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Abstract 

This thesis presents an investigation into the use of advanced computer languages for 

scientific computing, an examination of performance issues that arise from using such 

languages for such a task, and a step toward achieving portable performance from 

compilers by attacking these problems in a way that compensates for the complexity 

of and differences between modern computer architectures. 

The language employed is Aldor, a functional language from computer algebra, 

and the scientific computing area is a. subset of the family of iterative linear equation 

solvers applied to sparse systems. The linear equation solvers that are considered have 

much common structure, and this is factored out and represented explicitly in the lan-

guage as a framework, by means of categories and domains. The flexibility introduced 

by decomposing the algorithms and the objects they act on into separate modules has a 

strong performance impact due to its negative effect on temporal locality. This necessi-

tates breaking the barriers between modules to perform cross-component optimisation. 

In this instance the task reduces to one of collective loop fusion and array contrac-

tion. Traditional approaches to this problem rely on static heuristics and simplified 

machine models that do not deal well with the complex trade-offs involved in targeting 

modern computer architectures. To rectify this we develop a technique called iterative 

collective loop fusion that empirically evaluates different candidate transformations in 

order to select the best available. We apply our technique to programs derived from 

the iterative solver framework to demonstrate its effectiveness, and compare it against 

other techniques for collective loop fusion from the literature, and more traditional 

approaches such as using Fortran, C and/or high-performance library routines. 

The use of a high-level categorical language such as Aldor brings important ben-

efits in terms of elegance of expression, comprehensibility, and code reuse. Iterative 

collective loop fusion outperforms the other collective loop fusion techniques. Ap-

plying it to the iterative solver framework gives programs with performance that is 

comparable with the traditional approaches. 
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Chapter 1 

Introduction 

The writers of scientific computing codes should ideally have a computer language that 

gives them brevity and elegance of expression, portability and performance. Elegance 

of expression implies a high level language with support for layering of abstractions 

and clear and concise exposition of the operations at any given level of abstraction, 

with a correspondence as close as possible to the original mathematical expression of 

the problem. Portability means the ability to reuse the same programs on different 

machines with the minimum of effort. This in turn implies maximum automation of 

the process of producing an executable for a given machine from the original source 

programs. Finally, performance suggests that the executables so produced ought to be 

as efficient as possible. 

As a general rule, elegance of expression and portability are sacrificed for the sake 

of performance, and much work is done by hand, with authors writing codes in low-

level languages and applying transformations on a per machine basis. However, as 

computer architectures get increasingly complex this process in itself becomes a dif-

ficult task, with many trade-offs that are usually impossible to analyse directly even 

for a single machine. This is analogous to the difficulties facing compiler writers, 

where the limitations of the traditional approach, which relies on simplified machine 

models, static heuristics to guide decisions and fixed orderings for applying different 

optimisations, are getting increasingly serious, especially when dealing with multiple 

architectures. These problems can be approached using a technique known as iterative 

or feedback driven compilation [16], which treats choosing the transformations to ap- 
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ply from some known set as a search problem, with the goal function being the actual 

performance of an executable. The increased compilation costs incurred by compiling 

and testing multiple versions of a program are acceptable within the domain of scien-

tific computing, as they are outweighed by the expected returns over the lifetime of 

compute-intensive codes that run for long periods of time. 

Interestingly, as a result of the difficulty of achieving good performance, porta-

bility and elegance of expression can be regained. Given that search techniques are 

employed, achieving performance across different architectures essentially comes for 

free as search is applied to a program on each architecture to find the optimisations that 

work. Similarly, given that the effective transformations are not known ahead of time, 

they are not directly present in the encoding of the problem, and so clarity is not lost. 

This thesis presents an investigation of these issues starting from the construction 

of a framework for a group of scientific computing applications using a modern high 

level language, through to steps toward achieving portable performance using iterative 

optimisation. The emphasis is on representing the modularity of the algorithms cleanly 

and explicitly, and studying the optimisation issues that arise from the conjunction of 

the language, the modular style it encourages and the framework design. 

1.1 	Computational Science Domain 

Finding answers to many important problems in scientific computing, such as mod-

elling the evolution of physical systems, requires finding the solution to large systems 

of linear equations using numerical methods. This is the application area that will be 

investigated. The systems considered in this thesis equate to solving Ax = b for known 

vector b and unknown x, with some square nonsingular matrix A that contains mostly 

zero entries (i.e. it is sparse) due to the problem from which the linear system is de-

rived. This sparsity structure is usually exploited to save computer storage space and 

work by avoiding representing or manipulating the zero entries. 

There are broadly two standard approaches to solving such systems, direct or iter-

ative methods. Direct methods decompose the matrix A into factors that can be solved 

against trivially, while iterative methods produce a series of approximations to x until 
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a good enough approximation has been found. Direct methods have the advantage that 

once the factors have been produced, they can be reused for multiple right hand sides. 

When applied to sparse systems however, the manipulations of the matrix may cause 

entries that were previously zero to become nonzero (a process known as "fill—in"), 

which results in an increase in storage requirements if previously the nonzero entries 

were not stored. For very large, very sparse systems, this increase may be dramatic 

and unacceptable. Conversely, iterative methods only require matrix—vector products 

rather than direct manipulation of A. For a single right hand side, iterative methods 

may converge (find a good enough approximation) in some small number of steps and 

consequently require much less arithmetic than a full factorisation. Only requiring the 

matrix—vector products (and vector operations) also means that the methods are more 

natural for solving problems derived from approximations to continuous systems, as 

all the necessary steps have continuous counterparts. These benefits make the methods 

popular for certain applications, and thus an interesting subject for research. 

1.2 Language 

Conceptually, a large subset of the iterative methods can be thought of as the com-

position of various different algorithmic pieces, with different choices giving rise to 

the different algorithms. However, the algorithms are usually presented (and named) 

as separate entities with the pieces merged together (individual recipes), resulting in 

a confusingly large number of closely related methods with different numerical prop-

erties. Combining choices in this way is not only obfuscatory, but wasteful in terms 

of effort given that essentially the same algorithmic steps are programmed repeatedly 

across different iterative solvers. An alternative approach as pursued in this thesis is to 

design an algorithmic framework to keep the individual pieces as separate as possible 

and provide a means to join them together to create a given solver. 

The goal of explicitly representing as much structure as possible implies that it 

would be a good idea to choose a language that naturally provides support for the ac-

tivity. The language used in this thesis is called Aldor, and has its roots in the computer 
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algebra community as the "library language"1  for the Axiom computer algebra system 

[48]. It is a self-contained functional language, and is similar to members of the ML 

family [4, 3]. Various algorithmic pieces used to construct the solvers can be repre-

sented as recurrences and coded as functions that carry state. The functional features 

of the language are used to provide a natural way to compose these recurrences to 

give the desired solver. In addition, the algorithms are naturally independent of the 

objects that they manipulate, such as matrices, vector spaces and scalars etc. Aldor 

is statically typed, and the type system is used throughout to encode the relationships 

between these lower level mathematical objects, as well as the algorithmic pieces. 

Although there are other statically typed functional languages, the implementation 

of the type system and extra features such as overloading and generators2  make the 

capturing of the structure particularly elegant. In addition, the design of the language 

and compiler is geared toward enabling efficient numerical programs, rather than solely 

concentrating on symbolic work which is typically the emphasis of other functional 

languages, and so provides a natural platform. 

1.3 Compiler Optimisations 

There are many different automatic compiler optimisation techniques that can be used 

to improve the performance of programs, ranging from low level (instruction selection, 

scheduling etc) to high level (inlining, loop restructuring etc). The goal of the inves-

tigation into optimisation conducted in this thesis is to concentrate on those aspects 

of the optimisation problem that are specific to the conjunction of the computational 

science application domain and the language - i.e. the way in which the framework 

is expressed in Aldor. To better describe and motivate what we concentrate on, there 

follows a quick summary of issues we do not deal with directly, along with the reasons 

why, followed by an outline of the actual subject covered. 

The first group of problems that are not dealt with are the standard functional lan-

guage issues that may have relevance to Aldor, but are not especially important for the 

application. These include storage management issues from the use of the garbage col- 

1  Aldor allowed the compiling of library functions to native machine code to improve performance. 
2For a description of this language feature see Chapter 2. 
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lector and direct overhead from the use of advanced functional features. Aldor allows 

the explicit management of named objects thus making the whole subject of automatic 

storage management only tangentially relevant. The direct cost of functional language 

features (i.e. first class functions) stems from the overhead introduced by calling con-

ventions necessary to support them, and the use of closures etc. Functional features 

are used in a simple way throughout the framework, with a handful of more complex 

uses to join separate recurrences to build the algorithms. The overhead for the sim-

ple instances is removed from the solver programs by the optimisations that already 

exist in the compiler, and the direct cost of the overhead for the remaining cases is 

inconsequential for the application at hand. 

The second group of problems, which are not specific to either the language or the 

application, are the family of low level code generation techniques from standard com-

piler theory. These tend to be more machine oriented and applicable to any language. 

Also, the Aldor compiler achieves portability by generating C code, another factor in 

ruling out a number of low level optimisations as they cannot be directly expressed in 

a language such as standard C. 

The subject that is actually tackled is the issue of the indirect costs of functional 

language features and modularity, and sits somewhere in between the two previous 

groups. This subject has received fairly limited attention from the functional language 

community, although they have developed some elaborate analyses to recover control 

and data flow information in the presence of higher order functions, and used these to 

attack certain specialised cases of indirect cost that would arise if the information was 

unavailable. However, the cost of the initial presence of higher order (or even sim-

ple) functions subsequently removed by optimisations (such as inlining) is not usually 

mentioned, despite the fact that it is clearly a significant obstacle to the generation of 

efficient code, especially when the original individual functions contain loops. The 

technique applied to this problem in this thesis is high level loop restructuring, specif-

ically with regard to temporal locality3, a characteristic that is strongly affected by the 

modular programming style that Aldor encourages. 

High level restructuring compilers that target temporal locality have often used 

3For a definition of this term, see Section 7.1.5. 
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source to source transformations and left low level optimisation to a native compiler 

[99, 151, so, in contrast to low-level techniques, this approach sits well with the current 

implementation of the compiler. Global (or collective) loop restructuring has relevance 

to both Aldor and the solver framework - the global loop structure is a result of their 

synthesis. 

1.4 Linear Systems 

Although the high-level structuring of the codes gives rise to the interesting optimi-

sation problems, the solver algorithms do not specify the exact structure of the basic 

objects that they manipulate. Consequently, they do not constitute a code optimisation 

problem in isolation - they must first be paired with some implementation of a linear 

system to be solved. 

The first two examples used in this thesis are systems modelled on those that arise 

from a direct discretisation of a simple partial differential equation problem. The third 

example is taken from Quantum Chromo Dynamics (QCD), a problem to which itera-

tive solvers are frequently applied. QCD is interesting in that it has a very rich math-

ematical structure, is very compute intensive, and serves as a stimulus for research 

into algorithmic variations on iterative methods, tailored to exploit problem structure 

for obtaining maximum speed. This indicates that implementations have to be very 

efficient, whilst at the same time suggesting that a flexible framework to allow rapid 

investigation of novel algorithmic approaches would be valuable. 

QCD problems are frequently run on large parallel computers, including several 

purpose-built machines over the years [23, 17],  and are so numerically intensive that 

practitioners write specialised assembly level tools to get the maximum efficiency pos-

sible from a machine for a compute intensive production run4. As such, it is an inter-

esting target to aim for - indeed, one version of the problem forms an application in 

the SPEC [5] CPU2000 benchmark suite (wupwise). 

4The exercise is more like one of hardware/software co-design to get maximum performance for the 
specific problem when using custom designed machines. 
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1.5 Thesis Outline 

The important aspects of the language with respect to the design of the framework and 

the optimisation issues are given in Chapter 2. Chapter 3 gives a brief summary of 

the necessary background on the structure of Krylov subspace based iterative solvers. 

The route taken is the derivation of the methods from an Arnoldi or Lanczos process 

coupled to an orthogonality condition. Chapter 4 discusses general previous work in 

the compilation of higher order language features and its ramifications for the handling 

of aggregate types such as arrays, the automatic management of storage with a garbage 

collector, and the wider implications for the overall design of compilers. It also covers 

some previous work on the compilation of computer algebra languages. 

Chapter 5 highlights the important parts of the framework design with code extracts 

where relevant. A fuller listing is given in appendices C and D. The chapter begins 

by presenting a type hierarchy that captures the relationships between components 

at different levels and their individual interfaces, followed by a description of some 

example components that instantiate parts of the framework to give an iterative solver 

algorithm. Chapter 6 introduces the three examples of sparse linear systems used with 

the solver framework, and gives the essentials of how they are implemented. The 

emphasis is on those implementation details that are important for a discussion of 

optimisation issues. 

If the individual functions associated with an abstract data type are taken as compo-

nents, the optimisation problem is one of cross-component optimisation. In the specific 

instance considered in this thesis, the problem reduces to one of loop fusion with sub-

sequent array contraction. The relevant basic terminology and formalisms are intro-

duced at the beginning of Chapter 7, followed by a link to the structure of the iterative 

solver programs. This leads into a discussion of why fusion and contraction were used 

rather than any other transformations given the overall objective of targeting perfor-

mance through temporal locality of data. 

Chapter 8 builds on Chapter 7 by introducing the notion of collective loop fusion 

(and contraction) as a means of describing how the basic technique of loop fusion 

should be applied to a collection of loops. This is followed by a summary of previous 

work in the area and a detailed exposition of the new approach developed in this work. 
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The central issue in this chapter is the relation of the standard abstract model of the 

problem to concrete hardware - more specifically how trade-offs between transforma-

tions must be managed to get maximum performance, how different transformations 

that are ranked equal using an abstract goal function may actually have substantially 

different performance on a real machine, and how these discrepancies can be attacked 

using iterative optimisation. The resulting method is called iterative collective loop 

fusion. 

The automatic construction of the data structure used for optimisation in this thesis 

would require several techniques that are not yet available in the Aldor compiler, and 

the first half of Chapter 9 outlines the necessary analysis. The second half introduces 

the prototype used to investigate the optimisation of the iterative solvers. 

Chapter 10 describes the data structure used for optimisation derived from the most 

significant part of the code for a QIVIR algorithm - the two sided Krylov subspace pro-

cedure described in Chapter 5. This is followed by a description of the search through 

the space of the possible transformations using the iterative collective fusion technique 

for different combinations of machine, operator type (as described in Chapter 6) and 

data set size. The empirical results are compared against the case where no fusion 

is done at all, alternative techniques for collective loop fusion, and entirely different 

methodologies including an equivalent algorithm written in Fortran and specialised 

versions of the code where subsections have been replaced with combinations of C, 

assembly and high-performance binary BLAS routines. 

Chapter 11 ties together the separate strands in the thesis into a conclusion and 

summarises the directions in which the work could be taken. The appendices contain 

code extracts (mentioned above), a discussion of how the framework relates to some 

other iterative solvers (Appendix A), a brief discussion of temporal locality for three 

and four dimensional regular stencils (Appendix B), and some notes on the two ref-

ereed conference papers and one workshop paper published during the course of this 

thesis (Appendix E). 
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1.6 Contributions 

The contributions made in this thesis are as follows: 

A framework for explicitly representing the structure of and relationships be-

tween a subset of the family of iterative solver algorithms, written in Aldor. 

. An examination of how a clean modular style applied to a problem domain such 

as the iterative solvers gives rise to temporal locality problems for cache based 

architectures, and how this problem can be addressed by expressing it in terms 

of a loop dependence graph and applying the transformations of loop fusion and 

array contraction (collective loop fusion). 

A demonstration of the importance of these issues to the combination of lan-

guage and application, with speedups of up to 3.7 from transformations targeted 

at them. 

An empirical investigation of how the different choices of transformation affect 

the performance of the resulting code, with an emphasis on the inaccuracies that 

can be introduced by using abstract models of the problem. 

The embodiment of this approach into the technique we call iterative collective 

loop fusion. This approach gives speedups of up to 1.41 over well-known static 

approaches to the collective loop fusion problem. 

A comparison with alternative approaches, such as an equivalent program writ-

ten in Fortran, or alternatives based on combinations of Aldor, C or assembly 

code and high-performance binary ATLAS BLAS routines. 



Chapter 2 

Aldor 

This chapter summarises the language and its implementation, including features of the 

source language itself, the intermediate representation that is used during compilation 

and compilation strategy, including an outline of some existing optimisations. For fur-

ther details, including the exact specifics of language syntax, see [93, 95]. The chapter 

serves to describe some of the important features that made Aldor our choice for this 

work, as well as enabling a discussion of the design, implementation and optimising 

transformation of the iterative solver applications themselves. A detailed description of 

why thee features are important and how they relate to alternatives has been covered 

in previous work, and is summarised with references in Appendix E. 

2.1 	Fundamentals of the Language 

The code in Figures 2.1 and 2.2 is used as an example throughout this chapter to illus-

trate some of the basic language features. 

2.1.1 Domains and categories 

Domains in Aldor are the mechanism used to implement abstract data types (ADTs) 

of a single implicit new type, or occasionally packages of functions on one or more 

explicit types. For an ADT, the underlying, hidden type of the domain elements is 

called the domain representation. Domains are typed by belonging to categories. A 

11 
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define MyVectorCat (GroundField 	: 	Field) 	: 	Category == with 

- 	: 	% 	-> 	%; ++ negatidn 

+ 	: 	(%, 	%) -> 	%; ++ addition 

%) -> 	%; ++ subtraction 

%) -> GroundField; ++ innerproduct 

apply 	: 	(%, Singlelnteger) 	-> GroundField; ++ element access 

set! 	: 	(%, Singlelnteger, 	GroundField) 	-> 	; ++ element update 

default (v: %) - (w: %) : 	== v + (-w) 

Figure 2.1: Aldor source code for a simple vector category with negation, addition, 

subtraction and inner product on the vectors, as well as individual element access and 

updating. The category is parameterised by the type of the vector elements, which must 

be a field. 

category consists of a list of constants (or exports) that the domain must provide, i.e. 

make public to users of the domain, and these constants are eitherfunctions, types (one 

implicit type is created for an ADT, but a package may export several) or distinguished 

values of a type. As such, a category defines an interface and any domain belonging to 

it provides an implementation thereof. 

A domain may belong to multiple categories, and only belongs to a named category 

if it is explicitly defined as such - that is, a domain never satisfies a category implicitly 

merely by exporting the constants that the category requires, unless the category is an 

anonymous one. If a domain is explicitly typed with a category, then only the constants 

defined in the category are exported, thereby allowing data/implementation hiding. If 

the domain satisfies multiple categories, then it exports the union of their constants. A 

domain that is not typed by a category implicitly belongs to the anonymous category 

that consists of a list of all the constants defined in the implementation of the domain. 

2.1.1.1 Parameterisation and recursion 

Both domains and categories can be parameterised, allowing the definition and typing 

of type constructors (parameterised domains are also known as functors). The argu- 
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MyVector : MyVectorCat (DoubleFloat ) with 

new : C) -> %; 

dispose! : % -> 	; 

} == add 

Rep == PrixrtitiveArray (DoubleFloat) 

import from Rep; 

vectorSize : Singlelnteger := 10; 

new() : 	== per new (vectorSize , 0); 

dispose! (e 	%) : () == dispose! (rep e); 

apply(v : %, i : Single-Integer) : DoubleFloat == (rep v) (i); 

set! (v : %, i : Singlelnteger,  

e : DoubleFloat) : () == (rep v) (i) := e; 

- Cv: %) : %== { 

r := new(); 

for i in 1. .vectorSize repeat r(i) := - v(i); 

return r; 

Cv: %) + (w: %): % == { 

r : new; 	 - 

for i in 1. .vectorSize repeat r(i) := v(i) + w(i); 

return r; 

(v: %) * (w: %) : DoubleFloat == 

ip : DoubleFloat := 0; 

for i in 1. .vectorSize repeat ip : 	ip + (v(i) * w(i)); 

return ip; 

Figure 2.2: Aldor source code for a domain of vectors that satisfies (implements) the 

category in Figure 2.1. The variable vectorSize is a lexically scoped variable that 

resides in the scope of the domain itself and is referred to by the functions for vector 

operations (negation, addition and inner product). 
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ments to a parameterised domain or category can be dependently typed (see section 

2.1.2). Both domains and parameterised domains are, also first class objects, in the 

same manner as normal objects/functions (again see section 2.1.2). The mechanism of 

domains and categories can be thought of as a module language, as it is used to define 

new modules (i.e. domains). 

Domains, and the categories used to type them, can be defined recursively and 

mutually recursively. This can be used in conjunction with parameterisation and de-

pendent types. 

2.1.1.2 Relation to Example 

Figure 2.1 gives an example of a category with six exports (all function signatures) 

intended to denote negation of a vector, the addition/subtraction of two vectors to form 

a third, the inner product of two vectors to give a member of the element type, and 

reading/writing of an, individual vector element. Functions matching the signatures 

must be provided by any domain that is typed with the category. The category is 

parameterised by the domain of the vector elements, which itself must be typed by the 

Field category. 

The domain in Figure 2.2 is typed with an anonymous category that inherits from 

the category in Figure 2.1 and extends it with a constructor and a destructor function. 

The domain representation (defined by Rep == ...) is a domain of double precision 

floating point number arrays, created using a built-in array functor (see section 2.1.3) 

and a domain of double floats. All the functions in the domain are implemented using 

the exports provided by the domain representation and the double float domain. Only 

the exports defined by the typing category are visible externally, so the type of the 

domain representation and the vectorSize variable are hidden. 

2.1.2 General features 

Aldor is strictly evaluated (or eager) and imperative. It is a functional language with 

lexical scoping, where variables from an outer lexical scope can be imperatively up-

dated. The combination of imperative update, lexical scoping and first class functions 



2. 1. Fundamentals of the Language 	 15 

allows the creation of closures that carry state by manipulating values in their lexical 

environment. 

As well as functions, domains are also first class values in Aldor, and thus functors 

can be instantiated with varying domain parameters decided at run-time (although this 

rarely occurs in practice). Aldor is statically typed and type inferred, and supports 

a limited form of dependently typed arguments to functions. The dependent typing 

is mostly used in this thesis to be able to type domain arguments to a function or 

parameterised domain using a parameterised category, but in general it is necessary for 

typing recursive domains etc. 

