24. Schlette, D., Böhm, F., Caselli, M., Pernul, G.: Measuring and
visualizing cyber threat intelligence quality. Int. J. Inform. Secur.
(2020). https://doi.org/10.1007/s10207-020-00490-y

25. Gascon, H., Grobauer, B., Schreck, T., Rist, L., Arp, D., Rieck, K.:
Mining attributed graphs for threat intelligence. In: Proceedings of
the Seventh ACMonConference on Data and Application Security
and Privacy (Association for Computing Machinery, New York,
NY, USA, 2017), CODASPY ’17, pp. 15–22 (2017). https://doi.
org/10.1145/3029806.3029811

26. Ayman, A., Aziz, A., Alipour, A., Laszka, A.: Smart Contract
Development in Practice: Trends, Issues, and Discussions on Stack
Overflow, CoRR abs/1905.0 (2019). arxiv:1905.08833

27. Bach, L.M., Mihaljevic, B., Zagar, M.: Comparative analysis of
blockchain consensus algorithms. In: 41st International Conven-
tion on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), pp. 1545–1550 (2018)

28. Zmudzinski, A.: ETH Transaction Fees Hit All-Time High Sec-
ond Day in a Row (2020). https://cointelegraph.com/news/eth-
transaction-fees-hit-all-time-high-second-day-in-a-row

29. Larimer, D.: EOSIO Dawn 3.0 Now Available (2018).
https://medium.com/eosio/eosio-dawn-3-0-now-available-49a3b
99242d7

30. Xu, X., Weber, I., Staples, M.: Architecture for Blockchain Appli-
cations. Springer, Berlin (2019)

31. Bundesamt fuer Sicherheit in der Informationstechnik. Die Lage
der IT-Sicherheit (2019). https://www.bmi.bund.de/SharedDocs/
downloads/DE/publikationen/themen/it-digitalpolitik/bsi-lageber
icht-2019.pdf?__blob=publicationFile&v=4

32. Lazar, J., Feng, J.H., Hochheiser, H.: ResearchMethods in Human-
Computer Interaction. Morgan Kaufmann, Burlington (2010)

33. Böhm, F., Menges, F., Pernul, G.: Graph-based visual analytics for
cyber threat intelligence. Cybersecurity 1(1), 16 (2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

II. RESEARCH PAPERS 104

Dissertation Benedikt Putz, 2022

II. RESEARCH PAPERS 105

1.4 A secure and auditable logging infrastructure based on a permissioned
blockchain [P4]

Status: published

Publication: Computers & Security

Submitted: 30 November 2018

Revised: 5 July 2019

Accepted: 27 August 2019

Citation: Benedikt Putz, Florian Menges, and Günther Pernul. 2019. A secure
and auditable logging infrastructure based on a permissioned blockchain.
Computers & Security 87, (November 2019), 101602.

Journal Description: Computers & Security is the most respected technical journal in the

IT security field. With its high-profile editorial board and informative regular features and

columns, the journal is essential reading for IT security professionals around the world.

Dissertation Benedikt Putz, 2022

Computers & Security 87 (2019) 101602

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

A secure and auditable logging infrastructure based on a permissioned

blockchain

Benedikt Putz

∗, Florian Menges , Günther Pernul

University of Regensburg, Universitätsstrasse 31, Regensburg D-93053, Germany

a r t i c l e i n f o

Article history:

Received 30 November 2018

Revised 5 July 2019

Accepted 27 August 2019

Available online 5 September 2019

Keywords:

Log management

Secure logging

Log auditing

Permissioned blockchain

Digital forensics

a b s t r a c t

Information systems in organizations are regularly subject to cyber attacks targeting confidential data or

threatening the availability of the infrastructure. In case of a successful attack it is crucial to maintain

integrity of the evidence for later use in court. Existing solutions to preserve integrity of log records

remain cost-intensive or hard to implement in practice. In this work we present a new infrastructure

for log integrity preservation which does not depend upon trusted third parties or specialized hardware.

The system uses a blockchain to store non-repudiable proofs of existence for all generated log records.

An open-source prototype of the resulting log auditing service is developed and deployed, followed by a

security and performance evaluation. The infrastructure represents a novel software-based solution to the

secure logging problem, which unlike existing approaches does not rely on specialized hardware, trusted

third parties or modifications to the logging source.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Log data is produced today by most information systems used

in organizations. It provides information about regular events

occurring on these systems, but may also contain indicators for

malicious behavior or attacks such as denial of service attacks,

malware activities and other types of attacks on an organiza-

tion’s infrastructure. Analysis of these logs helps prevent secu-

rity breaches, or enables detection and subsequent damage control

when an incident has taken place (Venter and Eloff, 2003).

In case a breach is successful, it’s desirable to identify the per-

petrator in a forensic investigation and bring the responsible per-

son to court. In practice however intruders may attempt to al-

ter or delete log entries documenting the intrusion (Schneier and

Kelsey, 1999). Besides being exposed to malicious modification, log

records are also often processed during analysis, for example by

SIEM systems (Menges et al., 2018). To be successful in a trial,

the organization must be able to provide an indisputable proof of

integrity for the log evidence. This proof must guarantee that no

modification occurred during processing, so that the evidence re-

mains admissible in court.

The primary requirements for legally admissible digital evi-

dence are relevance and authenticity (Bidgoli, 2006, p. 658ff) . In or-

∗ Corresponding author.

E-mail addresses: benedikt.putz@wiwi.uni-regensburg.de (B. Putz),

florian.menges@wiwi.uni-regensburg.de (F. Menges), guenther.pernul@wiwi.uni-

regensburg.de (G. Pernul).

der for a piece of evidence to be relevant, there should be a persis-

tent chain of custody. Reliable and verifiable evidence generation,

transmission and storage are part of this chain of custody and pre-

requisites for authentication of evidence in court (Casey, 2011). As

a result, verifiable generation procedures constitute a key require-

ment for auditable logging infrastructures.

Prior research has already developed various approaches to

create and protect secure logs from intruders (see Section 2). A

key aspect of these works is integrity preservation of evidence

using write-only or access-protected storage. Recently developed

blockchain technology provides a novel way to achieve these goals.

Blockchain systems are highly redundant data stores with the pur-

pose of maintaining an append-only log of transactions. Since

data is shared with other independent organizations based on

distributed consensus, it is tamper-resistant. If a majority of partic-

ipants are honest, availability and integrity of stored data is main-

tained. Of particular interest to enterprise applications are permis-

sioned blockchains, where the set of participants is authenticated.

Based on a permissioned blockchain, we develop a secure in-

frastructure to ensure integrity and non-repudiation of log events

without a trusted service provider. It is designed to prove the ex-

istence of a log entry at the time of generation by using integrity

proofs stored in a distributed auditing layer. The blockchain net-

work storing the proofs is maintained by a consortium of inde-

pendent operators. Auditors can verify the integrity of previously

submitted evidence by contacting any node in the network. Auto-

mated signing, storage and integrity proof generation for each log

event provide the necessary authentication and non-repudiation.

https://doi.org/10.1016/j.cose.2019.101602

0167-4048/© 2019 Elsevier Ltd. All rights reserved.

II. RESEARCH PAPERS 106

Dissertation Benedikt Putz, 2022

2 B. Putz, F. Menges and G. Pernul / Computers & Security 87 (2019) 101602

For evaluation, we create a prototype as part of the DINGfest

project (Menges et al., 2018). DINGfest aims to create an open-

source SIEM infrastructure and currently consists of three main

components: data acquisition, data analysis and forensics & incident

reporting . This work adds a fourth data auditing component to en-

sure forensic auditability.

The paper is structured as follows: After explaining prior work

and some of its shortcomings, we propose a general design for se-

cure logging based on a permissioned blockchain. For evaluation,

we then build the prototype within the DINGfest infrastructure and

describe our results regarding security and performance.

2. Related work

Specialized hardware or software is required to achieve the

aforementioned security goals of secure logging systems. Prior

work on secure logging systems can be grouped into three cate-

gories: append-only storage systems, forward-secure evolving sig-

natures and trusted third party (TTP) notary services (Cucurull and

Puiggalí, 2016). Hardware-based write-only devices are a cost-

intensive solution, especially when there is a large amount of con-

tinuously generated log data. For this reason we focus on software-

based techniques hereafter.

Software-based approaches use cryptographic mechanisms to

detect modifications of log files. One of the earliest works

on secure logging for forensic investigations was published by

Schneier and Kelsey (1999) . Their proposed algorithm is used

for concatenating the sequence of log events and provides for-

ward security and verifiability. Ma and Tsudik (2009) claim that

the Schneier and Kelsey scheme is vulnerable to a truncation

attack, where an attacker may delete entries starting with the

most recent. To eliminate these flaws, they introduce a new

public-verifiable forward-secure aggregation scheme. It removes

the need for an additional server and reduces the storage over-

head introduced by the MAC and hash chain. While such forward-

secure logging schemes are tamper-evident regarding modifica-

tion by intruders, they cannot prevent deletion of the evidence.

Accorsi (2009) provides an overview of existing software-based se-

cure logging protocols and highlights this weakness. The work fa-

vorably emphasizes the author’s “BBox” secure logging approach,

which is claimed to be the only protocol to fulfill all security

requirements for transmission and storage. It relies on trusted

computing modules Accorsi (2013) , which require special hard-

ware and thus introduce additional cost. Finally, all aforementioned

software-based techniques require additional logging software ad-

justments beyond transmission to a server, which may not be pos-

sible in all organizational scenarios.

An example for a TTP-based timestamping solution is the

Keyless Signing Infrastructure operated by the Estonian security

firm Guardtime (2018) . It is based on generating integrity proofs

without cryptographic keys by aggregating hashes from different

sources (Buldas et al., 2013). Through several aggregation layers,

hashes of log records are aggregated in a binary Merkle tree. The

system operates in fixed time intervals and produces one aggrega-

tion tree per round. The tree root hashes are stored in a custom

data structure referred to as a hash calendar. The calendar’s root

hash is regularly published in Estonian newspapers for public ver-

ifiability (Buldas et al., 2014). The KSI method is less prone to at-

tacks from quantum-computing based algorithms since it only re-

lies on hashing and uses no public-key cryptography (Buldas et al.,

2014). Thanks to usage of several aggregation layers the system is

also highly scalable. However, besides being closed-source and fee-

based, the platform also has the disadvantage of relying on the se-

curity of Guardtime’s infrastructure.

Other researchers have used blockchain to assure log integrity

and auditability. For example, a recent work proposed publish-

ing the KSI root hashes to the Bitcoin blockchain (Jämthagen and

Hell, 2016). Cucurull and Puiggalí (2016) developed a secure

logging approach that uses the permissionless Bitcoin net-

work to record checkpoints of local log chains. Sutton and

Samavi (2017) use a local graph database to store logs and sub-

mit integrity proof digests to Bitcoin for auditability. Since all these

approaches rely on the Bitcoin blockchain, the scalability is limited

by its block size and throughput. Besides the Bitcoin transaction

fees, costs are also incurred through the requirement to maintain

a full copy of the blockchain.

Other approaches use the permissioned blockchain framework

Hyperledger Fabric. 1 Ahmad et al. (2018) focus on tracking changes

made to database entries by storing change excerpts on Hyper-

ledger Fabric. Shekhtman and Waisbard (2018) store the con-

tents of log files directly on Hyperledger Fabric. They demon-

strate the feasibility of auditable logging based on a permissioned

blockchain, but it is not clear whether their approaches are scal-

able, as no throughput and storage scalability benchmarks are pre-

sented. However, scalability is required to manage large volumes

of logging data in practical secure logging deployments.

In contrast to the works described above, our proposed ap-

proach does not rely on specialized hardware, modification of the

logging source or trusted third parties. Instead it uses a combina-

tion of replicated local storage and a permissioned blockchain to

ensure availability and integrity. Using a permissioned blockchain

over a permissionless one comes with several advantages. Per-

missioned blockchain systems allow for higher throughput on

the order of hundreds to thousands of transactions per second

(Bano et al., 2017). Additionally, transaction costs can be avoided

due to the restricted set of participants, which allows using deter-

ministic consensus algorithms.

To summarize, we contribute to the literature by reducing

cost and alleviating performance limitations of prior blockchain-

based secure logging approaches. To achieve this, we rely on a

high-performance and low-latency permissioned blockchain, with

enhanced security provided by anchoring to a permissionless

blockchain.

3. System design

Following the design science research methodology by

Peffers et al. (2007) , we begin by elaborating requirements

and objectives for the system. Based on these requirements,

we consider the available options for storing data when using

a blockchain system and describe a general architecture for a

blockchain-based auditable logging system. We also discuss two

options for operation of the blockchain network in practice.

3.1. Requirements and preliminaries

The overall objective of a secure logging system is maintain-

ing availability and integrity of log files. Records created by the

system should also have the property of non-repudiation, meaning

that records verifiably correspond to an event that occurred on a

specific system. Onieva et al. (2009) define five phases of a non-

repudiation service. We use four of these phases (shown in Fig. 1)

to guide system design in the following chapter. In secure logging,

verification occurs during dispute resolution, since tampered log

records may also contain valuable information about system com-

promise.

A prerequisite for all phases is the definition of what actually

constitutes evidence. For information system logs, any record may

be possibly relevant evidence. To separate availability and integrity

1 https://www.hyperledger.org/projects/fabric .

II. RESEARCH PAPERS 107

Dissertation Benedikt Putz, 2022

B. Putz, F. Menges and G. Pernul / Computers & Security 87 (2019) 101602 3

Fig. 1. Phases of a non-repudiation service, adapted from Onieva et al. (2009) .

preservation, we split log records into of evidence data and an in-

tegrity proof . The evidence data consists of the actual log event and

associated metadata. Specifically, it consists of log event informa-

tion, a generating system identifier & signature and a timestamp.

The signature is generated by the source system or the hypervisor,

if the data was extracted using Virtual Machine Introspection. The

integrity proof is represented by a timestamped hash of the evi-

dence data that confirms the existence of the log event at a spec-

ified time. If this information is stored immutably, it can later be

used to prove that evidence data has not been changed since cre-

ation of the proof.

Evidence generation takes place on log sources, for example

systems that are connected to external networks and vulnerable

to intrusion. The log files should include digital signatures signed

with the private key of the generating system. In our work, a

unique public/private key pair is generated for each system. Cer-

tificates issued by a public key management authority enable at-

tribution of log events to sources.

During the evidence transfer phase, the log event is then trans-

ferred from its source to the storage system. Using an encrypted

connection is imperative to maintain the chain of custody. In our

solution, the transmission is subject to a number of requirements

established in prior work: confidentiality, origin authentication, in-

tegrity, uniqueness and reliable delivery (Accorsi, 2009).

Evidence storage is the main focus of this work. Any log

data ingested by the service should be stored in a way that pre-

serves availability and integrity for later use. This includes pre-

venting deletion or modification by an attacker seeking to erase

traces. Confidentiality is also a concern due to potentially sensi-

tive information contained in log records. Prior solutions described

in Section 2 use specialized append-only hardware, third-party

providers or local storage combined with external notary systems.

Our approach achieves immutability by storing integrity proofs on

a blockchain network consisting of independent nodes.

Dispute resolution occurs when an intrusion has taken place

and has been recorded in log files. Both intruder and victim may

attempt to deny the authenticity of the evidence. An auditor must

then be able to verify that the log was not modified by anyone

since generation. This evidence verification consists of signature

and integrity proof verification. For signature verification, the audi-

tor must have access to the corresponding public key certificates of

the generating sources. The integrity proof is represented by a hash

and a corresponding timestamp in our work and must be stored in

provably unmodifiable storage. It ensures that the signed file al-

ready existed at the claimed time.

3.2. Storage design considerations

To alleviate shortcomings of prior secure logging approaches

discussed in Section 2 , we consider an architecture using a per-

missioned blockchain network. The advantage of using a permis-

sioned network is that it does not rely on a paid third party ser-

vice provider. Instead, the blockchain node operators provide the

immutability service for each other. Since the operational cost is

evenly shared by all members, no additional costs arise besides op-

erating the network.

We now discuss how a blockchain-based solution could help to

store log files in an integrity-preserving way. Data can be stored

either on-chain or off-chain in blockchain-based solutions. On-

chain storage would imply replicating the full log data across all

blockchain nodes. Logging infrastructures deal with considerable

data volumes, so full replication to each node would be ineffi-

cient and lead to high storage costs. An additional concern with

on-chain storage is loss of privacy. Log data may inadvertently con-

tain sensitive data like usernames or even password hashes. Since

blockchain node operators are independent, they should not share

potentially sensitive log data. Off-chain storage maintains data in

a separate local database to uphold privacy and confidentiality re-

quirements. Off-chain data can be linked to the corresponding on-

chain transaction through its hash, provided that the data has not

been modified since its hash was included in the blockchain.

To accommodate the storage limitations of blockchains, we split

the log storage into on-chain and off-chain parts as suggested by

Barger et al. (2018) . Evidence data is stored in a local storage

cluster and protected from unauthorized access to maintain confi-

dentiality. Availability protection for the off-chain data is achieved

through local replication. Commodity hardware can be used to

cheaply store log data while avoiding data loss. Apache Kafka 2 is

one example for a suitable publish-subscribe system that main-

tains a locally replicated and crash-tolerant log, while allowing

other applications to interact with the data (Wang et al., 2015).

To be able to detect potential corruption or modification of the

off-chain data, integrity proofs are stored in transactions on the

permissioned blockchain. The network is maintained by indepen-

dent operators to ensure the proofs cannot be modified by any one

participant. Since these operators are only semi-trusted, the net-

work should be able to tolerate some amount of arbitrary, even

malicious, behavior. These types of faults in distributed systems

are also referred to as byzantine faults (Castro and Liskov, 2002).

A byzantine-fault tolerant (BFT) consensus algorithm is used in

our solution to tolerate up to f byzantine failures in a network of

3 f + 1 nodes.

BFT state machine replication can be implemented without a

blockchain data structure to gain some throughput performance.

However, secure logging requires additional authenticity and in-

tegrity guarantees as mentioned in Section 3.1 . Permissioned

blockchain frameworks provide these guarantees and come with

other beneficial features such as audit-only nodes and APIs for ex-

ternal applications, so we build on them in our system architec-

ture.

3.3. System architecture

The full architecture is shown in Fig. 2 . Evidence is gener-

ated and signed by different sources like containerized appli-

cations, firewalls or intrusion detection systems. The generated

evidence data is securely transferred to a log verification sys-

tem. Existing protocols based on reliable syslog (IETF RFC 3195

New and Rose, 2001) fulfill the requirements for secure transmis-

sion (Accorsi, 2009) and can be used for this purpose.

Newly arriving data in the storage cluster is monitored by a

separate application. For each new entry, a transaction is generated

containing a hash and the current timestamp. The transaction is

included in a block together with transactions arriving from other

nodes in the distributed system. A new block is appended to the

blockchain as soon as enough transactions are available, or when

a timeout is reached. The timeout ensures that the delay between

log generation and inclusion in the blockchain remains low. The

2 https://kafka.apache.org/ .

II. RESEARCH PAPERS 108

Dissertation Benedikt Putz, 2022

4 B. Putz, F. Menges and G. Pernul / Computers & Security 87 (2019) 101602

Fig. 2. Proposed design for a secure and auditable logging infrastructure.

other participating organizations also add transactions containing

hashes from their own logging infrastructures.

Any auditor is able to verify evidence at a later date. The ac-

tual evidence data remains in the replicated local storage and can

be provided to the auditor at request. To verify the integrity of the

evidence data, the auditor first verifies its signature against valid

public key certificates from the PKI. This step ensures the log file

can be mapped to its source. Afterwards the data’s hash is sub-

mitted to a blockchain node for verification. The server then com-

pares the hash values stored in blockchain transactions with the

hash value of the proposed evidence. If an identical hash is found,

there is non-repudiable proof that identical data was submitted at

an earlier time. To tolerate possibly corrupted blockchain nodes,

the proof can also be requested from multiple blockchain nodes

independently.

3.4. Formal logging procedure

Fig. 3 details the data flows that occur when each log entry is

processed. Two processing steps S1, S2 occur, with an optional ver-

ification step S3 . To describe these steps, we define the following

formal notation. Each organization j ∈ { 1 .n } has an identifier ID j , a

private signing key Z j and a corresponding public key K j .

S1: Client application processing . We first define a log counter

k ∈ 1 .l and a transaction counter i ∈ 1 .m . Each newly arriving log

entry L jk is parsed to create a transaction payload P ji , which is in-

cluded in a new transaction T ji . Initially, i = k, as one transaction is

generated per log entry. hash () refers to a preimage-resistant hash

function, while sign () is shorthand for a public-key signature func-

tion. It is assumed that T ji is transmitted from client application to

blockchain node via an encrypted channel, preventing man-in-the-

middle attacks.

T ji = (P ji , H ji , S ji) where

P ji = (ID j , K j , L jk) ,

H ji = hash (L jk) ,

S ji = sign (Z j , P ji)

S2: Blockchain node processing . After the transaction was

propagated to the network and proposed as part of a block by

the current consensus leader, the actual processing takes place

on each node. A timestamp based on distributed consensus is in-

cluded with each transaction and the uniqueness of the log entry

is verified by each node:

i > 1 : H ji / ∈ { H j1 ..H j(i −1) } ∀ j ∈ 1 ..n

If this condition fails, no changes to the persistent state oc-

cur as a result of the transaction. Two identical log entries with

the same hash value can not be part of the system. If the condi-

tion passes and the entry is unique, a mapping of content hash to

blockchain transaction hash is added to a dictionary: (H ji , hash (T ji)).

This permits efficient lookups during verification. After more than

two-thirds of all nodes have successfully processed the transaction,

it is irreversibly committed to the ledger. We omit consensus pro-

tocol message exchanges for clarity in Fig. 3 .

S3: Verification . To verify, a user may optionally submit a

log entry to the client application, which requests a proof from

the blockchain network by sending hash (L jk). If the corresponding

transaction is found and returned, only its signature and hash must

be verified:

v eri f y (K j , P ji , S ji) ∧ K j ∈ { K 1 ..K n } ∧ H ji
! = hash (L jk)

verify () is the verification function corresponding to sign (), re-

turning 1 for a correct signature and 0 otherwise.

3.5. Blockchain network operation

For illustrative purposes only three nodes are shown in Fig. 2 .

An actual deployment in practice must consist of n ≥ 4 nodes to

be able to tolerate at least one byzantine node (see Section 5.2 for

optimal node counts). Nodes should be operated by separate orga-

nizations to make it harder for both the organization and attackers

to modify data on the blockchain. If a single party controls the su-

permajority of nodes, it could simply replace and fabricate data,

forfeiting the immutability benefits of a blockchain system. The

blockchain network consortium could be coordinated by industry

II. RESEARCH PAPERS 109

Dissertation Benedikt Putz, 2022

B. Putz, F. Menges and G. Pernul / Computers & Security 87 (2019) 101602 5

Fig. 3. Sequence diagram of log entry processing data flows.

associations. In that case independent organizations within the as-

sociation would jointly maintain a network of blockchain nodes, as

illustrated in Fig. 2 .

Another alternative is operating the network within a single or-

ganization and spreading the nodes across multiple locations or or-

ganizational units. In that case the organization is in control of all

nodes and an intruder would have to subvert nodes in multiple lo-

cations to remove traces. The organization itself could however ini-

tiate a coordinated replacement of blockchain data. This might be a

concern in investigations where organizations try to hide a breach

of their infrastructure. Adding an anchoring mechanism to the per-

missioned blockchain mitigates this possibility. Anchoring includes

the latest block hash of the permissioned blockchain network in a

transaction on a permissionless system like Bitcoin. These check-

point transactions are submitted in regular intervals and cost a

small fee. This allows external auditors to publicly verify the state

of the private blockchain at the time of anchoring.

The advantage of this approach is that the entire logging infras-

tructure remains within the organization. At the same time it also

incurs transaction fees similar to the permissionless blockchain ap-

proach (Cucurull and Puiggalí, 2016). Depending on the anchoring

frequency this cost can add up to a substantial amount. While low-

ering the frequency decreases cost, it also widens the time win-

dow for possible replacement of blockchain data by the organiza-

tion. To prevent this entirely, the time between checkpoints must

be lower than the time an internally coordinated blockchain re-

placement would take.

4. Prototype

For demonstration and evaluation purposes, we create a pro-

totype based on a SIEM reference architecture. We build on the

DINGfest infrastructure created in prior work, which implements

some parts of the design described above, like the storage cluster.

It however currently lacks a way to ensure end-to-end integrity,

auditability and non-repudiation of the original log evidence. The

prototype adds this capability in the form of a blockchain-based

distributed log auditing service. The service is then evaluated for

security concerns and throughput/storage scalability.

The extended architecture is shown in Fig. 4 . A hashing appli-

cation fetches log records from the data stream and computes the

SHA256 hash for each record. The input data for the hash includes

the log data and its signature. The hash is then submitted to the

blockchain system in a signed transaction. The receiving blockchain

node validates the hash against existing hashes in the database

to prevent duplicates. A timestamp is obtained in consensus with

other validators and included with the transaction. Finally, a sepa-

rate proof application provides a web interface, where auditors can

submit evidence for validation (see also Fig. 5).

We evaluate various open source permissioned blockchain

frameworks for our prototype. The evaluation criteria we deem

essential for secure logging are shown in Table 1 . First, we ex-

amine whether the framework currently offers a production-ready

BFT consensus implementation. For performance reasons, we also

want to avoid the virtualization overhead of smart contracts and

thus look for frameworks offering native execution of custom logic.

To protect against collusion manipulation of the permissioned

blockchain, we include consensus-based anchoring to a permis-

sionless blockchain as a criterion. To ensure a low barrier to entry,

deployment effort is assessed by analyzing the number of different

services and containers needed for running the framework.

We conclude that there are several advantages to using Ex-

onum

3 over other permissioned frameworks. Firstly, other frame-

works do not yet offer ready-for-use BFT consensus implementa-

tions or consensus-based anchoring. Additionally, Exonum does not

use conventional smart contracts running in a virtualized execu-

tion environment. Instead, it uses natively executed services to im-

plement custom logic. Similar to smart contracts, services are in-

voked by transactions and executed on every blockchain node, but

service code must be final at compile-time and cannot be deployed

dynamically at runtime. Services include the Exonum framework

as a dependency and are compiled to a single binary containing

both application and framework. For this reason there is no per-

formance overhead due to virtualization. The binary can also be

deployed easily without the need to maintain multiple separate

containers (like in Fabric/Sawtooth/Corda).

3 https://exonum.com .

II. RESEARCH PAPERS 110

Dissertation Benedikt Putz, 2022

6 B. Putz, F. Menges and G. Pernul / Computers & Security 87 (2019) 101602

Fig. 4. The DINGfest SIEM architecture extended with an auditing layer (based on Menges et al., 2018).

Table 1

Comparison of open source blockchain framework properties.

Fabric Sawtooth Corda Ethereum Exonum

BFT consensus (�) (�) (�) (�) �

Native contract execution - � - - �

Consensus-based anchoring - - - (�) �

Deployment effort high medium high low low

� built-in (�) custom implementation required/experimental - not available

The Exonum framework and log auditing service are im-

plemented in Rust, a functional systems programming lan-

guage focused on memory safety, concurrency and performance

(Mozilla Corporation, 2018). The framework uses a byzantine fault-

tolerant consensus algorithm based on PBFT (see Castro and

Liskov, 2002) and supports throughput rates of up to 70 0 0 transac-

tions per second (BitFury Group, 2018). High throughput is impor-

tant to ensure timely inclusion of each log record’s integrity proof

in the blockchain. The Exonum framework also provides built-

in services for distributed timestamps and Bitcoin anchoring. An-

choring to the permissionless Bitcoin blockchain increases secu-

rity by providing publicly verifiable checkpoints (also discussed in

Section 5.1). By using a permissioned blockchain, the process of de-

ciding on the next candidate block for anchoring is based on con-

sensus and avoids a single points of failure (BitFury Group, 2018).

Since BFT consensus is the key argument for using blockchain in

our architecture, we also choose Exonum for its low overhead ap-

proach to blockchain. The features it adds apart from PBFT con-

sensus are all useful to the proposed solution. Encrypted node

connections maintain confidentiality, consensus-based distributed

timestamps ensure non-repudiation of log creation time and block

grouping of transactions improves consensus performance.

The prototype consists of an Exonum backend service and a

light client web application, as shown in Fig. 5 . The backend ser-

vice runs on version 0.11 of the Exonum framework. 4

4 https://github.com/exonum/exonum/releases/tag/v0.11.0 .

The frontend client provides interfaces for blockchain inspec-

tion, monitoring and verification of log data. It retrieves data from

the blockchain using the server-side backend, which redirects the

read requests to the Exonum blockchain API. The server also runs

a separate background application written in Rust, which continu-

ously receives new log events from the distributed storage clus-

ter based on Apache Kafka. The signed log data is hashed and

submitted to the blockchain in a transaction. The blockchain’s log

auditing service verifies that the hash does not already exist in

the blockchain and groups arriving transactions into blocks. New

blocks are appended to the blockchain by the framework after es-

tablishing consensus with the other nodes.

The backend service runs on Exonum blockchain nodes and

specifies the transaction data model and the available API end-

points for the light client to interact with. Our prototype reuses the

timestamping service example provided by the framework, which

meets all requirements of the system design and formal specifica-

tion.

