
Design and Optimisation of Scientific

Programs in a Categorical Language

Thomas James Ashby

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Physics and School of Informatics

University of Edinburgh

2005

Abstract

This thesis presents an investigation into the use of advanced computer languages for

scientific computing, an examination of performance issues that arise from using such

languages for such a task, and a step toward achieving portable performance from

compilers by attacking these problems in a way that compensates for the complexity

of and differences between modern computer architectures.

The language employed is Aldor, a functional language from computer algebra,

and the scientific computing area is a. subset of the family of iterative linear equation

solvers applied to sparse systems. The linear equation solvers that are considered have

much common structure, and this is factored out and represented explicitly in the lan-

guage as a framework, by means of categories and domains. The flexibility introduced

by decomposing the algorithms and the objects they act on into separate modules has a

strong performance impact due to its negative effect on temporal locality. This necessi-

tates breaking the barriers between modules to perform cross-component optimisation.

In this instance the task reduces to one of collective loop fusion and array contrac-

tion. Traditional approaches to this problem rely on static heuristics and simplified

machine models that do not deal well with the complex trade-offs involved in targeting

modern computer architectures. To rectify this we develop a technique called iterative

collective loop fusion that empirically evaluates different candidate transformations in

order to select the best available. We apply our technique to programs derived from

the iterative solver framework to demonstrate its effectiveness, and compare it against

other techniques for collective loop fusion from the literature, and more traditional

approaches such as using Fortran, C and/or high-performance library routines.

The use of a high-level categorical language such as Aldor brings important ben-

efits in terms of elegance of expression, comprehensibility, and code reuse. Iterative

collective loop fusion outperforms the other collective loop fusion techniques. Ap-

plying it to the iterative solver framework gives programs with performance that is

comparable with the traditional approaches.

Acknowledgements

Firstly I would like to thank my two long-suffering supervisors Mike O'Boyle (com-

puter science) and Tony Kennedy (physics), for their motivation, academic guidance,

financial support and patience above and beyond the call of duty. Doing interdisci-

plinary research is by no means easy, but I hope that ultimately the venture was worth

it for all concerned. I would also like to thank anyone who helped me in my work or

commented on the thesis to help me improve it, including my viva panel Mark Bull

(internal - EPCC) and Paul Kelly (external - Imperial College). On a more general

note, my gratitude goes out to the administrative and support staff at the University

of Edinburgh, and the people who built all the tools that I have relied on to do my

work. This includes the creators of the dictation packages ViaVoice (IBM) and Dragon

Naturally Speaking (virtually all the text in this document has been dictated), which,

as well as being useful, have also helped to keep me amused with recognition errors,

some of which were uncannily perceptive. My favourites include "much hilarity" for

"modularity", "Al Gore/Algol" for "Aldor", and "awful banality" for "orthogonality".

Secondly, I would like to thank my friends - you know who you are. I especially

need to mention two whose companionship along the torturous route to a doctorate

meant a great deal to me - Henrik, for providing me with a regular dose of reality

(there is no spork), and Björn, for coping with sharing an office with me as well as

being a friend.

Lastly, there is my family and my partner, without whom I certainly would not have

finished. Their support was always given without question, even when they had far, far

greater burdens to carry than my own. Words fail me now, as they always will.

kyj

Dedicated to every unwitting innocent who has ever had the misfortune to ask me:

"So, what is it that you actually do then?"

Vi

Table of Contents

1 Introduction 	 1

	

1.1 	Computational Science Domain2

1.2 Language3

	

1.3 	Compiler Optimisations4

	

1.4 	Linear Systems6

	

1.5 	Thesis Outline 	7

1.6 Contributions9

2 	Aldor 11

2.1 	Fundamentals of the Language 11

2.1.1 Domains and categories 11

2.1.2 General features 14

2.1.3 The core language and the abstract machine15

2.1.4 Basic libraries17

2.1.5 Storage model 18

2.1.6 Purity and overloading 18

2.2 	Abstract Machine and Compilation Model19

2.2.1 Libraries and whole program optimisation20

2.2.2 FOAM types and variables 21

2.2.3 Uniform representation rule 21

2.2.4 Memory model 22

2.2.5 Aldor domains and generators in FOAM22

2.3 	Compiler Implementation23

Vii

2.3.1 Pre-existing optimisations 	 24

2.4 Summary27

3 	The Iterative Solvers 29

3.1 Notation 29

3.2 Overview 30

3.2.1 	The form of the problem 30

3.2.2 	Krylov subspaces 30

3.2.3 	Halting condition 31

3.2.4 	Orthogonality conditions 31

3.2.5 	Reduced (projected) system as interface32

3.2.6 	Operator structure 33

3.3 Generating Krylov Subspaces34

3.3.1 	The Arnoldi relation 34

3.3.2 	Long and short recurrences35

3.3.3 	The two-sided Lanczos method 36

3.4 Orthogonality Conditions and Projected Systems 38

3.4.1 	Orthogonality conditions and orthogonal Krylov bases 	. . 38

3.4.2 	Orthogonality conditions and non-orthogonal Krylov bases 41

3.4.3 	Orthogonality conditions and breakdowns41

3.5 Solving the Projected System and Recovering the Solution 42

3.5.1 	Search vectors 43

3.6 The Common Algorithms46

3.6.1 	Initial guess 46

3.6.2 	Calculating the recurrence residual46

3.6.3 	Putting it all together 48

3.6.4 	Preconditioning49

3.7 Summary 50

4 Functional and Algebraic Language Optimisation 	 51

4.1 	Compilation of Functional Languages51

4.1.1 Fine-grained function composition and recursion52

VII,

4.1.2 	Higher order control flow analysis 52

4.1.3 Polymorphism, boxing and modules54

4.1.4 	Arrays56

4.1.5 Pure languages and the management of state 57

4.1.6 	Compiler implementation58

4.1.7 Fusion and loop restructuring in functional languages 59

4.2 	Compilation of Numerical Computer Algebra Systems60

4.3 Summary61

S 	Algorithm Framework 63

5.1 Category Hierarchy 63

5.1.1 	Linear algebra categories67

5.1.2 	Problem specific categories71

5.2 Domain Implementation 76

5.2.1 	Index functions, recurrences, and infinite sequences76

5.2.2 	Krylov space recurrence 77

5.2.3 	Matrix of basis vectors 80

5.2.4 	Tridiagonal matrix of recurrence coefficients 80

5.2.5 	QR decomposition 81

5.2.6 	Banded upper triangular factor82

5.2.7 	Lazy vector domain82

5.2.8 	Search vector recurrence 82

5.2.9 	Matrix of search vectors 83

5.2.10 	Glue code 83

5.3 Evaluation of Framework Design85

5.3.1 	Remaining issues 87

5.4 Summary 89

6 Linear Systems 	 91

	

6.1 	Partial Differential Equations and Their Discretisation91

6.1.1 Grid numbering, matrix layout and stencils92

	

6.2 	Example Operators94

ix

6.2.1 The Laplacian-like simple operators 94

6.2.2 The Wilson-Dirac operator 95

6.3 	Domain Implementation 98

6.3.1 The scalar domains 98

6.3.2 The simple stencil operator and vector domains100

6.3.3 Subdomains for the Wilson-Dirac problem 101

6.3.4 Aggregate structures of subdomains 102

6.3.5 The Wilson-Dirac Operator and Vector Domains 105

6.4 	Design Issues 106

6.4.1 Boundary conditions and indexing106

6.5 	Summary107

7 	Optimisation across Components 109

7.1 Basic Terminology and Formalisms 110

7.1.1 	Loops 110

7. L2 	Dependencies between loop iterations 111

7.1.3 	Statements and their dependencies111

7.1.4 	Dependence testing113

7.1.5 	Temporal Locality 113

7.2 Loop Fusion and Array Contraction 113

7.2.1 	Loop Fusion 113

7.2.2 	Array contraction 114

7.2.3 	Effects of loop fusion and array contraction 115

7.3 Temporal Locality, Aldor and Iterative Solvers116

7.3.1 	Temporal locality of original programs 116

7.3.2 	Finding opportunities to improve temporal locality 117

7.3.3 	The impact of modularity119

7.3.4 	Applicability of proposed method 120

7.4 Summary 121

8 Iterative Collective Loop Fusion 	 123

8.1 	Loop Dependence Graph123

X

8.2 Collective Loop Fusion and Fusion Partitions 125

8.2.1 	Array contraction 127

8.3 The Motivation for Search 127

8.3.1 	Standard model based approach 128

8.3.2 	Iterative optimisation129

8.3.3 	Previous approaches and this work130

8.4 Iterative Collective Loop Fusion 132

8.4.1 	Generating legal fusion partitions 133

8.4.2 	Search heuristics and search space reduction 142

8.4.3 	Algorithm for generating test cases 143

8.4.4 	Code generation 144

8.5 Summary 145

9 	Prototype and LDG Construction 147

9.1 LDG Recovery 147

9.1.1 	Control flow 148

9.1.2 	Loop index variable ranges and strides149

9.1.3 	All statement dependencies151

9.1.4 	Guarded sections 151

9.2 Prototype Implementation 152

9.2.1 	LDG data structures 153

9.2.2 	Code generation 153

9.3 Issues with Prototype 154

9.3.1 	Constant folding 154

9.3.2 	Action of the mimer 155

9.3.3 	Inlining of generated code 155

9.3.4 	Emerging and unboxing hints 156

9.3.5 	Data cache associativity 157

9.4 Summary 157

10 Experimental Results 	 159

10.1 Example LDG160

xi

10.2 Enumeration of Fusion Partitions 163

10.3 Evaluation Environment 164

10.3.1 	Machines 164

10.3.2 	Compilers165

10.3.3 	BLAS routines 166

10.3.4 	Generation of timing results 166

10.4 Iterative Search Experiments 167

10.4.1 	3D operator 168

10.4.2 	4D operator 173

10.4.3 	Wilson-Dirac operator 177

10.4.4 	Variability -within (c, p) pair sets 180

10.4.5 	Variability across setting 181

10.5 Control Experiments 184

10.5.1 	Naive control 184

10.5.2 	Other methods of collective loop fusion 184

10.6 Other methodologies 187

10.6.1 	Fortran 3D stencil 187

10.6.2 	Use of high-performance libraries 189

10.7 Discussion of Results 192

10.7.1 	Interloop locality in Aldor 192

10.7.2 	Search192

10.7.3 	Code generation 193

10.74 	Local tuning and code generation 194

10.8 Summary 196

11 Conclusion 	 199

11.1 Summary199

11.2 Future directions 201

11.2.1 Framework design201

11.2.2 Solver domains203

11.2.3 Operators203

11.2.4 Iterative collective loop fusion203

XII

11.2.5 Empirical results 	 . 204

11.2.6 Other optimisations 205

11.2.7 Other languages 206

A Conjugate Gradients and the Lanczos Type Product Methods 	209

A. 1 Conjugate gradients209

A.2 	The Lanczos type product methods210

A.3 Functional parallelism and product methods211

B Re-use in the Operator Application 	 213

B.1 	3D Pure Stencil with One Level of Cache214

B.2 	4D and Concrete Operators215

B.3 	Operator Tiling in Practice . 216

C Categories 	 217

C.1 	Linear Algebra Categories217

C.2 	Problem Specific Categories225

D Domains 	 231

D.1 	Scalar Domains232

D.2 Wilson-Dirac Subdomains233

D.3 	Vector and Operator Domains236

D.4 	Solver Domains241

E Published Papers 	 253

E.1 	"The Paraldor Project" - 2003253

E.2 	"A Modular Iterative Solver Package in a Categorical Language" - 2003255

E.3 	"Cross-Component Optimisation in a High Level Category Based Lan-

guage"-2004256

Bibliography 	 259

Chapter 1

Introduction

The writers of scientific computing codes should ideally have a computer language that

gives them brevity and elegance of expression, portability and performance. Elegance

of expression implies a high level language with support for layering of abstractions

and clear and concise exposition of the operations at any given level of abstraction,

with a correspondence as close as possible to the original mathematical expression of

the problem. Portability means the ability to reuse the same programs on different

machines with the minimum of effort. This in turn implies maximum automation of

the process of producing an executable for a given machine from the original source

programs. Finally, performance suggests that the executables so produced ought to be

as efficient as possible.

As a general rule, elegance of expression and portability are sacrificed for the sake

of performance, and much work is done by hand, with authors writing codes in low-

level languages and applying transformations on a per machine basis. However, as

computer architectures get increasingly complex this process in itself becomes a dif-

ficult task, with many trade-offs that are usually impossible to analyse directly even

for a single machine. This is analogous to the difficulties facing compiler writers,

where the limitations of the traditional approach, which relies on simplified machine

models, static heuristics to guide decisions and fixed orderings for applying different

optimisations, are getting increasingly serious, especially when dealing with multiple

architectures. These problems can be approached using a technique known as iterative

or feedback driven compilation [16], which treats choosing the transformations to ap-

2 	 Chapter 1. Introduction

ply from some known set as a search problem, with the goal function being the actual

performance of an executable. The increased compilation costs incurred by compiling

and testing multiple versions of a program are acceptable within the domain of scien-

tific computing, as they are outweighed by the expected returns over the lifetime of

compute-intensive codes that run for long periods of time.

Interestingly, as a result of the difficulty of achieving good performance, porta-

bility and elegance of expression can be regained. Given that search techniques are

employed, achieving performance across different architectures essentially comes for

free as search is applied to a program on each architecture to find the optimisations that

work. Similarly, given that the effective transformations are not known ahead of time,

they are not directly present in the encoding of the problem, and so clarity is not lost.

This thesis presents an investigation of these issues starting from the construction

of a framework for a group of scientific computing applications using a modern high

level language, through to steps toward achieving portable performance using iterative

optimisation. The emphasis is on representing the modularity of the algorithms cleanly

and explicitly, and studying the optimisation issues that arise from the conjunction of

the language, the modular style it encourages and the framework design.

1.1 	Computational Science Domain

Finding answers to many important problems in scientific computing, such as mod-

elling the evolution of physical systems, requires finding the solution to large systems

of linear equations using numerical methods. This is the application area that will be

investigated. The systems considered in this thesis equate to solving Ax = b for known

vector b and unknown x, with some square nonsingular matrix A that contains mostly

zero entries (i.e. it is sparse) due to the problem from which the linear system is de-

rived. This sparsity structure is usually exploited to save computer storage space and

work by avoiding representing or manipulating the zero entries.

There are broadly two standard approaches to solving such systems, direct or iter-

ative methods. Direct methods decompose the matrix A into factors that can be solved

against trivially, while iterative methods produce a series of approximations to x until

1.2. Language 	 3

a good enough approximation has been found. Direct methods have the advantage that

once the factors have been produced, they can be reused for multiple right hand sides.

When applied to sparse systems however, the manipulations of the matrix may cause

entries that were previously zero to become nonzero (a process known as "fill—in"),

which results in an increase in storage requirements if previously the nonzero entries

were not stored. For very large, very sparse systems, this increase may be dramatic

and unacceptable. Conversely, iterative methods only require matrix—vector products

rather than direct manipulation of A. For a single right hand side, iterative methods

may converge (find a good enough approximation) in some small number of steps and

consequently require much less arithmetic than a full factorisation. Only requiring the

matrix—vector products (and vector operations) also means that the methods are more

natural for solving problems derived from approximations to continuous systems, as

all the necessary steps have continuous counterparts. These benefits make the methods

popular for certain applications, and thus an interesting subject for research.

1.2 Language

Conceptually, a large subset of the iterative methods can be thought of as the com-

position of various different algorithmic pieces, with different choices giving rise to

the different algorithms. However, the algorithms are usually presented (and named)

as separate entities with the pieces merged together (individual recipes), resulting in

a confusingly large number of closely related methods with different numerical prop-

erties. Combining choices in this way is not only obfuscatory, but wasteful in terms

of effort given that essentially the same algorithmic steps are programmed repeatedly

across different iterative solvers. An alternative approach as pursued in this thesis is to

design an algorithmic framework to keep the individual pieces as separate as possible

and provide a means to join them together to create a given solver.

The goal of explicitly representing as much structure as possible implies that it

would be a good idea to choose a language that naturally provides support for the ac-

tivity. The language used in this thesis is called Aldor, and has its roots in the computer

4 	 Chapter 1. Introduction

algebra community as the "library language"1 for the Axiom computer algebra system

[48]. It is a self-contained functional language, and is similar to members of the ML

family [4, 3]. Various algorithmic pieces used to construct the solvers can be repre-

sented as recurrences and coded as functions that carry state. The functional features

of the language are used to provide a natural way to compose these recurrences to

give the desired solver. In addition, the algorithms are naturally independent of the

objects that they manipulate, such as matrices, vector spaces and scalars etc. Aldor

is statically typed, and the type system is used throughout to encode the relationships

between these lower level mathematical objects, as well as the algorithmic pieces.

Although there are other statically typed functional languages, the implementation

of the type system and extra features such as overloading and generators2 make the

capturing of the structure particularly elegant. In addition, the design of the language

and compiler is geared toward enabling efficient numerical programs, rather than solely

concentrating on symbolic work which is typically the emphasis of other functional

languages, and so provides a natural platform.

1.3 Compiler Optimisations

There are many different automatic compiler optimisation techniques that can be used

to improve the performance of programs, ranging from low level (instruction selection,

scheduling etc) to high level (inlining, loop restructuring etc). The goal of the inves-

tigation into optimisation conducted in this thesis is to concentrate on those aspects

of the optimisation problem that are specific to the conjunction of the computational

science application domain and the language - i.e. the way in which the framework

is expressed in Aldor. To better describe and motivate what we concentrate on, there

follows a quick summary of issues we do not deal with directly, along with the reasons

why, followed by an outline of the actual subject covered.

The first group of problems that are not dealt with are the standard functional lan-

guage issues that may have relevance to Aldor, but are not especially important for the

application. These include storage management issues from the use of the garbage col-

1 Aldor allowed the compiling of library functions to native machine code to improve performance.
2For a description of this language feature see Chapter 2.

1.3. Compiler Optimisations 	 5

lector and direct overhead from the use of advanced functional features. Aldor allows

the explicit management of named objects thus making the whole subject of automatic

storage management only tangentially relevant. The direct cost of functional language

features (i.e. first class functions) stems from the overhead introduced by calling con-

ventions necessary to support them, and the use of closures etc. Functional features

are used in a simple way throughout the framework, with a handful of more complex

uses to join separate recurrences to build the algorithms. The overhead for the sim-

ple instances is removed from the solver programs by the optimisations that already

exist in the compiler, and the direct cost of the overhead for the remaining cases is

inconsequential for the application at hand.

The second group of problems, which are not specific to either the language or the

application, are the family of low level code generation techniques from standard com-

piler theory. These tend to be more machine oriented and applicable to any language.

Also, the Aldor compiler achieves portability by generating C code, another factor in

ruling out a number of low level optimisations as they cannot be directly expressed in

a language such as standard C.

The subject that is actually tackled is the issue of the indirect costs of functional

language features and modularity, and sits somewhere in between the two previous

groups. This subject has received fairly limited attention from the functional language

community, although they have developed some elaborate analyses to recover control

and data flow information in the presence of higher order functions, and used these to

attack certain specialised cases of indirect cost that would arise if the information was

unavailable. However, the cost of the initial presence of higher order (or even sim-

ple) functions subsequently removed by optimisations (such as inlining) is not usually

mentioned, despite the fact that it is clearly a significant obstacle to the generation of

efficient code, especially when the original individual functions contain loops. The

technique applied to this problem in this thesis is high level loop restructuring, specif-

ically with regard to temporal locality3, a characteristic that is strongly affected by the

modular programming style that Aldor encourages.

High level restructuring compilers that target temporal locality have often used

3For a definition of this term, see Section 7.1.5.

6 	 Chapter 1. Introduction

source to source transformations and left low level optimisation to a native compiler

[99, 151, so, in contrast to low-level techniques, this approach sits well with the current

implementation of the compiler. Global (or collective) loop restructuring has relevance

to both Aldor and the solver framework - the global loop structure is a result of their

synthesis.

1.4 Linear Systems

Although the high-level structuring of the codes gives rise to the interesting optimi-

sation problems, the solver algorithms do not specify the exact structure of the basic

objects that they manipulate. Consequently, they do not constitute a code optimisation

problem in isolation - they must first be paired with some implementation of a linear

system to be solved.

The first two examples used in this thesis are systems modelled on those that arise

from a direct discretisation of a simple partial differential equation problem. The third

example is taken from Quantum Chromo Dynamics (QCD), a problem to which itera-

tive solvers are frequently applied. QCD is interesting in that it has a very rich math-

ematical structure, is very compute intensive, and serves as a stimulus for research

into algorithmic variations on iterative methods, tailored to exploit problem structure

for obtaining maximum speed. This indicates that implementations have to be very

efficient, whilst at the same time suggesting that a flexible framework to allow rapid

investigation of novel algorithmic approaches would be valuable.

QCD problems are frequently run on large parallel computers, including several

purpose-built machines over the years [23, 17], and are so numerically intensive that

practitioners write specialised assembly level tools to get the maximum efficiency pos-

sible from a machine for a compute intensive production run4. As such, it is an inter-

esting target to aim for - indeed, one version of the problem forms an application in

the SPEC [5] CPU2000 benchmark suite (wupwise).

4The exercise is more like one of hardware/software co-design to get maximum performance for the
specific problem when using custom designed machines.

1.5. Thesis Outline
	 7

1.5 Thesis Outline

The important aspects of the language with respect to the design of the framework and

the optimisation issues are given in Chapter 2. Chapter 3 gives a brief summary of

the necessary background on the structure of Krylov subspace based iterative solvers.

The route taken is the derivation of the methods from an Arnoldi or Lanczos process

coupled to an orthogonality condition. Chapter 4 discusses general previous work in

the compilation of higher order language features and its ramifications for the handling

of aggregate types such as arrays, the automatic management of storage with a garbage

collector, and the wider implications for the overall design of compilers. It also covers

some previous work on the compilation of computer algebra languages.

Chapter 5 highlights the important parts of the framework design with code extracts

where relevant. A fuller listing is given in appendices C and D. The chapter begins

by presenting a type hierarchy that captures the relationships between components

at different levels and their individual interfaces, followed by a description of some

example components that instantiate parts of the framework to give an iterative solver

algorithm. Chapter 6 introduces the three examples of sparse linear systems used with

the solver framework, and gives the essentials of how they are implemented. The

emphasis is on those implementation details that are important for a discussion of

optimisation issues.

If the individual functions associated with an abstract data type are taken as compo-

nents, the optimisation problem is one of cross-component optimisation. In the specific

instance considered in this thesis, the problem reduces to one of loop fusion with sub-

sequent array contraction. The relevant basic terminology and formalisms are intro-

duced at the beginning of Chapter 7, followed by a link to the structure of the iterative

solver programs. This leads into a discussion of why fusion and contraction were used

rather than any other transformations given the overall objective of targeting perfor-

mance through temporal locality of data.

Chapter 8 builds on Chapter 7 by introducing the notion of collective loop fusion

(and contraction) as a means of describing how the basic technique of loop fusion

should be applied to a collection of loops. This is followed by a summary of previous

work in the area and a detailed exposition of the new approach developed in this work.

8 	 Chapter 1. Introduction

The central issue in this chapter is the relation of the standard abstract model of the

problem to concrete hardware - more specifically how trade-offs between transforma-

tions must be managed to get maximum performance, how different transformations

that are ranked equal using an abstract goal function may actually have substantially

different performance on a real machine, and how these discrepancies can be attacked

using iterative optimisation. The resulting method is called iterative collective loop

fusion.

The automatic construction of the data structure used for optimisation in this thesis

would require several techniques that are not yet available in the Aldor compiler, and

the first half of Chapter 9 outlines the necessary analysis. The second half introduces

the prototype used to investigate the optimisation of the iterative solvers.

Chapter 10 describes the data structure used for optimisation derived from the most

significant part of the code for a QIVIR algorithm - the two sided Krylov subspace pro-

cedure described in Chapter 5. This is followed by a description of the search through

the space of the possible transformations using the iterative collective fusion technique

for different combinations of machine, operator type (as described in Chapter 6) and

data set size. The empirical results are compared against the case where no fusion

is done at all, alternative techniques for collective loop fusion, and entirely different

methodologies including an equivalent algorithm written in Fortran and specialised

versions of the code where subsections have been replaced with combinations of C,

assembly and high-performance binary BLAS routines.

Chapter 11 ties together the separate strands in the thesis into a conclusion and

summarises the directions in which the work could be taken. The appendices contain

code extracts (mentioned above), a discussion of how the framework relates to some

other iterative solvers (Appendix A), a brief discussion of temporal locality for three

and four dimensional regular stencils (Appendix B), and some notes on the two ref-

ereed conference papers and one workshop paper published during the course of this

thesis (Appendix E).

1.6. Contributions 	 9

1.6 Contributions

The contributions made in this thesis are as follows:

A framework for explicitly representing the structure of and relationships be-

tween a subset of the family of iterative solver algorithms, written in Aldor.

. An examination of how a clean modular style applied to a problem domain such

as the iterative solvers gives rise to temporal locality problems for cache based

architectures, and how this problem can be addressed by expressing it in terms

of a loop dependence graph and applying the transformations of loop fusion and

array contraction (collective loop fusion).

A demonstration of the importance of these issues to the combination of lan-

guage and application, with speedups of up to 3.7 from transformations targeted

at them.

An empirical investigation of how the different choices of transformation affect

the performance of the resulting code, with an emphasis on the inaccuracies that

can be introduced by using abstract models of the problem.

The embodiment of this approach into the technique we call iterative collective

loop fusion. This approach gives speedups of up to 1.41 over well-known static

approaches to the collective loop fusion problem.

A comparison with alternative approaches, such as an equivalent program writ-

ten in Fortran, or alternatives based on combinations of Aldor, C or assembly

code and high-performance binary ATLAS BLAS routines.

Chapter 2

Aldor

This chapter summarises the language and its implementation, including features of the

source language itself, the intermediate representation that is used during compilation

and compilation strategy, including an outline of some existing optimisations. For fur-

ther details, including the exact specifics of language syntax, see [93, 95]. The chapter

serves to describe some of the important features that made Aldor our choice for this

work, as well as enabling a discussion of the design, implementation and optimising

transformation of the iterative solver applications themselves. A detailed description of

why thee features are important and how they relate to alternatives has been covered

in previous work, and is summarised with references in Appendix E.

2.1 	Fundamentals of the Language

The code in Figures 2.1 and 2.2 is used as an example throughout this chapter to illus-

trate some of the basic language features.

2.1.1 Domains and categories

Domains in Aldor are the mechanism used to implement abstract data types (ADTs)

of a single implicit new type, or occasionally packages of functions on one or more

explicit types. For an ADT, the underlying, hidden type of the domain elements is

called the domain representation. Domains are typed by belonging to categories. A

11

II
	

Chapter 2. Aldor

define MyVectorCat (GroundField 	: 	Field) 	: 	Category == with

- 	: 	% 	-> 	%; ++ negatidn

+ 	: 	(%, 	%) -> 	%; ++ addition

%) -> 	%; ++ subtraction

%) -> GroundField; ++ innerproduct

apply 	: 	(%, Singlelnteger) 	-> GroundField; ++ element access

set! 	: 	(%, Singlelnteger, 	GroundField) 	-> 	; ++ element update

default (v: %) - (w: %) : 	== v + (-w)

Figure 2.1: Aldor source code for a simple vector category with negation, addition,

subtraction and inner product on the vectors, as well as individual element access and

updating. The category is parameterised by the type of the vector elements, which must

be a field.

category consists of a list of constants (or exports) that the domain must provide, i.e.

make public to users of the domain, and these constants are eitherfunctions, types (one

implicit type is created for an ADT, but a package may export several) or distinguished

values of a type. As such, a category defines an interface and any domain belonging to

it provides an implementation thereof.

A domain may belong to multiple categories, and only belongs to a named category

if it is explicitly defined as such - that is, a domain never satisfies a category implicitly

merely by exporting the constants that the category requires, unless the category is an

anonymous one. If a domain is explicitly typed with a category, then only the constants

defined in the category are exported, thereby allowing data/implementation hiding. If

the domain satisfies multiple categories, then it exports the union of their constants. A

domain that is not typed by a category implicitly belongs to the anonymous category

that consists of a list of all the constants defined in the implementation of the domain.

2.1.1.1 Parameterisation and recursion

Both domains and categories can be parameterised, allowing the definition and typing

of type constructors (parameterised domains are also known as functors). The argu-

2. 1. Fundamentals of the Language
	

13

MyVector : MyVectorCat (DoubleFloat) with

new : C) -> %;

dispose! : % -> 	;

} == add

Rep == PrixrtitiveArray (DoubleFloat)

import from Rep;

vectorSize : Singlelnteger := 10;

new() : 	== per new (vectorSize , 0);

dispose! (e 	%) : () == dispose! (rep e);

apply(v : %, i : Single-Integer) : DoubleFloat == (rep v) (i);

set! (v : %, i : Singlelnteger,

e : DoubleFloat) : () == (rep v) (i) := e;

- Cv: %) : %== {

r := new();

for i in 1. .vectorSize repeat r(i) := - v(i);

return r;

Cv: %) + (w: %): % == {

r : new; 	 -

for i in 1. .vectorSize repeat r(i) := v(i) + w(i);

return r;

(v: %) * (w: %) : DoubleFloat ==

ip : DoubleFloat := 0;

for i in 1. .vectorSize repeat ip : 	ip + (v(i) * w(i));

return ip;

Figure 2.2: Aldor source code for a domain of vectors that satisfies (implements) the

category in Figure 2.1. The variable vectorSize is a lexically scoped variable that

resides in the scope of the domain itself and is referred to by the functions for vector

operations (negation, addition and inner product).

14 	 Chapter 2. Aldor

ments to a parameterised domain or category can be dependently typed (see section

2.1.2). Both domains and parameterised domains are, also first class objects, in the

same manner as normal objects/functions (again see section 2.1.2). The mechanism of

domains and categories can be thought of as a module language, as it is used to define

new modules (i.e. domains).

Domains, and the categories used to type them, can be defined recursively and

mutually recursively. This can be used in conjunction with parameterisation and de-

pendent types.

2.1.1.2 Relation to Example

Figure 2.1 gives an example of a category with six exports (all function signatures)

intended to denote negation of a vector, the addition/subtraction of two vectors to form

a third, the inner product of two vectors to give a member of the element type, and

reading/writing of an, individual vector element. Functions matching the signatures

must be provided by any domain that is typed with the category. The category is

parameterised by the domain of the vector elements, which itself must be typed by the

Field category.

The domain in Figure 2.2 is typed with an anonymous category that inherits from

the category in Figure 2.1 and extends it with a constructor and a destructor function.

The domain representation (defined by Rep == ...) is a domain of double precision

floating point number arrays, created using a built-in array functor (see section 2.1.3)

and a domain of double floats. All the functions in the domain are implemented using

the exports provided by the domain representation and the double float domain. Only

the exports defined by the typing category are visible externally, so the type of the

domain representation and the vectorSize variable are hidden.

2.1.2 General features

Aldor is strictly evaluated (or eager) and imperative. It is a functional language with

lexical scoping, where variables from an outer lexical scope can be imperatively up-

dated. The combination of imperative update, lexical scoping and first class functions

2. 1. Fundamentals of the Language 	 15

allows the creation of closures that carry state by manipulating values in their lexical

environment.

As well as functions, domains are also first class values in Aldor, and thus functors

can be instantiated with varying domain parameters decided at run-time (although this

rarely occurs in practice). Aldor is statically typed and type inferred, and supports

a limited form of dependently typed arguments to functions. The dependent typing

is mostly used in this thesis to be able to type domain arguments to a function or

parameterised domain using a parameterised category, but in general it is necessary for

typing recursive domains etc.

Dependently typed functions allow the specification of an algorithm that acts on

elements of a domain at the level of exports provided by a particular category, inde-

pendently of the domain from which the elements are taken. Category defaults can

be used as a shorthand for the same mechanism. They provide a default implemen-

tation of a given export in terms of other operations provided by the same category.

The domain that provides the other exports upon which the default relies is an implicit

parameter.

2.1.2.1 Relation to Example

Figure 2.1 gives an example of a default function (subtraction) defined in terms of

other category exports. In Figure 2.2, the variable vectorSize used in the functions

is lexically scoped (it resides in the scope of the domain itself).

2.1.3 The core language and the abstract machine

The core of the language consists of a small number of pre-defined (or built-in) do-

mains [93]. The most important of these are the PrimitiveArray, Record, Machine

and Generator types. The machine domain (i.e. Machine) is a package of simple

types and operations, such as a single word integer with addition/multiplication etc,

and single and double word floating point types. The primitive array and record do-

mains are both functors that allow the definition of aggregate data types in the expected

fashion, with functions to access and update elements and create aggregates from col-

lections of elements.

16 	 Chapter 2. Aldor

Although the machine domain supports operations to create and manipulate arrays

of arbitrary type, the primitive array domain is more than just a type system wrapper

for this for several reasons, the most important being the packed array mechanism (see

section 2.3.1.2).

The Aldor compiler compiles the source language to an intermediate representa-

tion consisting of operations defined on an abstract machine (see section 2.2). The

operations and data types provided to Aldor by the machine domain and the record

and primitive array types correspond closely to a large subset of the operations and

data types provided by the abstract machine.

2.1.3.1 Generators

The Generator type is a core language functor that can take an arbitrary type as its

argument to define a domain of generator objects that "generate" elements from the

parameter type. Objects in the domain are constructed using special syntax and al-

most arbitrary control flow (including general recursive functions), and are first class

(they can be assigned to variables etc). Generators are used with the Aldor for loop

construct to define the values which the for loop variable takes. At the beginning of

each iteration, the generator is prompted for its next value which is then bound to the

loop variable for the duration of the body. This usually continues until the generator is

empty, although other exits from within the loop can occur.

All for loop constructs in the language rely on generators, including those which

equate to the simpler constructs with the same name from less developed languages,

such as simple iteration over a closed integer segment. Note that generator objects have

state that can be carried across different for loops. To get the expected behaviour for a

sequence of loops that iterate over the same set of values (such as an integer segment),

a new generator must be created for each loop. This is made the default behaviour by

a syntactic mechanism. If the object supplied as an argument to a for loop is not a

generator, a function to create a generator from the object is implicitly invoked, which

usually results in a new generator for each for loop even if the same (non generator)

object is reused.

A generator is implemented as a small set of functions that manipulate the same

2. 1. Fundamentals of the Language 	 17

environment (see 2.2.5). Thus, the invoking of the function to get back a generator,

and its subsequent use in the for loop is a simple, but important and pervasive use of

the functional features of the language.

2.1.3.2 Relation to Example

The domain in Figure 2.2 uses the core language functor PrimitiveArray to create

its domain representation. The for loops to iterate over vector elements are controlled

by generators of one word integers created from the integer segments 1. . vectorS i z e,

where each successive integer value is bound to variable 1.

2.1.4 Basic libraries

Because the built-in elements of the language form such a small group with very min-

imal functionality, it is usual practice to write programs in terms of a basic library that

provides a much richer set of abstract data types with far more available operations on

them. This basic library is likely to include what would otherwise be considered fairly

fundamental types for other languages, such as list, tree, integer and floating point

types. Nonetheless, any given basic library has been written as user defined domains

and categories, and as such is just a convention - indeed, there is more than one Aldor

basic library [93, 18].

The basic library used in this thesis is called axilib, and most of the domains of

interest from it are fairly thin wrappers around a machine domain type that corresponds

exactly to an abstract machine type. The wrapper exists to supply many extra functions,

and also to separate the relevant part of the machine domain package into a stand-alone

type. The library also contains a hierarchy of categories that form the basis of the work

in Chapter 5.

2.1.4.1 Relation to Example

As well as the core language array functor, the underlying type of the domain in

Figure 2.2 relies on the DoubleFloat domain from the axilib basic library. The

Singlelnteger and Segment domains are also used to control for loops etc.

18
	

Chapter 2. Aldor

2.1.5 Storage model

Aldor does not have arbitrary pointers, but it does have references through which up-

datable structures such as records and arrays are handled. This allows the creation of

aliases via shallow copying (but not partial aliases as references must point to the head

of an object, and objects may not overlap), and also introduces undefined behaviour

if a reference with no object attached to it is read or written through. Aggregates are

therefore fundamentally different from simple variables such as the integer or floating

point types provided by the machine domain.

Updatable aggregates must be allocated and can either be explicitly deallocated or

left to a garbage collector. Allocationldeallocation functions for arbitrary aggregate

types can be written using those from the core language domains, but deallocation rou-

tines, usually called dispose! functions, are not strictly necessary (because of garbage

collection). Most allocated objects at the source level corresponds to equivalent objects

in the heap of the underlying abstract machine, so the ability to garbage collect objects

and the strategy employed is inherited from the abstract machine's memory model.

The correspondence is not strict however, as certain objects with a restricted lifetime

may be turned into a collection of abstract machine stack frame variables by compiler

optimisations (see section 2.3.1.3).

2.1.5.1 Relation to Example

The function to create a vector in Figure 2.2 explicitly allocates a new array by us-

ing the functionality provided by the domain representation, and similarly provides a

dispose! function.

2.1.6 Purity and overloading

Syntactic operators are a pre-defined part of the language, and it is possible to overload

most of them with user defined functions, including the syntax for function applica-

tion. The overloading of syntax for fetching or updating elements of records or arrays

(known as the apply and set! mechanisms respectively) is of particular interest and

allows the variables of an arbitrary domain to be treated syntactically as aggregates.

2.2. Abstract Machine and Compilation Model
	

19

Overloaded infix operators such as + and * are particularly common exports. Heavy

use of overloading, especially in the basic libraries, leads to programs typically corn-

posed of layers of very fine-grained functions.

Although Aldor is an imperative language, the functions attached to the infix oper-

ators exported by a domain of updatable objects tend to be pure to preserve the natural

semantics of the operator - that is, they do not destructively update either of the ar-

guments, and allocate a new object to hold the result of the operation. Given that

abstraction and overloading are used so heavily in typical Aldor programs, the net re-

sult is a heavy bias toward object allocation rather than programmer directed explicit

overwriting of existing aggregates element-by-element using loops, as tends to occur

in more traditional imperative languages. Instead, dispose! functions are used to

discard an object if the data it holds is no longer needed.

2.1.6.1 Relation to Example

All the exports from the domain in Figure 2.2 are overloaded operators, excluding the

con structor/destructor functions. The reading and writing of array elements within for

loops demonstrates the use of apply and set! functions exported by the underlying

array domain (as well as infix operators such as + etc from the double float domain).

The syntactic convention gets resolved to the relevant export from the domain - i.e.

the form v(i) : = 4 is equivalent to set! (v; i, 4), and v(i) with no assignment

operator is equivalent to apply (v, i). Their use for the vector domain itself would

be similar.

The addition of two vectors is an example of a function attached to an overloaded

infix operator that uses destructive updates internally, but is outwardly pure in that it

affects neither argument and always returns the same values in a vector for a given

argument pair.

2.2 Abstract Machine and Compilation Model

The current design of Aldor incorporates an abstract machine, some of whose func-

tionality matches closely the built-in machine domain. The code for the abstract ma-

20 	 Chapter 2. Aldor

chine, also known as the intermediate representation (IR), is called First Order Abstract

Machine (FOAM) code.

FOAM is a fairly high level procedural language, however, quite a lot of informa-

tion that was implicit at the Aldor source level is made explicit at the FOAM level.

This includes:

closures, their environments, and the instructions for manipulating them, includ-

ing lexical references

almost all compiler generated temporary variables

most of the code to initialise domains at run-time

the implementation of generators as collections of closures

control flow within functions, which is lowered to the level of labels and branches

FOAM itself is structured as a fairly simple tree, the details of which are given in [94]

(although it has since developed somewhat).

2.2.1 Libraries and whole program optimisation

The compilation model that Aldor uses is whole program optimisation (WPO) , and

this is achieved by splitting compilation into two phases. The first phase is the com-

pilation of source files to abstract machine code. The second phase is when the native

executable is actually created, and at this step all the abstract machine code for any

domains or functions that are used by the executable must be available.

To enable this, Aldor libraries (including basic libraries) consist of files written

in a machine-readable version of FOAM code, and are intended to take the role of

collections of machine independent object files. The WPO strategy is a key enabler

for optimisation of the language, as it enables cross-component optimisations in the

presence of multiple compilation units. For example, in the current compiler it makes

sure that there's enough grist for the mimer to work on by employing cross-file miming.

Similarly, it enables other cross-component optimisations, such as those introduced in

Chapter 7.

2.2. Abstract Machine and Compilation Model
	

21

2.2.2 FOAM types and variables

FOAM has a number of built-in types that fall into two main groups. The first of these

is the updatable compound variables, including closures, environments that represent

scope levels in the source language, arrays and records, all of which which are allocated

on the heap and handled via references. Records and arrays in FOAM correspond di-

rectly to the core domains in the source language. Records and environments are typed

by means of globally visible formats, which describe the number and type of their el-

ements. The type of an array is determined by the type of its elements, which must be

one of the simple variables (see below). Arrays of compound types are constructed as

arrays of pointers.

The second group is the simple variables, including a generic word type which is

used as a catch-all (any heap allocated variable is pointed to by its reference which is

stored as -a word), and various integers and floating point values usually represented

by one or two words. The simple types and the operations on them correspond to

those available in the machine domain of the core language. These variables are stack

allocated (i.e. they are specified as part of a FOAM function stack frame) unless they

are part of a record/environment.

2.2.3 Uniform representation rule

The uniform representation rule states that any type used as the representation of a

domain must fit into a single word. This is necessary in the context of dynamically

handling domains - i.e. when the domain parameter to a dependently typed function is

not statically determinable. In this case, the size of the representation for the data type

cannot be known, so all data types must have the same size.

This is achieved by converting compound types into the generic word type i.e. han-

dling them through uniform size pointers. Note that this calling convention means that

any simple data type larger than one word must be boxed inside one of the compound

data types if it is to be used as a domain representation.

22
	

Chapter 2. Aldor

2.2.4 Memory model

The lifetime of stack variables is determined by the use of stack frames for function

calls. Heap allocated variables can either be explicitly deallocated with instructions

resulting from dispose! functions, or left to a garbage collector. An implementation

of the abstract machine is free to ignore deallocation instructions, so the use is more.a

programmer optimisation hint than an intrinsic part of a program's semantics.

2.2.5 Aldor domains and generators in FOAM

The implementation of Aldor domains in FOAM code relies on a mixture of FOAM

instructions generated by the compiler and support provided by the run-time system.

Domains exist at run-time as lazily instantiated objects containing references to any

constants exported, and an environment for any internal variables contained within

their scope. The use of laziness allows support for language features such as recursive

domains.

Domain objects are implemented by allocating an empty shell that contains a pointer

to a compiler generated initialisation function. When certain information is needed

from the domain, the initialisation function is used to fill-in parts of the object. This

can happen in several stages, or all at once, depending on the event that triggers the

initialisation. Code to trigger the initialisation of the domain must also be inserted by

the compiler in the appropriate places to ensure program correctness, using abstract

machine instructions specific to this purpose. The most common example is the need

to ensure that a domain has been created before calling an exported function that refers

to variables in its lexical environment (i.e. the scope of the domain itself, the environ-

ment for which is part of the run-time domain object). This is done via the FOAM

instruction envEnsure.

As domains may rely upon other domains, a single envEnsure instruction may

trigger a long chain of domain initialisations. Instructions to trigger domain initiali-

sation are usually littered throughout any piece of FOAM code, and so can be control

dependent on dynamically determined branches etc.

Generators are first created at the FOAM level as a small collection of closures

2.3. Compiler Implementation 	 23

(step!, value, empty? etc.) that manipulate state in a common lexical environment.

There is no special functionality required to support them. The action of compiler

optimisations at the FOAM level may reduce a generator to stack variables and simple

control flow using labels and branches, which can dramatically decrease the overhead

otherwise involved (see section 2.3.1.3).

2.3 Compiler Implementation

The Aldor compiler can be roughly split into a front-end and a back-end that match

the phases of the compilation model. The front end of the compiler is responsible for

lexing, parsing, type inference, semantic analysis etc., and finally the generation of the

JR. Other than the fact that it generates FOAM code, the detailed implementation of

the front-end is irrelevant to this thesis.

The back-end of the compiler has two main phases. The first consists of several

compiler optimisation passes that operate on the IR, and the second consists of a more-

or-less direct translation of the final version of the FOAM code into another language

to be compiled by a host compiler. The two languages currently used for this are C

and Lisp, but only the C back-end is considered in this thesis. Note that the generated

code is not completely free-standing, in that it relies on a small run-time environment

that must be a linked against the native executable to provide support for domains and

garbage collection etc.

The memory allocation in the run-time library for the C back-end makes use of a

conservative tracing garbage collection scheme, with the ability to explicitly deallocate

objects on demand. Only the compound FOAM types are heap allocated, with simple

types translated into stack variables at the C level. It is quite often the case that a

huge number of stack variables get defined in this way, but the assumption implicit

in the design is that it is better to leave this mess to the register allocator of the C

compiler than it is to generate a large amount of garbage for the collector to have to

deal with. Indeed, the emerger pass of the compiler is specifically designed to turn

heap allocated records and environments into simple FOAM variables, and frequently

gives quite dramatic improvements in performance.

24 	 Chapter 2. Aldor

2.3.1 Pre-existing optimisations

2.3.1.1 The mimer

The mimer is an important part of the Aldor compiler. The current implementation is

fairly simple, and works top-down on FOAM code. It operates on a per function basis,

and given a function it gathers a list of the functions that are called from it. This list is

prioritised based on a number of factors including:

Generators - if the functions result from a generator in the top level source

code, then the mimer prioritises them. The miming of generators is crucial to

the performance of general code as their use is pervasive.

Function size - smaller functions are prioritised over larger functions.

Leaf Functions - leaf functions have a higher priority than non-leaf functions.

Once the queue is assembled, the mimer begins to expand functions into the current

function in order of priority. If a non-leaf function is inlined, the child functions are

added to the priority queue, it is sorted, and the process resumes. This continues until

the limit for the growth of the function has been reached. Functions that are not called

directly by name, i.e. that are called through a closure, may be impossible to inline as

the function at the call-site will not be known until run-time.

2.3.1.2 Packed arrays

The FOAM abstract machine has instructions for allocating flat arrays of any of the

simple data types. Arrays of heap allocated objects are arrays of single words which

are pointers to the heap allocated objects themselves.

The core language array functor PrimitiveArray takes the array element type

as a parameter, as per the example in Figure 2.2. By the uniform representation rule

the FOAM representation of the parameter domain must fit into a single word. In the

example, the parameter domain is DoubleFloat from axilib, whose representation

is a double word floating point number boxed inside a record. To enable flat arrays of

data types such as this, a type may optionally export functions to be used by the array

2.3. Compiler Implementation 	 25

domain that describe how to allocate and manipulate flat arrays of itself, including the

word size of the flattened type etc. These packed array functions may be written by the

user, but, if they are not, the compiler contains a mechanism that attempts to provide

them. If it fails, arrays of pointers to heap objects are used instead.

2.3.1.3 The environment emerger

This pass of the compiler reads sections of FOAM code, and unpacks heap allocated

records and environments into their constituent parts, which then become separate

stack allocated variables. This saves allocating the record (or environment) itself, but

also means that any simple FOAM types that were contained in the record will now get

translated into C stack variables and hence become visible to C compiler optimisations

such as instruction scheduling, register allocation etc.

The use of DoubleFloat in Figure 2.2 demonstrates the purpose of the environ-

ment emerger. To fit with the standard Aldor calling convention (see Section 2.2.3)

and give the domain a pure semantics, its elements are represented by heap allocated

records that contain a double precision floating point variable (i.e. it is boxed), and all

the binary operations exported by the domain allocate a new record to hold the result

that they produce. This can be painful in tight loops, even if the functions exported by

the domain are successfully inlined.

The function for an inner product of two vectors (in Figure 2.2) is an example of

this. In its original form, assuming that the packed array functions, addition and multi-

plication operations are successfully inlined, the body of the loop still requires several

new records to be allocated on each iteration to calculate the running sum:

26 	 Chapter 2. Aldor

Fetch v (i) from flat array v and place in a new record A

(inlined packed array function)

Fetch w (i) from flat array w and place in a new record B

(inlined packed array function)

Multiply contents of records A and B and place result in new record C

(inlined multiplication function)

Add the contents of records C and ip and place result in new record D

(inlined addition function)

Set ip to point at

After the environment emerger has done its job, the records involved have been re-

placed with simple FOAM types and the loop no longer makes any allocations at all. If

the running sum is passed out of the function however, then the emerger has to reinsert

instructions to allocate a record and box the final result before returning it. This would

be done for the last line of the example, but note that this is one single allocation,

outside of any loop. This explanation has ignored the allocation/emerging of function

environments, but similar reasoning applies.

The usage of packed arrays frequently interacts positively with the environment

emerger. In isolation, the function that accesses elements of a packed array must re-

turn a heap allocated object corresponding to the domain representation, usually by

allocating a new object and copying values from the array into it. Conversely, a write

to a packed array copies information from an object into the array itself. If a packed

array element is accessed, operated on, and then stored, the environment emerger can

frequently avoid the allocation and use stack temporaries instead as the lifetime of the

object is short and it is never aliased.

2.3.1.4 Sundry optimisations

Various other optimisations are also implemented in the compiler as FOAM to FOAM

transformations. These include textbook standards such as copy propagation, constant

folding, various peephole optimisations, strength reduction, and more Aldor specific

transformations such as the flow converter that cleans up control flow after inlining

functions from generators, and several optimisations specific to the run-time handling

2.4. Summary 	 27

of domains.