Dependently typed functions allow the specification of an algorithm that acts on 

elements of a domain at the level of exports provided by a particular category, inde-

pendently of the domain from which the elements are taken. Category defaults can 

be used as a shorthand for the same mechanism. They provide a default implemen-

tation of a given export in terms of other operations provided by the same category. 

The domain that provides the other exports upon which the default relies is an implicit 

parameter. 

2.1.2.1 Relation to Example 

Figure 2.1 gives an example of a default function (subtraction) defined in terms of 

other category exports. In Figure 2.2, the variable vectorSize used in the functions 

is lexically scoped (it resides in the scope of the domain itself). 

2.1.3 The core language and the abstract machine 

The core of the language consists of a small number of pre-defined (or built-in) do-

mains [93].  The most important of these are the PrimitiveArray, Record, Machine 

and Generator types. The machine domain (i.e. Machine) is a package of simple 

types and operations, such as a single word integer with addition/multiplication etc, 

and single and double word floating point types. The primitive array and record do-

mains are both functors that allow the definition of aggregate data types in the expected 

fashion, with functions to access and update elements and create aggregates from col-

lections of elements. 



16 	 Chapter 2. Aldor 

Although the machine domain supports operations to create and manipulate arrays 

of arbitrary type, the primitive array domain is more than just a type system wrapper 

for this for several reasons, the most important being the packed array mechanism (see 

section 2.3.1.2). 

The Aldor compiler compiles the source language to an intermediate representa-

tion consisting of operations defined on an abstract machine (see section 2.2). The 

operations and data types provided to Aldor by the machine domain and the record 

and primitive array types correspond closely to a large subset of the operations and 

data types provided by the abstract machine. 

2.1.3.1 Generators 

The Generator type is a core language functor that can take an arbitrary type as its 

argument to define a domain of generator objects that "generate" elements from the 

parameter type. Objects in the domain are constructed using special syntax and al-

most arbitrary control flow (including general recursive functions), and are first class 

(they can be assigned to variables etc). Generators are used with the Aldor for loop 

construct to define the values which the for loop variable takes. At the beginning of 

each iteration, the generator is prompted for its next value which is then bound to the 

loop variable for the duration of the body. This usually continues until the generator is 

empty, although other exits from within the loop can occur. 

All for loop constructs in the language rely on generators, including those which 

equate to the simpler constructs with the same name from less developed languages, 

such as simple iteration over a closed integer segment. Note that generator objects have 

state that can be carried across different for loops. To get the expected behaviour for a 

sequence of loops that iterate over the same set of values (such as an integer segment), 

a new generator must be created for each loop. This is made the default behaviour by 

a syntactic mechanism. If the object supplied as an argument to a for loop is not a 

generator, a function to create a generator from the object is implicitly invoked, which 

usually results in a new generator for each for loop even if the same (non generator) 

object is reused. 

A generator is implemented as a small set of functions that manipulate the same 
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environment (see 2.2.5). Thus, the invoking of the function to get back a generator, 

and its subsequent use in the for loop is a simple, but important and pervasive use of 

the functional features of the language. 

2.1.3.2 Relation to Example 

The domain in Figure 2.2 uses the core language functor PrimitiveArray to create 

its domain representation. The for loops to iterate over vector elements are controlled 

by generators of one word integers created from the integer segments 1. . vectorS i z e, 

where each successive integer value is bound to variable 1. 

2.1.4 Basic libraries 

Because the built-in elements of the language form such a small group with very min-

imal functionality, it is usual practice to write programs in terms of a basic library that 

provides a much richer set of abstract data types with far more available operations on 

them. This basic library is likely to include what would otherwise be considered fairly 

fundamental types for other languages, such as list, tree, integer and floating point 

types. Nonetheless, any given basic library has been written as user defined domains 

and categories, and as such is just a convention - indeed, there is more than one Aldor 

basic library [93, 18]. 

The basic library used in this thesis is called axilib, and most of the domains of 

interest from it are fairly thin wrappers around a machine domain type that corresponds 

exactly to an abstract machine type. The wrapper exists to supply many extra functions, 

and also to separate the relevant part of the machine domain package into a stand-alone 

type. The library also contains a hierarchy of categories that form the basis of the work 

in Chapter 5. 

2.1.4.1 Relation to Example 

As well as the core language array functor, the underlying type of the domain in 

Figure 2.2 relies on the DoubleFloat domain from the axilib basic library. The 

Singlelnteger and Segment domains are also used to control for loops etc. 
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2.1.5 Storage model 

Aldor does not have arbitrary pointers, but it does have references through which up-

datable structures such as records and arrays are handled. This allows the creation of 

aliases via shallow copying (but not partial aliases as references must point to the head 

of an object, and objects may not overlap), and also introduces undefined behaviour 

if a reference with no object attached to it is read or written through. Aggregates are 

therefore fundamentally different from simple variables such as the integer or floating 

point types provided by the machine domain. 

Updatable aggregates must be allocated and can either be explicitly deallocated or 

left to a garbage collector. Allocationldeallocation functions for arbitrary aggregate 

types can be written using those from the core language domains, but deallocation rou-

tines, usually called dispose! functions, are not strictly necessary (because of garbage 

collection). Most allocated objects at the source level corresponds to equivalent objects 

in the heap of the underlying abstract machine, so the ability to garbage collect objects 

and the strategy employed is inherited from the abstract machine's memory model. 

The correspondence is not strict however, as certain objects with a restricted lifetime 

may be turned into a collection of abstract machine stack frame variables by compiler 

optimisations (see section 2.3.1.3). 

2.1.5.1 Relation to Example 

The function to create a vector in Figure 2.2 explicitly allocates a new array by us-

ing the functionality provided by the domain representation, and similarly provides a 

dispose! function. 

2.1.6 Purity and overloading 

Syntactic operators are a pre-defined part of the language, and it is possible to overload 

most of them with user defined functions, including the syntax for function applica-

tion. The overloading of syntax for fetching or updating elements of records or arrays 

(known as the apply and set! mechanisms respectively) is of particular interest and 

allows the variables of an arbitrary domain to be treated syntactically as aggregates. 
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Overloaded infix operators such as + and * are particularly common exports. Heavy 

use of overloading, especially in the basic libraries, leads to programs typically corn-

posed of layers of very fine-grained functions. 

Although Aldor is an imperative language, the functions attached to the infix oper-

ators exported by a domain of updatable objects tend to be pure to preserve the natural 

semantics of the operator - that is, they do not destructively update either of the ar-

guments, and allocate a new object to hold the result of the operation. Given that 

abstraction and overloading are used so heavily in typical Aldor programs, the net re-

sult is a heavy bias toward object allocation rather than programmer directed explicit 

overwriting of existing aggregates element-by-element using loops, as tends to occur 

in more traditional imperative languages. Instead, dispose! functions are used to 

discard an object if the data it holds is no longer needed. 

2.1.6.1 Relation to Example 

All the exports from the domain in Figure 2.2 are overloaded operators, excluding the 

con structor/destructor functions. The reading and writing of array elements within for 

loops demonstrates the use of apply and set! functions exported by the underlying 

array domain (as well as infix operators such as + etc from the double float domain). 

The syntactic convention gets resolved to the relevant export from the domain - i.e. 

the form v(i) : = 4 is equivalent to set! (v; i, 4), and v(i) with no assignment 

operator is equivalent to apply (v, i). Their use for the vector domain itself would 

be similar. 

The addition of two vectors is an example of a function attached to an overloaded 

infix operator that uses destructive updates internally, but is outwardly pure in that it 

affects neither argument and always returns the same values in a vector for a given 

argument pair. 

2.2 Abstract Machine and Compilation Model 

The current design of Aldor incorporates an abstract machine, some of whose func-

tionality matches closely the built-in machine domain. The code for the abstract ma- 
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chine, also known as the intermediate representation (IR), is called First Order Abstract 

Machine (FOAM) code. 

FOAM is a fairly high level procedural language, however, quite a lot of informa-

tion that was implicit at the Aldor source level is made explicit at the FOAM level. 

This includes: 

closures, their environments, and the instructions for manipulating them, includ-

ing lexical references 

almost all compiler generated temporary variables 

most of the code to initialise domains at run-time 

the implementation of generators as collections of closures 

control flow within functions, which is lowered to the level of labels and branches 

FOAM itself is structured as a fairly simple tree, the details of which are given in [94] 

(although it has since developed somewhat). 

2.2.1 Libraries and whole program optimisation 

The compilation model that Aldor uses is whole program optimisation (WPO) , and 

this is achieved by splitting compilation into two phases. The first phase is the com-

pilation of source files to abstract machine code. The second phase is when the native 

executable is actually created, and at this step all the abstract machine code for any 

domains or functions that are used by the executable must be available. 

To enable this, Aldor libraries (including basic libraries) consist of files written 

in a machine-readable version of FOAM code, and are intended to take the role of 

collections of machine independent object files. The WPO strategy is a key enabler 

for optimisation of the language, as it enables cross-component optimisations in the 

presence of multiple compilation units. For example, in the current compiler it makes 

sure that there's enough grist for the mimer to work on by employing cross-file miming. 

Similarly, it enables other cross-component optimisations, such as those introduced in 

Chapter 7. 
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2.2.2 FOAM types and variables 

FOAM has a number of built-in types that fall into two main groups. The first of these 

is the updatable compound variables, including closures, environments that represent 

scope levels in the source language, arrays and records, all of which which are allocated 

on the heap and handled via references. Records and arrays in FOAM correspond di-

rectly to the core domains in the source language. Records and environments are typed 

by means of globally visible formats, which describe the number and type of their el-

ements. The type of an array is determined by the type of its elements, which must be 

one of the simple variables (see below). Arrays of compound types are constructed as 

arrays of pointers. 

The second group is the simple variables, including a generic word type which is 

used as a catch-all (any heap allocated variable is pointed to by its reference which is 

stored as -a word), and various integers and floating point values usually represented 

by one or two words. The simple types and the operations on them correspond to 

those available in the machine domain of the core language. These variables are stack 

allocated (i.e. they are specified as part of a FOAM function stack frame) unless they 

are part of a record/environment. 

2.2.3 Uniform representation rule 

The uniform representation rule states that any type used as the representation of a 

domain must fit into a single word. This is necessary in the context of dynamically 

handling domains - i.e. when the domain parameter to a dependently typed function is 

not statically determinable. In this case, the size of the representation for the data type 

cannot be known, so all data types must have the same size. 

This is achieved by converting compound types into the generic word type i.e. han-

dling them through uniform size pointers. Note that this calling convention means that 

any simple data type larger than one word must be boxed inside one of the compound 

data types if it is to be used as a domain representation. 
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2.2.4 Memory model 

The lifetime of stack variables is determined by the use of stack frames for function 

calls. Heap allocated variables can either be explicitly deallocated with instructions 

resulting from dispose! functions, or left to a garbage collector. An implementation 

of the abstract machine is free to ignore deallocation instructions, so the use is more.a 

programmer optimisation hint than an intrinsic part of a program's semantics. 

2.2.5 Aldor domains and generators in FOAM 

The implementation of Aldor domains in FOAM code relies on a mixture of FOAM 

instructions generated by the compiler and support provided by the run-time system. 

Domains exist at run-time as lazily instantiated objects containing references to any 

constants exported, and an environment for any internal variables contained within 

their scope. The use of laziness allows support for language features such as recursive 

domains. 

Domain objects are implemented by allocating an empty shell that contains a pointer 

to a compiler generated initialisation function. When certain information is needed 

from the domain, the initialisation function is used to fill-in parts of the object. This 

can happen in several stages, or all at once, depending on the event that triggers the 

initialisation. Code to trigger the initialisation of the domain must also be inserted by 

the compiler in the appropriate places to ensure program correctness, using abstract 

machine instructions specific to this purpose. The most common example is the need 

to ensure that a domain has been created before calling an exported function that refers 

to variables in its lexical environment (i.e. the scope of the domain itself, the environ-

ment for which is part of the run-time domain object). This is done via the FOAM 

instruction envEnsure. 

As domains may rely upon other domains, a single envEnsure instruction may 

trigger a long chain of domain initialisations. Instructions to trigger domain initiali-

sation are usually littered throughout any piece of FOAM code, and so can be control 

dependent on dynamically determined branches etc. 

Generators are first created at the FOAM level as a small collection of closures 
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(step!, value, empty? etc.) that manipulate state in a common lexical environment. 

There is no special functionality required to support them. The action of compiler 

optimisations at the FOAM level may reduce a generator to stack variables and simple 

control flow using labels and branches, which can dramatically decrease the overhead 

otherwise involved (see section 2.3.1.3). 

2.3 Compiler Implementation 

The Aldor compiler can be roughly split into a front-end and a back-end that match 

the phases of the compilation model. The front end of the compiler is responsible for 

lexing, parsing, type inference, semantic analysis etc., and finally the generation of the 

JR. Other than the fact that it generates FOAM code, the detailed implementation of 

the front-end is irrelevant to this thesis. 

The back-end of the compiler has two main phases. The first consists of several 

compiler optimisation passes that operate on the IR, and the second consists of a more-

or-less direct translation of the final version of the FOAM code into another language 

to be compiled by a host compiler. The two languages currently used for this are C 

and Lisp, but only the C back-end is considered in this thesis. Note that the generated 

code is not completely free-standing, in that it relies on a small run-time environment 

that must be a linked against the native executable to provide support for domains and 

garbage collection etc. 

The memory allocation in the run-time library for the C back-end makes use of a 

conservative tracing garbage collection scheme, with the ability to explicitly deallocate 

objects on demand. Only the compound FOAM types are heap allocated, with simple 

types translated into stack variables at the C level. It is quite often the case that a 

huge number of stack variables get defined in this way, but the assumption implicit 

in the design is that it is better to leave this mess to the register allocator of the C 

compiler than it is to generate a large amount of garbage for the collector to have to 

deal with. Indeed, the emerger pass of the compiler is specifically designed to turn 

heap allocated records and environments into simple FOAM variables, and frequently 

gives quite dramatic improvements in performance. 
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2.3.1 Pre-existing optimisations 

2.3.1.1 The mimer 

The mimer is an important part of the Aldor compiler. The current implementation is 

fairly simple, and works top-down on FOAM code. It operates on a per function basis, 

and given a function it gathers a list of the functions that are called from it. This list is 

prioritised based on a number of factors including: 

Generators - if the functions result from a generator in the top level source 

code, then the mimer prioritises them. The miming of generators is crucial to 

the performance of general code as their use is pervasive. 

Function size - smaller functions are prioritised over larger functions. 

Leaf Functions - leaf functions have a higher priority than non-leaf functions. 

Once the queue is assembled, the mimer begins to expand functions into the current 

function in order of priority. If a non-leaf function is inlined, the child functions are 

added to the priority queue, it is sorted, and the process resumes. This continues until 

the limit for the growth of the function has been reached. Functions that are not called 

directly by name, i.e. that are called through a closure, may be impossible to inline as 

the function at the call-site will not be known until run-time. 

2.3.1.2 Packed arrays 

The FOAM abstract machine has instructions for allocating flat arrays of any of the 

simple data types. Arrays of heap allocated objects are arrays of single words which 

are pointers to the heap allocated objects themselves. 

The core language array functor PrimitiveArray takes the array element type 

as a parameter, as per the example in Figure 2.2. By the uniform representation rule 

the FOAM representation of the parameter domain must fit into a single word. In the 

example, the parameter domain is DoubleFloat from axilib, whose representation 

is a double word floating point number boxed inside a record. To enable flat arrays of 

data types such as this, a type may optionally export functions to be used by the array 
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domain that describe how to allocate and manipulate flat arrays of itself, including the 

word size of the flattened type etc. These packed array functions may be written by the 

user, but, if they are not, the compiler contains a mechanism that attempts to provide 

them. If it fails, arrays of pointers to heap objects are used instead. 

2.3.1.3 The environment emerger 

This pass of the compiler reads sections of FOAM code, and unpacks heap allocated 

records and environments into their constituent parts, which then become separate 

stack allocated variables. This saves allocating the record (or environment) itself, but 

also means that any simple FOAM types that were contained in the record will now get 

translated into C stack variables and hence become visible to C compiler optimisations 

such as instruction scheduling, register allocation etc. 

The use of DoubleFloat in Figure 2.2 demonstrates the purpose of the environ-

ment emerger. To fit with the standard Aldor calling convention (see Section 2.2.3) 

and give the domain a pure semantics, its elements are represented by heap allocated 

records that contain a double precision floating point variable (i.e. it is boxed), and all 

the binary operations exported by the domain allocate a new record to hold the result 

that they produce. This can be painful in tight loops, even if the functions exported by 

the domain are successfully inlined. 

The function for an inner product of two vectors (in Figure 2.2) is an example of 

this. In its original form, assuming that the packed array functions, addition and multi-

plication operations are successfully inlined, the body of the loop still requires several 

new records to be allocated on each iteration to calculate the running sum: 
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Fetch v (i) from flat array v and place in a new record A 

(inlined packed array function) 

Fetch w (i) from flat array w and place in a new record B 

(inlined packed array function) 

Multiply contents of records A and B and place result in new record C 

(inlined multiplication function) 

Add the contents of records C and ip and place result in new record D 

(inlined addition function) 

Set ip to point at  

After the environment emerger has done its job, the records involved have been re-

placed with simple FOAM types and the loop no longer makes any allocations at all. If 

the running sum is passed out of the function however, then the emerger has to reinsert 

instructions to allocate a record and box the final result before returning it. This would 

be done for the last line of the example, but note that this is one single allocation, 

outside of any loop. This explanation has ignored the allocation/emerging of function 

environments, but similar reasoning applies. 

The usage of packed arrays frequently interacts positively with the environment 

emerger. In isolation, the function that accesses elements of a packed array must re-

turn a heap allocated object corresponding to the domain representation, usually by 

allocating a new object and copying values from the array into it. Conversely, a write 

to a packed array copies information from an object into the array itself. If a packed 

array element is accessed, operated on, and then stored, the environment emerger can 

frequently avoid the allocation and use stack temporaries instead as the lifetime of the 

object is short and it is never aliased. 

2.3.1.4 Sundry optimisations 

Various other optimisations are also implemented in the compiler as FOAM to FOAM 

transformations. These include textbook standards such as copy propagation, constant 

folding, various peephole optimisations, strength reduction, and more Aldor specific 

transformations such as the flow converter that cleans up control flow after inlining 

functions from generators, and several optimisations specific to the run-time handling 
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of domains. 

2.4 Summary 

This chapter has introduced the computer language Aldor used in this thesis. Specific 

points of interest include: 

. The module language, consisting of domains and categories. 

The core language types, including the Machine package that provides most of 

the interface to the abstract machine, and the PrimitiveArray, Record and 

Generator functors. 

The use of overloading, and how this encourages fine-grained function compo-

sition and object allocation. 

The smallness of the language, how this encourages the use of basic libraries, 

and how the compilation strategy of whole program optimisation permits the 

tackling of the potential inefficiencies of this modularity with cross-component 

optimisations. 

The definition of the abstract machine, including its memory model and how 

this is visible at the source level, and how code is generated to deal with domain 

instantiation and generators. 

The structure of the compiler and its pre-existing optimisations, including the 

inliner and the environment emerger that help to tackle the problems of fine-

grained modularity by removing function calls and unnecessary heap allocation. 



Chapter 3 

The Iterative Solvers 

This chapter gives a brief overview of a subset of the iterative solver algorithms, with 

an emphasis on the algorithmic structure. This background is the foundation of the 

design of the framework discussed in Chapter 5. See [73, 41, 40] for more detailed 

material. 

3.1 Notation 

Standard notation is used throughout, except for the use of square brackets to indicate a 

scalar element of a vector or a matrix corresponding to the indices within the brackets. 

For example: 

(.0 1 
U=I 

0 

U[1,2] = 1 

29 
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3.2 Overview 

3.2.1 The form of the problem 

Square nonsingular linear systems of equations can be simply stated in matrix algebra 

as follows: 

where A is the m x m matrix of coefficients of the unknowns, b is the rn-vector of 

constraints, and x is the rn-vector of unknowns for which the system has to be solved. 

Usually, an approximation to the solution is sought with some kind of bounds on the 

error. Throughout the thesis A is usually referred to as the operator, firstly because it is 

a linear operator (square matrix), and secondly because the name helps to distinguish 

it from other matrices that enter the discussion. 

3.2.2 Krylov subspaces 

Krylov spaces are the foundation upon which the non-stationary iterative solvers are 

built. A Krylov space is a space spanned by a set of basis vectors produced from an 

operator and a given starting vector, usually presented as a sequence. The n-th vector 

in the sequence is the n - 1-th power of the operator A applied to the initial vector v, 

with n running from 1 to infinity: 

IV, AV, A2v, A3v, ..., A'1v, ... 

where each vector can be generated by applying the operator to its immediate prede-

cessor (in exact arithmetic). The Krylov subspace of the first n vectors in the sequence 

generated from operator A and vector v is written Kn  (A, v). If the operator is a (non-

singular) finitely dimensioned linear transformation, then at some point in the infinite 

sequence the space will stop growing - either the basis vectors will completely span 

the range of the operator, or they will span some smaller finite dimensional invariant 

subspace. 

The basic idea behind the iterative solvers is to generate up to some number of 

basis vectors for the Krylov space in question, and choose the candidate solution to the 
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linear equations x, as a linear combination of these basis vectors, or those from some 

very closely related space. The candidate solution is then tested to see if it is a good 

enough approximation, and if it is, the process terminates. If it is not, then more basis 

vectors are added to the Krylov subspace and a new, hopefully better approximation is 

constructed. This cycle continues until an acceptable approximation has been found. 

This must happen eventually in infinite precision arithmetic as the system is nonsingu-

lar - finite precision arithmetic complicates the issue, but it is assumed here that some 

acceptable approximation can always be generated. It is usual to grow the space by 

one basis vector each time, then construct a solution and test to see if it is acceptable 

or not. Hence the algorithm takes the form of a test-repeat loop. 

3.2.3 Halting condition 

There are various different strategies for deciding when to halt the algorithm, such as 

attempting to approximate some of the eigenvalues of the operator, or watching the 

rate of change of certain scalars associated with the algorithm, but we will not go into 

much detail here. We note that most schemes usually involve the residual norm (i.e. 

the 2-norm of the residual vector) or some approximation to it. The residual vector r 

(or just residual) is the projected error on the approximate solution x: 

r 	= 	- x) 

= b—Axe  

3.2.4 Orthogonality conditions 

When selecting a candidate solution from a solution space of size n, one has n degrees 

of freedom, being the scalars that determine the linear combination. To fully specify 

the solution, one therefore needs n independent constraints. The constraints are nor-

mally specified in terms of an orthogonality condition on the residual vector— that is, 

r, has to be orthogonal to a space of dimension n. Hence, the orthogonality condition 

can be expressed as follows: 
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C'r=O 

That is, the residual is orthogonal to the space spanned by the columns of C,. The 

different orthogonality conditions have different properties, and deciding on the ap-

propriate orthogonality condition for a given problem is a complex task indeed that is 

not covered here. 