In practice, each network participant would deploy an in-

stance of the blockchain node and client application on a local

server. To deploy the blockchain node, participants must agree on

a shared configuration file, which includes parameters like block

proposal timeout and transactions per block (further described in

Section 5.2). Each node’s individual configuration file is then gen-

erated locally based on its private key and IP address and public

key of the other nodes. The node binary, which includes both the

framework and the log auditing service, is then started and ready

to receive transactions. Finally, the client application must be con-

II. RESEARCH PAPERS 111

Dissertation Benedikt Putz, 2022

B. Putz, F. Menges and G. Pernul / Computers & Security 87 (2019) 101602 7

Fig. 5. Client-server architecture of the application prototype.

figured to continuously receive log records from the local storage

cluster. After every participant has finished the setup phase, the

system may begin operation.

5. Evaluation

Crucial aspects of the design that should be evaluated are secu-

rity and performance . System security is important since vulnerabil-

ities to attacks may question the very purpose of the infrastructure.

Performance considerations are important as well to ensure scala-

bility for larger organizations, especially since blockchain systems

are known for their scalability limitations. The security evaluation

is based on a structured analysis of threats, while the performance

evaluation focuses on throughput and storage metrics in a cloud-

based deployment of the prototype.

5.1. Security

There are four fundamental security threats to consider in a dis-

tributed system: interception, interruption, modification and fabrica-

tion (Tanenbaum and Van Steen, 2014).

Interception could lead to delays in committing timestamps to

the blockchain. Intercepting a node’s connection is impeded by set-

ting up authenticated and encrypted communication channels be-

tween nodes.

Interruption could be achieved for example with a denial of ser-

vice attack. By preventing the node on the target network from

communicating with other nodes, an attacker can delay outstand-

ing log transactions. Alternatively, an intruder could attempt to

gain control of blockchain nodes. Once enough nodes are com-

promised, it becomes possible to stall consensus or fully control

the network. The exact number of nodes depends on the num-

ber of validators in the network. With a byzantine fault-tolerant

(BFT) consensus algorithm, a minimum of 1/3 of all nodes is re-

quired to stall consensus and > 2/3 to gain network control by

adding/removing validator nodes. These bounds are based on the

fact that more than two-thirds of validators must agree to commit

a transaction in BFT consensus (Castro and Liskov, 2002). Anchor-

ing to a permissionless blockchain would prevent this type of at-

tack entirely. The permissioned blockchain’s contents can then be

verified against checkpoints published on the public blockchain to

detect manipulations.

Data modification is the most significant threat to log evidence.

An intruder could attempt to modify the original log record to ob-

scure traces. As noted by Schneier and Kelsey (1999) , once an at-

tacker has control of the log source, the integrity of new logs can-

not be protected. The goal of secure logging is therefore to protect

log data generated prior to intrusion. Our proposed two-layer ap-

proach protects availability using the replicated storage cluster and

integrity with proofs on the blockchain. To void availability of the

original log records stored on the local storage cluster, the attacker

would have to corrupt or delete all copies. To modify the integrity

proofs on the blockchain, the attacker has to subvert or convince

more than two-thirds of all nodes due to the properties of BFT con-

sensus (Castro and Liskov, 2002). Both scenarios require significant

penetration of the organization’s infrastructure and are rather un-

likely in practice.

Fabrication of log entries is a concern and may invalidate au-

thentication of the evidence. An intruder could fabricate false log

entries to lead investigators astray. To that end it is necessary to

gain control of the system first and compromise its private key for

log generation. As recognized in Schneier and Kelsey (1999) , no se-

curity measure can protect log files generated after a system has

been compromised. Log files generated prior to intrusion should

allow to identify the time of compromise, after which logs can

no longer be considered authentic. Additionally, the organization

maintaining the log infrastructure could also attempt to fabricate

entries to falsely blame an adversary. This cannot be prevented,

since the organization is in control of its private keys and can sub-

mit arbitrary data at any point in time signed with these keys. This

possibility of organizational fabrication instead has to be excluded

by legal means.

Regarding correctness of the verification, there is a non-zero

probability that a fake log submitted for verification has the same

hash as another valid log entry included in the blockchain. This

type of hash collision can be neglected in practice however. There

are 2 256 possible hash outputs for the SHA256 algorithm used in

the prototype, for which no computationally feasible collision has

been found (Rasjid et al., 2017).

From a privacy perspective, the log contents remain confiden-

tial since only a hash of the data is stored on the blockchain.

For preimage resistant hash functions like SHA256 it is (by cur-

rent standards) impossible to find the content of the original

log file.

II. RESEARCH PAPERS 112

Dissertation Benedikt Putz, 2022

8 B. Putz, F. Menges and G. Pernul / Computers & Security 87 (2019) 101602

Fig. 6. Prototype performance benchmark results.

Additionally there are some operational security concerns re-

garding the prototype’s blockchain framework. Exonum has not re-

ceived any security audits, so independent validation of framework

security is not yet available. Another limitation is the lack of built-

in authentication and authorization for service endpoints. By de-

fault, anyone can query both private and public endpoints. This

is not a critical problem for our infrastructure. If the hashing ap-

plication is deployed to a separate system or container, it can be

whitelisted as the only external system to use the port of the pub-

lic blockchain API. Similarly, the system administrator’s IP should

be the only IP allowed to access the private port, since it could be

used to add new peers or shut down the node. Whitelisting can

be done by using the AWS security groups, iptables on Linux or a

different firewall solution.

5.2. Performance

The three main concerns regarding the performance of the

logging infrastructure are transaction throughput, node scalability

and storage requirements. The bottleneck of the system is clearly

the blockchain-based auditing layer due to its limited transac-

tion throughput spread across all participants. Thus we set up

blockchain networks of varying sizes on the DigitalOcean cloud to

benchmark the prototype. We used droplet instances with 4 dedi-

cated virtual CPU cores and 8GB of RAM. All virtual machines are

set up within the same data center location. We deploy both the

blockchain node and the hashing application on the same server.

Consequentially, the overhead from signing and submitting trans-

actions to the blockchain is included in the performance measure-

ments. After some experimentation with consensus parameters we

settled on a default configuration to a maximum of 10,0 0 0 trans-

actions per block and a proposal timeout of 1 s. These parameters

seemed to alleviate any bottlenecks related to system configura-

tion. For stress testing we submit 50 0 0 log transactions per sec-

ond for 20, 30 and 40 s at a time. The transaction load is evenly

distributed across all nodes. Higher loads did not increase through-

put and only resulted in increased processing time after the end of

transaction submission. The average observed throughput rates are

shown in Fig. 6 a.

The results show that overall system performance varies be-

tween 30 0 0 and 350 0 transactions per second on average, yielding

between 250 and 800 processed transactions per node and second.

Per-node performance continually decreases, while overall perfor-

mance remains fairly stable even for a large number of nodes. The

per-node performance can be interpreted as limits on the average

transaction load that the system should be exposed to in each or-

ganization.

Given the per-node performance thresholds between 250 and

800 transactions per second, it is not unlikely that the log event

rate exceeds system capacity. In that case a possible solution is to

group log records in transactions. In step S1 from Section 3.4 , the

hash H ji is then computed using r concatenated log records L jk as

input:

H ji = hash (L j[(i −1) r+1] | . | L j[(i −1) r + r])

The resulting load on the blockchain is reduced by a factor of 1
r .

However, hash verification in step S3 changes accordingly to also

require r records as input. The sequence number of the log entry

may not be known to the verifier, requiring r verification requests

and 2(r − 1) additional log entries for verification (before and after

the log at hand). This highlights the disadvantage to this solution:

grouped records are now treated as one integrity unit. If one of the

records in the unit is corrupted or no longer available, it becomes

impossible to prove the integrity of all the records in the unit.

Fault tolerance maxima are achieved when the node count is

equal to 3 f + 1 , tolerating f byzantine or failing nodes. As a result,

node counts of 4/7/10 nodes can be considered efficient in Fig. 6 ,

tolerating 1/2/3 byzantine nodes respectively.

Fig. 6 b illustrates blockchain database growth per month,

based on the measured average size of 800 bytes per transac-

tion. Since the size of the data fields is fixed, all transactions have

approximately the same size. The database grows linearly with

both throughput and node count. To avoid excessive storage us-

age, log record transactions on the blockchain may be discarded

after d days, as defined by the organizational log retention pol-

icy. The ideal technical solution would be a rolling blockchain,

configured to discard blocks once they are d days old. The log

retention period must then be agreed upon by all node opera-

tors in advance. A rolling blockchain system has been proposed in

Dennis et al. (2016) , but no open source implementation is cur-

rently available. For this reason we leave this issue for future re-

search.

5.3. Comparison with other blockchain-based secure logging

approaches

To validate our results, we compare them with similar

blockchain-based logging approaches (Table 2). Prior works on

blockchain-based secure logging have used both permissionless

(Bitcoin) and permissioned (Fabric) blockchains, but none of them

have proposed an integrated approach based on anchoring. While

our solution is primarily based on the permissioned blockchain Ex-

onum, it also provides the option for consensus-based anchoring to

the Bitcoin blockchain to increase tamper-resistance.

With regard to evaluation, none of the other works thus far

have included benchmarks for throughput and storage constraints.

Since these constraints are crucial for high frequency logging in-

frastructures, we have addressed them in Section 5.2 . Besides con-

II. RESEARCH PAPERS 113

Dissertation Benedikt Putz, 2022

B. Putz, F. Menges and G. Pernul / Computers & Security 87 (2019) 101602 9

Table 2

Comparison with other blockchain-based approaches.

Paper Blockchain Permissioned BFT Benchmarks Proof/data sep. Per-entry imm.

Cucurull and Puiggalí (2016) Bitcoin - n.a. - � -

Sutton and Samavi (2017) Bitcoin - n.a. - � �

Ahmad et al. (2018) Fabric � - - - �

Shekhtman and Waisbard (2018) Fabric � - - - �

Present work Exonum � � � � (�) a

a Without log grouping from Section 5.2

ducting benchmarks, we also proposed avenues for increasing scal-

ability by grouping log records or using a rolling blockchain.

Due to limited storage space in Bitcoin transactions, both

Bitcoin-based approaches separate the integrity proof and the

log data. The works based on Hyperledger Fabric include partial

Ahmad et al. (2018) or full Shekhtman and Waisbard (2018) log

data on the blockchain, leading to limited scalability. Our approach

is also based on a permissioned blockchain and focuses on storing

a minimal amount of data on-chain.

Per-entry immutability refers to generating one blockchain

transaction per log event. Sutton and Samavi (2017) follow this

approach, but use the Bitcoin blockchain, which leads to very

high transaction costs and throughput limitations. These cost con-

straints lead Cucurull and Puiggalí (2016) to publish checkpoints

instead of individual log entries. However, between checkpoints

logs exist only on the local machine, which enables truncation

attacks during the checkpoint interval. Mitigation is possible by

reducing the checkpoint interval, but at the same time increases

transaction costs. Permissioned systems do not suffer from this

constraint and offer per-entry immutability, as evident from the

works using Hyperledger Fabric (Ahmad et al., 2018; Shekhtman

and Waisbard, 2018). Our solution combines the advantages of

both solutions: it gains per-entry immutability by using a permis-

sioned blockchain and public non-repudiation by publishing check-

points to a permissionless blockchain, witnessed by hundreds of

independent nodes.

6. Conclusion

This paper presents an infrastructure for log auditing using a

permissioned blockchain to store integrity proofs. It is based on

legal requirements for admissible evidence and represents an on-

premise alternative to third-party solutions and specialized write-

only hardware. Even without a third-party service provider, the so-

lution achieves immutability through cooperation and data sharing

between independent nodes. It permits processing of evidence for

security analytics purposes while ensuring auditability of the orig-

inal log record.

The security analysis shows that the system withstands at-

tempts to intercept, interrupt or modify its processed log data.

While fabrication is a concern, it cannot be completely ruled out

with technical measures. Performance benchmarks show that the

blockchain implementation is able to cope with very high log event

frequencies of 30 0 0 to 350 0 transactions per second, depending on

the number of nodes. Storage requirements are substantial how-

ever due to full replication and retention of all historical data.

In future research, an enhanced prototype could implement log

rotation to reduce storage costs, as outlined in Section 5.2 . While

we firmly believe that Exonum currently offers the best perfor-

mance for our secure logging approach, this might change in the

future. In that case the prototype could also be implemented in

other frameworks to see if scalability can be further improved.

Practical deployments by organizations would be useful to assess

adequacy of system throughput in practice. Use case studies to

compare the cost structure of the proposed logging infrastructure

with third-party solutions like the KSI (Guardtime, 2018) would

also be valuable.

Declaration of Competing Interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Acknowledgement

This research was supported by the Federal Ministry of Educa-

tion and Research (grant no. 16KIS0501K), Germany, as part of the

DINGfest project (https://dingfest.ur.de).

References

Accorsi, R., 2009. Log data as digital evidence: what secure logging protocols have to

offer?Proc. of the International Computer Software and Applications Conference
2, 398–403. doi: 10.1109/COMPSAC.2009.166 .

Accorsi, R., 2013. A secure log architecture to support remote auditing. Math. Com-
put. Model. 57 (7–8), 1578–1591. doi: 10.1016/j.mcm.2012.06.035 .

Ahmad, A., Saad, M., Bassiouni, M., Mohaisen, A., 2018. Towards blockchain-driven,

secure and transparent audit logs. In: Proceedings of the 15th EAI International
Conference on Mobile and Ubiquitous Systems: Computing, Networking and

Services. ACM, New York, NY, USA, pp. 4 43–4 48. doi: 10.1145/3286978.3286985 .
Bano, S. , Sonnino, A. , Al-Bassam, M. , Azouvi, S. , McCorry, P. , Meiklejohn, S. ,

Danezis, G. , 2017. Consensus in the age of blockchains. CoRR abs/1711.0 .
Barger, A., Manevich, Y., Bortnikov, V., Tock, Y., Factor, M., Malka, M., 2018. Shared

Cloud Object Store, governed by permissioned blockchain. In: Proceedings of the

11th ACM International Systems and Storage Conference on - SYSTOR ’18. ACM

Press, New York, New York, USA . 114–114 doi: 10.1145/3211890.3211915 .

Bidgoli, H. , 2006. Handbook of Information Security. John Wiley, Hoboken, NJ .
BitFury Group, 2018. Exonum Documentation.

Buldas, A . , Kroonmaa, A . , Laanoja, R. , 2013. Keyless signatures’ infrastructure: how to
build global distributed hash-trees. In: Proc. of the Nordic Conference on Secure

IT Systems, pp. 313–320 .

Buldas, A. , Laanoja, R. , Truu, A. , 2014. Efficient quantum-Immune keyless signatures
with identity.. IACR Cryptol. 321 . ePrint Archive

Casey, E. , 2011. Digital Evidence and Computer Crime: Forensic Science, Computers
and the Internet. Academic Press, Waltham, MA .

Castro, M., Liskov, B., 2002. Practical byzantine fault tolerance and proactive recov-
ery. ACM Trans. Comput. Syst. 20 (4), 398–461. doi: 10.1145/571637.571640 .

Cucurull, J. , Puiggalí, J. , 2016. Distributed immutabilization of secure logs. Lect. Notes

Comput. Sci. 9871 LNCS, 122–137 . (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics)

Dennis, R., Owenson, G., Aziz, B., 2016. A temporal blockchain: a formal analysis. In:
Proceedings - 2016 International Conference on Collaboration Technologies and

Systems, CTS 2016, pp. 430–437. doi: 10.1109/CTS.2016.80 .
Guardtime, 2018. KSI Technology | Industrial Scale Blockchain | Guardtime.

Jämthagen, C., Hell, M., 2016. Blockchain-based publishing layer for the key-

less signing infrastructure. In: 2016 Intl IEEE Conferences on Ubiquitous In-
telligence Computing, Advanced and Trusted Computing, Scalable Computing

and Communications, Cloud and Big Data Computing, Internet of People, and
Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), pp. 374–

381. doi: 10.1109/UIC- ATC- ScalCom- CBDCom- IoP- SmartWorld.2016.0072 .
Ma, D., Tsudik, G., 2009. A new approach to secure logging. ACM Trans. Storage 5

(1), 1–21. doi: 10.1145/1502777.1502779 .
Menges, F. , Böhm, F. , Vielberth, M. , Puchta, A. , 2018. Introducing DINGfest: an archi-

tecture for next generation SIEM systems. In: SICHERHEIT 2018. Gesellschaft für

Informatik e.V., pp. 257–260 .
Mozilla Corporation, 2018. The Rust Programming Language.

New, D. , Rose, M. , 2001. Reliable Delivery for Syslog. Technical Report. IETF .
Onieva, J.A. , Lopez, J. , Zhou, J. , 2009. Secure multi-party non-repudiation protocols

and applications. Advances in information security. Springer, New York, NY .

II. RESEARCH PAPERS 114

Dissertation Benedikt Putz, 2022

10 B. Putz, F. Menges and G. Pernul / Computers & Security 87 (2019) 101602

Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S., 2007. A design science
research methodology for information systems research. J. Manage. Inf. Syst. 24

(3), 45–77. doi: 10.2753/MIS0742-1222240302 .
Rasjid, Z.E., Soewito, B., Witjaksono, G., Abdurachman, E., 2017. A review of colli-

sions in cryptographic hash function used in digital forensic tools. In: Procedia
Computer Science, pp. 381–392. doi: 10.1016/j.procs.2017.10.072 .

Schneier, B., Kelsey, J., 1999. Secure audit logs to support computer forensics. ACM

Trans. Inf. Syst. Security 2 (2), 159–176. doi: 10.1145/317087.317089 .

Shekhtman, L.M., Waisbard, E., 2018. Securing log files through blockchain technol-

ogy. In: Proceedings of the 11th ACM International Systems and Storage Confer-
ence. ACM, New York, NY, USA, p. 131. doi: 10.1145/3211890.3211921 .

Sutton, A., Samavi, R., 2017. Blockchain enabled privacy audit logs. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), pp. 645–660. doi: 10.1007/
978- 3- 319- 68288- 4 _ 38 .

Tanenbaum, A.S. , Van Steen, M. , 2014. Distributed Systems: Principles and

Paradigms. Prentice-Hall .
Venter, H.S., Eloff, J.H.P., 2003. A taxonomy for information security technologies.

Comput. Security doi: 10.1016/S0167-4048(03)00406-1 .
Wang, G., Koshy, J., Subramanian, S., Paramasivam, K., Zadeh, M., Narkhede, N.,

Rao, J., Kreps, J., Stein, J., 2015. Building a replicated logging system with Apache
Kafka. Proc. VLDB Endowment 8 (12), 1654–1655. doi: 10.14778/2824032.

2824063 .

Benedikt Putz studied at the University of Augsburg, University of Oulu and the
University of Regensburg, where he received his Master of Science degree with Hon-

ors. Currently he is a research assistant at the Department of Information Systems
at the University of Regensburg, Germany. His research concerns distributed ledger

and blockchain systems, with a focus on applications of the technology in informa-
tion systems security.

Florian Menges received both the Bachelor of Science and Master of Science de-

gree from the University of Regensburg, Germany. Currently he is a research as-
sistant at the Department of Information Systems at the University of Regensburg,

Germany. His research interests include threat intelligence with a focus on sharing
and reporting intelligence data, storage strategies for intelligence data as well as

anonymization techniques and incentivizing the sharing and reporting of incident
data.

Günther Pernul received both the diploma degree and the doctorate degree (with

honors) from the University of Vienna, Austria. Currently he is full professor at the
Department of Information Systems at the University of Regensburg, Germany. Prior

he held positions with the University of Duisburg-Essen, Germany and with Uni-

versity of Vienna, Austria, and visiting positions the University of Florida and the
College of Computing at the Georgia Institute of Technology, Atlanta. His research

interests are manifold, covering data and information security aspects, data protec-
tion and privacy, data analytics, and advanced data centric applications.

II. RESEARCH PAPERS 115

Dissertation Benedikt Putz, 2022

II. RESEARCH PAPERS 116

2 RQ2: Protecting DLT applications from threats

2.1 Trust Factors and Insider Threats in Permissioned Distributed Ledgers -
An analytical study and evaluation of popular DLT frameworks [P5]

Status: published

Publication: Transactions on Large-Scale Data- and Knowledge-Centered Systems

Submitted: 25 July 2019

Revised: 06 September 2019

Accepted: 29 October 2019

Citation: Benedikt Putz and Günther Pernul. Trust Factors and Insider Threats in
Permissioned Distributed Ledgers. Transactions on Large-Scale Data- and
Knowledge-Centered Systems XLII, (2019), 25–50.

Journal Description: The LNCS Transactions on Large-Scale Data- and Knowledge-

Centered Systems focuses on data management, knowledge discovery, and knowledge

processing, which are core and hot topics in computer science.

Dissertation Benedikt Putz, 2022

Trust Factors and Insider Threats
in Permissioned Distributed Ledgers

An Analytical Study and Evaluation of Popular
DLT Frameworks

Benedikt Putz(B) and Günther Pernul

Department of Information Systems, University of Regensburg, Regensburg, Germany
{benedikt.putz,guenther.pernul}@ur.de

Abstract. Permissioned distributed ledgers have recently captured the
attention of organizations looking to improve efficiency, transparency
and auditability in value network operations. Often the technology is
regarded as trustless or trust-free, resulting in a false sense of security.
In this work, we review the various trust factors present in distributed
ledger systems. We analyze the different groups of trust actors and their
trust relationships to the software layers and inherent components of
distributed ledgers. Based on these analyses, we investigate how insiders
may conduct attacks based on trust in distributed ledger components.
To verify practical feasiblity of these attack vectors, we conduct a techni-
cal study with four popular permissioned distributed ledger frameworks:
Hyperledger Fabric, Hyperledger Sawtooth, Ethereum and R3 Corda.
Finally, we highlight options for mitigation of these threats.

Keywords: Trust frameworks · Distributed systems security ·
Distributed ledger technology · Insider threat

1 Introduction

Distributed ledger technology (DLT) offers great potential to decentralize oper-
ations in collaborative business networks and may even enable new business
models [46]. Benefits include cost reduction and increased transparency in infor-
mation sharing between organizations. However, great potential also entails
great risks and potential security issues. Recent reviews regarding the future
of blockchain technology have pointed out the need to study security and trust
aspects of DLT [13,51].

Blockchain and DLT are often described as trustless or trust-free alterna-
tives to currently established centralized systems (see [29,30,36]). In this work,
we take a closer look at the usage of permissioned distributed ledgers and exam-
ine whether it can really be considered “trustless”. The term “trustless” orig-
inates from the decentralization of control in distributed ledger networks [29],
which aims to replace trusted third parties. The goal of this work is to estab-
lish a framework for reasoning about trust elements in permissioned distributed

c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
A. Hameurlain and R. Wagner (Eds.): TLDKS XLII, LNCS 11860, pp. 25–50, 2019.
https://doi.org/10.1007/978-3-662-60531-8_2

II. RESEARCH PAPERS 117

Dissertation Benedikt Putz, 2022

26 B. Putz and G. Pernul

ledgers. These trust elements can also be exploited by insiders, who are aware
of them and in control of crucial components of the trust system.

Insider threats are a tough cybersecurity problem, which remains difficult to
detect and prevent due to abuse of legitimate access permissions by the attacker.
According to the roadmap of cybersecurity research by the US department of
Homeland Security, insider threats are one of the “hard problems” of information
security research [50]. Similarly, the European cybersecurity agency ENISA’s
threat landscape report lists insider threats among the top 10 information secu-
rity threats, with 77% of companies’ data breaches caused by insiders [23].

Insider threats are particularly relevant for distributed ledgers operated by a
network of independent organizations. These networks are called permissioned,
since they are operated by a restricted set of authenticated member nodes. In this
scenario, intra-organizational insiders are supplemented with external insiders
[25] from other organizations, who also have access to information shared on the
network. According to a recent survey on enterprise adoption of DLT, there are at
least 50 corporations with valuations larger than $1 billion looking to implement
DLT to trade digital assets [11]. Many of these are financial institutions looking
to trade high-value assets, leading to an attractive target for insider attacks.

To appropriately assess trust in distributed ledgers, our trust definition is
based on software trust as defined by Amoroso and Watson [3]: “Software trust
is the degree of confidence that the software will be acceptable for ‘one’s needs’. It
is established after one has become convinced, presumably based on a meaningful
set of information, that the software does not include flaws that will prevent it
from meeting its requirements.”

Besides trust in software components, the second form of trust is related to
assessments of the human agents that collectively control the distributed system
(hereafter referred to as trust actors). We follow Gambetta’s definition of trust
[28]: “Trust (or, symmetrically, distrust) is (...) the subjective probability with
which an agent assesses that another agent or group of agents will perform a
particular action, both before he can monitor such action (...) and in a context
in which it affects his own action.”

The remainder of this work is structured as follows: In Sect. 2 we give a short
overview of related work concerning trust and insider threats with regard to
distributed ledgers. Subsequently, we analyze trust actors, layers and compo-
nents of permissioned distributed ledgers in Sect. 3. Based on our assessment
of trust factors we identify relevant attack vectors for the different groups of
insiders in Sect. 4. In Sect. 5 we perform a threat analysis for 5 popular dis-
tributed ledger frameworks, examining how insiders might exploit these vectors
in practice. Finally, we wrap up by giving recommendations for future research
in Sect. 6 and summarize our results in Sect. 7.

2 Related Work

While research on trust in blockchain systems is still scarce, the Global
Blockchain Benchmarking Study by the University of Cambridge points out

II. RESEARCH PAPERS 118

Dissertation Benedikt Putz, 2022

Trust Factors and Insider Threats in Permissioned Distributed Ledgers 27

that blockchains always require some degree of trust [32]. Recent blog posts
have highlighted trust factors in public permissionless blockchains [47]. Permis-
sioned blockchains rely on similar trust primitives: trust in application code,
network/cryptographic protocols and hardware. We aim to expand upon these
notions by exploring the trust factors in more detail.

Overall, only partial aspects of trust in blockchain networks have been stud-
ied. Locher et al. [38] create a formal model to examine whether a distributed
ledger may fully replace a trusted third party. In the process, they also evaluate
previously proposed use cases of DLT that still require trust in other organi-
zations and third parties. Hawlitschek et al. [30] review the conceptualization
of trust in the blockchain environment. They argue that it is difficult to assess
whether a system is actually trust-free or not. Correspondingly, another study
claims that blockchain shifts trust from central authorities towards algorithms
[39]. However, for this shift to be successful, the algorithms need to be trusted.
Smart contracts represent the application-level algorithms, and their control flow
immutability and independence of third parties have been shown to be lacking
[26]. In addition to algorithmic properties, researchers have also studied user
trust of different stakeholder groups from an HCI perspective [45]. In summary,
research has established the existence of trust factors that contradict the claim
of a trust-free system [30], but a comprehensive model of trust relationships is
still missing.

Despite the severity of insider threats as pointed out by government agency
assessments [23], research regarding insider threats in distributed ledger consor-
tia is still scarce. Numerous surveys on the security of blockchain systems have
been carried out [17,35], but none of them have focused on insiders in particular.
We intend to fill this research gap and provide direction for future research.

In particular, we go beyond existing work by presenting a novel model of trust
actors, their relationships and trusted DLT software components. We use this
model to derive insider threats that organizations face when implementing per-
missioned DLT. By analyzing frameworks popular in both industry and research,
we show that these attacks are applicable in practice. To protect against these
threats, we outline technical and organizational options to mitigate the insider
threats at hand.

3 Trust Factors in Permissioned Distributed Ledgers

Fig. 1. Trust actors and relationships.

II. RESEARCH PAPERS 119

Dissertation Benedikt Putz, 2022

28 B. Putz and G. Pernul

As noted by other researchers, the requirement for trust does not disappear
simply by employing a distributed ledger. Instead, trust shifts from trust in
other organizations to trust in the technology and its operation [38]. In this
section we focus on analyzing the different components of a distributed ledger
system to establish trust actors, layers and components.

Before examining the trust factors in detail, trust actors need to be identified.
There are four types of actors in the DLT ecosystem, three of which directly con-
tribute to trust relationships in a consortium: software service providers, oper-
ators and users [32]. Peripheral actors (i.e. industry initiatives and researchers)
do not directly interact with consortium networks, as they are not involved with
building or operating DLT software. Nevertheless, they contribute by developing
standards, methods and paradigms to solve current technical challenges [32].

An overview of the resulting trust hierarchy is shown in Fig. 1. Software ser-
vice providers (SSPs) develop the software components of a distributed ledger
consortium. They are trustees responsible for creating trust in the technology
by developing secure and reliable applications. Operators represent distinct
groups of actors responsible for running the distributed ledger overlay network
and applications built on top of it. They act as both trustors and trustees: they
trust the chosen DLT software to operate as expected and are also trusted by
their users to provide reliable operations. Finally, Users place their trust in
these applications and rely on them to work as advertised, without knowledge
of the lower layers.

Fig. 2. Distributed ledger software layers and components.

II. RESEARCH PAPERS 120

Dissertation Benedikt Putz, 2022

Trust Factors and Insider Threats in Permissioned Distributed Ledgers 29

The trust actors in Fig. 1 interact using a permissioned distributed ledger
network, which consists of several software layers. Figure 2 shows the layers and
the software components on each layer. They are derived from the three-layer
view of Component Based Systems: platform, middleware and application [43].
The platform in this case consists of various underlying protocols responsible for
storage, cryptography and network communication. Also part of the platform,
but out of scope for this work, are the operating system and hardware layers.
The middleware is represented by an overlay network, which provides config-
urable functionality for operations, identity management and distributed con-
sensus. The applications layer provides replicated application logic (on-chain)
and external logic and data (off-chain). These off-chain applications integrate
with the framework by reading/writing data through its APIs. Each of the com-
ponents within these layers requires software trust: it should be working correctly
and not be maliciously exploitable. Since layers are built on top of each other,
software bugs or vulnerabilities may propagate upwards to affect higher layers.
In the following subsections we elaborate in detail on the layers’ components and
how they are involved in creating trust in the distributed ledger.