2.4 Summary

This chapter has introduced the computer language Aldor used in this thesis. Specific

points of interest include:

. The module language, consisting of domains and categories.

The core language types, including the Machine package that provides most of

the interface to the abstract machine, and the PrimitiveArray, Record and

Generator functors.

The use of overloading, and how this encourages fine-grained function compo-

sition and object allocation.

The smallness of the language, how this encourages the use of basic libraries,

and how the compilation strategy of whole program optimisation permits the

tackling of the potential inefficiencies of this modularity with cross-component

optimisations.

The definition of the abstract machine, including its memory model and how

this is visible at the source level, and how code is generated to deal with domain

instantiation and generators.

The structure of the compiler and its pre-existing optimisations, including the

inliner and the environment emerger that help to tackle the problems of fine-

grained modularity by removing function calls and unnecessary heap allocation.

Chapter 3

The Iterative Solvers

This chapter gives a brief overview of a subset of the iterative solver algorithms, with

an emphasis on the algorithmic structure. This background is the foundation of the

design of the framework discussed in Chapter 5. See [73, 41, 40] for more detailed

material.

3.1 Notation

Standard notation is used throughout, except for the use of square brackets to indicate a

scalar element of a vector or a matrix corresponding to the indices within the brackets.

For example:

(.0 1
U=I

0

U[1,2] = 1

29

30
	

Chapter 3. The Iterative Solvers

3.2 Overview

3.2.1 The form of the problem

Square nonsingular linear systems of equations can be simply stated in matrix algebra

as follows:

where A is the m x m matrix of coefficients of the unknowns, b is the rn-vector of

constraints, and x is the rn-vector of unknowns for which the system has to be solved.

Usually, an approximation to the solution is sought with some kind of bounds on the

error. Throughout the thesis A is usually referred to as the operator, firstly because it is

a linear operator (square matrix), and secondly because the name helps to distinguish

it from other matrices that enter the discussion.

3.2.2 Krylov subspaces

Krylov spaces are the foundation upon which the non-stationary iterative solvers are

built. A Krylov space is a space spanned by a set of basis vectors produced from an

operator and a given starting vector, usually presented as a sequence. The n-th vector

in the sequence is the n - 1-th power of the operator A applied to the initial vector v,

with n running from 1 to infinity:

IV, AV, A2v, A3v, ..., A'1v, ...

where each vector can be generated by applying the operator to its immediate prede-

cessor (in exact arithmetic). The Krylov subspace of the first n vectors in the sequence

generated from operator A and vector v is written Kn (A, v). If the operator is a (non-

singular) finitely dimensioned linear transformation, then at some point in the infinite

sequence the space will stop growing - either the basis vectors will completely span

the range of the operator, or they will span some smaller finite dimensional invariant

subspace.

The basic idea behind the iterative solvers is to generate up to some number of

basis vectors for the Krylov space in question, and choose the candidate solution to the

3.2. Overview 	 31

linear equations x, as a linear combination of these basis vectors, or those from some

very closely related space. The candidate solution is then tested to see if it is a good

enough approximation, and if it is, the process terminates. If it is not, then more basis

vectors are added to the Krylov subspace and a new, hopefully better approximation is

constructed. This cycle continues until an acceptable approximation has been found.

This must happen eventually in infinite precision arithmetic as the system is nonsingu-

lar - finite precision arithmetic complicates the issue, but it is assumed here that some

acceptable approximation can always be generated. It is usual to grow the space by

one basis vector each time, then construct a solution and test to see if it is acceptable

or not. Hence the algorithm takes the form of a test-repeat loop.

3.2.3 Halting condition

There are various different strategies for deciding when to halt the algorithm, such as

attempting to approximate some of the eigenvalues of the operator, or watching the

rate of change of certain scalars associated with the algorithm, but we will not go into

much detail here. We note that most schemes usually involve the residual norm (i.e.

the 2-norm of the residual vector) or some approximation to it. The residual vector r

(or just residual) is the projected error on the approximate solution x:

r 	= 	- x)

= b—Axe

3.2.4 Orthogonality conditions

When selecting a candidate solution from a solution space of size n, one has n degrees

of freedom, being the scalars that determine the linear combination. To fully specify

the solution, one therefore needs n independent constraints. The constraints are nor-

mally specified in terms of an orthogonality condition on the residual vector— that is,

r, has to be orthogonal to a space of dimension n. Hence, the orthogonality condition

can be expressed as follows:

32
	

Chapter 3. The Iterative Solvers

C'r=O

That is, the residual is orthogonal to the space spanned by the columns of C,. The

different orthogonality conditions have different properties, and deciding on the ap-

propriate orthogonality condition for a given problem is a complex task indeed that is

not covered here.

3.2.5 Reduced (projected) system as interface

Taking a basis of the solution space to be S, gives:

x, E span {S} =~ Xn = S.Yn 	 (3.1)

that is, y, is an n-vector that specifies the linear combination of the basis vectors that

gives the approximate solution at step n. By imposing the orthogonality condition

on the residual vector, an equation that the candidate solution vector has to satisfy is

derived:

C'r=C(b—Ax) = 0

C,'ASnyn = CH

= gn

This reduced or projected system has size n at step n - the last line above serves to

indicate this, where vectors y and g are of size n and the matrix F is of size n x n (note

that F and g are not referred to again). This will be smaller than the original system

and can be solved by conventional means, after which 3.1 can be used to reconstruct

the approximate solution. In practice the solution space and orthogonality condition

are carefully chosen to make the the projected system as easy to generate and solve as

possible, as well as giving certain numerical properties to the approximate solution. In

addition, the update of the projected system from size n to n + 1 needs to be as efficient

as possible.

3.2. Overview 	 33

The combinations considered in this thesis give rise to projected systems with a

common structure that makes it possible to separate the generation of the reduced sys-

tem and its solution. The projected systems therefore define an interface that allow the

same generating components to be re-used with different projected systems and hence

different orthogonality conditions. The interface can be exploited from the other side

as well - it is possible to define the components that solve the projected systems in such

a way that they can be combined with different ways of generating the reducd system.

However, this re-use amongst the solver components has not been fully captured in the

implementation discussed in this thesis.

3.2.6 Operator structure

The iterative solver algorithms only require the ability to perform matrix-vector prod-

ucts (an operator application to a vector) and vector operations to solve Ax = b. Cer-

tain aspects of the derivation of the algorithms require that the operator have certain

mathematical properties (e.g. Hermiticity), but the algorithms are entirely independent

of the structure of the operator, taking structure to mean sparsity patterns or possible

decomposition into factors.

This is important for two reasons. Firstly, although the algorithms are independent

of operator structure, they are frequently used because of it, as they have no need to

alter the operator itself in any way. In the simple case of an operator stored in some

sparse matrix format, in may be cheaper to use an iterative algorithm rather than a

sparse direct one due to storage considerations (i.e. possible "fill in" during the use

of a sparse direct method). Where an operator is stored as factors, for example as

the Kronecker product of two matrices, it is not concretely represented at all and its

entries are not available to be directly acted on (see Section 6.2.2). Secondly, when

the linear system arises from the discrete approximation of a differential operator on

some continuous function, the approach is conceptually much neater as it is not clear

how the atomic manipulations of the discretized operator correspond to any continuous

counterpart. Operator application and scalar/inner products of vectors do usually have

a continuous equivalent however.

The independence of the algorithms with respect to operator structure means that

34
	

Chapter 3. The Iterative Solvers

further discussion of these issues can be delayed until Chapter 6.

3.3 Generating Krylov Subspaces

3.3.1 The Arnoldi relation

The methods of generating Krylov subspaces considered in this section orthogonalise

the newest vector in the sequence against all the previous vectors, using for example

some variant of Gram-Schmidt orthogonalisation, and then normalise it. This approach

is called the Arnoldi method, and is neatly captured by the Arnoldi relation:

AV 	= 	+ I3nvn+iunH 	 (3.2)

= Vn+iJi+i,

where A is the operator in question, the columns of V, are the orthonormal basis vec-

tors of the Krylov subspace K, (A, vi), vector u, is the n-th canonical unit basis vector,

is the n x n upper Hessenberg matrix of orthogonalisation (upper triangle) and

normalisation (sub diagonal) coefficients, and= 	+ f3,u,1+iu (with an ex-

tra row of zeros implicitly appended to the bottom of 	Each new (raw) vector,

before it is orthonormalised, is created by applying the operator to the previous ba-

sis vector in the sequence. This information is contained in the left-hand side of the

equation - thatis, multiplying V by A gives a matrix whose columns are the sequence

of raw vectors. The right hand side shows that each raw vector can be expressed as

a linear combination of the orthonormal basis vectors of the Krylov space, and more

specifically that the n-th raw vector is a linear combination of the basis vectors from 1

to n + 1 (as in+1,n is upper Hessenberg). Hence, if we have the n-th raw vector, and

the basis vectors up to n, we can construct the n + 1-th basis vector.

Assume A is nonsingular, and n = m such that V, is m x m and spans the range of

A. If we pre-multiply both sides of the Arnoldi relation by the Hermitian transpose of

the matrix of basis vectors, then by the fact that its columns are orthonormal we have

the following:

3.3. Generating Kry!ov Subspaces 	 35

V,H AV, = H 	 (3.3)

which shows that the matrix of basis vectors is a unitary similarity transformation, and

that the matrix of coefficients is the operator projected onto this basis.

To reduce clutter in the following sections, the subscripts on the matrices derived

from the Arnoldi relation are shortened as follows:

Iin+i,n 	11-n

and likewise for their tridiagonal counterparts.

3.3.2 Long and short recurrences

The Arnoldi relation is used more-or-less directly to generate an orthonormal basis of

the Krylov space for the long recurrence solvers such as FOM, GMRES etc., when the

operator is non-Hermitian. The term "long recurrence" is used to indicate the fact that

the number of basis vectors against which a raw vector has to be orthogonalised grows

as the sequence goes on.

If the operator is Hermitian and the orthonormal matrix of basis vectors is consid-

ered as a similarity transformation (equation 3.3), then it must preserve Hermiticity,

and so:

VHAV = T

with tridiagonal T because a Hermitian upper Hessenberg matrix can only have one

super-diagonal. Having T tridiagonal means that the n-th raw vector only has to be or-

thogonalised against the n-th and n - 1-th basis vectors as all the other orthogonalisa-

tion coefficients are zero. This means that there is now a fixed length short recurrence

for generating the basis vectors. This is important for two reasons - firstly, the amount

of effort required to produce a new basis vector, and secondly the amount of storage

36 	 Chapter 3. The Iterative Solvers

required as the algorithm progresses, are now both fixed. This variation on the Arnoldi

method is called the Hermitian Lanczos method1 (or simply the Lanczos method).

There are two ways of getting short recurrences for the generation of the basis

vectors if the operator is not Hermitian. The first is simply to truncate the orthogonal-

isation process after some fixed number of steps. This then gives us an upper banded

upper Hessenberg matrix, where the band width is determined by the number of or-

thogonalisation steps. While this is indeed a short recurrence, the basis vectors are no

longer orthogonal— hence it is called the incomplete orthogonalisation method (IOM)

by some authors. The second is to use the two-sided Lanczos method.

3.3.3 The two-sided Lanczos method

The two-sided Lanczos method builds a more general non-unitary transformation which

projects the operator again into a tridiagonal matrix. The idea behind the method is to

build a basis for the Krylov space of the operator V = ((A, vi), and a basis for the dual

Krylov space of the Hermitian transpose of the operator W = K(AH, w1), and arrange it

so that the two bases are biorthogonal - i.e WHV = D where D = diag(i, 821 ... ,

is a diagonal matrix. It can be seen that the resulting matrix of coefficients must then

be tridiagonal by considering the two complementary versions of the Amoldi relation:

AV = V,iH 	 (3.4)

	

AHW = w, iui,, 	 (3.5)

and exploiting biorthogonality:

WAV 	HW =

DH = (DH n i)' 	 (3.6)

From equation 3.6, Hn must be lower as well as upper Hessenberg as it is struc-

turally equivalent to a transposed upper Hessenberg matrix, and the same principle

applies to 1'. Hence they are both tridiagonal, and:

'A similar approach can be employed for complex symmetric (rather than Hermitian) matrices,
although the generation of the orthonormal basis may fail as the inner product is no longer definite [34]

3.3. Generating Krylov Subspaces
	

37

W,'AV = DT = tnH Dn 	 (3.7)

where the biorthogonality of W and V comes inductively from the definition of the two

complementary recurrences 3.4 and 3.5 (omitted - see [31] for a concise derivation of

this fact and the algorithmic variations described below).

Equation 3.7 provides some constraints on the recurrences, but does not define

them completely. Taking y and ' as the sub diagonal entries of T and i respec-

tively, then they, along with Dn = diag (6k , 82,. . . , 6,), can be freely chosen provided

Yn?n6n+1 = 6,, giving two degrees of freedom. Some popular further constraints in-

clude T= 1' which also implies both T and t are symmetric (but not Hermitian), or

= TH with D arranged to equal the identity, and various strategies for normalis-

ing basis vectors. Certain choices can simplify the algorithm, but may also affect the

stability of the method.

Note that two start vectors rather than one are now needed, one for each recurrence.

Although the first start vector is normally determined by the Krylov basis we are trying

to generate, the choice of the second is arbitrary, as long as the two start vectors are not

orthogonal. In fact, the algorithm can terminate prematurely at any step if it generates

a pair of non-zero vectors from the two spaces that are orthogonal before it manages

to generate an acceptable solution. This is known as a serious breakdown, or in the

context of an iterative solver, a breakdown in the underlying Lanczos process. There

are various strategies to deal with this situation, such as look-ahead techniques, but

apart from noting their existence we will not go into them here.

3.3.3.1 Functional parallelism in the two-sided Lanczos process

There are normally a couple of "join points" in any given implementation of the two-

sided Lanczos algorithm, being inner products with one vector from each basis set, but

between these points the two sets of basis vectors evolve separately. Because of this,

work could be done in parallel, and importantly this includes the application of the

operator which is usually the single biggest cost in an implementation of an algorithm

See Section A.3.

38
	

Chapter 3. The Iterative Solvers

3.4 Orthogonality Conditions and Projected Systems

3.4.1 Orthogonality conditions and orthogonal Krylov bases

In this section we introduce the three orthogonality conditions considered in this thesis,

and show how they are usually combined with a choice of orthonormal Krylov space

basis and solution space to get a reduced system. This section is developed as if for

the long recurrence (Arnoldi) methods, but can be made equally valid for the short

recurrence (Lanczos) methods by replacing any upper Hessenberg matrices H with

their tridiagonal equivalent T.

It ought to be noted that, in exact arithmetic, the three orthogonality conditions

for a Hermitian positive definite operator all produce approximate solutions at any

given step that are very closely related. The relationship between them is less clear-cut

for finite precision arithmetic and non-Hermitian positive definite operators, but the

generated solutions may still be closely related to one another.

3.4.1.1 The Galerkin condition

The Galerkin condition requires that the residual of the candidate solution be orthogo-

nal to the space from which it is taken, so C, = Sn giving:

SASnyn = Sb

The standard solution space is Sn e Kn (A, b), the Krylov space generated by b,

and Vn is calculated as an orthonormal basis of this space by using a recurrence based

on the Amoldi relation. By exploiting the orthonormality of the basis (see 3.3), this

results in the following projected system:

VnHAVnyn = VHb

Hnyn = I3iui

where 13i = 	, and hence the candidate solution at step n is:

Xn = VH113iu1

3.4. Orthogonality Conditions and Projected Systems
	

39

If the residual is orthogonal to the solution space, then for A Hermitian positive-

definite the error must be A-orthogonal to the solution space:

r=Ae I V,

e -I-A

Hence x, is the result of an A-orthogonal projection onto the solution space, and is

thus the vector from the solution space which gives the smallest possible A-norm on

its associated error.

3.4.1.2 The minimum residual condition

The minimum residual condition requires that the residual be A-orthogonal to the space

from which the candidate solution is taken, so C = AS giving:

S'A"ASy = SIAHb

The standard solution space and basis are the same as for the Galerkin condition,

resulting in the following reduced system which again relies on the orthonormality of

the basis:

VHAHAV Y = VHAHb

TTHT7H .r 	rr 	 TIH T)'H
,3v+1vn+1rLyn = LL

= llI3iui

and so the candidate solution is:

x = v(H 	YiJ 1u1

This immediately gives us that the residual norm is minimised (which is where the

method gets its name from), and for A Hermitian positive-definite the A2-norm of the

error for the candidate solution is minimised.

40 	 Chapter 3. The Iterative Solvers

3.4.1.3 The minimum error condition

The minimum error method directly minimises the 2-norm of the error vector, and

thus the error is orthogonal to the solution space S,1 In order, to achieve this, the

candidate solution x, E span(S) must be chosen from a slightly different space than

the two other methods, and this is most easily shown by starting from the orthogonality

condition on the error:

S'e = 0

S'A 1Ae = 0

r I A_HS

The above can be satisfied by generating V, as an orthonormal basis of the Krylov

space KJ2(AH , b) and choosing the solution space as S, = AHV , giving:

r I A_HAHV

Ivn

The residual must be orthogonal to a Krylov space generated by applying the adjoint

of the operator to b - i.e. C, = V, C 7C2(A",b). Combining this choice of Krylov

space, solUtion space and orthogonality condition gives us the following expression

which can be solved to find the projected solution yn:

VnHAAHVnyn = VHb

JiiinYn = I31141

and hence the candidate solution:

Xn = AHVn(HH)_lI3lul

= Vn+iHn(H lln Y113i"i

3.4. Orthogonality Conditions and Projected Systems 	 41

3.4.2 Orthogonality conditions and non-orthogonal Krylov bases

The development of the reduced systems in the previous section relies on the orthonor-

mality of the basis for the Krylov space. This does not hold though for the incomplete

orthogonalisation or two-sided Lanczos methods.

In the first case, the usual approach is simply to ignore the non-orthonormality of

the basis and use the same reduced systems for calculating the projected solution as

before. This means that the projected system still constitutes an interface.

The second case is somewhat more ad hoc. For the Galerkin condition, it is possible

to simply change the orthogonality condition so that the residual is now orthogonal to

the space spanned by the basis of the dual Krylov space of the adjoint of the operator,

C, = W,, which gives us the following:

W,'AVy = W H

TnYn = I3iui

The possibilities for adapting the minimum residual condition are less clear cut.

The most popular approach is to take the candidate solution that satisfies the same

reduced system as before2, and ignore the fact that it is no longer derived directly

from an orthogonality condition and has no direct relation to the norm of the residual

- hence it is a quasi-minimum residual method. There does not appear to be a well-

known (quasi) minimum error method based on the two-sided Lanczos algorithm.

For both the two-sided methods considered here, the projected systems still fit the

same mould as those for the orthogonal Krylov basis methods, so the interface is pre-

served across all variations of the algorithm.

3.4.3 Orthogonality conditions and breakdowns

It may be possible that for a nonsingular indefinite operator the Galerkin condition

cannot be satisfied for a given step, in exact arithmetic, even though the Krylov basis

vectors are well-defined and the condition is satisfiable at some later step ([64] gives an

2Thatis, it finds yn such that I1l3iui TnyII is minimised.

42 	 Chapter 3. The Iterative Solvers

explanation based on formally orthogonal polynomials). The unsatisfiability equates

to a singular projected matrix in the reduced system. This type of breakdown is not

possible for positive definite operators with the Galerkin condition, and cannot happen

for the other orthogonality conditions at all, although there is the related concept of

stagnation. In finite precision arithmetic, complete breakdown is rare, and the problem

tends to manifest itself as numerical instability.

This phenomenon is not critical for the long recurrence algorithms, because steps

where a piojected solution is not defined can simply be skipped. The problem arise

in the short recurrence methods if the algorithm defines the solution at step n in terms

of the solution at step n - 1, and therefore requires the projected operator to be invert-

ible at every step. This is the case for the classic Hermitian—Galerkin method, CG,

and the original motivation for using the alternative orthogonality conditions to derive

MINRES (which constitutes an improvement when the Galerkin condition cannot be

satisfied for an iteration) and SYMIIVILQ (which does not breakdown) [67].

3.5 Solving the Projected System and Recovering the

Solution

The projected linear systems are expressed in terms of the projected operator (either

upper Hessenberg or tridiagonal) and the norm of the initial right hand side b. The three

orthogonality conditions correspond to three types of reduced system to be solved to

obtain y,, the projected solution. They are summarised in Table 3.1.

Table 3.1: Orthogonality conditions and their reduced systems

Condition 	Reduced system 	Type

Galerkin 	Hy 	I3iui 	matrix inversion

Minimum residual H H y, = UH,, f3i ui least squares

Minimum error 	H H y, = I3iui 	matrix inversion (on H H)

An orthogonality condition is usually implicitly tied to a particular matrix decom-

position. Solving for the Galerkin condition is normally accomplished using the LU

3.5. Solving the Projected System and Recovering the Solution 	 43

decomposition, and solving for the minimum residual and minimum error conditions

relies on the QR decomposition (which for the minimum error condition is called the

LQ decomposition as the QR factors are transposed). This gives us the set of equations

in Table 3.2.

Table 3.2: Orthogonality conditions and the standard decompositions

Condition 	Decomposition Solution

Galerkin 	Hn = L, U, 	Y. = U'L'i3iui

Minimum residual FI = QR 	= R1Q13iui

Minimum error 	ffn = QnRn 	Yn = RR'i3iui

For techniques based on the long recurrence solvers we have now assembled all

the necessary pieces for a working algorithm. If y, can be calculated, then the solution

x, can be reconstructed by combining it with the solution space basis vectors derived

from the Krylov space process.

There is a problem for the short recurrence solvers though. The vector Yn changes

fully at each step of the algorithm, and thus to reconstruct the solution at any step

all the basis vectors generated so far must be stored. This means we have lost most

of the advantage of having a short recurrence in the first place, which was a small,

fixed storage requirement. To remedy this problem, another set of vectors is usually

introduced, called the search vectors.

3.5.1 Search vectors

The search vectors are just a grouping of the basis vectors with one of the factors of

the projected operator, and the general idea can be demonstrated using the Galerkin

condition and the LU decomposition:

xn = VnYn

= VnU, 1 L13iui

= Pn Zn

44 	 Chapter 3. The Iterative Solvers

where P is the matrix whose columns constitute the search vectors, and Zn is an n-vector

that only changes from step to step by adding the next entry. The upper triangular factor

U only has two entries per column, the diagonal and the super diagonal, because it is

derived from a tridiagonal matrix. Hence, the n-th column of V is a linear combination

of the last two columns of P, and n-th search vector can be constructed from the factor

U,, the n-th basis vector, and the n - 1-th search vector. This results in another short

recurrence:

vn = PnUn

p, = (v—U[n-1,n]p_1)/U[n,n]

The short recurrence for the solution vector is simple:

Xn 	= Pn_lZn_1 + Zn[fl]pn

= Xn_1+Zn[fl]Pn

Now that everything is calculable by short recurrences, the whole algorithm has a

small fixed storage requirement. The only further complication is that short recurrences

mandate that the matrix decomposition is pivotless and, for the Galerkin condition,

that L' and U exist at every step (see Section 3.4.3). Both facts can affect the

stability of the algorithm. Pivoting would still lead to short recurrences [34], but this

is nonstandard, and a breakdown due to singular T is unavoidable.

The other short recurrence methods are summarised below. The minimum residual

condition with a QR decomposition results in:

V=PR,

p, 	= (vn —Rn [n— 1,n]p_i —R[n-2,n]p_2)/R[n,n]

where the upper triangular factor R has two super diagonals, and thus we need to store

one extra search vector for the recurrence. In this situation Zn = Q 31 u1;and note that

3.5. Solving the Projected System and Recovering the Solution
	

45

Q is actually n + 1 x n + 1, but the n + 1-th entry of Zn is never used because even if

R (which is n x n) is extended to have an extra row they would all be zeros.

The standard matrix factorisation for the minimum error condition gives us the

following:

x, = AVy

=

= Vn+ IQnR;H I3lul

= PZ

where the update of the search vectors is based on the unitary part of the factorisation.

Taking on as the n-th individual Givens rotation:

1

1 	E(n+1)x(n+1)

C S

- C

the search vectors can be derived as follows:

Pn =

=

=

= (Pn_i,vn+i) n

P is used above to show that P, (which has n + 1 columns) differs from P-.-i in its n-th

column as well as having an extra column, giving the following relations:

Pn+1 = SJ3+CV

46 	 Chapter 3. The Iterative Solvers

pn =

where Pn+1 (and p,) denotes the (n + 1)-th (and n-th) column of P,. Although P, at

step n has n+ 1 columns, Zn only has n non-zero entries, sox, =x,_i +zn[n]pn.

3.6 The Common Algorithms

3.6.1 Initial guess

It is possible to exploit prior knowledge as to the likely solution of the system of

equations to be solved [73] i.e. some xi that is a better approximation to the actual

solution than xi = yi [1]vi. The technique alters the problem to a new set of equations

for which there is no information, so all cases can be treated by considering how to

solve the case where no prior knowledge is available.

3.6.2 Calculating the recurrence residual

As mentioned in the introduction to this chapter, there are various schemes for deciding

when to halt an iterative method, and most of them rely one way or another on the 2-

norm of the residual vector. The vanilla method that is built into most recipes is to

assume that there is some available a priori bound on this value. For both the Galerkin

and minimum residual conditions coupled with orthonormal Krylov bases, the 2-norm

of the residual is available from the reduced system. For the Galerkin condition:

r = b—AVy

= I31v1 - VTy - I3nVn+lUnYn

= 	I31v1 - I3ivi - I3nvn+iynllnl

= I3nYn [fl]Vn+1

UrnH = I3nyn[n]

and the scalar yn[n] can be recovered in the following way:

3.6. The Common Algorithms
	

47

yn = U, 1L 1i3iui

yn[fl] = z[n]/U[n,n]

For the minimum residual condition, any method of solving the least-squares prob-

lem that calculates the scalar least-squares value itself (such as a QR decomposition)

automatically gives us the norm of the residual due to the orthonormality of V+1:

r = b—AVy

= 13iv1 —V +iTy

= Vn+1(t31u1—yn)

rnll = 11131UiLynH

Both of these methods carry-over to the non-orthogonal Krylov basis algorithms.

For the Galerkin condition the residual now depends on the norm of v,i, and for the

minimum residual condition the scalar value calculated is related to the norm by the

condition number of 	It is possible to construct V to have columns with unit norm,

or calculate 	directly, so the residual norm is available for the Galerkin methods,

but K(V +i) is not directly calculable so only a quasi-residual can be recovered for the

minimum residual methods.

The situation is messier for the minimum error condition as the solution space is

not the same as the Krylov space. Calculating the residual now requires incorporating

the extra application of the operator to the Krylov basis vectors-

r = b—Ax,

= b—AA"Vy 	 (3.8)

For a Hermitian operator, it is possible to exploit the Hermiticity of T and calculate

a residual from components of the reduced system. From:

THT —n —n

Lz+iLi= 	0 ... ii 12 	(n+2)xn

0 ... 0 13

48 	 Chapter 3. The Iterative Solvers

it is possible to derive a convoluted expression for the residual in terms of the last two

entries of y, which themselves can be recovered from Z and R. For a long recurrence

method using a non-Hermitian operator, the product AV+i in 3.8 is unknown, meaning

that the residual cannot be calculated from the projected system.

3.6.2.1 Recurrence residual vs. Real residual

While the methods above theoretically give the residual, in practice they suffer from

certain numerical problems. Hence, the value calculated is known as the recurrence

residual, as opposed to the true residual, and the difference between these two values

is known as the residual gap.

Although it is not perfect, the recurrence residual is essentially free, whereas calcu-

lating the true residual at each step would require another operator application. Also,

calculating the recurrence residual does not require any extra information outside that

provided by the reduced system (with the exception of the two-sided Galerkin method

which may require

3.6.3 Putting it all together

With two classes of exception (the standard two-term recurrence Galerkin methods

(CG, BiCG) and the product methods, discussed in Sections A. 1 and A.2 respectively),

we can now construct the popular unpreconditioned iterative methods from algorithms

that generate and manipulate the pieces that we have presented in this chapter, sum-

marised below:

. Scalars ((x, 13 etc), vectors (b, v1 etc), dual vectors (Wi etc) and operators (A).

. The matrices H (or T) and V, generated by an algorithm that satisfies the Arnoldi

relation for operator A and initial vector vi (and possibly Wi).

. u, the (unbounded) first unit canonical basis vector.

. U or R, and z, the products of an LU or QR solve of a reduced system.

P, generated from a search vector recurrence.

3.6. The Common Algorithms
	

49

Table 3.3: Constructed iterative methods

Name 	Basis Generation Orthogonality Condition Decomposition

FOM Arnoldi Galerkin LU

GMRES Arnoldi Minimum residual QR

GMERR Amoldi Minimum error LQ

DLanczos Hermitian Lanczos Galerkin LU

MTNRES HermitianLanczos Minimum residual QR

SYM]\4LQ Hermitian Lanczos Minimum error LQ

BiDLanczos Two-sided Lanczos Galerkin LU

QMR Two-sided Lanczos (Quasi) Minimum residual QR

Note that most of the pieces capture a recurrence relation, and hence are unbounded

(i.e. 00 entries in a vector or columns in a matrix) - it is possible to give a bound in

infinite precision arithmetic, but this does not carry over to numerical calculation. The

combinations of algorithmic choice that determine the common methods are presented

in Table 3.3. The version of GMERR that would result from assembling the pieces

presented in this chapter is actually a variation on the original, as mentioned in [72].

3.6.4 Preconditioning

Similarly to having an initial guess for x1, it is possible to alter the system of equations

being solved to improve their numerical properties in some way, e.g. to give faster

convergence to a solution. This is known as preconditioning, and can be added to any

method. It comes in three varieties:

. Left: MAx—Mb

Right: AJVIM 1x = b

Symmetric: MAMM 1x = Mb

Assuming the termination condition can be suitably adapted, the first two. techniques

reduce to solving a different set of equations, and, for right preconditioning, a final step

50 	 Chapter 3. The Iterative Solvers

to recover the solution to the original system. Because the generation of the Krylov

space only requires operator applications, the new operator can always at the very least

be created by function composition.

Symmetric preconditioning can be treated in the same way, but if there exists some

N = M2 the method can be simplified to use only one application of N per iteration

rather than two applications of M. This trick can be freely captured in the generation

of the Krylov space [41].

3.7 Summary

This chapter has given a brief introduction to the iterative solvers, and discussed how

common components of the algorithms can be factored out by using the structures of

the projected systems as an interface. The rest of the thesis will show how some of

these components can be implemented to join together the different algorithmic pieces

whilst explicitly representing as much of the structure as possible, and issues in the

optimisation of the program arising from the direct representation of that structure in

the programming language.

The discussion given above covers what is important for the thesis, but leaves out

the relationship to other iterative solvers such as conjugate gradients, and the Lanczos

type product methods. For completeness, this is discussed briefly in Appendix A.

Chapter 4

Functional and Algebraic Language

Optimisation

This chapter provides some general background on previous work dealing with the

compilation of functional languages and MATLAB, and an evaluation of its relevance

to Aldor and the iterative solvers. These areas are of interest given that Aldor is both.

a functional language and has its roots in computer algebra. Even in these fairly re-

stricted domains, the literature on optimisation techniques (and how they relate to gen-

eral design) is large. Consequently, the work covered here is only a small selection

of examples from different topics and projects. Appendix E contain some pointers to

material on broader questions, such as choice of appropriate language etc.

Background specific to the optimisations used in this thesis (with an emphasis on

imperative work) is supplied in Chapters 7 and 8. It is presented along with a discussion

of the relevance of the technique to the framework (as well as the language), and thus

comes after the description of the framework design and component implementations

in Chapters 5 and 6.

4.1 Compilation of Functional Languages

The majority of the work on functional languages has concentrated on features that are

not present in more traditional languages. This is likely due to two reasons. Firstly,

51

0

52 	 Chapter 4. Functional and Algebraic Language Optimisation

the main applications for these languages are symbolic programs where these features

play an obvious role, and secondly it is often assumed that the novel features of these

languages are also directly the cause of the main problems for performance. The sub-

jects touched on in this chapter reflect this trend - they are polymorphism, fine-grained

function composition, pure languages, higher order functions and the use of recursion,

with a discussion of how they affect the related topics of arrays and compiler imple-

mentation.

4.1.1 Fine-grained function composition and recursion

As its name suggests, functional programming leans toward the pervasive use of fine-

grained functions to structure a program. In addition, some schools of thought regard

recursion as the most natural means of phrasing repetitive control flow. This has led

researchers interested in optimisation to concentrate on making function calls cheap,

and optimising tail recursion under the assumption that they are both common. One

example of this being taken to its logical conclusion is the continuation passing style

(CPS) intermediate representation [78], in which all control flow is converted to func-

tion calls and all functions are tail recursive. In some sense this makes the optimisation

of space usage for tail recursive functions from the original source automatic. Another

example of the emphasis on recursion is the recasting of traditional scalar optimisations

for "loops" arising from simple tail recursive functions [84].

Aldor is at the imperative end of the functional programming language spectrum,

so recursive functions are less of an issue. Indeed, generators are an abstraction of

control flow and may be safely implemented by either recursion or loops. Fine-grained

function composition is still very much an issue however, but the approach in the cur-

rent compiler is to rely on aggressive miming rather than lowering the cost of function

calls.

4.1.2 Higher order control flow analysis

Functional programming encourages the use of higher order functions. The use of clo-

sures can severely complicate the recovery of the function call tree for a program, re-

4. 1. Compilation of Functional Languages 	 53

quiring the use of higher order control flow analysis (HOcfa) [78]. HOcfa has received

much attention in the functional programming literature, and some of the techniques

have been borrowed by other communities such as the object-oriented languages com-

munity (for one example see [86]). Unfortunately, HOcfa is both complex and rel-

atively expensive even for monovariant analyses, with the original 0-cfa of Shivers

having 0(n3) complexity in the number of call sites. None the less, various incarna-

tions of the technique have been implemented in various projects, to support various

optimisations, including some ambitious frameworks [11].

Two recurring uses for HOcfa are the recovery of types for weakly typed languages

such as Lisp or Scheme [78, 76, 100], and the optimisation of closure representations

[76, 19], to which it seems reasonably suited. Type recovery is much less relevant to

Aldor though, due to static typing and the very infrequent use of true first-class do-

mains, and it is not obvious how much benefit could be accrued from closure analysis.

Another mooted application is inlining that can cope with nonlocal (i.e.. interprocedu-

ral) flow of functions[10, 100], but this is somewhat less convincing than the previous

applications. Nonlocal HOcfa is only necessary when direct miming is cannot be done,

but flow directed inlining is only legal in the case where a single function flows to a

given call site. This combination appears to reduce its applicability to rather obscure

cases, and makes the usefulness of the analysis heavily dependent on particular pro-

gramming styles and/or the use of an intermediate representation such as CPS, which

can affect the availability and ease of recovery of flow information [74].

Several authors from the functional programming community have pointed out that

using a direct style compiler (i.e. based on a traditional call stack rather than CPS) and

simple inlining tends to get rid of the large majority of higher order functions, thereby

removing the need for HOcfa itself, and generally producing better performance (for

one example see [84]). This is the approach taken in the Aldor compiler, again imple-

mented by aggressive miming. With respect to the language, HOcfa may not be suited

to the current implementation due to the way the type system is implemented (espe-

cially the parts instantiated at run-time - see the explanation of domains in Section

2.2.5), which could make any analysis either overly conservative or computationally

very difficult.

54 	 Chapter 4. Functional and Algebraic Language Optimisation

Specifically with respect to this work, the information provided by HOcfa has no

obvious application with the exception of miming, and local miming on its own covers

the vast majority of cases, so HOcfa would appear to be overkill even if it is feasi-

ble. After suitably aggressive miming, the use of closures for the iterative solvers is

reduced to a handful of cases to combine different recurrences. Within an individual

recurrence, which is where the vast majority of computation takes place, all the higher

order functions are removed, including those arising from the use of generators (see

Chapter 7).

4.1.3 Polymorphism, boxing and modules

In this section, "parametric polymorphism" is used to mean ML-style polymorphism,

a simple form of type abstraction that assumes the minimum of information about the

objects it deals with —i.e. that objects can be moved, shallow copied, or discarded. The

term "module", is used to denote a mechanism to define an abstract data type using a

signature of some sort (e.g. an Aldor category).

The simplest way of dealing with polymorphic functions is to require all program

objects to be one size, enabling a static calling convention. This is just the uniform

representation rule from Section 2.2.3, usually achieved by boxing. A naive approach

results in large amounts of heap allocation and prevents the passing of function ar-

guments in registers (especially fioatingpoint data), both of which have an associated

performance impact. Consequently several authors have looked at the art of unbox-

ing, usually in the context of fioatingpoint data types and occasionally including small

aggregate types such as pairs or records with some small number of entries.

Approaches to unboxing include:

. Type passing, where information about the size and nature of the type is passed

as an argument to the function allowing unboxed representations everywhere

[84].

. Static insertion of coercions (i.e. boxing and unboxing steps) that allow monomor-

phic functions to take unboxed arguments and ensure that objects are always

boxed if necessary before being passed to polymorphic functions [54].

4. 1. Compilation of Functional Languages
	

55

Leaving all arguments to all functions boxed but using local unboxing within

functions [55] when the type is statically known.

Of these options, Aldor employs the latter, which is effective provided enough miming

has been done. This approach is acutely sensitive to the effectiveness of the mimer

though. Failing to inline functions that take and return boxed scalar arguments within

loops with many iterations can easily create enough garbage to seriously degrade per-

formance. For an example, see Section 2.3.1.3, which discusses the case where the

emerger doen't remove all boxing steps - failing to inline the function in the first

place is at least as bad. See also the problem discussed in Section 9.3.3.

One alternative to implementing polymorphism is (complete or partial) monomor-

phisation, for example see [87, 45]. In complete monomorphisation, every polymor-

phic function is cloned once for each type with which it is used, and calls to polymor-

phic functions are replaced with calls to their monomorphic counterparts. In common

with the other unboxing methods, note that this technique permits unboxing, but does

not define how much unboxing ought to be done. While it is difficult to imagine scenar-

ios where unboxing a simple floatingpoint type would be a bad idea, the technique can

be extended to flattening larger and/or nested data structures for which the trade-offs

are much less clear.

Module language constructs can be treated as an extension of parametric polymor-

phism, where the functions to manipulate a member of a parameter type as well its

unboxed size are unknown without further analysis. Applying the same simple solu-

tion again requires uniform size types and thus boxing, and this is the method proposed

by some ML compiler authors, mainly in order to allow completely separate compila-

tion of modules. However, full monomorphisation has been used by at least one group

to deal with the module language (as outlined in [19]) in the context of a whole pro-

gram optimisation strategy. Monomorphisation, whether complete or partial, could be

an interesting approach for Aldor, but again it is not clear that it is compatible with the

type system. Unlike the ML module language, Aldor domains are not completely static

(e.g. polymorphic recursion is possible), although in practice most are. Monomorphi-

sation could be used as an enabling step to allow bottom-up inlining in the presence of

heavily type pararneterised code.

56 	 Chapter 4. Functional and Algebraic Language Optimisation

In the context of this work however, unboxing or monomorphisation without inlin-

ing is not really of interest as the transformations must always create custom copies of

the loops that they manipulate, which equates to inlining the code rather than leaving

separate functions intact. Also, a result similar to monomorphisation can be achieved

based on Aldor's WPO approach if enough inlining is done for code containing param-

eterised domains.

4.1.4 Arrays

The representation of arrays in functional languages is directly affected by the im-

plementation of polymorphism. The efficient use of arrays and floatingpoint types is

usually considered a lower priority for functional languages, as symbolic code is their

bread-and-butter'. Some groups however (e.g. the ML community), have considered

techniques for arrays in polymorphic languages such as those discussed below.

Naively allowing polymorphic functions to access array elements requires that the

elements of the array obey the uniform size rule (i.e. the array consists of pointers to

heap allocated objects). This can introduce a large overhead for array operations in-

cluding pointer chasing and cache effects caused by the scattering of objects through-

out the heap, and flat arrays are generally considered much preferable. With regard

to the techniques for implementing polymorphism described in Section 4.1.3, static

coercions are very expensive (wrapping or unwrapping each element of an array in

turn), and local unboxing does not apply as the type of the array elements will not be

known. This leaves type passing, which has high overhead for simple function calls,

or disallowing the use of arrays with polymorphic functions (e.g. [55]). Aldor is not

restricted to these options as it can use its dependent types mechanism to allow local

boxing of values derived from flat arrays (and unboxing of values to be stored into

an array), thereby allowing them to be used with dependently typed functions. Again

though, the efficiency of this scheme is very sensitive to how well the inliner works -

executing functions to perform box-unbox steps within loops is typically a disaster -

'There are a handful of notable exceptions to this, including SISAL [38], which is a strict pure
language that incorporates loop constructs, but does not have higher order functions, polymorphism or
a module system (although these were proposed in the literature), and SAC [75], a successor to SISAL.

4. 1. Compilation of Functional Languages 	 57

so in practice the function needs to be inlined and have the boxing steps removed by

optimisation.

4.1.5 Pure languages and the management of state

Languages without side-effects (i.e. pure languages) are an interesting subclass of

functional languages. The lack of side-effects means that a compiler that hopes to pro-

duce efficient executables ought to do some kind of analysis of the lifetime of objects

to be able to perform destructive updates where possible and limit the pressure on the

garbage collector, and a run-time system with a garbage collection mechanism that is

as efficient as possible [97, 98]. Analysing the lifetime of objects with dynamic extent

is far from easy however (and may need a ROcfa analysis [77]), so pure languages

tend to rely on a garbage collector and potentially suffer from weak performance as a

result. An interesting refinement of garbage collection that uses some static analysis

is the concept of region inference [46]. One alternative to analysing programs is to

introduce exotic type systems that allow, destructive updates (e.g. [92, 101]).

The relationship of pure languages to Aldor exists through its use of techniques

such as garbage collection, the environment emerger optimisation (which analyses and

limits the dynamic extent of objects), and what are usually pure functions attached to

Overloaded infix operators (see Section 2.1.6). The more extreme problems of pure

languages are avoided however, as Aldor permits the destructive updating of single el-

ements of an aggregate, and a programmer can limit the lifetime of objects by using the

dispose! command. As such, the more sophisticated techniques developed for pure

languages are not necessary, with the assumption that the programmer can intervene

when efficiency is important.

A further specialisation of pure languages is the class of lazy (or normal order)

languages such as [1]. Aldor is related to these by the generator construct, which

constitutes programmer specified laziness, and the type system, where the run-time

representations of types are lazily instantiated. It may be possible that techniques from

the lazy community, such as strictness analysis, are applicable to these aspects of the

language, but this was not directly pursued.

21t may be possible to have non-pure lazy languages, but this would be an unorthodox combination.

58 	 Chapter 4. Functional and Algebraic Language Optimisation

4.1.6 Compiler implementation

Functional language compiler writers have employed many methods over the years.

The most prevalent are direct compilation to machine code [4, 3] and compilation to

some low-level language, typically C [85, 25]. Going direct to machine code allows

the implementation of techniques that do not sit well with an intermediate language.

Examples of these include precise tracing garbage collection, exceptions, custom func-

tion invocation methods, intermediate representations such as CPS, and optimisations

such as avoiding stack frame allocation for tail calls. Also, the issue of precise tracing

garbage collection can interact with code generation strategies to support polymor-

phism and unboxing. The run-time system must be able to identify exactly the live

root set in the call stack, and when the stack frames may contain unboxed objects this

implies providing some kind of precise descriptor for each frame. This in turn favours

direct machine code generation, as the compiler of an intermediate language (such as

C) is frequently free to arrange stack frame layout as it sees fit, and information on the

final layout is very difficult to get at. However, compiling directly to machine code

requires a lot of effort, especially if multiple back-ends are to be supported.

Conversely, going via C gives portability and offers some degree of optimisation

for free. This comes at the cost of conservative garbage collection, and a poor mapping

of certain techniques on to the C function call model. These two disadvantages have

spawned projects that aim to avoid them whilst providing the labour saving advantages

of targeting C. For compilation straight to machine code there exist compiler kits that

support techniques popular from functional programming and machine specific low

level optimisations (e.g. [2]), and the C-- project [49] aims to provide a C-like target

language to give portability and ultimately a common set of optimisations, alongside

such features as standardised exceptions and formalised stack frame layout rules to

allow precise garbage collection.

As described in Chapter 2, Aldor compiles to C and uses a conservative mark-and-

sweep collector supplemented with optional deallocation hints. While the other routes

to machine code mentioned above may be useful in future, currently it is not clear what

advantages they will bring for the extra implementation cost. In addition, the issues

they tackle are low level and quite general, and therefore not particularly relevant to

4. 1. Compilation of Functional Languages 	 59

the application at hand (i.e. the iterative solvers).

4.1.7 Fusion and loop restructuring in functional languages

Most previous work on compilation and intermediate representations for functional

languages has not borrowed the loop restructuring techniques from traditional imper-

ative scientific computing. One interesting exception to this sought to join the OCaml

compiler with SUIF [24]. However, it appears to be a very small project, and only

considers pre-existing loops in the code which are translated in isolation. This ignores

the impact of modules and fine-grained function composition, and does not deal with

interloop locality which is the main thrust of the optimisations in this thesis.

Fusion has received some attention in the functional language community. Two

examples are deforestation [91], a form of fusion for lists, and fusion of array corn-

binators [20]. The authors of the latter example have also previously worked on op-

timisations for an intermediate representation of a parallel functional language. The

original scheme (from a different group) compiled to an intermediate language with

primitives for operating on arrays that was implemented with individual native func-

tion calls for each primitive [14]. Problems with the performance of code using this

approach prompted the authors of [20] to attempt to break the abstraction barriers

introduced by the intermediate language and combine primitives together, including

using fusion [50], although the exact mechanism is not specified. The optimisations in

[50] were performed by hand, and those in [20] are implemented for a lazy functional

language using static rewrite rules on the source.

These techniques perform fairly limited fusion, with the authors claiming in [20]

that deforestation does not work well for fusing functions that consume more than one

list, and although their work covers multiple arguments there is no mention of how

they would approach collective loop fusion. As such, it appears that there is some way

to go before these techniques reach the level of sophistication found in the imperative

community.

60 	 Chapter 4. Functional and Algebraic Language Optimisation

4.2 Compilation of Numerical Computer Algebra Sys-

tems

This section concentrates on the compilation of MATLAB, which can be viewed as an

interactive array language or a computer algebra system witha bias toward numerical

linear algebra.

The FALCON project has covered various techniques. The first batch [28] were

mainly concerned with static analyses to try and reduce the interpretation overhead

of the dynamic features of the language, and a subsequent translation to Fortran 90.

These features include dynamic typing, where type information includes number type

(logical, integer, real, complex), rank type (scalar, vector, matrix), extent (i.e. the

dimensions of non-scalar variables), and structure type for matrices (square, triangular,

diagonal, Hermitian etc.). The language also uses dynamic resizing of arrays and array

bounds checking. These problems are not directly relevant to Aldor as it is a statically

typed language that does not mandate array bounds checks.

The MATLAB environment includes a large number of built-in routines that are

called by the interpreter for operations on vectors and matrices, and some of these rou-

tines are implemented as optimised native binaries. In the first set of optimisations no

attempt was made to break this abstraction and fuse together components. The sec-

ond batch [58] included restructuring, but the system was based on pattern matching

and was at least partly interactive. The main idea was to allow a developer to explore

algebraic transformations at the level of the source code rather than performing tradi-

tional optimisations such as fusion, although they get a brief mention. Again, no real

attempt is made to break the abstractions of the library routines, although support is

added to match expressions in the abstract syntax tree and replace them with different

library routines such as native BLAS. This can be likened to other work that manipu-

lates library routines as language primitives based on some programmer supplied rules

(for example [441). A follow-up piece of work [63] suggests adding more source-to-

source transformations to the FALCON framework, but, as before, the library routines

are treated as primitives. As such, they ignore the cost of modularity and sidestep the

optimisation issues that we wish to consider.

4.3. Summary
	

61

The Menhir project [22] added directives to the language and targeted alternative

standard libraries, including parallel implementations such as ScaLapack. Again, they

do not appear interested in restructuring.

4.3 Summary

The principal result of the survey in this chapter is that many of the problems tradi-

tionally tackled by functional language optimisations are either adequately handled by

techniques already implemented in the compiler, or are not directly relevant to Aldor.

In addition, authors from the functional language and computer algebra language com-

munities have only fleetingly considered the impact of modularity for work intensive

loop based numerical codes. This can be contrasted with the amount of research done

in the imperative language community on tackling the costs of fine-grained structuring

(such as collections of loops).

Chapter 5

Algorithm Framework

This chapter describes the design of the algorithm framework written in Aldor, based

on the approach discussed in Chapter 3. The framework can be used to add together

the various algorithmic pieces to form any of the unpreconditioned solvers listed in

Section 3.6.3. The chapter begins by discussing the hierarchy of categories. An in-

dividual category describes the interface to a class of objects, and the relationships of

inheritance from and parameterisation by other categories capture the structure of the

framework. This is followed by a description of some example domains that imple-

ment the categories to give an instantiation of the framework, often using abstractions

provided by other parts of the framework that will in turn be implemented by other

domains etc.

This chapter is supplemented by appendices C and D, which contain more detailed

code extracts.