3.2.5 Reduced (projected) system as interface 

Taking a basis of the solution space to be S, gives: 

x, E span {S} =~ Xn = S.Yn 	 (3.1) 

that is, y, is an n-vector that specifies the linear combination of the basis vectors that 

gives the approximate solution at step n. By imposing the orthogonality condition 

on the residual vector, an equation that the candidate solution vector has to satisfy is 

derived: 

C'r=C(b—Ax) = 0 

C,'ASnyn = CH 

= gn 

This reduced or projected system has size n at step n - the last line above serves to 

indicate this, where vectors y and g are of size n and the matrix F is of size n x n (note 

that F and g are not referred to again). This will be smaller than the original system 

and can be solved by conventional means, after which 3.1 can be used to reconstruct 

the approximate solution. In practice the solution space and orthogonality condition 

are carefully chosen to make the the projected system as easy to generate and solve as 

possible, as well as giving certain numerical properties to the approximate solution. In 

addition, the update of the projected system from size n to n + 1 needs to be as efficient 

as possible. 
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The combinations considered in this thesis give rise to projected systems with a 

common structure that makes it possible to separate the generation of the reduced sys-

tem and its solution. The projected systems therefore define an interface that allow the 

same generating components to be re-used with different projected systems and hence 

different orthogonality conditions. The interface can be exploited from the other side 

as well - it is possible to define the components that solve the projected systems in such 

a way that they can be combined with different ways of generating the reducd system. 

However, this re-use amongst the solver components has not been fully captured in the 

implementation discussed in this thesis. 

3.2.6 Operator structure 

The iterative solver algorithms only require the ability to perform matrix-vector prod-

ucts (an operator application to a vector) and vector operations to solve Ax = b. Cer-

tain aspects of the derivation of the algorithms require that the operator have certain 

mathematical properties (e.g. Hermiticity), but the algorithms are entirely independent 

of the structure of the operator, taking structure to mean sparsity patterns or possible 

decomposition into factors. 

This is important for two reasons. Firstly, although the algorithms are independent 

of operator structure, they are frequently used because of it, as they have no need to 

alter the operator itself in any way. In the simple case of an operator stored in some 

sparse matrix format, in may be cheaper to use an iterative algorithm rather than a 

sparse direct one due to storage considerations (i.e. possible "fill in" during the use 

of a sparse direct method). Where an operator is stored as factors, for example as 

the Kronecker product of two matrices, it is not concretely represented at all and its 

entries are not available to be directly acted on (see Section 6.2.2). Secondly, when 

the linear system arises from the discrete approximation of a differential operator on 

some continuous function, the approach is conceptually much neater as it is not clear 

how the atomic manipulations of the discretized operator correspond to any continuous 

counterpart. Operator application and scalar/inner products of vectors do usually have 

a continuous equivalent however. 

The independence of the algorithms with respect to operator structure means that 
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further discussion of these issues can be delayed until Chapter 6. 

3.3 Generating Krylov Subspaces 

3.3.1 The Arnoldi relation 

The methods of generating Krylov subspaces considered in this section orthogonalise 

the newest vector in the sequence against all the previous vectors, using for example 

some variant of Gram-Schmidt orthogonalisation, and then normalise it. This approach 

is called the Arnoldi method, and is neatly captured by the Arnoldi relation: 

AV 	= 	+ I3nvn+iunH 	 (3.2) 

= Vn+iJi+i, 

where A is the operator in question, the columns of V, are the orthonormal basis vec-

tors of the Krylov subspace K, (A, vi), vector u, is the n-th canonical unit basis vector, 

is the n x n upper Hessenberg matrix of orthogonalisation (upper triangle) and 

normalisation (sub diagonal) coefficients, and= 	+ f3,u,1+iu (with an ex- 

tra row of zeros implicitly appended to the bottom of 	Each new (raw) vector, 

before it is orthonormalised, is created by applying the operator to the previous ba-

sis vector in the sequence. This information is contained in the left-hand side of the 

equation - thatis, multiplying V by A gives a matrix whose columns are the sequence 

of raw vectors. The right hand side shows that each raw vector can be expressed as 

a linear combination of the orthonormal basis vectors of the Krylov space, and more 

specifically that the n-th raw vector is a linear combination of the basis vectors from 1 

to n + 1 (as in+1,n  is upper Hessenberg). Hence, if we have the n-th raw vector, and 

the basis vectors up to n, we can construct the n + 1-th basis vector. 

Assume A is nonsingular, and n = m such that V, is m x m and spans the range of 

A. If we pre-multiply both sides of the Arnoldi relation by the Hermitian transpose of 

the matrix of basis vectors, then by the fact that its columns are orthonormal we have 

the following: 
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V,H AV, = H 	 (3.3) 

which shows that the matrix of basis vectors is a unitary similarity transformation, and 

that the matrix of coefficients is the operator projected onto this basis. 

To reduce clutter in the following sections, the subscripts on the matrices derived 

from the Arnoldi relation are shortened as follows: 

Iin+i,n 	11-n 

and likewise for their tridiagonal counterparts. 

3.3.2 Long and short recurrences 

The Arnoldi relation is used more-or-less directly to generate an orthonormal basis of 

the Krylov space for the long recurrence solvers such as FOM, GMRES etc., when the 

operator is non-Hermitian. The term "long recurrence" is used to indicate the fact that 

the number of basis vectors against which a raw vector has to be orthogonalised grows 

as the sequence goes on. 

If the operator is Hermitian and the orthonormal matrix of basis vectors is consid-

ered as a similarity transformation (equation 3.3), then it must preserve Hermiticity, 

and so: 

VHAV = T 

with tridiagonal T because a Hermitian upper Hessenberg matrix can only have one 

super-diagonal. Having T tridiagonal means that the n-th raw vector only has to be or-

thogonalised against the n-th and n - 1-th basis vectors as all the other orthogonalisa-

tion coefficients are zero. This means that there is now a fixed length short recurrence 

for generating the basis vectors. This is important for two reasons - firstly, the amount 

of effort required to produce a new basis vector, and secondly the amount of storage 
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required as the algorithm progresses, are now both fixed. This variation on the Arnoldi 

method is called the Hermitian Lanczos method1  (or simply the Lanczos method). 

There are two ways of getting short recurrences for the generation of the basis 

vectors if the operator is not Hermitian. The first is simply to truncate the orthogonal-

isation process after some fixed number of steps. This then gives us an upper banded 

upper Hessenberg matrix, where the band width is determined by the number of or-

thogonalisation steps. While this is indeed a short recurrence, the basis vectors are no 

longer orthogonal— hence it is called the incomplete orthogonalisation method (IOM) 

by some authors. The second is to use the two-sided Lanczos method. 

3.3.3 The two-sided Lanczos method 

The two-sided Lanczos method builds a more general non-unitary transformation which 

projects the operator again into a tridiagonal matrix. The idea behind the method is to 

build a basis for the Krylov space of the operator V = ((A, vi), and a basis for the dual 

Krylov space of the Hermitian transpose of the operator W = K(AH, w1), and arrange it 

so that the two bases are biorthogonal - i.e WHV = D where D = diag(i, 821 ... , 

is a diagonal matrix. It can be seen that the resulting matrix of coefficients must then 

be tridiagonal by considering the two complementary versions of the Amoldi relation: 

AV = V,iH 	 (3.4) 

	

AHW = w, iui,, 	 (3.5) 

and exploiting biorthogonality: 

WAV 	HW = 

DH = (DH n  i)' 	 (3.6) 

From equation 3.6, Hn  must be lower as well as upper Hessenberg as it is struc-

turally equivalent to a transposed upper Hessenberg matrix, and the same principle 

applies to 1'. Hence they are both tridiagonal, and: 

'A similar approach can be employed for complex symmetric (rather than Hermitian) matrices, 
although the generation of the orthonormal basis may fail as the inner product is no longer definite [34] 
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W,'AV = DT = tnH Dn 	 (3.7) 

where the biorthogonality of W and V comes inductively from the definition of the two 

complementary recurrences 3.4 and 3.5 (omitted - see [31] for a concise derivation of 

this fact and the algorithmic variations described below). 

Equation 3.7 provides some constraints on the recurrences, but does not define 

them completely. Taking y and ' as the sub diagonal entries of T and i respec-

tively, then they, along with Dn  = diag (6k , 82,. . . , 6,), can be freely chosen provided 

Yn?n6n+1 = 6,, giving two degrees of freedom. Some popular further constraints in-

clude T= 1' which also implies both T and t are symmetric (but not Hermitian), or 

= TH with D arranged to equal the identity, and various strategies for normalis-

ing basis vectors. Certain choices can simplify the algorithm, but may also affect the 

stability of the method. 

Note that two start vectors rather than one are now needed, one for each recurrence. 

Although the first start vector is normally determined by the Krylov basis we are trying 

to generate, the choice of the second is arbitrary, as long as the two start vectors are not 

orthogonal. In fact, the algorithm can terminate prematurely at any step if it generates 

a pair of non-zero vectors from the two spaces that are orthogonal before it manages 

to generate an acceptable solution. This is known as a serious breakdown, or in the 

context of an iterative solver, a breakdown in the underlying Lanczos process. There 

are various strategies to deal with this situation, such as look-ahead techniques, but 

apart from noting their existence we will not go into them here. 

3.3.3.1 Functional parallelism in the two-sided Lanczos process 

There are normally a couple of "join points" in any given implementation of the two-

sided Lanczos algorithm, being inner products with one vector from each basis set, but 

between these points the two sets of basis vectors evolve separately. Because of this, 

work could be done in parallel, and importantly this includes the application of the 

operator which is usually the single biggest cost in an implementation of an algorithm 

See Section A.3. 
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3.4 Orthogonality Conditions and Projected Systems 

3.4.1 Orthogonality conditions and orthogonal Krylov bases 

In this section we introduce the three orthogonality conditions considered in this thesis, 

and show how they are usually combined with a choice of orthonormal Krylov space 

basis and solution space to get a reduced system. This section is developed as if for 

the long recurrence (Arnoldi) methods, but can be made equally valid for the short 

recurrence (Lanczos) methods by replacing any upper Hessenberg matrices H with 

their tridiagonal equivalent T. 

It ought to be noted that, in exact arithmetic, the three orthogonality conditions 

for a Hermitian positive definite operator all produce approximate solutions at any 

given step that are very closely related. The relationship between them is less clear-cut 

for finite precision arithmetic and non-Hermitian positive definite operators, but the 

generated solutions may still be closely related to one another. 

3.4.1.1 The Galerkin condition 

The Galerkin condition requires that the residual of the candidate solution be orthogo-

nal to the space from which it is taken, so C, = Sn  giving: 

SASnyn  = Sb 

The standard solution space is Sn  e Kn  (A, b), the Krylov space generated by b, 

and Vn  is calculated as an orthonormal basis of this space by using a recurrence based 

on the Amoldi relation. By exploiting the orthonormality of the basis (see 3.3), this 

results in the following projected system: 

VnHAVnyn = VHb 

Hnyn  = I3iui 

where 13i = 	, and hence the candidate solution at step n is: 

Xn = VH113iu1 
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If the residual is orthogonal to the solution space, then for A Hermitian positive-

definite the error must be A-orthogonal to the solution space: 

r=Ae I V, 

e -I-A 

Hence x, is the result of an A-orthogonal projection onto the solution space, and is 

thus the vector from the solution space which gives the smallest possible A-norm on 

its associated error. 

3.4.1.2 The minimum residual condition 

The minimum residual condition requires that the residual be A-orthogonal to the space 

from which the candidate solution is taken, so C = AS giving: 

S'A"ASy = SIAHb 

The standard solution space and basis are the same as for the Galerkin condition, 

resulting in the following reduced system which again relies on the orthonormality of 

the basis: 

VHAHAV Y  = VHAHb 

TTHT7H .r 	rr 	 TIH T)'H 
,3v+1vn+1rLyn = LL 

= llI3iui 

and so the candidate solution is: 

x = v(H 	YiJ 1u1 

This immediately gives us that the residual norm is minimised (which is where the 

method gets its name from), and for A Hermitian positive-definite the A2-norm of the 

error for the candidate solution is minimised. 
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3.4.1.3 The minimum error condition 

The minimum error method directly minimises the 2-norm of the error vector, and 

thus the error is orthogonal to the solution space S,1  In order, to achieve this, the 

candidate solution x, E span(S) must be chosen from a slightly different space than 

the two other methods, and this is most easily shown by starting from the orthogonality 

condition on the error: 

S'e = 0 

S'A 1Ae = 0 

r I A_HS 

The above can be satisfied by generating V, as an orthonormal basis of the Krylov 

space KJ2(AH , b) and choosing the solution space as S, = AHV ,  giving: 

r I A_HAHV 

Ivn  

The residual must be orthogonal to a Krylov space generated by applying the adjoint 

of the operator to b - i.e. C, = V, C 7C2(A",b).  Combining this choice of Krylov 

space, solUtion space and orthogonality condition gives us the following expression 

which can be solved to find the projected solution yn: 

VnHAAHVnyn = VHb 

JiiinYn = I31141 

and hence the candidate solution: 

Xn = AHVn(HH)_lI3lul 

= Vn+iHn(H lln Y113i"i 
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3.4.2 Orthogonality conditions and non-orthogonal Krylov bases 

The development of the reduced systems in the previous section relies on the orthonor-

mality of the basis for the Krylov space. This does not hold though for the incomplete 

orthogonalisation or two-sided Lanczos methods. 

In the first case, the usual approach is simply to ignore the non-orthonormality of 

the basis and use the same reduced systems for calculating the projected solution as 

before. This means that the projected system still constitutes an interface. 

The second case is somewhat more ad hoc. For the Galerkin condition, it is possible 

to simply change the orthogonality condition so that the residual is now orthogonal to 

the space spanned by the basis of the dual Krylov space of the adjoint of the operator, 

C, = W,, which gives us the following: 

W,'AVy = W H 

TnYn = I3iui  

The possibilities for adapting the minimum residual condition are less clear cut. 

The most popular approach is to take the candidate solution that satisfies the same 

reduced system as before2, and ignore the fact that it is no longer derived directly 

from an orthogonality condition and has no direct relation to the norm of the residual 

- hence it is a quasi-minimum residual method. There does not appear to be a well-

known (quasi) minimum error method based on the two-sided Lanczos algorithm. 

For both the two-sided methods considered here, the projected systems still fit the 

same mould as those for the orthogonal Krylov basis methods, so the interface is pre-

served across all variations of the algorithm. 

3.4.3 Orthogonality conditions and breakdowns 

It may be possible that for a nonsingular indefinite operator the Galerkin condition 

cannot be satisfied for a given step, in exact arithmetic, even though the Krylov basis 

vectors are well-defined and the condition is satisfiable at some later step ([64]  gives an 

2Thatis, it finds yn  such that I1l3iui TnyII is minimised. 
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explanation based on formally orthogonal polynomials). The unsatisfiability equates 

to a singular projected matrix in the reduced system. This type of breakdown is not 

possible for positive definite operators with the Galerkin condition, and cannot happen 

for the other orthogonality conditions at all, although there is the related concept of 

stagnation. In finite precision arithmetic, complete breakdown is rare, and the problem 

tends to manifest itself as numerical instability. 

This phenomenon is not critical for the long recurrence algorithms, because steps 

where a piojected solution is not defined can simply be skipped. The problem arise 

in the short recurrence methods if the algorithm defines the solution at step n in terms 

of the solution at step n - 1, and therefore requires the projected operator to be invert-

ible at every step. This is the case for the classic Hermitian—Galerkin method, CG, 

and the original motivation for using the alternative orthogonality conditions to derive 

MINRES (which constitutes an improvement when the Galerkin condition cannot be 

satisfied for an iteration) and SYMIIVILQ (which does not breakdown) [67]. 

3.5 Solving the Projected System and Recovering the 

Solution 

The projected linear systems are expressed in terms of the projected operator (either 

upper Hessenberg or tridiagonal) and the norm of the initial right hand side b. The three 

orthogonality conditions correspond to three types of reduced system to be solved to 

obtain y,, the projected solution. They are summarised in Table 3.1. 

Table 3.1: Orthogonality conditions and their reduced systems 

Condition 	Reduced system 	Type 

Galerkin 	Hy 	I3iui 	matrix inversion 

Minimum residual H H y, = UH,, f3i ui  least squares 

Minimum error 	H H y, = I3iui 	matrix inversion (on H H) 

An orthogonality condition is usually implicitly tied to a particular matrix decom- 

position. Solving for the Galerkin condition is normally accomplished using the LU 
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decomposition, and solving for the minimum residual and minimum error conditions 

relies on the QR decomposition (which for the minimum error condition is called the 

LQ decomposition as the QR factors are transposed). This gives us the set of equations 

in Table 3.2. 

Table 3.2: Orthogonality conditions and the standard decompositions 

Condition 	Decomposition Solution 

Galerkin 	Hn  = L, U, 	Y. = U'L'i3iui 

Minimum residual FI = QR 	= R1Q13iui 

Minimum error 	ffn = QnRn 	Yn = RR'i3iui 

For techniques based on the long recurrence solvers we have now assembled all 

the necessary pieces for a working algorithm. If y, can be calculated, then the solution 

x, can be reconstructed by combining it with the solution space basis vectors derived 

from the Krylov space process. 

There is a problem for the short recurrence solvers though. The vector Yn  changes 

fully at each step of the algorithm, and thus to reconstruct the solution at any step 

all the basis vectors generated so far must be stored. This means we have lost most 

of the advantage of having a short recurrence in the first place, which was a small, 

fixed storage requirement. To remedy this problem, another set of vectors is usually 

introduced, called the search vectors. 

3.5.1 Search vectors 

The search vectors are just a grouping of the basis vectors with one of the factors of 

the projected operator, and the general idea can be demonstrated using the Galerkin 

condition and the LU decomposition: 

xn  = VnYn  

= VnU, 1 L13iui 

= Pn  Zn 
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where P is the matrix whose columns constitute the search vectors, and Zn is an n-vector 

that only changes from step to step by adding the next entry. The upper triangular factor 

U only has two entries per column, the diagonal and the super diagonal, because it is 

derived from a tridiagonal matrix. Hence, the n-th column of V is a linear combination 

of the last two columns of P, and n-th search vector can be constructed from the factor 

U,, the n-th basis vector, and the n - 1-th search vector. This results in another short 

recurrence: 

vn  = PnUn  

p, = (v—U[n-1,n]p_1)/U[n,n] 

The short recurrence for the solution vector is simple: 

Xn 	= Pn_lZn_1 + Zn[fl]pn 

= Xn_1+Zn[fl]Pn 

Now that everything is calculable by short recurrences, the whole algorithm has a 

small fixed storage requirement. The only further complication is that short recurrences 

mandate that the matrix decomposition is pivotless and, for the Galerkin condition, 

that L' and U exist at every step (see Section 3.4.3). Both facts can affect the 

stability of the algorithm. Pivoting would still lead to short recurrences [34], but this 

is nonstandard, and a breakdown due to singular T is unavoidable. 

The other short recurrence methods are summarised below. The minimum residual 

condition with a QR decomposition results in: 

V=PR,  

p, 	= (vn —Rn [n— 1,n]p_i —R[n-2,n]p_2)/R[n,n] 

where the upper triangular factor R has two super diagonals, and thus we need to store 

one extra search vector for the recurrence. In this situation Zn = Q 31 u1;and note that 
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Q is actually n + 1 x n + 1, but the n + 1-th entry of Zn  is never used because even if 

R (which is n x n) is extended to have an extra row they would all be zeros. 

The standard matrix factorisation for the minimum error condition gives us the 

following: 

x, = AVy 

= 

= Vn+ IQnR;H I3lul 

= PZ 

where the update of the search vectors is based on the unitary part of the factorisation. 

Taking on  as the n-th individual Givens rotation: 

1 

1 	E(n+1)x(n+1) 

C S 

- C 

the search vectors can be derived as follows: 

Pn  = 

= 

= 

= (Pn_i,vn+i) n  

P is used above to show that P, (which has n + 1 columns) differs from P-.-i in its n-th 

column as well as having an extra column, giving the following relations: 

Pn+1 = SJ3+CV 
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pn = 

where Pn+1  (and p,) denotes the (n + 1)-th (and n-th) column of P,. Although P, at 

step n has n+ 1 columns, Zn only has n non-zero entries, sox, =x,_i +zn[n]pn. 

3.6 The Common Algorithms 

3.6.1 Initial guess 

It is possible to exploit prior knowledge as to the likely solution of the system of 

equations to be solved [73] i.e. some xi that is a better approximation to the actual 

solution than xi = yi [1]vi. The technique alters the problem to a new set of equations 

for which there is no information, so all cases can be treated by considering how to 

solve the case where no prior knowledge is available. 

3.6.2 Calculating the recurrence residual 

As mentioned in the introduction to this chapter, there are various schemes for deciding 

when to halt an iterative method, and most of them rely one way or another on the 2-

norm of the residual vector. The vanilla method that is built into most recipes is to 

assume that there is some available a priori bound on this value. For both the Galerkin 

and minimum residual conditions coupled with orthonormal Krylov bases, the 2-norm 

of the residual is available from the reduced system. For the Galerkin condition: 

r = b—AVy 

= I31v1 - VTy - I3nVn+lUnYn 

= 	I31v1 - I3ivi - I3nvn+iynllnl 

= I3nYn [fl]Vn+1 

UrnH = I3nyn[n] 

and the scalar yn[n] can be recovered in the following way: 



3.6. The Common Algorithms 
	

47 

yn = U, 1L 1i3iui 

yn[fl] = z[n]/U[n,n] 

For the minimum residual condition, any method of solving the least-squares prob-

lem that calculates the scalar least-squares value itself (such as a QR decomposition) 

automatically gives us the norm of the residual due to the orthonormality of V+1: 

r = b—AVy 

= 13iv1 —V +iTy 

= Vn+1(t31u1—yn) 

rnll = 11131UiLynH 

Both of these methods carry-over to the non-orthogonal Krylov basis algorithms. 