Figure 3 integrates trust actors from Fig. 1 with the layers from Fig. 2 by
illustrating which trust actors govern each system layer. While software ser-
vice providers are involved in the development of all three layers, operators do
not interact with the underlying protocols. They merely configure the network
framework and develop applications on top of it. Meanwhile, users only interact
directly with the application layer.

Fig. 3. Intersection of trust actors and layers.

3.1 Protocols

Storage, cryptographic and network protocols carry out the low-level tasks
instructed by the distributed ledger framework and its applications. For this
reason, they form the trust basis of the network.

Storage. A key property of blockchain-based systems is the goal of maintaining
immutability of the underlying chain of blocks. Transaction and block metadata
are stored in relational or key-value databases locally on each node. Replication

II. RESEARCH PAPERS 121

Dissertation Benedikt Putz, 2022

30 B. Putz and G. Pernul

integrity is assured through distributed consensus. The claimed immutability is
a key factor in enabling trust in the technology, but it only holds if storage and
network protocols can be trusted.

Cryptography. A manifold of cryptographic protocols are involved in dis-
tributed ledger operation. They include:

– hash functions for integrity assurance (hash chains, Merkle trees and proofs)
– public key cryptography (authentication of consensus protocol messages and

user-submitted transactions)
– zero knowledge proofs (privacy-preserving transactions)
– symmetric encryption (on-chain confidentiality)

All of these protocols are trusted to not have design or implementation flaws.
Many frameworks assemble their cryptography from a variety of sources, includ-
ing standard libraries, external libraries and custom implementations (see
Sect. 5). While some developers such as the Hyperledger open-source project
perform third-party security audits [33], even the most diligent audits may miss
vulnerabilities. Operators and users must trust protocol design and implemen-
tation, often without the ability to verify due to lack of cryptographic expertise.

Network Protocols. A fundamental trust factor for distributed ledger node
communication is untampered operation of the underlying network. Distributed
ledger networks are overlay networks, so they rely on P2P routing algorithms and
message dissemination protocols for communication. Since all peers are equal,
any single peer may cause disruption in the network by sending anomalous or
malicious traffic. This may cause unexpected behavior and violate the aforemen-
tioned trust assumption.

3.2 Overlay Network

A distributed ledger network is a permissioned overlay network that consensu-
ally maintains a replicated ledger. In this overlay network, independent operators
deploy a software framework previously agreed upon (i.e. Hyperledger Fabric).
There are several tasks that each operator is trusted to fulfill by other partic-
ipants: carry out operations tasks, maintain identity and access privileges and
participate in consensus. The network layer also provides virtualization capabil-
ities for replicated deterministic application execution in the application layer.

Operations. These independent organizations trust each other to perform node
setup and operation without malicious manipulation. While there is some fault
tolerance built into distributed ledgers (see Sect. 3.2), more than two-thirds of
operators must behave honestly if byzantine-fault tolerant protocols are used.

Operation includes consensual admission/removal of members, on-chain
application upgrades and framework upgrades. For the latter, all operators must
agree on a coordinated time for system maintenance. Provided that all partners
agree on the schedule, some partners might not be able to upgrade successfully
[20]. Even if the failure to upgrade is not of malicious intent, it might pose

II. RESEARCH PAPERS 122

Dissertation Benedikt Putz, 2022

Trust Factors and Insider Threats in Permissioned Distributed Ledgers 31

considerable challenges to all involved parties, like setting up a new network and
migrating data. Overall, the process requires significant trust in other organiza-
tions that cannot be mitigated by technology.

Identity and Access Control. Since the network is made up of independent
organizations, each entity must be able to manage its users independently. This
means that every organization must trust the others to properly manage iden-
tities and access rights. Since internal screening and job rotation processes are
usually opaque to others in collaborative business networks [25], this can be
considered blind trust.

Fundamental to permissioned distributed ledgers is an access control mech-
anism that ensures only authorized operators are part of the network. This is
usually realized by assigning each node a public key, which is known to the other
nodes and used to authenticate and secure communication. While admission/re-
moval of node operators is based on majority consensus, other participants must
be trusted to only accept legitimate new members. Additionally, compromise
of a single node’s credentials may undermine the trust assumption of a closed
network.

Consensus. The consensus protocol is the distributed agreement protocol at
the core of a permissioned distributed ledger, allowing all nodes to share a single
replicated state. However, due to fundamental limitations underlying determinis-
tic replicated state machines, less than one-third of participants may be malicious
at the same time [12]. This limit means that operators must trust one another
to act honestly and to not manipulate the consensus protocol.

3.3 Applications

Applications implement the business logic specific to each network. Next to
on-chain smart contracts, off-chain applications and data are often required to
implement all functionality and integrate with other enterprise systems.

On-Chain Applications. On-chain applications are generally referred to as
smart contracts, although this depends on their implementation (see Sect. 5.7).
They promise to replace trust through replicated and verifiable deterministic
execution. Since both code and state can be inspected by anyone with access to
the ledger, their execution is predictable to these parties. However, a number of
smart contract vulnerability studies have shown that code is not always law and
may be exploited to an attacker’s advantage. For example, in 2016 a symbolic
execution tool found almost half of all Ethereum contracts at the time to be
vulnerable [40]. In another study, 2 out 5 deployed Ethereum contracts were
shown to require trust in at least one third party, since parts of their control
flow may be changed after deployment [26].

Off-Chain Applications. One example for off-chain applications are web appli-
cations for user interaction with the distributed ledger. Without a way to verify
what is going on behind the scenes, users must blindly trust that the application
does not manipulate any data sent through it. While this is also the case for

II. RESEARCH PAPERS 123

Dissertation Benedikt Putz, 2022

32 B. Putz and G. Pernul

Table 1. Summary of distributed ledger trust components by layer.

Protocols Overlay network Applications

Storage Operations On-chain applications

Cryptography Identity Off-chain applications

Network Consensus Off-chain data

traditional web applications, a distributed system aiming to create trust should
provide stronger guarantees.

Off-Chain Data. Full replication of the blockchain data structure mandates
parsimony w.r.t. transaction sizes. Distributed ledger applications rely on off-
chain storage solutions to manage larger data volumes. In fact, a recent study
found that a majority of DLT operators only include hashes in on-chain trans-
actions [32], which point to off-chain data and serve as integrity timestamps.
Operators must trust their peers to maintain sustained availability, since off-
chain data is not fully replicated. If off-chain data is access protected, the storage
operator must also be trusted to maintain correct access privileges.

Besides referenced data, external data may also be needed as input for
computation (i.e. currency exchange rates). Since external data sources must
return deterministic results, distributed ledgers rely on trusted external content
providers (oracles) - hereby reintroducing trust elements.

A summary of all identified trust components is shown in Table 1. Overall,
the complexity of the DLT software layers results in a high degree of obscurity.
It becomes increasingly difficult to verify correctness and security of the software
stack. The trust actors (operators, users and software service providers) must
trust both software components and each other to act as expected. In the next
section, we focus on how insiders can exploit these trust assumptions.

4 Insider Threats

Given the aforementioned trust elements required for operating a permissioned
distributed ledger network, insider attacks may pose a significant threat. With
the emergence of business networks and blockchain consortia for data sharing,
the partners’ information systems infrastructures are no longer isolated environ-
ments with a protectable logical perimeter. Access to an organization’s resources
is implicitly simplified for outsiders that are part of the consortium. This is a
direct consequence of sharing information with other organizations.

As a result, a holistic security model must also include actors from net-
work partners. This group of threat actors is also known as external insiders.
External insiders are characterized by having limited access to an organization’s
network as a result of some business relationship [25]. In a distributed ledger con-
text, the relationship may be the result of a collaborative network with multiple
organizations.

II. RESEARCH PAPERS 124

Dissertation Benedikt Putz, 2022

Trust Factors and Insider Threats in Permissioned Distributed Ledgers 33

Table 2. Overview of insider threats and consequences.

Insider type Threat MO DE DI DU

Software service provider Vulnerability injection x x x x

Operator Denial of service x

Data manipulation x x x

Credential compromise x x x

Malicious misconfiguration x x

User Unauthorized operations x x

All Vulnerability abuse x x x x

Information leakage x

Subsequently, we describe the various insider threats to distributed ledgers by
analyzing each group of trust actors. Irrespective of an insider’s group, there are
generally four types of consequences an insider might achieve in an attack [37]:

– Modification (MO)
– Destruction (DE)
– Disclosure (DI)
– Denial of use (DU)

Insiders may exist in any of the three groups of trust actors stated in Fig. 1.
Depending on the group, there are different ways to exploit their privileges.
Table 2 lists the major categories of insider threats and their consequences in
distributed ledger consortia. While many of these threats are also applicable to
existing information systems, distributed ledgers are particularly vulnerable due
to the large number of software components and cross-organizational users.

Permanent modification or destruction of data are generally difficult to
achieve with DLT due to built-in fault tolerance and replication. Nevertheless,
collusion-based data manipulation or software vulnerabilities may cause data
manipulation on all nodes. Disclosure of information and denial of use are the
more likely consequences of an insider attack on a distributed ledger. They are
significantly easier to accomplish and may be achieved with user or operator
level permissions. We elaborate on these threats in detail hereafter.

4.1 Software Service Providers

If an insider is in the role of an internal software developer with full code access,
there is significant threat potential for any of the four consequences to happen.
Collins et al. [15] have surveyed a variety of methods that programmers acting as
malicious insiders have used in the past. Common methods are code modification
or injection of malicious code, causing vulnerabilities. Characteristic for this type
of manipulation is a time delay between injection and impact of the attack, since
software builds go through testing and deployment phases. In large software

II. RESEARCH PAPERS 125

Dissertation Benedikt Putz, 2022

34 B. Putz and G. Pernul

projects without strict code review procedures, these types of manipulations
may easily go under the radar of other developers. Vulnerabilities can then be
abused by the programmer or colluding operators/users. They may corrupt the
integrity and availability guarantees that a distributed ledger provides, leading to
manipulation or loss of information. Intentionally timed bugs may cause network
unavailability. Backdoors (either for outsiders or insiders) could be inserted that
lead to disclosure of confidential information.

The potential attack vectors depend on the developer’s area of responsibility
(protocol/framework/application level). Currently, distributed ledger protocols
and overlay-level frameworks are often provided by open-source initiatives. If an
open-source project is subject to peer-review and security audits, these parts
of the software are unlikely to be affected by insider attacks threatening a sin-
gle organization. However, applications built on these frameworks must be cus-
tomized to specific business requirements—either by employees or third party
developers. For this reason, the application level is more prone to software devel-
opment insider threats. Business networks may collaboratively develop applica-
tions, which extends this attack vector to external insiders.

4.2 Operators

Overall operators have the largest number of insider attack options at their dis-
posal, since they directly control a network node. Even though a single operator
controls only one node, malicious behavior may have powerful denial-of-service
effects on networks with few participants, as mentioned in Sect. 3.2.

In larger networks, operators could take advantage of their knowledge about
the current consensus leader. A malicious operator may launch a targeted denial
of service attack to cause network interruptions (see Sect. 5.6). Additionally,
collusion of operators from other organizations (i.e. by external insiders) might
result in denial of service, if it leaves the network unable to reach consensus.
Generally, network operators have a common goal and should not be inclined
to collude against others. This might change if goals shift, or partners feel that
they contribute more to the network than they gain in return.

An insider might attempt to accomplish modification of stored data by coor-
dinating an attempt to replace ledger data in collusion with other nodes. This
type of attack is known as a 51%-attack for permissionless blockchains [35]. Gen-
erally this is only feasible if consensus is stochastic, while permissioned networks
usually rely on deterministic consensus. Nevertheless, availability of off-chain
data with low replication factors is still at risk.

System administrator insiders have access to all relevant credentials for node
operation. These credentials can be leaked, or misused by adding/removing users
or manipulating access control privileges at will.

Another way to subvert data integrity is configuration manipulation. Suc-
cessful configuration manipulation requires collusion, since such changes need to
be approved by a majority of operators in properly configured networks. With-
out automated punishment mechanisms, a single misbehaving node may however
still cause temporary service disruption.

II. RESEARCH PAPERS 126

Dissertation Benedikt Putz, 2022

Trust Factors and Insider Threats in Permissioned Distributed Ledgers 35

4.3 Users

Users have only a limited number of options for exploiting the distributed ledger
network. Nevertheless, due to external insiders the number of potential attackers
is higher than in intra-organizational applications. Improperly managed access
rights for these users may enable leakage of confidential information.

Another attack vector are vulnerabilities in custom-developed contracts.
They could enable insiders to carry out unauthorized asset transfers or even shut
down an application. Insiders might have increased knowledge about application
internals such as access to source code and technical documentation, enhanc-
ing their ability to discover programming flaws and carry out unauthorized
operations.

It is important to note that threats are not strictly restricted to a specific
group of trust actors. For example, operators may also impersonate users if
they control the identity component. Conversely, users may gain operator-level
privileges through improper access right management.

In fact, some threats are exploitable by any actor with access to the dis-
tributed ledger network. Whether intentional or inadvertent, vulnerabilities can
be abused by any insider with the required knowledge and skills. Since all nodes
of the network likely run the same software, remote code execution vulnerabil-
ities may lead to irreversible manipulation or loss of data. Similarly, any par-
ticipant with access to distributed ledger data may leak data to parties outside
the network. The extent of information leaked depends on the insider’s access
privileges.

5 Insider Threat Analysis of Popular Frameworks

To demonstrate applicability of the identified insider threats to permissioned
blockchain frameworks, we conduct a technical threat analysis of several pop-
ular blockchain frameworks. Frameworks were selected based on a survey of
industry and research support conducted in July 2019. Regarding industry sup-
port, the Ethereum Enterprise Alliance (240 members), the Hyperledger project
(249 members) and R3 (92 members and 294 partners) were the largest enter-
prise consortia working on open-source permissioned DLT frameworks. To gauge
research interest, we searched several literature databases for mentions of per-
missioned distributed ledger frameworks. We used fulltext search since some
framework names are ambiguous and might be used with a different meaning in
a distributed systems context (i.e. Quorum). The search result counts totaling
close to 1000 academic publications are shown in Fig. 4. As a result of this survey
we decided upon the four frameworks detailed below.

We briefly describe each framework below and summarize the technolog-
ical components in Table 4. To future-proof our analysis, we mainly analyze
threats resulting from architectural design choices, which are unlikely to change
in the future. We assume that operators strive for a secure configuration, which
includes a byzantine-fault tolerant (BFT) consensus algorithm to prevent byzan-
tine manipulations.

II. RESEARCH PAPERS 127

Dissertation Benedikt Putz, 2022

36 B. Putz and G. Pernul

612

164

86
48 31 22 11

0

100

200

300

400

500

600

700

"Hyperledger
Fabric"

go-ethereum AND
permissioned

"R3 Corda" "Hyperledger
Sawtooth"

multichain.com OR
"multichain/multichain"

JPMorgan AND
Quorum

"Hyperledger Iroha"

IEEE ScienceDirect SpringerLink ACM

Fig. 4. Research popularity of distributed ledger frameworks (search result count by
search term and academic database).

Hyperledger Fabric is a blockchain framework relying on a novel execute-
order-validate architecture. This architecture was created to rule out source of
non-determinism during consensus and improve performance [4]. We assume that
the BFT-SMaRt consensus algorithm1 [9] is used for ordering service consensus,
since it is to our knowledge the only currently available BFT consensus module
for Fabric.

Hyperledger Sawtooth [49] is a blockchain framework, which modularizes
transaction processing with so-called transaction families. They include prede-
fined families for permissioning and on-chain settings management. Consensus
is also modular, but we assume that the Practical Byzantine Fault Tolerance
(PBFT)2 [12] module is used.

Ethereum [18,24] is a popular permissionless blockchain framework, which
runs smart contracts written in the Solidity language in an isolated environment
called the Ethereum Virtual Machine. The go-ethereum client can also be set
up as a permissioned network with Clique Proof-of-Authority (PoA) consensus.
PoA is a leader-based consensus protocol with stochastic consensus, which only
provides eventual consistency as opposed to strong consistency provided by BFT
algorithms. It only requires 50% for a consensus majority, trading consistency
for availability.

R3 Corda [31,44] is based on a DAG data structure and only shares data
with other nodes when needed. To prevent double spending, mutually agreed
upon notary service clusters are used for consensus. We assume that BFT-SMaRt
consensus is used among notaries, since it is the only built-in consensus algorithm
which tolerates byzantine faults.

All of these frameworks have unique differences in their architecture and
the way applications are built on them. While some threats are applicable to
all frameworks, others apply only to specific frameworks due to architectural

1 github.com/bft-smart/fabric-orderingservice.
2 github.com/hyperledger/sawtooth-pbft.

II. RESEARCH PAPERS 128

Dissertation Benedikt Putz, 2022

Trust Factors and Insider Threats in Permissioned Distributed Ledgers 37

Table 3. Mapping of insider threats to abused distributed ledger trust components.

Threat 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9

Vulnerability injection x x x x x

Denial of service x x
Data manipulation x x x
Credential compromise x
Malicious misconfiguration x x x

Unauthorized operations x x

Vulnerability abuse x x x x
Information leakage x x x

choices. Subsequently, we survey each framework’s trust components and analyze
where insiders may abuse architectural flaws.

Table 3 highlights which framework components that each type of threat
exploits. The columns represent the subsections corresponding to the affected
trust components. Corresponding to the trust actors that each threat applies
to (Table 2) and their ability to access various trust layers (Fig. 3) some cells
are marked gray (not applicable). Vulnerability injection does not result in a
vulnerability abuse threat if the vulnerability can only be effectively abused by
the software service provider. Hereafter, we explain per component how each
threat may occur. Threats are italicized when they refer to a table entry.

5.1 Storage

The surveyed distributed ledger frameworks mostly rely on existing key-value
databases for data storage (i.e. LevelDB and CouchDB). None of these databases
offer encryption-at-rest, which means anyone with access to the database can
read all historical data contained in the ledger. Corda marks the exception: it
relies on relational databases, some of which offer encryption. Nevertheless, the
database itself is an attractive attack vector for operator insiders, who may
circumvent framework-level access control by directly accessing the underlying
database (information leakage).

5.2 Cryptography

Currently, distributed ledgers almost exclusively use public key cryptography
for authentication. The reviewed frameworks use NIST-recommended ECDSA
curves in combination with SHA2 for digital signatures, with some also offering
EdDSA and RSA. These algorithms are vulnerable to quantum attacks based on
Shor’s algorithm [6] (vulnerability abuse). Such attacks threaten the authenticity
of transactions and network messages (see Sect. 5.5). If symmetric keys were
encrypted using public key cryptography, this may also result in information
leakage. Once quantum computers reach sufficient computational power, current

II. RESEARCH PAPERS 129

Dissertation Benedikt Putz, 2022

38 B. Putz and G. Pernul

ledgers will have to be rebuilt from scratch with new identity schemes. Instead
of relying on a single cryptographic primitive, developers should instead adopt a
more future-proof approach. For example, quantum-proof hash-based signature
schemes use hash combiners, which remain secure if at least one of the input
hash functions is secure [6]. In our review, only Corda offers such a scheme
with SPHINCS2563. Still, no framework provides guidance for migration between
signature schemes.

Due to the unique challenges of trust in distributed environments, some
distributed ledger frameworks rely on new variants of cryptographic protocols
with unproven implementations (especially novel non-interactive zero-knowledge
proofs such as zk-STARKs [8]). While we are not aware of any cryptographic
flaws in the reviewed permissioned frameworks, there are examples among per-
missionless blockchains. Recently, a zero-knowledge proof vulnerability in the
permissionless blockchain Zcash was publicized, which had been kept secret by
the development team for more than 11 months [48]. In this case the developer
that discovered the bug did not have malicious intentions and worked on fixing
the bug instead of exploiting it. But the incident shows that open-source code is
not immune to longstanding hidden vulnerabilities. These may even be inserted
into the code intentionally by members of the development team (vulnerability
injection). If discovered by malicious actors, they could be kept secret for con-
tinued exploitation. Overall, trust in the security of cryptographic protocols is
not guaranteed and may be undermined at any time.

5.3 Network Protocols

The reviewed frameworks rely on different network protocols for node-to-node
communication. The ZeroMQ protocol4 used in Sawtooth and the AMQP proto-
col5 used in Corda have experienced denial of service and remote code execution
vulnerabilities in the past6. External insiders, who know about the underlying
protocols, may abuse these vulnerabilities to cause damage to specific competi-
tors in the network (vulnerability abuse).

Consensus protocols require constant network communication between all
involved nodes. For this reason, they are vulnerable to network-partitioning
attacks such as Border Gateway Protocol (BGP) hijacking and Eclipse attacks
[35]. These attacks have so far mainly been observed and studied on permis-
sionless blockchains. In permissioned blockchains, manipulations of the routing
protocol or network traffic interception can also lead to network partitions [22].
If none of the partitions are large enough to reach consensus, the network will
stop processing incoming transactions (deterministic algorithms) or create com-
peting forks (stochastic algorithms) [21]. For some consensus algorithms, these
network partitions can even allow malicious double-spending transactions (see
Sect. 5.6).

3 sphincs.cr.yp.to.
4 zeromq.org.
5 www.amqp.org.
6 cve.mitre.org.

II. RESEARCH PAPERS 130

Dissertation Benedikt Putz, 2022

Trust Factors and Insider Threats in Permissioned Distributed Ledgers 39

Table 4. Overview of software components used in popular distributed ledger
frameworks

Hyperledger

Fabric v1.4

Hyperledger

Sawtooth v1.1

Go-Ethereum v1.9 Corda v4.1

On-chain

contracts

Chaincode (Go,

nodeJS, Java)

Transaction

Processor (see

below)

Smart Contract

(Solidity)

CorDapps (Java)

Off-chain

applications

Go, Java,

nodeJS, Python

Go, Java, nodeJS,

Python, C++, C#,

Swift

Web3 (nodeJS) Java

Off-chain

data

– – Swarm Oracles

Operations ReST

Operations

Service, CLI

Settings TP, CLI RPC CLI RPC CLI

Identity Membership

Service Provider

Identity Transaction

Processor

Accounts Hierarchical PKI,

Doorman Service

Consensus Endorsements

(custom),

Ordering (Kafka,

BFT-SMaRt)

Journal (PoET,

Raft, PBFT)

PoA, IBFT Notary (Raft,

BFT-SMaRt)

Storage LevelDB,

CouchDB

LMDB LevelDB, RocksDB H2, Postgres,

SQLServer

Cryptography ZKP: idemix

Signature:

ECDSA

P256/384,

Hash: SHA256,

SHA3

Encryption: AES

Hash: SHA256/512

Signature:

libsecp256k1

Hash: Keccak

Signature (using

SHA256/384/512,

AES): ECDSA

P256, P384, P521,

S256, bn256

Hash: SHA256

Signature (using

SHA256/512, AES):

RSA; ECDSA

secp256r1,

secp256k1;

EdDSA-ed25519;

SPHINCS256

Network GRPC, Gossipa ZeroMQ devP2Pa AMQP
acustom protocol

5.4 Operations

Regarding operational tools, the frameworks offer little in terms of monitoring
capabilities. Only command-line interfaces (CLI) and transaction types for on-
chain settings (Hyperledger Fabric and Sawtooth) are offered to retrieve metrics
and update settings. Without significant effort by the operators, this may lead
to manipulations of configuration settings going undetected (malicious miscon-
figuration). Additionally, intentional manipulations of consensus network traffic
are nearly impossible to detect without proper monitoring. For example, TCP or
UDP flooding attacks reduce transaction throughput to a small fraction of peak
throughput [14]. Lack of monitoring facilities effectively allows operator (exter-
nal) insiders to control network throughput by launching attacks when desired
(denial of service).

Despite their initial immutability, smart contracts can be upgraded in all
surveyed frameworks7. If only bytecode is available for inspection, there is no

7 Ethereum only allows upgrades if the contract has been set up in a modular way.

II. RESEARCH PAPERS 131

Dissertation Benedikt Putz, 2022

40 B. Putz and G. Pernul

easy way to tell what part of the contract was changed. Since smart contracts
may contain vulnerabilities or require feature extension, upgrades cannot be
regarded as unusual per default. Individual operator insiders may abuse this
fact by upgrading a contract with malicious functionality (vulnerability injec-
tion). Requiring signatures of multiple operators for a successful upgrade is a
potential mitigation, but the contract needs to be set up with multiple owners
for this to apply (Ethereum, Fabric). Corda requires all participants that share
a state to sign contract upgrades, but contract signature constraints also permit
custom rules that require less signatures for an upgrade [44]. Sawtooth offers
no mechanism for coordinated upgrades. Transaction processors run as indepen-
dent processes next to the validator network and are upgraded by each operator
individually.

5.5 Identity and Access Control

All permissioned networks must admit identities through some form of a gate-
keeper. Distributed ledger frameworks attempt to decentralize admission of val-
idating nodes by voting on new members. This does not apply to users, who
must receive a certificate through a validating node or its certificate authority.
In Ethereum and Sawtooth, there is no certificate infrastructure integration:
users either create accounts themselves or request them from a node administra-
tor. However, account pseudonyms need to be mapped to real-world identities
for many applications. A lack of certificates complicates permission revocations,
which then need to be performed on the application level. Lack of a single source
of truth for identity also leads to excessive access rights over time, which enable
insider abuse [27]. A potential consequence of unchecked access rights is infor-
mation leakage.

Conversely, Hyperledger Fabric and Corda rely on traditional hierarchical
PKIs with a root authority. In these systems, each node operates its own certifi-
cate authority. Certificates are then shared across the network through a feder-
ation service. As a result, each validator node recognizes the identities issued by
its peers. From an insider perspective, this means that any employee with access
to the gatekeeper of a participating organization can create valid identities for
the entire network. By subverting the local certificate authority, operator insiders
may replace associated node’s certificate and impersonate it (credential compro-
mise). Accordingly, a collusion between CA operators can subvert multiple node
identities and overtake the network, thus enabling data manipulation.

Fundamentally, the identity component relies on the underlying crypto-
graphic signature protocols. If a cryptographic primitive is broken, credentials
can be forged by issuing fake signatures. Fake signatures in turn enable data
manipulation and malicious misconfiguration through malicious transactions.

5.6 Consensus

The surveyed permissioned distributed ledger frameworks rely on crash fault-
tolerant (CFT) or byzantine fault-tolerant (BFT) algorithms. CFT algorithms

II. RESEARCH PAPERS 132

Dissertation Benedikt Putz, 2022

Trust Factors and Insider Threats in Permissioned Distributed Ledgers 41

do not tolerate any malicious activity and are built only to tolerate crashes [10].
As a result they are prone to manipulation by any one operator and not well
suited for usage in semi-trusted environments like business networks. Despite
this, most frameworks in our survey recommend CFT protocols and mark BFT
consensus implementations as experimental.

If operators use BFT algorithms, up to f malicious nodes among n = 3f + 1
total nodes are tolerated without ceasing operation. Byzantine failures encom-
pass all possible failure modes of a system. The performance of most BFT algo-
rithms is however heavily impacted by the presence of failures and no consensus
is reached with more than f failures. As a result, a single operator can signif-
icantly decrease throughput in PBFT-based networks with n < 7 independent
nodes (3f + 1 = 7 | f = 2) by flooding the network with messages [14]. Collu-
sion between two operators can even shut down network consensus and prevent
new transactions (malicious misconfiguration). Therefore, smaller permissioned
networks are especially at risk of denial of service by a minority of participants.
In addition to flooding-based denial of service, malicious consensus leaders can
also degrade performance in most BFT consensus protocols [5].

The PoA algorithm used by permissioned Ethereum networks is vulnerable
to the Attack of the Clones [22]. In the attack, a single malicious node can
double spend with high probability. By cloning itself and intercepting messages,
a network partition is created. The victim partition is deceived by submitting
a conflicting transaction to the other partition, which is later accepted as the
canonical transaction (data manipulation). Based on the authors’ assessment,
the only viable countermeasures are switching to a BFT algorithm or requiring
a two-thirds majority instead of the current 50%.

In addition to protocol flaws, vulnerability injection in the consensus protocol
implementation may lead to nodes accepting invalid or malicious transactions.
This could be abused by SSP insiders to circumvent on-chain access permissions
and transfer assets or tokens.

Fig. 5. Illustration of injection and delayed abuse of a vulnerability by a SSP insider.

II. RESEARCH PAPERS 133

Dissertation Benedikt Putz, 2022

42 B. Putz and G. Pernul

5.7 On-Chain Applications

Transparency is an often-cited advantage of smart contracts. In the surveyed
frameworks, contract code is rarely transparent to all operators, and never to
users. In Hyperledger Fabric, chaincode source code is only known to the peers
specified in its endorsement policy. For Sawtooth, bytecode is deployed when
using the Seth (Solidity), Sabre and Java SDKs. For transaction processors
based on the Python and nodeJS SDKs the source code is transparent, since
they are interpreted languages. In Ethereum, only compiled Solidity bytecode
is visible to blockchain node operators. Corda’s CorDapps are only shared by
peers concerned with the application, who need to compute the state changes for
notary consensus. A lack of transparency can lead to undetected manipulations,
for example through covert contract upgrades.