5.1 Category Hierarchy

The first task in the design of the framework was the construction of categories to cap-

ture as much of the structure discussed in Chapter 3 as possible. Categories are related

by inheritance and by taking members of other categories as parameters. In terms of

the inheritance relation, there are three main groups - the pre-existing categories from

axilib (see Section 2.1.4) that capture basic algebraic features [93], the linear alge-

63

64 	 Chapter 5. Algorithm Framework

bra categories that build on these to provide a richer structure, and the problem specific

categories that are less purely mathematical. The first two groups are used to type the

pieces presented in Section 3.6.3, and the last is used to capture mappings between

them.

Each category in a chain of inheritance is intended to capture some additional struc-

ture not present in its ancestors. This usually means defining some extra operations on

the category, or some extra structure on the parameters to the category, but occasion-

ally it is used to capture information that is more abstract. An example of this is the

category for Hermitian operators, which is intended to convey some extra information

about the type that cannot fully be captured by the type system (i.e. the. Hermiticity of

the operators).

The categories and their relations are summarised using diagrams. Figure 5.1 rep-

resents the inheritance relationship between some root members of axilib and the

linear algebra categories; Figure 5.3 shows the handful of problem specific categories

that are related by inheritance; and Figure 5.2 shows the parameterisation relationship

(i.e. which categories are parameterised by domains belonging to other categories). In

the latter diagram trivial arcs have been removed - when a category is parameterised

by domains that are typed by parameterised categories, dependent typing requires that

it take all the parameters from its parameterised arguments as additional arguments,

and representing all of these in the graph would make it unreadable. However, when

a parameter that would be required by dependent typing is actually a subtype of the

most general one allowable for the other parameterised arguments, or when multiple

domains of a certain type are required, only one of which is necessary for dependent

typing, then the arc remains as it carries nontrivial information. Examples of these

two cases are the arc from NorniedLinearSpace to KrylovSpace as LinearOperator

only requires a parameter of type LinearSpace, and that from IndexedVector to

DirectQRSolve.

Sections with descriptions of some of the more interesting categories follow, and

details of the category exports can be found in Appendix C.

Upper/Lower 	
Banded 	 Banded

TriangularMatrix
-- UpperTriangular 	UpperHessenberg

Matrix

Matrix
__ _Uppe 	 _ Tridiagonal _________ 	 Upper/Lower 	Upper/Lower

> SquareMatrix ______
BandedMatrix 	HessenbergMatrix 	Matrix

Linear 	LinearOperator 	
LinearOperator 	Hermitian 	PositiveDefinite

LinearMapping
> Operator 	 WithDual 	

—~-Onlnnerproduct 	> Linear 	> 	Hermitian
Space 	 Operator 	LinearOperator

[i1-?- OrderedField

LinearAlgebra - OperatorAlgebra

Named 	NormedLinearSpace
-

LinearSpace 	WithDual

zz'_~ _________ 	 _______ LinearSpace 	 ______

Nomed

Innerproduct 	
> Innerproduct Module 	> LinearSpace 	WithDual 	' 	Space 	 Space

Indexed 	Finitelndexed
Vector 	 Vector

Figure 5.1: Category inheritance diagram for the linear algebra categories. Pre-existing members from axilib have borders

0)
and shadows.

TridiagonalMatrix

SquareMatrix,
Upper! dedUpper

Triangula
L
r
o
M
w
a
e
t
r
r ix DirectLU5olve

Indexed
Vector 	>- UpperHessenbergMatrix SearchVector

Recurrence

rAlgebra 	 Matrix

telndexed / BandedUpper ',
rector 	/ HessenbergMatrix

rproduct / LinearOperatorOn
space 	 InnerproductSpace

LinearSpace Linear -

> Operator

LinearMapping,
GroupAction, LinearSpace

OperatorAlgebra WithDual

HermitianOperator
KrylovSpace

LongRecurrence
KrylovSpace

ArbitraryBasis
KrylovSpace

KrylovSpace,
ShortRecurrence
KrylovSpace

LinearOperator
WithDual

Norrned
Ierproduc/ 	Hermitian 	 BiorthogonalBasis

Spac 	 LinearOperator 	 KrylovSpacee

OrderedField 	 FieldWith 	Normed 	NormedLinearSpace
Valuation 	 LinearSpace 	 WithDual

I
Ring] 	 Module

(0 	
Figure 5.2: Category parameterisation diagram. Pre-existing members from axilib have borders and shadows, elements

(0 	representing multiple entries have borders.

5. 1. Category Hierarchy
	

67

KrylovSpace

ShortRecurrence 	LongRecurrence
KrylovSpace 	 KrylovSpace

Hermi tianOperator 	BiorthogonalBasis 	ArbitraryBasi s
KrylovSpace 	 KrylovSpace 	 KrylovSpace

Figure 5.3: Category inheritance diagram for the few problem specific categories that

are related by inheritance.

5.1.1 Linear algebra categories

These categories embody various constructs from linear algebra and their interrelation-

ships.

5.1.1.1 FieldWithValuation

This is a (possibly unordered) field with an Archimedean valuation operation that maps

elements to members of an ordered field. This category is used to provide a norm for

both real numbers and complex numbers in this thesis, but it may generalise to other

fields and valuation operations. The valuation domain is not restricted to being positive

in order to be able to capture some extra structure in the algorithms at the cost of a slight

abuse of terms. This is explained in the description of the Hermit ianLinearOperator

category.

Having the valuation as a separate type means that we can specify different opera-

tions when using the result of a valuation in contrast to some arbitrary member of the

ground field. This allows certain operations to be more efficient, for instance, multi-

plying a vector of complex numbers by an arbitrary member of the ground field (i.e. a

complex scalar) requires more arithmetic than multiplying the vector by a member of

the valuation, which only has a real component. Because the information is encoded

statically, there is no need for dynamic tests at run-time.

Chapter 5. Algorithm Framework

5.1.1.2 L±nearSpacewithDual

Although all linear spaces have a mathematical dual, in terms of a concrete program the

dual may not always have been implemented. This category captures the relationship

with the dual if it has been defined.

5.1.1.3 NormedLinearSpace

The ground field parameter to this domain must be a field with a valuation. This allows

us to capture the relationship between a linear space over a possibly unordered scalar

field and its metric. This category exists separately from that for inner product spaces,

which automatically define a norm, as the converse is not necessarily true - this is

analogous to the distinction between Banach spaces and Hilbert spaces.

5.1.1.4 InnerProductSpace

The name of this category is an abuse of terminology, as a true inner product auto-

matically defines a norm. The definition of norms here requires a ground field with

a valuation (see below), so this category can be used to provide some kind of inner

product for a ground field without an explicitly supplied valuation.

The category denotes a vector space that is dual to itself, and is recursively defined

using the LinearSpacewithDual category (see Section 5.3.1).

5.1.1.5 NormedlnnerProd.uct Space

Here the norm is implicitly provided by the inner product, so the ground field must be

a field with valuation in order for the norm to provide a metric.

5.1.1.6 GroupAction

A group action is a group whose members can act as- operators on a linear space.

Note that this category does not inherit from the linear operator category, as not all

operator groups are closed under the operations that that category provides e.g. scalar

multiplication.

5. 1. Category Hierarchy
	

DUO

5.1.1.7 OperatorAlgebra

A linear algebra is a linear space whose elements also form a monoid with respect to

some operation. This category can be used to type certain domains of operators (such

as a domain to represent any general linear transformation) that form a linear algebra,

but not all useful domains of operators automatically form a linear space as they are

not all closed under all the operations. For example, a domain of nonsingular matrices

does not contain the 0 matrix, and hence is not closed under addition (and nor is it a

proper linear space). As such, the category of linear operators does not automatically

inherit from the linear algebra category, and this category joins the two chains.

5.1.1.8 LinearOperatorwithflual

A linear operator on a finite vector space with a dual automatically defines an opera-

tor on the dual space by the definition of linear functionals, and this is captured in a

category default.

NormedLinearSpacewithDual is used in conjunction with this category to struc-

ture the non-Hermitian short recurrence solvers, as they capture the separation between

the basis of the original Krylov space and its dual.

5.1.1.9 LinearOperatorOnlnnerProductSpace

Given that an inner product space is self-dual, a linear operator on the space now

defines two actions. These are the usual action and the action on a vector when it is

interpreted as a member of the dual space. This is captured in the category by defining

left multiplication by the operator, and also by defining an adjoint operation.

This category is used with NorinedlnnerProductSpace to structure the non-Hermitian

long recurrence solvers, because the inner product of the vector space introduces the

extra necessary structure for the orthogonalisation step.

5.1.1.10 HerinitianLinearOperator

This category is a specialisation of a general linear operator on an inner product space,

and is used to structure the Hermitian short recurrence solvers. Its ground field must

70 	 Chapter 5. Algorithm Framework

have a valuation to capture the type issues with the quadratic forms resulting from the

Hermitian forms associated with operators. A quadratic form derived from an operator

A is taken as defining a possibly indefinite norm-like function (resulting from a pos-

sibly indefinite inner product (., .)), which has the same type as the valuation of the

ground field, but, due to indefiniteness, may also be negative. This potential negative

value is an abuse of the definition of the valuation as the domain of values resulting

from the norm of the ground field, as mentioned earlier, but is useful to capture infor-

mation about the projected system (see Section 5.1.2.1).

Given that the operators are self-adjoint, the adjoint operation is defined here as

being empty by means of a category default.

5.1.1.11 PositiveljefiniteHermitianLinearoperator

This is a simple extension of Hermit ianLinearOperator, with a curried function to

define norms using the quadratic form of the operator.

5.1.1.12 Matrix, IndexedVector, SquareMatrix

The Matrix category is used to type linear mappings that can be decomposed into

column vectors. It is used in conjunction with the IndexedVector category, which

types domains that provide a function to access individual elements. Neither category

is meant to imply that elements of an adhering domain have finite extent - i.e. matrices

can have an infinite number of columns, and vectors may have an infinite number

of entries. To define a way of computing the effect of a linear mapping by a linear

combination of its column vectors, a further category of FinitelndexedVector must

be used. This avoids problematic termination issues.

Matrix is extended by SquareMatrix, a category that decomposes a linear opera-

tor into its individual scalar elements. "Square" in this case is intended to denote that

it is an explicit linear operator (i.e. it concerns the type of the vectors involved), but

elements from an adhering domain can be treated as rectangular matrices by placing

limits on which entries are used. Hence H and H from Chapter 3 are really the same

unbounded matrix, and the difference lies in how they are manipulated by the solves

of the projected system.

5. 1. Category Hierarchy 	 71

SquareMatrix is the root of subtypes such as upper/lower triangular, upper/lower

Hessenberg and tridiagonal matrices. The Banded specialisations of Hessenberg and

triangular matrices are used to type the upper Hessenberg matrix resulting from an

Amoldi-type relation for an incomplete orthogonalisation method, and the U or R fac-

tor resulting from the LU or QR decomposition for a short recurrence.

5.1.2 Problem specific categories

The modular structure of the iterative solvers is captured by defining mappings be-

tween the separate pieces described in Section 3.6.3. These mappings are defined in

categories that are more problem specific and less mathematical in nature than those

previously mentioned. The long recurrence solvers are split into two steps - firstly the

generation of the Krylov basis vectors and projection of the operator on to that basis,

and secondly the factorisation of the projected matrix. The short recurrence solvers

are split into three steps. The first two are the same as those from the long recurrence

solvers, with the additional step being the generation of the search vectors and the

updating of the solution vector based on them.

5.1.2.1 Interface to Krylov space object

The most significant subsection of the algorithms is the generation of the Krylov space,

which defines a mapping from an operator and a vector to an object consisting of a

linear mapping and a matrix of scalars. The linear mapping is conceptually the matrix

whose column vectors are the sequence of Krylov space basis vectors, and the matrix

of scalars is the upper Hessenberg matrix of coefficients that represents the operator

projected onto the Krylov basis vectors and orthogonally to some other set of vectors.

These are the matrices V and H (or T) from one of the Arnoldi relations, so the Krylov

space objects define the mapping (A, vi) -+ (V, H), with possibly some extra arguments

(such as the dual start vector wi for a biorthogonal Krylov space).

Derived from the general KrylovSpace category are two sub-categories, one for

the long recurrence Arnoldi-type algorithms, and an abstract parent for the short recur-

rence Krylov spaces. This latter category is not meant to be directly used, but is further

specialised into three sub-categories, one each for incomplete orthogonalisation-type

72 	 Chapter 5. Algorithm Framework

algorithms, Hermitian Lanczos-type algorithms, and non-Hermitian Lanczos-type al-

gorithms (see Figure 5.3). These categories differ in the types of their parameters,

and the types of the matrices that the Krylov object generates. The short recurrence

category exists as a separate entity to give somewhere to put the template algorithm

default, which provides structure common to all the short recurrence methods, and to

provide a means of specifying different types for the ground field of the linear spaces

in question and the entries of the matrices used in the reduced system. Usually both are

the same, but a Hernitian operator over C gives rise to a tridiagonal T whose entries

are elements of R, and this can be captured here.

The sequence of Krylov basis vectors is infinitely 'long, and as such the implemen-

tation of the linear mapping and matrix of scalars require some nonstandard techniques.

However, the only part of this that is visible at the category level is the fact that one

domain parameter for the long recurrence Krylov space must be finite length indexed

vectors.

5.1.2.2 The template functions

A template for an iterative solver algorithm is provided for each immediate subcate-

gory of KrylovSpace as a category default, with the intention of providing a useful

amount of structure common to the vanilla algorithms. Missing parts of the algorithm

are provided as function arguments to a template with the result being a complete iter-

ative method. The long recurrence method template uses the Krylov space object con-

structor provided by its category. Because the short recurrence category is the ancestor

of several categories whose constructor functions have different names and different

signatures, its template function takes the constructor as another function parameter.

5.1.2.2.1 Long recurrence template The template for the long recurrence methods

(fig. 5.4) requires a function that maps the projected operator and the scalar factor in

the right hand side of the reduced system to the projected solution - that is (H, 13) F-+ y.

This function incorporates a solve by some decomposition of the relevant projected

system of equations for the different orthogonality conditions given in Section 3.4,

along with some halting criteria to determine when the tentative projected solution is

5. 1. Category Hierarchy
	 73

iterativeSolve(correction 	(HDom, Valuation) -> yDom)

(A : Operator,

x : Vector,

b 	Vector) : Vector ==

if x = 0

then r 	b;

else r : b - A x;

rNorrn : Valuation 	norni(r);

K 	orthonormalKrylovBasis (A, r/rNorm)

H := coefficients(K);

V := basis(K);

y := correction(H, rNorm);

X := x + V y;

return x;

Figure 5.4: Aldor code for the long recurrence method template. Note that the domains

in the function signature (i.e. HDom, Valuation etc) are parameters to the category

itself. For further details see Appendix C.

good enough. Once the projected solution has been found with this function, the actual

solution is reconstructed using the matrix of basis vectors and returned as the result.

Halting conditions based on estimates of the residual derived from the reduced

system exist for the standard LU—Galerkin and QR—minimum residual algorithms (see

Section 3.6.2). However, the template is not such a good match for the minimum error

algorithm for two reasons. Firstly, it is not clear if it is possible to calculate a recurrence

residual from the projected system, and secondly the result returned by the assembled

template is no longer the actual solution - it must be recovered by multiplying the final

vector once more by the operator A.

5.1.2.2.2 Short recurrence template The template for the short recurrence meth-

ods (fig. 5.5) requires (in addition to the Krylov space constructor) a function that takes

the projected operator, matrix of Krylov basis vectors and projected right hand side and

74
	

Chapter 5. Algorithm Framework

iterativeSolve(krylovBasis : (Operator, Vector) -> %,

correction : (HDom, VDom, Valuation)

-> (VDom, yDorn, SI -> Boolean))

(A : Operator,

x 	Vector,

b : Vector) : Vector ==

if x = 0

then r:=b;

else r : b - A x;

rNorin : Valuation := norm(r);

K := krylovBasis(A, r/rNorm);

H := coefficients (K);

V : 	basis (K);

(z, P, lastlteration?) := correction(H, V, rNorm);

for i in 1.. repeat

xNew := x + z(i) *

dispose!(x); x := xNew;

if lastlteration?(i) then break;

return x;

Figure 55: Aldor code for the short recurrence method template. Note that the domains

in the function signature (i.e. Operator, Vector etc) are parameters to the category

itself. For further details see Appendix C.

5. 1. Category Hierarchy 	 75

maps them to the z and P factors that combine to give corrections to the solution, and

a function that signals termination - i.e. (H,V,13) -+ (z, P, lastlteration?) where

lastlteration? is a,function from step n to a Boolean: n '-+ (true false). In this

template, the body of a loop updates the solution vector and then tests the function to

see if the algorithm has converged. If it has, the loop ends and the solution is returned.

The functions passed to the templates are composed of further pieces such as matrix

decomposition and search vector recurrences, along with some glue code to assemble

them. These pieces have their own interfaces, described below.

5.1.2.3 LU and QR decompositions

The interface to the pivotless LU decomposition, DirectLtJSolve, provides a function

that maps an upper Hessenberg matrix and an initial right hand side to the right hand

factor, and a vector that is the result of the other factor being inverted and applied to

the initial right hand side - i.e. (H, 13) -~ (U,z).

The QR decomposition, DirectQRSolve, generates in addition a vector of run-

ning residual values, which is used as the recurrence residual in the minimum residual

methods - i.e. (H, 13) 	(R, z, res). Note that there is no notion either of the size of

the matrix to be decomposed or of the size of the resulting factors. Again, this is done

deliberately to be able to deal with an iterative process that generates arbitrary length

vector sequences and thus an arbitrary size projected matrix.

Both categories use the most general type for their possible parameters, in order

to be applicable to all types of decomposition. Further specialisations, e.g. to banded

matrices, can be specified in the type requirements for parameters to domains.

5.1.2.4 Search vector recurrence

The search vector recurrences for the short recurrence methods associated with the LU

and QR decompositions are packaged in a similar way to the matrix of basis vectors

from the Krylov space. They are simply a mapping from a upper triangular upper

banded matrix and a matrix of basis vectors to a matrix of search vectors, where the

size of all the matrices involved is unbounded - i.e. (UIR, V) -* P. Although the

triangular factor is required to be upper banded, the size of the band is not specified

76 	 Chapter 5. Algorithm Framework

and so the category applies to all search recurrences of this form, regardless of length.

5.1.2.5 LQ decomposition and search vectors

The solution of the projected system for the minimum error condition and the associ-

ated search vector update are less easily separated. The search vector update is based

on the individual rotations calculated from the decomposition rather than a composi-

tion of all the factors. Consequently, no categories are provided to structure this part

of the algorithm. Also, there is not the same degree of similarity between the decom-

positions used for the short and long recurrence methods, making the separation less

important, as implementations cannot be reused.

5.2 Domain Implementation

After specifying the categories to define the important interfaces within the family of

applications as a whole, suitable domains still have to be written to implement them.

The following section discusses important points in the implementation of the algo-

rithms at the domain level. A much more detailed (but still slightly abridged) listing is

given in Appendix D.

The running examples in this section are the domains that are used to construct a

version of the QMR algorithm. They include a two-sided, short recurrence Lanczos

process based on [42], a pivotless QR decomposition for a tridiagonal matrix based on

Givens rotations, and a recurrence for updating the QMR search vectors. Note that the

domains themselves are parameterised over the objects that they manipulate (scalars,

vectors etc) and thus make full use of the generality provided by the category hierarchy

for maximum flexibility (for further details see the solver domains in Appendix D).

5.2.1 Index functions, recurrences, and infinite sequences

As discussed in Section 2.1.6, the standard array indexing functions can be overloaded

using the apply mechanism. The indexing function to retrieve column vectors from a

matrix is packaged using this, and hence these operations have the same syntax. This

5.2. Domain Implementation 	 77

delta : 	(vl * Wi);

U : = A vl;

alpha : 	(u * wl)/delta;

beta : 0;

v2 := u - alpha * vi;

gamma := norm v2;

state 	1;

Figure 5.6: Aldor code for the first step of the Lanczos recurrence. Phonetic Greek

letters (e.g. delta, alpha etc) indicate elements from a scalar domain, a single low-

ercase letter and a number indicate elements from a vector domain (e.g. wi, v2 etc)

and uppercase letters indicate an element of the operator domain (e.g. A). The types of

these objects are inferred by the compiler. The integer state variable is called state.

For further details see Appendix D.

enables a column index function for an "infinite" matrix - the index function, which

maps an integer to a column vector, is actually linked to a recurrence and the integer

argument is the number of steps to take to generate the correct column. In other words,

infinite matrices are implemented lazily.

5.2.2 Krylov space recurrence

The algorithm for generating the Krylov space basis vectors and projected operator

is written in a textbook style, with some wrapping around it to be able to package its

results as lazy matrices, and some directives to manage storage. The domain containing

it is typed with the BiorthogonalKrylovSpaCe category. The code for stepping the

recurrence itself is split into two functions. The first of these is used as the initial step

of the sequence, and the second is used for all subsequent steps. They are presented

(with some less important lines deleted for clarity) in Figures 5.6 and 5.7 respectively.

The objects that the recurrence functions manipulate are lexically scoped variables

from their environment. These variables hold the current state of the recurrence. To

78
	

Chapter 5. Algorithm Framework

tl := AH wl - conjugate (alpha) * wl - conjugate(beta) * w2;

dispose! (w2); w2 := ti;

(deltaOld, deltaTemp) 	(delta, (v2 * w2));

delta := deltaTemp / (gamma * gamma);

(vl, v2) 	(v2/gamma, vi);

(wl, w2) := (w2 /conjugate (gamma) , wl)

U := A vl;

alpha := (U * wl)/delta;

beta := gamma * delta / deltaOld;

t2 := u - alpha * vi - beta * v2;

dispose! (v2) ; v2 := t2;

gamma 	norm v2;

state 	state + 1;

Figure 5.7: Aldor code for the general step of the Lanczos recurrence. Phonetic Greek

letters (e.g. delta, alpha etc) indicate elements from a scalar domain, a single low-

ercase letter and a number indicate elements from a vector domain (e.g. wl, v2 etc)

and uppercase letters indicate an element of the operator domain (e.g. A). The types of

these objects are inferred by the compiler. The integer state variable is called state.

For further details see Appendix D.

get the n-th step of the recurrence, the function for the initial step is called once, fol-

lowed by the function for a general step n - 1 times. After this the required state is read

off from the lexical variables. By introducing a small wrapper that performs precisely

this procedure, we now have a function from an integer denoting the step to the values

produced by that step. There are two of these recurrence functions, one for producing

the triplets of scalars that constitute the nonzero entries of the columns of the tridiago-

nal projected operator T, and one for the basis vectors V, and they both call the same

stepping functions.

5.2. Domain Implementation
	 79

5.2.2.1 Use of state for the Lanczos process

It is inefficient to start the recurrence from scratch every time a vector from the se-

quence is required, especially if the indices (i1 , 	. i,) of the requested vectors form

an increasing sequence - that is ia_i <in i,2+iVn. To avoid doing unnecessary work

an improvement is to leave the state as it is after a vector has been requested, and record

the step at which the recurrence stopped.

Upon receiving a request for another vector, some surrounding code first checks the

index of the request against the current step value If the index of the request is greater

than (or equal to) the current step, then the recurrence can be cycled the necessary

number of times starting from the current state. If the index is lower than the current

step, then the code re-initialises the state and cycles the recurrence up to the necessary

step.

In addition, given that one recurrence produces both the vectors and the scalars,

the two functions that produce either the vectors or the scalars can share the same state

to reduce the work further. This particular caching and sharing strategy is algorith-

mically tuned to an expected sequence of requests through both functions, being the

likely sequence of requests during a linear system solve. Hence, it is a domain im-

plementation issue. Other domains could be written to incorporate alternative caching

policies, either from scratch or as a wrapper around this domain.

5.2.2.2 Domain representation

The domain representation is a record of the two recurrence functions wrapped as.

matrices (see below), the operator A, and copies of the initial vectors v1 and Wi. Having

a concrete representation means that the domain can provide functions that return the

operator and the initial state used to start the Krylov space recurrence. This is not

provided for the other recurrences as it is deemed less necessary - their constructors

directly return elements from different domains rather than an object which can yield

these elements as is done here.

80 	 Chapter 5. Algorithm Framework

5.2.3 Matrix of basis vectors

The domain implementing the matrix of basis vectors V is used as a thin wrapper

around the recurrence function from the Krylov space domain, and typed by the Matrix

category. The domain representation is an arbitrary function from an integer to the re-

quired vector type. The constructor takes the recurrence function argument and simply

obscures its type. The function to retrieve a column of a matrix takes its integer argu-

ment and passes it to the underlying representation. Matrix-vector multiplication with

a finite vector (i.e. of bounded size) is computed as a simple linear combination of

the vectors as they are produced by the recurrence but this is only used for the long

recurrence solvers.

Although this domain is currently very simple, it could usefully be extended with

its own caching policy. For example, if the matrix were required as part of a Lanczos

process for eigenvector approximation [40], the domain implementation could keep

copies of all the vectors as they were produced. This is certainly not desirable for short

recurrence linear systems solvers however, as they are specifically designed so that

only a small fixed number of Lanczos vectors have to be kept.

5.2.4 Tridiagonal matrix of recurrence coefficients

The tridiagonal matrix domain for T (typed by the TridiagonalMatrix category)

is similar to the domain for the matrix of basis vectors. This "matrix" is explicitly

constructed from scalars though, and supports a two dimensional indexing function -

i.e. it maps a pair of integers to an entry in the matrix. Given that the Krylov space

recurrence produces triplets of scalars, some extra work is necessary to produce the

indexing function. It first checks that the pair of integers indexes an element within

the central band - if they do, then the function uses the recurrence to produce the

necessary scalar, and if not it returns a zero. Functional versions of columns or rows

can be produced by currying this index function over one of its arguments, provided

there is a domain that will take this function as an argument to a constructor.

Although this domain currently supports no caching, in some sense it is the most

obvious candidate. It is very cheap to store the scalars as they are produced, and the

5.2. Domain Implementation 	 81

state := state + 1;

R.u2 := sOld * T(state - 1, state);

ulTemp := cOld * T(state - 1, state);

R.ul : 	(C * ulTemp) + (* T(state , state));

dTemp := (C * T(state, state)) - (conjugate (s) * ulTemp);

cOld : C;

sOld := 5;

(c, s, r) := givensRotation(dTemp, T(state + 1, state));

R.d := r;

z 	: = (c * zTeinp) + (* y (state +l);

zTemp := (C * y(state+l)) - (conjugate (s) * zTeinp);

Figure 5.8: Aldor code for the general step of the QR solve, on T. Lowercase letters

indicate elements from either a scalar or a vector domain (e.g. c and s are scalars, and

y is a vector etc) and uppercase letters indicate an elements of a matrix domain (e.g.

T is a tridiagonal matrix, and R is a record that is used to construct a banded upper

triangular matrix). The result of indexing into a matrix or a vector (e.g. T (state + 1,

state) and y(state + 1)) is a scalar. The types of these objects are inferred by the

compiler. The integer state variable is called state. For further details see Appendix

D.

tridiagonal matrix is all that is needed to produce approximations to the eigenvalues of

the original operator [40].

5.2.5 QR decomposition

The pivotless QR decomposition, typed by DirectQRSolve is used to produce a lazy

banded upper triangular factor (i.e. R) and two lazy vectors. The first is the result of the

unitary factor being applied to the original right hand side z = Q1i UI, and the second is

a lazy vector whose n-th element constitutes the 2-norm of the residual resulting from

the least-squares solution at step n by limiting the problem to be of size (n + 1) x n.

82 	 Chapter 5. Algorithm Framework

The decomposition essentially defines a recurrence, and it is handled in much the

same way as the Krylov space recurrence. The code for the general step is given in

Figure 5.8 (code for the first two steps is omitted as it is much the same). The de-

composition only has to maintain a small number of scalars in its environment, unlike

the Lanczos recurrence which requires the storing of a small number of vectors. The

three objects produced by the recurrence are also wrapped in much the same way as

the matrix of basis vectors and the tridiagonal matrix of coefficients.

The current implementation is specialised to the solve for QMR, but a more general

procedure could easily be used instead. For example, it may be beneficial to use the

same QR solve component for all solvers that need one.

5.2.6 Banded upper triangular factor

This domain is very similar to the tridiagonal matrix domain, being doubly indexed.

It is typed with BandedupperTriangularNatrix. The upperBandw±dth function

always returns the constant 2. It is generated by the QR solve, and used by the search

vector recurrence.

5.2.7 Lazy vector domain

This domain adheres to IndexedVector, and is essentially the same as the matrix of

basis vectors except that it wraps a recurrence that maps integers to scalars rather than

basis vectors. The domain has no caching policy, but it would be cheap to implement.

Two elements of this domain are generated by the QR solve.

5.2.8 Search vector recurrence

The search vector recurrence maps the matrix of basis vectors and the upper banded

upper triangular factor to a matrix of search vectors: i.e. (V, R) -~ P from PR = V.

The domain that contains the recurrence is typed with SearchVectorRecurrence. Its

implementation is similar to the Krylov space domain, and is presented in Figure 5.9

(again, code for the first two stages is omitted). It maintains a small number of vectors

in its state, but only produces one object, being the matrix of search vectors. The

5.2. Domain Implementation 	 83

recurrence is wrapped to produce the matrix of search vectors in much the same way

that the Krylov space recurrence is wrapped to produce the matrix of basis vectors, and

contains similar hints to manage storage.

state := state + 1

ti := 1/R(state,state) * (V(state) - R(state -1, state) * p1

- R (state -2 , state) * p2

dispose!(p2); p2 := ti;

(p1, p2) : (p2, p1);

Figure 5.9: Aldor code for the general step of the search vector recurrence. A single

lowercase letter and a number indicate elements from a vector domain (e.g. p1 etc)

and uppercase letters indicate elements.of a matrix domain (e.g. R is a banded upper

triangular matrix and V is a matrix of column vectors). The result of indexing into a

matrix is a scalar or a vector depending on the type of matrix (e.g. R(state, state)

and V(state)). The types of these objects are inferred by the compiler. The integer

state variable is called state. For further details see Appendix D.

The recurrence uses both the matrix of basis vectors and the upper banded upper

triangular factor from the QR decomposition. It is specialised to an upper triangular

factor with a band width of two, which is what the QR decomposition for a tridiagonal

matrix produces.

5.2.9 Matrix of search vectors

The domain used for this purpose is identical to the domain used for the basis vectors

(see Section 5.2.3).

5.2.10 Glue code

The glue code, presented in Figure 5.10, constructs two new objects and combines

them with the short recurrence template to produce the iterative solver algorithm QIVIR.

The first object is itself a function that takes the matrix of Krylov basis vectors V and

Chapter 5. Algorithm Framework

QMR(A : Operator, x : Vector, b : Vector, t 	GroundField)

Vector ==

tolerance := valuation(t);

rninimumResidualCorrection(T : TDom, V 	VDom, beta 	Valuation)

(zDom, VDoin, SI -> Boolean) ==

(R, z, res) := directQR(T, canonicalBasisVector (1, beta));

P := recurrence(V, R);

lastlteration?(i : SI) : Boolean ==

residual : GroundField := res(i);

if valuation(residual) < tolerance then true else false;

return(z, P, lastlteration?);

solveFunction 	iterativeSolve (biorthogonalKrylovBasis (b)

minimumResidualCorrectjon)

return solveFunction(A, x, b);

Figure 5.10: Aldor glue code for QMR. Note that the domains in function signatures

(i.e. Operator, TDom etc) are parameters to the domain wrapper for the glue code. A

single lowercase letter indicates elements from a vector domain (e.g. z, res etc) and

uppercase letters indicate elements of the operator domain or a matrix domain (e.g. A

and R, P etc). For further details see Appendix D.

5.3. Evaluation of Framework Design 	 85

the knowns of the projected system (T and l3iui), and produces the halting test, and

the (lazy) matrix P and (lazy) vector z that go to make up corrections to the solution.

For QMR the halting test is just based on res, but for an LU decomposition it may

involve v,, depending on how the Krylov space recurrence is written; and so must

be constructed here where the basis vectors are available. The second object is the

function from an operator and the first basis vector to a Krylov space object. This is

done by supplying the first argument (the start vector for the dual Krylov basis) to the

curried function biorthogonalKrylovBasis. The glue code is wrapped in a simple

domain that is typed with an anonymous category.

5.3 Evaluation of Framework Design

The original motivation for pursuing the design of the algorithm framework and its

supporting domain implementations came from colleagues in Particle Physics Theory

at the University of Edinburgh (especially Professor Kennedy and Dr Joó). Their ini-

tial work, which dealt mostly with the linear algebra categories, was developed into

the modular approach to the iterative solver algorithms presented here. The design

introduces modularity and structure using the type system in order to:

. Enable easy assembly and reuse of multiple domain components.

Encourage clarity and conciseness in the implementation of any given compo-

nent.

Provide flexibility without entailing a proliferation of different versions through

the ability to customise individual parts.

Highlight how the algorithms relate to each other by explicitly showing the parts

they have in common.

The first point is demonstrated by Figure 5.10. The glue code assembles together many

different objects to construct the QIVIR method. Reuse can be shown by considering

the construction of the function value assigned to solveFunction near the bottom of

figure. The template function for a two sided method, iterativeSolve, takes two

86 	 Chapter 5. Algorithm Framework

arguments. The first is a component that generates a two sided Krylov space and the

second is a local function that uses other components to calculate the search vectors and

check for termination based on the recurrence residual. A two sided method based on

an LU decomposition could be constructed in a similar manner using the same template

function and Krylov space component, but with a different function to calculate the

search vectors. Conversely, a Hermitian QR method would use a different component

to generate the basis vectors but otherwise would be essentially unchanged.

The clarity and conciseness of algorithm components themselves can be seen in

Figure 5:7. Except for the dispose! functions and a handful of type annotations, the

code is almost a direct copy of the original algorithm from [42].

Flexibility with respect to adaptation can be shown by considering the short re-

currence template function in Figure 5.5. The termination condition in the loop that

updates the approximation xis based directly on the lastlteration? function, which

is based on the recurrence residual. The template function could easily be modified to

take another argument, being the required tolerance on the actual residual, with the

loop running until the recurrence residual is satisfied (i.e. lastlteration? returns

true), after which the actual residual is calculated on each iteration. When the actual

residual tolerance is satisfied the loop is terminated. This scheme is cheaper than hav-

ing to calculate the actual residual on each iteration, which requires an extra matrix—

vector multiplication, and more accurate than purely relying on the recurrence residual,

which can drift substantially from the value of the true residual. Making the change

in this part of the structure means that the new approach to termination conditions is

automatically propagated to all the short recurrence methods as opposed to having to

substantially change multiple individual recipes for each method'.

The final goal of the design is essentially automatic from introducing modularity

into the framework. The reuse of components for different algorithms by definition

shows what parts the algorithms have in common.

that the changes are not completely isolated however - the glue code for each method would
require minor changes to accept the error tolerance on the actual residual and pass it to the template
function in an appropriate manner.

5.3. Evaluation of Framework Design 	 87

5.3.1 Remaining issues

5.3.1.1 Recursive category definition

In a couple of places there exist problems with the type system, or possibly its cur-

rent implementation. They stem from recursive definitions, with the two exemplars

being the definition of an inner product space using the LinearSpaceWithDual cat-

egory, and the first argument to Herm±tianOperatorKrylovSpace (which ought to

be a field with valuation of itself so that it can be used as the coefficient field of the

reduced system - see Section 5.1.2.1). In the first instance, the compiler accepts the

original inner product space category definition without problem, but cannot subse-

quently deduce that something belonging to it is a linear space whose dual is itself. In

the second instance, the compiler appears not to be able to accept any function param-

eter that is recursively typed. Both these problems are resolved by circumventing the

type system using the pretend keyword.

5.3.1.2 Mutability and aliasing

Because Aldor is an imperative language that also supports garbage collection, the

management of storage is a thorny issue. The subjects outlined here relate to aliasing of

arguments to and outputs from the various recurrences, using the Krylov space domain

as the example.

The operator and the two initial vectors provided as arguments to construct a

Krylov space object may be aliased. If the object stores only a pointer to them, then

if they are altered through their aliases the object is no longer correct - if the starting

vectors are altered the object will produce a different sequence of vectors if a restart

occurs, and if the operator is altered any further vectors in the same sequence will be

wrong. Similarly, the recurrence stores pointers to the vectors that represent its current

state, and if pointers to this internal state are yielded to a client so that the state may

be read, then it may become corrupted if the client alters the vectors through those

pointers. Also, if a client holds on to the aliases and the state is destructively updated

then from the client's perspective the vectors may become corrupted.

There is no ideal solution to this. Adding explicit copy operations would remove

88 	 Chapter 5. Algorithm Framework

the possibility of corruption at the expense of ugliness, and possibly severe inefficiency

as a result of garbage collection overhead. Consequently, a compromise is imple-

mented. The operator is assumed never to be altered, and the client of the recurrence

is assumed to be well behaved in that it never destructively updates a vector through

a provided pointer, and never mistakenly re-reads the state after the Krylov object has

been updated. Vectors provided as arguments to the recurrence are copied before being

cached to provide some degree of security.

Similar reasoning underlies the use of the dispose! functions in the code exam-

pies given. It is reasonable to expect the compiler to deal with chunks of memory that

are allocated within a routine and never escape it rather than leaving all heap variables

to the garbage collector, and at the same time unacceptable to expect a programmer

to explicitly manage all unnamed temporaries. A simple strategy for unnamed tem-

poraries is the pre-allocation of space (see Section 9.2.2), which can be viewed as an

extension to the action of the emerger. However, automatically dealing with explicitly

referenced nonlocal heap allocated variables (such as named vectors) would require

some kind of interprocedural alias analysis. This is likely to be exceedingly difficult in

the presence of higher order functions (such as the closures manipulated by the vari-

ous recurrences discussed in this chapter) or the leaking of pointers to clients to enable

them to read internal state. The fully automatic management of storage is a subject

in its own right, spanning garbage collection techniques, user annotations/exotic types

systems, and static analyses of various sorts [97, 98, 92, 77] (not to mention combina-

tions of these). However, the problem is very general and the form of the linear solvers

does not raise any new issues to be addressed. Because of this, and the fact that Aldor

allows the use of destruction hints, these issues were not pursued any further.

The cost of not explicitly destroying these variables is extra work for the garbage

collector, and the severity of the penalty depends on the size and number of the objects,

and the type of garbage collector. Early experiences with the programs discussed in

this thesis suggested that garbage collecting heap allocated scalar variables is cheap

enough to be inconsequential, but garbage collecting large objects such as vectors was

simply too expensive. The problem may be pinning (the collector is conservative), or

5.4. Summary 	 89

lack of cache/page locality2, but the problem is easily solved with the use of destruction

hints.

5.4 Summary

This chapter has described how the structure of a family of iterative solvers has been

captured using the rich type/system of Aldor, and given an example of how the frame-

work can be instantiated with implementations of various pieces to give QMR (an

iterative solver algorithm). The structure of the solvers is embodied in the interfaces

provided by categories and their interrelationships, by means of inheritance and pa-

rameterisation. The implementation is constructed from several recurrences that are

packaged using the advanced functional features of the language.

While the relationships between the algorithms discussed in Chapter 3 are often

mentioned in the literature, it is nonetheless still normal practice to present and code

any one of the algorithms as a simple recipe with all the choices already made, and all

the separate pieces unpacked and merged together. That chapter contained outlines of

four families of Krylov subspace generation (Arnoldi, IOM, Hermitian Lanczos and

two-sided Lanczos), three orthogonality conditions (Galerkin, minimum residual and

minimum error), and two methods of matrix factorisation (LU and QR), along with

the algorithms that arise by combining them together. Splitting up the algorithms into

those sub-components and implementing them as shown in this chapter brings signifi-

cant software engineering benefits in terms of flexibility, code re-use and comprehen-

sibility.

Numerical programs of this nature are not common in functional languages, so

there is no obvious body of work with which to compare the design. An isolated

example for iterative solvers (which contains a handful of further references) is [101],

but the use of the language is at the standard recipe level rather than attempting to

represent the full structure of the algorithms.

2Due to relying on a tracing scheme rather than a collection strategy with better locality characteris-
tics such as reference counting.

Chapter 6

Linear Systems

This chapter describes the implementation of the sparse linear systems of equations

that are used with the iterative solver framework to conduct program optimisation ex-

periments. As the vectors in these linear systems have little or no special structure,

the focus is on the operators. A rough sketch is given of how these sorts of systems

can arise from the discretisation of partial differential equations, in order to provide

motivation and highlight the important differences from dense matrix problems. The

chapter begins with this outline, followed by a high level description of the operators

in question, with the remainder of the chapter devoted to an account of their actual

implementation in Aldor. More details on the domain implementations can be found

in Appendix D.

6.1 Partial Differential Equations and Their Discretisa-

tion

The discretisation that we consider is a regular finite difference approximation. The

space on which the function is defined is approximated with a regular grid of points

separated by a uniform distance a, and the value at each point on this grid defines the

function. An approximate first or second-order derivative is usually calculated using

some low order Taylor expansion in the grid spacing a, and so computing the required

discretized approximation to the derivative of the function at a given point involves the

Al

92 	 Chapter 6, Linear Systems

value at the grid point itself, and any immediate neighbours to which it is linked. If the

point is at the edge of the space considered'then the derivative will involve a boundary

condition of some sort', but we will ignore that here.

A function over the grid is represented by a vector in the algebraic formulation,

with each element of the vector corresponding to the value of the function at some grid

point, and the differential operator is represented by a matrix. Applying the matrix

to the vector to give a new vector2 equates to calculating the required approximate

derivative for each point on the original vector, and so the nonzero entries of the matrix

correspond to a link with a neighbour on the grid for the purpose of approximating the

derivative. The value of the entries in the matrix itself is determined by the differential

operator in the PDE (for instance, possibly by scale constants). Thus, discretisation of

a PDE gives a system of linear equations that can be solved with an iterative algorithm.

6.1.1 Grid numbering, matrix layout and stencils

Each grid point (also called a site) in the space corresponds to the index of one element

of a vector, and so the correspondence is a numbering scheme for the sites. The num-

bering scheme used directly affects the form of the matrix for the differential operator.

For instance, the natural ordering of grid points for a three-dimensional discretized

Laplacian operator V2 gives a multi-diagonal matrix, an example of which is shown

in Figure 6.1. The exact structure of the matrix for a regular grid with this ordering

varies depending on the boundary conditions, (and for some boundary conditions) the

number of grid dimensions and whether each dimension has even or odd extent. Other

orderings can be used, for example as part of read-black preconditioning, but they will

not be considered here.

Most of the entries in the matrices under consideration are zero, as each site is

only connected to a small fixed number of neighbours. Therefore, it is unnecessary

to deal with the "full" matrix by storing all the zero elements, and more efficient to

periodic boundary conditions actually define a manifold with no edge (e.g. torus, twisted
fibre bundle etc) but they can be thought of as a space that has a special procedure for wrapping around
at the edges, and this is how they are typically implemented.

2NB: we are only considering operators that map a vector to another vector of the same type (e.g.
scalar field to scalar field) rather than a different one (e.g. scalar field to vector field by calculating the
gradient).

6. 1. Partial Differential Equations and Their Discretisation
	

93

BD D

D B D D
V25 	V26 	V27

DBD D
V16 	V17 	V18 	I

D 	D B D D
V7 	 V 	 V9 I

V22—I---V23 ---V24
I 	I_- 	i 	I 	I_- i 	I 	I_-i
I V3 	 I—Vl5 I 	 D 	D B D 	D

V4 	 V5 	 v6 I 	 D 	D B D

V19-----V20----V21 	 D 	D B D
Iv 	I 	17 	 17

I VØ 	 —vii 	I—V12 	 D 	D B
Vi 	 V2 	V3

(vl) v2, ... ,V26,V27)
T 	

x 	B= x x x

Figure 6.1: A naturally ordered labelling of sites on a 3D grid (top left), the correspon-

dence to entries in a vector representing a function over the space (immediately below),

and the 27 x 27 matrix that results from approximating V2 using this labelling (to the

right). The matrix is presented as being composed of 3 x 3 sub-blocks (D and B) whose

structure is given below it. Blank entries denote zeros. Boundary conditions have been

left out to aid clarity.

encode how to apply it. This requires knowing the neighbours of each site (which

gives us the nonzero entries), and possibly some other information embodied by the

operator (which gives us the value of those nonzero entries). Matrices with this fixed

regular structure are called stencils in this thesis, and the special case where the value

of nonzero entries can be factored out into, for example, a single scale constant are

called pure stencils. An encoding of a stencil can save on space by not representing

zero elements of the operator, and save on calculation by omitting operations on zero

entries.

94 	 Chapter 6. Linear Systems

6.2 Example Operators

There are three different stencils used with the linear solvers in this thesis. In order of

increasing complexity, they are:

A three dimensional, naturally ordered, simple Laplacian-like operator with a

fixed scale constant, on a complex scalar valued function.

A four dimensional, naturally ordered, simple Laplacian-like operator with a

fixed scale constant, on a complex scalar valued function.

An unpreconditioned Wilson-Dirac operator from QCD (four dimensional).

6.2.1 The Laplacian-like simple operators

The first two operators have more-or-less been described in the preceding section. They

differ from a true Laplacian in that a complex scale constant K is used. When explicitly

represented as matrices they would have seven and nine diagonals respectively, but they

are represented in the code as pure stencil operations. For example, to apply the simple

3D operator to produce a new vector, each element of the result is calculated using the

following recipe:

Ui,j,k : = K (v+i ,j,k + Vj_ I ,j,k + Vi,j+1,k

+Vi,j I ,k + Vi,j,k+1 + Vj,j,k_ 1 - 6v,J,k) 	 (6.1)

where subscripts denote grid indices, which wrap around to give periodic boundary

conditions (the 4D version is a simple generalisation of this to four dimensions). The

form of a stencil can be easily related to the discretized grid - the new, value at each

point relies only on the values of neighbouring points. The zero values of the associated

matrix are neither stored nor manipulated. Operators of a given type are applied using

the same scheme. The only difference between them is the value of the single scale

constant K, which is all that has to be stored. Operations on an operator manipulate the

scale constant - for example, taking the adjoint of an operator conjugates it.

Note that there exist specialised logarithmic time solvers for problems of this sort.

Their use in this thesis is merely as a simple example of a purely functional operator -

6.2. Example Operators 	 95

a more difficult problem could be posed by extending the operator with a scale value

that depends on some function of the site index.

6.2.2 The Wilson-Dirac operator

The unpreconditioned Wilson-Dirac operator is taken from applications for the nu-

merical modelling of QCD. The following description of it is purely at the "recipe"

level - that is, a simple description of how it is calculated in one particular instance,

rather than any of the rich theory behind it. This summary is based on various sources

including [83, 35, 59, 82].

The operator acts on a vector iji representing a four-dimensional grid, but the

"value" at each site on the grid is a C12 vector (a colour-spin vector) rather than, say, a

single scalar in the case of the simple stencils. The operator can be written down as a

short expression, containing a delta term as the most significant component.

6.2.2.1 The delta term

The delta term A can be thought of most simply as a complicated cousin of a simple

four-dimensional Laplacian. The new value at a given site is a sum of the eight nearest

neighbours (one in each direction for each dimension), after they have been acted on

by certain matrices. The standard notation is to write the term as a sum over the four

grid dimensions:

4

=

The expressions in parenthesis denote indexing operations, so W(x) denotes the value

of vector ij at site x (where x is a 4-tuple of integers), with ljJ(x + j.) and iii(x -

being its immediate neighbours in the it direction. Similarly, D(x, j) denotes the matrix

specific to that site and that direction. Note that unlike the simple stencils, the previous

value at a given site plays no part in the delta term - this is taken into account by a

different part of the parent expression.

96 	 Chapter 6. Linear Systems

6.2.2.1.1 Decomposing D Conceptually, the values at each site are complex 12-

vectors, and the matrices that act on them are 12 x 12 complex matrices. However,

these D E C12 x 12 matrices can be decomposed into a Kronecker product of two ma-

trices, C3><3 ® 0><4 . To exploit this structure, the complex 12-vector is arranged as

a 4-vector each of whose elements is a 3-vector, somewhat akin to a 4 x 3 complex

matrix. Representing the values at the sites in this way allows the action of D = U ® P

to be computed by applying the two factors P E C4>< 4 and U E C3 < 3 one after the other

along their appropriate dimensions.

6.2.2.1.2 Projectors The eight P E C4x4 matrices used at each site are each the

result of an expression with the following form:

I±Yn 	(n E 1..4) 	 (6.2)

where 1 is the identity, and y one of four y-matrices. The y-matrix in expression 6.2 is

determined by the grid dimension of the link (each matrix is associated with one of the

four dimensions), and the sign is determined by the direction within that dimension, so

the expression is independent of the site index.

All eight matrices that result from these expressions have many zeros and so are

themselves sparse. The form of the matrices means that their product with any C4

vector will only have two linearly independent components, and so can be represented

by a C2 vector and some implicit information (the linear factors). Hence these matrices

are called projectors in this thesis3 .

This fact is customarily exploited to reduce the overall work in applying the C3 X 3

matrix. First the projector P is applied which reduces the 4 x 3 matrix representing

the value at a site to a 2 x 3 matrix, after which the 3 x 3 matrix can be applied for

half the cost, and finally the resulting 2 x 3 matrix is reconstructed using the implicit

information into a 4 x 3 matrix again so that it can be added to the running sum. This

gives the following:
4

=E U(x,p)P(a)(x+ it) +U(x, —p)P(—)(x--1u)

3This is a slight abuse of terminology, as to be true projectors the matrices must be idempotent (that
is p2 = F) for which they need an extra scalar factor of a half.