For the Galerkin condition the residual now depends on the norm of v,i,  and for the 

minimum residual condition the scalar value calculated is related to the norm by the 

condition number of 	It is possible to construct V to have columns with unit norm, 

or calculate 	directly, so the residual norm is available for the Galerkin methods, 

but K(V +i) is not directly calculable so only a quasi-residual can be recovered for the 

minimum residual methods. 

The situation is messier for the minimum error condition as the solution space is 

not the same as the Krylov space. Calculating the residual now requires incorporating 

the extra application of the operator to the Krylov basis vectors- 

r  = b—Ax,  

= b—AA"Vy 	 (3.8) 

For a Hermitian operator, it is possible to exploit the Hermiticity of T and calculate 

a residual from components of the reduced system. From: 

THT —n —n 

Lz+iLi= 	0 ... ii 12 	(n+2)xn 

0 ... 0 13 
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it is possible to derive a convoluted expression for the residual in terms of the last two 

entries of y, which themselves can be recovered from Z and R. For a long recurrence 

method using a non-Hermitian operator, the product AV+i  in 3.8 is unknown, meaning 

that the residual cannot be calculated from the projected system. 

3.6.2.1 Recurrence residual vs. Real residual 

While the methods above theoretically give the residual, in practice they suffer from 

certain numerical problems. Hence, the value calculated is known as the recurrence 

residual, as opposed to the true residual, and the difference between these two values 

is known as the residual gap. 

Although it is not perfect, the recurrence residual is essentially free, whereas calcu-

lating the true residual at each step would require another operator application. Also, 

calculating the recurrence residual does not require any extra information outside that 

provided by the reduced system (with the exception of the two-sided Galerkin method 

which may require 

3.6.3 Putting it all together 

With two classes of exception (the standard two-term recurrence Galerkin methods 

(CG, BiCG) and the product methods, discussed in Sections A. 1 and A.2 respectively), 

we can now construct the popular unpreconditioned iterative methods from algorithms 

that generate and manipulate the pieces that we have presented in this chapter, sum-

marised below: 

. Scalars ((x, 13 etc), vectors (b, v1 etc), dual vectors (Wi etc) and operators (A). 

. The matrices H (or T) and V, generated by an algorithm that satisfies the Arnoldi 

relation for operator A and initial vector vi (and possibly Wi). 

. u, the (unbounded) first unit canonical basis vector. 

. U or R, and z, the products of an LU or QR solve of a reduced system. 

P, generated from a search vector recurrence. 
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Table 3.3: Constructed iterative methods 

Name 	Basis Generation Orthogonality Condition Decomposition 

FOM Arnoldi Galerkin LU 

GMRES Arnoldi Minimum residual QR 

GMERR Amoldi Minimum error LQ 

DLanczos Hermitian Lanczos Galerkin LU 

MTNRES HermitianLanczos Minimum residual QR 

SYM]\4LQ Hermitian Lanczos Minimum error LQ 

BiDLanczos Two-sided Lanczos Galerkin LU 

QMR Two-sided Lanczos (Quasi) Minimum residual QR 

Note that most of the pieces capture a recurrence relation, and hence are unbounded 

(i.e. 00  entries in a vector or columns in a matrix) - it is possible to give a bound in 

infinite precision arithmetic, but this does not carry over to numerical calculation. The 

combinations of algorithmic choice that determine the common methods are presented 

in Table 3.3. The version of GMERR that would result from assembling the pieces 

presented in this chapter is actually a variation on the original, as mentioned in [72]. 

3.6.4 Preconditioning 

Similarly to having an initial guess for x1, it is possible to alter the system of equations 

being solved to improve their numerical properties in some way, e.g. to give faster 

convergence to a solution. This is known as preconditioning, and can be added to any 

method. It comes in three varieties: 

. Left: MAx—Mb 

Right: AJVIM 1x = b 

Symmetric: MAMM 1x = Mb 

Assuming the termination condition can be suitably adapted, the first two. techniques 

reduce to solving a different set of equations, and, for right preconditioning, a final step 
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to recover the solution to the original system. Because the generation of the Krylov 

space only requires operator applications, the new operator can always at the very least 

be created by function composition. 

Symmetric preconditioning can be treated in the same way, but if there exists some 

N = M2  the method can be simplified to use only one application of N per iteration 

rather than two applications of M. This trick can be freely captured in the generation 

of the Krylov space [41]. 

3.7 Summary 

This chapter has given a brief introduction to the iterative solvers, and discussed how 

common components of the algorithms can be factored out by using the structures of 

the projected systems as an interface. The rest of the thesis will show how some of 

these components can be implemented to join together the different algorithmic pieces 

whilst explicitly representing as much of the structure as possible, and issues in the 

optimisation of the program arising from the direct representation of that structure in 

the programming language. 

The discussion given above covers what is important for the thesis, but leaves out 

the relationship to other iterative solvers such as conjugate gradients, and the Lanczos 

type product methods. For completeness, this is discussed briefly in Appendix A. 



Chapter 4 

Functional and Algebraic Language 

Optimisation 

This chapter provides some general background on previous work dealing with the 

compilation of functional languages and MATLAB, and an evaluation of its relevance 

to Aldor and the iterative solvers. These areas are of interest given that Aldor is both. 

a functional language and has its roots in computer algebra. Even in these fairly re-

stricted domains, the literature on optimisation techniques (and how they relate to gen-

eral design) is large. Consequently, the work covered here is only a small selection 

of examples from different topics and projects. Appendix E contain some pointers to 

material on broader questions, such as choice of appropriate language etc. 

Background specific to the optimisations used in this thesis (with an emphasis on 

imperative work) is supplied in Chapters 7 and 8. It is presented along with a discussion 

of the relevance of the technique to the framework (as well as the language), and thus 

comes after the description of the framework design and component implementations 

in Chapters 5 and 6. 

4.1 Compilation of Functional Languages 

The majority of the work on functional languages has concentrated on features that are 

not present in more traditional languages. This is likely due to two reasons. Firstly, 
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the main applications for these languages are symbolic programs where these features 

play an obvious role, and secondly it is often assumed that the novel features of these 

languages are also directly the cause of the main problems for performance. The sub-

jects touched on in this chapter reflect this trend - they are polymorphism, fine-grained 

function composition, pure languages, higher order functions and the use of recursion, 

with a discussion of how they affect the related topics of arrays and compiler imple-

mentation. 

4.1.1 Fine-grained function composition and recursion 

As its name suggests, functional programming leans toward the pervasive use of fine-

grained functions to structure a program. In addition, some schools of thought regard 

recursion as the most natural means of phrasing repetitive control flow. This has led 

researchers interested in optimisation to concentrate on making function calls cheap, 

and optimising tail recursion under the assumption that they are both common. One 

example of this being taken to its logical conclusion is the continuation passing style 

(CPS) intermediate representation [78],  in which all control flow is converted to func-

tion calls and all functions are tail recursive. In some sense this makes the optimisation 

of space usage for tail recursive functions from the original source automatic. Another 

example of the emphasis on recursion is the recasting of traditional scalar optimisations 

for "loops" arising from simple tail recursive functions [84]. 

Aldor is at the imperative end of the functional programming language spectrum, 

so recursive functions are less of an issue. Indeed, generators are an abstraction of 

control flow and may be safely implemented by either recursion or loops. Fine-grained 

function composition is still very much an issue however, but the approach in the cur-

rent compiler is to rely on aggressive miming rather than lowering the cost of function 

calls. 

4.1.2 Higher order control flow analysis 

Functional programming encourages the use of higher order functions. The use of clo-

sures can severely complicate the recovery of the function call tree for a program, re- 
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quiring the use of higher order control flow analysis (HOcfa) [78]. HOcfa has received 

much attention in the functional programming literature, and some of the techniques 

have been borrowed by other communities such as the object-oriented languages com-

munity (for one example see [86]). Unfortunately, HOcfa is both complex and rel-

atively expensive even for monovariant analyses, with the original 0-cfa of Shivers 

having 0(n3) complexity in the number of call sites. None the less, various incarna-

tions of the technique have been implemented in various projects, to support various 

optimisations, including some ambitious frameworks [11]. 

Two recurring uses for HOcfa are the recovery of types for weakly typed languages 

such as Lisp or Scheme [78, 76, 100],  and the optimisation of closure representations 

[76, 19], to which it seems reasonably suited. Type recovery is much less relevant to 

Aldor though, due to static typing and the very infrequent use of true first-class do-

mains, and it is not obvious how much benefit could be accrued from closure analysis. 

Another mooted application is inlining that can cope with nonlocal (i.e.. interprocedu-

ral) flow of functions[10, 100], but this is somewhat less convincing than the previous 

applications. Nonlocal HOcfa is only necessary when direct miming is cannot be done, 

but flow directed inlining is only legal in the case where a single function flows to a 

given call site. This combination appears to reduce its applicability to rather obscure 

cases, and makes the usefulness of the analysis heavily dependent on particular pro-

gramming styles and/or the use of an intermediate representation such as CPS, which 

can affect the availability and ease of recovery of flow information [74]. 

Several authors from the functional programming community have pointed out that 

using a direct style compiler (i.e. based on a traditional call stack rather than CPS) and 

simple inlining tends to get rid of the large majority of higher order functions, thereby 

removing the need for HOcfa itself, and generally producing better performance (for 

one example see [84]). This is the approach taken in the Aldor compiler, again imple-

mented by aggressive miming. With respect to the language, HOcfa may not be suited 

to the current implementation due to the way the type system is implemented (espe-

cially the parts instantiated at run-time - see the explanation of domains in Section 

2.2.5), which could make any analysis either overly conservative or computationally 

very difficult. 
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Specifically with respect to this work, the information provided by HOcfa has no 

obvious application with the exception of miming, and local miming on its own covers 

the vast majority of cases, so HOcfa would appear to be overkill even if it is feasi-

ble. After suitably aggressive miming, the use of closures for the iterative solvers is 

reduced to a handful of cases to combine different recurrences. Within an individual 

recurrence, which is where the vast majority of computation takes place, all the higher 

order functions are removed, including those arising from the use of generators (see 

Chapter 7). 

4.1.3 Polymorphism, boxing and modules 

In this section, "parametric polymorphism" is used to mean ML-style polymorphism, 

a simple form of type abstraction that assumes the minimum of information about the 

objects it deals with —i.e. that objects can be moved, shallow copied, or discarded. The 

term "module", is used to denote a mechanism to define an abstract data type using a 

signature of some sort (e.g. an Aldor category). 

The simplest way of dealing with polymorphic functions is to require all program 

objects to be one size, enabling a static calling convention. This is just the uniform 

representation rule from Section 2.2.3, usually achieved by boxing. A naive approach 

results in large amounts of heap allocation and prevents the passing of function ar-

guments in registers (especially fioatingpoint data), both of which have an associated 

performance impact. Consequently several authors have looked at the art of unbox-

ing, usually in the context of fioatingpoint data types and occasionally including small 

aggregate types such as pairs or records with some small number of entries. 

Approaches to unboxing include: 

. Type passing, where information about the size and nature of the type is passed 

as an argument to the function allowing unboxed representations everywhere 

[84]. 

. Static insertion of coercions (i.e. boxing and unboxing steps) that allow monomor-

phic functions to take unboxed arguments and ensure that objects are always 

boxed if necessary before being passed to polymorphic functions [54]. 
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Leaving all arguments to all functions boxed but using local unboxing within 

functions [55] when the type is statically known. 

Of these options, Aldor employs the latter, which is effective provided enough miming 

has been done. This approach is acutely sensitive to the effectiveness of the mimer 

though. Failing to inline functions that take and return boxed scalar arguments within 

loops with many iterations can easily create enough garbage to seriously degrade per-

formance. For an example, see Section 2.3.1.3, which discusses the case where the 

emerger doen't remove all boxing steps - failing to inline the function in the first 

place is at least as bad. See also the problem discussed in Section 9.3.3. 

One alternative to implementing polymorphism is (complete or partial) monomor-

phisation, for example see [87, 45].  In complete monomorphisation, every polymor-

phic function is cloned once for each type with which it is used, and calls to polymor-

phic functions are replaced with calls to their monomorphic counterparts. In common 

with the other unboxing methods, note that this technique permits unboxing, but does 

not define how much unboxing ought to be done. While it is difficult to imagine scenar-

ios where unboxing a simple floatingpoint type would be a bad idea, the technique can 

be extended to flattening larger and/or nested data structures for which the trade-offs 

are much less clear. 

Module language constructs can be treated as an extension of parametric polymor-

phism, where the functions to manipulate a member of a parameter type as well its 

unboxed size are unknown without further analysis. Applying the same simple solu-

tion again requires uniform size types and thus boxing, and this is the method proposed 

by some ML compiler authors, mainly in order to allow completely separate compila-

tion of modules. However, full monomorphisation has been used by at least one group 

to deal with the module language (as outlined in [19])  in the context of a whole pro-

gram optimisation strategy. Monomorphisation, whether complete or partial, could be 

an interesting approach for Aldor, but again it is not clear that it is compatible with the 

type system. Unlike the ML module language, Aldor domains are not completely static 

(e.g. polymorphic recursion is possible), although in practice most are. Monomorphi-

sation could be used as an enabling step to allow bottom-up inlining in the presence of 

heavily type pararneterised code. 
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In the context of this work however, unboxing or monomorphisation without inlin-

ing is not really of interest as the transformations must always create custom copies of 

the loops that they manipulate, which equates to inlining the code rather than leaving 

separate functions intact. Also, a result similar to monomorphisation can be achieved 

based on Aldor's WPO approach if enough inlining is done for code containing param-

eterised domains. 

4.1.4 Arrays 

The representation of arrays in functional languages is directly affected by the im-

plementation of polymorphism. The efficient use of arrays and floatingpoint types is 

usually considered a lower priority for functional languages, as symbolic code is their 

bread-and-butter'. Some groups however (e.g. the ML community), have considered 

techniques for arrays in polymorphic languages such as those discussed below. 

Naively allowing polymorphic functions to access array elements requires that the 

elements of the array obey the uniform size rule (i.e. the array consists of pointers to 

heap allocated objects). This can introduce a large overhead for array operations in-

cluding pointer chasing and cache effects caused by the scattering of objects through-

out the heap, and flat arrays are generally considered much preferable. With regard 

to the techniques for implementing polymorphism described in Section 4.1.3, static 

coercions are very expensive (wrapping or unwrapping each element of an array in 

turn), and local unboxing does not apply as the type of the array elements will not be 

known. This leaves type passing, which has high overhead for simple function calls, 

or disallowing the use of arrays with polymorphic functions (e.g. [55]).  Aldor is not 

restricted to these options as it can use its dependent types mechanism to allow local 

boxing of values derived from flat arrays (and unboxing of values to be stored into 

an array), thereby allowing them to be used with dependently typed functions. Again 

though, the efficiency of this scheme is very sensitive to how well the inliner works - 

executing functions to perform box-unbox steps within loops is typically a disaster - 

'There are a handful of notable exceptions to this, including SISAL [38],  which is a strict pure 
language that incorporates loop constructs, but does not have higher order functions, polymorphism or 
a module system (although these were proposed in the literature), and SAC [75],  a successor to SISAL. 
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so in practice the function needs to be inlined and have the boxing steps removed by 

optimisation. 

4.1.5 Pure languages and the management of state 

Languages without side-effects (i.e. pure languages) are an interesting subclass of 

functional languages. The lack of side-effects means that a compiler that hopes to pro-

duce efficient executables ought to do some kind of analysis of the lifetime of objects 

to be able to perform destructive updates where possible and limit the pressure on the 

garbage collector, and a run-time system with a garbage collection mechanism that is 

as efficient as possible [97, 98]. Analysing the lifetime of objects with dynamic extent 

is far from easy however (and may need a ROcfa analysis [77]),  so pure languages 

tend to rely on a garbage collector and potentially suffer from weak performance as a 

result. An interesting refinement of garbage collection that uses some static analysis 

is the concept of region inference [46].  One alternative to analysing programs is to 

introduce exotic type systems that allow, destructive updates (e.g. [92, 101]). 

The relationship of pure languages to Aldor exists through its use of techniques 

such as garbage collection, the environment emerger optimisation (which analyses and 

limits the dynamic extent of objects), and what are usually pure functions attached to 

Overloaded infix operators (see Section 2.1.6). The more extreme problems of pure 

languages are avoided however, as Aldor permits the destructive updating of single el-

ements of an aggregate, and a programmer can limit the lifetime of objects by using the 

dispose! command. As such, the more sophisticated techniques developed for pure 

languages are not necessary, with the assumption that the programmer can intervene 

when efficiency is important. 

A further specialisation of pure languages is the class of lazy (or normal order) 

languages  such as [1]. Aldor is related to these by the generator construct, which 

constitutes programmer specified laziness, and the type system, where the run-time 

representations of types are lazily instantiated. It may be possible that techniques from 

the lazy community, such as strictness analysis, are applicable to these aspects of the 

language, but this was not directly pursued. 

21t may be possible to have non-pure lazy languages, but this would be an unorthodox combination. 
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4.1.6 Compiler implementation 

Functional language compiler writers have employed many methods over the years. 

The most prevalent are direct compilation to machine code [4, 3] and compilation to 

some low-level language, typically C [85, 25]. Going direct to machine code allows 

the implementation of techniques that do not sit well with an intermediate language. 

Examples of these include precise tracing garbage collection, exceptions, custom func-

tion invocation methods, intermediate representations such as CPS, and optimisations 

such as avoiding stack frame allocation for tail calls. Also, the issue of precise tracing 

garbage collection can interact with code generation strategies to support polymor-

phism and unboxing. The run-time system must be able to identify exactly the live 

root set in the call stack, and when the stack frames may contain unboxed objects this 

implies providing some kind of precise descriptor for each frame. This in turn favours 

direct machine code generation, as the compiler of an intermediate language (such as 

C) is frequently free to arrange stack frame layout as it sees fit, and information on the 

final layout is very difficult to get at. However, compiling directly to machine code 

requires a lot of effort, especially if multiple back-ends are to be supported. 

Conversely, going via C gives portability and offers some degree of optimisation 

for free. This comes at the cost of conservative garbage collection, and a poor mapping 

of certain techniques on to the C function call model. These two disadvantages have 

spawned projects that aim to avoid them whilst providing the labour saving advantages 

of targeting C. For compilation straight to machine code there exist compiler kits that 

support techniques popular from functional programming and machine specific low 

level optimisations (e.g. [2]), and the C-- project [49] aims to provide a C-like target 

language to give portability and ultimately a common set of optimisations, alongside 

such features as standardised exceptions and formalised stack frame layout rules to 

allow precise garbage collection. 

As described in Chapter 2, Aldor compiles to C and uses a conservative mark-and-

sweep collector supplemented with optional deallocation hints. While the other routes 

to machine code mentioned above may be useful in future, currently it is not clear what 

advantages they will bring for the extra implementation cost. In addition, the issues 

they tackle are low level and quite general, and therefore not particularly relevant to 
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the application at hand (i.e. the iterative solvers). 

4.1.7 Fusion and loop restructuring in functional languages 

Most previous work on compilation and intermediate representations for functional 

languages has not borrowed the loop restructuring techniques from traditional imper-

ative scientific computing. One interesting exception to this sought to join the OCaml 

compiler with SUIF [24]. However, it appears to be a very small project, and only 

considers pre-existing loops in the code which are translated in isolation. This ignores 

the impact of modules and fine-grained function composition, and does not deal with 

interloop locality which is the main thrust of the optimisations in this thesis. 

Fusion has received some attention in the functional language community. Two 

examples are deforestation [91], a form of fusion for lists, and fusion of array corn-

binators [20].  The authors of the latter example have also previously worked on op-

timisations for an intermediate representation of a parallel functional language. The 

original scheme (from a different group) compiled to an intermediate language with 

primitives for operating on arrays that was implemented with individual native func-

tion calls for each primitive [14]. Problems with the performance of code using this 

approach prompted the authors of [20] to attempt to break the abstraction barriers 

introduced by the intermediate language and combine primitives together, including 

using fusion [50],  although the exact mechanism is not specified. The optimisations in 

[50] were performed by hand, and those in [20] are implemented for a lazy functional 

language using static rewrite rules on the source. 

These techniques perform fairly limited fusion, with the authors claiming in [20] 

that deforestation does not work well for fusing functions that consume more than one 

list, and although their work covers multiple arguments there is no mention of how 

they would approach collective loop fusion. As such, it appears that there is some way 

to go before these techniques reach the level of sophistication found in the imperative 

community. 
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4.2 Compilation of Numerical Computer Algebra Sys-

tems 

This section concentrates on the compilation of MATLAB, which can be viewed as an 

interactive array language or a computer algebra system witha bias toward numerical 

linear algebra. 

The FALCON project has covered various techniques. The first batch [28] were 

mainly concerned with static analyses to try and reduce the interpretation overhead 

of the dynamic features of the language, and a subsequent translation to Fortran 90. 

These features include dynamic typing, where type information includes number type 

(logical, integer, real, complex), rank type (scalar, vector, matrix), extent (i.e. the 

dimensions of non-scalar variables), and structure type for matrices (square, triangular, 

diagonal, Hermitian etc.). The language also uses dynamic resizing of arrays and array 

bounds checking. These problems are not directly relevant to Aldor as it is a statically 

typed language that does not mandate array bounds checks. 

The MATLAB environment includes a large number of built-in routines that are 

called by the interpreter for operations on vectors and matrices, and some of these rou-

tines are implemented as optimised native binaries. In the first set of optimisations no 

attempt was made to break this abstraction and fuse together components. The sec-

ond batch [58] included restructuring, but the system was based on pattern matching 

and was at least partly interactive. The main idea was to allow a developer to explore 

algebraic transformations at the level of the source code rather than performing tradi-

tional optimisations such as fusion, although they get a brief mention. Again, no real 

attempt is made to break the abstractions of the library routines, although support is 

added to match expressions in the abstract syntax tree and replace them with different 

library routines such as native BLAS. This can be likened to other work that manipu-

lates library routines as language primitives based on some programmer supplied rules 

(for example [441). A follow-up piece of work [63] suggests adding more source-to-

source transformations to the FALCON framework, but, as before, the library routines 

are treated as primitives. As such, they ignore the cost of modularity and sidestep the 

optimisation issues that we wish to consider. 
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The Menhir project [22] added directives to the language and targeted alternative 

standard libraries, including parallel implementations such as ScaLapack. Again, they 

do not appear interested in restructuring. 