To demonstrate how this might occur in practice, Fig. 5 illustrates the three
steps of vulnerability injection and subsequent vulnerability abuse. First, the SSP
insider injects a vulnerability into an on-chain or off-chain application (1). With
the next scheduled operational software upgrade, operators deploy the vulnerable
version of the software to the production network (2), permitting the insider to
abuse the vulnerability (3).

For Hyperledger Fabric, the two most popular SDKs on GitHub are based
on nodeJS and Go. Both languages allow package imports from public version
control sites such as GitHub. This method could be abused by a software service
provider to conceal malicious functionality in the chaincode or insert a backdoor.
By changing the code of a self-controlled dependency, the developer gains the
ability to manipulate dependent code sections, while obscuring the changes from
the client. Additionally, existing vulnerabilities in packages may be knowingly
included by a SSP insider to be exploited later on. Due to the large number
of transitive dependencies, the nodeJS dependency management system npm is
especially prone to attacks based on existing vulnerabilities [19]. For Ethereum
smart contracts, many vulnerability classes are known [35] due to public scrutiny
and open source application bytecode. For Sawtooth and Corda there are not
many production deployments yet, so to the best of our knowledge we are not
aware of any vulnerabilities.

To summarize, chaincode and smart contract vulnerabilities may manipu-
late the output state of a contract (data manipulation), prevent consensus by
introducing non-determinism (denial of service), and leak secrets by sending con-
fidential data to parties outside the network (information leakage). Additionally,
users may be able to conduct unauthorized operations due to a smart contract
permission management vulnerability.

5.8 Off-Chain Applications

Production deployments of DLT must include a client software, since direct
interaction with a blockchain node is not user-friendly and requires command
line skills. This client software relies on Software Development Kits (SDKs)
published by software service providers. Table 4 shows the diverse programming

II. RESEARCH PAPERS 134

Dissertation Benedikt Putz, 2022

Trust Factors and Insider Threats in Permissioned Distributed Ledgers 43

languages that these SDKs use. For SDKs using package managers, the same
attack vector from Sect. 5.7 applies (vulnerability injection). SSP insiders may
abuse SDKs or client software to hijack user identities and thus gain access to
the distributed ledger network (credential compromise).

5.9 Off-Chain Data

For referenced off-chain data, the reduced replication factor exposes data avail-
ability to collusion attacks. Depending on the replication factor r of items stored
off-chain, r operators may collude to irreversibly delete a key-value pair stored
off-chain (data manipulation).

Off-chain events providing external data are not natively supported by the
surveyed frameworks. The requirement for code determinism runs counter to
uncertain responses from external sources. Consequently, external data is often
integrated via trusted applications that attempt to guarantee response integrity.
These applications are referred to as validation oracles [52]. They act as auto-
mated arbitrators that sign transactions referencing external data on demand.
Corda is the only framework that provides built-in integration with centralized
oracle services for this purpose. They are accepted as an authoritative source
of data by a set of peers. An insider may compromise that service and manipu-
late transactions at will, without needing access to the distributed ledger (data
manipulation). Depending on the application, such attacks can be hard to dis-
cover, since the oracle service is not transparent to all operators. Alternative
proposals that avoid relying on a centralized provider include secure hardware
architectures such as Town Crier [53], and cryptocurrency-based decentralized
blockchain oracles such as Astraea [1].

6 Mitigations and Future Research

The previous sections have shown how various types of trust actors in a dis-
tributed ledger system may abuse trust components and carry out insider
attacks. Based on these insights, we now elaborate how DLT adopters can better
assess which components they trust, and how they can mitigate resulting insider
threats.

6.1 A Realistic View of Trust in Distributed Ledgers

Instead of regarding blockchain as “trustless”, DLT adopters should be aware
of the technological components that their trust relies on. First and foremost,
software trust management processes should be established to ensure that trust
is warranted. The inherent failure modes and consequences should be integrated
into organizational risk management.

Regarding trust in the various software components of distributed ledgers,
software trust research has established trust principles and an ordered set of
classes for software trust measurement [3]. The classes range from Untrusted

II. RESEARCH PAPERS 135

Dissertation Benedikt Putz, 2022

44 B. Putz and G. Pernul

(T0) to Trusted (T5) and require a progressively larger set of trust principles to
be fulfilled. Classes T4 and T5 aim to prevent malicious activity and could be
used to certify components for inclusion in trusted distributed ledgers.

To reduce the implicit trust resulting from allowing others to manage iden-
tities and access rights, trust-based distributed access control models could be
used. Such frameworks include risk assessment processes that dynamically adapt
to users’ behavior [7]. Additionally, next generation decentralized blockchain-
based identity management could enable consensus-based trust in external users,
instead of relying on federated membership schemes.

To increase trust in smart contracts, a number of approaches have been
proposed. Business and legal smart contract specification languages based on
formal reasoning can help reduce ambiguity for programmers and lock down
edge cases [2].

To make user interaction with distributed ledgers more transparent, “decen-
tralized applications” (DApps) may be used. DApps are web applications relying
solely on an on-chain application backend. DApp frontends should be distributed
as client-only applications, with code only served from, but not executed on a
centralized web server. This ensures that code execution is fully transparent to
end-users. Transaction submission to the blockchain can be explicitly authorized
using open source browser extensions (i.e. MetaMask [42]).

6.2 Insider Threat Mitigation

Techniques for insider threat mitigation have been studied extensively in the past
[16]. They require an interdisciplinary mitigation approach, combining insights
from computer science, psychology and other fields. Correspondingly, mitigation
techniques can be classified as technical or organizational. We have analyzed
mitigation techniques in the literature and applied them to the threats men-
tioned in Table 2. The result of this analysis is shown in Table 5. We emphasize
technical measures, but organizational mechanisms are sometimes required and
often beneficial.

To counter injection of vulnerabilities or flaws by software service
providers, code review processes help assure sufficient oversight and reduce the
probability for malicious activity to go unnoticed. From a framework perspective,
transparency should be assured by embedding on-chain application code into the
distributed ledger framework. Participants should be able to retrieve source code
for a contract at any given time. Re-compiling source-code from a repository is
too time-consuming and error-prone to serve as a verification method for smart
contract bytecode.

Additionally, dedicated vulnerability scanners exist specifically for dis-
tributed ledger on-chain applications [40]. Whether these scanners are suitable
for detecting insider-induced intentional manipulations of program flow has yet
to be shown. Future empirical research may also analyze specific programming
techniques that insiders use to attack distributed ledgers, similar to the study
conducted by Collins et al. [15].

II. RESEARCH PAPERS 136

Dissertation Benedikt Putz, 2022

Trust Factors and Insider Threats in Permissioned Distributed Ledgers 45

Table 5. Overview of potential mitigations for insider threats. O: organizational, T:
technical.

Threat Mitigation O/T

Software service

provider

Vulnerability injection Software trust

management

O

Code review and

transparency

O, T

Vulnerability scanners T

Operator Denial of service Legal agreements O

Robust consensus

algorithms

T

Data manipulation Automated detection and

punishment

T

Credential compromise Credential revocation

mechanisms

T

Malicious

misconfiguration

Configuration integrity

checks

T

User Unauthorized operations Activity monitoring O, T

Anomaly detection T

All Information leakage Granular Identity and

Access Management

T

Granular encryption T

Vulnerability abuse Software update

management

T

Intentional denial of service caused by a collusion of operators may be
mitigated through legal agreements and incentives. While research on collusion
in distributed ledger networks is still scarce, trust-based reputation algorithms
could help. They may prevent collusion attempts or at least minimize their
impact on network availability by punishing colluding peers. In the past, repu-
tation systems based on peer-to-peer networks have also faced the issue of col-
lusion [41]. Future research could thus transfer insights on collusion prevention
from peer-to-peer reputation systems research and related areas to distributed
ledgers.

Regarding consensus attacks targeting network availability and throughput,
robust consensus algorithms such as RBFT [5] can help. Robust protocols sacri-
fice some throughput compared to traditional algorithms [14], but maintain high
availability and throughput regardless of attacks.

Activity monitoring tools and corresponding organizational processes assist
with timely detection of data manipulation. The threats listed in this work can
serve as guidance for activities to monitor. To prevent insider abuse by unchecked
node administrators, monitoring should be part of IS security management and
organizationally separated from operational IS administration. Similarly, certifi-
cate authority and DLT node should be managed by separate entities. If any
entity attempts to manipulate node settings, automated configuration integrity

II. RESEARCH PAPERS 137

Dissertation Benedikt Putz, 2022

46 B. Putz and G. Pernul

checks should raise alerts in security monitoring units across the network. In
case of external insiders, attack attempts should be punished either through
legal agreements or a built-in incentive system.

Transaction anomaly detection could help spot unauthorized operations. If
anomalies are detected in time, further abuse of permissions can be prevented.
For traditional database systems, tools have been developed that automatically
determine profiles of normal activity based on application profiles [34]. Similar
security analytics tools can be developed to detect anomalous smart contract
transactions.

One of the main countermeasures for information leakage by users is gran-
ular identity and access management (IAM) [27]. If users cannot send trans-
actions or access ledger data without first being authorized by an application
owner, the attack surface becomes significantly smaller. For authorized users,
automated detection and timely removal of access privileges helps limit per-
mission buildup and impact of insider attacks. Still, it remains challenging to
ensure that each operator of the network keeps its individual permissions and
access rights updated. Future work could examine how to enforce granular IAM
network-wide, for example through automated checks or incentives.

Another tool to limit malevolent information disclosure is granular encryption
of data, ensuring that users are only able to view data they need to access. Orga-
nizations must correctly decide where to encrypt data on the application level.
Additionally, they should be parsimonious regarding confidential data stored on
the ledger. Symmetric encryption keys may eventually be leaked, but on-ledger
data cannot be deleted.

Overall, we observe that a holistic security monitoring concept is necessary
for each organization participating in a distributed ledger network. A set of
standardized monitoring metrics is a necessary prerequisite to detect manipula-
tions of the various trust components. Due to unique differences in distributed
ledger architectures, the metrics need to be customizable to the specific appli-
cation context. One metric should be vulnerabilities in framework components,
with automated software update processes attempting to minimize the number
of vulnerabilities. Future work should focus on creating and evaluating such a
security management framework for permissioned distributed ledger networks.

7 Conclusion

While distributed technology offers great benefits, organizations planning to take
advantage of it should be aware of the trust relationships they enter. In this
work, we established key trust actors and components for distributed ledgers to
provide a better understanding of hidden trust factors and security risks. On
the one hand, software trust in the components of a distributed ledger system
is a key factor. If there are vulnerabilities or bugs, trust assumptions may be
violated with grave consequences. Additionally, operators must still trust one
another to some degree to cooperatively run a network. If this trust turns sour
during operation, the distributed ledger network may become subject to denial
of service or collusion attacks.

II. RESEARCH PAPERS 138

Dissertation Benedikt Putz, 2022

Trust Factors and Insider Threats in Permissioned Distributed Ledgers 47

These attacks may be especially severe if carried out by insiders. They pos-
sess unique access to organizational resources that may facilitate subversion of
distributed ledger trust assumptions. Insiders involved in application develop-
ment may willingly inject vulnerabilities or malicious code. Node administrator
insiders have elevated access rights to credentials and configuration. Malicious
manipulation of these components may result in denial of service for the entire
network. Modification or destruction of data are also possible in some cases (see
Sect. 4), despite the integrity guarantees that distributed ledgers normally pro-
vide. Both internal and external insiders may leak data or abuse vulnerabilities
in the distributed ledger software stack.

Due to the current lack of productive deployments of distributed ledger net-
works, this work focused on analyzing the potential impact of insider attacks
from a theoretical perspective. To reinforce these claims, we elaborated on how
insiders may exploit the architecture of popular distributed ledger frameworks.
Future research may conduct case studies with real deployments of these frame-
works to validate the listed insider threats and to further develop mitigations.

References

1. Adler, J., Berryhill, R., Veneris, A., Poulos, Z., Veira, N., Kastania, A.: ASTRAEA:
a decentralized blockchain oracle. In: 2018 IEEE International Conference on
Blockchain (2018). https://doi.org/10.1109/Cybermatics 2018.2018.00207

2. Al Khalil, F., Butler, T., O’Brien, L., Ceci, M.: Trust in smart contracts is a
process, as well. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp.
510–519. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 32

3. Amoroso, E., Nguyen, T., Weiss, J., Watson, J., Lapiska, P., Starr, T.: Toward
an approach to measuring software trust. In: Proceedings of 1991 IEEE Com-
puter Society Symposium on Research in Security and Privacy, pp. 198–218 (1991).
https://doi.org/10.1109/RISP.1991.130788

4. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference,
EuroSys 2018, pp. 30:1–30:15. ACM, New York (2018). https://doi.org/10.1145/
3190508.3190538

5. Aublin, P.L., Mokhtar, S.B., Quema, V.: RBFT: redundant byzantine fault toler-
ance. In: Proceedings of International Conference on Distributed Computing Sys-
tems, pp. 297–306 (2013). https://doi.org/10.1109/ICDCS.2013.53

6. Bansarkhani, R.E., Geihs, M., Buchmann, J.: PQChain: strategic design decisions
for distributed ledger technologies against future threats. IEEE Secur. Priv. (2018).
https://doi.org/10.1109/MSP.2018.3111246

7. Baracaldo, N., Joshi, J.: A Trust-and-risk aware RBAC framework: tackling insider
threat. In: SACMAT 2012: Proceedings of the 17th ACM symposium on Access
Control Models and Technologies (2012)

8. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Eprint.Iacr.Org (2018). https://doi.
org/10.1016/j.bspc.2009.02.004

9. Bessani, A., Sousa, J., Alchieri, E.E.P.: State machine replication for the masses
with BFT-SMART. In: DSN, vol. 6897, pp. 355–362, December 2014. https://doi.
org/10.1109/DSN.2014.43

II. RESEARCH PAPERS 139

Dissertation Benedikt Putz, 2022

48 B. Putz and G. Pernul

10. Cachin, C., Vukolic, M.: Blockchain consensus protocols in the wild. In: Richa,
A.W. (ed.) 31st International Symposium on Distributed Computing (DISC 2017).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 91, pp. 1:1–1:16.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2017). https://doi.
org/10.4230/LIPIcs.DISC.2017.1

11. del Castillo, M.: Blockchain 50: Billion Dollar Babies (2019). https://www.forbes.
com/sites/michaeldelcastillo/2019/04/16/blockchain-50-billion-dollar-babies

12. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recov-
ery. ACM Trans. Comput. Syst. 20(4), 398–461 (2002). https://doi.org/10.1145/
571637.571640

13. Chia, V., et al.: Rethinking blockchain security: position paper. In: 2018 IEEE
International Conference on Blockchain (2018). http://arxiv.org/abs/1806.04358

14. Clement, A., Wong, E., Alvisi, L., Dahlin, M., Marchetti, M.: Making byzantine
fault tolerant systems tolerate Byzantine faults. In: NSDI 2009: Proceedings of the
6th USENIX symposium on Networked systems design and implementation (2009).
https://doi.org/10.1145/1989727.1989732

15. Collins, M., Cappelli, D.M., Caron, T., Trzeciak, R.F., Moore, A.P.: Spotlight on:
programmers as malicious insiders-updated and revised. Technical report, Software
Engineering Institute, Carnegie Mellon University (2013)

16. Colwill, C.: Human factors in information security: The insider threat - who can
you trust these days? Information Security Technical Report (2009). https://doi.
org/10.1016/j.istr.2010.04.004

17. Dasgupta, D., Shrein, J.M., Gupta, K.D.: A survey of blockchain from security per-
spective. J. Bank. Financ. Technol. (2019). https://doi.org/10.1007/s42786-018-
00002-6

18. De Angelis, S., Aniello, L., Baldoni, R., Lombardi, F., Margheri, A., Sassone,
V.: PBFT vs proof-of-authority: applying the CAP theorem to permissioned
blockchain. CEUR Workshop Proceedings, vol. 2058, pp. 1–11 (2018)

19. Decan, A., Mens, T., Grosjean, P.: An empirical comparison of dependency net-
work evolution in seven software packaging ecosystems. Empir. Softw. Eng. (2019).
https://doi.org/10.1007/s10664-017-9589-y

20. Deventer, M.O., et al.: Techruption Consortium Blockchain: what it takes to run
a blockchain together. In: Proceedings of 1st ERCIM Blockchain Workshop 2018,
Amsterdam, Netherlands 8–9 May 2018. European Society for Socially Embedded
Technologies (EUSSET) (2018)

21. Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.L.: BLOCKBENCH:
a framework for analyzing private blockchains. In: Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD 2017, pp. 1085–
1100. ACM, New York (2017). https://doi.org/10.1145/3035918.3064033. http://
doi.acm.org/10.1145/3035918.3064033

22. Ekparinya, P., Gramoli, V., Jourjon, G.: The attack of the clones against proof-of-
authority. CoRR (2019). http://arxiv.org/abs/1902.10244

23. ENISA: ENISA threat landscape report 2018. Technical report, ENISA (2019).
https://doi.org/10.2824/622757

24. Ethereum Foundation: Go-Ethereum Website (2019). https://geth.ethereum.org
25. Franqueira, V.N.L., van Cleeff, A., van Eck, P., Wieringa, R.: External insider

threat: a real security challenge in nterprise value webs. In: 2010 International
Conference on Availability, Reliability and Security, pp. 446–453, February 2010.
https://doi.org/10.1109/ARES.2010.40

II. RESEARCH PAPERS 140

Dissertation Benedikt Putz, 2022

Trust Factors and Insider Threats in Permissioned Distributed Ledgers 49

26. Fröwis, M., Böhme, R.: In code we trust? In: Garcia-Alfaro, J., Navarro-Arribas,
G., Hartenstein, H., Herrera-Joancomart́ı, J. (eds.) ESORICS/DPM/CBT -2017.
LNCS, vol. 10436, pp. 357–372. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-67816-0 20

27. Fuchs, L., Pernul, G.: Minimizing insider misuse through secure Identity Manage-
ment. Secur. Commun. Netw. (2012). https://doi.org/10.1002/sec.314

28. Gambetta, D.: Can we trust trust? In: Trust: Making and Breaking Cooperative
Relations, pp. 213–237. Blackwell (1988)

29. Glaser, F.: Pervasive decentralisation of digital infrastructures: a framework for
blockchain enabled system and use case analysis. In: HICSS 2017 Proceedings, pp.
1543–1552 (2017). https://doi.org/10.1145/1235

30. Hawlitschek, F., Notheisen, B., Teubner, T.: The limits of trust-free systems: a
literature review on blockchain technology and trust in the sharing economy. Elec-
tron. Commer. Res. Appl. 29 (2018). https://doi.org/10.1016/j.elerap.2018.03.005

31. Hearn, M.: Corda: a distributed ledger (2016). https://docs.corda.net/head/
static/corda-technical-whitepaper.pdf

32. Hileman, G., Rauchs, M.: 2017 Global Blockchain Benchmarking Study (2017)
33. Huseby, D.: Security Code Audits - Hyperledger Wiki (2019). https://wiki.

hyperledger.org/display/HYP/Security+Code+Audits
34. Hussain, S.R., Sallam, A., Bertino, E.: DetAnom: detecting anomalous database

transactions by insiders. In: CODASPY 2015 - Proceedings of the 5th ACM Con-
ference on Data and Application Security and Privacy (2015). https://doi.org/10.
1145/2699026.2699111

35. Li, X., Jiang, P., Chen, T., Luo, X., Wen, Q.: A survey on the secu-
rity of blockchain systems. Futur. Gener. Comput. Syst. (2017). https://doi.
org/10.1016/j.future.2017.08.020. http://www.sciencedirect.com/science/article/
pii/S0167739X17318332

36. Litke, A., Anagnostopoulos, D., Varvarigou, T.: Blockchains for supply chain man-
agement: architectural elements and challenges towards a global scale deployment.
Logistics 3(1) (2019). https://doi.org/10.3390/logistics3010005

37. Loch, K.D., Carr, H.H., Warkentin, M.E.: Threats to information systems:
today’s reality, yesterday’s understanding. MIS Q. (1992). https://doi.org/10.
1163/18781527-00401005

38. Locher, T., Obermeier, S., Pignolet, Y.A.: When can a distributed ledger replace
a trusted third party? In: IEEE International Conference on Blockchain (2018).
http://arxiv.org/abs/1806.10929

39. Lustig, C., Nardi, B.: Algorithmic authority: the case of Bitcoin. In: Proceedings of
the Annual Hawaii International Conference on System Sciences (2015). https://
doi.org/10.1109/HICSS.2015.95

40. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security - CCS 2016 (2016). https://doi.org/10.1145/2976749.
2978309

41. Marti, S., Garcia-Molina, H.: Taxonomy of trust: categorizing P2P reputation sys-
tems. Comput. Netw. (2006). https://doi.org/10.1016/j.comnet.2005.07.011

42. MetaMask Contributors: MetaMask (2019). https://metamask.io/
43. Muskens, J., Chaudron, M.: Integrity management in component based systems.

In: Proceedings of 30th Euromicro Conference, pp. 611–619 (2004). https://doi.
org/10.1109/EURMIC.2004.1333429

44. R3: Corda Documentation (2019). https://docs.corda.net/releases/release-V4.1/

II. RESEARCH PAPERS 141

Dissertation Benedikt Putz, 2022

50 B. Putz and G. Pernul

45. Sas, C., Khairuddin, I.E.: Exploring trust in Bitcoin technology: a framework for
HCI research. In: Proceedings of the Annual Meeting of the Australian Special
Interest Group for Computer Human Interaction - OzCHI 2015 (2015). https://
doi.org/10.1145/2838739.2838821

46. Schaffers, H.: The relevance of blockchain for collaborative networked organiza-
tions. In: Camarinha-Matos, L.M., Afsarmanesh, H., Rezgui, Y. (eds.) PRO-VE
2018. IAICT, vol. 534, pp. 3–17. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99127-6 1

47. Schneier, B.: Blockchain and Trust - Schneier on Security (2019). https://www.
schneier.com/blog/archives/2019/02/blockchain and .html

48. Swihart, J., Winston, B., Bowe, S.: Zcash Counterfeiting Vulnerability Suc-
cessfully Remediated - Zcash (2019). https://z.cash/blog/zcash-counterfeiting-
vulnerability-successfully-remediated/

49. The Linux Foundation: Hyperledger Sawtooth Documentation (2019). https://
sawtooth.hyperledger.org/docs/core/releases/1.1.5/contents.html

50. United States Department of Homeland Security: A Roadmap for Cybersecurity
Research (2009). https://doi.org/10.1016/j.biortech.2007.06.061

51. Vo, H.T., Wang, Z., Karunamoorthy, D., Wagner, J., Abebe, E., Mohania,
M.: Internet of blockchains: techniques and challenges ahead. In: 2018 IEEE
International Conference on Blockchain. IEEE (2018). https://doi.org/10.1109/
Cybermatics 2018.2018.00264

52. Xu, X., Pautasso, C., Zhu, L., Gramoli, V., Ponomarev, A., Tran, A.B., Chen,
S.: The blockchain as a software connector. In: Proceedings of 2016 13th Work-
ing IEEE/IFIP Conference on Software Architecture, WICSA 2016, pp. 182–191.
IEEE, April 2016. https://doi.org/10.1109/WICSA.2016.21

53. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: an authen-
ticated data feed for smart contracts. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (2016). https://doi.org/
10.1145/2976749.2978326

II. RESEARCH PAPERS 142

Dissertation Benedikt Putz, 2022

II. RESEARCH PAPERS 143

2.2 Detecting Blockchain Security Threats [P6]

Status: published

Publication: 2020 IEEE International Conference on Blockchain

Submitted: 15 June 2020

Accepted: 11 September 2020

Citation: Benedikt Putz and Günther Pernul. 2020. Detecting Blockchain Se-
curity Threats. In 2020 IEEE International Conference on Blockchain
(Blockchain), IEEE, 313–320.

Conference Description: The goal of the IEEE International Conference on Blockchain is

to promote community-wide discussion for identifying advanced applications, technologies

and theories for blockchain. It seeks submissions of papers that invent novel techniques,

investigate new applications, introduce advanced methodologies, propose promising research

directions and discuss approaches for unsolved issues.

Dissertation Benedikt Putz, 2022

Detecting Blockchain Security Threats
Benedikt Putz, Günther Pernul

Chair of Information Systems
University of Regensburg

Regensburg, Germany
benedikt.putz@ur.de, guenther.pernul@ur.de

Abstract—In many organizations, permissioned blockchain net-
works are currently transitioning from a proof-of-concept stage
to production use. A crucial part of this transition is ensuring
awareness of potential threats to network operations. Due to
the plethora of software components involved in distributed
ledgers, threats may be difficult or impossible to detect without
a structured monitoring approach. To this end, we conduct
a survey of attacks on permissioned blockchains and develop
a set of threat indicators. To gather these indicators, a data
processing pipeline is proposed to aggregate log information
from relevant blockchain components, enriched with data from
external sources. To evaluate the feasibility of monitoring current
blockchain frameworks, we determine relevant data sources in
Hyperledger Fabric. Our results show that the required data
is mostly available, but also highlight significant improvement
potential with regard to threat intelligence, chaincode scanners
and built-in metrics.

Index Terms—distributed ledger, permissioned blockchain, in-
formation security, security monitoring, insider threat

I. INTRODUCTION

Enterprise applications based on Distributed Ledger Tech-
nology (DLT) are no longer just proof-of-concept. They are
now used in production environments to track shipping con-
tainers across the supply chain [1], settle trade finance deals
[2] and to handle the exchange of valuable aerospace parts
on a decentralized marketplace [3]. These use cases present
attractive targets for internal and external attackers to exploit.
While blockchains attempt to thwart attackers by replicating
the database and code execution, there is still no shortage
of attacks, as discovered by researchers and practitioners [4].
Attacks may target the consensus algorithm, flaws in smart
contract programming languages, or flaws in the blockchain
framework itself. Besides vulnerabilities, there are also oper-
ational security concerns such as private key or host system
compromise. Security professionals looking to protect against
these attacks need to have a clear idea what threats they are
facing, how to detect ongoing attacks and how to protect
against them. Commonly, Security Information and Event
Management (SIEM) systems are used for such tasks, but
currently no such SIEM system dedicated to permissioned
blockchains exists. It is challenging for off-the-shelf SIEM
systems to provide an integrated overview of a blockchain
network’s state, since there is a large number of components
within a single blockchain node [5], whose behavior also
depends on nodes outside the own organization’s confines.

To illustrate the contribution of this work we use Jaquith’s
model of IT security controls [6]. While there is plenty of
literature detailing threats [7] and exposures [4] of blockchains,
approaches for countermeasures are still scarce. In the model
shown in Figure 1, countermeasures consist of deterrent,
detective, preventative and corrective controls. While there are
some deterrent controls built into blockchains (such as the use
of hashes and signatures for integrity preservation), detective
controls to discover threats are still scarce.

To this end, we present a comprehensive study of attacks on
permissioned blockchains. Based on our findings, we develop
a set of threat indicators for automated attack detection based
on log data (detective control). We focus specifically on
the permissioned blockchain framework Hyperledger Fabric,
which is used by almost half of the world’s biggest companies
evaluating DLT (23 out of 50 companies with more than $1
billion valuation) [8].

In summary, we contribute to research by
• providing a comprehensive overview of possible attacks

on permissioned blockchains
• developing a set of blockchain threat indicators for

attacks on permissioned blockchains
• investigating the feasibility of monitoring attacks on

Hyperledger Fabric and identifying areas for future
research and development

The remainder of this paper is structured as follows. We
first provide an overview of related work in Section II, before
defining the threat model for monitoring in Section III. In
Section IV we present a study of possible attacks on permis-
sioned blockchain networks, and define threat indicators for
each attack. A suitable data processing architecture to gather

Fig. 1. Logical model of IT Security Controls [6], with the missing DLT
detective control highlighted

313

2020 IEEE International Conference on Blockchain (Blockchain)

978-0-7381-0495-9/20/$31.00 ©2020 IEEE
DOI 10.1109/Blockchain50366.2020.00046

II. RESEARCH PAPERS 144

Dissertation Benedikt Putz, 2022

these indicators from blockchain data sources is defined in
Section V. We evaluate the developed monitoring approach
by investigating the feasibility of indicator collection with
Hyperledger Fabric in Section VI. Finally, we discuss SIEM
and organizational integration of blockchain monitoring in
Section VII.

II. RELATED WORK

Currently, the majority of proposed monitoring tools and
methods focus on isolated detection of anomalies within
specific components of a DLT node. BAD [9] is designed
to detect anomalous Bitcoin transactions to prevent transac-
tions with malicious payloads from spreading in the network.
LedgerGuard [10] monitors a Hyperledger Fabric peer’s ledger
and restores corrupted blocks from connected peers if needed.
Garcia et al. propose Lazarus [11], a solution for diversity
management of consensus nodes. Lazarus monitors the soft-
ware stack of each blockchain node for newly found or zero-
day exploits and quarantines affected replicas. A number of
tools exist for formal verification and vulnerability detection
of Ethereum smart contracts, including both offline scanners
[12], [13] and online detection frameworks [14].