6.2. Example Operators 	 V 	97

U/'(x-/2)1V(x-IL) 	 Uf'(x)iiJ(x)

U,(x)1li(x+)

Figure 6.2: One dimension of the grid for the delta term, showing sites (boxed), links

(where the link matrices are grouped with the site on their left), the contributions to

zMif(x) (in bold arrows) and part of the contribution to Aiji(x+ j) (dashed)

6.2.2.1.3 SU(3) matrices The eight U e C3 < 3 matrices used at each site (two per

direction) are elements of the fundamental representation of the matrix group SU (3),

and as such the inverse of each matrix is its adjoint. Each matrix is associated with

a link between sites, with one per link. To give them an index, the link matrices are

grouped with one of the sites that they link, with four matrices per site. Hence the

U(x), where It e 1 .. .4, are grouped with site lJJ(x). This is what gives rise to the

indices used in equation 6.3 - the U,L(x) are conceptually grouped with the current

site and the U(x - j) are all grouped with different neighbouring sites. When cal-

culating the contribution to a site W(x) from its neighbours, the value (x ±) will

be multiplied by the link matrix or its inverse (which is just its Hermitian transpose),

depending on which site the matrix is grouped with. This is illustrated in Figure 6.2

- the contribution of site x + p. to the new, value at site x will be multiplied by U(x),

whereas the contribution of site x - p. will be multiplied by U 1 (x - JL) = 	(x

The entire collection of link matrices is called a gauge field.

Bringing all this information together, the delta term for a given site at index x can

be written as follows:

(6.3)

where the projectors have been
V
 written in terms of their expressions and enclosed in

parentheses (note that this is not supposed to indicate indexing). The Hermitian trans-

pose of the delta term can be calculated simply by reversing the sign of both expres-

sions involving the y-matrices, which amounts to changing the projector.

98 	 Chapter 6. Linear Systems

6.2.2.2 The unpreconditioned Wilson-Dirac operator

With the description of the delta term, the unpreconditioned Wilson-Dirac operator can

be written as follows:

(I — iczX)
	

(6.4)

where K e C is some scalar parameter, and the sites on the grid are arranged in the

natural ordering. Applying the stencil at each site iiJ(x) involves calculating the new

value lJJnew (x) = 111(x) - KAIIJ(x).

6.3 Domain Implementation

The interface between the implementation of the iterative solver algorithms and the

implementation of the systems of linear equations that they deal with is captured by a

handful of categories - the valuation, ground field, vector and operator categories. The

Laplacian-like systems require scalar domains, described below, and vector and oper-

ator domains, described in the following section. The Wilson-Dirac system uses the

same scalar domains as the simple operators, but has an extra layer between them and

the vector/operator domains, being the subdomains representing projectors, link ma-

trices and the objects at the sites upon which they act. These are discussed in Sections

6.3.3 and 6.3.5 respectively.

The descriptions of the domains include an outline of how they and operations on

them are ultimately represented in FOAM code after the standard Aldor compiler opti-

misations. This prepares the way for a discussion of optimisation issues in subsequent

chapters.

6.3.1 The scalar domains

The scalar domains are simple number types that are close to the abstract machine -

that is, they are usually represented in FOAM by a small number of abstract machine

words, and the operations on them are either directly FOAM instructions or a small

6.3. Domain Implementation 	 99

sequence thereof. The scalar types that are larger than a single word have to be wrapped

in records (or "boxed") to satisfy the uniform representation rule (see Section 2.2.3).

It is not possible to destructively update elements of these domains - i.e. they are

pure. For the boxed domains, each operation if taken in isolation must allocate a new

box to hold its result.

6.3.1.1 Singlelnteger

This is the domain of signed single word integers, taken directly from axilib. The

domain representation is directly the built-in single word integer from the definition of

the language. Most of the mathematical operations on this type can be implemented

with single abstract machine instructions. The domain belongs to the axilib category

Ring, and both the following two domains are typed as a Nodule over this one.

6.3.1.2 DoubleFloat

This domain is originally from axilib, and has been extended with several categories

and their corresponding operations. For instance, it now satisfies OrderedField, the

specific named category that is used for valuations, and also FieldWithValuation

where the valuation domain is simply itself. The representation of the domain is a

record with a single member, a double precision float type from the definition of the

language that is two words large. The majority of the operations on elements of the

domain involve abstract machine instructions for handling the boxing and unboxing of

the actual values, with a single instruction to perform the mathematical operation.

6.3.1.3 ComplexDoubleFloat

The axilib library has a parameterised domain for complex numbers, where the pa-

rameter is the type of the component elements. This has been used as the basis for

an extended non-parameterised version based on the double float domain described

above, and typed as a FieldWithValuation over it. The domain representation is a

record of two further records that each contain a double precision float. It should be

noted that there is no complex number type built into the definition of the language,

100 	 Chapter 6. Linear Systems

and consequently no- complex number type supported by the abstract machine. As

such, in addition to the boxing/unboxing steps, most operations on this type involve

some small number of the elementary abstract machine operations on double precision

floats.

6.3.2 The simple stencil operator and vector domains

The simple vector (and associated operator) domains are built from the scalar domains

and a small number of core Aldor domains, which correspond more-or-less directly

with FOAM counterparts. Operations on the members are either fairly simple straight-

line programs or loops (after generator miming, emerging and control flow restructur-

ing, see Section 2.3. 1) to act on the elements of an array.

6.3.2.1 Vector3D

This domain is typed in the most general way possible as a NormedlnnerproductSpace

so that it can be used with any of the Krylov spaces. Its representation in Aldor is a

simple packed array of complex double floats using PrimitiveArray. Operations on

the members of the domain are defined by iterating operations on individual vector

elements in a simple one-dimensional loop. At the source level, the loop is specified as

a for loop controlled by a generator over a clOsed integer segment that gives the suc-

cessive values of a loop variable used to index into the array (see Figure 2.2 in Chapter

2 for a simple example of these loops over a vector of double floats). This translates

directly to flat arrays and simple loops in FOAM after the standard optimisations. Each

complex element of the vector is represented by two double precision values, so the

FOAM array has twice as many elements as the vector it represents.

Operations that produce a vector are pure, in that they do not destructively update

their arguments or alias them in any way. The vector to hold the result of the operation

is allocated and then written to element-by-element using the destructive update, and so

strictly speaking the internals of an operation are not pure. The Hermitian inner product

is implemented by conjugating its second argument, and the norm is implemented by

calculating the valuation of the scalar produced by taking the inner product of a vector

with itself.

6.3. Domain implementation
	

101

6.3.2.2 SimpleOperator3D

The function to calculate the application of an operator to a vector (using equation 6.1)

is associated with the domain, and the only variation between elements of the type is

the value of the scale constant K. Hence, the domain representation is just a record con-

taming said constant. The domain is typed with LinearOperatorOnlnnerProduct-

Space as its associated vectors are treated as an inner product space, and hence it can

be used with any Krylov space except HermitianOperatorKrylovSpace.

The choice of how to code the mapping of a flat array to the three-dimensional

grid, the calculation of the stencil, and especially what happens at the boundaries of

the domain is not trivial. Section 6.4.1 discusses some of the trade-offs. The method

employed here is to calculate the relevant flat indices for the neighbours of each point,

the number of which is determined by the form of stencil, and store them in an offset

table. This is done once at beginning of the program as soon as the grid dimensions are

available, with the offset table being used for each application thereafter. The relevant

mapping from three-dimensional index to flat index is hard coded within the function

that calculates offsets; boundary conditions are periodic. To calculate the application

of the operator, a one-dimensional for loop over a generator created from a closed

integer segment is used to visit each point of the result vector in turn. The value for

the point is calculated using the stencil expression 6.1 using elements from the source

vector as directed by the offset table.

6.3.2.3 SimpleOperator4D

This domain (and its associated vector) is a trivial modification of the three-dimensional

version described above, using a four dimensional rather than three-dimensional stencil

and associated offset table.

6.3.3 Subdomains for the Wilson-Dirac problem

This section introduces the domains from which the Wilson-Dirac operator and vector

are constructed. They are the colour vector, 4-spinor and SU(3) domains, the projector

package, and the complex double float domain detailed earlier. The ColourVector

102 	 Chapter 6. Linear Systems

and Sp±nor4 domains in combination define the C12 colour-spin vector values that

constitute the grid sites. The SiJ3 domain represents elements of the gauge field (link

matrices), and the Proj ector package represents the eight static parts of the delta term

given by expression 6.2.

6.3.4 Aggregate structures of subdomains

Packed array operations supplied by the programmer for some element type can deal

equally well with objects taken from domains that use arrays or records as their rep-

resentation, but records are of a known fixed size for the compiler and therefore can

be acted on by the environment emerger. Failure to remove the heap allocation oth-

erwise needed when accessing objects from a packed array almost always has a large

performance impact.

The colour vector, 4-spinor and SU(3) matrix domains are all homogenous aggre-

gates of a simpler domain (complex scalars for the colour vector and SU(3) matrices,

and colour vectors for the 4-spinor), and so the first choice of domain representation

might be arrays. However, all of the subdomains, either directly or indirectly, are used

at some point as the element type of an array.

Because of this, the domain representations are written as (nested) Aldor records,

and in practice these are always replaced with some collection of simple FOAM vari-

ables due to the action of the environment emerger. Using records rather than ar-

rays complicates access to individual elements. This may introduce overhead if the

index of the element is not known statically by the compiler, such as accessing ele-

ments using an induction variable in a loop. By writing operations on the subdomains

as straight line programs with fixed static offsets for element access, this problem is

avoided through a combination of inlining, constant folding, and dead code elimina-

tion. The objects are small enough for this style to be natural, and consequently they

can be thought of as "larger" cousins of the scalar domains.

6.3.4.1 ColourVector

The domain of colour vectors defines an InnerProductSpace of three-element vectors

where the elements are members of the complex double float domain. The domain

6.3. Domain Implementation 	 103

representation is a record, and the linear space operations are implemented element-

wise in the expected way.

6.3.4.2 Spinor4

The 4-spinor domain defines a InnerProductSpace over the complex double float

domain. The domain representation is a record of four elements of the colour vector

domain, whose operations are used to implement the linear space operations of the

4-spinor.

The 4-spinor is structured in this way so that the Kronecker product decomposition

of the operator can be exploited (see Section 6.2.2.1.1) , and the domain is not intended

to represent a linear operator in its own right. The order of the composition of the

domains has been chosen due to the order in which parts of the Kronecker product

of the operator are applied, which in turn is determined by techniques to reduce the

amount of computation (see Section 6.2.2.1.2).

6.3.4.3 SU3

The SU(3) matrix domain is a GroupAction on the colour vectors, with the group

operation being matrix-matrix multiplication and the action being matrix-vector mul-

tiplication. The domain is conceptually made up of C3x3 matrices with elements taken

from the complex double float domain, and uses a nine element record for its domain

representation. The exported operations (e.g. matrix-vector multiplication) are imple-

mented in a simple element wise fashion.

The domain is intended to represent the SU(3) matrix group, and as such any given

element of the domain is implicitly unitary and has determinant equal to one, but these

properties are not checked for statically or dynamically. As the matrices are unitary,

the inverse of any given matrix is simply its adjoint. For greater efficiency, the default

inverse multiply export \ is overridden with a function that calculates the result directly

without creating the adjoint of the matrix.

104
	

Chapter 6. Linear Systems

gamma2pos(U : SU3, v 	Spinor4) : Spinor4 ==

uO := U * (s (0) + ± * s(3));

ul := U * (s(1) + ± * s(2));

return [uO, ul, (j) * ul, (±) * uO]

garnma2neg(U 	SU3, v 	Spinor4) : Spinor4 ==

uO := U \ (s (0) - j * s(3));

ul := U \ (s(1) - j * s(2));

return [uO, ul, j * ul, ± * uO]

Figure 6.3: Two of the eight functions from the Proj ector package, representing U(I—

y2)V and U' (I+y2)v respectively.

6.3.4.4 Projector

The projector domain is a package of eight functions used to capture the part of the

delta term involving the gamma matrices and the associated tricks. The functions do

not represent their gamma matrices concretely, but encode how to apply them in order

to take advantage of their sparse nature. The package is typed with its own special

purpose anonymous category.

The functions are defined on the second linear space, that is they map 4-spinor ob-

jects to 4-spinor objects. However, the action of a projector function actually represents

applying the Kronecker product of the relevant projector and an SU(3) matrix, and this

is reflected in the functions taking as arguments an element of the SU(3) domain as

well as the 4-spinor being acted on. See Figure 6.3 for some example code.

This arrangement allows us to reduce the amount of work in applying the SU(3)

matrix (see Section 6.2.2.1.2) without having to have an awkward explicit type for a

"projected" 4-spinor consisting of the two linearly independent components and the

linear factors.

6.3. Domain Implementation 	 105

6.3.5 The Wilson-Dirac Operator and Vector Domains

6.3.5.1 SpinorField.

The spinor field domain represents vectors of 4-spinor objects, and is very similar to

the simple 4D vector. The domain representation in Aldor is a packed array of 4-spinor

objects, which translates to a flat array of double floats in FOAM, where each 4-spinor

object corresponds to 24 elements of the array. The linear space operations for the

spinor field are again implemented as simple one-dimensional loops, using the linear

space operations exported by the 4-spinor domain.

6.3.5.2 NaturallyOrderedWilsoniJiracOperator

Elements of the Wilson-Dirac operator domain are represented by a record of a scale

constant (i.e. i, similarly to the simple operator domains, and a packed array of SU(3)

matrix objects with four matrices per site (i.e. for every spinor field element), which

translates to a flat array of double floats in FOAM with 72 elements per site. The do-

main is typed using LinearoperatorWithDual. Consequently, no dynamic tests are

needed to know which of the normal or adjoint applications to use for a given matrix-

vector multiplication, but the domain can only be used with BiorthogonalKrylovSpace.

A member of the Wilson-Dirac operator domain is applied in a similar manner to

the simple operators. In addition to fetching elements of the source vector to use with

the delta term, the relevant SU(3) matrices must be fetched from the gauge field. The

index of the set of gauge matrices for the positive directions is just that of the current

site, but the offset table must be used to get the relevant indices of the four matrices in

the negative directions.

The delta term is implemented in a straightforward manner using the functions

from the projector domain, and the stencil term is very simply constructed using it. The

elements of the operator domain all use the same function to calculate their application

to a vector, and differ only in the values of the scale constant and the gauge field.

A specialised function to directly apply the adjoint of an operator follows the same

approach but uses a slightly different delta term.

106
	

Chapter 6. Linear Systems

6.4 Design Issues

6.4.1 Boundary conditions and indexing

Currently, elements for the stencil are fetched based on entries in an offset table holding

the linearised addresses of the neighbours of a given site. Ultimately, the code was

written in this way to allow a more equal comparison against codes written in other

languages using the same mechanism to do the same job (see the assembly and C

controls in Chapter 10). An alternative might be to write the stencil as a three/four

dimensional loop over a vector, making use of a three/four dimensional index function

that incorporates the boundary conditions of the grid. A brief discussion of some of

the issues is given below.

The direct advantage of the alternative method is that no extra storage is needed for

the offset table, with the extra cache/register pressure that it brings. The disadvantage

is that the offsets must be calculated for each element, in each iteration of the loop, for

every application. In addition, boundary conditions mean that the indexing functions

must contain conditional branches to cope with accesses at the edges of the grid (and

thus possible branch penalties), and, in the case of periodic boundary conditions, cal-

culating the offsets for boundary points involves expensive modulo arithmetic. A less

obvious cost associated with the use of these complicated multi-dimensional indexing

functions is the greatly increased code size after miming multiple instances of them

(and the associated instruction cache/TLB misses) as compared to using the offset ta-

ble. Experiments with a prototype of the Wilson-Dirac operator using four dimensional

loops suggest that it has significantly worse performance than the version using offset

tables, even if iteration over the internal points and boundary points is separated to

avoid run-time tests and code blowup for the loop over the internal points (in fact, the

separated version performed worse than the non-separated one).

Although the use of an offset table is probably more efficient in most cases, using

multi-dimensional loops and index functions is possibly more elegant in terms of pre-

sentation. One issue related to this is that an offset table obscures what may otherwise

be statically determinable data dependencies and data reference patterns by making

the required information part of a dynamic data structure. This may prevent a compiler

6.5. Summary 	 107

from reordering the iterations of the loop (e.g. tiling the application of the stencil,

discussed in Appendix B) or being able to fuse it with some other operations.

6.5 Summary

This chapter has given a description of three sparse linear systems (characterised by

their operators - 3D, 4D simple operators and unpreconditioned Wilson Dirac opera-

tor) and how they have been implemented in Aldor to be used with the solver frame-

work described in Chapter 5. Together they provide a means of encoding a linear

system (of certain restricted types) to be solved and constructing a numerical algo-

rithm from the framework that can be used to solve it. This chapter also discussed how

the sparsity structure of the systems can be captured, and how this is reflected in the

implementation. Overall, the emphasis in the description has been on describing the

sections of code that are important to a discussion of the optimising transformations

developed in Chapters 7 and 8.

The simple 3D and 4D systems are built from relatively simple domains of scalars,

a vector domain and an operator domain. The vector domain is represented by an array

of scalars, and its associated operations are calculated using loops over the arrays. The

operator domain captures how to apply a stencil to a vector, and has a very simple rep-

resentation as there is little difference between individual operators (a scale constant).

The unpreconditioned Wilson-Dirac system is similar, but has an extra layer of com-

plexity. A series of subdomains is constructed from the scalar domains (represented

implicitly or explicitly as small matrices), and the vector and operator domains are

built from and manipulate these subdomain objects.

Chapter 7

Optimisation across Components

This chapter describes the building blocks of the optimising compiler transformations

developed in Chapter 8, and motivates the overall approach with reference to the lan-

guage (Chapter 2) and the modular components structure of the application (Chapters

5 and 6). The chapter begins by giving some basic formalisms that are fundamentally

necessary to further discussions. The objects under consideration are statements, basic

blocks, loops, arrays and dependencies between statements.

After laying these foundations, the transformations called loop fusion and array

contraction are introduced, followed by a description of their impact on the perfor-

mance of programs on cache based computer architectures with reference to temporal

locality. These code transformations are the basic constituents of collective loop fu-

sion and array contraction. After introducing them, a motivating discussion is given

that details why these cross-component optimisations rather than other transforma-

tions are applied in the context of the global loop structure under consideration. The

main point is that each loop taken in isolation from the original program has little or

no exploitable reuse (intraloop locality), and so loops must be considered collectively

(for interloop locality) to improve cache performance. This discussion is separate to

considerations of the specificity of optimisations to the combination of language and

application mentioned in the introduction.

109

110
	

Chapter 7. Optimisation across Components

7.1 Basic Terminology and Formalisms

7.1.1 Loops

In this part of the thesis, a loop refers to an iterative program construct where a finite

number of different iterations are described by distinct values of a single induction

or loop variable (i.e. a restricted for loop). A loop variable has a lower bound, an

upper bound and a stride, with the lower bound and the stride both equal to one unless

otherwise stated, and strides always positive (to simplify the discussion). Induction

variables are only ever updated by the loop construct to which they belong, and the

set of values that a variable takes is referred to as its range. The section of code

executed on each iteration is called the loop body. A loop of this type may be explicitly

represented in the constructs of the language in question (e.g. Fortran), or implicitly

built up from smaller operations such as conditional tests, branching, and arithmetic

on the loop induction variable (e.g. FOAM). For some example pseudocode loops, see

Figure 7.1.

Loops can be nested inside one another. For a loop nested inside another loop (an

inner loop), an iteration can be described by the value of the induction variable for the

loop itself and the value of the induction variables for any enclosing (outer) loops if the

extra context is necessary. Each tuple of values that the describing induction variables

can take for a given iteration is called a loop index, and the set of all loop index tuples

for a given loop is known as its iteration space.

A perfect loop nest is one where only the innermost loop has a body that contains

anything other than another loop. The innermost loop body (or simply the body) may

only contain forward branches to targets within itself, meaning that the iteration space

of the loop nest fully describes how the loop is executed as there can be no early exit

by jumping out of the loop body and no implicit loops within it. Perfect loop nests of

depth n are referred to as n dimensional loops, with an n dimensional iteration space.

The n dimensions of the iteration space are ordered by the nesting of their associated

loops, with the first dimension corresponding to the outermost loop, so a given iteration

space implicitly gives a complete ordering on the execution of its iterations. If the

lower bound, upper bound and stride are constant for all n induction variables in an n

7. 1. Basic Terminology and Formalisms 	 111

dimensional loop, the iteration space is said to be rectangular.

7.1.2 Dependencies between loop iterations

Although operations in a program are normally presented with a strict ordering, there

is usually only an implicit partial order constraint between them, called the program

dependencies. Alterations to the program that do not violate these dependencies main-

tain the program's original semantics (provided we are willing to ignore problems with

the expected order of exceptions, and possible problems arising from the reordering of

semi-associative operations such as floatingpoint arithmetic). Program dependencies

come in two types, control dependencies and data dependencies. Here we are con-

cerned with the latter type.

Loop bodies usually contain some number of operations to read and write data (see

Section 7.1.3). These operations can induce data dependencies and thus an ordering

constraint between separate iterations of an individual loop (loop-carried dependen-

cies) or between two iterations taken from different loops. A loop with no loop-carried

dependencies is termed frilly parallel, as it would be legal to execute all its iterations

concurrently. A loop-carried dependence can be described by a distance vector formed

by subtracting the index tuple of the source iteration from the dependent (target) iter-

ation. Given the assumption of all strides being positive, a distance vector must be

lexicographically non-negative (i.e. all its entries must be > 0) to be legal'. The set

of distance vectors for a given iteration space is usually summarised (e.g. as a de-

pendency vector [651), based on the idea that a loop should only be altered if all its

distance vectors meet some criterion.

7.1.3 Statements and their dependencies

A loop body or basic block consists of a sequence of statements in some language. De-

pendencies between loop iterations arise due to the dependencies of statements in the

loop body associated with each iteration. In the case of loop-carried dependencies the

'A lexicographically negative distance vector implies that the source of the dependence is executed
after the target, which is clearly nonsense

112 	 Chapter 7. Optimisation across Components

same loop body is associated with both the source and target iterations of the depen-

dencies, and, for iterations taken from separate loops, the dependencies link different

loop bodies.

For the purposes of this discussion we assume that a statement may read an arbi-

trary number of source operands, but we restrict the ability to write values to a special

type called write statements, with each write statement writing one and only one named

destination (i.e. the generation of intermediate results from expressions does not count

as a write). A destination (or location) being written to is either a scalar variable, or an

indexed entry in an array of scalar variables. A source operand is similar but may also

be a constant. The value used to index into an array is the result of an index expression.

All variables, including arrays, are assumed to be non-overlapping.

Arrays can be accessed using multi-dimensional index functions. A scalar variable

always refers to the same location, but the array element referred to by a statement in

a loop body can rely on the values of the induction variables for that iteration. Be-

cause a single statement may do something different on each loop iteration, it makes

sense to talk about the n-th statement of the m-th loop iteration (of loop i) even though

syntactically the loop body is the same for each iteration.

Data dependencies can be further classified as true, anti-, or output dependencies.

True dependencies flow from a write to a read from the same location, antidependen-

cies flow from a read to a write to the same location, and output dependencies flow

from a write to a subsequent write to the same location2. Dependencies between state-

ments taken from different iterations of a loop can depend on the order in which the

loop iterations will be executed as determined by the original source program.

Statement dependencies for statements in loops have associated distance vectors,

defined analogously to distance vectors between loop iterations. For this purpose, basic

blocks can be treated as loops with a single iteration. The union of statement depen-

dencies comprises the dependencies for that iteration (of the loop body) as a whole.

Dependencies from a statement in the loop body to a subsequent statement in the same

body in the same loop iteration are said to have zero dependence distance (i.e. their

2A notional input dependency can be thought of as existing between two reads to the same location
(with no intervening writes), but the name is misleading as it does not really constitute a dependency -
i.e. it does not constrain the ordering of statements in the program, and therefore is undirected

7.2. Loop Fusion and Array Contraction 	 113

distance vector equals the zero vector) and do not induce a dependency between loop

iterations. To summarise, statement dependencies give rise to loop iteration (and basic

block) dependencies. The caption of Figure 7.1 gives a summary of the distance vec-

tors within and between loop iterations in the example, and points out the statements

that give rise to them.

7.1.4 Dependence testing

The discovery of dependencies between statements is not covered in this thesis (see

Section 9.1.3).

7.1.5 Temporal Locality

In the following discussion of performance, it is assumed that the programs are to be

run on a cache based architecture, which provides lower latency and higher bandwidth

for references to the same address with "good enough" temporal locality (provided

a structural conflict has not occurred). Temporal locality is taken to be the number

of distinct addresses referenced in between a pair of references to the same address,

where good enough locality (i.e. a small enough number of addresses) for a given level

of the cache hierarchy means that the second reference will be a hit there.

7.2 Loop Fusion and Array Contraction

7.2.1 Loop Fusion

Perfect loop nests with the same dimension and iteration space are said to be con-

formable. As long as their respective bodies obey certain legality constraints, two

conformable loops can be fused into a single loop whose body consists of the two

bodies of the original loops executed consecutively. See Figure 7.1.

The standard concept of distance vectors can be extended to describe dependencies

between iterations from separate but conformable loops. The distance vector is that

which would result from fusing the two loops and treating the dependence as if it

were calculated from the new aggregate loop. Note that a lexicographically negative

114
	

Chapter 7. Optimisation across Components

for iinl..lOdo

a[i] :=

done

for iin 1..lOdo

b[i] := alpha * a[i];

r:=r+b[i];

done

for in LAO do

a[i] :=

b[i] := alpha * a[i];

r:=r+b[i];

done

for iinl..lOdo

a:=

b[i] := alpha * a;

r:= r + b[i];

done

a) 	 I 	 b) 	 I 	c)

Figure 7.1: A pseudocode example of loop fusion and array contraction. a) Pseudocode

for the original pair of loops - array a has no other use than in the second loop, but b

is referred to after this section of code. The loops are conformable, and the distance

vector for the use of a on each iteration in the second loop is 0 (and hence they can

be legally fused). The second loop also has a constant loop-carried dependence of

distance 1 for each iteration by way of example, but this does not affect the legality of

fusion. b) The result ofapplying loop fusion. c) The result of subsequently applying

array contraction - a is now a single scalar rather than an array. Array b cannot be

contracted as it is still live.

distance vector is no longer nonsensical as all the iterations of the loop with the source

dependency will be executed before any iterations of the loop containing the target.

The existence of any negative distance vectors between the iterations of two loops

indicates that the loops cannot be legally directly fused as the resulting aggregate will

have illegal dependencies.

7.2.2 Array contraction

If the only references to a given array occur in a single loop body, each access is to the

same element, the first access in the body to the array is a write, and the dependencies

associated with all the statements that access the array have zero dependence distance,

then the array itself can be replaced by a single element. This code transformation

7.2. Loop Fusion and Array Contraction 	 115

is known as (complete 3) array contraction (see Figure 7.1). It can be applied irre-

spective of loop and array dimension provided the necessary dependence information

is available, and generalises easily to loop bodies that access multiple array elements

provided all accesses obey the conditions given above (for consecutive elements this

can be thought of as accessing one single object in an array of objects, where each

object consists of multiple array elements). Loop fusion is an enabling transformation

for array contraction, as fusing loops together may increase the opportunities to apply

it. Indeed, the original motivation for studying collective loop fusion was to enable

array contraction [37].

7.2.3 Effects of loop fusion and array contraction

Loop fusion and array contraction can be used to improve the memory subsystem

performance of a program. Array contraction reduces the number of addresses touched

within a loop (assuming nonoverlapping arrays). This improves the temporal locality

of references either side of the loop, and can reduce the cost of saves to the temporary

by replacing a sequence of isolated references with a sequence of references to the

same address resulting in less memory traffic, lower latency for write hits etc. In

certain cases it may be possible to keep the contracted scalar in the register file, thus

completely eliminating read/write latency and the need to issue load/store instructions

(and any associated bandwidth limitations). Array contraction on its own is highly

unlikely to degrade the performance of a program.

Loop fusion can affect locality in a number of ways. A fusion step that does not

enable array contraction but merges two loops that are connected. by an input depen-

dence will improve the locality of the pairs of reads to the common array. Any fusion

of two loops that enables contraction must improve the locality of the creation and

subsequent use of each element of the temporary array by bringing them into the same

loop iteration. Loop fusion can also degrade the temporal locality of some pairs of

references by changing the order and/or proximity of the remaining unfused loops.

Loop fusion also has secondary performance effects. Reducing the number of loops

3Note that the subject of partial array contraction for loop carried dependencies of a known fixed
distance is not considered in this thesis.

116 	 Chapter 7. Optimisation across Components

in a program reduces the overhead for execution. Combining loop bodies together

may have a negative impact, such as instruction cache misses if the loop body gets too

large, and increased structural conflicts in the data cache - e.g. fusing together loops

that manipulate distinct arrays will increase the amount of live data in the cache for a

given loop iteration, which increases the likelihood of data being mapped to the same

cache line and exceeding the associativity limits. Similarly, loop fusion can increase

register pressure and require the introduction of the spill code. In theory, a large enough

increase in live data could lead to capacity misses in the first level of cache, but this is

unlikely and is certainly not the case for the programs and architectures considered in

this thesis. Finally, the more complex data access patterns of fused loops may interfere

with hardware data prefetching mechanisms where they exist, leading to a trade-off of

higher latency for the loads in a fused loop versus the savings from more cache hits.

7.3 Temporal Locality, Aldor and Iterative Solvers

Given the general goal of improving memory subsystem performance by targeting tem-

poral locality through high-level transformations, the following section summarises

why loop fusion and array contraction were chosen for investigation in the context of

the iterative solver programs developed in this thesis. Any discussion of temporal lo-

cality assumes some concrete program (rather than just an abstract algorithm) and a

machine on which it is run. Hence, this section brings together the algorithms, the

implementations of the domains that they manipulate, the way they are compiled to-

gether, the definition of the abstract machine and a mapping from code on the abstract

machine to an executable on a real architecture.

The first task is to characterise the temporal locality of the original programs as

specified and compiled, and the second task is to consider how to improve it.

7.3.1 Temporal locality of original programs

The source level programs derived from the algorithmic framework consist of high

level algorithms composed of operations on the elements of a handful of lower do-

mains (operators, vectors and scalars) expressed as separate functions. The operations

7.3. Temporal Locality, Aldor and Iterative Solvers 	 117

exported by these lower domains are implemented using simple operations and the

higher-order generator construct to iterate over an integer segment and the associ-

ated array elements, which are ultimately optimised to simple scalar manipulations or

loops over arrays in FOAM, as discussed in Chapter 6. Assuming "large" vectors, the

vast majority of memory references occur during operations involving them, so parts

of the program that do not involve loops over entire vectors (represented as arrays) in

some way are ignored as being inconsequential to the temporal locality characteristics

and performance of a program.

The compiler compiles source into FOAM code with far fewer function calls by

means of aggressive inlining and emerging. Inlining and emerging on their own do

not alter the overall loop structure of the program, so even after compilation to FOAM

the loops in the program that manipulate vectors can be directly associated with a high

level operation, although there is no longer a 1-1 correspondence as miming creates

multiple copies of the original functions. The native C compiler used for the experi-

ments in Chapter 10 does nothing further by way of miming or loop restructuring, and

it is reasonable to suggest that this would be the case for most native compilers as the

functions that it gets given are already large after aggressive inlining by the Aldor com-

piler, and it is unlikely to have the necessary alias information for restructuring given

the nature of the generated C code. In brief, the compiler chain as it stands does not

alter the temporal locality of data references as defined by the original source program.

7.3.2 Finding opportunities to improve temporal locality

To find opportunities to improve the performance of a program that manipulates large

arrays, it is usual to start by examining each individual loop nests in isolation (an

approach stated as being the norm in [61]; see [12] for a survey of various loop trans-

formations), and considering how to reorder its iterations to improve locality.

7.3.2.1 Intraloop locality

The vector operations equate to three types of loop over arrays:

. Simple loop - this reads two arrays and writes a single array. There are no

118 	 Chapter 7. Optimisation across Components

dependencies between separate loop iterations.

Reduction loop - this reads two arrays and writes a single scalar. Each iteration

depends on the previous one (i.e. there is a constant true dependence of distance

one).

Operator application loop - this reads the offset table (an array), a source array,

and optionally some representation of the operator (e.g. a gauge field array),

and writes a single array. There are no dependencies between separate loop

iterations, but potential dependence information is carried in the offset array,

which is created at run-time.

The only operation with any intraloop reuse that can be targeted is the operator

application (see Appendix B), where the stencil access pattern means that separate

iterations may access the same part of the source vector. The maximum extra reuse

available is only two references per site, comprised of two references per element

of the source vector, and additionally for the Wilson problem some sort of access to

elements of the operator representation. For the simple operator problem, exploiting

this reuse is equivalent to saving approximately two loads of a complete vector, and for

the Wilson problem a saving of approximately three (one quarter of a load of a gauge

field is saved, which is slightly less than one complete load of a vector).

7.3.2.2 Interloop locality within a recurrence

To find larger amounts of reuse, it is necessary to consider temporal locality between

loops. For the sake of argument, consider the situation where an individual vector is

larger than the cache. Fusing together a producer and a consumer of an array gives one

factor of reuse and subsequently applying array contraction gives a further factor of

re-use for the writes the to the contracted temporary (see Section 7.2.3). Consequently,

for both the simple operator and Wilson problems, fusing and contracting only two

producer/consumer pairs gives more reuse than tiling the operator application. This

leads naturally to a consideration of how best to fuse and contract the collection of

loops (all of which are of the three types given above) within the update function for

a given recurrence, which is where the majority of loops occur after inlining - for an

7.3. Temporal Locality, Aldor and Iterative Solvers 	 119

example of how a collection of loops arises, see the Krylov space recurrence in Section

5.2.2. In the experimental problem (see Chapter 10), it is possible to fuse many more

than two producer/consumer pairs within recurrences using the approach to collective

loop fusion outlined in Chapter 8.

7.3.2.3 Interloop locality between recurrences

Similarly to the existence of temporal locality of data across loops within a recurrence,

there is also some degree of locality across loops from different recurrences, given that

an iteration of a recurrence will produce data that is consumed by another. Again, this

leads to a consideration of how this locality can be exploited. Unlike locality within

a recurrence however, there is much less to be gained, and the separation of different

recurrences using higher order language features that are not immediately removed by

the compiler poses a significant barrier to analysis and transformation.

While this problem could theoretically be attacked with some kind of higher order

control flow analysis, the problems of developing such a complex analysis framework

and the significantly lower amount of locality to be mined means that the priority must

be dealing with interloop locality within recurrences.

7.3.3 The impact of. modularity

Ultimately, the lack of intraloop locality and the need for interloop optimisations is

a result of the modular style of the programs, which is strongly encouraged by the

language itself. Consequently, the general idea of cross-component optimisation, of

which loop fusion is one exemplar, will be important for Aldor and languages like it.

This modularity also affects the dependence structure of the programs. Firstly,

there is a simple dependence structure between pairs of loops. A dependence vector

from a simple loop or operator application to any other loop (except operator applica-

tions) has distance zero; a dependence from a reduction to any other loop has distance

n (where n is the dimension of the loops); and a dependence from a simple loop, to

an operator application has some fixed set of positive and negative distance vectors

determined by the access pattern of the stencil for non-boundary iterations (periodic

boundary conditions give some other fixed set of distance vectors depending on which

120 	 Chapter 7. Optimisation across Components

boundaries the point is located). Secondly, there is a direct correspondence between

statement dependencies and aggregated loop iteration dependencies. This means that

dealing with dependencies at the loop iteration level and using the simple test for the

legality of loop fusion does not introduce unnecessary conservativeness.

7.34 Applicability of proposed method

It is much less usual to find programs with such simple loop structure when they have

been written in standard third-generation languages, such as C or Fortran, as they en-

courage programmers to construct their own arbitrarily complex loops by hand on a

per expression basis4. This may limit the direct applicability of collective loop fusion

as presented in Chapter 8 by artificially imposing the dependence restrictions of one

subsection of the loop body on the whole, and by restricting the choices of the compiler

by forcibly combining some statements in loops. It also reduces the expected benefit

as some degree of fusion is already incorporated into programs. It is interesting to

note however, that although standard languages do not support modularity in the same

way as Aldor, one important study shows that general interloop locality is nonetheless

important in the context of a set of well-known imperative benchmarks and ought to be

targeted by compiler optimisations [61]. This suggests that there is no intrinsic cost in

encouraging modularity, as not having it (and by implication expecting the program-

mer to arrange loops by hand) is at best a partial solution to the optimisation problem,

under the reasonable assumption that techniques to handle the interloop problem in tra-

ditional programming languages should easily extend to properly modular codes such

as Aldor programs.

Most work on collective loop fusion has been done with these languages in mind,

leading some authors to suggest that full loop distribution and/or scalar expansion

ought to be used as a pre-processing pass before collective loop fusion to get around

these problems [51]. The collective loop fusion/contraction problem derived from pro-

grams written in Aldor and other more traditional languages may consequently end up

looking very similar, and so the work on loop fusion in this thesis is not restricted to

this type of language.

4With the partial exception of languages with array statement constructs such as Fortran 90.

7.4. Summary
	 121

7.4 Summary

This chapter has introduced the basic transformations called loop fusion and array

contraction, explained how they can be applied as cross-component optimisations to

programs derived from the iterative solver framework from Chapter 5, and outlined

why optimisation across components is crucial for these types of programs when con-

sidering temporal locality for cache based architectures. Fusing together two loops

with a cross-loop dependence of distance 0 brings into the same iteration references

to the same address that would otherwise be separated by many loop iterations (and

associated accesses to different addresses). This makes the address far more likely to

be cache resident for the second use. Subsequent array contraction changes a series

of references to different addresses in different loop iterations into references to the

same address thus reducing the number of addresses touched. This eliminates the pos-

sible compulsory misses for all but the first iteration, and improves temporal locality

of addresses touched either side of the fused loop.

These optimisations are important for programs derived from the solver framework

(and after standard optimisations) as there is virtually no locality of reference within

any individual loop, but large amounts across different loops that can be exploited

by fusion/contraction - thus we need to consider collective loop fusion (and array

contraction). Although such simple loops are less common in traditional imperative

languages, interloop locality is still considered to be crucial, and techniques such as

loop distribution and scalar expansion applied to programs in those languages may

result in a similar optimisation problem to the one considered here.

Chapter 8

Iterative Collective Loop Fusion

This chapter introduces the standard formalisms for a compiler approach to tackling

the collective loop fusion (and array contraction) problem. This is followed by the

theory and algorithms behind our novel approach to collective loop fusion, which,

in Chapter 10, is applied to the programs derived from the algorithmic framework

developed earlier in the thesis. The description builds on the formalisms and basic

transformations introduced in Chapter 7.

8.1 Loop Dependence Graph

A loop dependence graph (LDG) describes a program section that consists of basic

blocks and perfectly nested loops with no branching allowed (ignoring the branch-

ing implicit in the loop constructs themselves and that permitted in their bodies), for

which a set of data dependence relationships is available that constitutes a safe (but

possibly conservative) approximation of those possible in the actual program. Nodes

in the graph represent the loops of the program section, and a directed edge exists be-

tween two nodes if the target is data dependent on the source in some way. The lack

of branching in the program section ensures that its LDG is acyclic. Basic blocks are

not explicitly represented in the LDG, but the dependencies connecting them to each

other and to loops must be known, and the dependencies between loops that they in-

duce must be present. Hence an edge exists in the graph if the target loop is directly

123

124
	

Chapter 8. Iterative Collective Loop Fusion

for iinl..lOdo

a[i] :

done

for iinl..lOdo

reduction := reduction + a[i];

b[i] :=

done

alpha := reduction;
I 	Key

for iinl..lOdo 	
loop node

I 	 > 	true dependence
c[i] := a[i] + b[i]; 	fusion preventing

done 	 true dependence

for iin 1..10do

d[i] := alpha * c[i];

done

a) 	 I 	 b)

Figure 8.1: An example LDG. a) Pseudocode for the original program section, with four

loops and one basic block. Only array d is live out of the program section (i.e. read at

some later point), so all the other arrays can potentially be contracted. The loops are

all conformable, and all distance vectors are 0, except for the loop-carried dependence

in the second loop for a reduction variable, the dependence of the basic block on said

reduction variable, and the dependence of the fourth loop on the basic block. b) The

corresponding loop dependence graph. Nodes in the graph are labelled with the name

of the array that they write to.

8.2. Collective Loop Fusion and Fusion Partitions 	 125

data dependent on the source loop, or if there exists some chain of data dependencies

through basic blocks.

The LDG is used in this thesis to reason about loop fusion for the program section

that it represents. The nodes representing two conformable loops are possible candi-

dates to be fused (subject to further constraints detailed in the next section) if there

is no dependency between them, or if they are directly dependent and all the distance

vectors from the source to the target are non-negative. In the latter case an edge in

the LDG representing such a dependency is labelled as collapsible, and concomitantly

an edge representing a collection containing negative distance vectors, a dependency

between non-conformable loops, or a dependency carried by a chain of basic blocks is

non-collapsible. A dependency path (or just path) in the LDG is a set of edges describ-

ing, a path from a source node to a destination node through the graph following the

directed edges. A path is collapsible if all its edges are collapsible, and non-collapsible

otherwise.

An example of a program section and associated LDG is given in Figure 8.1.

8.2 Collective Loop Fusion and Fusion Partitions

Loop fusion can be considered as a transformation on the LDG. Data dependencies are

transitive, and so two nodes may be legally fused if there is no path between them in

the LDG, or if there exist only collapsible paths of length one. When two loops are

fused together, their corresponding nodes are removed from the graph and replaced

with a node representing the aggregated loop. Any edges that were incident at either of

the original two nodes are now incident at the new node, except those edges that linked

the two original nodes which are removed from the graph entirely.

If there is a legal opportunity, loop fusion can be applied again to the new LDG, and

the process can be continued arbitrarily until at some point we run out of opportunities

to apply the transformation. Repeatedly applying loop fusion in this way is called

collective loop fusion, and can be treated as finding a legal fusion partition for the

LDG. A fusion partition is a partitioning of the nodes of the LDG into disjoint sets

(partitions or clusters) where the nodes in each set will be fused together to produce

126
	

Chapter 8. Iterative Collective Loop Fusion

a,b,cl 	 a,b

a

Key

El 	cluster (partition) node

- represents a fused loop

_______ 	true dependence

induced by use of an array

_ 	fusion preventing true dependence

A 	 B 	 induced by reduction variable

Figure 8.2: The graphs of two possible fusion partitions of the LDG from Figure 8.1.

Nodes in the graph (clusters) are labelled with the letters representing the loop nodes

within that cluster. Both fusion partitions are the same size (2), but permit different

amounts of array contraction - partition A allows two arrays to be contracted (a and b),

whereas B allows only one (c). This corresponds (inversely) to the inter-cluster array

dependency edges in the graphs of the fusion partitions, which are labelled with the

non-contracted array they correspond to - one for partition A and two for B.

the final transformed code. Note that the partitions themselves are not distinguished,

so permuting any cluster labels (if they exist) for a fusion partition does not give a new

fusion partition.

The size of a fusion partition is the number of non-empty partitions it has (empty

partitions are not allowed). A fusion partition itself can be represented by a graph

where nodes are clusters, and there is an edge between cluster nodes for every edge

that exists between the loop nodes that belong to the respective partitions in the LDG.

For a fusion partition to be legal, it must be possible to fuse together all the nodes

within a given partition, and the graph of the fusion partition must be acyclic. The first

condition is satisfied by the absence of non-collapsible edges within the cluster, as the

method of fusion does not re-order the iterations of the loops involved and so fusion is

associative. In the context of fusion partitions, non-collapsible edges are also known as

fusion preventing edges. An example of two fusion partitions of the same size derived

from the LDG in Figure 8.1 is.given in Figure 8.2.

A given LDG has a lower bound on the size of its legal fusion partitions determined

by the dependency path with the most fusion preventing edges in it, and trivially an

upper bound determined by the number of nodes (loops are never split). The number

8.3. The Motivation for Search 	 127

of legal fusion partitions of a given size for an LDG can be very large, usually reaching

a maximum somewhere in the middle of the size range and becoming smaller at either

end.

8.2.1 Array contraction

Finding a fusion partition equates to applying loop fusion to a program section. Subse-

quent (complete) contraction will be legal for an array in the transformed code if all the

dependencies associated with it appear in the same partition, and they all have distance

zero. This is equivalent to there being no edges corresponding to a dependence on that

array existing between clusters in the graph of the fusion partition.

Applying array contraction to the two fusion partitions of the same size. given in

Figure 8.2 gives different contraction amounts. Conversely, different size partitions

with the same amount of contraction are also possible. The simplest example is two

separate nodes unconnected by any dependencies at all - fusing them together gives a

partition of size one rather than two, but does not enable any contraction.

A fusion partition on an LDG can be labelled with a pair of numbers that denote

the size of the fusion partition and the amount of array contraction that it permits. For

a large enough LDG there will be multiple fusion partitions with the same (contraction

amount, partition size) label, and these can be grouped together to give (contraction

amount, partition size) sets (see Chapter 10).

8.3 The Motivation for Search

The previous sections introduced the necessary concepts for the legality of collective

loop fusion and array contraction. A given LDG is likely to have many legal fusion

partitions though', so there needs to be some method for choosing one from the space

of possible options based on the intention of improving some characteristic of the

program. The two characteristics most studied are total space requirements [32] and

'The exact number depends on the form of the loop dependence graph, and cannot be given in a
formula. A loose upper bound (which may include many illegal configurations) is given in Section
8.4.1.

128
	

Chapter 8. Iterative Collective Loop Fusion

program performance. Our focus here is on the latter.

Section 7.2.3 introduced the effects of loop fusion and array contraction on per-

formance. The choice of fusion partition on an LDG usually involves a trade-off in

locality for different pairs of references, and so the best choice depends on how the lo-

cality characteristics of the program interact with the architecture on which it is being

run. These include considerations such as cache size, miss penalty and bandwidth lim-

its, for multiple levels of cache. Hence, choosing a good fusion partition with respect

to temporal locality is architecture dependent and far from trivial. The following sec-

tions present previous work on choosing a fusion partition to try and maximise benefit,

the technique of iterative optimisation, and the approach taken in this thesis.

8.3.1 Standard model based approach

Loop fusion has been used in many contexts to improve temporal locality or to enable

other loop transformations (see [60] for one example). In this instance however we

are interested in approaches that operate on some graph model, which represents a

collection of loops in the program and the expected benefit of fusing any given subset.

This collective loop fusion can be contrasted with a purely ad hoc case-by-case method

of fusion with no consideration of global effects and choices. Associated with the

model is a cost function that ranks the possible transformations that can be applied to

it.

The simplest example of this is preferring more fusion over less (e.g. [51] in the

context of typed loop fusion), with all fusion partitions of the same size being equal.

A more sophisticated (and more common) approach is to add to the LDG a set of

edges and associated weights that model the expected benefit of fusing the loops that

they connect, with the aim of finding a fusion partition with the minimum total cost,

calculated as the sum of the weights on the non-collapsed edges between partitions.

There have been numerous minor variations on the second approach, depending on the

intended purpose of loop fusion. Some examples include transformations specifically

for array contraction [37, 56], and a technique which minimises memory usage and

simultaneously improves locality whilst limiting the Size of any fused loop that is pro-

duced (i.e. avoiding "over fusing") [80]. The limit exists to avoid introducing register

8.3. The Motivation for Search
	

129

spills or associativity conflicts. One adaptation replaced edges in the cost graph with

hyper edges to better capture re-use between array operands being read [29]. There

have also been several composite approaches, such as a technique that prevents the

creation of loops with parallelisation-preventing loop-carried dependencies [51], and a

related approach that uses adjustable weights which can be altered to favour fusion for

parallelism or fusion for locality [79].

The abstract formulation of various problems has been shown to be at least NP-hard

[29, 26, 27]. Consequently, most work on loop fusion is based on heuristic algorithms

to find some approximation to the optimum model answer. Approaches have included

various greedy algorithms [56, 52], and algorithms based on max-flow mm-cut heuris-

tics [37, 29, 80].

As well as finding the best fusion partition, some authors have considered how to

deal with less well-behaved loops using techniques such as preprocessing with peel-

ing/shifting etc [80, 27]. This can be related to other approaches using much more

general formalisms, such as affine transformations - for example see [90] for locality

optimisations and [57] which combines array contraction and tiling. However, these

last two works are more ad hoc in that they are not collective - they do not attempt to

find the optimal fusion partition with respect to some model, and in addition neither of

them attempts to apply search.

8.3.2 Iterative optimisation

Current implementations of computer architectures contain a wide variety of complex

structures [47], with variations including cache architecture (with differences in miss

policy, replacement policy, capacity, line size, and set-associativity at multiple levels of

cache etc), register renaming, and speculation (including differences in re-order buffer

size, load/store buffer size, speculative loads and hardware instruction/data prefetch-

ing mechanisms etc). Consequently, they are very difficult to model accurately, and

any idealisation of the hardware is likely to miss a large number of subtle interactions

that can affect how a program executes - for one example of this see [68]. To combat

this problem, the approach of iterative optimisation [16] treats the goal of finding good

transformations as a search problem, with the space of possible transformations as the

130 	 Chapter 8. Iterative Collective Loop Fusion

space to be searched through, and the cost function as the empirical cost of executing

the program that results from a candidate transformation. Typically the target of opti-

misation is single processor performance, using either high-level loop transformations

[53, 36] or standard scalar optimisations [6], but combinations of performance and

code size [88], energy consumption for DSPs [39] and parallel performance [66] have

also received attention. Here we are interested in single processor performance.