4.3 Summary 

The principal result of the survey in this chapter is that many of the problems tradi-

tionally tackled by functional language optimisations are either adequately handled by 

techniques already implemented in the compiler, or are not directly relevant to Aldor. 

In addition, authors from the functional language and computer algebra language com-

munities have only fleetingly considered the impact of modularity for work intensive 

loop based numerical codes. This can be contrasted with the amount of research done 

in the imperative language community on tackling the costs of fine-grained structuring 

(such as collections of loops). 



Chapter 5 

Algorithm Framework 

This chapter describes the design of the algorithm framework written in Aldor, based 

on the approach discussed in Chapter 3. The framework can be used to add together 

the various algorithmic pieces to form any of the unpreconditioned solvers listed in 

Section 3.6.3. The chapter begins by discussing the hierarchy of categories. An in-

dividual category describes the interface to a class of objects, and the relationships of 

inheritance from and parameterisation by other categories capture the structure of the 

framework. This is followed by a description of some example domains that imple-

ment the categories to give an instantiation of the framework, often using abstractions 

provided by other parts of the framework that will in turn be implemented by other 

domains etc. 

This chapter is supplemented by appendices C and D, which contain more detailed 

code extracts. 

5.1 Category Hierarchy 

The first task in the design of the framework was the construction of categories to cap-

ture as much of the structure discussed in Chapter 3 as possible. Categories are related 

by inheritance and by taking members of other categories as parameters. In terms of 

the inheritance relation, there are three main groups - the pre-existing categories from 

axilib (see Section 2.1.4) that capture basic algebraic features [93], the linear alge- 
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bra categories that build on these to provide a richer structure, and the problem specific 

categories that are less purely mathematical. The first two groups are used to type the 

pieces presented in Section 3.6.3, and the last is used to capture mappings between 

them. 

Each category in a chain of inheritance is intended to capture some additional struc-

ture not present in its ancestors. This usually means defining some extra operations on 

the category, or some extra structure on the parameters to the category, but occasion-

ally it is used to capture information that is more abstract. An example of this is the 

category for Hermitian operators, which is intended to convey some extra information 

about the type that cannot fully be captured by the type system (i.e. the. Hermiticity of 

the operators). 

The categories and their relations are summarised using diagrams. Figure 5.1 rep-

resents the inheritance relationship between some root members of axilib and the 

linear algebra categories; Figure 5.3 shows the handful of problem specific categories 

that are related by inheritance; and Figure 5.2 shows the parameterisation relationship 

(i.e. which categories are parameterised by domains belonging to other categories). In 

the latter diagram trivial arcs have been removed - when a category is parameterised 

by domains that are typed by parameterised categories, dependent typing requires that 

it take all the parameters from its parameterised arguments as additional arguments, 

and representing all of these in the graph would make it unreadable. However, when 

a parameter that would be required by dependent typing is actually a subtype of the 

most general one allowable for the other parameterised arguments, or when multiple 

domains of a certain type are required, only one of which is necessary for dependent 

typing, then the arc remains as it carries nontrivial information. Examples of these 

two cases are the arc from NorniedLinearSpace to KrylovSpace as LinearOperator 

only requires a parameter of type LinearSpace, and that from IndexedVector to 

DirectQRSolve. 

Sections with descriptions of some of the more interesting categories follow, and 

details of the category exports can be found in Appendix C. 
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Figure 5.3: Category inheritance diagram for the few problem specific categories that 

are related by inheritance. 

5.1.1 Linear algebra categories 

These categories embody various constructs from linear algebra and their interrelation-

ships. 

5.1.1.1 FieldWithValuation 

This is a (possibly unordered) field with an Archimedean valuation operation that maps 

elements to members of an ordered field. This category is used to provide a norm for 

both real numbers and complex numbers in this thesis, but it may generalise to other 

fields and valuation operations. The valuation domain is not restricted to being positive 

in order to be able to capture some extra structure in the algorithms at the cost of a slight 

abuse of terms. This is explained in the description of the Hermit ianLinearOperator 

category. 

Having the valuation as a separate type means that we can specify different opera-

tions when using the result of a valuation in contrast to some arbitrary member of the 

ground field. This allows certain operations to be more efficient, for instance, multi-

plying a vector of complex numbers by an arbitrary member of the ground field (i.e. a 

complex scalar) requires more arithmetic than multiplying the vector by a member of 

the valuation, which only has a real component. Because the information is encoded 

statically, there is no need for dynamic tests at run-time. 
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5.1.1.2 L±nearSpacewithDual 

Although all linear spaces have a mathematical dual, in terms of a concrete program the 

dual may not always have been implemented. This category captures the relationship 

with the dual if it has been defined. 

5.1.1.3 NormedLinearSpace 

The ground field parameter to this domain must be a field with a valuation. This allows 

us to capture the relationship between a linear space over a possibly unordered scalar 

field and its metric. This category exists separately from that for inner product spaces, 

which automatically define a norm, as the converse is not necessarily true - this is 

analogous to the distinction between Banach spaces and Hilbert spaces. 

5.1.1.4 InnerProductSpace 

The name of this category is an abuse of terminology, as a true inner product auto-

matically defines a norm. The definition of norms here requires a ground field with 

a valuation (see below), so this category can be used to provide some kind of inner 

product for a ground field without an explicitly supplied valuation. 

The category denotes a vector space that is dual to itself, and is recursively defined 

using the LinearSpacewithDual category (see Section 5.3.1). 

5.1.1.5 NormedlnnerProd.uct Space 

Here the norm is implicitly provided by the inner product, so the ground field must be 

a field with valuation in order for the norm to provide a metric. 

5.1.1.6 GroupAction 

A group action is a group whose members can act as- operators on a linear space. 

Note that this category does not inherit from the linear operator category, as not all 

operator groups are closed under the operations that that category provides e.g. scalar 

multiplication. 
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5.1.1.7 OperatorAlgebra 

A linear algebra is a linear space whose elements also form a monoid with respect to 

some operation. This category can be used to type certain domains of operators (such 

as a domain to represent any general linear transformation) that form a linear algebra, 

but not all useful domains of operators automatically form a linear space as they are 

not all closed under all the operations. For example, a domain of nonsingular matrices 

does not contain the 0 matrix, and hence is not closed under addition (and nor is it a 

proper linear space). As such, the category of linear operators does not automatically 

inherit from the linear algebra category, and this category joins the two chains. 

5.1.1.8 LinearOperatorwithflual 

A linear operator on a finite vector space with a dual automatically defines an opera-

tor on the dual space by the definition of linear functionals, and this is captured in a 

category default. 

NormedLinearSpacewithDual is used in conjunction with this category to struc-

ture the non-Hermitian short recurrence solvers, as they capture the separation between 

the basis of the original Krylov space and its dual. 

5.1.1.9 LinearOperatorOnlnnerProductSpace 

Given that an inner product space is self-dual, a linear operator on the space now 

defines two actions. These are the usual action and the action on a vector when it is 

interpreted as a member of the dual space. This is captured in the category by defining 

left multiplication by the operator, and also by defining an adjoint operation. 

This category is used with NorinedlnnerProductSpace to structure the non-Hermitian 

long recurrence solvers, because the inner product of the vector space introduces the 

extra necessary structure for the orthogonalisation step. 

5.1.1.10 HerinitianLinearOperator 

This category is a specialisation of a general linear operator on an inner product space, 

and is used to structure the Hermitian short recurrence solvers. Its ground field must 
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have a valuation to capture the type issues with the quadratic forms resulting from the 

Hermitian forms associated with operators. A quadratic form derived from an operator 

A is taken as defining a possibly indefinite norm-like function (resulting from a pos-

sibly indefinite inner product (., .)), which has the same type as the valuation of the 

ground field, but, due to indefiniteness, may also be negative. This potential negative 

value is an abuse of the definition of the valuation as the domain of values resulting 

from the norm of the ground field, as mentioned earlier, but is useful to capture infor-

mation about the projected system (see Section 5.1.2.1). 

Given that the operators are self-adjoint, the adjoint operation is defined here as 

being empty by means of a category default. 

5.1.1.11 PositiveljefiniteHermitianLinearoperator 

This is a simple extension of Hermit ianLinearOperator, with a curried function to 

define norms using the quadratic form of the operator. 

5.1.1.12 Matrix, IndexedVector, SquareMatrix 

The Matrix category is used to type linear mappings that can be decomposed into 

column vectors. It is used in conjunction with the IndexedVector category, which 

types domains that provide a function to access individual elements. Neither category 

is meant to imply that elements of an adhering domain have finite extent - i.e. matrices 

can have an infinite number of columns, and vectors may have an infinite number 

of entries. To define a way of computing the effect of a linear mapping by a linear 

combination of its column vectors, a further category of FinitelndexedVector must 

be used. This avoids problematic termination issues. 

Matrix is extended by SquareMatrix, a category that decomposes a linear opera-

tor into its individual scalar elements. "Square" in this case is intended to denote that 

it is an explicit linear operator (i.e. it concerns the type of the vectors involved), but 

elements from an adhering domain can be treated as rectangular matrices by placing 

limits on which entries are used. Hence H and H from Chapter 3 are really the same 

unbounded matrix, and the difference lies in how they are manipulated by the solves 

of the projected system. 
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SquareMatrix is the root of subtypes such as upper/lower triangular, upper/lower 

Hessenberg and tridiagonal matrices. The Banded specialisations of Hessenberg and 

triangular matrices are used to type the upper Hessenberg matrix resulting from an 

Amoldi-type relation for an incomplete orthogonalisation method, and the U or R fac-

tor resulting from the LU or QR decomposition for a short recurrence. 

5.1.2 Problem specific categories 

The modular structure of the iterative solvers is captured by defining mappings be-

tween the separate pieces described in Section 3.6.3. These mappings are defined in 

categories that are more problem specific and less mathematical in nature than those 

previously mentioned. The long recurrence solvers are split into two steps - firstly the 

generation of the Krylov basis vectors and projection of the operator on to that basis, 

and secondly the factorisation of the projected matrix. The short recurrence solvers 

are split into three steps. The first two are the same as those from the long recurrence 

solvers, with the additional step being the generation of the search vectors and the 

updating of the solution vector based on them. 

5.1.2.1 Interface to Krylov space object 

The most significant subsection of the algorithms is the generation of the Krylov space, 

which defines a mapping from an operator and a vector to an object consisting of a 

linear mapping and a matrix of scalars. The linear mapping is conceptually the matrix 

whose column vectors are the sequence of Krylov space basis vectors, and the matrix 

of scalars is the upper Hessenberg matrix of coefficients that represents the operator 

projected onto the Krylov basis vectors and orthogonally to some other set of vectors. 

These are the matrices V and H (or T) from one of the Arnoldi relations, so the Krylov 

space objects define the mapping (A, vi)  -+ (V, H), with possibly some extra arguments 

(such as the dual start vector wi for a biorthogonal Krylov space). 

Derived from the general KrylovSpace category are two sub-categories, one for 

the long recurrence Arnoldi-type algorithms, and an abstract parent for the short recur-

rence Krylov spaces. This latter category is not meant to be directly used, but is further 

specialised into three sub-categories, one each for incomplete orthogonalisation-type 
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algorithms, Hermitian Lanczos-type algorithms, and non-Hermitian Lanczos-type al-

gorithms (see Figure 5.3). These categories differ in the types of their parameters, 

and the types of the matrices that the Krylov object generates. The short recurrence 

category exists as a separate entity to give somewhere to put the template algorithm 

default, which provides structure common to all the short recurrence methods, and to 

provide a means of specifying different types for the ground field of the linear spaces 

in question and the entries of the matrices used in the reduced system. Usually both are 

the same, but a Hernitian operator over C gives rise to a tridiagonal T whose entries 

are elements of R, and this can be captured here. 

The sequence of Krylov basis vectors is infinitely 'long, and as such the implemen-

tation of the linear mapping and matrix of scalars require some nonstandard techniques. 

However, the only part of this that is visible at the category level is the fact that one 

domain parameter for the long recurrence Krylov space must be finite length indexed 

vectors. 

5.1.2.2 The template functions 

A template for an iterative solver algorithm is provided for each immediate subcate-

gory of KrylovSpace as a category default, with the intention of providing a useful 

amount of structure common to the vanilla algorithms. Missing parts of the algorithm 

are provided as function arguments to a template with the result being a complete iter-

ative method. The long recurrence method template uses the Krylov space object con-

structor provided by its category. Because the short recurrence category is the ancestor 

of several categories whose constructor functions have different names and different 

signatures, its template function takes the constructor as another function parameter. 

5.1.2.2.1 Long recurrence template The template for the long recurrence methods 

(fig. 5.4) requires a function that maps the projected operator and the scalar factor in 

the right hand side of the reduced system to the projected solution - that is (H, 13) F-+ y. 

This function incorporates a solve by some decomposition of the relevant projected 

system of equations for the different orthogonality conditions given in Section 3.4, 

along with some halting criteria to determine when the tentative projected solution is 
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iterativeSolve(correction 	(HDom, Valuation) -> yDom) 

(A : Operator, 

x : Vector, 

b 	Vector) : Vector == 

if x = 0 

then r 	b; 

else r : b - A x; 

rNorrn : Valuation 	norni(r); 

K 	orthonormalKrylovBasis (A, r/rNorm) 

H := coefficients(K); 

V := basis(K); 

y := correction(H, rNorm); 

X := x + V y; 

return x; 

Figure 5.4: Aldor code for the long recurrence method template. Note that the domains 

in the function signature (i.e. HDom, Valuation etc) are parameters to the category 

itself. For further details see Appendix C. 

good enough. Once the projected solution has been found with this function, the actual 

solution is reconstructed using the matrix of basis vectors and returned as the result. 

Halting conditions based on estimates of the residual derived from the reduced 

system exist for the standard LU—Galerkin and QR—minimum residual algorithms (see 

Section 3.6.2). However, the template is not such a good match for the minimum error 

algorithm for two reasons. Firstly, it is not clear if it is possible to calculate a recurrence 

residual from the projected system, and secondly the result returned by the assembled 

template is no longer the actual solution - it must be recovered by multiplying the final 

vector once more by the operator A. 

5.1.2.2.2 Short recurrence template The template for the short recurrence meth-

ods (fig. 5.5) requires (in addition to the Krylov space constructor) a function that takes 

the projected operator, matrix of Krylov basis vectors and projected right hand side and 
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iterativeSolve(krylovBasis : (Operator, Vector) -> %, 

correction : (HDom, VDom, Valuation) 

-> (VDom, yDorn, SI -> Boolean)) 

(A : Operator, 

x 	Vector, 

b : Vector) : Vector == 

if x = 0 

then r:=b; 

else r : b - A x; 

rNorin : Valuation := norm(r); 

K := krylovBasis(A, r/rNorm); 

H := coefficients (K); 

V : 	basis (K); 

(z, P, lastlteration?) := correction(H, V, rNorm); 

for i in 1.. repeat 

xNew := x + z(i) * 

dispose!(x); x := xNew; 

if lastlteration?(i) then break; 

return x; 

Figure 55: Aldor code for the short recurrence method template. Note that the domains 

in the function signature (i.e. Operator, Vector etc) are parameters to the category 

itself. For further details see Appendix C. 
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maps them to the z and P factors that combine to give corrections to the solution, and 

a function that signals termination - i.e. (H,V,13) -+ (z, P, lastlteration?) where 

lastlteration? is a,function from  step n to a Boolean: n '-+ (true false). In this 

template, the body of a loop updates the solution vector and then tests the function to 

see if the algorithm has converged. If it has, the loop ends and the solution is returned. 

The functions passed to the templates are composed of further pieces such as matrix 

decomposition and search vector recurrences, along with some glue code to assemble 

them. These pieces have their own interfaces, described below. 

5.1.2.3 LU and QR decompositions 

The interface to the pivotless LU decomposition, DirectLtJSolve, provides a function 

that maps an upper Hessenberg matrix and an initial right hand side to the right hand 

factor, and a vector that is the result of the other factor being inverted and applied to 

the initial right hand side - i.e. (H, 13) -~ (U,z). 

The QR decomposition, DirectQRSolve, generates in addition a vector of run-

ning residual values, which is used as the recurrence residual in the minimum residual 

methods - i.e. (H, 13) 	(R, z, res). Note that there is no notion either of the size of 

the matrix to be decomposed or of the size of the resulting factors. Again, this is done 

deliberately to be able to deal with an iterative process that generates arbitrary length 

vector sequences and thus an arbitrary size projected matrix. 

Both categories use the most general type for their possible parameters, in order 

to be applicable to all types of decomposition. Further specialisations, e.g. to banded 

matrices, can be specified in the type requirements for parameters to domains. 

5.1.2.4 Search vector recurrence 

The search vector recurrences for the short recurrence methods associated with the LU 

and QR decompositions are packaged in a similar way to the matrix of basis vectors 

from the Krylov space. They are simply a mapping from a upper triangular upper 

banded matrix and a matrix of basis vectors to a matrix of search vectors, where the 

size of all the matrices involved is unbounded - i.e. (UIR, V) -* P. Although the 

triangular factor is required to be upper banded, the size of the band is not specified 
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and so the category applies to all search recurrences of this form, regardless of length. 

5.1.2.5 LQ decomposition and search vectors 

The solution of the projected system for the minimum error condition and the associ-

ated search vector update are less easily separated. The search vector update is based 

on the individual rotations calculated from the decomposition rather than a composi-

tion of all the factors. Consequently, no categories are provided to structure this part 

of the algorithm. Also, there is not the same degree of similarity between the decom-

positions used for the short and long recurrence methods, making the separation less 

important, as implementations cannot be reused. 

5.2 Domain Implementation 

After specifying the categories to define the important interfaces within the family of 

applications as a whole, suitable domains still have to be written to implement them. 

The following section discusses important points in the implementation of the algo-

rithms at the domain level. A much more detailed (but still slightly abridged) listing is 

given in Appendix D. 

The running examples in this section are the domains that are used to construct a 

version of the QMR algorithm. They include a two-sided, short recurrence Lanczos 

process based on [42], a pivotless QR decomposition for a tridiagonal matrix based on 

Givens rotations, and a recurrence for updating the QMR search vectors. Note that the 

domains themselves are parameterised over the objects that they manipulate (scalars, 

vectors etc) and thus make full use of the generality provided by the category hierarchy 

for maximum flexibility (for further details see the solver domains in Appendix D). 

5.2.1 Index functions, recurrences, and infinite sequences 

As discussed in Section 2.1.6, the standard array indexing functions can be overloaded 

using the apply mechanism. The indexing function to retrieve column vectors from a 

matrix is packaged using this, and hence these operations have the same syntax. This 
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delta : 	(vl * Wi); 

U : = A vl; 

alpha : 	(u * wl)/delta; 

beta : 0; 

v2 := u - alpha * vi; 

gamma := norm v2; 

state 	1; 

Figure 5.6: Aldor code for the first step of the Lanczos recurrence. Phonetic Greek 

letters (e.g. delta, alpha etc) indicate elements from a scalar domain, a single low-

ercase letter and a number indicate elements from a vector domain (e.g. wi, v2 etc) 

and uppercase letters indicate an element of the operator domain (e.g. A). The types of 

these objects are inferred by the compiler. The integer state variable is called state. 

For further details see Appendix D. 

enables a column index function for an "infinite" matrix - the index function, which 

maps an integer to a column vector, is actually linked to a recurrence and the integer 

argument is the number of steps to take to generate the correct column. In other words, 

infinite matrices are implemented lazily. 

5.2.2 Krylov space recurrence 

The algorithm for generating the Krylov space basis vectors and projected operator 

is written in a textbook style, with some wrapping around it to be able to package its 

results as lazy matrices, and some directives to manage storage. The domain containing 

it is typed with the BiorthogonalKrylovSpaCe category. The code for stepping the 

recurrence itself is split into two functions. The first of these is used as the initial step 

of the sequence, and the second is used for all subsequent steps. They are presented 

(with some less important lines deleted for clarity) in Figures 5.6 and 5.7 respectively. 

The objects that the recurrence functions manipulate are lexically scoped variables 

from their environment. These variables hold the current state of the recurrence. To 
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tl := AH wl - conjugate (alpha) * wl - conjugate(beta) * w2; 

dispose! (w2); w2 := ti; 

(deltaOld, deltaTemp) 	(delta, (v2 * w2)); 

delta := deltaTemp / (gamma * gamma); 

(vl, v2) 	(v2/gamma, vi); 

(wl, w2) := (w2 /conjugate (gamma) , wl) 

U := A vl; 

alpha := (U * wl)/delta; 

beta := gamma * delta / deltaOld; 

t2 := u - alpha * vi - beta * v2; 

dispose! (v2) ; v2 := t2; 

gamma 	norm v2; 

state 	state + 1; 

Figure 5.7: Aldor code for the general step of the Lanczos recurrence. Phonetic Greek 

letters (e.g. delta, alpha etc) indicate elements from a scalar domain, a single low-

ercase letter and a number indicate elements from a vector domain (e.g. wl, v2 etc) 

and uppercase letters indicate an element of the operator domain (e.g. A). The types of 

these objects are inferred by the compiler. The integer state variable is called state. 

For further details see Appendix D. 

get the n-th step of the recurrence, the function for the initial step is called once, fol-

lowed by the function for a general step n - 1 times. After this the required state is read 

off from the lexical variables. By introducing a small wrapper that performs precisely 

this procedure, we now have a function from an integer denoting the step to the values 

produced by that step. There are two of these recurrence functions, one for producing 

the triplets of scalars that constitute the nonzero entries of the columns of the tridiago-

nal projected operator T, and one for the basis vectors V, and they both call the same 

stepping functions. 
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5.2.2.1 Use of state for the Lanczos process 

It is inefficient to start the recurrence from scratch every time a vector from the se- 

quence is required, especially if the indices (i1 , 	. i,) of the requested vectors form 

an increasing sequence - that is ia_i <in  i,2+iVn. To avoid doing unnecessary work 

an improvement is to leave the state as it is after a vector has been requested, and record 

the step at which the recurrence stopped. 

Upon receiving a request for another vector, some surrounding code first checks the 

index of the request against the current step value If the index of the request is greater 

than (or equal to) the current step, then the recurrence can be cycled the necessary 

number of times starting from the current state. If the index is lower than the current 

step, then the code re-initialises the state and cycles the recurrence up to the necessary 

step. 

In addition, given that one recurrence produces both the vectors and the scalars, 

the two functions that produce either the vectors or the scalars can share the same state 

to reduce the work further. This particular caching and sharing strategy is algorith-

mically tuned to an expected sequence of requests through both functions, being the 

likely sequence of requests during a linear system solve. Hence, it is a domain im-

plementation issue. Other domains could be written to incorporate alternative caching 

policies, either from scratch or as a wrapper around this domain. 