There are also several tools focusing on performance and
availability monitoring. Hyperledger Caliper [15] focuses on
performance benchmarking in an isolated testing environment.
Hyperledger Explorer [16] displays basic information about
running nodes, allows users to inspect blockchain state and
interact with deployed chaincode. However, its main purpose
is browsing activity on the underlying blockchain network, not
monitoring the network for security threats.

Compared to these approaches, the present work provides a
holistic perspective on blockchain security monitoring, instead
of only focusing on isolated aspects. Based on a comprehensive
survey of attacks on permissioned distributed ledgers, we deter-
mine suitable threat indicators and corresponding data sources
to compute them. Going beyond plain status monitoring offered
by tools like Hyperledger Explorer, we focus on extracting
security-relevant threat indicators from Hyperledger Fabric.

III. THREAT MODEL

Before going into detail on threat indicators, a threat model
of possible attackers and attacks needs to be established. In this
Section we provide a brief overview of DLT actors and DLT-
specific threats (split into vulnerabilities and malicious intent),
followed by a detailed enumeration of attacks in Section IV.

A. Actors

As a first step, we model the actors in a blockchain network.
Figure 2 shows a data flow context diagram containing relevant
actors. Each actor may cause a threat, either by acting as a
malicious insider or as an external attacker. Transactors are
regular users, which have read access to the blockchain and
can submit transactions. Peer, Orderer and Certificate Author-
ity (CA) Admins administrate the corresponding blockchain
components and have special privileges. External Users have
no privileges and are locked out of the system by access

Blockchain
System

CA Admin

Peer Admin

Transactor

External User

External
Blockchain
Systems

Orderer
Admin

Fig. 2. Level 0 data flow diagram of blockchain actors

Peer

Orderer

State
Database

Blockchain
Database

Identity
Provider

TransactorPeer Admin

CA Admin

External
Users

API

Orderer
Admin

Fig. 3. Level 1 data flow diagram of blockchain actors

control, barring vulnerabilities. Figure 3 shows a Level 1
data flow diagram detailing how these actors interact with the
processing nodes within the blockchain system (modeled after
Hyperledger Fabric). Each Admin controls the corresponding
blockchain component. Outside access is provided to Transac-
tors and External Users via an API.

B. Vulnerabilities

Vulnerabilities increase the exposure to threats by provid-
ing attackers with ways to compromise the protection goals
confidentiality, integrity and availability. Like any software,
distributed ledger frameworks are prone to software bugs,
which may result in vulnerabilities. A prime example are
vulnerable protocols, caused by implementation bugs in cryp-
tographic, networking or storage components or dependencies.
For example, Hyperledger Fabric uses gRPC for exchanging
blocks, which has been subject to a number of high and
critical severity Common Vulnerability Enumerations (CVEs)1.
Another type of exposure are vulnerable contracts, where
the intricacies of smart contract development can lead to
exploitable behavior [13].

Distributed ledger frameworks also offer a large number
of configuration options. Since these options are rarely doc-

1see https://nvd.nist.gov/

314

II. RESEARCH PAPERS 145

Dissertation Benedikt Putz, 2022

umented in a single place, negligence or oversight may lead to
misconfiguration by administrators. Bad configuration and a
lack of consideration for security on deployment of blockchain
nodes then increases exposure to attacks.

C. Malicious intent

Internal threats. Distributed Ledgers are subject to a variety
of threats by insiders and external insiders [17], who may
attempt to exploit the blockchain for personal or organiza-
tional gain. Besides inadvertent misconfigurations, insiders
may intentionally manipulate the configuration of blockchain
peers and threaten network security. Through initiation of
updates for smart contracts they may introduce vulnerabilities
or backdoors. For these reasons, administrators are potential
single points of failure for an organization’s blockchain node
and their actions should be monitored by an independent
information security team.

External attackers. External adversaries may attempt to
gain blockchain network access in order to read and possibly
manipulate ledger data. To this end, attackers may exploit
the aforementioned vulnerabilities. A successful attack could
result in subversion of a blockchain peer or identity provider,
which is a prerequisite for many attacks only possible from
inside the network. Denial of service attacks are an additional
attack vector, which may stall consensus if sufficient nodes are
affected.

IV. ATTACKS AND THREAT INDICATORS

To gain an overview of relevant attacks, we conducted
a literature review of attacks on permissioned blockchain
systems. We searched for the terms ("permissioned
blockchain" OR "hyperledger fabric") AND
("vulnerability" OR "attack"), using the ACM
digital library (106 results), SpringerLink (361 results),
ScienceDirect (218 results), IEEE Xplore (10 results) and the
Wiley Online Library (55 results). We filtered these results for
works dealing with attacks and vulnerabilities on permissioned
blockchains, which left us with 10 papers. The low number of
filtered results can be attributed to the fact that many papers
mention or cite existing vulnerabilities and attacks, but do
not contribute new vulnerabilities. We conducted additional
in-depth research on each of the found attacks by searching
for the attack’s name, which yielded additional literature [4],
[7], [18].

We extract all attacks applicable to permissioned
blockchains from the surveyed papers. For conciseness,
some attacks are grouped under a common term (i.e. Contract
Vulnerabilities). Based on the identified attacks and affected
blockchain components, we develop threat indicators that
allow a security expert to recognize ongoing attacks. While we
focus on applicability of the attacks on Hyperledger Fabric,
many of the attacks are applicable to other permissioned
blockchain frameworks as well. The categorized overview
of attacks is shown in Table I. Generally, threat indicators
may be proactive or reactive. Proactive approaches attempt
to detect the vulnerability before exploitation, while reactive

approaches detect the act of exploitation and attempt to limit
the damage.

For the remainder of this chapter, we go into more detail on
each attack and how it can be detected with suitable indicators.
Based on the threat model, we first focus on vulnerabilities
followed by attacks of malicious intent. These indicators are
then elaborated in Section VI with regard to Hyperledger
Fabric.

A. Vulnerabilities

Contract Vulnerability. A contract vulnerability refers to a
security bug in a smart contract that must be fixed through a
contract upgrade. Since an organization may not have control
over all contracts that it is sending transactions to, it is
important to also monitor contracts owned by other organi-
zations on the network. In general, contract vulnerabilities
are difficult to detect, since abuse transaction patterns vary
depending on the vulnerability. For example, the Re-entrancy
attack on Solidity smart contracts [19] may be detected by
excessive resource consumption from a single transaction.
Other vulnerabilities may require inspection of contract state
changes, such as the delegatecall injection [13]. Yamashita et
al. provide an overview of Hyperledger Fabric chaincode risks
related to non-determinism, phantom state database reads and
unchecked inputs [24]. Unchecked inputs may for example
result in JSON injection vulnerabilities [25]. By scanning each
contract deploy/upgrade transaction, new vulnerabilities can be
derived from in the scan logs. The number of scanned potential
vulnerabilities in deployed contracts is a useful indicator for
monitoring and reducing the attack surface of smart contracts.

Framework Vulnerability. The code of the blockchain
framework may be subject to vulnerabilities. This category
includes vulnerabilities such as insufficient smart contract
virtualization [20], [26] and injection of malicious code due
to improper input checking [26]. Correspondingly, framework
releases should be monitored for such vulnerabilities to up-
grade to new versions as soon as possible.

Dependency Vulnerability. Blockchain frameworks also
rely on a number of direct and transitive dependencies. A
major category of dependencies are database systems used for
storage of blockchain state. Most blockchain frameworks use
self-sufficient DBMS such as LevelDB, CouchDB or Postgres
[17]. As dependencies, their versions are often updated infre-
quently and insufficient default configurations are used. For ex-
ample, the CouchDB instance preconfigured with Hyperledger
Fabric was found to be susceptible to direct unauthenticated
manipulation by via the built-in web interface, voiding integrity
assumptions of the framework [20]. This vulnerable default
configuration is also present in the latest test-network provided
with Fabric 2.1. While this should be prevented by securely
configuring the dependency initially, monitoring configuration
changes and database container logs for foreign IP access
would also detect exploitation.

Cryptographic Vulnerability. Vulnerabilities in crypto-
graphic protocols are a serious threat, since blockchain frame-
works rely on hashes and digital signatures for integrity,

315

II. RESEARCH PAPERS 146

Dissertation Benedikt Putz, 2022

TABLE I
OVERVIEW OF ATTACKS AND CORRESPONDING THREAT INDICATORS (BOTH VULNERABILITIES AND MALICIOUS INTENT).

Attack Category Attack Examples Threat Indicators Type

Contract Vulnerability Reentrancy [19], delegatecall [13], Dependency in-
jection [17]

scanned potential vulnerabilities
threat intelligence on vulnerabilities

Proactive
Proactive

Framework Vulnerability Unrestricted Chaincode Containers [20] framework releases Proactive

Dependency Vulnerability CouchDB web interface [20] threat intelligence on vulnerabilities
dependency container logs

Proactive
Reactive

Cryptographic Vulnerability Quantum Computing Threat [17], Hash Collision
Resistance Attack [17]

threat intelligence on vulnerabilities Proactive

Denial of Service Dust transactions [4], Storage pollution [20] transaction throughput
transaction latency
incoming network messages
oustanding transactions

Reactive

Network Partitioning BGP hijacking [21], DNS attacks [4], [22], Eclipse
attack [4], [22], Attack of the Clones [21]

connected peers Reactive

Malicious Consensus Behavior Consensus Delay [4], Alternative History [7], [20],
Block Withholding [4], Transaction Reordering [20]

discarded blocks
latest block hashes
leader election frequency
outstanding transactions (age)
client application outgoing transactions

Reactive

Consensus Configuration Manipulation Batch Time attack [20], Block Size attack [20] configuration changes
configuration value bounds

Proactive

Identity Provider Compromise CA Attack [20], [22], Sybil attacks [18], [20], [23],
Boycott attack [20], Blacklisting attack [20]

certificate requests (successful/denied)
certificate revocations
transactor identities

Reactive

authentication and non-repudiation. If SHA256 were to be
affected by a collision-resistance attack similar to the one dis-
covered for SHA-1 (CVE 2005-4900), most major blockchain
frameworks would be affected [17]. Detecting such an attack is
only possible by monitoring threat intelligence, i.e. new CVEs
in the NIST database.

B. Malicious Intent

Denial of Service (DoS). While blockchain systems are
less threatened by DoS than centralized servers due to built-in
replication and fault-tolerance, targeted attacks still represent
a threat. To achieve DoS, an outsider may attempt to flood
specific or multiple blockchain peers with TCP syn packets.
In particular, DoS attacks targeting the consensus leader can
significantly reduce or stall consensus entirely [17]. Internal
attackers with access to the network can simply send a large
number of transactions (or transactions with a large size),
which must all be processed by endorsing peers [4]. Even if
they are invalid they are included in the blockchain by all peers,
polluting the storage [20]. Consequently, indicators for DoS
attacks are low transaction throughput and high transaction
latency [27]. Since these metrics are also affected by other
factors (such as network usage by regular Transactors), moni-
toring incoming network messages and incoming transactions
provides a more comprehensive picture.

Network Partitioning. Internal attackers may attempt to
partition a blockchain network by manipulating network rout-
ing [4]. The goal of such an attack is manipulation of the con-
sensus protocol. This can be accomplished through network-

level attacks such as BGP hijacking [21] and DNS attacks
[4], [22]. This attack can then be followed up with consensus
manipulation attacks. Examples of attacks based on network
partitioning include the Attack of the Clones on the Proof-of-
Authority consensus protocols [21]2 and Eclipse attacks [4]. In
permissioned networks, monitoring the number of connected
peers can be used to detect network partitioning attempts.

Malicious Consensus Behavior. Orderer Admins can
launch a variety of attacks by behaving maliciously during
consensus. A Consensus Delay attack can be initiated by
peers propagating invalid blocks [4]. The Intentional Fork
attack in Hyperledger Fabric describes a similar scenario where
the ordering service sends out conflicting versions of blocks
to peers [20]. Both attacks result in consensus delay since
the blockchain peers waste computing power on verifying
invalid blocks. They can be detected by monitoring the number
of discarded blocks that were received through peer-to-peer
communication.

If several Orderer Admins collude, they may attempt to
rewrite the blockchain in an Alternative History attack [7],
[20]. This requires > 50% of nodes to collude (crash-fault
tolerance), or > 2f nodes for byzantine-fault tolerant consen-
sus where 3f + 1 nodes tolerate f malicious nodes. To detect
any state forks or attempts at rewriting history, the latest block
hashes of all peers must be monitored and compared.

Byzantine attacks become possible when a non byzantine-
fault tolerant (BFT) consensus algorithm is used. Hyperledger
Fabric 2.1 only offers Kafka and Raft implementations, which

2applicable to permissioned networks based on Ethereum

316

II. RESEARCH PAPERS 147

Dissertation Benedikt Putz, 2022

Fig. 4. Proposed Blockchain Security Monitoring pipeline.

are merely crash-fault tolerant. A malicious Raft node may
prevent consensus indefinitely by constantly starting new
leader elections, or cause correctness violations if elected as
leader [28]. Leader election misbehavior can be detected by
monitoring leader election frequency.

A malicious leader (also possible in BFT consensus [4]) is
more difficult to detect, since it may cause different types of
correctness violations. For example, during a Block Withhold-
ing [4] or Sabotage [20] attack the consensus leader or ordering
service witholds blocks containing unwanted transactions, or
transactions from specific participants. This attack can be
detected by monitoring the age of outstanding transactions
in the transaction pool. Transactions with a large age indicate
that the orderer cluster is not reaching consensus on them.

Another example of a correctness violation is a Trans-
action Reordering attack, where the leader of the ordering
service reorders transactions to favor specific organizations
[20]. Orderer Admins might abuse this to gain an advantage
in smart contracts where timing is critical. If an organization
relies on such timing-critical contracts, it should track client
application outgoing transactions. When the transaction is
eventually included in a block, reordering can be detected by
comparing timestamps.

Consensus Configuration Manipulation. If an attacker
controls a majority of consensus nodes, it becomes possible
to manipulate the consensus process by changing configuration
values. For the Hyperledger Fabric Ordering service, the Batch
Time attack and Block Size attack are known [20]. Both can
delay transactions indefinitely by increasing the time until
transactions are included in a block. To mitigate this threat,
configuration changes should be monitored to detect unsafe
configuration values outside of specified bounds before they
are approved by Peer Admins.

Identity Provider Compromise. In Hyperledger Fabric,
identity providers are referred to as Membership Service
Providers (MSPs) and the default implementation is called
Fabric-CA. A Fabric-CA MSP may be compromised through
private key theft, also referred to as a CA Attack [22].
The actual theft of private keys cannot be detected from
the blockchain framework’s perspective, but malicious actions
using these keys can be discovered. A frequently-cited example
are sybil attacks, where a single attacker forges multiple
identities [18], [23], i.e. with certificates from a compromised

MSP. These identities may be used to circumvent contract
endorsement policies, and thus manipulate contract execution
[20]. Sybil attacks can be detected by closely monitoring
newly issued certificates. Since this may not be possible for
certificates issued by external MSPs, Transactor identities
should also be monitored.

The Boycott attack refers to a scenario where two organiza-
tions are under the same MSP and one of them is denied new
certificates [20]. Consequently, the CA should be monitored
for denied certificate requests. The Blacklisting Attack is based
on revoked certificates and may result in peers or Transactors
losing network access [20], [23]. Since certificate revocations
should normally occur rarely, the number of revoked certifi-
cates is of interest.

V. DATA COLLECTION AND PROCESSING

To assemble the threat indicators developed above, a pipeline
for data collection and processing is needed. The goal of
data processing is to provide an aggregated view of the threat
indicators, enabling an expert to detect security threats.

We derive the data processing pipeline from the SIEM
pattern [29]. Initially, data is collected from internal blockchain
data sources (log collection) and enriched with external data.
Subsequently it must be normalized to a common data format
(enrichment & normalization). The following steps are outside
the scope of this paper, but briefly discussed in Section
VII. Correlating multiple indicators (Correlation & Analysis),
visualizing them (Visual Analytics) and triggering alerts (Alerts
& Incident Response) provide valuable aid to security experts.

Log Collection. Logs are collected from various sources
producing different types of information: numeric metrics (i.e.
transactions per second), application log events and blockchain
state events. Depending on the framework they are retrieved
via push or pull mechanisms. A summary of data sources
for Hyperledger Fabric is shown in Table II. The Operations
Service provides numeric metrics about current operation,
which can be consumed by a Prometheus (pull) or a StatsD
instance (push). Peer channel-based event services allow an
agent to subscribe to channel-specific block data (push), which
also includes application-level chaincode events. Log data is
provided by the Docker containers of the Hyperledger Fabric
components, which provide logs of configurable log level detail
(such as INFO and DEBUG). This includes auxiliary services

317

II. RESEARCH PAPERS 148

Dissertation Benedikt Putz, 2022

TABLE II
HYPERLEDGER FABRIC 2.1 DATA SOURCES AND METRICS [30].

Data Type Source Collection

Numeric Metrics Numeric Prometheus (Peer, Orderer, MSP) Pull
Numeric Metrics Numeric StatsD (Peer, Orderer, MSP) Push
Channel Events Application data SDK (Peer) Push
Logs Behavioral Docker (Peer, Chaincode, Orderer, MSP, CouchDB) Pull
Blockchain state/history Application data SDK (Peer) Pull

such as Fabric-CA (identity provider) and CouchDB (state
database provider). Finally, the full spectrum of blockchain
data is available via the Peer SDK, but data must be queried
on demand (pull). In addition to these built-in data sources,
chaincode vulnerability scanners provide log files for ingestion.

Enrichment & Normalization. Events occurring within the
organization are enriched with contextual data from external
systems. If accessible, data from connected blockchain peers’
APIs should be collected. Such external peer data can help
determine whether an incident is isolated or network-wide.

Depending on the blockchain setup, additional data sources
may be needed. There are several optional blockchain features
that involve external systems:

• Permissionless Blockchain Anchoring: The anchoring
status needs to be monitored in case the anchoring chain is
broken. Periodic API requests to a node on the anchoring
target blockchain can provide the required data.

• Oracles: Oracles provide external data to smart contracts.
If an oracle is manipulated or compromised the conse-
quences can be severe for the relying contract. Thus, data
provided by oracles should be monitored for anomalies.

• Cross-chain interactions: Cross-chain interactions such
as hash-timelocked contracts are used to exchange assets
between blockchains. The status of these asset swaps
on blockchains other than the primary monitoring target
should be tracked, in case there is an issue with contracts
on either side of the swap.

• Off-chain storage: Blockchain applications often link
data on the blockchain via hashes for timestamping and
non-repudiation purposes. The availability of the linked
data should be periodically checked.

VI. EVALUATION

To validate the detectability of the indicators outlined above
in Table I, we conducted experiments with a Hyperledger
Fabric deployment. We inspected log files and data sources
hands-on to determine whether attacks can actually be detected
with currently provided data sources. Hereafter, we elaborate
for each attack which data source is suitable, and how these
data sources could be improved to enhance detectability.

Scanned potential vulnerabilities. To our knowledge, only
two vulnerability scanners exist for Hyperledger Fabric, both
closed-source and only supporting Go chaincode (Chaincode
Scanner3 and an unnamed tool [24]). The coverage of these
tools can be augmented by language-specific ones such as

3https://chaincode.chainsecurity.com/

gosec4. However, there is a clear need for open-source chain-
code scanners with support for all chaincode languages.

Threat intelligence on vulnerabilities. To be able to detect
new vulnerabilities and upgrade network nodes as soon as pos-
sible, threat intelligence feeds need to be monitored constantly
for vulnerabilities relevant to blockchain components. How-
ever, searching the NIST National Vulnerability database for
"Hyperledger Fabric" yields 0 results. As of today, there are no
blockchain-specific sources of threat intelligence information.
Nevertheless, threat intelligence feeds can be monitored for rel-
evant keywords (i.e. gRPC, CouchDB, Golang, SHA256) and
manually filtered for applicable threats. Additional sources can
be community collaboration tools for open-source frameworks
(i.e. monitoring the Hyperledger JIRA5 or mailing list for the
keyword security).

Framework releases. Hyperledger Fabric provides a
GitHub feed with the latest releases6. Each release has sections
on known and resolved vulnerabilities, which can be used to
determine if a timely upgrade is needed.

Dependency Container Logs. If CouchDB is used with
Hyperledger Fabric, all requests are logged to the Docker
container logs including the IP address, time and request URL.
This information can be used to detect suspicious requests from
foreign IP addresses and other types of attacks.

Transaction throughput. Throughput can be
observed based on Fabric’s ordering service metric
broadcast_processed_count, which counts the
number of processed transactions over time. Alternatively, this
metric can be computed based on the transactions contained
in block data, which is needed for other metrics (i.e. latest
block hashes).

Transaction latency. Transaction latency can be computed
as the delay between transaction timestamp and the block
timestamp of the transaction’s block. This metric is thus
computed for each transaction upon block inclusion. By sub-
scribing to Hyperledger Fabric’s Channel Events, this metric
can be computed for each transaction in each block signed by
the ordering service.

Incoming network messages. The operations services pro-
vides numerous metrics for monitoring network communi-
cation. gossip_comm_messages_received tracks mes-
sages received via peer gossip, and the grpc_server_*
metrics track gRPC communication with clients.

4https://github.com/securego/gosec
5https://jira.hyperledger.org
6https://github.com/hyperledger/fabric/releases

318

II. RESEARCH PAPERS 149

Dissertation Benedikt Putz, 2022

Outstanding transactions. To our knowledge, there
is no metric that keeps tracks of outstanding unpro-
cessed transactions. This would be beneficial to deter-
mine the cause of unprocessed transactions (high system
load or deliberate exclusion). For transaction delay at-
tacks, the operations service provides the histogram metric
blockcutter_block_fill_duration, which monitors
the time from transaction enqueuing at the orderer to inclusion
in a block. By monitoring transactions fill duration over time,
the average age of outstanding transactions can be determined.

Connected peers. Ordering service outgoing
connections can be measured using the metric
cluster_comm_egress_tls_connection_count,
while peer connections are evident from grpc_comm_
conn_opened. While isolated disconnections may also
be caused by a benign crash fault, multiple can indicate a
network partition.

Discarded blocks. The peer container logs provide informa-
tion about received and validated blocks, which can be used to
determine which blocks were successfully validated. Since this
requires preprocessing, a built-in metric would be desirable.

Leader election frequency. For Hyper-
ledger Fabric’s Raft consensus, the metric
consensus_etcdraft_leader_changes provides
a counter for leader changes, and orderer log files indicate
which node was elected. Tracking leader changes over time
can provide an indication of potential attacks. It would be
beneficial if the consensus algorithm also indicated failed
leader elections, to be able to detect nodes continuously
proposing elections.

Latest block hashes. Block hashes can be computed based
on the block headers, which are obtained through channel
block event subscription. A block hash in Hyperledger Fabric
is the SHA256 hash of the block number, the block data hash
and the previous block’s hash. Tracking the correctness of
block hashes over time provides certainty that no blockchain
reorganization has occurred.

Client application outgoing transactions. Outgoing trans-
actions signed by a Hyperledger Fabric SDK contain the
transaction hash and timestamp. These can be sent to and
tracked by a monitoring service (push).

Configuration changes. Since timely notification about
configuration updates is essential, this metric should also
be derived through block subscription to the Channel Event
Hub. Configuration transactions are identified by the type
CONFIG_UPDATE. Additionally, the operations service pro-
vides the metric consensus_etcdraft_config_
proposals_received, which keeps tracks of configura-
tion transaction proposals.

Certificate requests and revocations. When using Fabric-
CA server, certificate creation can be monitored by counting
POST requests to /enroll ([INFO] log level). Successful
requests have status code 2xx, while denied requests are
evident from status codes 4xx and 5xx. For details such as the
name of the registered identity, [DEBUG] log level is required.

Revocations are monitored using log entries for requests to the
/revoke endpoint.

Transactor identities. The node.JS SDK provides a way to
subscribe to new blocks of a channel (registerBlock
Event method). The listener receives all transactions as part
of the block, and each transaction contains the full sender
certificate as part of the signature. Using these certificates, a
monitoring system can keep track of existing identities.

VII. DISCUSSION

After demonstrating practical feasibility of our concept, we
now take a broader perspective and focus on integration with
existing security monitoring facilities. This includes SIEM
systems, but also Security Operations Centers (SOCs), which
interpret data provided by monitoring systems.

A. SIEM integration

The monitoring architecture shown in Figure 4 can be
implemented by connecting the data sources in Table II to
SIEM software. In the next step, the available data needs to
be normalized to a common format. Based on normalized data,
correlation rules can be derived that pinpoint the source attack
of the issue with certainty. If sufficient data is available to
indicate an ongoing attack, security alerts can be triggered to
prompt a detailed investigation. Thereto there is also significant
potential to help experts interpret blockchain data and metrics
by providing appropriate visualizations, for example as part of
a monitoring dashboard.

B. Organizational aspects

Figure 5 shows how a Blockchain Security Monitor (short-
ened BCSM) interacts with human and software compo-
nents. The security operations team monitors activities on
the blockchain network and identifies the origin of potential
threats. The BCSM only monitors blockchain components
running on systems controlled by its operating organization.
Data from nodes controlled by other organizations in the
consortium may contribute to a complete overview of the threat
situation, but cannot be relied upon.

To be able to detect manipulation by blockchain adminis-
trators, the security operations team must be separate from
the blockchain operations team. It assumes a watchdog role
that can help prevent insider attacks. BCSM is the technical

Security
Operations

Blockchain
Operations

Blockchain
Software Components

Blockchain
Security Monitor

watches over

managesobserves

monitors

alerts

Fig. 5. Organizational integration of blockchain security monitoring.

319

II. RESEARCH PAPERS 150

Dissertation Benedikt Putz, 2022

component that supports this organizational function with
informationa and alerts.

VIII. CONCLUSION

In this paper, we presented a review of attacks on permis-
sioned blockchains. Based on the attacks, we developed indica-
tors for an individual organization in a blockchain network to
detect ongoing attacks, either proactively or reactively depend-
ing on the attack. For these metrics, we proposed a suitable
data processing architecture inspired by SIEM systems. The
feasibility of this architecture was demonstrated by closely
examining the data sources that Hyperledger Fabric offers.

We also identified several areas of improvement for
blockchain security. For example, adding metrics such as dis-
carded blocks and failed leader elections to Hyperledger Fabric
facilitates security monitoring. Additionally, open-source threat
scanners for Hyperledger Fabric chaincode and blockchain-
specific threat intelligence feeds can help patch vulnerabilities
before they can be exploited. Finally, potential for mali-
cious consensus behavior could be significantly reduced by
introducing an ordering service based on BFT consensus for
Hyperledger Fabric.

REFERENCES

[1] T. Jensen, J. Hedman, and S. Henningsson, “How TradeLens delivers
business value with blockchain technology,” MIS Quarterly Executive,
2019.

[2] IBM, “we.trade | IBM,” 2020. [Online]. Available: https://www.ibm.
com/case-studies/wetrade-blockchain-fintech-trade-finance

[3] The Linux Foundation, “Honeywell Case Study – Hyperledger,” 2020.
[Online]. Available: https://www.hyperledger.org/resources/publications/
honeywell-case-study

[4] M. Saad, J. Spaulding, L. Njilla, C. Kamhoua, S. Shetty, D. Nyang,
and A. Mohaisen, “Exploring the Attack Surface of Blockchain: A
Systematic Overview,” 2019.

[5] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W. Cocco, and J. Yellick,
“Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains,” in Proceedings of the Thirteenth EuroSys Conference, ser.
EuroSys ’18. New York, NY, USA: ACM, 2018, pp. 30:1–30:15.

[6] A. Jaquith, Security Metrics: Replacing Fear, Uncertainty, and Doubt.
Addison-Wesley Professional, 2007.

[7] I. Homoliak, S. Venugopalan, Q. Hum, D. Reijsbergen, R. Schumi, and
P. Szalachowski, “The Security Reference Architecture for Blockchains:
Towards a Standardized Model for Studying Vulnerabilities, Threats, and
Defenses,” 2019.

[8] M. del Castillo and M. Schifrin, “Blockchain 50,” 2020. [Online].
Available: https://www.forbes.com/sites/michaeldelcastillo/2020/02/19/
blockchain-50

[9] M. Signorini, M. Pontecorvi, W. Kanoun, and R. D. Pietro, “BAD:
Blockchain Anomaly Detection,” CoRR, vol. abs/1807.0, 2018. [Online].
Available: http://arxiv.org/abs/1807.03833

[10] Q. Zhang, P. Novotny, S. Baset, D. Dillenberger, A. Barger,
and Y. Manevich, “LedgerGuard: Improving Blockchain Ledger
Dependability,” pp. 1–8, 2018. [Online]. Available: http://arxiv.org/abs/
1805.01081

[11] M. Garcia, A. Bessani, and N. Neves, “Lazarus: Automatic Management
of Diversity in BFT Systems,” in Proceedings of the 20th International
Middleware Conference, ser. Middleware ’19. New York, NY, USA:
Association for Computing Machinery, 2019, pp. 241–254. [Online].
Available: https://doi.org/10.1145/3361525.3361550

[12] M. D. Angelo and G. Salzer, “A Survey of Tools for Analyzing
Ethereum Smart Contracts,” in IEEE International Conference on
Decentralized Applications and Infrastructures, DAPPCON 2019,
Newark, CA, USA, April 4-9, 2019. IEEE, 2019, pp. 69–78. [Online].
Available: https://doi.org/10.1109/DAPPCON.2019.00018

[13] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A Survey on Ethereum
Systems Security: Vulnerabilities, Attacks and Defenses,” CoRR, vol.
abs/1908.0, 2019. [Online]. Available: http://arxiv.org/abs/1908.04507

[14] T. Chen, R. Cao, T. Li, X. Luo, G. Gu, Y. Zhang, Z. Liao, H. Zhu,
G. Chen, Z. He, Y. Tang, X. Lin, and X. Zhang, “SODA: A Generic
Online Detection Framework for Smart Contracts,” in 27th Annual
Network and Distributed System Security Symposium, NDSS 2020. The
Internet Society, 2020.