Because it employs empirical testing, iterative optimisation can only be completely

accurately applied in situations where the choice of transformations is the only variable

that affects program execution across different runs (although some degree of dynamic

difference between search runs and the final use can be accommodated [36]). This

rules out many programs that have strongly dynamic behaviour, but tends to be suited

to numerical scientific and technical codes that manipulate large data structures (usu-

ally arrays) using simple, repetitive and entirely deterministic control flow. In addition,

the process of iterative optimisation is very compute intensive, requiring each candi-

date to be compiled and executed. Consequently, conducting any significant amount of

search will require large amounts of time and/or resources, and is only suitable when

the cost can be recouped. Happily, this again fits with numerical scientific and tech-

nical codes that are typically very compute intensive and run for long periods of time.

Another area where iterative optimisation has been profitably used is compiling for

DSP applications, where again control flow is largely static [13] and the cost of search

is amortised over many products.

8.3.3 Previous approaches and this work

There are two major weaknesses in previous model based fusion/contraction work.

The first is the use in some approaches of overly simple search strategies to find some

approximation to the solution of the idealised NP-hard problem (e.g. greedy search).

As pointed out in [62], the majority of LDGs encountered in realistic programs will

be small, and hence there is no real reason to emphasise the efficiency of the search

so much at the cost of the quality of the approximation. Indeed, the authors generated

a number of artificially large LDG problems and showed that, for their particular cost

function, the problems could be exactly solved using a commercial integer linear pro-

8.3. The Motivation for Search 	 1
131

gramniing package in a small number of seconds. The second problem is that although

all the approaches discussed in Section 8.3.1 target slightly different optimisations, it

can be assumed that their ultimate goal is to get the best performance for a given LDG,

but no authors have adequately explored the possible differences between their ide-

alised problem and the implementation details of actual hardware, choosing instead to

largely ignore the trade-offs outlined in Section 7.2.3.

One illustration of this is that, for a given LDG, there may be many fusion parti-

tions all ranked equal according to some abstract cost function (e.g. all with the same

amount of contraction). However, for any method in the literature there is not usually

any indication of how any particular one is chosen, or any indication of how the actual

quality of the equally ranked LDGs varies in practice. Another illustration is the lack

of any indication as to how fusion for locality and fusion for contraction may con-

flict, how the trade-off should be managed to get the best performance, and crucially

how this may vary depending on the form of the loops and the actual machine under

consideration.

The optimisation strategy adopted in this thesis is to apply the approach of iterative

optimisation to finding good fusion partitions for array contraction on a single proces-

sor machine, with respect to performance. The responsibility for ensuring that a code

is control flow deterministic, and the ultimate control of how much time to spend on

optimisation, is left to the user. Using search simultaneously tackles both the problems

with previous work, in that no unnecessary shortcuts are taken in searching for a so-

lution, and some attempt is made to take into account the full baroque complexity of

modem machines.

Almost all previous approaches to iterative optimisation deal exclusively with search

spaces that are the Cartesian product of some number of options (e.g. array padding

and tiling and unrolling factors for a loop [531), with a notable exception being [66]

which searches through a space including legal and illegal transformations. This work

similarly deals with search spaces that are themselves nontrivial to generate (see Sec-

tion 8.4.1). Also, loop fusion is rarely included in iterative optimisation work, with

[66, 391 being two largely isolated examples. In the first of these papers loop fusion is

implicitly included in the action of generated space-time mappings, but appears to be

132 	 Chapter 8. Iterative Collective Loop Fusion

applied in an ad hoc fashion with no mention of choosing fusion partitions etc (in fact,

fusion is almost not mentioned at all) - the primary focus of the paper is on finding

parallelisation transformations with good performance. In the second, a small experi-

ment on four loops with no fusion preventing dependencies finds that fusing all loops

together gives the best reduction in energy use, but the main emphasis is on tiling and

unrolling. Again, there is no mention of fusion partitions. In both papers there is no

mention at all of array contraction.

One specific piece of work that is interesting with respect to this thesis due to

connections at different levels is [69], which considers a superset of the optimisa-

tions treated here, applies them to a similar problem domain (linear solvers and stencil

codes), and uses empirical search to guide optimisation. Although it includes partial

array contraction, the technique seems to be largely aimed at improving locality using

fusion and a subsequent specialised version of tiling directed at the important loops de-

rived from two algorithms, red-black Gauss-Seidel relaxation and multigrid (applied

to stencils similar to those in Chapter 6). It does not fit into the previous overview

as it does not construct and manipulate a graph based model of the expected benefit

of fusion and contraction, and only applies them to a collection of loops in an ad hoc

fashion. Contraction appears to be rarely applied in practice. Search over the space of

parameters is only outlined. From the sparse details, it would appear that the search

space is of the standard Cartesian kind, including yes/no options for contraction, some

control over the degree of interleaving (fusion) of loops, and the space of tile shapes

and sizes - there is no mention of trying different fusion partitions. Search is con-

ducted using simulated annealing, with no obvious motivation for why it was chosen

over a simpler technique.

8.4 Iterative Collective Loop Fusion

The rest of this chapter describes the novel contribution of this thesis to the field of

compiler optimisations. To perform iterative loop fusion exhaustively wie simply re-

quire a method of enumerating all the legal fusion partitions for a given LDG, and the

means to empirically test their run-times. The size of the search space, that is the num-

8.4. Iterative Collective Loop Fusion 	 133

her of legal fusion partitions, almost always makes testing each point in it unfeasible,

so there must be some method of selecting a subset of the search space to test. For

example, under the assumption that each empirical test takes about five to ten minutes

to enumerate, compile, run and collect results from, and that a week is the longest

that we are willing to spend searching, we are limited to testing roughly one to two

thousand separate fusion partitions when, even for small problems, the total number of

legal fusion partitions is likely to run into many thousands.

Because generating computer representations of legal fusion partitions is much

cheaper than testing them, the general idea is to generate the set of legal fusion parti-

tions, cut the set down to an acceptable size using some criteria, and then empirically

test for the best one. However, although generating legal fusion partitions is cheap, it

is not free, and the total space of them is too large to even generate in practice. This

stems from the general case of the problem having at least NP complexity, which is

the motivation for using heuristics to approximate answers (to the idealised problem)

in previous work. Consequently it is necessary to come up with some method of gen-

erating a manageable amount of the search space.

8.4.1 Generating legal fusion partitions

Although clusters within a fusion partition are not distinguished, it is useful to label

them with identification (ID) numbers to reason about the enumeration of the fusion

partitions for an LDG. Clusters are numbered from 1 to n giving a total ordering on the

loops produced from a fusion partition.

The naive approach to generating fusion partitions of size n is to assign each node

to a partition i with 1 <i < n. The vast majority of these configurations will be illegal

though, so they will have to be filtered for legality and, more importantly, a large

number will have to be generated and tested to find each legal point which makes this

a bad option if many legal points are to be generated. The total space (of legal and

illegal fusion partitions) has size:

t±.'(i)(j_jy

p=li=Oj=O 	j

134 	 Chapter 8. Iterative Collective Loop Fusion

for an LDG with n nodes, where the sum over p denotes the sum over all sizes of fusion

partition. This space grows too rapidly with n to be able to generate and test all points,

even if the legality test is very cheap.

An alternative is to find some algorithmic way of enumerating only legal fusion

partitions. The approach in this thesis is based on node numbering, which is described

below, followed by the enumeration algorithm.

8.4.1.1 Node numbering and range finding

Given a loop dependence graph, a target size of fusion partition, and a set of nodes

with pre-assigned partition numbers, the forward node numbering procedure provides

a test to determine the lower bound on the ID number of the partition to which any

given (unassigned) node may belong.

Two directly connected nodes joined by at least one fusion preventing edge must

belong to different partitions. Consequently, given any path from a source to a sink,

the nodes along the path can be numbered to show the earliest partition that they may

belong to (as determined by this path) by grouping the nodes into sets separated by

fusion preventing edges and numbering the sets (and their elements) along the path

consecutively, counting upward from one. If a set contains a pre-assigned node with

a value different from the parent set, then the set is split into two with the second set

starting with the pre-assigned node and labelled with its value. Numbering along the

path continues as before counting upward from the new value. It is assumed that pre-

assigned nodes always have a legal value - i.e. a value greater than or equal to the

original parent set to which they belong.

If this procedure is repeated for all paths through the graph with each node being

assigned the maximum value over all paths, then the final label Pmin will denote the

earliest possible partition that the node may belong to in this LDG with these pre-

assigned nodes.

A pseudocode for the algorithm is provided in Figure 8.3. The description makes

use of several simple utility functions:

NODEsO: returns the set of vertices from an aggregate data structure (either an

LDG or a set of (node, part itionlD) pairs).

135 8.4. Iterative Collective Loop Fusion

NuMBERN0DEsF0RwARDs(preassigned, LDG)

Description: Labels each unassigned node in the LDG with the earliest

partition that it may belong to.

I
Input:

LDG, a loop dependence graph

preassigned, a set of (node, partitioniD) pairs

Output: An integer label for each node as a set of (node, partitionlD)

pairs

sources := {(v, partitioniD = 1) Vv E SOURCES(LDG) \

NODES (preassigned) }

assigned := preassigned U sources

unassigned := {v I v E NODES(LDG) \ NODES(assigned) }

repeat

choose v E unassigned s.t. PARENTS(V) fl unassigned =

rank 0

foreach p EPARENTS(V)

if Ve E JOINS(v, p), FUSIONPREVENTING?(e) = false

rank, := RANK(p, assigned)

else

rank, 	1+ RANK(p, assigned)

rank MAXIMUM({ rank })

assigned := assigned U {(v,rank)}

unassigned := unassigned \ {v}

until unassigned = 0

return assigned \ preassigned

Figure 8.3: Forward node numbering algorithm

136
	

Chapter 8. Iterative Collective Loop Fusion

. SOURCESQ: returns the set of root (source) vertices in the LDG.

. PARENTSQ: returns the parents of a vertex (in the current LDG).

. J0INsQ: returns the set of edges that joins two vertices (in the current LDG).

. FUSIONPREVENTING?Q: returns a Boolean depending on whether the edge is

collapsible not.

RANKO: returns the partition ID (integer) of a vertex from a set of (node, partitionlD)
pairs.

. MAXIMUMO: returns the maximum from a set of integers.

The algorithm does not actually enumerate all the paths through the LDG. Instead it

successively selects nodes from the unassigned set only after all their parents have been

processed. The method of choosing the node is left unspecified, but at the very least

a naive approach could be implemented that would check each node for readiness at

most 0(n2) times in the worst-case scenario2.

Given a maximum number of partitions, the same numbering can be repeated in

reverse working from sinks to sources, with each sink labelled with the maximum

partition number from which one is subtracted each time a fusion preventing edge is

passed. This gives NUMB ERNODESBACKWARDSO, the result of which denotes the

latest possible partition that a node may belong to, P,. Taken together, the two

procedures provide the range of partition IDs to which any unassigned node v may

belong Pv,min ID, < Pv,mwc , and also the size of the range for that node PVniax -
Pv,min + 1. Any node with a range of sizes less than or equal to zero indicates that

no legal fusion partitions of this size exist for this LDG. This information is provided

by the RANGES() function, which essentially just calls NUMB ERN ODESFORWARDSQ

and NUMBERNODESBACKWARDSQ.

An example of the results produced by applying the RANGESQ function to a small

example problem is given in Figure 8.4. The labelling of the graph thus produced

2A similar algorithm to NUMBERNODESFORWARDSQ , without the notion of accommodating pre-
assigned nodes, can be found in an early paper on the subject [37]. However, the authors do not apply the
same technique in reverse, as described here, and do not attempt to enumerate different fusion partitions.

8.4. Iterative Collective Loop Fusion
	

137

(1,2)
Key

(2,4) 0___ (1,4) ___V

4)

loop node

collapsible edge from

any type of dependence

fusion preventing edge from

any type of dependence

Figure 8.4: An example showing the results produced by RANGESO when calculating

possible partitionings into four clusters for a graph containing both collapsible and fusion

preventing edges. Each node is labelled with a (minimum partition number, maximum

partition number) tuple, with numbers in bold indicating that the value results from the

node being either a source or a sink in the graph.

shows for each node the earliest (minimum number) and latest (maximum number)

cluster that it may belong to for the case of four partitions. Note that this is not the

minimum number of partitions possible.

8.4.1.2 Enumeration algorithm

The enumeration algorithm successively generates the fusion partitions of a given size

for an LDG. It starts by finding the ranges of the nodes in the LDG, then choosing

a (node, range) pair. For the chosen node, the algorithm chooses a value in its range,

treats the (node, value) pair as a pre-assigned node, and recursively calls itself. At each

step, a check is made to ensure that either all partitions already have> 1 nodes, or that

each empty partition is still part of the range of an unassigned node. This prevents

generation of fusion partitions with empty clusters, and prunes the enumeration search

when it can be shown that any assignment from the current ranges must leave at least

one partition empty.

For subsequent calls, a different value from the range of the last assigned node is

chosen, until the range has been covered indicating that this recursive step is complete.

Note that the ranges of unassigned nodes may change before each recursive function

call, and that any unassigned node can be selected for enumeration within a call.

The enumeration algorithm is given in Figure 8.5. As well as the recursive call,

it uses two other functions; RANGEsQ, explained in the previous section, and Fu-

138
	

Chapter 8. Iterative Collective Loop Fusion

ENUMERATEFUSIONPARTITIONS(LDG, size, fixed)

Description: Enumerates the fusion partitions of an LDG
LDG, a loop dependence graph

Input: 	size, the required size of fusion partition

fixed, a set of (node, partitionlD) pairs
Output: the set of fusion partitions of size size in LDG

if N0DEs(LDG) \ NODES(fixed) = 0 then return FUSIONPARTITI0N(fixed)

fps:=O

ranges := RANGEs(LDG, size, fixed)

if Vp e {1,... ,size} (v,p) E fixed V (v, rm jn , rm) E ranges such that

(rmin <p<r)

choose (v, rankv,m jn, rankv,m) from ranges

for i := rankv,min to rankv,m

newFixed fixed U {(v, i)}

fps := fpsU ENUMERATEFUSIONPARTITIONS(LDG, size, newFixed)

return fps

Figure 8.5: Fusion partition enumeration algorithm

8.4. Iterative Collective Loop Fusion 	 139

SIONPARTITIONO, which makes a fusion partition data structure from a list of (node,

partitionlD) pairs. In the current implementation there is no special criterion for

choosing nodes to fix (they are taken in whatever order they are provided in by the

function that calculates the ranges) or values from their ranges (currently they are taken

sequentially, from bottom to top by the loop on line 6).

An example of how enumeration works is given in Figure 8.6, based on some initial

steps of the algorithm applied to the graph from Figure 8.4. The nodes that are fixed

and the values they are fixed at have been chosen to keep the demonstration manage-

able rather having the two examples as strictly consecutive steps of the algorithm.

8.4.1.3 Outline of correctness for enumeration algorithm

A numbering of a graph giYes a set of ranges for its nodes. The Cartesian product

of these ranges is the set of configurations for that numbering, and the set of config-

urations from the initial numbering of the graph the initial configurations. Note that

not all configurations from, the initial set are necessarily legal - when the ranges of

a parent and a child overlap it is possible to generate a configuration in which the

parent is assigned a later partition number than the child, which clearly violates data

dependencies.

For all paths in the graph including a given node, the set of nodes that may appear

before the given node on any of these paths is called its set of ancestors. Similarly, the

set of nodes that may appear after it on any of these paths is called its set of descen-

dants.

8.4.1.3.1 No double counting The enumeration procedure never generates the same

configuration from the initial set twice. At a given recursive step (i.e. an invocation of

ENUMERATEFUSIONPARTITIONSO) and for each value of the node under considera-

tion (i.e. in the range [rankv,min, rank,,]), assume that the corresponding recursive

call to ENuMERATEFUSIONPARTITIONS() does not double count (i.e. a given recur-

sive invocation never assigns the same values to the remaining unassigned nodes twice

thus resulting in duplicate full configurations). If this is true, the only way that the

same partial configuration can be generated twice for the union of the current node

140
	

Chapter 8. Iterative Collective Loop Fusion

: 	(1,2) 	(1,3)

(4,4)

Key

o 	loop node with ranges (mm, max)

fixed loop node

collapsible edge from

any type of dependence

fusion preventing edge from

any type of dependence

Figure 8.6: Two examples showing how ENUMERATEFUS ION PARTITIONS() proceeds.

The initial graph in both cases (not shown, implicitly to the left of the figure) is the

numbering taken from Figure 8.4. All graphs show the new numbering after the chosen

node has been fixed, and in both final graphs (i.e. on the right) any further choice from

the ranges of the unassigned nodes will produce a legal fusion partition (i.e. further calls

to RANG ESO will not adjust the ranges on the graph). After all of these combinations

have been enumerated by the procedure in the top example, the relevant recursive

steps will complete and a new value of the second fixed node will be chosen from its

previous range (e.g. 2) followed by renumbering. After enumerating all of the values in

the range of the second fixed node (and the subsequent recursive steps for other nodes

etc), that step will complete and the fixed value of the first node will change to 3, as in

the first graph of the second example. Choosing a different node for the next recursive

step and continuing the process through several of its values gives the second example.

8.4. Iterative Collective Loop Fusion 	 141

and the remaining unassigned nodes is if this recursive step has already completed and

another recursive step is being executed on this node. However, if this is the case, at

least one value of the previously fixed nodes that are not members of the partial con-

figuration in question must have already changed, meaning that all full configurations

generated that include these repeated partial configurations must be different. This is

trivially true for the final node to be picked from a graph, and thus is true for all the

other nodes inductively. This also shows why the order that the values from a range are

used within any given recursive step is irrelevant so long as all the values are visited

once and only once.

The only further problem is the possibility of multiple full configurations mapping

onto the same final program, but this can only occur When at least one fusion partition

is empty, and this possibility is explicitly avoided.

8.4.1.3.2 No illegal solutions Once a graph has been numbered, there must be at

least one legal configuration for every value in the range of a given node. This can

be achieved by assigning all ancestors of the node in question the minimum partition

number in their respective ranges and all descendants the maximum - any value from

the range of the node in question now gives a legal graph (provided we give the remain-

ing nodes that are neither ancestors nor descendants some sensible values). Hence, it

is legal to pick any one node and fix it at any of the values in its range provided by the

initial numbering. By the same argument, it must be possible to renumber the graph,

and thus fixing a subsequent node at a value from the new ranges must permit at least

one legal configuration. This applies inductively to all further choices of nodes to fix

and subsequent renumberings, and consequently all full configurations generated in

this way must be legal.

8.4.1.3.3 No missed solutions The initial numbering of a graph is general, in that

no legal solution can exist outside the ranges given. Similarly, any renumbering of a

graph that includes fixed nodes must contain all legal solutions that can be generated

from the ranges of the unassigned nodes. Consequently, selecting a given node from

the initial graph, assigning it each of the values in its range, and renumbering for each

value gives a collection of graphs that contain between them all legal solutions. The

142 	 Chapter 8. Iterative Collective Loop Fusion

same argument can be given inductively for each of the individual graphs with one

node fixed at a given value, thus showing that all the legal solutions will be generated.

8.4.2 Search heuristics and search space reduction

Although generating legal fusion partitions is much cheaper than compiling and run-

fling their associated code, the total number of fusion partitions means that generating

and storing all of them (i.e. the search space) before applying heuristics to, select the

empirical tests would take far too much time and space. Consequently, there must be

some way of selecting a region of the search space to generate. The choice of this

region is governed by the characteristics of the points we hope to find, and therefore

stems from the search heuristics themselves.

There are two heuristics to select candidates to empirically test:

More array contraction is likely to be better.

A smaller size fusion partition (i.e. less clusters) is likely to better.

Both heuristics stem from the goal of improving memory performance, as discussed in

Section 7.2.3.

The heuristics are not independent. Given some initial LDG in which all possible

array contraction has been done, it is necessary to fuse some loops (i.e. choose a fusion

partition) to uncover any more opportunities. Repeated application with a greedy ap-

proach does not necessarily apply though, in that the smallest possible fusion partition

size may not contain the fusion partition with the most contracted arrays. Neverthe-

less, the assumption is made that, for a non-pathological LDG derived from an average

program, more fusion and more contraction are likely to be related. This last assump-

tion allows us to use the second heuristic to guide the generation of points in the space

with the assumption that those points generated will include (the majority of) the good

points as determined by the first heuristic.

The algorithm to generate legal fusion partitions allows us to specify the size of

fusion partition, and quickly identifies sizes for which no fusion partition exists. This

enables a user to (partially) prioritise the space based on fusion partition size and gener-

ate points starting with the smallest fusion partitions, moving upward in size if desired.

8.4. Iterative Collective Loop Fusion 	 143

Although this gives no specified order in which to generate the elements of a particular

size, in practice the number of legal fusion partitions gets much smaller toward each

end of the size range, and this makes it far more likely that all the legal partitions of

some small subrange at the bottom end of the size range can be generated (see Section

10.2 for the generation of all fusion partitions of size 3-6 for a given LDG).

As well as an order in which to generate the search space, there needs to be some

halting criterion. This could either be expressed as an amount of space to search,

such as a total number of points or a fusion partition size subrange, or a total amount

of time to spend generating the search space. Currently it is expressed as a partition

size subrange, the extents of which are provided by the user. In a similar vein, the

subsequent use of heuristics to select points to test from those that have been generated

must be formalised by giving some prioritisation when the number of generated points

is larger than the number that can be tested. Currently, the limit on the number of

points to test is given by the user. Although it is not used in the experiments in Chapter

10, one method to use in such a case is suggested here for completeness. The points

are ranked first by the number of arrays contracted (more is better) followed by the size

of the fusion partition (smaller is better). Tie-breaks between equally ranked points are

decided in favour of first-come first-served.

8.4.3 Algorithm for generating test cases

Using the enumerating procedure, the overall algorithm for generating cases to test

empirically is given in Figure 8.7.

The algorithm starts at small fusion partition sizes, and with each successive iter-

ation the size of fusion partitions that are considered increases by one. Note that the

amount of search space to generate and the number of points to try are arguments, as

discussed previously. The function SELECTBEST() orders the set total based on the

search heuristics (e.g. contraction, then partition size, then first come-first served) and

then cuts it down to the first maxCandidates elements.

144
	

Chapter 8. Iterative Collective Loop Fusion

GENERATETESTCASES (LDG, maxCandidates, minPartitions, maxPartitions)

Description: Enumerates the fusion partitions of an LDG

LDG, a loop dependence graph

Input: 	
maxCandidates, the maximum number of fusion partitions to generate

minPartitions, the minimum size of fusion partition to generate

maxPartitions, the maximum size of fusion partition to generate
Output: fusion partitions of LDG

candidates:=O

for i := ininPartitions to maxPartitions

fps := ENUMERATEFUSIONPARTITIONS(LDG, i, 0)

total := fps U candidates

candidates := SELECTBEST(maxCandidates, total)

return candidates

Figure 8.7: Generation of test cases

8.4.4 Code generation

The only requirements on the code generated from the fusion partition of an LDG is

that dependencies between partitions are respected inthe final ordering of the loops

generated from them, and similarly that the dependencies within a partition are re-

spected in the ordering of the bodies from the original loops to form the body of the

partition. The first requirement is automatically satisfied by ordering the loops ac-

cording to the partition label sequence, and the second can be satisfied by a simple

topological sort. Currently all legal orderings within a given partition are considered

equivalent, under the assumption that the instructions within the body of a partition

loop will be rescheduled by some later compilation stage and possibly at run-time by

dynamic execution on an out-of-order processor, with any differences in performance

being slight.

The placement of basic blocks must also be handled during code generation. The

non-contractible dependence edges induced by the presence of basic blocks means that

8.5. Summary 	 145

it will always be possible to place them in at least one gap in between fusion partition

loops. The simplest approach is to schedule them as early as possible when a choice

exists. Data dependencies between basic blocks themselves must also be respected,

and again this can be achieved by a topological sort of the basic block dependence

graph.

8.5 Summary

This chapter has introduced a novel means of applying collective loop fusion and array

contraction using iterative optimisation, which we call iterative collective loop fusion.

The standard approaches to the problem attempt to transform the LDG based on simple

metrics such as the resulting number of loops and the amount of array contraction pos-

sible, and implicitly rank all the possible different transformations that are equal under

the metric as being equivalent. As such, the techniques produce one fusion partition

candidate, and typically little or no consideration is made of the target architecture in

the choice. Iterative collective loop fusion, on the other hand, employs a search over

different fusion partitions and evaluates candidates using empirical measurement on an

actual machine. This reflects the fact that the amount of contraction (or fusion partition

size) is only a loose approximation to the fitness of an individual fusion partition can-

didate, and that the optimum choice is likely to be different for different architectures.

The search problem is similar to standard iterative optimisation problems in that

it is a very large space, but is dissimilar in that the space of transformations is not a

simple Cartesian product of options and is itself nontrivial to generate. As a result, the

generation of points in the transformation space is guided by the heuristic of starting

with small fusion partitions, and the choice of points to empirically test from those

generated is guided by the heuristic of prioritising those fusion partitions with the most

array contraction and the smallest size.

The following chapters will describe the prototype implementation of this tech-

nique (Chapter 9) and present results collected using it (Chapter 10).

Chapter 9

Prototype and LDG Construction

In this thesis it is assumed that the LDG has already been constructed, both in the

theoretical treatment and the prototype implementation used for experiments. This

chapter contains a brief outline of how to recover the necessary information for Aldor,

with reference to standard techniques and the specific idiosyncrasies of the language

in question. After this there follows a description of the prototype used for the experi-

ments.

91 LDG Recovery

The information required to construct an LDG is as follows:

. Control flow, to identify program sections from which an LDG can be con-

structed and the loops in that section.

. Loop index variable ranges and strides, to be able to test for conformability.

. All statement dependencies, to construct edges in the LDG.

These are discussed briefly in the following sections, followed by the outline of an

approach to cope with the problems introduced by envEnsure instructions.

147

148 	 Chapter 9. Prototype and LDG Construction

9.1.1 Control flow

The dependence structure of the program is determined by which instructions may be

executed, and therefore control flow must be known (or approximated) to recover it.

In addition, it must be shown that control flow in a program section conforms to the

requirements given in Chapter 8.

9.1.1.1 Function calls

Function calls within the program section of an LDG are not automatically illegal.

However, without interprocedural analysis, we have to assume that a function call may

depend on any variables visible to it, and similarly that it may write to any of those

variables. This will not include unaliased objects pointed to by purely local (i.e. stack

allocated) references unless they are passed as arguments, but will include anything

that can potentially be aliased by any member of an environment, such as a lexically

scoped reference. The possibility of reading/writing those visible variables may induce

dependencies from/to loops in the parent function and alter variables such as those used

for loop control (and may therefore affect conformability). Similarly, a second func-

tion call may be dependent on the first etc. Although some of this information may be

recoverable with an interprocedural analysis, the problem is potentially severely ex-

acerbated by the functional aspects of the language, where the use of closures could

necessitate a higher order control flow analysis to know which function is being called.

Hence, due, to the associated difficulties with recovering potential data dependencies

and side-effects, allowing any kind of function call within the program section of an

LDG is unlikely to be feasible. In addition, the generation of code for a fusion parti-

tion requires the building of custom loops, so there is little point in leaving in place

functions that contain loops.

For these reasons it makes sense to position collective loop fusion after the gener-

ation of FOAM and the action of the mimer. This also has the benefit of recovering

control flow by converting into simple loops the potentially complex generator con-

structs that would otherwise require a higher order analysis. Relying on the mimer to

turn interprocedural problems into local ones (a general strategy adopted by the current

compiler) is simple, but very sensitive to how miming is done. As such, issues with

9. 1. LDG Recovery 	 149

the current miming strategy ought to be highlighted - see Section 9.3.2.

9.1.1.2 Loop recovery

One side-effect of this positioning of the transformations is that control flow gets low-

ered to the level of labels and branches due to the way in which FOAM is generated.

As a result, information about loops will have to be recovered using some kind of

structural analysis, along with some induction variable recognition (for both issues

see [65]). Induction variable recognition will be simple as the binding of induction

variables to values in for constructs is very restricted.

9.1.1.3 envEnsure instructions

Unfortunately, requiring program sections to be free of function calls is not enough of a

restriction on control flow to eliminate possible problems with dependencies and side-

effects. Any call to a function that reads from/writes to its lexical environment must

be preceded by an envEnsure instruction (see Section 2.2.5), which still remains after

the function has been inlined. The effect of an envEnsure instruction is at least as bad

as a function call, and is probably even less amenable to analysis due to the possible

triggering of multiple lazy objects at run-time. Requiring a program section to be

free of envEnsure instructions is almost certainly too restrictive however, as they are

frequently littered throughout generated FOAM code. In particular, given a domain

whose functions contain loops that refer to an outer scope for the range and stride

values (see Section 9.1.2), any program section created by inlining copies of these

functions will contain an envEnsure before each loop due to the lexical references.

A method of removing envEnsure instructions using a combination of static opti-

misations and run-time tests on domains is given in Section 9.1.4.

9.1.2 Loop index variable ranges and strides

Part of the legality test for loop fusion is the requirement of conformability. For this,

the induction variable range and stride of both loops must be known to be equal. This

is trivial in the case of statically known numeric constants, but requires analysis in

150 	 Chapter 9. Prototype and LDG Construction

the case of symbolic constants/variables and involves the implementation of lexical

scoping by the compiler.

The first example we consider is that of two loops derived from two inlined func-

tions from the same domain, where the loop control values (i.e. range and stride)

belong to the scope of the domain. This is a very natural style for certain domains

where all functions iterate over a fixed size object, e.g. loops over a vector (see Figure

2.2 for an example). Each loop in the inlined code is preceded by an envEnsure in-

struction, where the FOAM format (i.e. the type) of the environment being acted on is

statically known in both cases, and therefore known to be the same.

For non-parameterised domains there can only be one domain of a given type, and

so it follows that the lexical references refer to .the same symbolic variable/constant. If

the symbolic values are defined as constants then the loops must be conformable. If

they are variables, some further analysis must be performed to show that they cannot

change between uses (which again brings in control flow and the potential side-effects

of functions and envEnsures). The case is more complex for parameterised domains,

as there may be more than one domain object of the same type, and therefore the

lexical references may refer to different symbolic constants/variables from different

environments. One way around this is to insert dynamic checks in a similar fashion to

those suggested for envEnsures in Section 9.1.4.

Interestingly, it ought to be possible to check that two parameterised domains are in

fact the same object, and simultaneously ensure more lexically scoped symbolic values

are defined as constants, by using the existing type system. All that is required is to

encourage users to write parameterised domains with domain scope values as param-

eters (unlike Figure 2.2). The compiler already knows how to type-check expressions

using parameterised domains to ensure that the same domain is referred to, and the

implementation of the type system implies that arguments to parameterised domains

are effectively considered as constants within the domain. However, this information

is not currently transmitted down to the level of FOAM code.

The second example is similar to the first, but involves two loops taken one each

from separate domains. An example of this would be a loop to apply a stencil from

an operator domain, and a loop from a vector domain. In order for the loops to share

9. 1. LDG Recovery 	 151

common lexical variables (for range, stride, etc) and thus reduce the problem to being

essentially the same as the first example, they would now have to refer to variables at

the level where the domains themselves are defined - i.e. outside of domain scope.

This is a less natural style. Again though, the existing type system ought to be able

to help. The type-checking mechanism can ensure that two different domains have the

same value for some parameter, and it ought to be possible to transmit the equivalence -

of two such symbolic constants to the level of FOAM.

9.1.3 All statement dependencies

Given a program section that conforms to the necessary restrictions and information

on the loops it contains, the nodes of an LDG can be constructed. Discovering depen-

dencies between these nodes that result from their statements requires alias analysis

for array references, and dependence testing (an introduction to these subjects can be

found in [65], although not in the context of LDGs; the standard tool for dependence

testing is the Omega test [70]).

Alias analysis for Aldor ought to be simplified by the fact that the original op-

erations are pure (i.e. they each allocate a new array to hold their results), objects

cannot overlap in memory and thus partial aliases are not possible. In addition, for the

types of program section considered here (i.e. taken from a recurrence), any object

that is written to must have been allocated in the function due to the use of pure func-

tions (assuming they have been inlined). Destructive update hints would also allow the

compiler to immediately recycle objects, even within the same loop as they are read,

as long as the relevant antidependencies are introduced into the LDG and not violated.

Static dependence testing for the programs covered in this thesis would be very

simple once the conformability of two loops is known (see Section 7.3.3 for a descrip-

tion of the dependence structure).

9.1.4 Guarded sections

This section describes an approach to dealing with the envEnsure instruction in gen-

erated FOAM by creating sections of code where they have been removed.

152 	 Chapter 9. Prototype and LDG Construction

Domains are initialised at most once. Executing an envEnsurp instruction on a

pointer to an environment that already exists does nothing. Consequently, it ought

to be possible to eliminate a large number of them that can be shown statically (by

means of data flow analysis) to be dominated by another envEnsure applied to the

same environment. However, some may remain. In this instance, a section of code

without envEnsure instructions can be created by duplicating it and splitting control

flow such that either the original section of code or a new version with all envEnsure

instructions removed is executed, depending on the status of all the environments that

may be touched within the original section. If all the environments exist, the new

section can safely be executed. This guarded section can be optimised more intensively

than the original, as suggested above, as more precise information about the potential

alteration of lexical environments is available.

An arbitrary section of code can be guarded, provided all the environments that

may be touched within it are available to be tested at the head of the section. This

includes unknown closures that are available at the start of the section, but unknown

closures produced by other functions or fetched from nonconstant lexical variables

during the section may not be safe (although this could be attacked with further anal-

ysis). Guarded sections can contain arbitrary branching, but sections with no forward

branches have the benefit that the unguarded version will be executed at most once.

This dovetails neatly to the program section for an acyclic LDG, as discussed in Sec-

tion 8.1.

9.2 Prototype Implementation

The prototype implementation can be roughly split into two parts, the construction and

manipulation of the loop dependence graph and its fusion partitions, and the final step

of generating Aldor code for a fusion partition on the LDG. The whole prototype is

written in Aldor. Note that construction of the LDG refers here simply to the building

of the data structure using constructor functions rather than the analysis of a piece of

code to recover its LDG.

9.2. Prototype Implementation
	 153

9.2.1 LDG data structures

The construction of the LDG and fusion partition data structures is done using several

libraries, which can be separated into layers, each building on the next with further spe-

cialisation. The bottom layer is general utilities and data structures for undirected and

directed graphs, such as nodes, (directed) edges etc, and algorithms such as depth first

search, topological sorting etc. To this are added the extra components necessary for

an LDG, namely labelled edges (collapsible, non-collapsible etc). The fusion partition

data structure over LDGs is built on top of this, along with the associated algorithms

such as node numbering and enumeration. The final layer concerns the specifics of

code generation, and associates loop bodies with loop nodes, specifying the uses of

arrays (which arrays are read and written, and whether the result is a temporary), that

give rise to the data dependencies already represented in the LDG. It also contains the

methods to generate code from a fusion partition, part of which is the discovery of

contractible temporaries.

9.2.2 Code generation

Generating code for a given fusion partition on an LDG is relatively simple. Each loop

node in the LDG is labelled with the code from its body in a simple abstract syntax

tree (AST) form. The code represented by the AST consists of variables and opera-

tions from the scalar and/or Wilson subdomain level, with the body of the stencil term

operation to calculate the result at a specified site also available as a single function so

that it may be incorporated into an arbitrary loop. The partition nodes are processed in

order based on their ID number, and code generation proceeds one partition at time. To

generate the code for a given partition, the loop nodes in its sub-graph are topologically

sorted, the loop control code is written, and the bodies of the loops in this partition are

then written out (unparsed) in order to form one large composite body.

There are several minor points of interest in code generation. The first is preallo-

cating space for uncontracted temporaries by adding it to the lexical environment of

the function from which the LDG is taken. This means that temporaries are allocated

once for the entire run of the program, rather than having to allocate space for them for

154 	 Chapter 9. Prototype and LOG Construction

each call of the function with the associated garbage collection overhead. Secondly,

any array that has been labelled as contracted is replaced with a scalar temporary in

the AST before it is unparsed. The last is loop rerolling, which -applies to the Wilson

problem. If a partition does not involve the Wilson stencil term in any way, then any

operation involving spinor objects reduces to repeatedly applying a scalar operation to

every element of the spinor object in turn. As such, a loop of dimension n over spinor

objects can be replaced by a loop of dimension n x 12 over complex double floats. This

transformation is intended to ease pressure on the instruction cache.

The result of code generation is an Aldor source file consisting of loops and op-

erations from the scalar domain/Wilson subdomain stub files, and some small files

associated with temporary preallocation. These source files are included into the body

of a driver function in the original code using preprocessor directives, and the whole

lot is compiled to form part of an executable.

9.3 Issues with Prototype

There are a handful of issues with the prototype. The following sections describe sev-

eral problems that arise due to limitations of the current compiler, and their workarounds.

All workarounds exist within the language itself - thus they are mostly presentation or

modularity issues. The final section describes a potential problem with iterative op-

timisation in the context of Aldor's run-time system and the prototype, and how it is

taken into account.

9.3.1 Constant folding

Currently the Aldor compiler does not do constant folding for double precision float-

ingpoint values, despite the optimisation existing for single precision values. This

causes a slight inefficiency in some functions from the Projector package, which

can be circumvented by rewriting multiplication by a constant factor of i in terms of a

special function that does the same thing.

9.3. Issues with Prototype
	 155

9.3.2 Action of the mimer

In the case of type parameters to a functor, the information required for miming func-

tions from the parameter type only becomes available once the functor is instantiated

- i.e. when domains are assembled together. In theory, given the static information in

a top-level file that plugs together elements from a library of parameterised domains,

the compiler could instantiate all domains and produce flat codes by using aggressive

miming (assuming a restricted use of the domain mechanism). There are a number of

problems with this in practice though.

The miming pass starts from the top-level in the call tree and expands child func-

tions (including parameterised domains) based on some criteria, and subsequently adds

any new child functions to the pool of candidates considered for miming (see Section

2.3.1.1). In practice, the mimer usually runs out of steam before reaching the bot-

tom level of the domain hierarchy, leaving the most basic domains to be handled via

indirection. This is very inefficient.

Because of these problems with the mimer, some driver domains have no param-

eters. This is a simplification of the original design of the domains (see Appendix

D), where type parameters are profitably used in numerous places. These include the

Krylov space recurrence algorithm that very naturally generalises over the vector, op-

erator and scalar domains that it manipulates. Avoiding type parameters means that

the inliner has enough information to operate on each domain when it is compiled sep-

arately, in effect reversing the action of the mimer to bottom-up rather than top-down.

The use of parameterisation (and dependent types) is still present in its original

form in the category hierarchy however, as its presence there does not affect code

generation.

9.3.3 miming of generated code

There is no direct control over the compiler at the source level, so the only means of

controlling the extent of optimisations is through coarse settings on the command line

interface that are coupled in some way to the algorithms used by the compiler. After

the removal of domain parameters as described above, miming for the simple operator

156 	 Chapter 9. Prototype and LDG Construction

codes is not generally a problem. However, even with the most aggressive settings

the compiler sometimes has difficulty with the Wilson code, probably because the

subdomain functions that are being inlined, and specifically the (body of the) stencil

term itself, are much larger than their counterparts for the simple operator code. This

problem manifests as a sensitivity to the command line settings, with a fine balance

between not managing to fully inline all the stencil term and causing the compiler to

crash or fail to terminate.

The remedy employed for the Wilson problem is to compile a special version of

the body of the stencil term separately with aggressive settings and allow it to be called

as a function from within the generated loops. The stencil term body takes the source

vector, the gauge field, kappa and the index tuple of the site as arguments, and returns

the value of a 4-spinor object manually flattened into a collection of machine double

floats. A normal 4-spinor object cannot be returned due to the associated allocation

and garbage collection overheads which would otherwise swamp performance. This

flattening simulates what the emerger would to if the stencil term were properly inlined.

9.3.4 Emerging and unboxing hints

The emerger usually works well and removes all allocations for loops with double float

running sums (see Section 2.3.1.3) and general use of domains whose representation

uses a tree of boxed objects with multiple levels, such as the 4-spinor domain (which

is a record of colour vectors, which themselves are records of complex double floats,

which in turn are records of double floats).

The emerger does not however work fully for the accumulation of a complex double

float scalar for an inner product, removing only one level of boxing. This leaves the

allocation of two boxed double floats per iteration of the loop, which is enough to

destroy the overall performance of the code. The remedy for complex double floats is

to insert a custom function call, called an unboxing hint, into the source. The scalar

used for the running sum is passed as an argument to the unboxing hint immediately

after the inner product/norm loop, and the result becomes the value returned by the

function. The unboxing hint itself does nothing except copy the contents of its boxed

argument into two machine variables, and then copy the values from those variables

9.4. Summary 	 157

into a newly allocated complex double float which is then returned. The action of

the inliner and emerger completely removes the hint function, but its existence in the

source prompts the emerger to fully flatten the use of the running sum within the loop.

9.3.5 Data cache associativity

As mentioned in Section 7.2.3, loop fusion may increase the amount of live data for the

body of a loop, thereby putting pressure on cache associativity. The form of the loops

makes associativity problems unlikely as the amount of live data even for fused loops

is very small and the caches on the architectures used have more associativity than

simple direct mapping (see Section 10.3). However, it cannot be arbitrarily ruled out.

The allocation of memory is entirely controlled by the run-time system, which means

that potential associativity problems may occur "randomly" across runs of a binary, if

the pattern of allocation is not deterministic. Checks for this behaviour were performed

with several sets of tests which turned up little or no variation in the run-time, so this

effect was considered not to be a problem (for the architectures concerned).

A possible means of attacking this problem in future is to alter the run-time system

to be aware of the mapping that the cache uses so that the element of nondeterminism is

removed, and the allocation of objects to lines in the cache could be exposed to enable

a compiler to arrange object allocation to its own ends (e.g. to improve performance

by getting rid of associativity conflicts).

9.4 Summary

The first half of this chapter summarised techniques to recover an LDG from the

FOAM code generated by the Aldor compiler for programs derived from the algorith-

mic framework developed in this thesis. They include recovering control flow that has

been lowered to the level of labels and branches, identifying conformable loops in the

case of symbolic loop bounds, and recovering data dependencies between statements

(and loop iterations). Most of the analyses are straightforward and well represented

in the literature, but the implementation of lexical scoping and unpredictable control

flow introduced by run-time artefacts of the type system require some more careful

158
	

Chapter 9. Prototype and LDG Construction

consideration. Full investigation of these issues is left as future work.

The second half of the chapter introduced the prototype implementation (in Aldor)

of iterative collective loop fusion used for the experiments detailed in Chapter 10. It

consists of several libraries for the construction and manipulation of loop dependence

graphs, and a system for generating Aldor source code to represent the resulting fusion

partition. Due to the limitations of the current compiler, several simple modifications

had to be made to the harness surrounding the generated code and the generated code

itself. These included removing domain parameters and specialising a function due to

problems with the mimer, and adding hints to circumvent a problem with the environ-

ment emerger.

Chapter 10

Experimental Results

This chapter presents results collected using the iterative collective loop fusion algo-

rithm applied to an example taken from the application presented earlier in the thesis.

The experiments are conducted on two machines with substantially different architec-

tures and with three different operators. The results are compared against alternative

methods of collective loop fusion (greedy and max-flow mm-cut), and completely dif-

ferent methodologies such as using a different language (C/Fortran), and using assem-

bly kernels.

The goals of the experimental work are as follows:

To show that temporal locality is an important consideration for the style of

programs discussed in this thesis, in that targeting it through loop fusion and

array contraction provides significant speedups over the original programs.

To show that iterative loop fusion gives better performance than the two other

algorithms (under some assumptions about how they choose their solution).

To motivate the use of search - to compensate for the under-specification of the

choice of transformation using contraction amount and/or partition size in the

standard model. This is based on showing that transformations that result in the

same amount of contraction and/or partition size can give substantially different

performance.

To motivate the use of search to compensate for the distance of optimum solu-

159

160 	 Chapter 10. Experimental Results

tions on the standard model (using the metrics of fusion and contraction) from

the actual problem. This is based on showing that the heuristics are a reasonable

guide but do not automatically give the best transformations, and that the best

transformation differs for changes in hardware and the sub components of the

LDG (changing the operator does not change the LDG itself).

To provide some approximate quantitative comparison against alternative method-

ologies;

The results show significant benefits from our technique, which gives a speedup of

up to 3.7 over the original code. In addition, it outperforms the alternative methods

with a speedup of up to 1.41 over them, and is comparable to the alternative method-

ologies.

10.1 Example LDG

The example in this chapter is derived from the code for the general step of the two-

sided Krylov space update given in Figure 5.7. A decorated version of the associated

LDG is presented in Figure 10.1. A number of changes have been made from the true

LDG construct used for the experiments to make it more readable:

The LDG is presented with the scalar basic blocks added rather than simply the

edges resulting from dependencies carried by them.

Dependencies to a pseudo-node called "exit" have been added to show when a

value is still live at the end of the program section. This information is necessary

to know if array contraction is possible, but it is not strictly speaking represented

in the LDG as a node.

The type of each loop node is identified.

Input dependencies to data live-in to the program section have been added.

Some redundant dependencies have been deleted to reduce clutter.

W2
N

N

N
N

Wi 	 A"
/ N

~7P)3

N
N

N /

CAlL

10. 1. Example LOG
	

161

Key

data live-in to LDG region

D 	simple node

reduction node

operator application (stencil) node

basic block

input dependence

true dependence

	

> 	anti dependence

	

__ 	 fusion preventing true dependence

Figure 10.1: LDG from two-sided Lanczos algorithm

162
	

Chapter 10. Experimental Results

Table 10.1 Basic LDG properties

property 	 value

total number of loop nodes 	 18

number of simple nodes 	 13

number of reduction nodes 	 3

number of operator application notes 	2

total number of edges 24

number of fusion preventing edges 4

number of true dependencies

(including fusion preventing) 21

number of antidependencies 3

number of output dependencies 0

minimum number of partitions 	 3

total number of array temporaries 	12

maximum number of contracted

arrays (as determined by search) 	10

This LDG was constructed by hand for the purpose of the experiments, using the pro-

totype described in Section 9.2. The different types of loop node and the form of the

actual dependencies between them are described in Section 7.3.2. In this instance, the

fact that possible dependencies from a simple node to an operator application node are

obscured by the use of a dynamic data structure (the offset table) is irrelevant, as the

loops are not directly fusible even if the exact dependencies are known.

Some information on the constructed LDG is given in Table 10.1 (note that the

number of nodes and edges differs from Figure 10.1 as the scalar basic blocks and exit

node do not exist in the actual LDG).

10.2. Enumeration of Fusion Partitions 	 163

Table 10.2: Fusion partition information

FP size no. legal time to enumerate no. FPs with n contracted arrays

FPs (in minutes) 10 9 8 7 6

3 80 <1 2 24 39 13 2

4 3557 <1 4 174 960 1395 792

5 63801 <4 2 366 4974 17066 22362

6 633799 <57 0 307 10350 71951 178862

10.2 Enumeration of Fusion Partitions

The times taken to enumerate fusion partitions (FPs) of a particular size presented

in Table 10.1 were recorded using a moderately loaded departmental compute server.

They are intended as a rough guide as the implementation of the enumeration algo-

rithm itself is not particularly efficient, and the time taken to test individual partitions

dominates the overall cost of the approach.

Table 10.2 shows that the general method of starting with small fusion partition

sizes is a good approach to the problem of enumerating and testing the points in the

loop fusion/array contraction space. The (contraction amount, partition size) pair sets

(see SectiOn 8.2. 1) in the bottom corner of the search space are of a reasonable size for

this LDG and, from the points that were actually enumerated, it is possible to find some

fusion partitions with the most contraction even with a very small amount of search in

the very bottom corner of the space (i.e. partitions of size 3). Verifying the approach

against the number of fusion partitions with maximum contraction in the whole space

would be interesting but is almost certainly impossible due to its size, thus preventing

a complete evaluation of the heuristics.

164
	

Chapter 10. Experimental Results

10.3 Evaluation Environment

10.3.1 Machines

The machines used for the experiments in this chapter were a 1 GHz Pentium 3 (Cop-

permine) and a 2.6 GHz Pentium 4 (Northwood). Both architectures have split level

1 instruction/data caches and a unified level 2 cache, with 4-way set associativity in

the level 1 data cache and 8-way set associativity in the unified level 2 cache. The

Coppermine has 32 kB each for the level 1 caches, 256 kB of level 2 cache, 256 MB of

RAM and a 133 MHz frontside bus (FSB), whereas the Northwood has 8 kB each for

the level 1 caches, 512 kB of level 2 cache, 512 M13 of RAM and an 800 MHz FSB. As

well as different clock rates and memory hierarchies, the two processors have substan-

tially different internal organisation, including functional unit characteristics, pipeline

- 12 stages for the Coppermine, and 20 stages for the Northwood - and slightly dif-

ferent instruction sets (different short vector extensions). The operating system in both

cases is version 2.4.20 of the Linux kernel.

The choice of machines used for the experiments was limited by the development

status of the Aldor compiler. Although the compiler and its associated run-time system

have been ported to various UNIX platforms in the past, at the time of the experiments

the primary supported platform was x86/Linux. Currently, the two major suppliers

of binary compatible x86 processors for mid- to high-performance workstations are

AMD and Intel. AMD CPUs were not used to due to their reliance on direct mapped

caches and the possible problems this could pose for collecting performance results

(see Section 9.3.5). The only other recent Intel CPUs that could be used are those based

on the Prescott and Dothan1 cores; which bear some similarity to the Northwood and

Coppermine cores respectively, but these are left for future work alongside gathering

results from more different architectures (see Section 11.2.5).