5.2.2.2 Domain representation 

The domain representation is a record of the two recurrence functions wrapped as. 

matrices (see below), the operator A, and copies of the initial vectors v1 and Wi.  Having 

a concrete representation means that the domain can provide functions that return the 

operator and the initial state used to start the Krylov space recurrence. This is not 

provided for the other recurrences as it is deemed less necessary - their constructors 

directly return elements from different domains rather than an object which can yield 

these elements as is done here. 
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5.2.3 Matrix of basis vectors 

The domain implementing the matrix of basis vectors V is used as a thin wrapper 

around the recurrence function from the Krylov space domain, and typed by the Matrix 

category. The domain representation is an arbitrary function from an integer to the re-

quired vector type. The constructor takes the recurrence function argument and simply 

obscures its type. The function to retrieve a column of a matrix takes its integer argu-

ment and passes it to the underlying representation. Matrix-vector multiplication with 

a finite vector (i.e. of bounded size) is computed as a simple linear combination of 

the vectors as they are produced by the recurrence but this is only used for the long 

recurrence solvers. 

Although this domain is currently very simple, it could usefully be extended with 

its own caching policy. For example, if the matrix were required as part of a Lanczos 

process for eigenvector approximation [40], the domain implementation could keep 

copies of all the vectors as they were produced. This is certainly not desirable for short 

recurrence linear systems solvers however, as they are specifically designed so that 

only a small fixed number of Lanczos vectors have to be kept. 

5.2.4 Tridiagonal matrix of recurrence coefficients 

The tridiagonal matrix domain for T (typed by the TridiagonalMatrix category) 

is similar to the domain for the matrix of basis vectors. This "matrix" is explicitly 

constructed from scalars though, and supports a two dimensional indexing function - 

i.e. it maps a pair of integers to an entry in the matrix. Given that the Krylov space 

recurrence produces triplets of scalars, some extra work is necessary to produce the 

indexing function. It first checks that the pair of integers indexes an element within 

the central band - if they do, then the function uses the recurrence to produce the 

necessary scalar, and if not it returns a zero. Functional versions of columns or rows 

can be produced by currying this index function over one of its arguments, provided 

there is a domain that will take this function as an argument to a constructor. 

Although this domain currently supports no caching, in some sense it is the most 

obvious candidate. It is very cheap to store the scalars as they are produced, and the 
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state := state + 1; 

R.u2 := sOld * T(state - 1, state); 

ulTemp := cOld * T(state - 1, state); 

R.ul : 	(C * ulTemp) + ( 	* T(state , state)); 

dTemp := (C * T(state, state)) - (conjugate (s) * ulTemp); 

cOld : C; 

sOld := 5; 

(c, s, r) := givensRotation(dTemp, T(state + 1, state)); 

R.d := r; 

z 	: = (c * zTeinp) + ( 	* y (state +l); 

zTemp := (C * y(state+l)) - (conjugate (s) * zTeinp); 

Figure 5.8: Aldor code for the general step of the QR solve, on T. Lowercase letters 

indicate elements from either a scalar or a vector domain (e.g. c and s are scalars, and 

y is a vector etc) and uppercase letters indicate an elements of a matrix domain (e.g. 

T is a tridiagonal matrix, and R is a record that is used to construct a banded upper 

triangular matrix). The result of indexing into a matrix or a vector (e.g. T (state + 1, 

state) and y(state + 1)) is a scalar. The types of these objects are inferred by the 

compiler. The integer state variable is called state. For further details see Appendix 

D. 

tridiagonal matrix is all that is needed to produce approximations to the eigenvalues of 

the original operator [40]. 

5.2.5 QR decomposition 

The pivotless QR decomposition, typed by DirectQRSolve is used to produce a lazy 

banded upper triangular factor (i.e. R) and two lazy vectors. The first is the result of the 

unitary factor being applied to the original right hand side z = Q1i UI, and the second is 

a lazy vector whose n-th element constitutes the 2-norm of the residual resulting from 

the least-squares solution at step n by limiting the problem to be of size (n + 1) x n. 
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The decomposition essentially defines a recurrence, and it is handled in much the 

same way as the Krylov space recurrence. The code for the general step is given in 

Figure 5.8 (code for the first two steps is omitted as it is much the same). The de-

composition only has to maintain a small number of scalars in its environment, unlike 

the Lanczos recurrence which requires the storing of a small number of vectors. The 

three objects produced by the recurrence are also wrapped in much the same way as 

the matrix of basis vectors and the tridiagonal matrix of coefficients. 

The current implementation is specialised to the solve for QMR, but a more general 

procedure could easily be used instead. For example, it may be beneficial to use the 

same QR solve component for all solvers that need one. 

5.2.6 Banded upper triangular factor 

This domain is very similar to the tridiagonal matrix domain, being doubly indexed. 

It is typed with BandedupperTriangularNatrix. The upperBandw±dth function 

always returns the constant 2. It is generated by the QR solve, and used by the search 

vector recurrence. 

5.2.7 Lazy vector domain 

This domain adheres to IndexedVector, and is essentially the same as the matrix of 

basis vectors except that it wraps a recurrence that maps integers to scalars rather than 

basis vectors. The domain has no caching policy, but it would be cheap to implement. 

Two elements of this domain are generated by the QR solve. 

5.2.8 Search vector recurrence 

The search vector recurrence maps the matrix of basis vectors and the upper banded 

upper triangular factor to a matrix of search vectors: i.e. (V, R) -~ P from PR = V. 

The domain that contains the recurrence is typed with SearchVectorRecurrence. Its 

implementation is similar to the Krylov space domain, and is presented in Figure 5.9 

(again, code for the first two stages is omitted). It maintains a small number of vectors 

in its state, but only produces one object, being the matrix of search vectors. The 
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recurrence is wrapped to produce the matrix of search vectors in much the same way 

that the Krylov space recurrence is wrapped to produce the matrix of basis vectors, and 

contains similar hints to manage storage. 

state := state + 1 

ti := 1/R(state,state) * ( V(state) - R( state -1, state) * p1 

- R (state -2 , state) * p2 

dispose!(p2); p2 := ti; 

(p1, p2) : (p2, p1); 

Figure 5.9: Aldor code for the general step of the search vector recurrence. A single 

lowercase letter and a number indicate elements from a vector domain (e.g. p1 etc) 

and uppercase letters indicate elements.of a matrix domain (e.g. R is a banded upper 

triangular matrix and V is a matrix of column vectors). The result of indexing into a 

matrix is a scalar or a vector depending on the type of matrix (e.g. R(state, state) 

and V(state)). The types of these objects are inferred by the compiler. The integer 

state variable is called state. For further details see Appendix D. 

The recurrence uses both the matrix of basis vectors and the upper banded upper 

triangular factor from the QR decomposition. It is specialised to an upper triangular 

factor with a band width of two, which is what the QR decomposition for a tridiagonal 

matrix produces. 

5.2.9 Matrix of search vectors 

The domain used for this purpose is identical to the domain used for the basis vectors 

(see Section 5.2.3). 

5.2.10 Glue code 

The glue code, presented in Figure 5.10, constructs two new objects and combines 

them with the short recurrence template to produce the iterative solver algorithm QIVIR. 

The first object is itself a function that takes the matrix of Krylov basis vectors V and 
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QMR(A : Operator, x : Vector, b : Vector, t 	GroundField) 

Vector == 

tolerance := valuation(t); 

rninimumResidualCorrection(T : TDom, V 	VDom, beta 	Valuation) 

(zDom, VDoin, SI -> Boolean) == 

(R, z, res) := directQR(T, canonicalBasisVector (1, beta)); 

P := recurrence(V, R); 

lastlteration?(i : SI) : Boolean == 

residual : GroundField := res(i); 

if valuation(residual) < tolerance then true else false; 

return(z, P, lastlteration?); 

solveFunction 	iterativeSolve (biorthogonalKrylovBasis (b) 

minimumResidualCorrectjon) 

return solveFunction(A, x, b); 

Figure 5.10: Aldor glue code for QMR. Note that the domains in function signatures 

(i.e. Operator, TDom etc) are parameters to the domain wrapper for the glue code. A 

single lowercase letter indicates elements from a vector domain (e.g. z, res etc) and 

uppercase letters indicate elements of the operator domain or a matrix domain (e.g. A 

and R, P etc). For further details see Appendix D. 
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the knowns of the projected system (T and l3iui), and produces the halting test, and 

the (lazy) matrix P and (lazy) vector z that go to make up corrections to the solution. 

For QMR the halting test is just based on res, but for an LU decomposition it may 

involve v,, depending on how the Krylov space recurrence is written; and so must 

be constructed here where the basis vectors are available. The second object is the 

function from an operator and the first basis vector to a Krylov space object. This is 

done by supplying the first argument (the start vector for the dual Krylov basis) to the 

curried function biorthogonalKrylovBasis. The glue code is wrapped in a simple 

domain that is typed with an anonymous category. 

5.3 Evaluation of Framework Design 

The original motivation for pursuing the design of the algorithm framework and its 

supporting domain implementations came from colleagues in Particle Physics Theory 

at the University of Edinburgh (especially Professor Kennedy and Dr Joó). Their ini-

tial work, which dealt mostly with the linear algebra categories, was developed into 

the modular approach to the iterative solver algorithms presented here. The design 

introduces modularity and structure using the type system in order to: 

. Enable easy assembly and reuse of multiple domain components. 

Encourage clarity and conciseness in the implementation of any given compo-

nent. 

Provide flexibility without entailing a proliferation of different versions through 

the ability to customise individual parts. 

Highlight how the algorithms relate to each other by explicitly showing the parts 

they have in common. 

The first point is demonstrated by Figure 5.10. The glue code assembles together many 

different objects to construct the QIVIR method. Reuse can be shown by considering 

the construction of the function value assigned to solveFunction near the bottom of 

figure. The template function for a two sided method, iterativeSolve, takes two 



86 	 Chapter 5. Algorithm Framework 

arguments. The first is a component that generates a two sided Krylov space and the 

second is a local function that uses other components to calculate the search vectors and 

check for termination based on the recurrence residual. A two sided method based on 

an LU decomposition could be constructed in a similar manner using the same template 

function and Krylov space component, but with a different function to calculate the 

search vectors. Conversely, a Hermitian QR method would use a different component 

to generate the basis vectors but otherwise would be essentially unchanged. 

The clarity and conciseness of algorithm components themselves can be seen in 

Figure 5:7. Except for the dispose! functions and a handful of type annotations, the 

code is almost a direct copy of the original algorithm from [42]. 

Flexibility with respect to adaptation can be shown by considering the short re-

currence template function in Figure 5.5. The termination condition in the loop that 

updates the approximation xis based directly on the lastlteration? function, which 

is based on the recurrence residual. The template function could easily be modified to 

take another argument, being the required tolerance on the actual residual, with the 

loop running until the recurrence residual is satisfied (i.e. lastlteration? returns 

true), after which the actual residual is calculated on each iteration. When the actual 

residual tolerance is satisfied the loop is terminated. This scheme is cheaper than hav-

ing to calculate the actual residual on each iteration, which requires an extra matrix—

vector multiplication, and more accurate than purely relying on the recurrence residual, 

which can drift substantially from the value of the true residual. Making the change 

in this part of the structure means that the new approach to termination conditions is 

automatically propagated to all the short recurrence methods as opposed to having to 

substantially change multiple individual recipes for each method'. 

The final goal of the design is essentially automatic from introducing modularity 

into the framework. The reuse of components for different algorithms by definition 

shows what parts the algorithms have in common. 

that the changes are not completely isolated however - the glue code for each method would 
require minor changes to accept the error tolerance on the actual residual and pass it to the template 
function in an appropriate manner. 



5.3. Evaluation of Framework Design 	 87 

5.3.1 Remaining issues 

5.3.1.1 Recursive category definition 

In a couple of places there exist problems with the type system, or possibly its cur-

rent implementation. They stem from recursive definitions, with the two exemplars 

being the definition of an inner product space using the LinearSpaceWithDual cat-

egory, and the first argument to Herm±tianOperatorKrylovSpace (which ought to 

be a field with valuation of itself so that it can be used as the coefficient field of the 

reduced system - see Section 5.1.2.1). In the first instance, the compiler accepts the 

original inner product space category definition without problem, but cannot subse-

quently deduce that something belonging to it is a linear space whose dual is itself. In 

the second instance, the compiler appears not to be able to accept any function param-

eter that is recursively typed. Both these problems are resolved by circumventing the 

type system using the pretend keyword. 

5.3.1.2 Mutability and aliasing 

Because Aldor is an imperative language that also supports garbage collection, the 

management of storage is a thorny issue. The subjects outlined here relate to aliasing of 

arguments to and outputs from the various recurrences, using the Krylov space domain 

as the example. 

The operator and the two initial vectors provided as arguments to construct a 

Krylov space object may be aliased. If the object stores only a pointer to them, then 

if they are altered through their aliases the object is no longer correct - if the starting 

vectors are altered the object will produce a different sequence of vectors if a restart 

occurs, and if the operator is altered any further vectors in the same sequence will be 

wrong. Similarly, the recurrence stores pointers to the vectors that represent its current 

state, and if pointers to this internal state are yielded to a client so that the state may 

be read, then it may become corrupted if the client alters the vectors through those 

pointers. Also, if a client holds on to the aliases and the state is destructively updated 

then from the client's perspective the vectors may become corrupted. 

There is no ideal solution to this. Adding explicit copy operations would remove 
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the possibility of corruption at the expense of ugliness, and possibly severe inefficiency 

as a result of garbage collection overhead. Consequently, a compromise is imple-

mented. The operator is assumed never to be altered, and the client of the recurrence 

is assumed to be well behaved in that it never destructively updates a vector through 

a provided pointer, and never mistakenly re-reads the state after the Krylov object has 

been updated. Vectors provided as arguments to the recurrence are copied before being 

cached to provide some degree of security. 

Similar reasoning underlies the use of the dispose! functions in the code exam-

pies given. It is reasonable to expect the compiler to deal with chunks of memory that 

are allocated within a routine and never escape it rather than leaving all heap variables 

to the garbage collector, and at the same time unacceptable to expect a programmer 

to explicitly manage all unnamed temporaries. A simple strategy for unnamed tem-

poraries is the pre-allocation of space (see Section 9.2.2), which can be viewed as an 

extension to the action of the emerger. However, automatically dealing with explicitly 

referenced nonlocal heap allocated variables (such as named vectors) would require 

some kind of interprocedural alias analysis. This is likely to be exceedingly difficult in 

the presence of higher order functions (such as the closures manipulated by the vari-

ous recurrences discussed in this chapter) or the leaking of pointers to clients to enable 

them to read internal state. The fully automatic management of storage is a subject 

in its own right, spanning garbage collection techniques, user annotations/exotic types 

systems, and static analyses of various sorts [97, 98, 92, 77] (not to mention combina-

tions of these). However, the problem is very general and the form of the linear solvers 

does not raise any new issues to be addressed. Because of this, and the fact that Aldor 

allows the use of destruction hints, these issues were not pursued any further. 

The cost of not explicitly destroying these variables is extra work for the garbage 

collector, and the severity of the penalty depends on the size and number of the objects, 

and the type of garbage collector. Early experiences with the programs discussed in 

this thesis suggested that garbage collecting heap allocated scalar variables is cheap 

enough to be inconsequential, but garbage collecting large objects such as vectors was 

simply too expensive. The problem may be pinning (the collector is conservative), or 
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lack of cache/page locality2, but the problem is easily solved with the use of destruction 

hints. 

5.4 Summary 

This chapter has described how the structure of a family of iterative solvers has been 

captured using the rich type/system of Aldor, and given an example of how the frame-

work can be instantiated with implementations of various pieces to give QMR (an 

iterative solver algorithm). The structure of the solvers is embodied in the interfaces 

provided by categories and their interrelationships, by means of inheritance and pa-

rameterisation. The implementation is constructed from several recurrences that are 

packaged using the advanced functional features of the language. 

While the relationships between the algorithms discussed in Chapter 3 are often 

mentioned in the literature, it is nonetheless still normal practice to present and code 

any one of the algorithms as a simple recipe with all the choices already made, and all 

the separate pieces unpacked and merged together. That chapter contained outlines of 

four families of Krylov subspace generation (Arnoldi, IOM, Hermitian Lanczos and 

two-sided Lanczos), three orthogonality conditions (Galerkin, minimum residual and 

minimum error), and two methods of matrix factorisation (LU and QR), along with 

the algorithms that arise by combining them together. Splitting up the algorithms into 

those sub-components and implementing them as shown in this chapter brings signifi-

cant software engineering benefits in terms of flexibility, code re-use and comprehen-

sibility. 

Numerical programs of this nature are not common in functional languages, so 

there is no obvious body of work with which to compare the design. An isolated 

example for iterative solvers (which contains a handful of further references) is [101], 

but the use of the language is at the standard recipe level rather than attempting to 

represent the full structure of the algorithms. 

2Due to relying on a tracing scheme rather than a collection strategy with better locality characteris-
tics such as reference counting. 



Chapter 6 

Linear Systems 

This chapter describes the implementation of the sparse linear systems of equations 

that are used with the iterative solver framework to conduct program optimisation ex-

periments. As the vectors in these linear systems have little or no special structure, 

the focus is on the operators. A rough sketch is given of how these sorts of systems 

can arise from the discretisation of partial differential equations, in order to provide 

motivation and highlight the important differences from dense matrix problems. The 

chapter begins with this outline, followed by a high level description of the operators 

in question, with the remainder of the chapter devoted to an account of their actual 

implementation in Aldor. More details on the domain implementations can be found 

in Appendix D. 

6.1 Partial Differential Equations and Their Discretisa-

tion 

The discretisation that we consider is a regular finite difference approximation. The 

space on which the function is defined is approximated with a regular grid of points 

separated by a uniform distance a, and the value at each point on this grid defines the 

function. An approximate first or second-order derivative is usually calculated using 

some low order Taylor expansion in the grid spacing a, and so computing the required 

discretized approximation to the derivative of the function at a given point involves the 

Al 
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value at the grid point itself, and any immediate neighbours to which it is linked. If the 

point is at the edge of the space considered'then the derivative will involve a boundary 

condition of some sort', but we will ignore that here. 

A function over the grid is represented by a vector in the algebraic formulation, 

with each element of the vector corresponding to the value of the function at some grid 

point, and the differential operator is represented by a matrix. Applying the matrix 

to the vector to give a new vector2  equates to calculating the required approximate 

derivative for each point on the original vector, and so the nonzero entries of the matrix 

correspond to a link with a neighbour on the grid for the purpose of approximating the 

derivative. The value of the entries in the matrix itself is determined by the differential 

operator in the PDE (for instance, possibly by scale constants). Thus, discretisation of 

a PDE gives a system of linear equations that can be solved with an iterative algorithm. 

6.1.1 Grid numbering, matrix layout and stencils 

Each grid point (also called a site) in the space corresponds to the index of one element 

of a vector, and so the correspondence is a numbering scheme for the sites. The num-

bering scheme used directly affects the form of the matrix for the differential operator. 

For instance, the natural ordering of grid points for a three-dimensional discretized 

Laplacian operator V2  gives a multi-diagonal matrix, an example of which is shown 

in Figure 6.1. The exact structure of the matrix for a regular grid with this ordering 

varies depending on the boundary conditions, (and for some boundary conditions) the 

number of grid dimensions and whether each dimension has even or odd extent. Other 

orderings can be used, for example as part of read-black preconditioning, but they will 

not be considered here. 

Most of the entries in the matrices under consideration are zero, as each site is 

only connected to a small fixed number of neighbours. Therefore, it is unnecessary 

to deal with the "full" matrix by storing all the zero elements, and more efficient to 

periodic boundary conditions actually define a manifold with no edge (e.g. torus, twisted 
fibre bundle etc) but they can be thought of as a space that has a special procedure for wrapping around 
at the edges, and this is how they are typically implemented. 

2NB: we are only considering operators that map a vector to another vector of the same type (e.g. 
scalar field to scalar field) rather than a different one (e.g. scalar field to vector field by calculating the 
gradient). 
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Figure 6.1: A naturally ordered labelling of sites on a 3D grid (top left), the correspon-

dence to entries in a vector representing a function over the space (immediately below), 

and the 27 x 27 matrix that results from approximating V2  using this labelling (to the 

right). The matrix is presented as being composed of 3 x 3 sub-blocks (D and B) whose 

structure is given below it. Blank entries denote zeros. Boundary conditions have been 

left out to aid clarity. 

encode how to apply it. This requires knowing the neighbours of each site (which 

gives us the nonzero entries), and possibly some other information embodied by the 

operator (which gives us the value of those nonzero entries). Matrices with this fixed 

regular structure are called stencils in this thesis, and the special case where the value 

of nonzero entries can be factored out into, for example, a single scale constant are 

called pure stencils. An encoding of a stencil can save on space by not representing 

zero elements of the operator, and save on calculation by omitting operations on zero 

entries. 
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6.2 Example Operators 

There are three different stencils used with the linear solvers in this thesis. In order of 

increasing complexity, they are: 

A three dimensional, naturally ordered, simple Laplacian-like operator with a 

fixed scale constant, on a complex scalar valued function. 

A four dimensional, naturally ordered, simple Laplacian-like operator with a 

fixed scale constant, on a complex scalar valued function. 

An unpreconditioned Wilson-Dirac operator from QCD (four dimensional). 

6.2.1 The Laplacian-like simple operators 

The first two operators have more-or-less been described in the preceding section. They 

differ from a true Laplacian in that a complex scale constant K is used. When explicitly 

represented as matrices they would have seven and nine diagonals respectively, but they 

are represented in the code as pure stencil operations. For example, to apply the simple 

3D operator to produce a new vector, each element of the result is calculated using the 

following recipe: 

Ui,j,k : = K (v+i ,j,k + Vj_ I ,j,k + Vi,j+1,k 

+Vi,j I ,k + Vi,j,k+1 + Vj,j,k_ 1 - 6v,J,k) 	 (6.1) 

where subscripts denote grid indices, which wrap around to give periodic boundary 

conditions (the 4D version is a simple generalisation of this to four dimensions). The 

form of a stencil can be easily related to the discretized grid - the new, value at each 

point relies only on the values of neighbouring points. The zero values of the associated 

matrix are neither stored nor manipulated. Operators of a given type are applied using 

the same scheme. The only difference between them is the value of the single scale 

constant K, which is all that has to be stored. Operations on an operator manipulate the 

scale constant - for example, taking the adjoint of an operator conjugates it. 