[15] The Linux Foundation, “Hyperledger Caliper,” 2020. [Online]. Available:
https://www.hyperledger.org/use/caliper

[16] ——, “Hyperledger Explorer,” 2020. [Online]. Available: https:
//www.hyperledger.org/use/explorer

[17] B. Putz and G. Pernul, “Trust Factors and Insider Threats in
Permissioned Distributed Ledgers,” Transactions on Large-Scale Data-
and Knowledge-Centered Systems, vol. XLII, pp. 25–50, 2019. [Online].
Available: http://link.springer.com/10.1007/978-3-662-60531-8_2

[18] D. Dasgupta, J. M. Shrein, and K. D. Gupta, “A survey of blockchain
from security perspective,” Journal of Banking and Financial Technol-
ogy, 2019.

[19] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on Ethereum
smart contracts (SoK),” in Lecture Notes in Computer Science, 2017.

[20] A. Dabholkar and V. Saraswat, “Ripping the Fabric: Attacks and
Mitigations on Hyperledger Fabric,” in Applications and Techniques
in Information Security, V. S. Shankar Sriram, V. Subramaniyaswamy,
N. Sasikaladevi, L. Zhang, L. Batten, and G. Li, Eds. Singapore:
Springer Singapore, 2019, pp. 300–311.

[21] P. Ekparinya, V. Gramoli, and G. Jourjon, “The Attack of the Clones
Against Proof-of-Authority,” in 27th Annual Network and Distributed
System Security Symposium, NDSS 2020. The Internet Society, 2020.

[22] A. Davenport, S. Shetty, and X. Liang, “Attack Surface Analysis of
Permissioned Blockchain Platforms for Smart Cities,” in 2018 IEEE
International Smart Cities Conference, ISC2 2018, 2019.

[23] J. Holbrook, “Blockchain Security and Threat Landscape,” in
Architecting Enterprise Blockchain Solutions. Wiley, 2020, pp.
323–347. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/9781119557722.ch11

[24] K. Yamashita, Y. Nomura, E. Zhou, B. Pi, and S. Jun, “Potential Risks
of Hyperledger Fabric Smart Contracts,” in 2019 IEEE International
Workshop on Blockchain Oriented Software Engineering (IWBOSE),
2019, pp. 1–10.

[25] S. Riedesel, P. Hakimian, K. Buyens, and T. Biehn, “Tineola:
taking a bite out of enterprise blockchain,” 2018. [Online]. Available:
https://github.com/tineola/tineola

[26] G. Shaw, “Hyperledger Fabric Security Audit,” Nettitude, Tech. Rep.,
2017. [Online]. Available: https://wiki.hyperledger.org/display/fabric/
Audits?preview=/2393550/2393584/technical_report_linux_foundation_
fabric_august_2017_v1.1.pdf

[27] N. Andola, Raghav, M. Gogoi, S. Venkatesan, and S. Verma, “Vulnera-
bilities on Hyperledger Fabric,” Pervasive and Mobile Computing, 2019.

[28] C. Copeland and H. Zhong, “Tangaroa: a Byzantine Fault Tolerant Raft,”
2016.

[29] M. Vielberth and G. Pernul, “A Security Information and Event
Management Pattern,” in 12th Latin American Conference on Pattern
Languages of Programs (SLPLoP), nov 2018. [Online]. Available:
https://epub.uni-regensburg.de/41139/

[30] The Linux Foundation, “Hyperledger Fabric 2.1 Documentation,”
2020. [Online]. Available: https://hyperledger-fabric.readthedocs.io/en/
release-2.1

320

II. RESEARCH PAPERS 151

Dissertation Benedikt Putz, 2022

II. RESEARCH PAPERS 152

2.3 HyperSec: A Visual Analytics approach to blockchain monitoring [P7]

Status: published

Publication: ICT Systems Security and Privacy Protection - IFIP SEC 2021

Submitted: 21 January 2021

Accepted: 22 March 2021

Citation: Benedikt Putz, Fabian Böhm, and Günther Pernul. 2021. HyperSec: Visual
analytics for blockchain security monitoring. In ICT systems security
and privacy protection - 36th IFIP TC 11 International Conference, SEC
2021, Oslo, Norway, June 22-24, 2021, Proceedings (IFIP Advances in
Information and Communication Technology), Springer, 165–180.

Conference Description: The SEC conferences are a series of well-established interna-

tional conferences on Security and Privacy. SEC is the flagship event of the International

Federation for Information Processing (IFIP) Technical Committee 11 (TC-11). The IFIP

SEC conferences aim to bring together primarily researchers, but also practitioners from

academia, industry and governmental institutions to elaborate and discuss IT Security and

Privacy Challenges that we are facing today and will be facing in the future.

Dissertation Benedikt Putz, 2022

HyperSec: Visual Analytics
for Blockchain Security Monitoring

Benedikt Putz(B) , Fabian Böhm , and Günther Pernul

University of Regensburg, Regensburg, Germany
{benedikt.putz,fabian.boehm,guenther.pernul}@ur.de

Abstract. Today, permissioned blockchains are being adopted by large
organizations for business critical operations. Consequently, they are sub-
ject to attacks by malicious actors. Researchers have discovered and enu-
merated a number of attacks that could threaten availability, integrity
and confidentiality of blockchain data. However, currently it remains dif-
ficult to detect these attacks. We argue that security experts need appro-
priate visualizations to assist them in detecting attacks on blockchain
networks. To achieve this, we develop HyperSec, a visual analytics moni-
toring tool that provides relevant information at a glance to detect ongo-
ing attacks on Hyperledger Fabric. For evaluation, we connect the Hyper-
Sec prototype to a Hyperledger Fabric test network. The results show
that common attacks on Fabric can be detected by a security expert
using HyperSec’s visualizations.

Keywords: Distributed ledger · Permissioned blockchain ·
Information security · Visual analytics · Security monitoring

1 Introduction

New use cases of distributed ledger technology (DLT) are proposed on a daily
basis by academia and practice, leading to an increasing number of projects
and solutions. Beyond that, blockchain applications are increasingly being used
in real large-scale supply chain environments, such as the TradeLens [10] and
DLFreight [20] platforms. At first glance, DLT seems to increase an application’s
security or even solve existing applications’ security issues. However, the task of
securing the DLT itself is often neglected in practice due to its complexity and
the number of serious challenges connected to it.

The complexity of blockchain technology makes it particularly challenging
to identify malicious activities [4]. In any blockchain network, there are several
independent peers operated by independent organizations, where each organi-
zation only has a limited view of the network. Each node also has various data
sources from its components, making it difficult to obtain an overview of the

B. Putz and F. Böhm—Contributed equally to this manuscript.

c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
A. Jøsang et al. (Eds.): SEC 2021, IFIP AICT 625, pp. 165–180, 2021.
https://doi.org/10.1007/978-3-030-78120-0_11

II. RESEARCH PAPERS 153

Dissertation Benedikt Putz, 2022

166 B. Putz et al.

network’s state [17]. Since blockchain is a networked database, it also requires
monitoring both the host and the network, which results in a large volume and
velocity of observable data.

Fully automated systems for live attack detection on blockchains do not yet
exist. Even if respective technologies for blockchain security monitoring were
available, human experts remain indispensable as their domain knowledge is
crucial to identify and analyze intricate attack patterns [2]. Therefore, we need a
way to make the heterogeneous data at hand available for domain experts. Visu-
alizations offer a well-known path to achieve this goal. A visual representation
can help a domain expert make sense of the displayed information and efficiently
draw conclusions [12]. These observations lead to our work’s research question:

RQ. What are appropriate visualizations to assist security experts in detecting
DLT threats?

In this work, we make a two-fold contribution to this research question.
We first characterize the domain problem: monitoring permissioned DLTs for
attacks. This domain problem and derived general design requirements serve as
the foundation for our visualization approach. The second part of our contribu-
tion is the task-centered design and prototypical implementation of HyperSec, a
visual representation of security-relevant DLT information to support security
experts’ monitoring tasks.

The remainder of this work is structured as follows. Section 2 gives a brief
overview of related academic work in the field of security visualizations in the
blockchain domain. In Sect. 3, we flesh out the domain problem faced by security
experts monitoring permissioned blockchain environments for immediate threats.
Section 4 then introduces our visualization design and its prototypical implemen-
tation using open source technologies. Afterwards, we evaluate our visualization
design by simulating attacks in Sect. 5. We discuss how an expert may proceed
after an attack has been detected in Sect. 6. Finally, Sect. 7 concludes our work
with a summary and possible future research directions.

2 Related Work

Recently, Tovanich et al. [23] carried out a systematic review to structure exist-
ing work on the visualization of blockchain data. Their research and previously
conducted studies [19] identify several visualization approaches with a focus on
criminal and malicious activity [8,13]. These surveys highlight that visualization
tools for blockchains are on the rise. However, most of these existing visualization
approaches for criminal or malicious activities in blockchains focus on historical
analysis, i.e. detecting the events only after they have occured [23].

To effectively prevent attacks upfront, blockchain networks have to be actively
monitored by blockchain security experts. Several studies discuss external and
internal threats that could impair a blockchain network’s functionality [9,18].

II. RESEARCH PAPERS 154

Dissertation Benedikt Putz, 2022

HyperSec: Visual Analytics for Blockchain Security Monitoring 167

Zheng et al. propose a framework for monitoring the Ethereum blockchain’s per-
formance [24]. They introduce some respective metrics while using both node logs
and Remote Procedure Calls (RPC) to gather data. Threat indicators to detect
malicious activities in a blockchain network have recently been introduced by Putz
et al. [17]. Based on this limited body of work from academia, blockchain metrics
and threat indicators need to be made available to security experts for effective
monitoring. Existing monitoring solutions like the dashboard by Bogner [3] focus
only on transaction activity but do not consider other security-relevant data and
metrics.

An approach pointing in this direction is the Hyperledger Explorer [21], the
Hyperledger project’s tool for monitoring Hyperledger blockchains. The Explorer
connects to a local blockchain node and extracts data about blocks, transactions,
peers, and more into a local PostgreSQL database. Additionally, a web appli-
cation is available for inspecting blockchain data, including some basic visual-
izations of transaction data. However, these visualizations are not tailored to
provide the necessary insights or indicators to detect threats. In addition, there
is a Hyperledger Labs project integrating Fabric with ElasticSearch and Kibana,
resulting in a Kibana dashboard able to display some transaction data [1]. Unfor-
tunately, their visualizations are not very well suited to detecting blockchain
threats in Hyperledger Fabric. In our experiments we found that the necessary
integration and aggregation of additional data sources and custom visualizations
are difficult to achieve in standard products like the Elastic stack.

Analyzing related work highlights an evident lack of dedicated and security-
specific visualization approaches enabling security experts to monitor blockchain
networks in real-time, while detecting common indicators of compromise or ongo-
ing attacks on the network. Our work contributes a valuable solution approach
to this issue.

3 Blockchain Security Monitoring

This Section addresses the first part of our contribution. Within our main con-
tribution, we follow the user-centered and problem-driven Nested Blocks and
Guidelines model (NBGM) for visualization designs [14,16]. This allows us to
identify and address security experts’ core problems and lay a foundation for a
visualization design fitting their needs.

The first step of the NBGM is the definition of a domain problem. We char-
acterize the problem at hand based on two primary sources of information.
First, we consider reports from blockchain security professionals [11]. Second,
we analyze literature on blockchain attacks to identify concerns for operators of
a blockchain node [7,9,18]. We begin by outlining the overall blockchain security
monitoring process in Sect. 3.1. The domain problem is then specified accord-
ing to Miksch and Aigner’s design triangle through more in-depth descriptions
of specific users (Sect. 3.2), their tasks (Sect. 3.3), and data elements (Sect. 3.4)
[15]. We address the second step of the NBGM (Data/Operation Abstraction) in

II. RESEARCH PAPERS 155

Dissertation Benedikt Putz, 2022

168 B. Putz et al.

Fig. 1. Blockchain Security Monitoring process based on the NIST Cybersecurity
Framework [5].

Sect. 3.5 by deriving general design requirements for a visualization approach to
support blockchain security monitoring.

3.1 Blockchain Security Monitoring Process

Before we dive into users, tasks, and available data, we first need to understand
the overall process underlying blockchain security monitoring. This subsection
introduces our conceptual process based on the NIST Cybersecurity Framework
for protecting critical infrastructures [5]. As shown in Fig. 1, the framework
has five main functions: Identify, Protect, Detect, Respond and Recover. We
apply these functions to a permissioned blockchain network. The Identify func-
tion serves to identify relevant assets and risks. This problem has been already
addressed in prior work [17]. Protect involves a variety of protection measures
applied to the system: identity management and access control, data security,
secure configuration, and backups/log files, among others. These protection mea-
sures are usually part of the blockchain framework itself, with additional mea-
sures being applied at deployment time (such as secure configuration and appro-
priate backup procedures) [22]. The Detect function currently lacks appropriate
visualization and analysis tools. It’s the focus of this work and further devel-
oped in the following subsection. During the Respond phase, threats detected
using our visualization approach are met with a response plan and appropriate
mitigation actions. Finally, the Recover function provides appropriate tools to
restore functionality after an attack has occurred. Respond and Recover are not
specifically part of this work as attacks need to be identified before effective
Respond and Recover can take place. Corresponding tools might be integrated
into future work to permit swift threat response.

The Detect function can be subdivided into four smaller process steps. Rele-
vant data needs to be collected (Collection) and aggregated to provide appropri-
ate metrics if necessary (Aggregation). Data and metrics can then be visualized
(Visualization) allowing domain experts to identify possible threats (Analysis).
Please note that all steps beside Analysis can be performed automatically.

II. RESEARCH PAPERS 156

Dissertation Benedikt Putz, 2022

HyperSec: Visual Analytics for Blockchain Security Monitoring 169

Blockchain Network
Threat Model

Authentication
and Access

ControlNetwork

Smart Contracts Consensus

N3 MITM

N2 Distributed
DoS

N1 Network
partitioning

C4 Collusion

C3 Denial of
Service

C2 Block
Withholding

C1 Transaction
Reordering

AC4 Sybil attack

AC3 Private Key
Theft

AC2 Cryptographic
Vulnerability

AC1 Insider attack

SC4 Dependency
vulnerability

SC3 Dependency
injection

SC2 Language
vulnerability

SC1 Denial of
Service

Fig. 2. Blockchain Networks Threat Model in attack tree notation.

3.2 Users

The intended users of visualization designs within the Detect function in the
blockchain monitoring process are domain experts. These experts are responsible
for analyzing blockchain data to identify malicious events within this function
[11]. More specifically, we define the domain experts as security professionals
knowledgeable in the cybersecurity domain. Therefore, we expect them to have
the expertise to decide whether specific events or event series indicate an immi-
nent threat to the blockchain. Within a permissioned blockchain, these security
experts are responsible for monitoring the distributed network through the view
of the local organization’s blockchain node. Other organization’s nodes could
also be monitored, but data availability is likely limited due to access restric-
tions within the blockchain network.

3.3 Tasks

Visualizations or any other tool supporting the Detect function of the blockchain
security monitoring process should be based on the tasks that the respective
users need to carry out. Following the user characterization above, we derive the
crucial tasks of the domain expert’s work.

To illustrate the monitoring task’s complexity, we show an overview of pos-
sible attacks in an attack tree notation in Fig. 2. The listed attacks are based
on prior work [17,18] and related literature surveys [7,9]. For each leaf on the
tree, there are various ways to successfully deploy the attack, which we did not
include for conciseness. The attack tree focuses on the blockchain network and
nodes. Therefore, it does not include application-specific attacks such as web

II. RESEARCH PAPERS 157

Dissertation Benedikt Putz, 2022

170 B. Putz et al.

Table 1. Security expert tasks and related attacks (cf. Fig. 2).

Task Description Related attacks

T1 Identify vulnerable smart contracts SC1, SC2, SC3

T2 Identify blockchain framework vulnerabilities SC4, AC2

T3 Inspect log files of running services on demand SC4, N1, N3, C3, C4

T4 Review networking activity N1, N2, N3

T5 Compare transaction metrics over time N2, C2

T6 Explore block and transaction history SC1, SC2, C3, AC1

T7 Review configuration changes C1, AC1

T8 Detect identity abuse AC1, AC3, AC4

application vulnerabilities. Each of the shown attacks is indicated by different
combinations of threat indicators [17]. Security experts need to identify threats
based on these indicators as part of the Analysis process step. Visualizing the
indicators provides the necessary overview to identify vulnerable components for
in-depth analysis. Therefore, domain experts’ overarching task is the analysis of
blockchain data to identify possible threats, which is to be supported by visu-
alizations. To allow domain experts to execute this work adequately, we have
identified more specific tasks based on the attacks and corresponding threat
indicators from prior work [17]. These tasks are shown in Table 1.

Each task comprises several sub-tasks that help accomplish the main task.
To identify vulnerable smart contracts (T1), the expert may manually inspect
smart contract code or scan smart contracts for vulnerabilities and inspect scan
results. Identifying framework vulnerabilities (T2) can be accomplished by read-
ing release notes for the framework and its dependencies. Since many anoma-
lies can have multiple causes (i.e., low transaction throughput), log file inspec-
tion (T3) helps to identify the root cause of anomalies. To review networking
activity (T4), the main indicators are the count of active connections to other
peers, the activity level of those connections, and last seen times of offline peers.
Transaction metrics (T5) include throughput, latency and unprocessed trans-
actions. Block and transaction history monitoring (T6) implies watching the
chain of blocks for inconsistencies such as changed blocks or missing transac-
tions. Reviewing configuration changes (T7) includes both active and proposed
changes to be able to intervene in case of manipulation attempts. Identity abuse
(T8) is possible during all phases of an identity’s lifecycle, so an expert must
monitor issuance, usage in transactions, and revocation.

3.4 Data Elements

Blockchain Frameworks such as Ethereum and Hyperledger Fabric offer a num-
ber of data sources for monitoring. The most obvious data sources are blocks
and associated transaction data [23]. These can be used to derive active users,

II. RESEARCH PAPERS 158

Dissertation Benedikt Putz, 2022

HyperSec: Visual Analytics for Blockchain Security Monitoring 171

smart contracts, and the general level of activity on the network (i.e., transac-
tion throughput). Numerical data on network activity is also provided through
metrics, which can be used to raise alerts for anomalous behavior. On a more
technical level, each component of the blockchain node also provides log files.
These files give detailed information about smart contract execution, consensus
protocol violations, and other node internals. They can be helpful to determine
the root cause of an anomaly.

3.5 Design Requirements

To wrap up this first part of our contribution, we derive the following general
requirements for visualizations aiming to support the Detect function of the
blockchain security monitoring process. The requirements are based on the above
user, task, and data characterizations. Although we follow these requirements in
the remainder of this work to design our prototype, they can serve as a general
collection for respective visualization designs. We summarize the requirements
under several main views that a Visual Analytics system supporting the domain
experts’ tasks should comprise:

R1 - General Security Information: A view should allow users to overview
a series of general, security-relevant information from the monitored blockchain.
Attention should be drawn to any changes on the blockchain’s overall configura-
tion (T7). Whenever new smart contracts are deployed to the blockchain, they
should be checked (automatically or manually) for vulnerabilities. The results
of these checks need to be made available for the analysts (T1). Additionally,
newly discovered vulnerabilities within the applied blockchain framework should
be shown to users within this general view (T2).

R2 - Network View: Another view should provide access to any data and
metrics related to the peers and their network activities. This includes displaying
available information about the peers themselves and the respective identities
that interact with the blockchain on behalf of the peers (T8). This view should
also provide visual access to any network-related metrics that assess the overall
network’s health (T4).

R3 - Transaction View: Domain experts need to access a view displaying
information about the blocks and transactions being handled by the blockchain.
This includes detailed information on the blocks and transactions themselves
(T6) as well as a time-based view on transaction-related metrics allowing to
identify any changes in typical structure and processing of transactions (T5).

R4 - Interactivity and Details: Any of the previously mentioned views (R1–
R3) needs to be fully interactive to provide the best possible support for domain
experts’ tasks and enable exploratory analysis. Whenever suspicious actions or
threat indicators are identified, experts also need access to further details and
underlying log files (T3).

II. RESEARCH PAPERS 159

Dissertation Benedikt Putz, 2022

172 B. Putz et al.

Fig. 3. Prototype architecture and data flows.

4 HyperSec: Hyperledger Security Monitoring Using
Visual Analytics

We now introduce our prototype HyperSec (Hyperledger Security Explorer),
a modified version of the open-source project Hyperledger Explorer based on
the design requirements introduced in Sect. 3.5. The prototype is open-source
and available online, along with a demo deployment1. Our modifications address
the two remaining layers of the NBGM by designing our solution based on the
domain problem and implementing it within a prototype.

4.1 Architecture and Technology

We choose Hyperledger Explorer as a starting point since it already provides a
working synchronization architecture based on Hyperledger Fabric’s block event
subscription. We extend the existing architecture to allow for more comprehen-
sive accessibility of relevant data and effective security monitoring. This results in
the architecture displayed in Fig. 3. We keep the basic structure (data sources,
server, and client) of the original architecture for interoperability and trans-
parency reasons. However, in our previous study [17] we found that security-
relevant information for Hyperledger Fabric must be retrieved from several data
sources: the Hyperledger Fabric SDK, operations metrics, and the application
logs available via Docker. Block data is already stored in Hyperledger Explorer’s
PostgreSQL database. We integrate additional metrics and log sources through
server-side proxies to the respective Prometheus and Docker APIs. The React
client accesses these through the API exposed by the Hyperledger Explorer
server.

1 https://github.com/sigma67/hypersec.

II. RESEARCH PAPERS 160

Dissertation Benedikt Putz, 2022

HyperSec: Visual Analytics for Blockchain Security Monitoring 173

Fig. 4. Dashboard view: Security issues, alerts and general overview.

We implement the views defined in Sect. 3.5 by adapting existing views from
the Hyperledger Explorer project. This allows us to retain the frontend structure
while introducing new monitoring capabilities. Therefore, domain experts do
not need to work with a completely new interface but rather get additional
relevant information on the respective views. The updated views host a series of
interactive visualizations based on the visx2 visualization primitives for React.
They all follow a similar structure: relevant data is retrieved from the client’s
Redux state handling, transformed for use in the visual display, mapped into
visual primitives, and finally rendered [6].

4.2 Visual Representations and Interactions

We now go into more detail on our HyperSec prototype’s visual representations
addressing the requirements R1–R3 and their interactivity (R4). As mentioned
before, we integrate the visualizations into existing Hyperledger Explorer views
to retain the familiar structure for domain experts. This Section is structured
accordingly to the naming of the original Hyperledger Explorer views.

Views Dashboard and Chaincodes: To fulfill the Design Requirement R1, we
adjust two views of the Hyperledger Explorer. First off, directly on the Explorer’s
landing page, called “Dashboard”, we show a list of known Hyperledger Fabric
issues of High/Highest importance from the Hyperledger JIRA3 ordered by last
updated (Fig. 4A). Any list item can be expanded to reveal additional infor-
mation about the issue. Although there is no issue category directly reflecting
security issues, this information is highly relevant for T2 – Identify blockchain
framework vulnerabilities. Additionally, there is no other source for the respec-
tive information. In the side menu (Fig. 4B), an alert appears whenever the
configuration of the monitored Hyperledger Fabric blockchain is changed (T7).

To allow domain experts to detect vulnerable chaincodes, we include available
security scans in the respective “Chaincodes” view. Whenever a smart contract

2 https://airbnb.io/visx/.
3 https://jira.hyperledger.org.

II. RESEARCH PAPERS 161

Dissertation Benedikt Putz, 2022

174 B. Putz et al.

BA C

Fig. 5. Network view: Interactive visualization of network traffic between peers and
orderers.

went through a security scan, analysts can directly check this scan’s results in the
HyperSec prototype (T1). We use the open-source static analysis tool revive-cc4

to detect security vulnerabilities and store the scan result in the Hyperledger
Explorer PostgreSQL database. To ensure the scans are up to date, we set up
automated jobs to regularly generate security reports of deployed chaincodes.

View Network : The Network view targets design requirement R2 intended
for tasks T4 and T8. The original Hyperledger Explorer shows a tabular list
with basic information about the peers connected to the monitored Hyperledger
Fabric network. In our HyperSec prototype, we extend this table with a force-
directed node-link diagram to effectively visualize networking activity (Fig. 5A).
The nodes’ different shapes indicate different peer types within the network: Cir-
cles are used to display peers while rectangles represent orderers. Links between
the glyphs are used to display known networking activities.

However, the unavailability of core information restricts this view’s expres-
sivity. While rich information about the peers can be easily retrieved from the
Hyperledger Explorer, no data about the peers’ network connections is provided.
Therefore, HyperSec retrieves networking information directly from Hyperledger
Fabric through the Prometheus API. By doing so, experts get at least some infor-
mation about the peers’ networking activity within the own Membership Service
Provider (MSP). However, as the Hyperledger Fabric network is decentralized,
it is not possible to get any information about other MSPs’ networking activi-
ties. Because of this restriction, we introduce two empty nodes in the node-link
diagram (uncolored nodes in Fig. 5A), which mark the border of the monitor-
ing visibility regarding networking activities. Nodes within the owned MSP are
colored; those within other MSPs are greyed out.

Links connecting the nodes in the graph represent known network connec-
tions. Again, outside the own MSP’s borders, experts do not get much infor-
mation. Therefore, we connect any foreign peer and orderer to the respective
artificial node. The coloring of the links follows a continuous scale from −1 to 1.
This scale measures the current deviation of the link’s message traffic from the
average, by comparing traffic in the last hour with traffic in the previous seven

4 https://github.com/sivachokkapu/revive-cc.

II. RESEARCH PAPERS 162

Dissertation Benedikt Putz, 2022

HyperSec: Visual Analytics for Blockchain Security Monitoring 175

Fig. 6. Transactions view: Interactive visualizations for transaction count, size and
processing time.

days. If this deviation is low, the link is colored in a green tone. A red link, in
contrast, marks a high variation of message numbers.

The node-link diagram is fully interactive. Nodes are draggable to ensure that
security analysts can adjust the layout to their own needs if necessary. Hovering
over nodes (Fig. 5B) or links (Fig. 5C) highlights the hovered object and shows
additional status information about it.

View Transactions: This view (R3) satisfies tasks T5 and T6. Some mod-
ifications to the original simple table view ensure that the transactor identity
and transaction size are visible. The primary adjustment we made to this view is
introducing four visualizations (Fig. 6). To ensure a high performance of the visu-
alizations even when dealing with several thousands of transactions, we imple-
ment an efficient data bucketing algorithm which allows easy and fast look up
of relevant transaction data (see Algorithm 1).

We make small adjustments to the original timeframe selection (Fig. 6A).
The selection defines the time range for which information about transactions
should be displayed. On the right side of the timeframe selection, we added
a dropdown menu to select the aggregation granularity (1 min, 1 h, 12 h, 24 h)
for the visualizations. This helps security experts if they need to compare and
contextualize available information.

The wide bar chart (Fig. 6B) always displays the entire selected date range.
Each bar represents the number of transactions within a specific range of time
specified through the aggregation granularity. This bar chart supports analysts
in navigating the selected time range. A brushing interaction (horizontal drag-
ging on the chart) selects an even smaller time range for detailed analysis. On
interaction, the other visualizations (Fig. 6C, D, and E) and the transactions
table are dynamically updated with data from this narrowed time range.

A stacked bar chart (Fig. 6C) visualizes the number of transactions per aggre-
gation window. However, it does this only for the transactions selected through
the brushing interaction on the visualization Fig. 6B. It shows the transaction
count’s composition based on which MSP contributed how many transactions.
The scatterplot Fig. 6D shows the transaction size in bytes throughout the time

II. RESEARCH PAPERS 163

Dissertation Benedikt Putz, 2022

176 B. Putz et al.

Algorithm 1: Transaction data bucketing

Input: Time Window from timestamp ts to te with ts, te ∈ T , ts < te, and
T ∈ R. Aggregation granularity sb ∈ R

Output: Map M tx with transactions sorted into the respective time-based
bucket

1 function generateTxBuckets(ts, te, sb):
2 Ltx ← getTransactionListForT imeWindow(ts, te);
3 M tx ← new Map();
4 tb ← ts;
5 while tb < te do
6 ib ← �tb/sb�;
7 b ← new Bucket() ; // Object for transactions and meta-data.

8 M tx
ib

← b;
9 tb ← tb + sb;

10 end while
11 foreach tx ∈ Ltx; // Find correct Bucket and update with tx.
12 do
13 itx ← �(ttx − ts)/sb�;
14 M tx

itx
← M tx

itx
∪ parse(tx)

15 end foreach
16 return M tx;

17 end

range for each MSP. Each circle on the scatterplot represents the average size
of transactions submitted by a specific MSP. This aggregation is performed to
scale the chart for large numbers of transactions. During attacks, thousands of
transactions can be submitted within just minutes, thus freezing the chart if
each transaction were drawn individually. The stacked area chart Fig. 6E finally
shows the development of three different metrics, which we identify as helpful
to get an idea for the processing time in seconds that a transaction needs from
proposal to validation. As information for processing times are not available dis-
tinctively per transaction but continuously per time unit, we choose to display
this metrics with a continuous visualization technique.