10r later Pentium M derivatives.

10.3. Evaluation Environment
	 165

10.3.2 Compilers

The compilers were the Aldor compiler, version 1.0.1 generating C, the Intel C com-

piler icc version, 8.0 (used to compile the output from the Aldor compiler and any C

based codes), the Intel Fortran compiler if c version 8.0, and the GNU C compiler gcc

version 3.2.2 (used to compile the assembly code discussed in Section 10.6.2.3).

Optimisation switches for the Aldor compiler were chosen as follows:

-Q9 - to give a high level of optimisation and allow large amounts of inlining.

. -inline-all -inline-limit=15 - set inlining to very aggressive.

Optimisation switches for the icc/if c were chosen as follows:

-02 or -03 - C code generated from Aldor was compiled using -02 to invoke

general-purpose low-level optimisations such as register allocation, scheduling,

common subexpression elimination etc. but avoid high level loop transforma-

tions such as fusion, distribution, tiling, interchange etc. This option can also en-

able vectorisation and unrolling (see Section 10.7.3). For the Fortran programs,

the choice between the two was made empirically to give the best performance.

In practice there was no difference in code generated.

-xK (Pentium 3) or -xN (Pentium 4) - code generation specifically targeted at

the architecture in question (including SSE1/2 instructions).

-static - static linking of libraries.

-align -use aligned loads where possible.

-pref etch - insert software prefetch instructions.

-ip or -ipo - do intra-file (for icc on generated C) or inter-file (for if c on

Fortran) interprocedural optimisations.

-p - instrument for profiling.

166 	 Chapter 10. Experimental Results

The low level code generated by if c and icc are discussed in Section 10.7.3.

Optimisation switches for gcc were not used as the compiler only serves to stitch

together assembly macros.

10.3.3 BLAS routines

Any reference to BLAS routines refers to the level 1 BLAS binaries from the ATLAS

project [96] (version 3.4.2) for the respective machines. Note that these routines are

highly tuned assembly rather than compiler generated code, unlike the non-binary dis-

tribution or the high-level (2 and 3) BLAS routines generated by local search using a

machine and its compiler.

10.3.4 Generation of timing results

Profiles of executables were generated by instructing the Fortran/C compilers to in-

strument the code for profiling, and processing the results using the GNU profiling

tool gprof version 2.13.90.0.18. A single performance figure is taken as the total time

reported in the profile, and this measure is used everywhere except in Section 10.6.2

where a breakdown provided by the profile is discussed. Profiling is done when only

a single figure is required in order to check that the amount of time spent in domain

initialisation and garbage collection is negligible.

Times for a given code were generated by supplying a numerically difficult problem

(but not one that is ill-posed enough to cause fioatingpoint exceptions) and running the

Krylov space generation procedure or full iterative solver for 1000 iterations. These

lông runs were used to minimise noise in the results from sampling inaccuracies and

minimise the relative cost of run-time domain initialisation. All times are given in

seconds throughout the rest of this chapter.

Instrumented code is generated by the compiler at the entry and exit of any func-

tion that is compiled for profiling. Aldor code generation for the 3D and 4D operator

programs (see below for a description of the programs used for experiments) results in

a single C function that is invoked once per iteration. The code for the Wilson-Dirac

operator program contains one additional function call within an iteration to the oper-

10.4. Iterative Search Experiments' 	 167

ator itself, which takes a significant amount of time relative to the rest of the iteration.

Consequently, potential interference from code instrumentation was considered to be

minimal. The use of library routines in Section 10.6.2 introduces more instrumenta-

tion code at call sites (although the library code itself is not instrumented), but this was

again considered minimal due to the size of the vectors that each routine manipulates

for the Wilson-Dirac problem (their minimum size is 243kB per vector for a 64 grid).

10.4 Iterative Search Experiments

The iterative search experiments show how iterative collective loop fusion might be

used for the example LDG, and also give a general picture of the loop fusion problem

in a concrete setting. This amounts to testing the sets of (contraction amount, partition

size) pairs in Table 10.2 with reasonable sizes - i.e. the top row, the first column and

most of the second column. Throughout the rest of the thesis, (contraction amount,

partition size) is abbreviated as (c, p) - for example, (9c, zip) denotes the set of fusion•

partitions with four clusters and nine contracted arrays, and (lOc, 3-5p) denotes the

union of (lOc, 3p) , (lOc, zip) and (lOc, 5p).

Sets of (c, p) points were tested for different operator types (3D, 4D and Wilson-

Dirac as described in Chapter 6), machines (Pentium 3/4), and data set sizes. Note

that the Wilson-Dirac operator is only tested on the Pentium 4 as the Pentium 3 was

insufficiently powerful to run problems of a reasonable size and does not have the SSE2

instructions used by the assembly control in Section 10.6.2. Data set sizes are given as

the size of an individual vector, in terms of the length of one side of the uniform grid

that the vector represents. For the 3D and 4D problems, each site in the grid is 16 bytes,

whereas for the Wilson-Dirac problem each site is 192 bytes (ignoring the gauge field)

- see Chapter 6. Vector size ranges are intended to give examples of problems that are

feasible to solve on an individual workstation. For each size range and machine, the

smallest vector size fits within the level 2 cache and the largest vector size is larger

than the level 2 cache.

Note that for any (c, p) set that gets tested, all of its points are executed, so the

heuristics for choosing a subset of points to test within a given (c, p) set are not used.

168 	 1 	 Chapter 10. Experimental Results

However, the general approach of generating the elements of (c, p) sets with smaller

fusion partitions and/or more contraction is kept.

The results are grouped by operator, then machine, then data set size. Points on

the plots are labelled by the set they come from (i.e. a different point type for each

(c, p) set). This is denoted in the legend by the amount of contraction r and the size

of the partition s respectively in the shorthand form rcsp. The vertical axis denotes

execution time, so points closer to the bottom of a plot give better performance. The

horizontal axis denotes the rank of a point within a (c, p) set. Results for a (c, p) set are

sorted based on execution time before plotting (fusion partitions are not generated in

an order correlated with performance), so partitions of the same rank on different plots

do not necessarily correspond to the same fusion partition. The ranking is reversed (i.e.

larger number is better) to prevent all the important points bunching up in one corner,

so points further to the right within a (c, p) set have better performance. In addition,

the result of some sets are smeared out along the x-axis to improve visibility.

10.4.1 3D operator

10.4.1.1 Pentium 3

The following three plots show the performance of fusion partitions from various (c,

p) sets for the 3D stencil problem, on the Pentium 3. The different plots correspond to

different data set sizes.

10.4. Iterative Search Experiments
	 169

Plot of FP times, size 10, machine P3

0.65

0.6

;' 	0.55

0
0.5

a)
U)

a)
0.45

0
I— 	0.4

lOc3p 0
9c3p
8c3p *
7c3p 0
6c3p +

lOc4p x
lOcSp
9c4p
9c5p G

0.35
	— —

0.3' 	'
0 50 100 150 200 250 300 350 400

Partition rank, reversed

Figure 10.2: Performance of fusion partitions from various (c, p) sets for the 3D problem

on the Pentium 3 with grid size 103

Plot of FP times, size 30, machine P3

44

42

40
U)

38
0
0

36
a)
. 	34

Ca 32
I-

30

28

Oa

lOc3p 0
9c3p
8c3p *
7c3p 0
6c3p +

lOc4p x
lOc5p

9c4p
9c5p G

0 50 100 150 200 250 300 350 400

Partition rank, reversed

Figure 10.3: Performance of fusion partitions from various (c, p) sets for the 3D problem

on the Pentium 3 with grid size 30

170 	 Chapter 10. Experimental Results

Plot of FP times, size 50, machine P3

230

220

210

200

190

180

170

160

150

140

I 'fl

lOc3p
9c3p
8c3p
7c3p
6c3p

1 Oc4p
lOc5p
9c4p
9c5p

0

0
+
X
V

V

0

0 50 100 150 200 250 300 350 400

Partition rank, reversed

Figure 10.4: Performance of fusion partitions from various (c, p) sets for the 3D problem

on the Pentium 3 with grid size 50

In the latter two plots, the two members of (lOc, 3p) down in the bottom left corner

have the best performance, whereas in the first plot the best members of (9c, 4p) and

(9c, 5p) are ranked equal best. The step-like banding of performance in the first plot

arises from quantisation effects due to the executable having a short run-time.

For the two large (c, p) sets, the plots show fairly large difference in performance

between the best and worst points. There is a tendency for differences between neigh-

bouring points to be small across the majority of the set, but they get larger at either

extreme with the largest jumps occurring between the worst performers (toward the

top of the plots on the left-hand side). This is also reflected in the smaller (c, p) sets.

The amount of array contraction appears to be the biggest factor in determining prfor-

mance when comparing the best performers from different sets, with more contraction

being better. Some results run counter to this though --for example, the best fusion

partition from (8c, 3p) in the second plot is better than the best fusion partition from

(9c, 5p). Also, there is significant overlap between sets over their full range, and size

of fusion partition does play a role. For example, there are many members of (9c,

3-5p) that are better than the worst member of (lOc, 5p) in the third plot, and in all

10.4. Iterative Search Experiments 	 171

three plots the best member of (9c, 4.p) is better than the best member of (9c, 3p) even

though its fusion partitions are larger.

Changing data set size does not appear to dramatically affect the overall shape of

a set, but does appear to alter the position of the sets relative to one another. Note that

the sorting of sets by performance before plotting means that the points on different

plots in the same position do not necessarily correspond, and therefore the same shape

of (c, p) set on different plots may result from a completely different order of rank for

the fusion partitions involved.

10.4.1.2 Pentium 4

The following three plots show the performance of fusion partitions from various (c,

P) sets for the 3D stencil problem, on the Pentium 4. The different plots correspond to

different data set sizes.

Plot of FP times, size 30, machine P4

7.5

7

6.5

lOc3p 0

9c3p
8c3p)E

7c3p 0

6c3p +
lOc4p x
lOc5p
9c4p
9c5p e

4

35
0 50 100 150 200 250 300 350 400

Partition rank, reversed

Figure 10.5: Performance of fusion partitions from various (c, p) sets for the 3D problem

on the Pentium 4 with grid size 30

172
	

Chapter 10. Experimental Results

Plot of FP times, size 50, machine P4

36

34

32
C,,
'0 30
0
0

28
a)
E 26

24
I—

22

20

ig

)IE

lOc3p 0
9c3p
8c3p *
7c3p 0
6c3p +

lOc4p X
lOc5p 	V
9c4p
9c5p o

0 50 100 150 200 250 300 350 400

Partition rank, reversed

Figure 10.6: Performance of fusion partitions from various (c, p) sets for the 3D problem

on the Pentium 4 with grid size 50

Plot of FP times, size 70, machine P4

105

100

95

90

85

80

75

70

65

60

55

lOc3p
9c3p
8c3p
7c3p
6c3p

lOc4p
lOc5p
9c4p
9c5p

0

0
+
X

V V

0

0 . 50 100 150 200 250 300 350 400

Partition rank, reversed

Figure 10.7: Performance of fusion partitions from various (c, p) sets for the 3D problem

on the Pentium 4 with grid size 703

10.4. Iterative Search Experiments 	 173

For the Pentium 4, the larger fusion partitions with the maximum contraction (i.e.

members of (lOc, 4-5p)) give the best performance across all data set sizes, unlike the

Pentium 3 where members of (lOc, 3p) give the best performance for larger problem

sizes. Apart from this, the analysis of the plots for the Pentium 3 largely carries over to

the Pentium 4. However, the difference in performance between neighbouring points

at either end of a set is less and the separation between sets is somewhat clearer. Also,

array contraction seems more dominant in determining performance, and there is less

overlap between the (c, p) sets with the maximum contraction (10) and those with less.

Somewhat surprisingly, the best members of (9c, 5p) are close to the absolute best

performance for the larger data set size.

10.4.2 4D operator

10.4.2.1 Pentium 3

The following three plots show the performance of fusion partitions from various (c,

p) sets for the 4D stencil problem, on the Pentium 3.

Plot of FP times, size 6, machine P3

0.9 +

0.8
8
G)

0.7

CO 0.6
I-

0.5 * 	

V

lOc3p 0

9c3p
8c3p *
7c3p 11
6c3p +

lOc4p x
lOc5p
9c4p
9c5p 0

0.4
0 50 100 150 200 250 300 350 400

Partition rank, reversed

Figure 10.8: Performance of fusion partitions from various (c, p) sets for the 4D problem

on the Pentium 3 with grid size 6

200

190

180

170

160

150

140

130

120

110

174
	

Chapter 10. Experimental Results

Plot of FP times, size 12, machine P3
40

38

36
0
. 	34
0
0

32
0
E 30

28
I—

26

24

22

lOc3p 0
9c3p £
8c3p *
7c3p 0
6c3p +

lOc4p)<
lOc5p v
9c4p
9c5p o

0 50 100 150 200 250 300 350 400

Partition rank, reversed

Figure 10.9: Performance of fusion partitions from various (c, p) sets for the 4D problem

on the Pentium 3 with grid size 12

Plot of FP times, size 18, machine P3

lOc3p 0
9c3p
8c3p)IE
7c3p n
6c3p +

lOc4p x
lOc5p

9c4p
9c5p 0

0 50 100 150 200 250 300 350 400

Partition rank, reversed

Figure 10.10: Performance of fusion partitions from various (c, p) sets for the 4D prob-

lem on the Pentium 3 with grid size 18

104. Iterative Search Experiments
	 175

Broadly similar patterns to those described in the analysis for the 3D operator on

the Pentium 3 apply to these plots for the 4D operator. However, the best result in the

first plot is a fusion partition with maximum contraction from (lOc, 4p) , rather than

(lOc, 3p) in the latter two plots.

10.4.2.2 Pentium 4

The following three plots show the performance of fusion partitions from various (c,

p) sets for the 4D stencil problem, on the Pentium 4. The different plots correspond to

different data set sizes.

Plot of FP times, size 8, machine P4

0.85

0.8

0.75

I

ft

CO

0.55

0.5k.

Oc3p 0

9c3p
8c3p 	IE

7c3p 0

11
6c3p +
Oc4p x
Oc5p
9c4p
9c5p G

0.45
0 50 100 150 200 250 300 350 400

Partition rank, reversed

Figure 10.11: Performance of fusion partitions from various (c, p) sets for the 4D prob-

lem on the Pentium 4 with grid size 8

176
	

Chapter 10. Experimental Results

Plot of FP times, size 16, machine P4
26

24

22

l Oc3p 0

9c3p
8c3p)IE

7c3p E

6c3p +
lOc4p)<
lOc5p
9c4p
9c5p G

A N I S4, - 3,
12

10 	 I 	 I 	 I

0 50 100 150 200 250 300 350 400

Partition rank, reversed

Figure 10.12: Performance of fusion partitions from various (c, p) sets for the 4D prob-

lem on the Pentium 4 with grid size 16

Plot of FP times, size 24, machine P4
120

110

lOc3p 0

9c3p
8c3p)IE

7c3p E

6c3p +
lOc4p x
lOc5p V

9c4p
9c5p 0

ci,
. 	80 	"

16 	
70

60 Fx

50 L

0 J'J IVU IJJ ULI 0U OUV ,)OU '4UU

Partition rank, reversed

Figure 10.13: Performance of fusion partitions from various (c, p) sets for the 4D prob-

lem on the Pentium 4 with grid size 24

10.4. Iterative Search Experiments 	 177

The plots are similar to those for the 3D operator on the Pentium 4. The latter two

plots show a lessening of the separation between the worst performers in a given set,

giving a sharper step down between ranks 50 and 100, and all three plots suggest that

the influence of array contraction is less dominant as there is more overlap amongst

sets. The best performance comes from the larger fusion partitions with the maximum

contraction, (lOc, 4-5p) , across all data set sizes, but interestingly the best members

of (9c, 4p) and (9c, 5p) come close. The first plot shows similar quantisation effects

to earlier plots from small data set sizes on the Pentium 3.

10.4.3 Wilson-Dirac operator

10.4.3.1 Pentium 4

The following five plots show the performance of fusion partitions from various (c,

p) sets for the Wilson-Dirac stencil problem, on the Pentium 4. The different plots

correspond to different data set sizes. Results for an extra (c, p) set are plotted for this

operator (namely (9c, 6p)) to investigate the anomalous performance behaviour.

Plot of FP times, size 6, machine P4

9

8.5

7.5

lOc3p
9c3p
8c3p
7c3p
6c3p

1 Oc4p
lOcSp

9c4p
9c5p
9c6p

0

*
0
+
X
V

V

0
0

6.5
0 50 100 150 200 250 300 350 400

Partition rank, reversed

Figure 10.14: Performance of fusion partitions from various (c, p) sets for the Wilson-

Dirac problem on the Pentium 4 with grid size 6

23

22

Plot of FP times, size 8, machine P4
29

28

27

lOc3p 0
9c3p
8c3p)
7c3p 0
6c3p +

lOc4p x
lOc5p v
9c4p
9c5p G

9c6p 0

0 50 100 150 200 250 300 350 400

Partition rank, reversed

66
0
C-)

64

E 62

CZ
60

I-

58

56

54

Plot of FP times, size 10, machine P4
72

70

68

lOc3p 0
9c3p
8c3p)
7c3p n
6c3p +

lOc4p x
lOcSp v
9c4p
9c5p o
9c6p c

0 50 100 150 200 250 300 350 400

Partition rank, reversed

178 	 Chapter 10. Experimental Results

Figure 10.15: Performance of fusion partitions from various (C, p) sets for the Wilson-

Dirac problem on the Pentium 4 with grid size 8

Figure 10.16: Performance of fusion partitions from various (c, p) sets for the Wilson-

Dirac problem on the Pentium 4 with grid size 104

290

280

270

230

10.4. Iterative Search Experiments
	 179

Plot of FP times, size 12, machine P4

155

150

145
0)
V
C o 140
C)
a)

135
E

130

125

120

iic

lOc3p 0

9c3p
8c3p)K

7c3p 0

6c3p +
lOc4p x
lOc5p
9c4p
9c5p 0

9c6p 0

0 50 100 150 200 250 300 350 400

Partition rank, reversed

Figure 10.17: Performance of fusion partitions from various (c, p) sets for the Wilson-

Dirac problem on the Pentium 4 with grid size 12

Plot of FP times, size 14, machine P4

lOc3p 0

9c3p
8c3p
7c3p 0

6c3p +
lOc4p x
lOc5p
9c4p
9c5p 0

9c6p 0

0 50 100 150 200 250 300 350 400

Partition rank, reversed

Figure 10.18: Performance of fusion partitions from various (c, p) sets for the Wilson-

Dirac problem on the Pentium 4 with grid size 14

180 	 Chapter 10. Experimental Results

The above plots show that, somewhat surprisingly, the best performance is no

longer given by a fusion partition with the maximum contraction (although the dif-

ference is not pronounced), but by members of (9c, 6p). See Section 10.7.2. Also,

performance across a (c, p) set is less consistent than for the other problems. This can

be seen by the more pronounced dip as performance nears the best result for any given

set (i.e. toward the right hand side), which gets more exaggerated as the data set size

increases, to the point of having a separate cluster of "best" points.

10.4.4 Variability within (C, p) pair sets

This section aims to give some idea of the potential inaccuracy of assuming that all

members of a (c, p) set produce equal performance on an actual machine.

Variability within (c, p) sets is presented as the time of the worst result as a per-

centage of the best for a combination of machine, operator type, and data set size.

Only operator and machine are given as separate axes, as including data set size as

well would make the tables too large. Instead, the largest variation out of all the data

set sizes is used. The results are presented in Table 10.3, and clearly show the degree

of inaccuracy resulting from treating all members of a (c, p) set as equal. Any broader

grouping, such as contraction amount alone, will be even less accurate. Of particular

interest are the sets of size 3 and 4 with the maximum contraction (10), as these sets

usually contain the best result.

Examining the results shows that search is a useful addition to loop fusion and ar-

ray contraction, due to the under-specification of the standard approach to the problem

- that is, relying purely on contraction amount or fusion partition size. In the particular

instance of the LDG presented here with the 3D and 4D operators, the three (c, p) pair

sets containing the best results measured by contraction are small (eight elements in

total) and have fairly low variability across their combined members. However, it is

clear that in general the larger (c, p) pair sets have high variability (up to 130%), so

different LDGs with larger numbers of fusion partitions with the maximum contrac-

tion stand more to gain by the application of the technique. Also, all the sets with

the maximum contraction ought to be tested as the smallest fusion partitions with the

maximum contraction are frequently not the best, and LDGs that have lots of different

10.4. Iterative Search Experiments 	 181

Table 10.3: Variability within (c, p) pair sets (as % of best)

Pentium3 	 Pentium4

(c, p) pair set 3D 4D 3D 4D Wilson-Dirac

(10c, 3p) 3 8 4 4 3

(9c, 3p) 59 55 35 50 8

(8c, 3p) 64 91 29 44 11

(7c, 3p) 50 68 20 37 9

(6c, 3p) 28 3 2 3 2

(10c, 4p) 9 14 10 22 5

(10c, 5p) 28 4 1 4 1

(9c, 4p) 116 79 41 56 14

(9c, Sp) 93 130 46 62 20

(9c, 6p) 31

(10c, 3-5p) 	55 	21 	10 22 	5

size fusion partitions with the maximum possible contraction ought to see significant

benefit. For example, the maximum variation across different size partitions with the

maximum amount of contraction (i.e. (lOc, 3-5p)) is 55%, which gives a more accu-

rate picture of the need for search to find a good solution. The amount of potential gain

is proportional to effort - small sets are cheap to search, and larger sets typically have

more variability that must be dealt with - so the technique introduces little overhead

when there is less gain to be exploited.

10.4.5 Variability across setting

Variability across operator/machine/data set size shows the necessary limitations of

any static approach that makes its decisions based purely on the LDG. Assuming that

some hypothetical static method picks the fusion partition that gives the best known

result in a given setting (i.e. combination of operator/machine/data set size such as the

3D operator on a Pentium 3 with data set size 50), that particular fusion partition may

not be the best for other settings (e.g. 4D operator on a Pentium 4 with data set size

182 	 Chapter 10. Experimental Results

Table 10.4: Best case time for 3D vs. FP from best case for other settings

best case FP from other:

machine 	size best operator (41)) operator (Wilson) machine

Pentium3 	10 0.30 0.32 0.32 0.34

30 26.3 29.7 33.25 30.5

50 136.8 147.2 162.0 147.2

Pentium4 	30 3.83 3.90 4.48 4.55

50 18.5 18.6 21.2 21.7

70 55.34 55.7 59.4 62.7

70). This can be highlighted by picking a given setting, collecting the fusion partitions

that were found to be the best in other settings and trying them On this problem. The

discrepancy between the worst result from the other "best" fusion partitions and the

actual best for this problem gives some measure of how any method that chooses its

result based purely on information from the LDG lacks portability across operator type,

machine etc.

Rather than varying all the options at once, we limit ourselves further by only

changing one of the three (i.e. operator, data set size, machine) at a time, which gives

an even stronger result. This excludes the Wilson problem however, as the experiment

was not done on the Pentium 3, and so comparing it against results for that machine

necessarily involves changing both operator and machine. The results are given in

Tables 10.4, 10.5 and 10.6. Data set size is not given as a separate option as it tended

to give little or no variation.

The results show that picking the optimum LDG transformation in a given setting

can lead to missing the optimum in a different setting by > 30%. An important ad-

vantage of search is that it offers portability by coping with the different choice of best

fusion partition as the data set size, machine or program (operator) changes.

10.4. Iterative Search Experiments
	 183

Table 10.5: Best case time for 4D vs FP from best case for other settings

best case FP from other:

machine 	size best operator (3D) operator (Wilson) machine

Pentium3 	6 0.41 0.51 0.50 0.46

12 22.3 28.8 28.0 24.9

18 118.6 152.4 156.6 137.5

Pentium4 	8 0.49 0.50 0.52 0.55

16 11.4 11.4 12.4 13.3

24 59.75 61.1 65.8 67.0

Table 10.6: Best case time for Wilson vs. FP from best case for other settings

best case FP from other:

machine 	size best operators (314D) P3 operator (314D) P4

Pentium4 	6 6.55 7.26 7.01

8 22.3 24.6 23.7

10 55.4 61.5 59.3

12 117.2 130.8 126.3

14 226.7 253.6 243.9

184 	 Chapter 10. Experimental Results

10.5 Control Experiments

To give some context for the best results achieved using iterative collective loop fu-

sion in the previous section, we compare the results with some control experiments.

The first control is simply the original Aldor programs with no fusion or contraction

to show whether the optimisations improve program performance. .The second set of

controls are alternative (static) loop fusion strategies taken from the literature. The

third set of controls are completely different methodologies. These include a function-

ally equivalent program written in Fortran, and combinations of assembly code and C

code.

10.5.1 Naive control

This is simply the original program with no fusion (and hence no contraction) applied.

The results are given in Tables 10.7, 10.8 and 10.9.

Loop fusion and array contraction clearly bring important benefits on these ma-

chines. The range of speedups against the naive control over the different experiments

is 2.1 —3.7 for the 3D/4D problem, and 1.38— 1.43 for the Wilson problem.

10.5.2 Other methods of collective loop fusion

To give some idea of how other methods from the literature compare to fusion parti-

tion enumeration, we implemented versions of the max-flow mm-cut heuristic method

presented in [37], and the simple pair wise greedy algorithm presented in [52]. The

more complex version of the algorithm presented in the latter paper is not considered

as it is functionally equivalent to the simple method, and the time to compute the fu-

sion partitions calculated by the controls is not the main focus, but rather which fusion

partition they produce.

In both control algorithms not all steps are completely specified, so how they are

implemented will affect which fusion partition they produce. The most extreme of the

two is the greedy algorithm. Given an LDG in which all edge weights are equal, there

may be many pair wise collapsing actions that are ranked equally at a given step of the

algorithm, and therefore many different fusion partitions could be generated depending

10.5. Control Experiments
	 185

Table 10.7: Times from best search and control methods for the 3D problem

machine size best search greedy max-flow mm-cut naive

Pentium3 	10 0.30 0.37 0.37 0.72

30 26.3 33.7 32.7 69.5

50 136.8 186.3 163.6 329.6

Pentium4 	30 3.83 4.3 5.1 9.4

50 18.5 21.3 24.8 43.8

70 55.3 64.2 76.6 122.3

on how a selection is made from equally ranked alternatives. Thus, fusion partitions

of different sizes with different numbers of contracted arrays are possible depending

on this degree of freedom. For the max-flow mm-cut method, any subgraph that must

be partitioned may have a number of different minimum cuts that are ranked equal.

So, this method gains over the greedy algorithm in that it will always produce fusion

partitions of the same size and contract the same number of arrays, but the particular

choice of fusion partition with that degree of contraction is still not specified.

This makes providing, a precise set of control experiments difficult. Instead, we

attempted to measure the cases that can result by varying this degree of freedom, and

compare them to enumeration. For the both algorithms, these points were determined

by some brute force search over the tree of possible transformation sequences resulting

from multiple equally ranked choices at any given step. The whole space of choices

could not been enumerated as it is too large 2 The results are given in Tables 10.7,

10.8 and 10.9.

From the relatively small amount of space that could be searched in the time avail-

able, the greedy algorithm always produced a (9c, 3p) fusion partition, and max-flow

mm-cut produced a (8c, 3p) fusion partition.

The results show that iterative collective loop fusion is consistently better than

the greedy or max-flow mm-cut methods. The argument is complicated by the fact

2Although many different sequences of choice for the greedy algorithm result in the same fusion
partition, it is not possible to directly list the distinct fusion partitions that will be created without
considering the choices involved in generating them.

186
	

Chapter 10. Experimental Results

Table'10.8: Times from best search and control methods for the 4D problem

machine size best search greedy max-flow mm-cut naive

Pentium3 	6 0.41 0.56 0.58 1.53

12 22.3 26.6 28.4 55.2

-18 118.6 141.3 148.5 291.1

Pentium4 	8 0.49 0.67 0.68 1.08

16 11.4 13.1 15.6 24.4

24 59.7 69.7 79.2 126.9

Table 10.9: Times from best search and control methods for the Wilson problem

machine size best search greedy max-flow mm-cut naive

Pentium4 	6 6.55 7.48 8.00 9.42

8 22.3 24.9 26.4 31.9

10 55.4 63.0 66.8 79.1

12 117.2 133.9 140.5 164.3

14 226.7 261.9 270.9 314.6

10.6. Other methodologies 	 187

that the results given by these methods are not entirely specified, but it holds under

some reasonable assumptions about their efficacy. Our technique offers a speed up of

1.36 over worst-case greedy and 1.41 over worst-case max-flow mm-cut for the 3/4D

problem, and 1.15 and 1.22 respectively for the Wilson problem.

10.6 Other methodologies

This set of controls is intended to give some idea of how iterative collective loop fusion

as a tool compares against other approaches. Two alternatives are considered. The first

is a version of the QMIR algorithm implemented in Fortran (the full solver had to be

used for the comparison, as described below). The second is a set of experiments based

on the original Aldor program for the Krylov update step considered in the previous

sections, with alterations to use high-performance binary BLAS routines to manipulate

vectors.

10.6.1 Fortran 3D stencil

This program is a version of the 3D stencil code written completely in Fortran 77 and

compiled from source. Fortran is widely used for numerical scientific computation, so

this control provides important context for the optimisation results.

QMRpack is a well-known and freely available implementation of the QMR al-

gorithm [33]. The code does not come with any implementation of the operator, but

is designed to be joined to code to calculate applications of an operator by means of

callbacks. Vector operations are handled using standard level 1 BLAS style routines,

supplied as and compiled from source. Note that this means that some degree of fusion

is already built in due to the form of the BLAS routines.

The original code from QMRpack had to be modified/supplemented in several

ways. Firstly, as there is no operator we added Fortran code to apply the stencil. Sec-

ondly, the code is designed to skip certain steps of the algorithm based on floatingpoint

error tolerances, and these branches were removed to make the amount of "work" (in

terms of vector operations) fixed and equal to that of the Aldor code. Finally, all the

source files for the whole program were compiled using the cross-file inlining options

188 	 Chapter 10. Experimental Results

Table 10.10: Times for linear solve (search vs. Fortran)

machine size best search Fortran

	

Pentium3 10 	0.58 	0.36

	

30 	43.4 	64.1

	

50 	209.1 	303.7

	

Pentium4 30 	5.26 	7.20

	

50 	24.5 	33.6

	

70 	71.6 	95.6

of I f to remove any artificial barriers to optimisation by the compiler.

One important difference needs to be highlighted for this control experiment. All

other experiments in this chapter deal with an LDG derived from a Krylov space update

procedure. This is primarily because this procedure dominates execution time for a

two-sided solver and gives by far the largest LDG with the richest structure, and hence

the most interesting and challenging optimisation problem. There is no reason why

the same technique could not be applied to the update steps for the other recurrences,

but a lack of time prevented us from performing the experiments. However, because

QMRpack is an entire solver, the comparison must be performed against a full Aldor

solver assembled from the three separate recurrences. For this we used the best fusion

partition of the two sided Lanczos process discovered by search, along with the search

recurrence and solution update recurrence (from the template) described in Chapter 5,

each of which were separately fused and contracted by hand. Both of the search and

solution update recurrence can be trivially fused into a single loop with the maximum

possible array contraction. The results are presented in Table 10.10.

Although it is hard to give a precise measure when comparing substantially dif-

ferent approaches to a problem, it is clear from the results that the performance of

programs compiled in Aldor using iterative collective loop fusion is at the very least

competitive for these types of problem with an equivalent program written entirely in

Fortran and compiled by a mature commercial optimising compiler. The Aldor version

does better in all but one case, with the relative performance gain being 1.46 on the

10.6. Other methodologies 	 189

Pentium 3 (ignoring the smallest problem size) and 1.35 on the Pentium 4. For more

details on the code generated by the two different approaches, see Section 10.7.3.

The direct cost of using the higher order features that remain after optimisation

must be fairly small, as the Aldor version outperforms the Fortran version (with no

higher order features) in all but one case. Based on this, it is reasonable to suggest

that problems with higher order features are more likely to arise indirectly through

extra load on the garbage collector (if the programmer is not managing storage) or lost

opportunities to do optimisation across components. This argument can be extended

to Aldor programs in general.

The splitting of the algorithm into three recurrences does not introduce any more

barriers than implementing the algorithm using BLAS style routines, so, if barriers

between components are already enforced by the use of opaque libraries (see below).

Aldor is a prime candidate for writing the glue code. However, it should be noted that

these experiments tend to play down the overheads of the language (such as the run-

time costs of domains and very large code sizes) as the active portions of the programs

are small, and they are run for a long time to minimise noise in the profiles. The

overhead is revealed when contrasting the results for Aldor and Fortran for the smallest

problem size.

10.6.2 Use of high-performance libraries

These control experiments take the original Aldor program for the general update step

of the two sided Lanczos algorithm and replace the manipulation of vectors with high-

performance BLAS routines (which is equivalent to introducing a certain amount of

fusion by hand).

Three different versions of the operator are used with this harness - the original

written in Aldor, a version written in C and a version written in assembler. These three

experiments are intended to provide a comparison between the "bottom-up" approach

of starting with an algorithm in some language and substituting compute intensive

parts of the program with small sections of extensively tuned code against the less

intensive but more global approach of fusion/contraction. Although the original Aldor

program is used as the harness, this is largely irrelevant as almost no time is spent

190 	 Chapter 10. Experimental Results

outside of the work intensive routines (i.e. the operator and BLAS routines), so the

version with the operator written in C can be can be considered equivalent to starting

from an implementation purely in C and adding binary BLAS routines.

The results for all three versions are given in Table 10. 11, along with a comparison

to the best search result. A breakdown of where the time is spent in each of three

versions is given in Table 10.12.

10.6.2.1 Aldor + BLAS

This control is an implementation of the two-sided Lanczos process using the Wilson-

Dirac operator, where vector operations have been replaced by high performance BLAS

binaries.

10.6.2.2 C + BLAS.Wilson-Dirac stencil

This program is the same as that above, but the Wilson-Dirac operator has been re-

placed by a version written in C [82].

10.6.2.3 Assembly code + BLAS Wilson-Dirac stencil

This is similar to the C based version described above, but represents a further step

along the path of local specialisation by using an application/machine-specific hand

written assembly routine for the delta term [59]. As only the delta term is supplied,

calculating the full stencil term needs a subsequent axpy, and this is performed using

a BLAS routine. This is reflected in the breakdown, which shows significantly more

time spent in the BLAS routines than for the other two versions.

The results show that, for the Wilson problem, using optimising transformations

and compiling from Aldor source is competitive with the approach of starting from

Aldor or C and substituting generic high-performance routines where possible, giving

a small speed up of around 3 - 7%. It does less well against the combination with the

assembly based operator. These results are discussed in detail in Section 10.7.4.

191 10.6. Other methodologies

Table 10.11: Times for alternate methodologies vs search, Pentium 4

BLAS augmented version

size best search Aldor C asm

6 6.55 6.77 6.94 4.84

8 22.3 23.74 24.51 17.82

10 55.4 59.33 61.54 45.63

12 117.2 125.50 130.00 96.06

14 226.7 241.84 251.61 179.52

Table 10.12: Breakdown for alternate methodologies, Pentium 4

stencil or delta term BLAS rest of code.

size Aldor C asm Aldor C asm Aldor C asm

6 4.84 5.56 3.18 1.85 1.33 1.59 0.08 0.05 0.07

8 17.69 18.87 10.48 5.99 5.50 7.25 0.06 0.14 0.09

10 44.47 46.73 26.7 14.67 14.60 18.71 0.19 0.21 0.22

12 94.27 99.34 55.73 30.85 30.25 39.94 0.38 0.41 0.39

14 183.32 192.37 104.72 57.72 58.41 74.01 0.8 0.83 0.79

192 	 Chapter 10. Experimental Results

10.7 Discussion of Results

This section presents some broader discussion of the result presented previously.

10.7.1 Interloop locality in Aldor

Interloop locality is likely to be important for the performance of Aldor programs

on cache based architectures as a result of the modular structure that the language

encourages. This can be extended to general cross-component optimisations, and other

goal functions for which temporal locality is important.

10.7.2 Search

As well as giving portability and dealing with variation within (c, p) sets, search is

a useful addition to loop fusion and array contraction due to the non-triviality of the

problem. By this it is meant that maximum array contraction does not always give the

best result (and neither does minimum size). An example of this is the Wilson problem.

For these experiments the extra benefit of searching the larger fusion partitions is not

great, 5%, but different LDGs may provide examples where there is larger benefit to

be had when searching away from the sets with maximum contraction.

It is not obvious why this pattern occurs for the Wilson problem. The best fusion

partition always places each stencil term on its own in a separate loop, and again it is

not immediately obvious why this gives the best performance. An important distin-

guishing factor for the Wilson problem is that the code required to execute the stencil

is much larger than the equivalent for the 3D and 4D problems, as well as requiring

many more operations. Consequently, instruction cache behaviour and the use of loop

rerolling (see Section 9.2.2) may all be important, alongside secondary factors such as

data prefetch hardware etc.

10.7.2.1 The greedy algorithm

The comparison of searching for good fusion partitions vs. a simple greedy algorithm

probably flatters the greedy method somewhat. This is because the LDG does not have

10.7. Discussion of Results 	 193

any bad local minima that the greedy method might get stuck in, and the variability

of the (c, p) set that it reaches is artificially low. A general investigation of potential

problems with the greedy approach requires some notion of an "average" LDG though

- see the future work in Chapter 11.

10.7.2.2 Best fusion partitions

A handful of fusion partitions recurred as the best choice in several different settings,

mostly for different operators on the same machine. This suggests that there may be

further features of a fusion partition other than just its size and the amount of contrac-

tion that consistently indicate that it is likely to be a good choice for a given machine.

10.7.3 Code generation

This section highlights some points about code generation for the target machines.

10.7.3.1 The architectures

The Pentium 4 has a small architectural register file, a high clock rate and correspond-

ing long relative access latency to main memory, and short vector instructions for float-

ingpoint arithmetic (SSE2). The , first two points suggest that there are likely to be sig-

nificant latency hiding benefits from issuing software prefetch instructions (although

some of this may be covered by the limited automatic hardware prefetching), and the

third suggests that proper utilisation of short vector instructions will give a significant

boost to performance on floatingpoint intensive programs. The Pentium 3 is similar,

but has a lower clock rate and less latency problems, no hardware prefetching, and its

short vector instructions (SSE1) are only single precision and therefore not suited to

the programs in this thesis.

For a given section of code, the potential return from specialised code generation

is likely to be large for the Pentium 4. The exploitable potential for the Pentium 3 is

likely to be less given that only software prefetching is applicable and the latency to

main memory is less severe. However, the lack of hardware prefetching may make the

latency problem more important.

194 	 Chapter 10. Experimental Results

10.7.3.2 Code generated by icc and if c

Examining the output of icc resulting from Aldor generated C shows that vectorisa-

tion is not done for the Pentium 4 (it is not possible for the Pentium 3). The compiler

produces "scalar" SSE2 instructions, which, strictly speaking, are from the short vec-

tor instruction set, but they only operate on one rather than two operands at a time.

This apparently redundant strategy is understandable in light of the well-documented

poor performance of the Pentium 4 on x87 instructions. The lack of vectorisation is

hardly surprising given the output of the Aldor compiler and the potential difficulties

of recovering alias information from it. However, vectorisation was not performed by

if c for the Fortran programs either, and this was unchanged by adding -fno-alias

(i.e. assume no aliasing in the program) which is more surprising. Software prefetch

instructions were rarely issued in any of the generated assembly code, and no loop

unrolling appeared to be done by either compiler.

The amount of inlining performed on the Fortran codes by if c was small, being

limited to all but the smallest routines. In addition, it did not perform any high level

loop restructuring (including fusion/distribution) even with -03 enabled, possibly as a

result of the lack of inlining. No miming of any of the significant routines was formed

by icc, probably due to the large amount of miming done by the Aldor compiler.

The failure of icc to produce vectorised and adequately prefetched code from the

generated C affects the discussion on local code tuning (below) and prompted several

of the suggestions for future work (see Chapter 11).

10.7.4 Local tuning and code generation

This section presents a detailed discussion of the results of comparing iterative col-

lective loop fusion against the substitution of sections of code with BLAS routines or

assembly (for the operator) on the Pentium 4.

10.7.4.1 Generated code versus BLAS routines

The machine code for the level 1 BLAS binaries is reasonably assumed to be substan-

tially better than that which a standard compiler would produce from equivalent source

10. 7. Discussion of Results 	 195

code. This is due to the authors having information that the compiler does not, as well

as more sophisticated strategies to get better performance, and the high relative gain

available from targeting certain features of the Pentium 4 when compared to a compiler

that does not (see Section 10.7.3). However, the tuning effort is limited to very small

components in isolation and misses opportunities for optimisation across the bound-

aries between them. Compiling from Aldor (via icc) using fusion/contraction thus

pits the exploitation of global knowledge with comparatively weak subsequent code

generation against local tuning.

Given the form of the level 1 BLAS routines, and assuming they are perfectly

prefetched and use the short vector instructions, their operation can be broken down

into three stages. The first is filling the logical pipeline by issuing loads/prefetches

and waiting for the first operands to appear, the second is when the pipeline is full

and the arithmetic is being done in conjunction with loads/prefetches and stores, and

the third is draining the pipeline when only arithmetic and stores are left to do. The

floatingpoint operations are an unavoidable cost, so the avoidable costs that collective

fusion/contraction cuts out probably result from under-utilisation of the floatingpoint

unit. This occurs during the pipeline fill stage, and may occur during the middle stage

if the floatingpoint unit is not the limiting factor on the bandwidth of the pipeline.

10.7.4.2 Interpreting the results

Examining the breakdown for Aldor + BLAS tells us that 24-27% of the time is

spent in the BLAS routines for this program. In the fused case, the best fusion partition

places both stencil calculations on their own in separate loops, so although the profile

does not give us the exact cost of the stencil term, it is reasonable to assume that it takes

the same amount of time as for Aldor + BLAS. By subtracting the expected time spent

in the stencil from the result for the best search, the improvement of fusion/contraction

over tuned BLAS routines can be calculated as 25%.

There are several possible explanations for why the global approach is competitive

with local tuning in this context. The start-up costs will be small given large enough

vectors, so the real difficulty with local tuning is likely to be that the logical pipeline is

196 	 Chapter 10. Experimental Results

limited by the bandwidth of the memory subsystem3. By eliminating loads and stores

(or if not eliminating them, ensuring that they hit in the cache which will have much

higher bandwidth), this is precisely the difficulty that loop fusion/array contraction

avoids under the assumption of global perfect prefetching (i.e. no latency costs). In

practice, the code produced by fusion/contraction will suffer some latency costs itself

as it is not perfectly prefetched, and the potential benefit is limited by failing to gen-

erate short vector instructions, which means that the floatingpoint unit will become a

bottleneck much sooner than it ought to. Despite this, fusion/contraction compares

favourably, and the elimination of these low-level problems may bring significant ben-

efit and result in substantial further gains over local tuning.

The situation is somewhat different for the tuning of the operator. Although the

assembly is unlikely to be as highly tuned as the BLAS routines, it does exploit register

tiling, double precision short vector instructions, and some software prefetching. By

calculating the cost of the stencil term as the cost of the delta term from the breakdown

plus the extra time spent in the BLAS routines compared to the other two methods,

the assembly based operator is 1.5 times faster than the Aldor version, and this is

enough to give an overall speed up of 1.3 - 1.4 over Aldor + BLAS and 1.2— 1.3

over the best search result. Removing prefetch instructions from the assembly kernel

degrades its performance by 	10%. Together, these facts suggest that, in contrast

to the level 1 BLAS routines, the balance of the component between loads/stores and

floatingpoint operations is probably such that the floatingpoint unit rather than the

memory subsystem is the bottleneck. So, in this instance the real problem is the failure

to generate short vector instructions from the Aldor generated C.

10.8 Summary

This chapter has shown that:

. Collective loop fusion and array contraction is an important technique for ex-

3 There are also the potential problems of structural conflicts between issuing loads/prefetches/stores
and floatingpoint instructions in the processor, and instruction cache spill, but given the architecture in
question and the size of the routines, these are unlikely.

10. 8. Summary
	 197

ploiting interloop locality in highly modular Aldor programs such as those de-

veloped in this thesis, giving speedups of up to 3.7.

Iterative collective loop fusion does better than the other collective loop fusion

strategies and brings in addition portability across hardware and problem type.

It gives speedups of up to 1.36 over the greedy method, and 1.41 over max-flow

mm-cut.

Starting from a modular program in a high level language such as Aldor and

using iterative collective loop fusion gives better performance than an equivalent

program written from scratch in Fortran, with speedups of up to 1.47. Hence,

elegance of expression need not mean sacrificing performance.

Our transformation strategy is better than starting from the original program or

an equivalent version in C and substituting high-performance BLAS libraries for

vector manipulation, giving an estimated speedup of around 24-27% over the

library routines themselves. Even in a situation where one single loop dominates

execution time and the assembly version of that loop is 1.5 times faster than

the Aldor version, our global technique is only a factor of 1.2— 1.3 worse in

terms of overall performance. It is not obvious how to address the architecture

specific low-level code generation issues with the Aldor version of the operator

to improve its performance compared to the assembly version whilst maintaining

the portability model of the current compiler (i.e. generating standard C code).

However, if this problem could be resolved, our technique is likely to provide

overall better performance and obviate the need for laborious machine specific

hand tuning.

Chapter 11

Conclusion

This chapter collects together the conclusions dotted throughout the text into a mean-

ingful whole, and adds some extra comment. After this there follows some suggestions

for follow-up work.

11.1 Summary

In this thesis we have shown how to express the modularity inherent in a family of

numerical algorithms (the Krylov space-based iterative solvers) by using the advanced

abstraction mechanisms of Aldor (domains, categories etc) to build an algorithmic

framework. This represents a significant improvement over the standard approach of

collapsing structure into a recipe with a set of choices already made, by making the

structure explicit, eliminating redundant replication of code, and allowing rapid as-

sembly of different algorithms by combining pieces. This modularity is expressed at

different levels, ranging from independence of the algorithms with respect to imple-

mentations of scalar, vector and operator domains, to the ability to mix and match

methods of generating a projected operator and decomposing it into factors.

We have argued that the direct (and to a lesser extent indirect) costs of the use of

higher order language features to structure the algorithms by joining separate recur-

rences is small. Conversely, we have shown that the abstraction with respect to the

vector and operator domains has a large indirect cost on a cache based architecture

199

200 	 Chapter 11. Conclusion

arising from the lack of temporal locality in the resulting programs, even when the

direct cost (coming from separation into functions/domains and use of simple higher

order features such as generators etc) is removed. We have characterised this problem

as an extreme form of a similar problem (i.e. interloop locality) affecting numerical

programs written in standard third-generation languages'. We have argued that the

severity of the problem is what makes interloop rather than intraloop locality (where

it exists) a priority for investigation in the context of the language and the solvers, and

suggested that cross-component optimisations, of which this problem is an example,

are likely to be important in general to languages such as Aldor.

We have adopted the loop dependence graph (LDG) formalism from the literature

and shown how to enumerate fusion partitions of a given size, and how this can be

used to collect fusion partitions (of that size) with a given amount of contraction - i.e.

how to generate (contraction amount, partition size) sets ((c, p) sets). This is used as

the basis for empirical selection of fusion partitions based on actual performance. We

have given heuristics to suggest which (c, p) sets to prefer (more contraction, followed

by smaller size), a heuristic method for systematically finding the elements of the pre-

ferred (c, p) sets in a large space (start from small fusion partitions and work upward),

and suggested a heuristic approach to choose points to test from a (c, p) set that is too

large to test exhaustively (first come first served). The overall technique, parameterised

by how much of the space to enumerate, and how many points to empirically test, is

called iterative collective loop fusion.

We have demonstrated empirically that cross-component optimisations achieved

using collective loop fusion/contraction can provide a speedup of up to 3.7 in this

context. We have also shown that it is difficult to pick the right transformations based

purely on static information, given that performance varies within a (c, p) set (up to

130%) and across different problems and machines,by testing complete sets of fusion

partitions on an LDG extracted by hand from the iterative solver framework. This

exposed the crudeness of using (c, p) set (or just contraction) as a metric to indicate

performance. At the same time this shows how iterative collective loop fusion could

be used to find a good fusion partition in the case where several (c, p) sets chosen by

'They suffer the problem to a lesser extent as a programmer will usually implement some degree of
fusion already by hand.

11.2. Future directions 	 201

the programmer are exhaustively enumerable and testable. We have also shown that in

some cases large amounts of search are necessary to find a good fusion partition when

the heuristics are less accurate (such as for the Wilson problem).

We have compared iterative collective loop fusion to other methods of collective

loop fusion (greedy and max-flow mm-cut) with an emphasis on the weakness that

arises from relying on simple metrics. This leads to speedup of up to 1.36 and 1.41

respectively: We have also given some measure of how any static method that relies

solely on (c, p) as a metric will be limited if the machine or program changes. We have

given some comparison against other methodologies such as using Fortran or hand-

tuned assembly. Using Aldor with iterative collective loop fusion does better on the

whole, except in comparison against the assembly Wilson-Dirac operator - we have

suggested that this is most likely due to SIMID vectorisation issues, which it is not easy

to attack directly when generating standard C code.

11.2 Future directions

This work could easily be extended in a number of largely orthogonal directions. We

give a brief outline of some possibilities below.