Note that there exist specialised logarithmic time solvers for problems of this sort. 

Their use in this thesis is merely as a simple example of a purely functional operator - 
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a more difficult problem could be posed by extending the operator with a scale value 

that depends on some function of the site index. 

6.2.2 The Wilson-Dirac operator 

The unpreconditioned Wilson-Dirac operator is taken from applications for the nu-

merical modelling of QCD. The following description of it is purely at the "recipe" 

level - that is, a simple description of how it is calculated in one particular instance, 

rather than any of the rich theory behind it. This summary is based on various sources 

including [83, 35, 59, 82]. 

The operator acts on a vector iji representing a four-dimensional grid, but the 

"value" at each site on the grid is a C12  vector (a colour-spin vector) rather than, say, a 

single scalar in the case of the simple stencils. The operator can be written down as a 

short expression, containing a delta term as the most significant component. 

6.2.2.1 The delta term 

The delta term A can be thought of most simply as a complicated cousin of a simple 

four-dimensional Laplacian. The new value at a given site is a sum of the eight nearest 

neighbours (one in each direction for each dimension), after they have been acted on 

by certain matrices. The standard notation is to write the term as a sum over the four 

grid dimensions: 

4 

= 

The expressions in parenthesis denote indexing operations, so W(x) denotes the value 

of vector ij at site x (where x is a 4-tuple of integers), with ljJ(x + j.) and iii(x - 

being its immediate neighbours in the it direction. Similarly, D(x, j) denotes the matrix 

specific to that site and that direction. Note that unlike the simple stencils, the previous 

value at a given site plays no part in the delta term - this is taken into account by a 

different part of the parent expression. 
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6.2.2.1.1 Decomposing D Conceptually, the values at each site are complex 12-

vectors, and the matrices that act on them are 12 x 12 complex matrices. However, 

these D E C12 x 12  matrices can be decomposed into a Kronecker product of two ma-

trices, C3><3  ® 0><4 . To exploit this structure, the complex 12-vector is arranged as 

a 4-vector each of whose elements is a 3-vector, somewhat akin to a 4 x 3 complex 

matrix. Representing the values at the sites in this way allows the action of D = U ® P 

to be computed by applying the two factors P E C4>< 4  and U E C3 < 3  one after the other 

along their appropriate dimensions. 

6.2.2.1.2 Projectors The eight P E C4x4  matrices used at each site are each the 

result of an expression with the following form: 

I±Yn 	(n E 1..4) 	 (6.2) 

where 1 is the identity, and y  one of four y-matrices. The y-matrix in expression 6.2 is 

determined by the grid dimension of the link (each matrix is associated with one of the 

four dimensions), and the sign is determined by the direction within that dimension, so 

the expression is independent of the site index. 

All eight matrices that result from these expressions have many zeros and so are 

themselves sparse. The form of the matrices means that their product with any C4  

vector will only have two linearly independent components, and so can be represented 

by a C2  vector and some implicit information (the linear factors). Hence these matrices 

are called projectors in this thesis3 . 

This fact is customarily exploited to reduce the overall work in applying the C3 X 3  

matrix. First the projector P is applied which reduces the 4 x 3 matrix representing 

the value at a site to a 2 x 3 matrix, after which the 3 x 3 matrix can be applied for 

half the cost, and finally the resulting 2 x 3 matrix is reconstructed using the implicit 

information into a 4 x 3 matrix again so that it can be added to the running sum. This 

gives the following: 
4 

=E U(x,p)P(a)(x+ it) +U(x, —p)P(—)(x--1u) 

3This is a slight abuse of terminology, as to be true projectors the matrices must be idempotent (that 
is p2 = F) for which they need an extra scalar factor of a half. 
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U/'(x-/2)1V(x-IL) 	 Uf'(x)iiJ(x) 

U,(x)1li(x+) 

Figure 6.2: One dimension of the grid for the delta term, showing sites (boxed), links 

(where the link matrices are grouped with the site on their left), the contributions to 

zMif(x) (in bold arrows) and part of the contribution to Aiji(x+ j) (dashed) 

6.2.2.1.3 SU(3) matrices The eight U e C3 < 3  matrices used at each site (two per 

direction) are elements of the fundamental representation of the matrix group SU (3), 

and as such the inverse of each matrix is its adjoint. Each matrix is associated with 

a link between sites, with one per link. To give them an index, the link matrices are 

grouped with one of the sites that they link, with four matrices per site. Hence the 

U(x), where It e 1 .. .4, are grouped with site lJJ(x). This is what gives rise to the 

indices used in equation 6.3 - the U,L(x) are conceptually grouped with the current 

site and the U(x - j) are all grouped with different neighbouring sites. When cal-

culating the contribution to a site W(x) from its neighbours, the value (x ± ) will 

be multiplied by the link matrix or its inverse (which is just its Hermitian transpose), 

depending on which site the matrix is grouped with. This is illustrated in Figure 6.2 

- the contribution of site x + p. to the new, value at site x will be multiplied by U(x), 

whereas the contribution of site x - p. will be multiplied by U 1  (x - JL) = 	(x 

The entire collection of link matrices is called a gauge field. 

Bringing all this information together, the delta term for a given site at index x can 

be written as follows: 

(6.3) 

where the projectors have been 
V 
 written in terms of their expressions and enclosed in 

parentheses (note that this is not supposed to indicate indexing). The Hermitian trans-

pose of the delta term can be calculated simply by reversing the sign of both expres-

sions involving the y-matrices, which amounts to changing the projector. 
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6.2.2.2 The unpreconditioned Wilson-Dirac operator 

With the description of the delta term, the unpreconditioned Wilson-Dirac operator can 

be written as follows: 

(I — iczX) 
	

(6.4) 

where K e C is some scalar parameter, and the sites on the grid are arranged in the 

natural ordering. Applying the stencil at each site iiJ(x)  involves calculating the new 

value lJJnew  (x) = 111(x) - KAIIJ(x). 

6.3 Domain Implementation 

The interface between the implementation of the iterative solver algorithms and the 

implementation of the systems of linear equations that they deal with is captured by a 

handful of categories - the valuation, ground field, vector and operator categories. The 

Laplacian-like systems require scalar domains, described below, and vector and oper-

ator domains, described in the following section. The Wilson-Dirac system uses the 

same scalar domains as the simple operators, but has an extra layer between them and 

the vector/operator domains, being the subdomains representing projectors, link ma-

trices and the objects at the sites upon which they act. These are discussed in Sections 

6.3.3 and 6.3.5 respectively. 

The descriptions of the domains include an outline of how they and operations on 

them are ultimately represented in FOAM code after the standard Aldor compiler opti-

misations. This prepares the way for a discussion of optimisation issues in subsequent 

chapters. 

6.3.1 The scalar domains 

The scalar domains are simple number types that are close to the abstract machine - 

that is, they are usually represented in FOAM by a small number of abstract machine 

words, and the operations on them are either directly FOAM instructions or a small 
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sequence thereof. The scalar types that are larger than a single word have to be wrapped 

in records (or "boxed") to satisfy the uniform representation rule (see Section 2.2.3). 

It is not possible to destructively update elements of these domains - i.e. they are 

pure. For the boxed domains, each operation if taken in isolation must allocate a new 

box to hold its result. 

6.3.1.1 Singlelnteger 

This is the domain of signed single word integers, taken directly from axilib. The 

domain representation is directly the built-in single word integer from the definition of 

the language. Most of the mathematical operations on this type can be implemented 

with single abstract machine instructions. The domain belongs to the axilib category 

Ring, and both the following two domains are typed as a Nodule over this one. 

6.3.1.2 DoubleFloat 

This domain is originally from axilib, and has been extended with several categories 

and their corresponding operations. For instance, it now satisfies OrderedField, the 

specific named category that is used for valuations, and also FieldWithValuation 

where the valuation domain is simply itself. The representation of the domain is a 

record with a single member, a double precision float type from the definition of the 

language that is two words large. The majority of the operations on elements of the 

domain involve abstract machine instructions for handling the boxing and unboxing of 

the actual values, with a single instruction to perform the mathematical operation. 

6.3.1.3 ComplexDoubleFloat 

The axilib library has a parameterised domain for complex numbers, where the pa-

rameter is the type of the component elements. This has been used as the basis for 

an extended non-parameterised version based on the double float domain described 

above, and typed as a FieldWithValuation over it. The domain representation is a 

record of two further records that each contain a double precision float. It should be 

noted that there is no complex number type built into the definition of the language, 
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and consequently no- complex number type supported by the abstract machine. As 

such, in addition to the boxing/unboxing steps, most operations on this type involve 

some small number of the elementary abstract machine operations on double precision 

floats. 

6.3.2 The simple stencil operator and vector domains 

The simple vector (and associated operator) domains are built from the scalar domains 

and a small number of core Aldor domains, which correspond more-or-less directly 

with FOAM counterparts. Operations on the members are either fairly simple straight-

line programs or loops (after generator miming, emerging and control flow restructur-

ing, see Section 2.3. 1) to act on the elements of an array. 

6.3.2.1 Vector3D 

This domain is typed in the most general way possible as a NormedlnnerproductSpace 

so that it can be used with any of the Krylov spaces. Its representation in Aldor is a 

simple packed array of complex double floats using PrimitiveArray. Operations on 

the members of the domain are defined by iterating operations on individual vector 

elements in a simple one-dimensional loop. At the source level, the loop is specified as 

a for loop controlled by a generator over a clOsed integer segment that gives the suc-

cessive values of a loop variable used to index into the array (see Figure 2.2 in Chapter 

2 for a simple example of these loops over a vector of double floats). This translates 

directly to flat arrays and simple loops in FOAM after the standard optimisations. Each 

complex element of the vector is represented by two double precision values, so the 

FOAM array has twice as many elements as the vector it represents. 

Operations that produce a vector are pure, in that they do not destructively update 

their arguments or alias them in any way. The vector to hold the result of the operation 

is allocated and then written to element-by-element using the destructive update, and so 

strictly speaking the internals of an operation are not pure. The Hermitian inner product 

is implemented by conjugating its second argument, and the norm is implemented by 

calculating the valuation of the scalar produced by taking the inner product of a vector 

with itself. 



6.3. Domain implementation 
	

101 

6.3.2.2 SimpleOperator3D 

The function to calculate the application of an operator to a vector (using equation 6.1) 

is associated with the domain, and the only variation between elements of the type is 

the value of the scale constant K. Hence, the domain representation is just a record con-

taming said constant. The domain is typed with LinearOperatorOnlnnerProduct-

Space as its associated vectors are treated as an inner product space, and hence it can 

be used with any Krylov space except HermitianOperatorKrylovSpace. 

The choice of how to code the mapping of a flat array to the three-dimensional 

grid, the calculation of the stencil, and especially what happens at the boundaries of 

the domain is not trivial. Section 6.4.1 discusses some of the trade-offs. The method 

employed here is to calculate the relevant flat indices for the neighbours of each point, 

the number of which is determined by the form of stencil, and store them in an offset 

table. This is done once at beginning of the program as soon as the grid dimensions are 

available, with the offset table being used for each application thereafter. The relevant 

mapping from three-dimensional index to flat index is hard coded within the function 

that calculates offsets; boundary conditions are periodic. To calculate the application 

of the operator, a one-dimensional for loop over a generator created from a closed 

integer segment is used to visit each point of the result vector in turn. The value for 

the point is calculated using the stencil expression 6.1 using elements from the source 

vector as directed by the offset table. 

6.3.2.3 SimpleOperator4D 

This domain (and its associated vector) is a trivial modification of the three-dimensional 

version described above, using a four dimensional rather than three-dimensional stencil 

and associated offset table. 

6.3.3 Subdomains for the Wilson-Dirac problem 

This section introduces the domains from which the Wilson-Dirac operator and vector 

are constructed. They are the colour vector, 4-spinor and SU(3) domains, the projector 

package, and the complex double float domain detailed earlier. The ColourVector 
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and Sp±nor4 domains in combination define the C12  colour-spin vector values that 

constitute the grid sites. The SiJ3 domain represents elements of the gauge field (link 

matrices), and the Proj ector package represents the eight static parts of the delta term 

given by expression 6.2. 

6.3.4 Aggregate structures of subdomains 

Packed array operations supplied by the programmer for some element type can deal 

equally well with objects taken from domains that use arrays or records as their rep-

resentation, but records are of a known fixed size for the compiler and therefore can 

be acted on by the environment emerger. Failure to remove the heap allocation oth-

erwise needed when accessing objects from a packed array almost always has a large 

performance impact. 

The colour vector, 4-spinor and SU(3) matrix domains are all homogenous aggre-

gates of a simpler domain (complex scalars for the colour vector and SU(3) matrices, 

and colour vectors for the 4-spinor), and so the first choice of domain representation 

might be arrays. However, all of the subdomains, either directly or indirectly, are used 

at some point as the element type of an array. 

Because of this, the domain representations are written as (nested) Aldor records, 

and in practice these are always replaced with some collection of simple FOAM vari-

ables due to the action of the environment emerger. Using records rather than ar-

rays complicates access to individual elements. This may introduce overhead if the 

index of the element is not known statically by the compiler, such as accessing ele-

ments using an induction variable in a loop. By writing operations on the subdomains 

as straight line programs with fixed static offsets for element access, this problem is 

avoided through a combination of inlining, constant folding, and dead code elimina-

tion. The objects are small enough for this style to be natural, and consequently they 

can be thought of as "larger" cousins of the scalar domains. 

6.3.4.1 ColourVector 

The domain of colour vectors defines an InnerProductSpace of three-element vectors 

where the elements are members of the complex double float domain. The domain 
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representation is a record, and the linear space operations are implemented element-

wise in the expected way. 

6.3.4.2 Spinor4 

The 4-spinor domain defines a InnerProductSpace over the complex double float 

domain. The domain representation is a record of four elements of the colour vector 

domain, whose operations are used to implement the linear space operations of the 

4-spinor. 

The 4-spinor is structured in this way so that the Kronecker product decomposition 

of the operator can be exploited (see Section 6.2.2.1.1) , and the domain is not intended 

to represent a linear operator in its own right. The order of the composition of the 

domains has been chosen due to the order in which parts of the Kronecker product 

of the operator are applied, which in turn is determined by techniques to reduce the 

amount of computation (see Section 6.2.2.1.2). 

6.3.4.3 SU3 

The SU(3) matrix domain is a GroupAction on the colour vectors, with the group 

operation being matrix-matrix multiplication and the action being matrix-vector mul-

tiplication. The domain is conceptually made up of C3x3  matrices with elements taken 

from the complex double float domain, and uses a nine element record for its domain 

representation. The exported operations (e.g. matrix-vector multiplication) are imple-

mented in a simple element wise fashion. 

The domain is intended to represent the SU(3) matrix group, and as such any given 

element of the domain is implicitly unitary and has determinant equal to one, but these 

properties are not checked for statically or dynamically. As the matrices are unitary, 

the inverse of any given matrix is simply its adjoint. For greater efficiency, the default 

inverse multiply export \ is overridden with a function that calculates the result directly 

without creating the adjoint of the matrix. 
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gamma2pos(U : SU3, v 	Spinor4) : Spinor4 == 

uO := U * (s (0) + ± * s(3) ); 

ul := U * (s(1) + ± * s(2)); 

return [uO, ul, (j) * ul, (±) * uO] 

garnma2neg(U 	SU3, v 	Spinor4) : Spinor4 == 

uO := U \ (s (0) - j * s(3)); 

ul := U \ (s(1) - j * s(2)); 

return [uO, ul, j * ul, ± * uO] 

Figure 6.3: Two of the eight functions from the Proj ector package, representing U(I—

y2)V and U' (I+y2)v  respectively. 

6.3.4.4 Projector 

The projector domain is a package of eight functions used to capture the part of the 

delta term involving the gamma matrices and the associated tricks. The functions do 

not represent their gamma matrices concretely, but encode how to apply them in order 

to take advantage of their sparse nature. The package is typed with its own special 

purpose anonymous category. 

The functions are defined on the second linear space, that is they map 4-spinor ob-

jects to 4-spinor objects. However, the action of a projector function actually represents 

applying the Kronecker product of the relevant projector and an SU(3) matrix, and this 

is reflected in the functions taking as arguments an element of the SU(3) domain as 

well as the 4-spinor being acted on. See Figure 6.3 for some example code. 

This arrangement allows us to reduce the amount of work in applying the SU(3) 

matrix (see Section 6.2.2.1.2) without having to have an awkward explicit type for a 

"projected" 4-spinor consisting of the two linearly independent components and the 

linear factors. 
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6.3.5 The Wilson-Dirac Operator and Vector Domains 

6.3.5.1 SpinorField. 

The spinor field domain represents vectors of 4-spinor objects, and is very similar to 

the simple 4D vector. The domain representation in Aldor is a packed array of 4-spinor 

objects, which translates to a flat array of double floats in FOAM, where each 4-spinor 

object corresponds to 24 elements of the array. The linear space operations for the 

spinor field are again implemented as simple one-dimensional loops, using the linear 

space operations exported by the 4-spinor domain. 

6.3.5.2 NaturallyOrderedWilsoniJiracOperator 

Elements of the Wilson-Dirac operator domain are represented by a record of a scale 

constant (i.e. i, similarly to the simple operator domains, and a packed array of SU(3) 

matrix objects with four matrices per site (i.e. for every spinor field element), which 

translates to a flat array of double floats in FOAM with 72 elements per site. The do-

main is typed using LinearoperatorWithDual. Consequently, no dynamic tests are 

needed to know which of the normal or adjoint applications to use for a given matrix-

vector multiplication, but the domain can only be used with BiorthogonalKrylovSpace. 

A member of the Wilson-Dirac operator domain is applied in a similar manner to 

the simple operators. In addition to fetching elements of the source vector to use with 

the delta term, the relevant SU(3) matrices must be fetched from the gauge field. The 

index of the set of gauge matrices for the positive directions is just that of the current 

site, but the offset table must be used to get the relevant indices of the four matrices in 

the negative directions. 

The delta term is implemented in a straightforward manner using the functions 

from the projector domain, and the stencil term is very simply constructed using it. The 

elements of the operator domain all use the same function to calculate their application 

to a vector, and differ only in the values of the scale constant and the gauge field. 

A specialised function to directly apply the adjoint of an operator follows the same 

approach but uses a slightly different delta term. 
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6.4 Design Issues 

6.4.1 Boundary conditions and indexing 

Currently, elements for the stencil are fetched based on entries in an offset table holding 

the linearised addresses of the neighbours of a given site. Ultimately, the code was 

written in this way to allow a more equal comparison against codes written in other 

languages using the same mechanism to do the same job (see the assembly and C 

controls in Chapter 10). An alternative might be to write the stencil as a three/four 

dimensional loop over a vector, making use of a three/four dimensional index function 

that incorporates the boundary conditions of the grid. A brief discussion of some of 

the issues is given below. 

The direct advantage of the alternative method is that no extra storage is needed for 

the offset table, with the extra cache/register pressure that it brings. The disadvantage 

is that the offsets must be calculated for each element, in each iteration of the loop, for 

every application. In addition, boundary conditions mean that the indexing functions 

must contain conditional branches to cope with accesses at the edges of the grid (and 

thus possible branch penalties), and, in the case of periodic boundary conditions, cal-

culating the offsets for boundary points involves expensive modulo arithmetic. A less 

obvious cost associated with the use of these complicated multi-dimensional indexing 

functions is the greatly increased code size after miming multiple instances of them 

(and the associated instruction cache/TLB misses) as compared to using the offset ta-

ble. Experiments with a prototype of the Wilson-Dirac operator using four dimensional 

loops suggest that it has significantly worse performance than the version using offset 

tables, even if iteration over the internal points and boundary points is separated to 

avoid run-time tests and code blowup for the loop over the internal points (in fact, the 

separated version performed worse than the non-separated one). 

Although the use of an offset table is probably more efficient in most cases, using 

multi-dimensional loops and index functions is possibly more elegant in terms of pre-

sentation. One issue related to this is that an offset table obscures what may otherwise 

be statically determinable data dependencies and data reference patterns by making 

the required information part of a dynamic data structure. This may prevent a compiler 
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from reordering the iterations of the loop (e.g. tiling the application of the stencil, 

discussed in Appendix B) or being able to fuse it with some other operations. 

6.5 Summary 

This chapter has given a description of three sparse linear systems (characterised by 

their operators - 3D, 4D simple operators and unpreconditioned Wilson Dirac opera-

tor) and how they have been implemented in Aldor to be used with the solver frame-

work described in Chapter 5. Together they provide a means of encoding a linear 

system (of certain restricted types) to be solved and constructing a numerical algo-

rithm from the framework that can be used to solve it. This chapter also discussed how 

the sparsity structure of the systems can be captured, and how this is reflected in the 

implementation. Overall, the emphasis in the description has been on describing the 

sections of code that are important to a discussion of the optimising transformations 

developed in Chapters 7 and 8. 

The simple 3D and 4D systems are built from relatively simple domains of scalars, 

a vector domain and an operator domain. The vector domain is represented by an array 

of scalars, and its associated operations are calculated using loops over the arrays. The 

operator domain captures how to apply a stencil to a vector, and has a very simple rep-

resentation as there is little difference between individual operators (a scale constant). 

The unpreconditioned Wilson-Dirac system is similar, but has an extra layer of com-

plexity. A series of subdomains is constructed from the scalar domains (represented 

implicitly or explicitly as small matrices), and the vector and operator domains are 

built from and manipulate these subdomain objects. 



Chapter 7 

Optimisation across Components 

This chapter describes the building blocks of the optimising compiler transformations 

developed in Chapter 8, and motivates the overall approach with reference to the lan-

guage (Chapter 2) and the modular components structure of the application (Chapters 

5 and 6). The chapter begins by giving some basic formalisms that are fundamentally 

necessary to further discussions. The objects under consideration are statements, basic 

blocks, loops, arrays and dependencies between statements. 