The visualizations Fig. 6C, D, and E are again fully interactive. Hovering
individual bars or hovering along the continuous sizes and times displays addi-
tional information as tooltips. Different metrics can also be toggled using the
legend icons below the visual representations.

5 Evaluation

For our evaluation, we focus on three common attacks that cover the majority of
the tasks outlined in Table 1: SC2, N2, and AC1. We simulate these attacks a
Hyperledger Fabric test network, which the HyperSec prototype is connected to.

II. RESEARCH PAPERS 164

Dissertation Benedikt Putz, 2022

HyperSec: Visual Analytics for Blockchain Security Monitoring 177

SC2 refers to a language vulnerability, i.e. a software bug that exposes
chaincode to malicious exploits. A security expert may become aware of such
an exploit by identifying vulnerable smart contracts (T1) and by inspecting
transaction history (T6). For example, consider a read-after-write vulnerability
detected by the chaincode scanner revive-cc. The security expert can inspect an
automatically generated chaincode scan in the Chaincodes view. Intuitively, the
experts check for past exploitations using the Transactions view. Thereto, the
transactions table can be filtered using the chaincode name and applicable time
frame. The filtered transactions can be inspected individually to find unusual
read/write sets.

N2 refers to a distributed denial of service attack. If a peer or orderer is
targeted by a traffic-based denial of service attack, its connection to other peers
will be impaired as well. The Network view (Fig. 5C) shows high deviation in
gossip communication traffic to the targeted peer during such an attack (T4).
If the local peer is targeted, the metrics in the Transaction view (Fig. 6E) show
increased transaction processing latency due to high peer load (T5). For attack-
ers that can send transaction to the network, transaction-based DoS is more
effective. Figure 6C and 6D show two such attempts using high transaction vol-
ume (C) and large transaction size (D). Figure 6E also shows spikes in processing
latency during the time of attack (spikes 1 and 3 in that chart).

To investigate the source of the anomaly, experts can check the peer logs,
which are available in the Network view (T3). They cross-reference any error
messages with open issues in the Hyperledger JIRA, which are available in the
Dashboard view (T2).

AC1 refers to an attack where an insider abuses valid credentials for mali-
cious purposes. Consider an insider attempting to corrupt the blockchain net-
work’s configuration using a configuration transaction. Security experts are
immediately notified about the configuration change in the notification side-
bar (T7, see Fig. 4). Details of the attempted configuration change are available
in the transaction history table (T6), where the full read-write set of the trans-
action is available by selecting the respective transaction.

6 Discussion

The evaluation has shown that the visualizations can assist a security expert in
detecting ongoing attacks. If an attack is detected, the next steps in the Cyberse-
curity Framework (see Fig. 1) are analysis, respond and recover activities, which
are discussed hereafter.

Analysis. Based on the present threat indicators the expert then proceeds with
analysis of the root cause. The logs shown in HyperSec can be a starting point,
but may only show symptomatic errors. In-depth analysis of application and
network logs on the systems running blockchain components can yield further
information. The expert must determine if it is a crash fault or a byzantine
fault. At the same time, a communication channel should be available with other

II. RESEARCH PAPERS 165

Dissertation Benedikt Putz, 2022

178 B. Putz et al.

organizations of the consortium to determine if it is a more widespread problem.
Guidelines and checklists can help structure this process.

Respond. Once the cause is identified, the expert contacts operations teams to
request mitigation actions. Local or network configuration changes can mitigate
crash faults and network/consensus threats (see Fig. 2). Compromised smart
contracts may require an upgrade, or even a ledger rollback if the consequences
were severe. Hyperledger Fabric supports ledger snapshots for this purpose [22]).

Recover. After mitigation of an attack, evidence collection is another subject
of interest. System and Docker logs are the primary source of evidence, comple-
mented by ledger transaction data stored in HyperSec’s PostgreSQL database.
However, the forensic analysis of attacks on Hyperledger Fabric is a topic in need
of further research.

7 Conclusion

This work introduced the task-oriented design and prototypical implementation
of HyperSec, a visual analytics security monitoring tool tailored for Hyperledger
Fabric. Throughout the design of HyperSec, we followed the NBGM design
methodology. The domain problem describes the activities of the blockchain
security monitoring process to be supported by visualizations. Subsequently, we
identified the involved users, their specific tasks, and the available data ele-
ments. These considerations culminated in design requirements that apply to
any visualization system aiming to support blockchain security analysts. Our
prototype HyperSec picks up on these design requirements. It extends the open-
source architecture of Hyperledger Explorer with additional security-relevant
data sources. The data is aggregated, processed and displayed in appropriate
visualizations supporting blockchain security analysts to detect potential attacks.

Our prototype might not cover every possible subtask of the defined tasks of
blockchain security analysts. This is in part due to limited availability of data
provided by Hyperledger Fabric itself. We plan to update our prototype as addi-
tional data sources become available in the future, and are open to contributions
from the community.

The security of the monitoring tool itself is also important, as it should
not contribute additional attack vectors by leaking blockchain data. During
our implementation we found some bugs and vulnerabilities within Hyperledger
Explorer, which we subsequently fixed and contributed to the upstream project.

References

1. Baset, S., Prehoda, B.: Hyperledger Labs Blockchain Analyzer, March 2021.
https://github.com/hyperledger-labs-archives/blockchain-analyzer. 30 May 2019

2. Ben-Asher, N., Gonzalez, C.: Effects of cyber security knowledge on attack detec-
tion. Comput. Hum. Behav. 48, 51–61 (2015). https://doi.org/10.1016/j.chb.2015.
01.039

II. RESEARCH PAPERS 166

Dissertation Benedikt Putz, 2022

HyperSec: Visual Analytics for Blockchain Security Monitoring 179

3. Bogner, A.: Seeing is understanding: anomaly detection in blockchains with visual-
ized features. In: Proceedings of the 2017 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, New York, NY, USA, pp. 5–8. ACM (2017).
https://doi.org/10.1145/3123024.3123157

4. Boshmaf, Y., Al Jawaheri, H., Al Sabah, M.: BlockTag: design and applications of
a tagging system for blockchain analysis. In: Dhillon, G., Karlsson, F., Hedström,
K., Zúquete, A. (eds.) SEC 2019. IAICT, vol. 562, pp. 299–313. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-22312-0 21

5. Calder, A.: NIST Cybersecurity Framework (2018). https://doi.org/10.2307/j.
ctv4cbhfx

6. Chi, E.: A taxonomy of visualization techniques using the data state reference
model. In: Proceedings of the IEEE Symposium on Information Visualization 2000,
pp. 69–75. IEEE Computer Society (2000). https://doi.org/10.1109/INFVIS.2000.
885092

7. Dabholkar, A., Saraswat, V.: Ripping the fabric: attacks and mitigations on hyper-
ledger fabric. In: Shankar Sriram, V.S., Subramaniyaswamy, V., Sasikaladevi, N.,
Zhang, L., Batten, L., Li, G. (eds.) ATIS 2019. CCIS, vol. 1116, pp. 300–311.
Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0871-4 24

8. Di Battista, G., Di Donato, V., Patrignani, M., Pizzonia, M., Roselli, V., Tamassia,
R.: Bitconeview: visualization of flows in the bitcoin transaction graph. In: 2015
IEEE Symposium on Visualization for Cyber Security (VizSec), pp. 1–8. IEEE
(2015). https://doi.org/10.1109/VIZSEC.2015.7312773

9. Homoliak, I., Venugopalan, S., Reijsbergen, D., Hum, Q., Schumi, R., Szalachowski,
P.: The security reference architecture for blockchains: towards a standardized
model for studying vulnerabilities, threats, and defenses. IEEE Commun. Surv.
Tutor. (2020). https://doi.org/10.1109/COMST.2020.3033665

10. Jensen, T., Hedman, J., Henningsson, S.: How TradeLens delivers business value
with blockchain technology. MIS Quart. Execut. (2019). https://doi.org/10.17705/
2msqe.00018

11. Kacherginsky, P.: Attacking and Defending Blockchain Nodes. In: DEFCON 2020,
p. 54 (2020)

12. Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., Melançon, G.:
Visual analytics: definition, process, and challenges. In: Kerren, A., Stasko, J.T.,
Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp.
154–175. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70956-
5 7. iSSN: 03029743

13. McGinn, D., Birch, D., Akroyd, D., Molina-Solana, M., Guo, Y., Knottenbelt,
W.J.: Visualizing dynamic bitcoin transaction patterns. Big Data 4(2), 109–119
(2016). https://doi.org/10.1089/big.2015.0056

14. Meyer, M., Sedlmair, M., Quinan, P.S., Munzner, T.: The nested blocks and
guidelines model. Inf. Vis. 14(3), 234–249 (2015). https://doi.org/10.1177/
1473871613510429

15. Miksch, S., Aigner, W.: A matter of time: applying a data-users-tasks design trian-
gle to visual analytics of time-oriented data. Comput. Graph. 38, 286–290 (2014).
https://doi.org/10.1016/j.cag.2013.11.002

16. Munzner, T.: A nested model for visualization design and validation. IEEE Trans.
Visual Comput. Graphics 15(6), 921–928 (2009). https://doi.org/10.1109/TVCG.
2009.111

17. Putz, B., Pernul, G.: Detecting blockchain security threats. In: 2020 IEEE Interna-
tional Conference on Blockchain (Blockchain), pp. 313–320. IEEE (2020). https://
doi.org/10.1109/Blockchain50366.2020.00046

II. RESEARCH PAPERS 167

Dissertation Benedikt Putz, 2022

180 B. Putz et al.

18. Putz, B., Pernul, G.: Trust factors and insider threats in permissioned distributed
ledgers. In: Hameurlain, A., Wagner, R. (eds.) Transactions on Large-Scale Data-
and Knowledge-Centered Systems XLII. LNCS, vol. 11860, pp. 25–50. Springer,
Heidelberg (2019). https://doi.org/10.1007/978-3-662-60531-8 2

19. Sundara, T., Gaputra, I., Aulia, S.: Study on blockchain visualization. Int. J.
Inform. Visual. 1(3), 76–82 (2017). https://doi.org/10.30630/joiv.1.3.23

20. The Linux Foundation: DLTLabs Case Study - Hyperledger (2020). https://www.
hyperledger.org/learn/publications/dltlabs-case-study

21. The Linux Foundation: Hyperledger Explorer (2020). https://www.hyperledger.
org/use/explorer

22. The Linux Foundation: Hyperledger Fabric 2.3 Documentation (2020). https://
hyperledger-fabric.readthedocs.io/en/release-2.3

23. Tovanich, N., Heulot, N., Fekete, J., Isenberg, P.: Visualization of blockchain data:
a systematic review. IEEE Trans. Visual. Compute. Graphics 1 (2019). https://
doi.org/10.1109/TVCG.2019.2963018

24. Zheng, P., Zheng, Z., Luo, X., Chen, X., Liu, X.: A detailed and real-time per-
formance monitoring framework for blockchain systems. In: Proceedings - Inter-
national Conference on Software Engineering (2018). https://doi.org/10.1145/
3183519.3183546, iSSN: 02705257

II. RESEARCH PAPERS 168

Dissertation Benedikt Putz, 2022

II. RESEARCH PAPERS 169

3 RQ3: Secure Information Sharing in a DLT Consortium

3.1 Comparing Successful DLT Consortia: A Lifecycle Perspective. [P8]

Status: published

Publication: 55th Hawaii International Conference on System Sciences 2022

Submitted: 15 June 2021

Revised: 05 September 2021

Accepted: 12 September 2021

Citation: Benedikt Putz and Günther Pernul. 2022. Comparing Successful DLT Con-
sortia: A Lifecycle Perspective. In 55th Hawaii International Conference
on System Sciences 2022, 4591–4600.

Conference Description: Since 1968, the Hawaii International Conference on System

Sciences (HICSS) has been known worldwide as the longest-standing working scientific

conferences in Information Technology Management. HICSS provides a highly interactive

working environment for top scholars from academia and the industry from over 60 countries

to exchange ideas in various areas of information, computer, and system sciences. HICSS is

the #1 Information Systems conference in terms of citations as recorded by Google Scholar.

Dissertation Benedikt Putz, 2022

Comparing Successful DLT Consortia: A Lifecycle Perspective

Benedikt Putz
University of Regensburg

benedikt.putz@ur.de

Günther Pernul
University of Regensburg
guenther.pernul@ur.de

Abstract

In 2021, enterprise distributed ledger technology
has evolved beyond the proof-of-concept stage. It
is now providing business value to large consortia
in several successful and well documented case
studies. Nevertheless, other consortia and initiatives
are stuck in early stages of consortium formation
or conceptualization. They stand to benefit from
lessons learned by successful consortia, but an in-depth
comparison has not yet been conducted. Thus, this
study performs the first methodological comparison of
large DLT consortia that have launched a product.
Based on the temporal evolution of these consortia, a
lifecycle with 4 stages and 12 sub-phases is developed to
provide further guidance for early-stage consortia. The
results show how 9 pioneer consortia have successfully
integrated novel DLT into existing processes, but also
point out challenges faced on the way.

1. Introduction

Distributed Ledger Technology (DLT) offers great
potential to improve inter-organizational processes
by improving information transparency, traceability,
efficiency and ultimately reducing costs [1, 2]. Despite
the promised benefits, it has not yet reached widespread
adoption. DLT faces numerous technical challenges
with regard to scalability, privacy and interoperability
among others [3]. But these are not the main issue
preventing adoption. Indeed, the main challenge for
businesses looking to reap DLT’s benefits is successful
collaboration with ecosystem partners [4, 5]. A
global survey with 1400 respondents from businesses
around the world in March 2020 further confirms this
assessment [6]. 30% of its respondents agree to face
challenges in forming a consortium for DLT-based
collaboration. In addition, 40% face at least one
of several challenges participating in the consortium
collaboration (such as defining balanced governance
rules, defining roles and responsibilities, cross purposes

of members). Consequentially, despite significant
progress in some industries, many initiatives remain
stuck in a proof of concept stage and are thus investing
without gaining business benefits. Still, there are several
pioneers that have used the technology successfully to
improve business processes. To date, researchers have
only published isolated studies of such cases [7, 8, 9].
Going beyond single case studies, multiple case study
designs can provide more robust results by revealing
findings through replication logic [10]. These findings
may prove useful to newer DLT consortia in early
stages of development. To our knowledge, no such
study has been conducted with regard to DLT consortia.
Therefore, we derive the following research questions:

RQ1: What are the commonalities and differences
between operational DLT consortia?

RQ2: Which phases does a DLT consortium undergo
during its lifecycle?

Contribution. To answer these questions, we
conduct a systematic multiple case study of successful
production use cases of DLT in a consortium setting. To
our knowledge, this is the first systematic study of DLT
consortia that have launched an operational network.
Besides determining commonalities and differences, we
also focus on the temporal dimension of consortium
building by developing a lifecycle from empirical
evidence. We contribute to theory by aggregating and
comparing evidence from distinct DLT case studies,
while building new theory for future empirical studies
with the lifecycle. Our study contributes to practice
by providing a guideline for DLT consortia in early
adoption stages, which allows them to tackle governance
issues in a structured way.

This paper is organized as follows: Section 2
provides an overview of related research with regard to
consortium collaborations and blockchain governance.
Section 3 explains our methodology for case study
selection and lifecycle development. It also provides
reasoning for the selection criteria mentioned in the
previous paragraph. In Section 4, the selected cases
are briefly introduced. Based on an in-depth review

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 4591
URI: https://hdl.handle.net/10125/79896
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

II. RESEARCH PAPERS 170

Dissertation Benedikt Putz, 2022

of each case, Section 5 focuses on answering RQ1,
while Section 6 introduces the DLT consortium lifecycle
answering RQ2. Finally, we discuss our findings and
limitations in Section 7 and wrap up with a summary of
the results in Section 8.

2. Background

While literature commonly uses the term blockchain,
this paper uses the term DLT, which covers a broader
range of technical frameworks (i.e. R3 Corda is
technically not a blockchain [11]). We also use the term
consortium for a DLT-based partner network, defined
as “a form of cooperation between institutions that
see value in sharing resources and know-how to save
costs” [7]. In particular, business-oriented consortia
focus on solving business problems with DLT, as
opposed to technology-oriented consortia, which focus
on developing DLT platforms (i.e. R3, Hyperledger).
This study focuses on business-oriented consortia.

Before explaining our methodology, we give some
background on information sharing in partner networks,
which is currently the main business objective of DLT
consortia. Regarding blockchain and DLT, the research
stream blockchain governance focuses on the processes
and decision rights in DLT consortia and is thus closely
related to the present work.

2.1. Information sharing in partner networks

A network of collaborating business partners is
the foundation necessary to begin information sharing
with a technological artifact. Such partner networks
are typically formed in stages, which are identified
by Larson et al. and shown in Figure 1 [12].
The process starts with the trial period, where
companies exchange initial information about each
other’s knowledge, capabilities and resources. First
experiences are made based on initial collaborations,
thus generating trust. Once enough trust has been built
up, companies proceed to an integration period, where
companies begin having increasing influence over others
in their interactions. More risks are taken and short-term
losses are more easily accepted with the expectation of
long-term profits. In this period, processes are more
closely aligned to reduce organizational differences
[13]. This also includes closer integration of technical
infrastructure, which improves the effectiveness of the
collaboration by increasing transparency. Larson refers
to this constant improvement as “Kaizen”.

DLT is a technological artifact that can be used to
significantly enhance the technical integration. DLT
removes the need to trust one partner or outsider with
data management, while providing non-repudiation,

Figure 1: Stages of the business network formation
process [12]

integrity and transparency guarantees [14].
Once partners are sufficiently integrated, the network

is established (network phase). A functioning network is
characterized by an atmosphere of trust, which enables
open communication and collaborative problem solving.
While DLT cannot guarantee this trust, it can enable
it by providing a stable technological basis that even
permits isolated misbehavior under an honest majority
[15].

2.2. Blockchain Governance

First and foremost, blockchain governance research
deals with the distribution of responsibilities and
power among consortium participants. This includes
decision-making rights and processes and accountability
of decision-makers [16].

One stream of research focuses on developing layers
and dimensions for governance of blockchains [17, 18].
Pelt et al. focus mostly on permissionless blockchains
(public networks without access restrictions) and
their open-source governance. They describe three
layers: Off-chain community, off-chain development
and on-chain protocol. Dimensions further describe the
aspects of each layer [17]. The approach by Beck et
al. instead focuses on permissioned networks (closed
networks focused on enterprise usage), establishing
incentives, accountability and decision rights as core
dimensions for blockchain governance [18].

Ziolkowski et al. examine decision problems in
blockchain governance, providing guidance on the
handling of challenging decisions faced by the interview
participants [16, 2]. Their case study interviews were
conducted in 2017, so most of the cases were still
creating proof-of-concept prototypes. In addition, there
are many case studies focusing on the development and
challenges faced by a single consortium, i.e. TradeLens
[8], Cardossier [7] and MediLedger [9]. The University
of Cambridge conducted its latest benchmarking study
on live DLT networks in 2019 [19]. However, the study
is missing a transparent and methodological approach
to consortium selection. The lack of consideration

Page 4592

II. RESEARCH PAPERS 171

Dissertation Benedikt Putz, 2022

for consortium size leads to skewed results in two
ways. Firstly, the study itself categorizes 77% of
its database as “blockchain memes”, i.e. systems
without real multi-party consensus. Secondly, results
are biased toward individual companies developing
solutions (71%) instead of consortia.

Few existing studies consider the temporal
dimension of consortium development. Especially
regarding permissioned blockchains, there is still
uncertainty regarding the formation and development
processes of blockchain consortia. The Cambridge
Benchmarking Study proposes four stages (exploration,
concept, trial, production), but does not detail how these
stages were determined or relate them back to individual
cases [19]. The study also does not investigate in detail
what happens in each phase and what happens beyond
the initial production deployment. Deventer et al.
created a strategic options model with exploration
and exploitation phases, but this was only based on a
conceptual experiment [20]. Therefore, this study fills
the gap by methodologically deriving a holistic lifecycle
of blockchain consortium development from empirical
evidence, from consortium formation to post-launch
expansion.

3. Methodology

Based on the initial model derived from business
network formation (see Figure 1), we further refine
this model based on a comparative multiple case study
research design [10]. We perform a holistic study of
multiple cases, where each case represents a different
context in which DLT is being adopted. The study
aims to answer our research questions RQ1 and RQ2,
motivated by the lack of cross-case comparisons for
DLT consortia in the literature.

We first conduct a literature review of existing DLT
use cases to determine applicable cases for our study.
To find as many cases as possible we conducted a
breadth-first search, which included:

• DLT and industry news websites (LedgerInsights1,
Global Trade Review2, Forbes Blockchain 50 [21]

• DLT framework websites (i.e. Hyperledger, R3,
Multichain use case sections)

• industry review studies (WTO study on DLT in Global
Trade [22])

Overall, the breadth-first search yielded a total of 35
DLT consortia in various stages of development. To
deepen our view of each case, we retrieve available

1www.ledgerinsights.com
2www.gtreview.com

information from the web. We search for mentions in
scholarly literature using the databases Google Scholar,
IEEE Xplore and Scopus and combining the consortium
brand name (column 1 in Table 1) with the term “case
study”. Other valuable sources include the consortium
website, consortium partners’ websites, press interviews
and news articles.

A critical part of this work is defining a successful
case. We consider a case successful iff

1. it has been operating live for at least 6 months

2. at least 7 participants operate DLT nodes

The period of live operation is determined based
on the point of live deployment in the unified software
development process [23]. We use 6 months as the lower
bound to be able to investigate post-launch phases. 7
nodes is the lower bound to tolerate at least 2 dishonest
nodes in the 3f + 1 byzantine fault-tolerant consensus
model [15]. As trust issues among participants are
a key point on the decision path to DLT adoption
[14], tolerating some misbehavior is essential to build
a successful platform. In combination with 6 months
of live operation, the lower bound on network nodes
also serves to ensure that some business value is
being delivered, as otherwise organizations would begin
leaving to save costs.

Additionally, to ensure sufficient empirical evidence
for analysis we define a structured set of criteria based
on the well-known Information Quality (IQ) Framework
[24]. We focus on Intrinsic IQ and Contextual IQ, where
we consider the following characteristics:

Intrinsic IQ: accuracy, objectivity, believability, and
reputation of data

Contextual IQ: appropriateness of contextual
parameters of data for the task at hand

Therefore, Intrinsic IQ is based on the quality of
associated publications. We consider a case’s intrinsic
IQ as high if there is at least one publication with
Q1/Q2 ranking in ISI WoK Journal Rankings3, or at
least B quality in CORE conference/journal rankings4.
We consider it medium, if there are at least 5 different
sources of acceptable quality (white papers, online case
studies, news articles, website entries).

Contextual IQ is used to measure the completeness
of the case study based on publicly available data, as
well as its appropriateness based on the consortium’s
success. This metric is computed as the percentage of

3http://www.webofknowledge.com/JCR
4https://www.core.edu.au/conference-portal

Page 4593

II. RESEARCH PAPERS 172

Dissertation Benedikt Putz, 2022

Table 1: Overview of selected case studies (in alphabetical order).

Name Lead Partner Platform Sector Nodes Legal Form Country

B3i Re B3i Services R3 Corda Insurance 21 Stock Corp. Switzerland

Bakong NBC Soramitsu Iroha CBDC 16 led by NBC Cambodia

Cardossier cardossier AdNovum Corda Vehicles 8 Association Switzerland

Contour Contour Contour Corda Trade Finance 8 Limited Singapore

covantis Covantis ConsenSys Quorum Agriculture 18 SA Switzerland

DL Freight Walmart Canada DLT Labs Fabric Logistics 30 Incorporated Canada

MediLedger Chronicled Chronicled Ethereum Pharma 10 Incorporated US

TradeLens Maersk IBM Fabric Logistics 14 Subdivision US

we.trade we.trade IBM Fabric Trade Finance 16 DAC Ireland

pertinent questions that we were able to answer based
on available sources. Specifically, we consider the
following questions:

Q1: Is sufficient information consortium evolution
available (trial/integration phases)?

Q2: Did the consortium platform launch at least 6
months ago?

Q3: Do at least 7 participating organizations control
DLT nodes?

Q4: Could the name of the used DLT platform be
extracted?

Cases were included in our study if they have an
intrinsic IQ of at least medium and a contextual IQ of
100%. After applying this filter, 9 cases remain, which
we focus on in the following sections. The full table of
gathered data on consortia is available online, along with
intrinsic and contextual IQ filter results5.

For lifecycle development, we follow a bottom-up,
empirical and iterative process. Figure 1 from Section
2.1 provides initial guidance on the trial and integration
phases. We subsequently refine these phases based on
common milestones of each consortium (see Table 2)
and activities occurring between these milestones (see
Table 3). Finally, we performed several semi-structured
expert interviews with consortium representatives to
validate our findings.

4. Selected Cases

An overview of selected case studies is given in
Table 1. Hereafter, a brief description of each selected

5https://drive.google.com/drive/folders/
1M3046mb6X1UsxnR9l dj80jXzJXRiivb

case study is given, followed by a citation of the primary
source(s) for the case.

B3i Reinsurance. B3i refers to the Blockchain
Insurance Industry Initiative, a consortium jointly
currently owned by 21 insurance companies. The
consortium develops solutions for the insurance market,
with its current solution B3i Reinsurance (B3i Re)
focused on reinsurance Catastrophe Excess of Loss (Cat
XoL) treaties. Primary source for B3i Reinsurance is
the case study by its implementation partner R3 [25],
accompanied by a large number of detailed blog posts
on their website.

Bakong. Bakong is an initiative of the National
Bank of Cambodia (NBC), and one of the first
Central Bank Digital Currencies (CBDC) to launch in
production on Hyperledger Iroha in June 2020. Its
stated objective is improving financial inclusion across
Cambodia through simplified access to bank accounts
and near real-time mobile payments. Primary source is
the Bakong Guide Book published by the NBC [26].

Cardossier. The Cardossier consortium was built
with the goal of establishing a single source of truth for
car-related data across a car’s lifecycle. It currently has
20 members, including government organizations and
businesses from the automotive, finance and insurance
sectors. It runs in production on the Corda DLT since
June 2020. The primary source is the case study by
Zavolokina et al. [7]. In addition, this consortium
is noteworthy for its double-digit count of published
research papers, thanks to its collaboration with the
University of Zurich.

Contour. Contour is a Trade Finance platform
focused on digitizing Letters of Credit. It went live on
an R3 Corda network in October 2020. R3 also provides
a case study focused on Contour, which is our primary
source [27].

Page 4594

II. RESEARCH PAPERS 173

Dissertation Benedikt Putz, 2022

Covantis. Covantis aims to digitize processes
in agricultural trading and shipping by creating a
trusted single source of information. It relies on
the ConsenSys-supported Quorum blockchain platform.
ConsenSys has published a case study that serves as our
primary source [28].

DL Freight. DL Freight was built by DLT Labs for
Walmart Canada to address freight invoicing issues for
logistics carriers. The platform is based on Hyperledger
Fabric and runs in production since October 2019.
Primary source is a case study conducted by the
University of Arkansas [29].

MediLedger. MediLedger is a US-based
consortium focusing on product traceability and
preventing counterfeits in the pharmaceuticals supply
chain. It was founded in 2017, and went into production
on Parity Ethereum in October 2019. Primary source is
the case study by the University of Bamberg [9].

TradeLens. TradeLens is a supply chain platform
focused on digitizing bills of lading for container
shipping. It was founded by Maersk, starting with
research prototypes of different names as early as 2013.
The decision to commercialize and launch it as the
TradeLens platform was made in December 2018. Since
then, it has grown to become the largest DLT platform
by ecosystem size, currently claiming more than 200
members globally. Primary source for TradeLens is the
case study conducted by Jensen et al. [8].

we.trade. we.trade is a platform focused on trade
finance, specifically on Bank Payment Undertakings
(buyers providing bank payment guarantees to sellers).
It was founded at the beginning of 2017 as a joint
venture between 12 European banks and subsequently
went into production in October 2018. Primary source
is the case study by its technology provider IBM [30],
complemented by interviews on Global Trade Review
for more recent developments since 2018.

For brevity, we refer to the cases described in this
chapter simply as cases or consortia in the following
sections.

5. Case Comparison

In this Section, we attempt to answer our first
research question based on the findings from the
case studies: RQ1: What are the commonalities and
differences between operational DLT consortia?

Specifically, we analyze six dimensions derived from
blockchain governance literature and our own research:
Platform choice [19], Network size [15], Incentives
[17, 18], Legal Form [18], Disintermediation [31, 4] and
Interoperability [19, 4].

Platform choice. The choice of DLT platform

Table 2: Milestones of the selected consortia.