11.2.1 Framework design

For the category framework in Chapter 5, there are numerous fairly simple extensions

that can be investigated. These include (but certainly are not limited to):

Look-ahead to deal with breakdown in the two-sided Lanczos process.

Using k-step restarting for the long recurrence methods.

Partial pivoting to deal with breakdown in an LU decomposition.

Preconditioning.

Methods based on the normal equations - CGNR, CGNE etc.

Nested Krylov space algorithms.

202 	 Chapter 11. Conclusion

Various different types of halting condition.

Incorporating eigensolver algorithms.

The first two of these deal with the interface between the Krylov space and the pro-

jected system, where the projected matrix is no longer just tridiagonal but has varying

upper band width from step to step. This may also have an impact on the interface to

the search vectors, in a similar manner to the third item. The fourth item ought to be

easy to add with small wrappers, as already outlined in Section 3.6.4. The next three

items may require some broader adaptation of the framework with some mechanism

to pass more information around, outside the interface provided by the current pieces.

The design could also be cleaned up by removing the abuse of the valuation domain,

and pinpointing the root of the type system problems discussed in Section 5.3.1.1. The

last item would require more work, but is certainly a natural extension of the modular

approach.

11.2.1.1 Alternative factorisations

A possible use of the framework would be to investigate alternative factorisations of the

projected systems. There are good reasons for the standard couplings of orthogonality

condition and matrix decomposition. The LU decomposition is cheap to compute, and

will only break down when the Galerkin condition cannot be satisfied for a given step

(see Section 3.4.3). The QR decomposition directly gives a solution to the projected

least squares problem from the minimum residual condition without having to form

the normal equations, and also provides the recurrence residual. Using the QR decom-

position for the minimum error condition reduces the projected system to something

more manageable, and allows the use of search vectors in the short recurrence version.

Nevertheless, it is possible to use different factorisations for any given condition.

Separating the algorithm into components at the program level may enable inves-

tigation of techniques that make some of the assumptions behind the standard parings

redundant. For instance, the added numerical stability of a QR factorisations may be

an advantage for a short recurrence Galerkin algorithm that has the ability to skip steps

where the orthogonality condition cannot be satisfied. This is similar to the idea of

11.2. Future directions
	 203

allowing partial pivoting to cope with one type of breakdown in an LU factorisation.

11.2.2 Solver domains

For the solver domain implementations in Chapter 5, the simplest extension would be

to add more Krylov space generating algorithms such as those in [73] and [41], or pos-

sibly algorithms based on Householder transformations or selective re-orthogonalisation.

In addition, there remains some work to be done to flesh out the full implementation of

the minimum error orthogonality condition (and associated search vector recurrence),

and the long recurrence and incomplete orthogonalisation methods.

11.2.3 Operators

The category structure for the operators presented in Chapter 6 is not as developed as

it could be. The obvious future direction is to adapt the initial work to properly capture

the structure of the Wilson-Dirac operator (for example using [30] as a starting point)

and other operators and linear systems of interest to mathematical physics. This in turn

would feed into the design of the linear solvers package. Some of the interesting issues

are discussed in [43, 35], including red-black preconditioning, y5-Hermiticity, choice

of algorithm, and the interaction with molecular dynamics.

11.2.4 Iterative collective loop fusion

There are several ways in which the approach outlined in Chapter 8 could be extended

and or adapted:

Experiment with different search heuristics, or attempt to refine the heuristics

to reduce the amount of empirical evaluation that is necessary. The repeated

occurrence of some fusion partitions as the best performers in different settings

suggests that within a (c, p) pair set there may be some characteristics of a fusion

partition that make it more likely to do well regardless of operator/machine/prob-

lem size. If these characteristics could be discovered, they could be used to fur-

ther narrow down the amount of search necessary to find good results. Some

204 	 Chapter 11. Conclusion

possibilities in this regard are hand analysis or automatic feature extraction tools

from artificial intelligence.

As well as cutting branches of the search tree based on empty partitions, it ought

to be possible to significantly speed up search by having a cut-off based on the

number of contracted arrays - that is, once the number of contracted arrays is

guaranteed to exceed the required amount, further search along that branch of

the space can be abandoned.

Investigate methods of dealing with less well behaved loops (e.g. non-conformable).

This could include using standard transformations such as flattening/peeling/shift-

ing etc. to preprocess the code, or using a more general abstraction such as affine

transformations. Another improvement in this vein would be to develop tech-

niques that can cope with branching within the program section. This extension

to more complex control flow could be approached by generating multiple trans-

formed versions of the original code and selecting execution at run-time based

on the evaluation of the branch conditions.

Develop a more rigorous way of dealing with enumerated slices of the search

space that are too big to test exhaustively by empirical experiment.

11.2.5 Empirical results

The following are some suggestions to broaden the empirical results given in Chapter

10.

11.2.5.1 More precise results

A closer analysis of the performance of different fusion partitions by detailed simula-

tion or the collection of data from hardware event counters would give a better idea of

how search is balancing trade-offs and making its gains. This would also give a better

idea of how exactly local tuning gets its advantage (in the case of the assembly oper-

ator) or fails to exploit the full performance of the machine (with the BLAS routines).

11.2. Future directions 	 205

Information derived from such an analysis would also, feed into the search for more

precise heuristics (see below).

11.2.5.2 More architectures

Provided that the Aldor compiler and run-time system could be ported, transferring the

experiments to other architectures ought to be straightforward. This would provide in-

teresting further results in terms of the variability across machines of what constitutes a

good fusion partition, and the ability of search to cope with this. Other x86 compatible

architectures could also be included.

A comparison against hand tuned code (such as the BLAS routines) on a machine

that does not require the use of short vector instructions to achieve reasonable floating-

point performance would also prove interesting. In some sense it is the counterpart of

studying how well the optimisations do when vectorisation is added for architectures

that require it (see below).

11.2.5.3 More LDGs

It would be nice to extend this work with further experiments on different LDGs. How-

ever, for this to be relevant to Aldor (or languages like it), the benchmarks would have

to be taken from programs written in a natural style rather than standard benchmarks

transplanted from C or Fortran. This puts such an extension well outside the scope

of an individual project, as multiple different benchmarks would be necessary, and is

likely to require the effort of a community of developers. An alternative would be to

do some experiments on randomly generated synthetic LDGs.

Having more LDGs would also allow a better evaluation of the technique against

the greedy approach (and to a lesser extent max-cut mm -flow).

11.2.6 Other optimisations

Searching for a good fusion partition targets locality between loops, and this approach

suffers from Amdahl's law when one loop takes 70% of the total execution time, as

in the case of the Wilson problem. However, optimisation of the delta term (or general

206 	 Chapter 11. Conclusion

code for that matter) with low-level code generation techniques, such as vectorisation,

was considered a lower priority in the context of this thesis due to the following rea-

sons:

The issue is not really specific to this type of language in any way, but rather to

a particular architecture. The same problems arise when compiling from e.g. C.

. This would be hard if not impossible to do in a portable way fora compiler that

achieves its portability by generating standard C.

Nonetheless, the interaction of iterative collective loop fusion with other optimisations,

especially vectorisation if it is necessary (and possible) and the stencil tiling outlined

in Appendix B, would be interesting indeed2.

Improving the performance of loops resulting from iterative collective loop fusion

would also be interesting. The additional optimisations would include at least software

pipelining, loop unrolling and software prefetching, although there may be interaction

with others as well (such as tiling, padding etc). A related subject is the interaction of

inlining with collective loop fusion, given that it is likely to be used as a preprocessing

step for LDG recovery. The most natural way of incorporating other optimisations

would be to apply the methodology of iterative optimisation to give portability etc (see

the literature outlined in Section 8.3.2).

11.2.7 Other languages

Iterative collective loop fusion as a technique in itself could be ported for use with other

languages or in other settings. For use with more traditional languages such as Fortran

or C, the standard style of codes will probably mean that preprocessing techniques

such as scalar expansion and loop distribution will be necessary to prevent artificial

dependencies in the LDG, and that the total achievable benefit will be less (as some

fusion/contraction has already been done by hand), as mentioned in Section 7.3.4.

Porting to languages that have similar modularity issues to Aldor, such languages with

array statements (e.g. Fortran 90), or object oriented languages (e.g. C++), may avoid

2Especially in the wider context of QCD simulations, where techniques such as red-black precondi-
tioning put even greater emphasis on the efficiency of the stencil routine.

11.2. Future directions
	 207

most of these problems. The main advantage of porting would be instant access to a

large number of benchmarks and machines to test the technique on.

Another application for the technique is in the setting of automatic loop based

parallelisation, which occurs frequently in the literature. Loop fusion is used here

primarily to reduce the overhead of barrier synchronisation between loops. In this

instance, contraction would only be applied to the subsection of each array that belongs

to each processor, rather than reduction to a single scalar.

Appendix A

Conjugate Gradients and the Lanczos

Type Product Methods

This appendix gives the relationship of the framework used in this thesis to some other

members of the family of Krylov subspace based iterative solvers - namely conjugate

gradients, biconjugate gradients, and the Lanczos type product methods.

A.1 Conjugate gradients

Arguably the most popular iterative method for Hermitian operators is CG (conjugate

gradients), and one of the most popular short recurrence methods for non-Hermitian

operators is its two-sided cousin, BiCG. The CG (BiCG) algorithm is very closely

related to the algorithm given in Chapter 3 based on the Hermitian (two-sided) Lanczos

process, the Galerkin condition and the LU decomposition, but the Krylov basis is

generated by coupled two-term recurrences rather than three-term recurrences.

Because of this, CG and BiCG don't easily fit into the framework that is developed

in this thesis. What were previously separate pieces, that is the generation of the basis

vectors, the matrix decomposition and the updating of the search vectors, are now

inextricably coupled. This is why it is forsaken in favour of a less traditional approach.

It is also possible to generate the Krylov basis using linked two-term recurrences

in the modular version, but this comes at the cost of extra vector storage and manipula-

209

210 	Appendix A. Conjugate Gradients and the Lanczos Type Product Methods

tions. In addition, the linked two-term recurrences implicitly make use of the Galerkin

condition and consequently will break down if it cannot be satisfied at every step for

an indefinite operator. This becomes an issue if a modular algorithm is developed that

avoids this problem with the Galerkin condition by modifying the components from

the projected system onward, as the potential for breakdowns is re-introduced in the

Krylov space generating component.

A.2 The Lanczos type product methods

The original Lanczos type product method was CGS introduced by Sonneveld [81],

and most other product methods are variations upon this theme. The algorithm is

derived from BiCG by considering the polynomials in A generated by the recurrences

and algebraically manipulating (squaring) them. It fundamentally relies on the coupled

two-term recurrences of BiCG.

In CGS, the Hermitian transpose of the operator is not used, and this is handy if the

operator is both non-Hermitian and its Hermitian transpose is expensive or impossible

to generate. Although we still generate the same scalars, we no longer explicitly gen-

erate the residual vectors or the search vectors from BiCG, and so some other method

of recovering the candidate solution must be found. The approach in CGS is to take

the vectors generated by the squared recurrence for the BiCG residual vectors, and im-

pose them as the residual vectors of the algorithm by updating the candidate solution

appropriately. Note that this doesn't require the inverse of the operator because of the

way in which the CGS residuals are generated, which in turn relies on its derivation

from coupled two-term recurrences and the Galerkin condition.

Imposing the result of the squared BiCG residual recurrence as the residual of the

CGS algorithm means that it no longer obeys any simple orthogonality condition, and

is not directly related to any decomposition of the projected matrix from the Arnoldi

relations. The residual is now taken from a Krylov subspace that is twice the size of

the original BiCG Krylov subspace, and it is reasonable to assume that the approximate

solution generated in this manner might be a better one - put another way, the work

done in applying the operator a second time is not "wasted" in that it goes toward

A.3. Functional parallelism and product methods 	 211

updating the residual, in contrast to the application of the transpose in BiCG. However,

the scalar factors for the CGS Krylov space are still directly related to those taken from

BiCG.

For two-sided methods, there is no particular reason why the polynomial for the

dual Krylov space has to be the same as that of the original one, as long as the scalars

that the algorithm relies on can still be derived. For BiCG, this is irrelevant, as the only

function of the dual space is to produce the scalars, and so changing the polynomial

would make no material difference. For a product method though, the dual polynomial

is used to determine the residual, and so changing it changes the approximate solution

produced by the algorithm. This is a degree of freedom that can be used to improve

the approximation generated, and the many follow-ups to Sonneveld's work consist of

various methods of defining the dual polynomial, such that the necessary scalars can

still be produced and the residual vector is hopefully better in some sense. In practice,

an appropriate product method will usually provide a significantly better approxima-

tion for the same number of operator applications, and this is important as the cost of

the the operator application is almost always the single largest cost in the algorithm.

Because of the way in which they are derived, the Lanczos product type methods

do not fit into the framework used in this thesis. It is possible to take the two-sided

Lanczos process and square it, but in order to be able to calculate the search vectors

and the approximate solution in the same way as before, it is also necessary to calculate

the original Krylov basis, and this means using an extra application of the operator per

iteration step [21]. Hence, there is little point in having this extra expense unless the

Hermitian transpose of the operator is not available, and there is some good reason

for not wishing to use one of the standard product methods. It would be interesting to

develop a framework for the product methods where the pieces constituted recurrences

for certain polynomials, but that will certainly have to be left to future work.

A.3 Functional parallelism and product methods

As mentioned in Section 3.3.3.1, the vector sequences in the two-sided Lanczos pro-

cess evolve in parallel, whereas the applications in a product method are sequentialised

212 	Appendix A. Conjugate Gradients and the Lanczos Type Product Methods

due to the presence of inner product operations in between them. While the product

methods usually take many fewer steps (operator applications) to converge than the

two-sided methods, they may not converge twice as fast. Indeed, the choice of itera-

tive method to use for a non-Hermitian problem is usually considered to be problem

dependent and very much an open question [73, 41].

This induces an interesting trade-off. On a large enough parallel machine, where

the vector sequences from the two-sided Lanczos process could be computed in paral-

lel, one step of a two-sided process. ought to take roughly half the time of one step of a

product method. Although a two-sided method is likely to take more steps to converge

than a product method, it may converge quicker in terms of wall clock time. It ought

to be noted however, that the margin of difference between a two sided method and

a product method is likely to be small (i.e. a product method may take almost half

the number of iterations of a two sided method) [34], and thus the benefits of using a

parallel two-sided method may not be great compared to the amount of extra comput-

ing resources required. Nonetheless, exploitable parallelism should be noted under the

assumption that available compute resources tend to get cheaper very quickly, and it is

easier to exploit them than to develop new algorithms.

The above reasoning translates to sequential machines with a cache hierarchy due

to temporal locality. The lack of synchronisation points between the application of

operators in two-sided methods means that they can be overlapped, allowing the re-

use of data for an operator with a concrete representation that is common to both the

original and adjoint representations. Where an operator has no concrete representation,

there is still an advantage in terms of greater flexibility to re-order computation:

Appendix B

Re-use in theOperator Application

This appendix briefly summarises "stencil tiling" in the context of the operators con-

sidered in Chapter 6, and a cache based architecture. Re-use in a 3D stencil operation

(for a pure stencil) is covered in [71] (along with techniques for choosing tiles sizes

for direct mapped caches based on simple models). The idea can be illustrated by con-

sidering vectors that represent some regular three-dimensional cube composed of two

dimensional slices, where the loop that calculates the stencil is constructed to traverse

the sites in the three-dimensional cube slice by slice. Calculating one slice of the result

vector requires at most three neighbouring slices of the source vector.

The following simplifications are used for the discussion:

. The cache allocates space for writes - this assumption is conservative, as a write-

allocate policy uses more cache than no-write-allocate.

There are no associativity conflicts - this is not a conservative assumption, but

only requires 4-way, set associativity to guarantee the premise (in the absence of

self-conflicts within a slice due to awkward grid dimensions). It may be satisfied

for 2-way set associativity depending on the degree of overlap between address

ranges, and is least likely for direct mapped caches.

The cache eviction policy is FIFO - this assumption is not as conservative as

random replacement, but it makes the analysis easier.

213

214 	 Appendix B. Re-use in the Operator Application

. The points in a slice can be traversed in an arbitrary order - this is conservative,

and requires that all of the slices must fit in the cache simultaneously.

Possible effects of cache line size are ignored, i.e. no unwanted data is ever

loaded into the cache. This is not fully conservative, but it is reasonable to

expect the addresses within a given slice to be consecutive, which only leaves

very small effects at its beginning and end. Cache line effects may also make

the reloading of partial data from a site more expensive than necessary if the

data has been evicted from the cache. However, this is only relevant for missed

opportunities for re-use of SU(3) matrices from the Wilson operator, as in other

cases all data is used from a site, and would have to be loaded anyway (see later).

Boundary conditions are ignored.

All possible re-use is captured provided the four entire slices in use can fit simultane-

ously into the cache. If not, locality can be improved by dividing the cube along the

axis perpendicular to the slices and changing the problem into computing the applica-

tion of the stencil for successive subsections of the cube, the dimensions of which are

chosen to ensure that four slices thereof will fit into cache.

131 	3D Pure Stencil with One Level of Cache

In the general case where sites in the vector have size s bytes and the machine has a sin-

gle level of cache of size c bytes, given a cube of size n, tiling improves locality when

4n2s> c. To keep the discussion simple, we require both vectors necessary to compute

the stencil to fit into the next level of memory (of size m bytes) after cache, otherwise

misses at that level of the memory hierarchy may dominate the overall performance

characteristics of the program. This implies 2n 3s< m, and so:

nc/2 < 2n3s

nc<2m

B.2. 4D and Concrete Operators 	 215

showing that the memory must be 0(n) larger than the cache. As the size of the cache

c grows, n grows like 0(/) and to satisfy the constraint m must grow like 0(c/).

One possible way of extending this to systems with multi-level memory hierarchies is

to consider each pair of adjacent levels separately using the same approach.

The argument given above implies why re-use along only one axis of the space is

considered important, as n would have to be much larger for a single line in the space

(rather than a slice) to fill the cache and make tiling in two dimensions necessary.

Additionally, the memory would have to be of size 0(n2) for the vectors to fit, and

taken together these two factors suggest that the ratio of cache size to memory would

rapidly become unrealistic.

The cost of'not tiling when 4n2s> c is that (ignoring the extremes of the cube)

all three slices of the source vector will have to be loaded to calculate the slice of the

result due to, the cache eviction policy. Each slice of the source, and therefore the

whole vector itself, is loaded three times rather than one, thus missing a factor of two

re-use.

B.2 4D and Concrete Operators

The idea outlined above can trivially be extended to four dimensional stencils, where

three neighbouring cubes (3-cubes) of the total space (4-cube) must fit simultançously

into cache, so tiling has an effect when 4n3s> c. Again the memory must be 0(n)

larger than the cache, but for a given size of cache n will be smaller and thus the

amount of memory needed to hold the entire problem at the level after the cache will

be smaller. A related point is that tiling will have an effect at much lower values of n.

The discussion can be extended to the Wilson problem by also considering the

space requirements and re-use of the operator on a per site basis. The gauge field

associates four SU(3) matrices with each site in the space. However, the way the gauge

field is touched differs from the way that the vector is accessed, where the calculation

for a given 3-cube of the vector touches all the information from the sites in the current

and both neighbouring 3-cubes. In contrast, for a given axis of the 4-cube one SU(3)

matrix associated with the current site and one matrix associated with the site one

216 	 Appendix B. Re-use in the Operator Application

step backward along that axis is used. To calculate a 3-cube of the target vector thus

requires all the SU(3) matrices associated with the sites in the current cube plus one

matrix for each site in the previous 3-cube (and none of the matrices from the sites in

the next 3-cube). That is, each SU(3) matrix is only used twice.

Given the assumed cache policy, two full 3-cubes of the gauge field must fit into

memory in addition to the vector cubes to avoid any reloading, i.e. 4n3s + 2n3s0 < c,

where s is the per site size (in bytes) of vector information and s0 is the per site size

of the operator (i.e. four times the size of an SU(3) matrix). Failure to tile when n

becomes large enough requires the vector to be reloaded as before, but only requires

the gauge field to be loaded 11 times rather than once, as only the re-use along one

direction of one axis of the 4-cube (i.e. one SU(3) matrix per site) is lost.

13.3 Operator Tiling in Practice

To give some idea of what this means in practice, consider the simple 3D operator

problem with complex double float elements at each site (s is 16 bytes), and a machine

with two megabytes of cache (c is 2 x 220 bytes). Tiling becomes important when:

4n2 x16 > 2x220

n > 	l82 sites (approx)

which is already a large factor, although not unreasonably big (requiring the memory

to be at least nc = 182MB large). However, the super linear growth in memory

requirement suggests that as cache sizes grow the effects of misses at the next level of

memory hierarchy may come into play.

For 4D problems, the threshold for n will be lower due to the cubic term. Because

of the gauge field and the fact that each site in the vector is larger, the threshold of n

for the Wilson problem will be much lower.

Appendix C

Categories

This appendix contains verbatim Aldor code for the category hierarchy discussed in Chapter 5.

One macro definition1 is used, namely SI to stand for Singlelnteger from axilib.

CA 	Linear Algebra Categories

The convention for naming parameters throughout this section is straightforward. The valua-

tion and ground field parameters are named as such, and capital letters are used to stand for

linear spaces (i.e. domains of vectors).

define Orderedtield: Category == join (Field, OrderedRing);

define FieldwithValuation(ValuatiOn: OrderedField) 	Category == Field with.

valuation: % -> Valuation;

coerce: Valuation -> %;

define Module(R : Ring) : Category == AbelianGroup with

* :)R, %) -> %; 	 ++ Left multiplication by a scaler

* :)%, R) -> %; 	 ++ Right multiplication by a scalar

default

(v : %) * (a : R) : 	== a * v

Tor a description of Aldor macros, see [93]

217

218 	 Appendix C. Categories

define LinearSpace)GroundField : Field) : Category == Module (GroundField) with

/ 	(%, GroundField) -> %; 	#+ Division by a scalar

default

(v : %) / (a 	GroundField) 	== (1/a) * V

define LinearAlgebra(GroundField 	Field) 	Category

== LinearSpace(GroundFjeld) with Monoid;

define LinearSpaceWithDual(GroundField 	Field,

DualSpace : LinearSpace(GroundField)) 	Category
== LinearSpace(GroundFjeld) with

* :,(DualSpace, %) -> GroundField; 	++ apply a linear functional

apply 	(DualSpace, %) -> GroundField;

default

apply(a : DualSpace, b 	%) : GroundField == a * b

define Normedtinear Space (Valuation : OrderedField,

GroundField 	FieldWithValuation)Valuation)) : Category

==

Join (LinearSpace(Valuation) , LinearSpace(Groundpield)) with

norm 	% -> Valuation;

norm 	% -> GroundField;

define NormedLineaSpacewithnual(Valuatjon 	OrderedField,

GroundField : FieldWithValuation(Valuation)

DualSpace NormedtinearSpace(Valuation,

	

GroundField)) 	Category
==

Join (NorrnedtinearSpace(valuation, GroundField)

LinearSpaceWithDual(GroundField, DualSpace))

define InnerProductSpace(GroundField 	Field) 	Category

== LinearSpaceWithDual(GroundField, %) with;

C. 1. Linear Algebra Categories
	 219

define NorinedlnnerProduct Space (Valuation : OrderedField,

GroundField : FieldwithValuation(ValUatiOfl)) 	Category

== Join(NormedtinearSpacewithDual(ValuatiOn, GroundField, %)

InnerProductSpace(GroundField)) with

norinsq 	% -> Valuation;

normsq 	% -> GroundField;

default

import from GroundField;

norinsq(a : %) 	GroundField == a * a;

norinsq)a 	 Valuation == valuation(norxnsq a);

define GroupAction(GroundField 	Field,

V LinearSpace)GroundField)) : Category

== Group with

apply)%, V) -> V;

V) -> V;

V) -> V;

default

(A 	%) \ (v : V) : V == inv(A) * v;

define LinearMapping(GroundField : Field,

V : LinearSpace(GroundField),

W : LinearSpace)GroundField)) : Category

== with

* : (GroundField, %(-> %;

* : (%, GroundField) -> %;

(%, GroundField) -> %;

* 	W) ->V;

apply : (%, W) -> V;

explicitMapping 	% -> (W -> V)

++ multiplication by a scalar

++ division by a scalar

++ action on a vector

++ create a general function

++ ('forget' some type info)

default

(A 	%(* (a 	GroundField) 	== a * A

(A 	%) / (a : GroundField(: 	== (1/a) * A

apply(A : %, w : W) : V == A * w

220 	 Appendix C. Categories

explicitMapping(a : 	: W -> V == (u 	W(: V +-> a u;

define LinearOperator(GroundFjeld 	Field,

V : LinearSpace (GroundField((Category
== LinearMapping(GroundField, V V(with

* 	(%, %(-> (V -> V(; 	++ allow composition of operators by 'forgetting'

++ type info - doesn't require the category to

++ be a proper monoid

default

(a 	%(* (b : %((V -> V) ==

	

(v 	V(V +-> explicitMapping(a(explicitMapping(b(v;

define LinearOperatorwithDual(GroundFjeld : Field,

V : LinearSpace (GroundField(

W 	LinearSpaceWithDual(GroundField, V((: Category
== Joifl(LinearOperator(Groundpield, V(, LinearOperator(GroundField, W() with

V(-> (W -> GroundField); ++ allow the action on the dualspace to

++ be reduced to an explicit (lazy) function

default

(A : %(* (v : V((W -> GroundField(== (w : W(GroundField +-> { v(A w(;

define Linea rOperatoronlnnerproduct Space (GroundFjeld : Field,,

V 	InnerProduct Space (GroundField((Category
== LinearOperatorwithDual(GroundField, V,

V pretend LinearSpaceWithDual(GroundField, V((with

adjoint 	% -> %;

* 	(V, %(-> V; 	 ++ multiply by adjoint

bilinearForm : % -> (V, V(-> GroundField; ++ define a bilinear form by

++ currying over the operator

default {

(v 	V(* (A 	%(: V == adjoint (A) *

bilinearForm(A : %((v : V, w 	V(: GroundField == w (A v(;

C. 1. Linear Algebra Categories
	 221

define HermitiantinearOperatOr(ValUatJ.On 	OrderedField,

GroundField 	FieldwithValuat±Ofl(ValUatiOfl),

V : NormedlnnerProductSpace(ValuatiOn,

GroundField)) 	Category

== LinearOperatorOnlnnerProductSpaCe(GrOUndField, V) with

quadraticForm 	-> V -> Valuation; ++ define a norm-like quadratic form

++ by currying over the operator

default

quadraticForm(A : %) (v : V) : Valuation ==

import from GroundField;

valuation (bilinearForm(A) (v, v)

adjoint(A : %(: 	A; 	++ operator is self adjoint

(V : V) * (A 	%) : V == A V;

define PositiveDefiniteHermit±anLinearOperator(ValUation 	OrderedField,

GroundField 	FieldWithValuation(Valuation(,

V : NormedlnnerProductSpaCe(ValUatiOfl, GroundField)(Category

== HermitianLinearOperator (Valuation , GroundField, V(with

innerproduct : % -> (V. V(-> GroundField; ++ HPD matrix defines a proper

++ inner product

norm 	% -> v -> Valuation; 	 ++ which in turn defines a norm

default

innerproduct(A 	%).(v 	V. w 	V(: GroundField

bilinearForm(A((v, w);

norm(A : %)(V : V) 	Valuation == quadraticForm(A((v(

define opera torAlgebra(GroundField : Field,

V : LinearSpace(GroundField() : Category

== Join(LinearAlgebra(GrOundField(

LinearOperator(GroundField, V() with;

define IndexedVector(GroundField 	Field(: Category

== LinearSpace(GroundField(with

index 	(%, SI(-> GroundField;

apply : (%, SI) -> GroundField;

222
	

Appendix C. Categories

canonicalBasisVector : (SI, GroundField)

unitCanonicalBasisvector : SI -> %;

default

apply(v 	%, i 	SI) 	GroundField == index(v, i);

import from GroundField;

unitCanonicalBasisVector(i : SI) 	% == canonicalBasisVector(i, 1);

define FinitelndexedVector(GroundField 	Field) : Category

== LinearSpace)GroundField) with

size 	% -> SI;

define Matrix (GroundField : Field,

V LinearSpace(GroundField(,

W : IndexedVector(GroundField)) 	Category

== LinearMapping(GroundField, V, W) with

apply 	(%, SI) -> V;

column 	(%, SI) -> V;

default

apply (A : %, ± 	SI) : V == column (A, i);

define SquareMatrix)GroundField 	Field,

V : IndexedVector(GroundField)) : Category

== Join)LinearOperator)GroundField, V)

Matrix (GroundField, V, V)) with

apply 	(%, SI, SI) -> GroundField;

define UpperPriangularMatrix)GroundField : Field,

V : IndexedVector(GroundField)) : Category

== SquareMatrix)GroundF±eld, V) with;

(papu1ddfl '(A 'pITdpuno)xt 	iin6uT1J,1addn)uiof ==

((peT,.jpuflO1)OOeApeXepUI 	A

'pIe 	 ujp

== IS 	(% : y)qpMpueddfl

iInJP

	

} iiii 	((A 'pIetPUflO1D)XTUe1flbS

pepuxddfl) U!Of ==

A

uIjp

!iuT 	(papuP5ddfl
'(A

((pIi,puflO15)100ApeXepUI : A

u!pp

== IS 	v)pMpuSOI

} iflJP

	

iii1 	((A
ppUP51Mo'j) ulof ==

((pTaTdpUnO1D),IOeApXpUI 	A

'pIer : peTpuno15)xTPwfi9quesse}j1addn u!pp

,is <- % 	ttPTMPU5.Oddn

== 	 : pepuoddfl auijap

1 1S <- % : TflPTMPUP9I9MOT

	

1.flIM == 	 : pepuPsMo'I allIJRP

	

(A 	 ==

LiopD 	((pIeTPuflO)1OAP9X9PUI : A

pIpunO)XT1WIfl6trTJIeMO9 ouijap

Ozz 	 se,uo6ejej wqe6jJeui7 L 0

224
	

Appendix C. Categories

define TriDiagonalMatrix(GroundField : Field,

V : IndexedVector(GroundField)) 	Category

== Join(LowerHessenbergMatrix(Groundrjeld, V)

UpperHessenbergMatrix(GroundField, V)) with;

The use of the pretend keyword in the definition of the linear operator on an inner

product space is due to the problems with typing the InnerProductSpace category as

a LinearSpaceWithDual of itself, as discussed in Section 5.3.1.1.

The explicitMapping functions are a way of forgetting type information, by turning

objects into general functions. These functions can exist because losing information

and turning what may be a strict function into a lazy object is never a problem. The

converse is more problematic, that is having a constructor for a category that takes the

general function and then pretends it is e.g. a linear operator. There may be no way

of checking a function for a given property, or such a check may be horrendously inef-

ficient, and expanding a lazy object into a strict representation may not terminate etc.

Similar reasoning is the basis of the philosophy of never including constructors into gen-

eral categories, applied throughout the code - instead, they are attached as anonymous

extensions when typing a specific domain.

Linear mappings/operators are not vector spaces, as some conceivable domains that one

may wish to type using these categories do not have that structure, such as a domain

of nonsingular matrices. Similarly, the group action category is not a linear space as

the group may not be closed under linearity. However, the operator and group action

categories share the notion that they can act on some other type of object, and the linear

mappings category introduces the functions for linearity by hand. Introducing more

roots into the hierarchy such as generic mapping, action, and linear categories would

help clean this up. An affine space category would also be a useful addition.

C.2. Problem Specific Categories 	 225

C.2 Problem Specific Categories

Due to the large number of parameter domains to categories in this section, including linear

spaces and domains of matrices, the naming conventions are different to the previous section.

The domain of coefficients for the projected linear operator, ground field and valuation are

labelled directly as such. The matrix of Krylov space basis vectors, and the domains of ele-

ments used to construct the projected system and search recurrence are labelled with a name

composed of a letter related to those used in Chapter, 3 (with lowercase letters for domains of

vectors and uppercase letters for domains of matrices) and the suffix Dam. In the instance of

multiple identifiers in Chapter 3 being used for elements of the same domain (e.g. the vectors

y and z) one of the labels is chosen arbitrarily.

define KrylovSpace(ValuatiOn : Orderedpield,

GroundField : FieldWithValuatiOfl)ValUatiOn)

Coeffs : FieldWithValuation)ValuatiOfl)

yDom IndexedVector(Coeffs)

Vector 	Join (LinearSpace (Coeffs)

NorrnedLinearSpace(Valuation, GroundField))

Operator 	LinearOperator(GroundField, Vector),

VDom : Natrix(Coeffs, Vector, yDom),

HDom 	UpperHessenbergMatrix(COeffS, yDom)

Category

== with

basis : % -> VDoin;

coefficients : % -> HDom;

operator 	% -> Operator;

startVector : % -> Vector;

define DirectLUSolve(GroundField : Field,

zDom : IndexedVector(GroundField)

HDom : tlpperHessenbergMatrix(GrOufldField, zDom),

UDom UpperTriangularMatrix(GrOUfldField, zDom)) 	Category

== with

directLU : (HDom, zDom) -> (UDoIn, zDom);

define DirectQRSolve(GroundField 	Field with { sqrt 	% -> % },

zDom IndexedVector)GroundField),

HDom : UpperHessenbergMatrix(GroundField, zDom),

RDom UpperTriangularMatrix(GroundField, zDom)) 	Category

== with

directQR : (HDom, zDom) -> (ROom, zDom, zDom);

226 	 Appendix C. Categories

define LongRecurrenceKrylovSpace(Valuation : OrderedField,

GroundField FieldwithValuation(Valuation(

Vector : NormedlnnerProductSpace(Valuation, GroundField(

Operator 	LinearOperatorOnlnnerProduct Space (GroundField;

Vector)

yDom : FinitelndexadVector(GroundField)

VDom : Hatrix(Groundpield, Vector, yDom),

HDom : tjpperHessenbergMatrix(GroundField, yDom)

Category

== KrylovSpace (Valuation,

GroundField,

GroundField,

yDom,

Vector

Operator,

VDoin,

HDom(with

orthonormalKrylovBasis : (Operator, Vector) -> %;

default

iterativeSolve(correction : (HDom, Valuation) -> yDom)

(A : Operator,

X Vector,

b : Vector) : Vector ==

import from VDom;

if x = 0

then r :

else r 	b - A x;

rNorm : Valuation 	norm r;

K 	orthonormalKrylovBasis(A, r/rNorm);

H := coefficients(K(;

V := basis (K);

y : correction(H, rNorm);

X : x + V y;

return x;

C.2. Problem Specific Categories

define ShortRecurrenceKrylovSpace(Valuation 	Orderedpield,

GroundField : FieldWithValuation(Valuation)

Coeffs 	FieldwithValuation(ValuatiOfl)

yDom IndexedVector(Coeffs)

Vector : Join(LinearSpace (Coeffs)

NormedLinearSpace(Valuation,

GroundField)

with { dispose! : %-> () ;

Operator : LinearOperator(GroundField, Vector),

VDom : Matrix(Coeffs , Vector, yDom)

HDom UpperHessenbergMatrix(CoeffS yDom)

Category

== KrylovSpace(Valuation, GroundField, Coeffs, yDom, Vector,

Operator, VDom, HDom) with

iterativeSolve : ((Operator, Vector) ->

(HDom, VDom, Valuation) -> (VDom, SI -> Boolean)) ->

(Operator, Vector, Vector) ->

Vector;

default

iterativeSolve(krylovBasis
	

(Operator, Vector) ->

correction
	

(HDom, VDom, Valuation)

->)yDor
	

VDom, SI -> Boolean))

(A : Operator,

X : Vector,

b : Vector)
	

Vector =

import from SI, VDom;

if x = 0

then r 	b;

else 	:b - Ax;

rNorm : Valuation 	norm r;

K := krylov3asis (A, r/rNorm)

H 	coefficients)K);

V := basis (K);

(z, P, lastlteration?) 	correction(H, V, rNorm);

for ± in 1.. repeat

xNew := x + z(i) * P(i);

dispose!)x); x := xNew;

if lastlteration?(i) then break;

return X;

228
	

Appendix C. Categories

define ArbitraryBasisKrylovSpace(Valuation : OrderedField,

GroundField 	FieldWithValuation)Valuation)

Vector : NorrnedlnnerProductSpace(Valuation, GroundField)

with { dispose! 	% ->)) },

Operator : LinearOperatorOnlnnerProductSpace(GroundField, Vector),

yDoin : IndexedVector(GroundField)

VDom 	Matrix)GroundField, Vector, yDorn),

HDoxn 	BandedupperHessenbergMatrix)GroundField, yDoxn)

Category

== ShortRecurrenceKrylovSpace)Valuation,

GroundField,

GroundField,

yDorn,

Vector,

Operator,

VDom,

HDorn) with

incoxnpletelyOrthogonalKrylovBasis : SI -> (Operator, Vector) ->

define BiorthogonalBasisKrylovSpace)Valuation 	OrderedField,

GroundField : FieldWithValuation)Valuation)

DualSpace 	NorrnedLinearSpace(Valuation, GroundField)

with { dispose! 	% -> (); },

Vector NorinedLinearSpaceWithDual)Valuation, GroundField, DualSpace)

with{ dispose! :%->))

Operator 	LinearOperatorWithDual)GroundField, DualSpace, Vector),

yDom IndexedVector)GroundField)

VDom 	Matrix)GroundField, Vector, yDon),

TDom 	TriDiagonalMatrix(GroundField, yDoin).

Category

== ShortRecurrenceKrylovSpace(Valuation,

GroundField,

GroundField,

yDorn,

Vector,

Operator,

VDom,

TDoin) with {

biorthogonalKrylovBasis : DualSpace -> (Operator, Vector) ->

biStartVector : % -> DualSpace;

C.2. Problem Specific Categories
	

229

define RerinitianOperatorKrylovSpace(Valuation : OrderedField,

GroundField : FieldwithValuation(Valuation),

Vector : NormedlnnerProductSpace)Valuation, GroundField)

with (dispose! : %

Operator : HermitianLinearOperator)Valuation, GroundField, Vector)

yDom 	IndexedVector(Valuation)

VDoIn : atr.ix(Valuation,Vector, yDom)

TD0In : TriDiagonalMatrix)Valuation, yDom)

Category

== ShortRecurrenceKrylovSpace)Valuation,

GroundField,

Valuation pretend FieldwithValuation)Valuation)

yDom,

Vector

Operator,

VDoxn,

TDom) with

orthonormalKrylovBasis 	(Operator, Vector) -> %

define SearchVectorRecurrence)Coeffs 	Field,

zDorn : IndexedVector)Coeffs),

Vector 	LinearSpace)Coeffs)

VDorn : Matrix)GroundField, Vector, zDom),

RDom 	BandedlipperTriangularMatrix(GroundField, zDom)) : Category

== with

recurrence: (V : VDom, ,R : RDom) -> VDoin;

The type of a parameter to a category can be the union of a named category and an

anonymous extension. This is used, for example, to provide the square root function

necessary for computing Givens rotations used in DirectQRSolve, which is not pro-

vided by a generic Field.

As mentioned in Chapter 5, it may be desirable to use a different type to represent the

ground field of the general vector space and the coefficients of the projected matrix.

This is captured by having both types as parameters to a general KrylovSpace, ensur-

ing that the vector space is also a linear space over the coefficient type, and using the

derived categories to specify the type of the coefficients - i.e. either the ground field (for

the biorthogonal or incompletely orthogonal methods) or the valuation domain (for the

230
	

Appendix C. Categories

Hermitian method). This means that the three derived categories do not have one of the

parameters to the general short recurrence Krylov space category. When the coefficient

type is the valuation (i.e. for the Hermitian method) the pretend keyword is used to

assert that it is a field whose valuation is itself to circumvent the difficulty with incorpo-

rating this constraint into the type requirement for the valuation domain parameter. This

is discussed in Section 5.3.1.1.

. The dispose! function appears in the template algorithm contained in the short recur-

rence Krylov space category due to reasons discussed in Section 5.3.1.2.

Appendix D

Domains

This appendix contains code extracts to further illustrate the design of various domains, in-

cluding those involved with the solver algorithms themselves (discussed in Chapter 5) and the

implementations of the linear systems (discussed in Chapter 6).

Unlike the categories in Appendix C, code in this appendix is abridged for conciseness.

Some directives such as import and inline have been dropped, some functions (and re-

lated exports) have been omitted when they are similar to those already included or are simple

enough to need no explanation, and the less important tests for common. errors have been re-

moved. Macro abbreviations1 are also used, namely:

SI for Singlelnteger (same as Appendix C)

. DF for DoubleFloat

CDF for CoinplexDoubleFloat

CV for ColourVector

. SpF for SpinorField

Another difference from Appendix C is that the code has been presented in its original form

as opposed to that which is actually used for the experiments. More specifically, a number of

alterations to the code that had to be made due to problems with the current compiler are not

present. These include removing the parameterisation of certain domains, the manual unboxing

of the result of the Wilson-Dirac stencil term (both due to problems with the mimer), unboxing

'For a description of Aldor macros, see [93]

231

232
	

Appendix D. Domains

hints for reduction operations and workarounds for the lack of constant folding on double

precision floatingpoint values, all of which are discussed in Section 9.3. One further detail that

has been left out of the code is a workaround to sidestep the problems that the current compiler

has with type-checking domains whose domain representation is a function. This applies to the

"lazy" matrices/vectors:

D.1 Scalar Domains

extend DoubleFloat : Join(OrderedField, FieldW±thValuation(DF), Module (SI)) with

sqrt 	% -> %;

conjugate : % -> %;

== add

valuation(x :) 	DF == abs (x);

coerce (a 	DF) 	== a pretend DF;

conjugate(x 	%) 	% == x;

sqrt(a 	: % == sqrt(a)$DoubleFloatElementaryFunctjoris;

ComplexDoubleFloat 	Join (FieldWithValuation(DF), Module (SI)) with

sqrt: % -> %;

conjugate: %

== Complex(DF) add (

Rep == Coxnplex(DF);

valuation (a : 	: DF

inag a = zero)) => abs(real a);

real a = zero() => abs(iniag a);

sqrt(norm(rep a((@DF;

sqrt(a : %) : 	== per (sqrt(rep a)$DoubleFloatElementaryFunctjons(;

conjugate (a : %) : 	== per (conjugate rep a);

The valuation operation for complex double floats tests for the simple cases when

either the real or imaginary parts are zero to avoid using the square root operation un-

D.2. Wilson-Dirac Subdomains 	 233

necessarily, as it can reduce numerical stability. The valuation of a complex number

with zero imaginary part occurs for inner products that implement the normsq to the

valuation domain using the default method in NorrnedlnnerProductSpace.

Both the double float and complex double float domains are extensions of the original

domains taken from the axilib library.

The conjugation operation for the double float domain exists to satisfy the requirements

of the parameterised solvers, but does nothing.

D.2 Wilson-Dirac Subdomains

ColourVector 	Join(Module(SI) , InnerProductSpace(CDF)) with

bracket : (CDF, CDF, CDF(-> %;

apply : (%, SI) -> CDF;

Rep == Record (a 	CDF, b 	CDF, C : CDF);

apply(v : %, i 	SI) 	CDF ==

± = 0 => (rep v(.a;

± = 1 => (rep v(.b;

± = 2 => (rep v)-c;

never;

bracket (a : CDF, b : CDF, c : CDF(== per [a, b, c];

(a 	SI) * (v : %(: % == [a * v(0(, a * v(l(, a * v(2)

(a 	CDF) * (v 	%) : 	== [a * v(0) , a * v(l) , a * v(2)]

(v : %(+ (w : %) 	== [v(0(+ w(0(, v(1(+ w(l) , v(2(+ w(2(

(v 	%) * (w : %(: CDF ==

v(0(* conjugate(w(0)(+ v(l) * conjugate(w(l() + v(2) * conjugate(w(2((

2RA
	

Appendix D. Domains

Spinor4 	InnerProductSpace)CDF) with

apply)%, SI) -> CV;

bracket :)CV, CV, CV, CV)

} == !cid

Rep == Record (a 	CV, b 	CV, c 	V, d : CV);

bracket (a 	CV, b : CV, c : CV, d 	CV) : 	== per [a, b, c, d];

apply (S : %, i : SI) 	CV == {

i = 0 =>)rep s).a;

± = 1 =>)rep s).b;

I = 2 =>)rep s).c;

± = 3 =>)rep s).d;

never;

)a : CDF) *)v : %) 	% == [a * v)O) , a * v)l) , a * v)2) , a * v(3)

)v : %) +)w : %) : % == [v (0) + w(0) , v)1) + w(l) , v)2) + w)2) , v)3) + w)3)l;

)v 	%) *)w 	%) 	CDF == {

v)O) * w(0) + v)l) * w)1) + v)2) * w)2) + v)3) * w)3);

SU3 : GroupAct±on)CDF, CV) with

bracket :)CDF, CDF, CDF,

CDF, CDF, CDF,

CDF, CDF, CDF)

add

Rep == Record)a: CDF, b: CDF, c: CDF,

d: CDF, e: CDF, f: CDF,

g: CDF, h: CDF, I: CDF);

bracket)a: CDF, b: CDF, c: CDF,

d: CDF, e: CDF, f: CDF,

g: CDF, h: CDF, I: CDF) 	== per record)a, b, c, d, e, f, g, h, 1);

D.2. Wilson-Dirac Subdomains
	

235

inv(M : %) 	== {

A 	(rep M(;

conjugate (A(a() 	conjugate (A(d((conjugate (A(g(

conjugate (A(b)) , conjugate (A(e)) 	conjugate (A(h)

conjugate(A(c)(, conjugate(A(f)) conjugete(A(i()1;

(M : %) * (v 	CV) 	CV == {

A 	(rep M(;

A(a) * v(0(+ A(b) * v(1) 	+ A(c(* v(2(

A(d(* v(0(+ A(e(* v(1(+ A(f) * v(2(

A(g(* v(0(+ A(h) * v(1) 	+ A(i) * v(2)1;

(M 	%) \ (v 	CV(CV ==

A := (rep M(;

conjugate(A(a)(* v(0) 	+ conjugate(A(d((* v(1(+ conjugate(A(g() * v(2),

conjugate(A(b((* v(0) 	+ 	conjugate(A(e((* v(1(+ conjugate(A(h)) * v(2),

conjugate(A(c((* v(0) 	+ conjugate(A(f)(* v(1) 	+ conjugate(A(i)) *

Projector : with

gammalpos 	: (SU3, Spinor4(-> 	Spinor4;

gammalneg (SU3, Spinor4(-> 	Spinor4;

gamxna4pos 	: (SU3, Spinor4) -> 	Spinor4;

gamina4neg (SU3, Spinor4) -> 	Spinor4;

i ==>complex(0.0, 1.0);

gamina4pos (U : SU3 s : Spinor4) : Spinor4 ==

uO 	U * (s (0) + i * s (2))

ul 	U * (s (1) - ± * s (3))

return [u0, ui 	(-i) * uO, ± * ui];

gamina4neg(U 	SU3, S : Spinor4) : Spinor4 ==

uO 	U \ (s (0) - ± * s(2);

iii 	U \ (s(1) + ± * s(3));

return [uO, ui i * uO, (-i) * ul];

236 	 Appendix D. Domains

In keeping with the rest of the code, constructors (here presented as bracket functions)

are added in anonymous category extensions.

Among the missing details are the packed array functions that are used by the SpinorField

domain, and the 0 element for the linear spaces.

The subdornains (and the vector and operator domains that use them) are not param-

eterised. It may be useful to introduce some degree of parameterisatidn, for example

with the aim of being able to use the same domains for a different gauge theory (which

would involve different size gauge matrices and colour vectors etc). However, other

forms of parameterisation may be less meaningful. For instance, it is less obvious how

to parameterise over the scalar domain.

D.3 Vector and Operator Domains

Vector3D 	Join)NormedlnnerProduct Space)DF, CDF) with

apply :)%, SI) -> CDF;

apply :)%, SI, SI) -> CDF;

set 	: (%, SI, CDF) -> CDF;

Rep == PackedArray(CDF);

dim ==> xDimension * yDimension * zDimension;

set !)v: %, 1: SI, a: CDF): CDF == set !)rep v, i, a);

apply (v: %, i: SI): CDF == apply (rep v, i);

apply)v : %, i : SI, mu : SI) : CDF ==

latticeDimensions : SI == 3;

pointsPerLatticeDim : SI == 2;

entriesPerSite : SI == latticeDimensions * pointsPerLatticeDim + 1;

centre : SI ==)entriesPerSite quo 2) + 1;

jump : SI == entriesPerSite;

index := offsetTableGlobal))juinp *)i-1)) + centre + mu);

return)rep v))index) ;

D.3. Vector and Operator Domains
	

237

(x: CDF) * (a:

result : 	:= new();

for ± in l..dirn repeat result(i) := x*a(i);

result

(a: %) + (b: %) : 	== {

result : % := newH;

for ± in 1.. dim repeat result (i) := a(i) + b(i)

result

(v: %) * (w: %) : CDF ==

ip : CDF := 0;

for ± in l..dim repeat ip := ip + v(i) * conjugate w(i);

ip

normsq(a: %): CDF == V *

norm(a: %): CDF == sgrt(normsq(a)@CDF);

norxn(a: %) : DF == valuation (norm(a)ICDF);

SimpleOperator3D : LinearOperatorOnlnnerProductSpace(CDF, Vector3D)

Rep == Record(kappa : CDF);

dim ==> xDimension * yDimension * zDimension;

apply(A : %, v : Vector3D, ± : SI) : CDF ==

r := v(i, 1) + v(i, -1) +

v(i, 2) + v(i, -2) +

v(i, 3) + v(i, -3)

- 6*v(i);

return rep(A).kappa *

(A : %) * (v : Vector3D) : Vector3D ==

u : Vector3D := new));

for i in l..dim repeat u(i) := apply(A, v, i);

return u;

adjoint(A : %) : % == per record (conjugate (rep A) kappa)

2381 	 Appendix D. Domains

The simple 4D operator is a simple generalisation of the one given above.

Constructor and destructor functions (new and dispose!) have been left out as they are

very simple (they both directly call equivalents from the underlying domain representa-

tion).

The grid dimensions (xflimension, yDimension etc) used by the vector and operator

domains are lexically scoped constants. This scheme illustrates one approach to the

problem of permitting symbolic constants whilst still being able to prove the conforma-

bility of loops from separate domains, as discussed in Section 9.1.2. A simpler scheme

would be to require loop dimensions to be known compile-time constants, in which

case proving conformability is trivial. The offset table (of fsetTableGlobal) is also a

lexical variable.

Rather than writing multiple loops, vector/operator functions could be written in terms of

higher order functionals such as map etc. However, the loops are already so concise that

not much would be gained in terms of presentation, and implementing any functionals

themselves as loops leads to the same FOAM code after miming, so the differences are

marginal.

The simple operators support an explicit adj oint operation as it is cheap, unlike, for

example, explicitly taking the adjoint of an element from the Wilson-Dirac domain.

SpinorField : Normedlnnerproduct Space (DF, CDF) with

apply : (%, SI) -> Spinor4;

apply : (%, SI, SI) -> Spinor4;

set! :)%, SI, Spinor4) -> Spinor4

== add

Rep == PackedArray(Spinor4);

dint ==> tDimension * xDiinension * yDimension * zDilnension7

set! (v: %, i: SI, a: Spinor4): Spinor4 == set! (rep v, i, a);

apply(v: %, i: SI): Spinor4 == apply(rep V

apply(v : %, i : SI, mu : SI) : Spinor4 ==

latticeDimensions : SI == 4;

pointsPerLatticeDiin : SI == 2;

entriesPerSite : SI == latticeDimensions * pointsPerLatticeDim + 17

D.3. Vector and Operator Domains
	

239

centre 	SI == (entriesPerSite quo 2) + 1;

jump : SI == entriesPerSite;

index := offsetTableGlobal))jump * (i-i)) + centre + mu);

return)rep v))index);

)v: %) *)w: %) : CDF ==

ip 	CDF 	0;

for i in 1.. dim repeat ip := ip +v(i) * w)i)
ip

NaturallyOrdetedWilsonDiracOperator 	LinearOperatorWithDual)CDF, DualSpF, SpF)

== add

Rep == Record (kappa : CDF, gaugeField 	PackedArray(StJ3));

dim => tDimension * xDimension * yDimension * zDimension;

apply (U 	PackedArray)SU3) 	± : SI, mu 	SI) : St13 ==

latticeDimensions 	SI == 4;

pointsPerLatticeDim : SI == 2;

entriesPerSite 	SI == latticeDimensions * pointsPerLatticeDim + 1;

centre 	SI == (entriesPerSite quo'2) + 1; 	c

offsetJump 	SI == entriesPerSite;

gaugeJump := latticeDimensions;

mu > 0 => index := (gaugeJump *)jl)) + mu;

mu < 0 =>

lookup :)offsetJump *)i-1)) + centre + mu;

index := gaugeJump * offsetTableGlobal)lookuP) - mu;

never;

return U)index);

apply)A : %, v : SpF, i : SI) 	Sp±nor4 ==

U)rep A) .gaugeField;

	

240
	

Appendix D. Domains

k 	rep(A).kappa;

r 	Spinor4 := zero();

r 	r + gamnialpos)U)i, 1), v(i, 1))

+ gaeimalneg)U)i, -1), v(i, -1));

r 	r + gainma2pos)U(i, 2), v(i, 2))

+ garnna2neg(U)i, -2), v(i, -2));

r : r + gainma3pos)U(j, 3), v(i, 3))

+ gamina3neg)U(i, -3), v(i, -3));

r := r + garnma4pos(U(i, 4), v(i, 4))

+ gamma4neg)U(i, -4), v(i, -4));

return v(i) - k *

	

(A 	%) *)v : SpF) 	SpF == f
u : SpF 	new));

for ± in 1..dim repeat u)i) 	A)v, ±);

return U;

The Wilson-Dirac vector and operator domains are very similar to the simple 3D do-

mains. As a result, only a small amount of code is given for them to highlight the

important differences.

In the vector domain, the main differences are the number of dimensions, the element

type of the loops (Spinor4 objects rather than elements of CDF) and the fact that the inner

product operation is implemented in terms of inner products on the elements rather than

multiplication and conjugation. Having loops over Spinor4 objects is what led to to

implementing loop rerolling to keep the code size of the loops down.

In the operator domain the differences include an index function to retrieve elements

of the gauge field, and a more complex stencil term written using functions from the

Projector package. The stencil term for the adjoint action has been omitted, but is

very similar. Note, however, that it acts on members of DualSpF - this domain has been

omitted, as it is an empty wrapper around the original SpinorField domain, which

implements the action of the dual space using the inner product operation after casting

the dual vector as a member of SpinorField. The domain exists only to satisfy the type

requirements of the Wilson-Dirac operator being a LinearOperatorwithflual.

	

D.4. Solver Domains
	

241

D.4 Solver Domains

LazyVector(GrourldField : Field) : IndexedVector(GroundField) with

bracket : (SI -> GroundField) -> %;

Rep == SI -> GroundField;

bracket(f 	SI -> GroundField) : 	== per f;

index (v 	%, I : SI) 	GroundField == (rep v))i);

apply(v : %, I 	SI) 	GroundField == index(v, I);

canonicalBasisVector(i : SI, coeff : GroundField) 	== {

[(j : SI) : GroundField +-> if j = i then coeff else 0;1;

LazyMatrix)GroundField Field,

V : LinearSpace(GroundField),

W : IndexedVector)GroundField)) : Matrix)GroundField, V, W) with

bracket : (SI -> V) -> %;

}== i4 {

Rep == SI -> V;

bracket (f 	SI -> V) 	== per f;

column (A 	%, I 	SI) : V == (rep A) (I);

LazyTriDiagMatrix(GroundField Field,

yDosl IndexedVector)GroundField)

with { bracket 	(SI -> GroundField)

TriDiagonalMatrix)GrOUfldField, yDom) with {

bracket)SI -> Record)u:Groundpield, d:GroundField, l:GroundField)) ->

242
	

Appendix D. Domains

Rep == SI -> Record (u: GroundField, d: GroundField, l: GroundField) ;

bracket (f : SI -> Record (u: GroundField , d: GroundField, l: GroundField)) : % == per f;

column (A 	%, j 	SI) : yDom

r :)rep A((j);

[(1 : SI) 	GroundField +->

i = j => r.d;

i+l =j => r.u;

i-i 	j => r.l;

0;

apply(A 	%, i 	SI, j 	SI) 	GroundField == {

i < j-1 => 0;

i > j+l => 0;

r := (rep A)(j);

j = i+l => r.u;

j = i => r.d;

j = i-i => r.l;

never;

ThreeEandedRFactor(GroundFjeld Field,

yDom •IndexedVector(GroundField(

with (bracket 	(SI -> GroundField(

BandedUpperTriangularMatrix(GroundField, yflom(with

bracket 	(SI -> Record(d:GroundField, ul:GroundField, u2:GroundField)) -> %;

)== add

Rep == SI -> Record (d:GroundField, ul:GroundField, u2:GroundField);

bracket(f : SI -> Record(d:GroundField, ul:GroundField, u2:GroundField)) : 	== per f;

column (U 	%, j : SI) 	yDorn

r 	Record (d: GroundField, ul:GroundField, u2:GroundField(:= (rep U) (i

[(i 	SI) 	GroundField +-> {

i = j => r.d;

i+l = j => r.ul;

i+2 = j => r.u2;

0;

D.4. Solver Domains 	 243

apply(U : %, ± : SI, j 	SI) : GroundField == {

r 	Record)d:GroundField, ul:GroundF±eld, u2 :GroundField) :=)rep U) (j);

± = j => r,d;

)j+l) = j => r.ul;

= j => r.u2;

0;

upperBandWidth)A 	%) : SI == 2;

The matrix domains outlined above are very simple wrappers around one of the re-

currences described later in the appendix. Although they are typed using the Matrix

category (or some derivative thereof) they do not support any of the exports demanded

by LinearMapping. There are two reasons for this. The first is that using a lazy repre-

sentation for a domain makes it more difficult to implement operations that manipulate

elements - this applies to the multiplication/division by a scalar. The second is that

calculating the result of the linear mapping itself is not obvious when the size of both

the matrix and vector may be unbounded, as the standard procedure for forming a linear

combination of the columns of the matrix will not terminate.

. Constructors are added as part of an anonymous category extension, either to the domain

itself or to its parameters as required.

BiKrySpc (Valuation : Orderedpield,

GroundField : FieldW±thValuation(ValUatiOfl)

with { conjugate: % -> %; },

DualVector : .NormedLinearSpace)ValUatiOfl, GroundField)

with { copy : % -> %; dispose 	: % -> () ;

Vector : NorrnedLinearSpaceWithDual)Valuatiofl, GroundField, DualVector)

with 	copy : % -> %; dispose! : % -> 	; },

Operator : LinearOperatorWithDual)GrOUfldField, DualVector, Vector),

yflom : IndexedL±nearSpace)GroundField)

VDoxn : Matrix(Groundpield, Vector, yDoIn)

with { bracket : (SI -> Vector) -> %; },

TDom : TriDiagonalMatrix.)GrOufldField, yDoin)

with { bracket : (SI -> Record(u:GroufldField,

d:GroundField,

l:GroundField)) -> %;

BiorthogonalsasisKrylovSpace(Valuatiofl, GroundField,

DualVector, Vector, Operator,

yDom, VDom, TD0Tn)

} == !I

244 	 Appendix D. Domains

Rep == Record)A : Operator,

start : Vector, biStart : DualVector,

V : VDom,

T 	TDoin);

biorthogonalKrylovBasis)argsiStart : DualVector)

(A: Operator, argStart: Vector)

cachedtiStart := copy argBiStart;

cachedStart := copy argStart;

normStart : Valuation := norm cachedStart;

if not ((normStart - 1) *)normStart - 1) << 1) then

error " [BiKrySpcJStartvector,not,normal"

AM ==> A; 	-- Convention to indicate use of Hermitian transpose

local)

vl : Vector; v2 : Vector;

wl : DualVector; w2 : DualVector;

alpha : GroundField; beta : GroundField; gamma : GroundField;

delta : GroundField; deltaOld : GroundField;

state : SI := 0;

goToState! (i : SI) : ()

free { state; vl; v2; wl; w2; alpha; beta; gamma; delta; deltaOld;

step!)) :)) ==

free { state; vl; v2; wl; w2; alpha; beta; gamma; delta; deltaOld;

tl := AM wl - conjugate (alpha) * wl - conjugate (beta) * w2;

dispose! (w2); w2 := ti;

(deltaOld, deltaTemp) := (delta,)v2 * w2));

delta := deltaTemp /)gamma * gamma);

)vl, v2) : = (v2/gamma, vl)

)wl, w2) :=)w2 /conjugate)gamma), wl);

U := A vl;

alpha :)u * wl)/delta;

beta := gamma * delta / deltaOld;

t2 := u - alpha * vl - beta * v2;

dispose!)v2) ; v2 := t2;

gamma := norm v2;

D.4. Solver Domains
	

245

state := state + 1;

if valuation(deltaTemp) = 0

then error

= state => return;

i = 1 => {

vi : copy cachedStart;

wl := copy cachedBiStart;

delta : 	(vi * wi);

deitaoid := 0;

U 	A vi;

alpha)u * wi)/delta;

beta := 0;

v2 := u - alpha * vi;

gamma := norm v2;

state := 1;

> sate => C

if state = 0

then goToState (1)

for j in 1. .i-state repeat step!));

i < 	tate => (goToState! (1); goToState! (i);

vCoiumnAccess)i : SI) : Vector ==

goToState 1(i);

return vi;

tCoiumnAccess)i 	SI) : Record)u:Groundpield, d:Groundpieid, l:GroundField) == {

goToState)i)

return record)beta, alpha, gamma);

return per record (A, cachedS tart, cachedBiSt art, [vCoiumnAccess], (tColumnAccess]) ;

246
	

Appendix D. Domains

basis (k : 	: VDorn == rep (k(.V;

coefficients(k : %) : TDorn == rep(k).T;

operator (k : 	: Operator == rep (k(.A;

As indicated by a comment in the code, the use of the AH macro instead of the identifier A

is to indicate to the reader that the Hermitian transpose of the operator being applied to a

(dual) vector. No such direction is necessary for the compiler however, as the operation

to use (i.e. apply the original or the transpose) is specified by the type of the object being

acted on (i.e. a vector or a dual vector).

The Krylov space generating algorithm deals explicitly with conjugation of scalars if

they are complex, and so the requirement for a conjugate export is added to the ground

field parameter.

The constructors necessary for wrapping the recurrences defined by the domain are

added as requirements to the domain for the matrix of basis vectors and the tridiago-

nal matrix of coefficients. This addition of constructor exports occurs for the domains

below as well.

tridiagDirectQRSolve(Valuat±on : OrderedField,

GroundField FieldWithValuation(Valuation)

with { conjugate: % -> % sqrt : % -> % 1,

zflon IndexedVector(GroundFjeld(

with { bracket : (SI -> GroundField(

TOom : TriDiagonalMetrix(GroundField, zDo(

ROom : BandedupperTriangularMatrix(GroundFjeld, zOom)

with { bracket : (SI -> Record(d:GroundField,

Ui: GroundField,

u2:GroundField()

DirectQRSoive(GroundFjeid, zOom, TDom, ROom)

add

directQR(T : TDom, y : zOom) : (RDom, zDom, zDom(==

local {

state : SI := 0;

R : Record(d : GroundField, ul : GroundField, u2 : GroundField(:= [0, 0, 0];

C : GroundField; s :GroundFieid;

cOld : GroundField; sOld : GroundField;

	

D.4. Solver Domains
	

247

z : GroundField; zTemp : GroundField;

	

goToState) i : SI) 	() ==

free { state; R; C; s; cold; sold; z; zTemp;

step!)) :

free { state; R; c; 5; cold; sold; z; zTemp;

state 	state + 1;

R.u2 	sold * T)state - 1, state);

ulTexnp 	cold * T)state - 1, state);

R.ul)c * ulTeinp) +)s * P)state, state));

local dTeinp)c * P)state, state)) - (conjugate (s) * ulTenip);

cold : c;

sold := 5;

local r : GroundField;

)c, a, r) 	givensRotation(dTemp, T)state + 1, state));

R.d 	r;

z : 	(c * zTemp) + (* y)state+1));

zTemp := (c * y)state+l)) -)conjugate(s) * zTemp);

i = state => return;

± = 1 =>

R.u2 := 0;

R.ul : 0;

(c, a, r) 	g±vensRotation)T)l,l), T(2,1));

R.d := r;

yl

y2 	y(2);

z :)c * y1) +) * y2);

zTemp :)c * y2) - (conjugate)s) * y1);

state 	1;

248 	 Appendix D. Domains

i = 2 => {

if state 	1 then goToState (1);

R.u2 : 0;

R.ul : 	(C * T(1,2)) + (* T(2,2));

dTemp := (c * T(2,2)) - (conjugate(s) * T(1,2));

cOld 	C;

sOld

)c, 5, r) := givensRotation(dTemp, T(3,2);

R.d 	r;

z 	(c * zTemp) + (* y3);

zTemp := (c * y3) - (conjugate(s) * zTemp);

state := 2;

± > state =>

for j in state.. i-1 repeat

= 0 => goToState! (1);

j = 1 => goToState! (1);

j > 1 => step!();

± < state =>

if i < 3 then goToState 1(i);

else goToState (2) ; goToState (i)

(V

rColuxnn(i 	SI) : Record(d : GroundField, ul 	GroundField, u2 	GroundField) ==

goToState (i(

return R;

zEntry(i : SI) 	GroundField == {

goToState 1(i);

return z;

	

DA Solver Domains 	 249

residualEntry(i 	SI) : GroundField

goToState)i)

return zTemp;

return ([rColumn], [zEntry], [residual Entry]);

Similarly to the Krylov space algorithm, the QR solve explicitly needs the operations of

conjugation (for complex scalars) and square root, and these are added to the require-

ments of the scalar domain parameter. The need for both arises from the calculation of

Givens rotations (the code for which has been omitted as it is entirely standard).

The solve is specialised to tridiagonal matrices and this is reflected in the stricter type

requirement for the domain of matrices to be decomposed (the category only requires

upper Hessenberg matrices).

length2SearchRecurrence(GroundField Field,

zDom : IndexedVector(GroundField)

Vector : LinearSpace (GroundField)

VDom 	Matrix)GroundField, Vector, zDom)

with { bracket : (SI -> Vector) -> %;),

RDorn EandedtjpperTriangularMatrix(GroundField, zDom)

SearchVectorRecurrence)GroundField, zDom, Vector, VDom, RDoin) == add {

recurrence (V : VDom, R : RDoTs) : VDom == {

local) p1 	Vector; p2 : Vector; state 	SI 	0;

goToState)i 	SI) 	() ==

free { p1; p2; state;

step!)) 	() == {

free { p1; p2; state;

state 	state+1;

ti : 	l/R) state ,state) * (V) state) - R)state -1, state) * p1

- R)state-2, state) * p2);

dispose!)p2); p2 :* ti;

(p1, p2) := (p2, p1);

250
	

Appendix D. Domains

i = state => return;

i = 1 =>

p1 : (1/R(1,1)) *

state := 1;

i = 2 =>

if state = 1 then goToState (1);

p2 : 	(1/R)2,2)) * (V(2) - R)1, 2) * p]);

(p1, p2) := (p2, p1);

state := 2;

i > state =>

for j in state.. i-i repeat

= 0 => goToState (1);

= 1 => goToState (1);

j > 1 => step!));

i < state =>

if i < 3 then goToState! (i);

else goToState (2); goToState)i)

pColumn)i : SI) : Vector ==

i < 1 => error " [pColumn]outof,boundsaccess"

goToState)i)

return p1; 	 -

return [pColuxnn];

The search vector recurrence is specialised to upper triangular factors with a band width

of two. However, this is not checked for by the type system, as it would require a

separate type for every different band width. Although it has not been included, it would

be easy enough to add a dynamic check on the band width value.

D.4. Solver Domains
	

251

QMRwrapper (Valuation : OrderedField,

GroundField 	FieldWithValuation(Valuation)

DualVector : NormedLinearSpace(Valuation, GroundField),

Vector 	NorrnedLinearSpaceWithDUal(ValUatiOn, GroundField, DualVector)

Operator 	LinearOperatorwithflual(GroundField, DualVector, Vector),

zDom IndexedLinearSpace(GroundField)

VDom : Matrix(GroundField, Vector, zDom),

TDoxn : TrioiagonalMatrix(GroundField, zDom),

KDom : BiorthogonalBasisKrylovSpace(ValuatiOfl, GroundField, DualVector,

Vector, Operator, zDom, VDom, TDom),

RDom UpperTriangularMatrix(GroundField, zDom),

QRDecomp 	DirectQRSolve(GroundField, zDom, TD0m, RDomn),

SolvewithStete : SearchVectorRecurrence(GroundField, zDom, Vector, VDom, RDom)

):with(

QMR 	(Operator, Vector, Vector, Valuation) -> Vector;

	

QMR(A 	Operator, x : Vector, b : Vector, t : GroundField) : Vector ==

tolerance 	valuation(t);

minimuumResidualCorrection(T 	TDora, V : VDom, beta 	Valuation)

(zDom, VDom, SI -> Boolean) == {

(R : RDom, z 	zDom, res : zDom)

directQR(T, canonicalOasisVector(l, beta::GroundField));

	

P 	recurrence(V, R);

lastlteration?(i : SI) : Boolean ==

residual : GroundField := res(i(;

if valuation(residual) < tolerance then true else false;

return(z, P, lastlteration?);

solveFunction := iterativeSolve(biorthogonalKrylovBasis(b),

mninimumResidualCorrection);

return solveFunction(A, x, b);

252
	

Appendix D. Domains

Anonymous category extensions have been dropped from the parameter domains in this

extract to prevent the code from becoming too cluttered.

Appendix E

Published Papers

This appendix lists the three papers related to this work that were published during the

course of the thesis, and provides some notes as to how they relate to the thesis proper.

The papers are presented in chronological order. The first was a workshop paper that

accompanied a poster, and the second two were refereed conference papers.

E.1 	"The Paraldor Project" - 2003

[7] - this early paper was written in conjunction with colleagues from physics, and

was primarily intended for an audience from computational physics. The first half

of the paper describes the advantages of the Aldor language model as compared to

other better-known languages such as C/FortranlC++/Java and macro systems. The

second half of the paper describes a toy code for an initial investigation into perfor-

mance questions. The benchmark is the standard conjugate gradients algorithm (as

opposed to the use of a modular framework) written in terms of domain exports, acting

on a fully dense operator (i.e. n x n matrix). The results compare the performance

of this algorithm implemented using various different domains, including a pure Al-

dor version with or without some degree of manual memory management (i.e. use of

dispose! functions), and a version that uses foreign function calls to operations writ-

ten in C (for both matrix-vector multiplication and all vector operations), again with or

without manual memory management. The baseline against which the different imple-

253

254 	 Appendix E. Published Papers

mentations are measured is a pure C version of the algorithm. The pure Aldor results

are significantly worse (i.e. by a factor of more than 100) than the baseline. The C

back-end does much better, but is still worse than the baseline.

The paper differs philosophically from the work in the thesis in that it recommends

the use of high-performance libraries (or assembly kernels) to implement low-level

domains, such as matrix-vector application and vector operations, regardless of the cost

of modularity. This stems, in part from the tradition of this approach in computational

physics. Also, it makes no direct mention of developing a framework for iterative

solvers rather than the recipe used for the benchmark.

Because this was exploratory work, there was no detailed study of the code gen-

erated by the Aldor compiler. Hence, there is no information on why the pure Aldor

results are so bad even when manual memory management is used, but factors such

as failing to inline and emerge any generators (or higher order functions such as map)

used for loops over the low-level domains are capable of incurring this kind of dramatic

penalty. Failure to optimise such constructs can easily happen due to the difficulties

that the inliner has with e.g. parameterised domains, but this is often a case of se-

lecting the correct command line option or simple compiler implementation issues. In

addition, the use of a dense matrix for the benchmark (rather than a stencil) has cer-

tain implications. A C compiler could apply certain blocking optimisations to improve

temporal locality, and the cost of the matrix-vector multiplication will vastly outweigh

any other operation.

The concluding sections of the paper contain some important points. The introduc-

tion of modularity makes manual memory management difficult (a theme which also

occurs in Section 5.3.1.2) and, at the same time, certain automatic garbage collection

strategies may be sub-optimal for applications like the iterative solvers. Particularly, a

mark+sweep tracing collector tends to encourage the creation of many vectors before

they are recovered, leading to poor temporal locality of reference to memory, and the

process of root finding in the stack and tracing pointers is too expensive to incur reg-

ularly enough to maintain temporal locality of vector objects. The proposed solution

is that of memory spaces, where different classes of object can be assigned different

garbage collection strategies. The motivation behind this was to provide a mechanism

E.2. "A Modular Iterative Solver Package in a Categorical Language"- 2003 	255

to allow vector objects to be collected by reference counting, and also to eliminate

the possibility of object pinning which accompanies conservative garbage collectors.

Ultimately, this direction was abandoned due to a lack of specificity to the application

area, and the potential difficulties of integrating the scheme into Aldor and its current

compiler. The future work section mentions implementing multiple iterative solvers,

eigenvalue solvers, low-level objects for QCD (gauge fields etc), and the high level al-

gorithmic structures for Monte Carlo algorithms that make use of the iterative solvers.

Progress has been made on all of these, except for the Monte Carlo algorithms.

E.2 "A Modular Iterative Solver Package in a Categori-

cal Language" 2003

[8] - this paper introduces and describes the algorithmic framework for the iterative

solvers and its domain level implementation, as detailed in Chapter 5. In addition to

this, it presents a continuation of the argument against other popular approaches, as

started in the workshop paper, and a move toward examining cross-component opti-

misations. This includes benchmark results comparing a pure Aldor version of a full

QMR solver derived from the framework and transformed by hand against a version

that makes calls to binary level 1 ATLAS BLAS routines. The operator in question is

a simple 3D operator, and the machine is a 1GHz Pentium 3 Coppermine. The results

show a speedup of up to 1.42 for the hand transformed code over the BLAS version.

The arguments against other approaches will be summarised here, as they are not

covered in the thesis. The main arguments against traditional third-generation lan-

guages such as C and Fortran is that they do not provide adequate support for abstrac-

tion, the type systems do not provide much security (in the presence of type casts etc),

and certain parts of the language definitions can be a significant obstacle to optimisa-

tion (e.g. pointers). The main arguments against object-oriented languages is that class

inheritance is the wrong abstraction for representing groups of mathematical objects,

and that while object mechanisms allow a certain degree of generalisation they still

rely heavily on type casts, in contrast with static dependent typing. The objection to

class inheritance is that it represents a subset relationship (i.e. C) rather than member-

256 	 Appendix E. Published Papers

ship (i.e. E) as defined by categories. For example, given a class called group, two

classes that inherit from it representing different groups are not both subsets of some

larger group - elements of the different groups cannot interact. In addition, object sys-

tems are weak when it comes to specifying binary operations, as the model is based on

sending messages to one object that owns the function being invoked.

A notable addition to the list of rejected alternatives is the use of expression tem-

plates [89], an example of compile time meta-programming based on the C++ template

mechanism. In the paper it is dismissed based on arguments against its implementation

- i.e. the inherent disadvantages of using any macro system (lack of type checking, se-

mantic analysis etc), and the inherited problems from the underlying language being

manipulated by the macros. In addition to this, the flaws in the general approach of

meta-programming ought to be highlighted, namely that it is fundamentally a static

approach that does not incorporate feedback from empirical evaluation of transforma-

tions, and therefore are no more adaptable to architectural differences than the static

approaches to LDG optimisation given in Chapter 8.

The future work section lists formalising the transformations done by hand, and

possible extensions to the general framework (a subset of those suggested in Chapter

11 as future work). The formalisation of the transformations has been covered in this

thesis - see Chapters 7 and 8.

E.3 	"Cross-Component Optimisation in a High Level Cat-

egory Based Language" - 2004

[9] - this paper is mostly an expansion of the experimental results presented in [8],

again investigating a QMR solver derived from the algorithmic framework, with a sim-

ple 3D operator, on a 1 GHz Pentium 3 Coppermine. The paper is presented in terms of

cross-component optimisation. A more detailed description of the actual (hand) trans-

formations is included, with several different variations that compare different levels

of aggressiveness for fusion, and the introduction of the Fortran program QMRpack as

another control. The results plot the relative performance of the different versions and

controls against data set size, with a speedup for the transformed code of up to 1.5 over

E3. "Cross-Component Optimisation in a High Level Category Based Language"— 2004257

the Fortran control, and 1.43 over the ATLAS BLAS version.

The benefit of the (cross-component) optimisations is described in terms of max-

imising instruction level parallelism by avoiding the memory bandwidth bottleneck.

There is also a brief discussion on the trade-offs between latency and prefetching that

the transformations explore. In keeping with the emphasis on cross-component optimi-

sation, the related work section deals mostly with alternative approaches to embedding

domain specific components into a host language and then optimising the result, rather

than traditional optimisations or LDG transformations. Examples discussed include

expression templates, library annotations and the development of customised parsers

for what are effectively domain specific extensions to a language, all of which rely on

the specification of domain specific optimisation rules by the developer of the compo-

nent library.

The suggestions for extension of the work include conducting experiments on more

complex operators such as the red-black preconditioned Wilson-Dirac operator, incor-

porating other solvers, and using iterative optimisation to attack possible latency prob-

lems in individual loops after fusion and contraction. In this thesis the work has been

extended to include the unpreconditioned Wilson-Dirac operator, the loop transforma-

tions have been fully formalised, and iterative optimisation has been applied to the task

of fusion/contraction itself - further application of iterative optimisation to individual

loops resulting from collective loop fusion is an important part of the future work given

in Chapter 11.

Bibliography

Haskell website. http://www.haskell.org/.

MILRTSC website. http://www.cs.nyu.edu/leungaJwww/MLRISC/DoclhtmlI.

OCami website. http://caml.inria.fr/ocaml/index.en.html.

SML/NJ website. http://www.smlnj.org.

SPEC website. http://www.spec.org.

L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven W.
Reeves, Devika Subramanian, Linda Torczon, and Todd Waterman. Finding
effective compilation sequences. In LCTES '04: Proceedings of the 2004 ACM
SIGPLAN/SIGBED conference on Languages, compilers, and tools, pages 231-
239, New York, NY, USA, 2004. ACM Press.

T. Ashb, D. Galletly, B. Joó, A.D. Kennedy, and G. Lacagnina. The Paraldor
project. In Nuclear Physics B Proceedings Supplements, volume 119, pages
1006-1008. Elsevier, May 2003.

T.J. Ashby, A.D. Kennedy, and M.F.P. O'Boyle. A modular iterative solver pack-
age in a categorical language. In Press: Proceedings of the Third International
Workshop on Numerical Analysis and Lattice QCD, November 2003.

T.J. Ashby, A.D. Kennedy, and M.F.P. O'Boyle. Cross component optimisation
in a high level category-based language. In Euro-Par 2004 Parallel Processing:
10th International Euro-Par Conference, volume 3149 of LNCS, page 654, Pisa,
Italy, August 2004. Springer-Verlag GmbH.

J. Michael Ashley. The effectiveness of flow analysis for inlining. In ICFP '97.
Proceedings of the second ACM SIGPLAN international conference on Func- •
tional programming, pages 99-111, New York, NY, USA, 1997. ACM Press.

J. Michael Ashley and R. Kent Dybvig. A practical and flexible flow analysis
for higher-order languages. ACM Transactions on Programming Languages and
Systems, 20(4):845-868, 1998.

259

260 	 Bibliography

David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transforma-
tions for high-performance computing. ACM Comput. Surv., 26(4):345-420,
1994.

B.Franke, M. O'Boyle, J.Thomson, and G.Fursin. Probabilistic source-level
optimisation of embedded programs. In To Appear in: Proceedings of the ACM
SIGPLAN/SIGBED 2005 Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES 2005), Chicago, Illinois, June 2005. ACM.

Guy E. Blelloch, Jonathan C. Hardwick, Jay Sipeistein, Marco Zagha, and Sid-
dhartha Chatterjee. Implementation of a portable nested data-parallel language.
Journal of Parallel and Distributed Computing, 21(1):4-14, 1994.

William Blume, Rudolf Eigenmann, Jay Hoeflinger, David Padua, Paul Pe-
tersen, Lawrence Rauchwerger, and Peng Tu. Automatic detection of paral-
lelism: A grand challenge for high-performance computing. IEEE Parallel Dis-
trib. Technol., 2(3):37-47, 1994.

F. Bodin, T. Kisuki, P.M.W. Knijnenburg, M.F.P. O'Boyle, and E. Rohou. It-
erative compilation in a non-linear optimisation space. In Proceedings of the
Workshop on Profile Directed Feedback-Compilation, PACT'98, 1998.

P. A. Boyle, C. Jung, and T. Wettig. The QCDOC supercomputer: Hardware,
software, and performance. ECONF, C0303241:THIT003, 2003.

Manuel Bronstein. libald.or user guide and reference manual, version 1.0.2.
INRIA, Sophia-Antipolis, April 2004.

Henry Cejtin, Suresh Jagannathan, and Stephen Weeks. Flow-directed closure
conversion for typed languages. In ESOP '00: Proceedings of the 9th European
Symposium on Programming Languages and Systems, pages 56-71, London,
UK, 2000. Springer-Verlag.

Manuel M. T. Chakravarty and Gabriele Keller. Functional array fusion. In
ICFP '01: Proceedings of the sixth ACM SIGPLAN international conference
on Functional programming, pages 205-216, New York, NY, USA, 2001. ACM
Press.

Tony F. Chan, Lisette de Pillis, and Henk van der Vorst. Transpose-free formu-
lations of Lanczos-type methods for nonsymmetric linear systems. Numerical
Algorithms, 17(1-2):51-66, 1998.

Stéphane Chauveau and François Bodin. Menhir: An environment for high per-
formance MATLAB. In LCR '98: Selected Papers from the 4th International
Workshop on Languages, Compilers, and Run-Time Systems for Scalable Com-
puters, pages 27-40, London, UK, 1998. Springer-Verlag.

Bibliography
	

261

Dong Chen, Ping Chen, Norman H. Christ, Robert G. Edwards, George Flem-
ing, Alan Gara, Sten Hansen, Chulwoo Jung, Adrian Kahier, Stephen Kasow,
Anthony D. Kennedy, Greg Kilcup, Yu Bing Luo, Catalin Malureanu, Robert D.
Mawhinney, John Parsons, Jim Sexton, ChengZhong Sui, and Pavlos Vranas.
QCDSP: a terafiop scale massively parallel supercomputer. In Supercomput-
ing '97: Proceedings of the 1997 ACM/IEEE conference on Supercomputing
(CDROM), pages 1-17, New York, NY, USA, 1997. ACM Press.

M. 	Clarkson 	and V. 	Vaish. 	Array optimizations in
OCaml. 	Technical report, Cornell University, 2001.
http://www.cs.cornell.edu/Courses/cs65P/projects/ocaml-
array s/OCaml.pdf.

Regis Cridlig. An optimizing ML to C compiler. In ACM SIGPLAN Workshop
on ML and its Applications, pages 28-36, San Francisco, California, 1992.

Alain Darte. On the complexity of loop fusion. In PACT '99: Proceedings of
the 1999 International Conference on Parallel Architectures and Compilation
Techniques, page 149, Washington, DC, USA, 1999. IEEE Computer Society.

Alain Darte and Guillaume Huard. New results on array contraction. In 13th
IEEE International Conference on Application-Specific Systems, Architectures,
and Processors (ASAP 2002), pages 359-370, San Jose, CA, USA, July 2002.
IEEE Computer Society.

L. De Rose. Compiler Techniques for MATLAB. Ph.D. thesis, Department
of Computer Science, University of Illinois at Urbana-Champaign, Urbana-
Champaign, IL, USA, 1996.

Chen Ding and Ken Kennedy. The memory bandwidth bottleneck and its ame-
lioration by a compiler. In IPDPS '00: Proceedings of the 14th International
Symposium on Parallel and Distributed Processing, page 181, Washington, DC,
USA, 2000. IEEE Computer Society.

R. Edwards, A.D. Kennedy, and C. Vohwinkel. 	SZIN: An
object oriented macro-based system for lattice field theory.
http://www.jlab.org/-edwards/szin/macros-v2.ps, 1996.

Oliver Ernst. .Lanczos-based iterative solution methods. http://www.mathe.tu-
freiberg.derernstlLehre/AKNO llErnstilanczos0 1 .pdf, 2001. Lecture Slides.

Antoine Fraboulet, Karen Kodary, and Anne Mignotte. Loop fusion for memory
space optimization. In ISSS '01: Proceedings of the 14th international sympo-
sium on Systems synthesis, pages 95-100, New York, NY, USA, 2001. ACM
Press.

262
	

Bibliography

Roland 	Freund 	and 	Noel 	Nachtigal. 	 QMRpack.
http://www.netlib.orgllinalg/qmr/.

A. Frommer. Personal communication.

A. Frommer and B.Medeke. Exploiting structure in Krylov subspace methods
for the Wilson fermion matrix. In A. Sydow, editor, The proceedings of the
15th IMACS World Congress on Scientific Computation, Modelling and Applied
Mathematics, pages 485-490. Wissenschaft & Technik Verlag, Berlin, 1997.

G.G. Fursin, M.F.P. O'Boyle, and P.M.W. Knijnenburg. Evaluating itera-
tive compilation. In Proc. Languages and Compilers for Parallel Computers
(LCPC), pages 305-315, 2002.

Guang R. Gao, R. Olsen, Vivek Sarkar, and Radhika Thekkath. Collective loop
fusion for array contraction. In Proceedings of the 5th International Workshop
on Languages and Compilers for Parallel Computing, pages 281-295. Springer-
Verlag, 1992.

J. Gaudiot, W. Bohm, T. DeBoni, J. Feo, and P. Miller. The SISAL model
of functional programming and its implementation. In Proceedings of the 2nd
AIZU International Symposium on Parallel Algorithms /Architecture Synthesis
(pAs '97), Aizu-Wakamatsu, Japan, March 1997.

S.V. Gheorghita, H. Corporaal, and T. Basten. Iterative compilation for energy
reduction. Journal of Embedded Computing, To appear in 2005.

Gene H. Golub and Charles F. Van Loan. Matrix computations (3rd ed.). Johns
Hopkins University Press, Baltimore, MD, USA, 1996.

Anne Greenbaum. Iterative methods for solving linear systems. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1997.

Martin H. Gutknecht. Lanczos-type solvers for non-hermitian linear systems.
http://www.sam.math.ethz.chrmhgltalks/ltsshort.ps, 1999. Lecture Slides.

Martin H. Gutknecht. On Lanczos-type methods for Wilson fermions. In
A. Frommer and et al., editors, Numerical Challenges in Lattice Quantum Chro-
modynamics: joint interdisciplinary workshop of John von Neumann Institute
for Computing, Jülich, and Institute of Applied Computer Science, Wuppertal
University, volume 15 of LNCSE, pages 48-65. Springer, August 1999.

Samuel Z. Guyer and Calvin Lin. Broadway: A compiler for exploiting the
domain-specific semantics of software libraries. Proceedings of the IEEE, 93(2),
2005. special issue on "Program Generation, Optimization, and Adaptation".

Bibliography
	 263

C. Hall, S. L. Peyton Jones, and P. M. Sansom. Unboxing using specialisation.
In K. Hammond, D. N. Turner, and P. M. Sansom, editors, Functional Program-
ming, pages 96-110. Springer, Berlin, Heidelberg, 1994.

Niels Hallenberg, Martin Elsman, and Mads Tofte. Combining region inference
and garbage collection. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI'02). ACM Press, June 2002. Berlin,
Germany.

John L. Hennessy and David A. Patterson. Computer Architecture: A Quanti-
tative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2003.

Richard D. Jenks and Robert Sutor. AXIOM: The scientific computation system.
Springer-Verlag New York, Inc., New York, NY, USA, 1992.

Simon L. Peyton Jones, Norman Ramsey, and Fermin Reig. C - -: A portable
assembly language that supports garbage collection. In PPDP'99: Proceedings
of the International Conference on Principles and Practice of Declarative Pro-
gramming, volume 1702 of Lecture Notes in Computer Science, pages 1-28,
Paris, France, 1999. Springer.

Gabriele Keller and Manuel M. T. Chakravarty. On the distributed implemen-
tation of aggregate data-structures by program transformation. In Parallel and
Distributed Processing, Fourth International Workshop on Highievel Parallel
Programming Models and Supportive Environments (HIPS99), number 1586 in
Lecture Notes in Computer Science, pages 108-122. Springer-Verlag, 1999.

K. Kennedy and K. S. McKinley. Typed fusion with applications to parallel
and sequential code generation. Technical Report Techreport TR93-208, Rice
University Dept. of Computer Science, 1993.

Ken Kennedy. Fast greedy weighted fusion. In ICS '00: Proceedings of the
14th international conference on Supercomputing, pages 131-140, New York,
NY, USA, 2000. ACM Press.

T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O'Boyle. Combined selection of
tile sizes and unroll factors using iterative compilation. In PACT '00: Proceed-
ings of the 2000 International Conference on Parallel Architectures and Com-
pilation Techniques, page 237, Washington, DC, USA, 2000. IEEE Computer
Society.

Xavier Leroy. Unboxed objects and polymorphic typing. In POPL '92: Pro-
ceedings of the 19th ACM S1GPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 177-188, New York, NY, USA, 1992. ACM Press.

264
	

Bibliography

Xavier Leroy. The effectiveness of type-based unboxing. In Workshop on Types
in Compilation '97. Technical report BCCS-97-03, Boston College, Computer
Science Department, June 1997.

E. Christopher Lewis, Calvin Lin, and Lawrence Snyder. The implementation
and evaluation of fusion and contraction in array languages. In PLDI '98: Pro-
ceedings of the ACM SIGPLAN 1998 conference on Programming language
design and implementation, pages 50-59, New York, NY, USA, 1998. ACM
Press.

Amy W. Lim, Shih-Wei Liao, and Monica S. Lam. Blocking and array contrac-
tion across arbitrarily nested loops using affine partitioning. In PPoPP '01: Pro-
ceedings of the eighth ACM SIGPLAN symposium on Principles and practices
of parallel programming, pages 103-112, New York, NY, USA, 2001. ACM
Press.

Bret Marsolf. Techniques for the interactive Development of Numerical Lin-
ear Algebra Libraries for Scientific Computation. Ph.D. thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign, 1997.

C. McClendon. Optimized lattice QCD kernels for a Pentium 4 clus-
ter. http://www.jlab.orgtedwards/qcdapi/reports/dslashp4.pdf, Jlab preprint,
JLAB-THY-01-29. Adapted code provided by Bálint Joó, personal commu-
nication.

Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving data locality
with loop transformations. ACM Trans. Program. Lang. Syst., 18(4):424-453,
1996.

Kathryn S. McKinley and Olivier Temam. Quantifying loop nest locality using
SPEC'95 and the Perfect benchmarks. ACM Trans. Comput. Syst., 17(4):288-
336,1999.

Nimrod Megiddo and Vivek Sarkar. Optimal weighted loop fusion for parallel
programs. In SPAA '97: Proceedings of the ninth annual ACM symposium on
Parallel algorithms and architectures, pages 282-291, New York, NY, USA,
1997. ACM Press.

Vijay Menon and Keshav Pingali. A case for source-level transformations in
'MATLAB. In PLAN '99: Proceedings of the 2nd conference on Domain-specific
languages, pages 53-65, New York, NY, USA, 1999. ACM Press.

J. Modersitzki. Conjugate gradient type methods for solving symmetric, indefi-
nite linear systems. Technical Report 868, Dept. of Math., University of Utrecht,
1994.

Bibliography
	 265

Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

A. P. Nisbet. GAPS: Iterative feedback directed parallelisation using genetic al-
gorithms. In Proceedings of Workshop on Profile and Feedback-Directed Com-
pilation at PACT98, Paris, France. Springer Verlag, 1998.

C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear
equations. SIAM Journal of Numerical Analysis, 12:617-629, 1975.

David Parello, Olivier Temam, and Jean-Marie Verdun. On increasing archi-
tecture awareness in program optimizations to bridge the gap between peak and
sustained processor performance: matrix-multiply revisited. In Supercomputing
'02: Proceedings of the 2002 ACM/IEEE conference on Supercomputing, pages
1-11, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

Geoffrey Roeder Pike. Reordering and storage optimizations for scientific
programs. PhD thesis, Computer Science Division, University of California,
Berkley, 2002. Chair-Paul N. Hilfinger.

William Pugh. A practical algorithm for exact array dependence analysis. Com-
mun. ACM, 35(8):102-114,1992.

Gabriel Rivera and Chau-Wen Tseng. Tiling optimizations for 3D scientific
computations. In Supercomputing '00: Proceedings of the 2000 ACM/IEEE
conference on Supercomputing (CDROM), page 32, Washington, DC, USA,
2000. IEEE Computer Society.

M. Rozloznik and R. Weiss. On the stable implementation of the generalized
minimal error method. Journal of Computational and Applied Mathematics,
98:49-62, 1998.

Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Com-
pany, 1996.

Amr Sabry and Matthias Felleisen. Is continuation-passing useful for data flow
analysis? In PLDI '94. Proceedings of the ACM SIGPIAN 1994 conference
on Programming language design and implementation, pages 1-12, New York,
NY, USA, 1994. ACM Press.

Sven-Bodo Scholz. Single assignment C: efficient support for high-level ar-
ray operations in a functional setting. Journal of Functional Programming,
13(6):1005-1059, 2003.

266 	 Bibliography

Manuel Serrano. Control flow analysis: a functional languages compilation
paradigm. In SAC '95: Proceedings of the 1995 ACM symposium on Applied
computing, pages 118-122, New York, NY, USA, 1995. ACM Press.

Manuel Serrano and Marc Feeley. Storage use analysis and its applications.
In ICFP '96: Proceedings of the first ACM SIGPLAN international conference
on Functional programming, pages 50-6 1, New York, NY, USA, 1996. ACM
Press.

0. Shivers. Control flow analysis in scheme. In PLDI '88: Proceedings of
the ACM SIGPLAN 1988 conference on Programming Language design and
Implementation, pages 164-174, New York, NY, USA, 1988. ACM Press.

Sharad Singhai and Kathryn S. McKinley. A parameterized loop fusion al-
gorithm for improving parallelism and cache locality. The Computer Journal,
40(6):340-355,1997.

Yonghong Song, Rong Xu, Cheng Wang, and Zhiyuan Li. Data locality en-
hancement by memory reduction. In ICS '01: Proceedings of the 15th interna-
tional conference on Supercomputing, pages 50-64, New York, NY, USA, 2001.
ACM Press.

[8 1] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems.
SIAM Journal on Scientific Statistical Computing, 10:36-52, 1989.

Z. Sroczynski. DSlash in C - personal communication.

Z. Sroczynski. 	HMC for ALiCE. 	http://www.theorie.physik.uni-
wuppertal .de/Computerlabor/Alice/akmt.phtml, 2002.

David Tarditi. Design and Implementation of Code Optimizations for a Type-
Directed Compiler for Standard ML. PhD thesis, Carnegie Mellon University,
1996. Available as CMIJ CS technical report 97-108.

David Tarditi, Peter Lee, and Anurag Acharya. No assembly required: compil-
ing standard ML to C. ACM Lett. Program. Lang. Syst., 1(2):161-177, 1992.

Frank Tip and Jens Palsberg. Scalable propagation-based call graph construction
algorithms. In OOPSLA '00: Proceedings of the 15th ACM SIGPLAN confer-
ence on Object-oriented programming, systems, languages, and applications,
pages 281-293, New York, NY, USA, 2000. ACM Press.

Andrew P. Tollmach and Dino Oliva. From ML to Ada: Strongly-typed language
interoperability via source translation. Journal of Functional Programming,
8(4):367-412, 1998.

Bibliography
	 267

P. van der Mark, E. Rohou, F. Bodin, Z. Chamski, and C. Eisenbeis. Using it-
erative compilation for managing software pipeline-unrolling tradeoffs. In Pre-
sented at the 4th workshop on Software and Compilers for Embedded Systems,
St Goar, Germany, Sept 1999.

Todd L. Veldhuizen. Expression templates. C++ Report, 7(5):26-31, June
1995. Reprinted in C++ Gems, ed. Stanley Lippman.

S. Verdoolaege, M. Bruynooghe, G. Janssens, and F. Catthoor. Multi-
dimensional incremental loop fusion for data locality. In Proc. of the IEEE Conf
on Application-Specific Systems, Architectures, and Processors, pages 14-24,
June 2003.

Philip Wadler. Deforestation: Transforming programs to eliminate trees. Theo-
retical Computer Science, 73(2):231-248, 1990.

Philip Wadler. A taste of linear logic. In Mathematical Foundations of Comput-
ing Science, number 711 in LNCS. Springer—Verlag, August 1993. Gdansk.

S.M. Watt. Aldor Users Guide. http://www.a1dor.org, 2nd edition, 2002.

S.M. Watt, P.A. Broadbery, P. Iglio, S.C. Morrison, and J.M. Steinbach. FOAM:
A first order abstract machine, v 0.35. Research Report RC 19528, IBM, 1994.

Stephen M. Watt, Peter A. Broadbery, Samuel S. Dooley, Pietro Iglio, Scott C.
Morrison, Jonathan M. Steinbach, and Robert S. Sutor. A first report on the
A# compiler. In ISSAC '94: Proceedings of the international symposium on
Symbolic and algebraic computation, pages 25-31, New York, NY, USA, 1994.
ACM Press.

R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical
optimization of software and the ATLAS project. Parallel Computing, 27(1-
2):3-35, 2001.

Paul R. Wilson. Uniprocessor garbage collection techniques. In IWMM '92:
Proceedings of the International Workshop on Memory Management, pages 1-
42, London, UK, 1992. Springer-Verlag.

Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic
storage allocation: A survey and critical review. In IWMM '95: Proceédings
of the International Workshop on Memory Management, pages 1-116, London,
UK, 1995. Springer-Verlag.

Robert Wilson, Robert French, Christopher Wilson, Saman Amarasinghe, Jen-
nifer Anderson, Steve Tjiang, Shih Liao, Chau Tseng, Mary Hall, Monica Lam,

268 	 Bibliography

and John Hennessy. The SUIF compiler system: a parallelizing and optimizing
research compiler. Technical report, Stanford University, Stanford, CA, USA,
1994.

Andrew K. Wright and Suresh Jagannathan. Polymorphic splitting: an effective
polyvariant flow analysis. ACM Transactions on Programming Languages and
Systems, 20(1):166-207, 1998.

Thorsten H.G. Zörner. Numerical analysis and functional programming. In
Davie and Clark, editors, Proceedings of the 10th international workshop on
the implementation ofJirnctional languages, number 1595 in Lecture Notes in
Computer Science, pages 27-48. Springer—Verlag, 1998.