Name Foundation Instit. Pilot Launch

B3i Re Oct-16 Mar-18 Jun-18 Jul-19

Bakong - - Jul-19 Oct-20

Cardossier Nov-16 Mar-19 Apr-19 Jun-20

Contour Jul-17 Jan-20 May-19 Oct-20

covantis Oct-18 Mar-20 - Feb-21

DL Freight - - Jan-19 Oct-19

MediLedger Jan-17 - Feb-19 Oct-19

TradeLens Jan-17 Aug-18 Jan-17 Dec-18

we.trade Jan-17 Apr-18 Jun-18 Oct 18

differs among consortia. Hyperledger Fabric is the most
popular framework (4 consortia), closely followed by
Corda (3 consortia). Ethereum and Hyperledger Iroha
support 1 consortium each. Regarding the full list of
33 consortia, the distribution changes. 16 consortia
use Hyperledger Fabric and only 6 Corda. Quorum
is used by 5, with others (i.e. Multichain, Ethereum,
Iroha) totaling 6. Corda is almost exclusively used by
Trade Finance and Insurance consortia, with Cardossier
marking the exception. Overall, Hyperledger Fabric
seems to be the most flexible platform fitting most use
cases, but other platforms have valid use cases as well.

Network size. The network size refers to the
number of distinct independent organizations operating
the underlying DLT network (i.e. taking on a validator
role). The size of the selected consortia varies between
8 (Contour) and 30 (DL Freight). Member counts
published in official press releases must be carefully
considered. For example, TradeLens claims more than
200 ecosystem members, but only a small number of
those are actually performing validator roles on the
DLT. For TradeLens, validators are referred to as “trust
anchors”, a role currently assumed by ocean carriers.
14 ocean carriers and an additional node operated by
consortium’s legal entity perform consensus validation
for the network. Other ecosystem partners have much
less control and only interact with the DLT via an API.

Incentives. Initially, incentives refer to reasons for
new members to join the network. For marketing these
incentives, the consortia focus on the actual business
benefits that the solution provides - usually digitized and
more efficient processes, which result in cost savings.
The fact that DLT is used for this purpose is not specially
emphasized, unless information technology executives
are addressed directly. Some consortia still mention it at
the same level with other business benefits (Cardossier,
MediLedger). However, as other researchers have noted

Page 4595

II. RESEARCH PAPERS 174

Dissertation Benedikt Putz, 2022

[4], incentives work only if they represent business value
for potential members (“executives don’t care about
blockchain”).

Legal Form. There is no clear single best choice
for the legal form of a DLT consortium. Most
cases choose for-profit entities, such as Corporation,
Limited or as a subdivision of an existing legal
entity. For example, it was decided to make
the TradeLens operating company a fully owned
subsidiary of Maersk to ease legal approvals in
countries around the world [8]. However, the more
frequent case is incorporation of a new company where
consortium members become shareholders (we.trade,
B3i, Contour). Cardossier marks the exception
by founding a non-profit association tasked with
maintaining the consortium platform.

Disintermediation. One of the most frequently
cited benefits of DLT is disintermediation. However,
recent research has questioned the degree to which
DLT actually accomplishes the task of eliminating
the platform operator, calling it the “disintermediation
fallacy” [31]. Our results partially support this
hypothesis. Every reviewed case relies on an external
company for A) platform development, B) platform
hosting or C) both of these. While for case B
the involvement of the third party is limited to
infrastructure, in the other case more significant trust
is required in the platform developer (and operator in
case C). In these cases it is worth questioning if DLT
is actually needed to support the platform, since the
external platform operator already has sufficient trust
and control to invalidate the disintermediation argument.

Interoperability. In some industries, there are
several competing DLT consortia which serve similar
business needs. This is especially apparent for
Global Trade, where multiple operational and emerging
platforms serve similar needs (i.e. Bill of Lading,
Letter of Credit). In turn, interoperability is becoming
a more important concern for platform operators. For
example, TradeLens and we.trade built a bridge for
trusted data transfer between the two networks as part
of a research project [32]. While interoperability is not
a primary concern before launch, it should be considered
in strategic plans [8]. Especially if there are other DLT
networks fulfilling similar needs, interoperability pilots
should be conducted. These may even result in mergers
which benefit both participants, as was the case when
we.trade and Batavia merged in October 2018. DLT
platforms are about network effects [33], so greater
reach benefits all participants.

By analyzing six dimensions we have now answered
RQ1. The results established some commonalities:
successful consortia focus on business benefits as

incentive for participation, they rely on trusted
providers for DLT operation, and favor interoperability
initiatives in long-term plans. As for differences,
platform choice, network size and legal form are quite
heterogeneous. They mostly seem to depend on the
specific requirements of the case study and its industry.

6. DLT Consortium Lifecycle

This Section is dedicated to answering RQ2: Is there
a common lifecycle for DLT consortia?

As mentioned in Section 3, we iteratively develop
a lifecycle based on a detailed review of all
selected cases. Table 2 shows the four milestones
Founding, Institutionalization, Pilot and Launch for
each consortium:

• Founding: first consortium announcement
• Institutionalization: legal entity creation
• Pilot: last pilot experiment
• Launch: launch announcement

Based on these milestones, we structure the lifecycle
along the Trial and Integration phases detailed in Section
2. The result is shown in Figure 2. Initially, the
Formation and Pilot phase involve incremental risk
taking and trial & error during the evaluation of
different concepts and pilots. Once sufficient trust
is established among consortium partners, consortia
proceed to the Launch and Expansion phases. Each
of these phases consists of multiple sub-phases, which
are not necessarily sequential in order. The lifecycle is
meant to depict the most common approach. If there
is an exception to this approach, it is mentioned in the
description of the phases hereafter.

6.1. Formation

Any DLT consortium is at some point initiated
by a single organization reaching out to others for
collaboration. This organization is hereafter referred
to as consortium initiator. The initiator often becomes
the leading driver (leader) of the consortium (Bakong,
TradeLens, DL Freight). In other cases, the leader
is a newly formed entity determined by consortium
shareholders (Cardossier, covantis, we.trade).

Prototyping. The consortium initiator initially
develops a concept and vision for the platform. This
vision is subject to change during later collaboration
with other participants, but it encompasses the
basic foundation of the collaboration. This idea
is often related to exchanging business documents
digitally based on DLT, to improve auditability and
traceability. This phase may include proof of concepts

Page 4596

II. RESEARCH PAPERS 175

Dissertation Benedikt Putz, 2022

Figure 2: DLT consortium lifecycle phases.

Table 3: Phases and sub-phases of the consortium lifecycle.

Phase Sub-phases Description

Formation Prototyping Ideation and first software prototype concepts
Partner Search Initiator searches for consortium and implementation partners
Institutionalization A legal entity is formed to represent the consortium (not applicable for

pre-existing partner networks)

Pilot Requirements Engineering Requirements and an initial scope for the business case are established.
This includes compliance and security-based requirements

Development and Testing Prototype software is developed by the consortium institution and/or
software provider

Process experiment Prototype is used in an actual business process for testing purposes

Launch Production Use First product is launched for production use
Commercialization Revenue model developed and consortium institution begins earning

revenue (only for-profit consortia)
Business Value Participants are seeing first benefits as a result of adoption

Expansion Ecosystem Building More peripheral organizations in the supply chain join the platform
(often as users, not operators)

Expansion of Scope Additional business cases (products) within the consortium are
developed and launched

to demonstrate the feasibility and potential benefits of a
collaboration among the initial partners.

Partner Search. The consortium lead focuses on
acquiring suitable partners for the use case. Convincing
partners can be the most difficult part of building a
consortium, especially if these partners are competitors.
An integral part of the trial period is building trust in
partners, especially in the consortium lead and that it
will be able to navigate ecosystem tensions [8]. During
this phase, it can be helpful to focus on first acquiring
partners that are not direct competitors, which builds
trust initially [7]. While the partner search activity
begins in the formation phase, it continues throughout
all later phases as the consortium continually seeks to
grow its reach. This is fact is represented in Figure 2 as
Consortium Building.

Institutionalization. Eventually, newly formed
consortia are confronted with the need for a legal entity.
The Cardossier project identified several reasons related
to obtaining a critical mass and network effects, as
well as complying with laws and regulation [7]. As
mentioned previously in Section 5, the specific legal
form varies. The branding often changes along with
institutionalization. For example, we.trade rebranded
from its original name Digital Trade Consortium,
Contour from Voltron, and TradeLens received its
current name on commercialization after multiple
renamings [8]. Previously existing business networks
(Bakong) or networks initiated and led by a software
service provider (MediLedger, DL Freight) do not face
this need, as the consortium initiator takes on the role of
consortium representation. While Institutionalization is

Page 4597

II. RESEARCH PAPERS 176

Dissertation Benedikt Putz, 2022

part of the Formation phase, it often takes place during
the Pilot phase or even during the Launch phase (before
the launch date). This can be attributed to the fact that
establishing a joint entity as shareholders requires some
trust building.

6.2. Pilot

The Pilot phase begins with development of the pilot
software and finishes with the end of the last process
experiment. A pilot launch refers to a limited roll-out of
the target platform. In most cases the prototype used for
this purpose is feature-complete, and some projects refer
to it as the Minimum Viable Product (MVP). During the
Process Experiment it is made available to a small set of
test partners. Depending on the success and scope of the
pilot, multiple pilots may be needed before the project
consortium transitions to Launch.

Requirements engineering. The business case is
finalized based on the results of Prototyping during
the Formation phase. Functional and non-functional
requirements of the target DLT platform are determined.
To this end, consortium partners collaborate with
a software service provider. Requirements are
usually based on business and regulatory concerns.
Requirements that are common to several reviewed
DLT consortia include scalability, privacy and
interoperability. MediLedger collaborated with a
regulator (the US Food & Drug Administration) to
ensure compliance of the pilot with regulation [9].

Development and Testing. For almost all cases,
a single company is tasked with software development
in this phase of the project. In some consortia, the
newly formed legal entity hires specialized employees
itself (Contour). In other cases, the consortium initiator
is a software service provider and thus also develops
the platform (Cardossier, DL Freight, MediLedger).
Finally, others hire service providers specialized for
DLT development (TradeLens, we.trade, covantis).
Commonly, such service providers also provide a
cloud-based platform where node operators can control
DLT nodes. This avoids the need to train people in each
participating organization on how to set up a DLT node.
Another important decision that occurs during this phase
is the choice of DLT platform. The initial choice is not
final, as pilot results may lead to the decision to switch
to another framework better suited to the business case.
This phase also marks the beginning of the Iterative
Software Development process [23] marked in Figure 2
that continues throughout later phases.

Process experiment. Finally, an experiment
is conducted within the target operational business
process. This experiment is of limited scope, for

example by concerning a specific product in supply
chain cases. For one pilot experiment, TradeLens
conducted its pilot experiment with the roses supply
chain and involved only necessary partners [8]. Trade
Finance consortia start with one or multiple pilot
financing transactions between banks and businesses.
As one example, Contour performed a total of 10 pilot
experiments with different partners over the course of 1
year [27].

6.3. Launch

When the consortium is satisfied with pilot results,
it usually proceeds to launch the full platform for all
consortium participants. While the launch itself is tied
to a single point in time (see Table 2), it is accompanied
by many preparations and post-launch effects, which are
addressed in this phase.

Production Use. In practice, members rarely use the
platform for all business transactions immediately after
the launch date. In most cases, members finish platform
onboarding months after the launch announcement.
Often there are separate announcements when a member
has completed onboarding [8] or their first successful
transaction [27]. These delays can be explained by
varying commitment levels of the partners, but most
importantly by challenges in integrating novel DLT with
existing business processes and legacy systems.

Commercialization. First revenue streams are
beginning to materialize for the consortium’s legal
entity. During the first months after launch, platform
usage is usually low, as members begin to move more
and more transactions to the new system [25]. Revenue
models are usually based on recurring membership fees
for consortium members [29, 7, 9]. Notably, TradeLens
offers free access to some ecosystem members like
container terminals and authorities, while others must
pay a subscription and transaction fees [8].

Business Value. Consortium members notice
first positive returns on their investment. These are
use case dependent, but principally include lower
delays (trade finance cases), increased supply chain
transparency (product tracking cases) and improved
process efficiency through digitization of paper-based
documents. For example, DL Freight reduced invoice
disputes, which lowered accounts receivable for carriers
and costs for Walmart [29]. Others like Bakong and B3i
cite significant cost and time savings [26, 25].

6.4. Expansion

During the Expansion phase, the consortium focuses
on increasing business value. This phase begins about
6 - 12 months after the platform has been successfully

Page 4598

II. RESEARCH PAPERS 177

Dissertation Benedikt Putz, 2022

adopted, deployed and used at all members.
Governance. During expansion of the network, new

decisions require consensus building among consortium
members. These concern

• new member admission
• new feature prioritization
• accommodating regulatory concerns
• platform monetization
• software updates
• handling security incidents

While some rules are part of the initial consortium
agreements, these are ongoing concerns that may require
intervention during operation. For example, DL Freight
requires chaincode software updates to be approved by
a majority of participants [29]. In addition, security
concerns exist and may be hard to deal with in a
cooperative environment [15].

Ecosystem Building. To ease member acquisition,
consortia focus on building an ecosystem around
the core DLT platform after launch. While most
platforms include the most important core features
initially, additional integrations with existing systems
ease member acquisition. Another focus during this
phase is onboarding related actors that need access to
trustworthy DLT data, but don’t necessarily validate
transactions on the platform. These include auditors,
government authorities and suppliers/customers of
consortium members.

Expansion of Scope. Gradually, consortia agree
on adding new features and products to the platform to
expand its scope and concomitant business benefits. In
addition to incremental improvements, consortia often
bundle major features or new products in a major
version release. For example, DL Freight and B3i
have announced 2.0 versions of their platforms with
significantly expanded capabilities.

7. Discussion

Democratic governance vs. benevolent dictators.
Democratic decisions are important for consortium
longevity and trust-building. For example, for
TradeLens the decision-making changed from the
platform owner making all the decisions to a more
democratic model governed by an advisory board [8].
While some consortia favor democratic decisions, others
prefer a “benevolent dictator” approach [9]. In DL
Freight, while chaincode updates require approval by
carriers, the core direction of the platform is determined
by Walmart Canada and DL Freight [29]. Cardossier
followed an hierarchical off-chain governance model
initially, but plans to transition to a more democratic

model in the long-term [7]. To summarize, initially
a more hierarchical approach can help consortia move
quickly toward Pilot and Launch, but during the
Expansion phase democratic governance is preferable to
ensure stakeholder expectations are met.

Disintermediation. Both theory and practice have
long claimed that DLT disintermediates trusted third
parties (TTPs) [4, 31]. However, all consortia in our
study agree on the fact that an independent entity
is needed to coordinate the consortium’s technology
development. While this may seem counterintuitive
at first, it is a logical consequence of coopetition
in partner networks. Practitioners have noted that
the need for competitors to cooperate is one of the
hardest challenges to solve, often requiring a sponsor
such as an industrial body to step in [5]. For
some consortia like Bakong, there is a natural sponsor
(NBC). For others, new institutions are created for
this purpose as TTPs, which are controlled by the
members as shareholders. Whether the TTP’s software
platform must be DLT-based remains controversial, as
consortia like Komgo6 have transitioned away from DLT
entirely in favor of a centralized database. As the
blockchain/DLT buzzword slowly loses its appeal (cf.
Incentives dimension in Section 5), the focus is now on
realizing actual business benefits of DLT.

Study limitations. Three consortia were not
included since they failed to meet Q2, so they may be
included in future studies. Several other candidates were
not included due to Q1, a lack of information available
on the development phases. Additionally, there is a
slight bias towards western use cases, as many Asian
consortia (especially in China) are inaccessible to the
authors due to language barriers.

8. Conclusion

We performed a multiple case comparative
study to find commonalities and differences among
successful DLT consortia. Following a strict selection
methodology based on contextual and intellectual
information quality, 9 successful consortia were
selected. The findings were structured along 6
dimensions and used to develop a new lifecycle theory
for DLT consortia. They challenge the disintermediation
aspect of permissioned DLTs and open up an avenue
for future research. They also provide insights for early
stage DLT consortia, as well as informing future DLT
case studies and DLT platform theory.

Acknowledgment. We would like to thank our
interview partners for their valued time and input toward
improving data accuracy and the lifecycle.

6www.komgo.io

Page 4599

II. RESEARCH PAPERS 178

Dissertation Benedikt Putz, 2022

References

[1] S. Tönnissen and F. Teuteberg, “Analysing the impact
of blockchain-technology for operations and supply
chain management: An explanatory model drawn
from multiple case studies,” International Journal of
Information Management, 2020.

[2] R. Ziolkowski, G. Miscione, and G. Schwabe, “Decision
Problems in Blockchain Governance: Old Wine in New
Bottles or Walking in Someone Else’s Shoes?,” Journal
of Management Information Systems, 2020.

[3] S. Meiklejohn, “Top Ten Obstacles along Distributed
Ledgers Path to Adoption,” IEEE Security Privacy,
vol. 16, pp. 13–19, July 2018.

[4] M. Lacity and R. Van Hoek, “What we’ve learned so far
about blockchain for business,” MIT Sloan Management
Review, vol. 62, no. 3, pp. 48–54, 2021.

[5] B. Carson, G. Romanelli, P. Walsh, and A. Zhumaev,
“Blockchain beyond the hype: What is the strategic
business value,” McKinsey & Company, pp. 1–13, 2018.

[6] M. Budman, R. Bhat, and S. Bordoloi, “Deloitte’s 2020
Global Blockchain Survey - From promise to reality,”
2020.

[7] L. Zavolokina, R. Ziolkowski, I. Bauer, and G. Schwabe,
“Management, governance, and value creation in a
blockchain consortium,” MIS Quarterly Executive, 2020.

[8] T. Jensen, J. Hedman, and S. Henningsson, “How
TradeLens delivers business value with blockchain
technology,” MIS Quarterly Executive, 2019.

[9] J. Mattke, A. Hund, C. Maier, and T. Weitzel,
“How an enterprise blockchain application in the U.S.
Pharmaceuticals supply chain is saving lives,” MIS
Quarterly Executive, 2019.

[10] R. K. Yin, Case Study Research: Design and Methods.
2009.

[11] M. Hearn, “Corda: A distributed ledger,” Corda
Technical White Paper, vol. 2016, 2016.

[12] A. Larson, “Partner networks: Leveraging external ties
to improve entrepreneurial performance,” Journal of
business venturing, vol. 6, no. 3, pp. 173–188, 1991.

[13] R. Lapiedra, S. Smithson, J. Alegre, and R. Chiva,
“Role of information systems on the business network
formation process: An empirical analysis of the
automotive sector,” Journal of Enterprise Information
Management, vol. 17, pp. 219–228, Jan. 2004.

[14] A. B. Pedersen, M. Risius, and R. Beck, “A ten-step
decision path to determine when to use blockchain
technologies,” MIS Quarterly Executive, vol. 18, no. 2,
pp. 99–115, 2019.

[15] B. Putz and G. Pernul, “Trust Factors and Insider Threats
in Permissioned Distributed Ledgers,” Transactions on
Large-Scale Data- and Knowledge-Centered Systems,
vol. XLII, pp. 25–50, 2019.

[16] R. Ziolkowski, G. Parangi, G. Miscione,
and G. Schwabe, “Examining gentle rivalry:
Decision-making in blockchain systems,” in 52nd
Hawaii International Conference on System Sciences,
HICSS 2019, Grand Wailea, Maui, Hawaii, USA,
January 8-11, 2019 (T. Bui, ed.), pp. 1–10,
ScholarSpace, 2019.

[17] R. van Pelt, S. Jansen, D. Baars, and S. Overbeek,
“Defining Blockchain Governance: {A} Framework for
Analysis and Comparison,” Inf. Syst. Manag., vol. 38,
no. 1, pp. 21–41, 2021.

[18] R. Beck, C. Müller-Bloch, and J. L. King, “Governance
in the blockchain economy: A framework and research
agenda,” Journal of the Association for Information
Systems, 2018.

[19] M. Rauchs, A. Blandin, K. Bear, and S. B. McKeon,
“2nd Global Enterprise blockchain benchmarking study,”
Available at SSRN 3461765, 2019.

[20] M. O. Deventer, F. Berkers, M. Vos, A. Zandee,
T. Vreuls, L. van Piggelen, A. Blom, B. Heeringa,
S. Akdim, P. van Helvoort, et al., “Techruption
Consortium Blockchain: What it takes to run a
blockchain together,” in Proceedings of 1st ERCIM
Blockchain Workshop 2018, Amsterdam, Netherlands
8-9 May 2018, European Society for Socially Embedded
Technologies (EUSSET), 2018.

[21] M. del Castillo, “Blockchain 50 2021.”
https://www.forbes.com/sites/
michaeldelcastillo/2021/02/02/
blockchain-50/, Feb. 2021.

[22] E. Ganne and D. Patel, “Blockchain & DLT in Trade:
Where do we stand?,” 2020.

[23] I. Jacobson, G. Booch, and J. E. Rumbaugh, The
Unified Software Development Process - the Complete
Guide to the Unified Process from the Original
Designers. Addison-Wesley Object Technology Series,
Addison-Wesley, 1999.

[24] R. Y. Wang and D. M. Strong, “Beyond Accuracy: What
Data Quality Means to Data Consumers,” Journal of
Management Information Systems, vol. 12, pp. 5–33,
Mar. 1996.

[25] R3, “R3 B3i Case Study,” Aug. 2020.
[26] National Bank of Cambodia, “Project Bakong - Next

Generation Payment System,” tech. rep., Oct. 2020.
[27] R3, “R3 Contour Case Study,” June 2020.
[28] ConsenSys, “Covantis Case Study: Modernizing Global

Supply Chains with ConsenSys Blockchain Solutions.”
https://consensys.net/blockchain-
use-cases/global-trade-and-commerce/
covantis/, Oct. 2021.

[29] M. Lacity and R. Van Hoek, “Requiem for
reconciliations: DL Freight, a blockchain-enabled
solution by Walmart Canada and DLT Labs,” 2021.

[30] IBM, “We.trade Case Study.” https://
www.ibm.com/case-studies/wetrade-
blockchain-fintech-trade-finance, 2018.

[31] F. Hawlitschek, B. Notheisen, and T. Teubner, “A 2020
perspective on ”The limits of trust-free systems: A
literature review on blockchain technology and trust in
the sharing economy”,” Electron. Commer. Res. Appl.,
vol. 40, p. 100935, 2020.

[32] E. Abebe, D. Behl, C. Govindarajan, Y. Hu,
D. Karunamoorthy, P. Novotny, V. Pandit,
V. Ramakrishna, and C. Vecchiola, “Enabling
Enterprise Blockchain Interoperability with Trusted
Data Transfer (Industry Track),” in Proceedings of the
20th International Middleware Conference Industrial
Track, (New York, NY, USA), pp. 29–35, Association
for Computing Machinery, 2019.

[33] D. Roeck, H. Sternberg, and E. Hofmann, “Distributed
ledger technology in supply chains: A transaction
cost perspective,” International Journal of Production
Research, vol. 58, no. 7, pp. 2124–2141, 2020.

Page 4600

II. RESEARCH PAPERS 179

Dissertation Benedikt Putz, 2022

II. RESEARCH PAPERS 180

Dissertation Benedikt Putz, 2022

Benedikt Putz
Department of Information Systems
Faculty of Business, Economics, and

Management Information Systems

University of Regensburg

Universitätsstr. 31, 93053 Regensburg

updated: August, 2022

ORCID: 0000-0002-4265-1106

email: benedikt.putz@ur.de

research group: www-ifs.ur.de

website: go.ur.de/putz

EDUCATION

2019 - 2022 PhD Student
University of Regensburg, Germany

2016 - 2018 M.Sc. Management Information Systems (Honors)
University of Regensburg, Germany

2017 Exchange Program — Information Processing Science
University of Oulu, Finland

2012 - 2015 B.Sc. Business Information Systems
University of Augsburg, Germany

2009 - 2010 CBYX/PPP Youth Exchange
Bedford High School, PA, USA

REVIEWING ACTIVITIES

Conferences. ARES 2022, WI 2022, COMPSAC 2022, ESORICS 2022, CAiSE 2022,

WPES 2021, DBSec 2021, ARES 2021, WISE 2021, WI 2021, NSS 2020, SPBP 2020,

ESORICS 2020, ICCCN 2020, SECRYPT 2020, CAiSE 2020, ICISSP 2020, BPM 2019,

ESORICS 2019, SECRYPT 2019, WISE 2019, DBSec 2019, ICISSP 2019

Journals. Future Generation Computer Systems, International Journal of Information

Security (2x), Journal of Cybersecurity and Privacy

THIRD-PARTY PROJECTS

TRIO. Responsible for transferring information security research into practice as part of

the TRIO project for fostering transfer and innovation in Eastern Bavaria (2018-2022).

DEFENSIVE. Wrote a successful project proposal for a decentralized data escrow platform

for threat intelligence sharing as a 3 year project funded by BMBF.

PUBLICATIONS

Benedikt Putz and Günther Pernul. 2022. Comparing Successful DLT Consortia: A

Lifecycle Perspective. In 55th Hawaii International Conference on System Sciences

2022, 4591–4600.

181

https://orcid.org/0000-0002-4265-1106
mailto:benedikt.putz@ur.de
www-ifs.ur.de
go.ur.de/putz

Academic CV 182

Benedikt Putz, Fabian Böhm, and Günther Pernul. 2021. HyperSec: Visual analytics

for blockchain security monitoring. In ICT systems security and privacy protection

- 36th IFIP TC 11 International Conference, SEC 2021, Oslo, Norway, June 22-24,

2021, Proceedings (IFIP Advances in Information and Communication Technology),

Springer, 165–180.

Benedikt Putz, Marietheres Dietz, Philip Empl, and Günther Pernul. 2021. Ether-

twin: Blockchain-based secure digital twin information management. Information

Processing & Management 58, 1 (2021).

Benedikt Putz and Günther Pernul. 2020. Detecting Blockchain Security Threats. In

2020 IEEE International Conference on Blockchain (Blockchain), IEEE, 313–320.

Rafael Belchior, Benedikt Putz, Günther Pernul, Miguel Correia, André Vasconcelos,

and Sérgio Guerreiro. 2020. SSIBAC: Self-Sovereign Identity Based Access Con-

trol. In The 3rd International Workshop on Blockchain Systems and Applications

(BlockchainSys2020), in Conjunction with IEEE TrustCom 2020, IEEE.

Florian Menges, Benedikt Putz, and Günther Pernul. 2020. DEALER: decentralized

incentives for threat intelligence reporting and exchange. International Journal of

Information Security (2020).

Marietheres Dietz, Benedikt Putz, and Günther Pernul. 2019. A Distributed Ledger

Approach to Digital Twin Secure Data Sharing. In Data and Applications Security and

Privacy XXXIII, Simon N. Foley (ed.). Springer International Publishing, 281–300.

Benedikt Putz and Günther Pernul. 2019. Trust Factors and Insider Threats in

Permissioned Distributed Ledgers. Transactions on Large-Scale Data- and Knowledge-

Centered Systems XLII, (2019), 25–50.

Benedikt Putz, Florian Menges, and Günther Pernul. 2019. A secure and auditable

logging infrastructure based on a permissioned blockchain. Computers & Security 87,

(November 2019), 101602.

TALKS

2022 Comparing Successful DLT Consortia: A Lifecycle Perspective
Hawaii International Conference on System Sciences 2022

2021 HyperSec: Visual analytics for blockchain security monitoring
IFIP Sec 2021

2021 Hyperledger Fabric security monitoring based on Hyperledger Explorer
Hyperledger Global Forum 2021

2020 Detecting Blockchain Security Threats
2020 IEEE International Conference on Blockchain

Dissertation Benedikt Putz, 2022

	DissUBR_Putz_Cover_komprimiert
	Putz_Diss_Online
	Cover
	Impressum
	Acknowledgement
	Abstract
	Table of contents
	List of figures
	List of tables
	I Outline of the dissertation
	1 Motivation
	2 Related research
	3 Research Questions
	3.1 Methodology
	3.2 Research Process
	3.3 Research plan

	4 Results
	4.1 RQ1: Novel DLT applications for secure information sharing
	4.1.1 A distributed ledger approach to digital twin secure data sharing
	4.1.2 Ethertwin: Blockchain-based secure digital twin information management
	4.1.3 DEALER: Decentralized Incentives for Threat Intelligence Reporting and Exchange
	4.1.4 A secure and auditable logging infrastructure based on a permissioned blockchain

	4.2 RQ2: Protecting DLT applications from threats
	4.2.1 Trust Factors and Insider Threats in Permissioned Distributed Ledgers
	4.2.2 Detecting Blockchain Security Threats
	4.2.3 HyperSec: A Visual Analytics approach to blockchain monitoring

	4.3 RQ3: Secure Information Sharing in a DLT Consortium
	4.3.1 Comparing Successful DLT Consortia: A Lifecycle Perspective

	4.4 Complementary publications

	5 Conclusion and future work

	II Research papers
	1 RQ1: Novel DLT applications for secure information sharing
	1.1 A distributed ledger approach to digital twin secure data sharing
	1.2 Ethertwin: Blockchain-based secure digital twin information management
	1.3 DEALER: Decentralized Incentives for Threat Intelligence Reporting and Exchange
	1.4 A secure and auditable logging infrastructure based on a permissioned blockchain

	2 RQ2: Protecting DLT applications from threats
	2.1 Trust Factors and Insider Threats in Permissioned Distributed Ledgers
	2.2 Detecting Blockchain Security Threats
	2.3 HyperSec: A Visual Analytics approach to blockchain monitoring

	3 RQ3: Secure Information Sharing in a DLT Consortium
	3.1 Comparing Successful DLT Consortia: A Lifecycle Perspective.

	Academic CV