After laying these foundations, the transformations called loop fusion and array 

contraction are introduced, followed by a description of their impact on the perfor-

mance of programs on cache based computer architectures with reference to temporal 

locality. These code transformations are the basic constituents of collective loop fu-

sion and array contraction. After introducing them, a motivating discussion is given 

that details why these cross-component optimisations rather than other transforma-

tions are applied in the context of the global loop structure under consideration. The 

main point is that each loop taken in isolation from the original program has little or 

no exploitable reuse (intraloop locality), and so loops must be considered collectively 

(for interloop locality) to improve cache performance. This discussion is separate to 

considerations of the specificity of optimisations to the combination of language and 

application mentioned in the introduction. 
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7.1 Basic Terminology and Formalisms 

7.1.1 Loops 

In this part of the thesis, a loop refers to an iterative program construct where a finite 

number of different iterations are described by distinct values of a single induction 

or loop variable (i.e. a restricted for loop). A loop variable has a lower bound, an 

upper bound and a stride, with the lower bound and the stride both equal to one unless 

otherwise stated, and strides always positive (to simplify the discussion). Induction 

variables are only ever updated by the loop construct to which they belong, and the 

set of values that a variable takes is referred to as its range. The section of code 

executed on each iteration is called the loop body. A loop of this type may be explicitly 

represented in the constructs of the language in question (e.g. Fortran), or implicitly 

built up from smaller operations such as conditional tests, branching, and arithmetic 

on the loop induction variable (e.g. FOAM). For some example pseudocode loops, see 

Figure 7.1. 

Loops can be nested inside one another. For a loop nested inside another loop (an 

inner loop), an iteration can be described by the value of the induction variable for the 

loop itself and the value of the induction variables for any enclosing (outer) loops if the 

extra context is necessary. Each tuple of values that the describing induction variables 

can take for a given iteration is called a loop index, and the set of all loop index tuples 

for a given loop is known as its iteration space. 

A perfect loop nest is one where only the innermost loop has a body that contains 

anything other than another loop. The innermost loop body (or simply the body) may 

only contain forward branches to targets within itself, meaning that the iteration space 

of the loop nest fully describes how the loop is executed as there can be no early exit 

by jumping out of the loop body and no implicit loops within it. Perfect loop nests of 

depth n are referred to as n dimensional loops, with an n dimensional iteration space. 

The n dimensions of the iteration space are ordered by the nesting of their associated 

loops, with the first dimension corresponding to the outermost loop, so a given iteration 

space implicitly gives a complete ordering on the execution of its iterations. If the 

lower bound, upper bound and stride are constant for all n induction variables in an n 
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dimensional loop, the iteration space is said to be rectangular. 

7.1.2 Dependencies between loop iterations 

Although operations in a program are normally presented with a strict ordering, there 

is usually only an implicit partial order constraint between them, called the program 

dependencies. Alterations to the program that do not violate these dependencies main-

tain the program's original semantics (provided we are willing to ignore problems with 

the expected order of exceptions, and possible problems arising from the reordering of 

semi-associative operations such as floatingpoint arithmetic). Program dependencies 

come in two types, control dependencies and data dependencies. Here we are con-

cerned with the latter type. 

Loop bodies usually contain some number of operations to read and write data (see 

Section 7.1.3). These operations can induce data dependencies and thus an ordering 

constraint between separate iterations of an individual loop (loop-carried dependen-

cies) or between two iterations taken from different loops. A loop with no loop-carried 

dependencies is termed frilly parallel, as it would be legal to execute all its iterations 

concurrently. A loop-carried dependence can be described by a distance vector formed 

by subtracting the index tuple of the source iteration from the dependent (target) iter-

ation. Given the assumption of all strides being positive, a distance vector must be 

lexicographically non-negative (i.e. all its entries must be > 0) to be legal'. The set 

of distance vectors for a given iteration space is usually summarised (e.g. as a de-

pendency vector [651), based on the idea that a loop should only be altered if all its 

distance vectors meet some criterion. 

7.1.3 Statements and their dependencies 

A loop body or basic block consists of a sequence of statements in some language. De-

pendencies between loop iterations arise due to the dependencies of statements in the 

loop body associated with each iteration. In the case of loop-carried dependencies the 

'A lexicographically negative distance vector implies that the source of the dependence is executed 
after the target, which is clearly nonsense 
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same loop body is associated with both the source and target iterations of the depen-

dencies, and, for iterations taken from separate loops, the dependencies link different 

loop bodies. 

For the purposes of this discussion we assume that a statement may read an arbi-

trary number of source operands, but we restrict the ability to write values to a special 

type called write statements, with each write statement writing one and only one named 

destination (i.e. the generation of intermediate results from expressions does not count 

as a write). A destination (or location) being written to is either a scalar variable, or an 

indexed entry in an array of scalar variables. A source operand is similar but may also 

be a constant. The value used to index into an array is the result of an index expression. 

All variables, including arrays, are assumed to be non-overlapping. 

Arrays can be accessed using multi-dimensional index functions. A scalar variable 

always refers to the same location, but the array element referred to by a statement in 

a loop body can rely on the values of the induction variables for that iteration. Be-

cause a single statement may do something different on each loop iteration, it makes 

sense to talk about the n-th statement of the m-th loop iteration (of loop i) even though 

syntactically the loop body is the same for each iteration. 

Data dependencies can be further classified as true, anti-, or output dependencies. 

True dependencies flow from a write to a read from the same location, antidependen-

cies flow from a read to a write to the same location, and output dependencies flow 

from a write to a subsequent write to the same location2. Dependencies between state-

ments taken from different iterations of a loop can depend on the order in which the 

loop iterations will be executed as determined by the original source program. 

Statement dependencies for statements in loops have associated distance vectors, 

defined analogously to distance vectors between loop iterations. For this purpose, basic 

blocks can be treated as loops with a single iteration. The union of statement depen-

dencies comprises the dependencies for that iteration (of the loop body) as a whole. 

Dependencies from a statement in the loop body to a subsequent statement in the same 

body in the same loop iteration are said to have zero dependence distance (i.e. their 

2A notional input dependency can be thought of as existing between two reads to the same location 
(with no intervening writes), but the name is misleading as it does not really constitute a dependency - 
i.e. it does not constrain the ordering of statements in the program, and therefore is undirected 
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distance vector equals the zero vector) and do not induce a dependency between loop 

iterations. To summarise, statement dependencies give rise to loop iteration (and basic 

block) dependencies. The caption of Figure 7.1 gives a summary of the distance vec-

tors within and between loop iterations in the example, and points out the statements 

that give rise to them. 

7.1.4 Dependence testing 

The discovery of dependencies between statements is not covered in this thesis (see 

Section 9.1.3). 

7.1.5 Temporal Locality 

In the following discussion of performance, it is assumed that the programs are to be 

run on a cache based architecture, which provides lower latency and higher bandwidth 

for references to the same address with "good enough" temporal locality (provided 

a structural conflict has not occurred). Temporal locality is taken to be the number 

of distinct addresses referenced in between a pair of references to the same address, 

where good enough locality (i.e. a small enough number of addresses) for a given level 

of the cache hierarchy means that the second reference will be a hit there. 

7.2 Loop Fusion and Array Contraction 

7.2.1 Loop Fusion 

Perfect loop nests with the same dimension and iteration space are said to be con-

formable. As long as their respective bodies obey certain legality constraints, two 

conformable loops can be fused into a single loop whose body consists of the two 

bodies of the original loops executed consecutively. See Figure 7.1. 

The standard concept of distance vectors can be extended to describe dependencies 

between iterations from separate but conformable loops. The distance vector is that 

which would result from fusing the two loops and treating the dependence as if it 

were calculated from the new aggregate loop. Note that a lexicographically negative 
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for iinl..lOdo 

a[i] := 

done 

for iin 1..lOdo 

b[i] := alpha * a[i]; 

r:=r+b[i]; 

done 

for  in LAO do 

a[i] := 

b[i] := alpha * a[i]; 

r:=r+b[i]; 

done 

for iinl..lOdo 

a:= 

b[i] := alpha * a; 

r:= r + b[i]; 

done 

a) 	 I 	 b) 	 I 	c) 

Figure 7.1: A pseudocode example of loop fusion and array contraction. a) Pseudocode 

for the original pair of loops - array a has no other use than in the second loop, but b 

is referred to after this section of code. The loops are conformable, and the distance 

vector for the use of a on each iteration in the second loop is 0 (and hence they can 

be legally fused). The second loop also has a constant loop-carried dependence of 

distance 1 for each iteration by way of example, but this does not affect the legality of 

fusion. b) The result ofapplying loop fusion. c) The result of subsequently applying 

array contraction - a is now a single scalar rather than an array. Array b cannot be 

contracted as it is still live. 

distance vector is no longer nonsensical as all the iterations of the loop with the source 

dependency will be executed before any iterations of the loop containing the target. 

The existence of any negative distance vectors between the iterations of two loops 

indicates that the loops cannot be legally directly fused as the resulting aggregate will 

have illegal dependencies. 

7.2.2 Array contraction 

If the only references to a given array occur in a single loop body, each access is to the 

same element, the first access in the body to the array is a write, and the dependencies 

associated with all the statements that access the array have zero dependence distance, 

then the array itself can be replaced by a single element. This code transformation 
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is known as (complete 3) array contraction (see Figure 7.1). It can be applied irre-

spective of loop and array dimension provided the necessary dependence information 

is available, and generalises easily to loop bodies that access multiple array elements 

provided all accesses obey the conditions given above (for consecutive elements this 

can be thought of as accessing one single object in an array of objects, where each 

object consists of multiple array elements). Loop fusion is an enabling transformation 

for array contraction, as fusing loops together may increase the opportunities to apply 

it. Indeed, the original motivation for studying collective loop fusion was to enable 

array contraction [37]. 

7.2.3 Effects of loop fusion and array contraction 

Loop fusion and array contraction can be used to improve the memory subsystem 

performance of a program. Array contraction reduces the number of addresses touched 

within a loop (assuming nonoverlapping arrays). This improves the temporal locality 

of references either side of the loop, and can reduce the cost of saves to the temporary 

by replacing a sequence of isolated references with a sequence of references to the 

same address resulting in less memory traffic, lower latency for write hits etc. In 

certain cases it may be possible to keep the contracted scalar in the register file, thus 

completely eliminating read/write latency and the need to issue load/store instructions 

(and any associated bandwidth limitations). Array contraction on its own is highly 

unlikely to degrade the performance of a program. 

Loop fusion can affect locality in a number of ways. A fusion step that does not 

enable array contraction but merges two loops that are connected. by an input depen-

dence will improve the locality of the pairs of reads to the common array. Any fusion 

of two loops that enables contraction must improve the locality of the creation and 

subsequent use of each element of the temporary array by bringing them into the same 

loop iteration. Loop fusion can also degrade the temporal locality of some pairs of 

references by changing the order and/or proximity of the remaining unfused loops. 

Loop fusion also has secondary performance effects. Reducing the number of loops 

3Note that the subject of partial array contraction for loop carried dependencies of a known fixed 
distance is not considered in this thesis. 
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in a program reduces the overhead for execution. Combining loop bodies together 

may have a negative impact, such as instruction cache misses if the loop body gets too 

large, and increased structural conflicts in the data cache - e.g. fusing together loops 

that manipulate distinct arrays will increase the amount of live data in the cache for a 

given loop iteration, which increases the likelihood of data being mapped to the same 

cache line and exceeding the associativity limits. Similarly, loop fusion can increase 

register pressure and require the introduction of the spill code. In theory, a large enough 

increase in live data could lead to capacity misses in the first level of cache, but this is 

unlikely and is certainly not the case for the programs and architectures considered in 

this thesis. Finally, the more complex data access patterns of fused loops may interfere 

with hardware data prefetching mechanisms where they exist, leading to a trade-off of 

higher latency for the loads in a fused loop versus the savings from more cache hits. 

7.3 Temporal Locality, Aldor and Iterative Solvers 

Given the general goal of improving memory subsystem performance by targeting tem-

poral locality through high-level transformations, the following section summarises 

why loop fusion and array contraction were chosen for investigation in the context of 

the iterative solver programs developed in this thesis. Any discussion of temporal lo-

cality assumes some concrete program (rather than just an abstract algorithm) and a 

machine on which it is run. Hence, this section brings together the algorithms, the 

implementations of the domains that they manipulate, the way they are compiled to-

gether, the definition of the abstract machine and a mapping from code on the abstract 

machine to an executable on a real architecture. 

The first task is to characterise the temporal locality of the original programs as 

specified and compiled, and the second task is to consider how to improve it. 

7.3.1 Temporal locality of original programs 

The source level programs derived from the algorithmic framework consist of high 

level algorithms composed of operations on the elements of a handful of lower do-

mains (operators, vectors and scalars) expressed as separate functions. The operations 
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exported by these lower domains are implemented using simple operations and the 

higher-order generator construct to iterate over an integer segment and the associ-

ated array elements, which are ultimately optimised to simple scalar manipulations or 

loops over arrays in FOAM, as discussed in Chapter 6. Assuming "large" vectors, the 

vast majority of memory references occur during operations involving them, so parts 

of the program that do not involve loops over entire vectors (represented as arrays) in 

some way are ignored as being inconsequential to the temporal locality characteristics 

and performance of a program. 

The compiler compiles source into FOAM code with far fewer function calls by 

means of aggressive inlining and emerging. Inlining and emerging on their own do 

not alter the overall loop structure of the program, so even after compilation to FOAM 

the loops in the program that manipulate vectors can be directly associated with a high 

level operation, although there is no longer a 1-1 correspondence as miming creates 

multiple copies of the original functions. The native C compiler used for the experi-

ments in Chapter 10 does nothing further by way of miming or loop restructuring, and 

it is reasonable to suggest that this would be the case for most native compilers as the 

functions that it gets given are already large after aggressive inlining by the Aldor com-

piler, and it is unlikely to have the necessary alias information for restructuring given 

the nature of the generated C code. In brief, the compiler chain as it stands does not 

alter the temporal locality of data references as defined by the original source program. 

7.3.2 Finding opportunities to improve temporal locality 

To find opportunities to improve the performance of a program that manipulates large 

arrays, it is usual to start by examining each individual loop nests in isolation (an 

approach stated as being the norm in [61]; see [12] for a survey of various loop trans-

formations), and considering how to reorder its iterations to improve locality. 

7.3.2.1 Intraloop locality 

The vector operations equate to three types of loop over arrays: 

. Simple loop - this reads two arrays and writes a single array. There are no 
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dependencies between separate loop iterations. 

Reduction loop - this reads two arrays and writes a single scalar. Each iteration 

depends on the previous one (i.e. there is a constant true dependence of distance 

one). 

Operator application loop - this reads the offset table (an array), a source array, 

and optionally some representation of the operator (e.g. a gauge field array), 

and writes a single array. There are no dependencies between separate loop 

iterations, but potential dependence information is carried in the offset array, 

which is created at run-time. 

The only operation with any intraloop reuse that can be targeted is the operator 

application (see Appendix B), where the stencil access pattern means that separate 

iterations may access the same part of the source vector. The maximum extra reuse 

available is only two references per site, comprised of two references per element 

of the source vector, and additionally for the Wilson problem some sort of access to 

elements of the operator representation. For the simple operator problem, exploiting 

this reuse is equivalent to saving approximately two loads of a complete vector, and for 

the Wilson problem a saving of approximately three (one quarter of a load of a gauge 

field is saved, which is slightly less than one complete load of a vector). 

7.3.2.2 Interloop locality within a recurrence 

To find larger amounts of reuse, it is necessary to consider temporal locality between 

loops. For the sake of argument, consider the situation where an individual vector is 

larger than the cache. Fusing together a producer and a consumer of an array gives one 

factor of reuse and subsequently applying array contraction gives a further factor of 

re-use for the writes the to the contracted temporary (see Section 7.2.3). Consequently, 

for both the simple operator and Wilson problems, fusing and contracting only two 

producer/consumer pairs gives more reuse than tiling the operator application. This 

leads naturally to a consideration of how best to fuse and contract the collection of 

loops (all of which are of the three types given above) within the update function for 

a given recurrence, which is where the majority of loops occur after inlining - for an 
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example of how a collection of loops arises, see the Krylov space recurrence in Section 

5.2.2. In the experimental problem (see Chapter 10), it is possible to fuse many more 

than two producer/consumer pairs within recurrences using the approach to collective 

loop fusion outlined in Chapter 8. 

7.3.2.3 Interloop locality between recurrences 

Similarly to the existence of temporal locality of data across loops within a recurrence, 

there is also some degree of locality across loops from different recurrences, given that 

an iteration of a recurrence will produce data that is consumed by another. Again, this 

leads to a consideration of how this locality can be exploited. Unlike locality within 

a recurrence however, there is much less to be gained, and the separation of different 

recurrences using higher order language features that are not immediately removed by 

the compiler poses a significant barrier to analysis and transformation. 

While this problem could theoretically be attacked with some kind of higher order 

control flow analysis, the problems of developing such a complex analysis framework 

and the significantly lower amount of locality to be mined means that the priority must 

be dealing with interloop locality within recurrences. 

7.3.3 The impact of. modularity 

Ultimately, the lack of intraloop locality and the need for interloop optimisations is 

a result of the modular style of the programs, which is strongly encouraged by the 

language itself. Consequently, the general idea of cross-component optimisation, of 

which loop fusion is one exemplar, will be important for Aldor and languages like it. 

This modularity also affects the dependence structure of the programs. Firstly, 

there is a simple dependence structure between pairs of loops. A dependence vector 

from a simple loop or operator application to any other loop (except operator applica-

tions) has distance zero; a dependence from a reduction to any other loop has distance 

n (where n is the dimension of the loops); and a dependence from a simple loop, to 

an operator application has some fixed set of positive and negative distance vectors 

determined by the access pattern of the stencil for non-boundary iterations (periodic 

boundary conditions give some other fixed set of distance vectors depending on which 
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boundaries the point is located). Secondly, there is a direct correspondence between 

statement dependencies and aggregated loop iteration dependencies. This means that 

dealing with dependencies at the loop iteration level and using the simple test for the 

legality of loop fusion does not introduce unnecessary conservativeness. 

7.34 Applicability of proposed method 

It is much less usual to find programs with such simple loop structure when they have 

been written in standard third-generation languages, such as C or Fortran, as they en-

courage programmers to construct their own arbitrarily complex loops by hand on a 

per expression basis4. This may limit the direct applicability of collective loop fusion 

as presented in Chapter 8 by artificially imposing the dependence restrictions of one 

subsection of the loop body on the whole, and by restricting the choices of the compiler 

by forcibly combining some statements in loops. It also reduces the expected benefit 

as some degree of fusion is already incorporated into programs. It is interesting to 

note however, that although standard languages do not support modularity in the same 

way as Aldor, one important study shows that general interloop locality is nonetheless 

important in the context of a set of well-known imperative benchmarks and ought to be 

targeted by compiler optimisations [61]. This suggests that there is no intrinsic cost in 

encouraging modularity, as not having it (and by implication expecting the program-

mer to arrange loops by hand) is at best a partial solution to the optimisation problem, 

under the reasonable assumption that techniques to handle the interloop problem in tra-

ditional programming languages should easily extend to properly modular codes such 

as Aldor programs. 

Most work on collective loop fusion has been done with these languages in mind, 

leading some authors to suggest that full loop distribution and/or scalar expansion 

ought to be used as a pre-processing pass before collective loop fusion to get around 

these problems [51]. The collective loop fusion/contraction problem derived from pro-

grams written in Aldor and other more traditional languages may consequently end up 

looking very similar, and so the work on loop fusion in this thesis is not restricted to 

this type of language. 

4With the partial exception of languages with array statement constructs such as Fortran 90. 
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7.4 Summary 

This chapter has introduced the basic transformations called loop fusion and array 

contraction, explained how they can be applied as cross-component optimisations to 

programs derived from the iterative solver framework from Chapter 5, and outlined 

why optimisation across components is crucial for these types of programs when con-

sidering temporal locality for cache based architectures. Fusing together two loops 

with a cross-loop dependence of distance 0 brings into the same iteration references 

to the same address that would otherwise be separated by many loop iterations (and 

associated accesses to different addresses). This makes the address far more likely to 

be cache resident for the second use. Subsequent array contraction changes a series 

of references to different addresses in different loop iterations into references to the 

same address thus reducing the number of addresses touched. This eliminates the pos-

sible compulsory misses for all but the first iteration, and improves temporal locality 

of addresses touched either side of the fused loop. 

These optimisations are important for programs derived from the solver framework 

(and after standard optimisations) as there is virtually no locality of reference within 

any individual loop, but large amounts across different loops that can be exploited 

by fusion/contraction - thus we need to consider collective loop fusion (and array 

contraction). Although such simple loops are less common in traditional imperative 

languages, interloop locality is still considered to be crucial, and techniques such as 

loop distribution and scalar expansion applied to programs in those languages may 

result in a similar optimisation problem to the one considered here. 



Chapter 8 

Iterative Collective Loop Fusion 

This chapter introduces the standard formalisms for a compiler approach to tackling 

the collective loop fusion (and array contraction) problem. This is followed by the 

theory and algorithms behind our novel approach to collective loop fusion, which, 

in Chapter 10, is applied to the programs derived from the algorithmic framework 

developed earlier in the thesis. The description builds on the formalisms and basic 

transformations introduced in Chapter 7. 

8.1 Loop Dependence Graph 

A loop dependence graph (LDG) describes a program section that consists of basic 

blocks and perfectly nested loops with no branching allowed (ignoring the branch-

ing implicit in the loop constructs themselves and that permitted in their bodies), for 

which a set of data dependence relationships is available that constitutes a safe (but 

possibly conservative) approximation of those possible in the actual program. Nodes 

in the graph represent the loops of the program section, and a directed edge exists be-

tween two nodes if the target is data dependent on the source in some way. The lack 

of branching in the program section ensures that its LDG is acyclic. Basic blocks are 

not explicitly represented in the LDG, but the dependencies connecting them to each 

other and to loops must be known, and the dependencies between loops that they in-

duce must be present. Hence an edge exists in the graph if the target loop is directly 
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for iinl..lOdo 

a[i] : 

done 

for iinl..lOdo 

reduction := reduction + a[i]; 

b[i] := 

done 

alpha := reduction; 
I 	Key 

for iinl..lOdo 	
loop node 

I 	 > 	true dependence 
c[i] := a[i] + b[i]; 	fusion preventing 

done 	 true dependence 

for iin 1..10do 

d[i] := alpha * c[i]; 

done 

a) 	 I 	 b) 

Figure 8.1: An example LDG. a) Pseudocode for the original program section, with four 

loops and one basic block. Only array d is live out of the program section (i.e. read at 

some later point), so all the other arrays can potentially be contracted. The loops are 

all conformable, and all distance vectors are 0, except for the loop-carried dependence 

in the second loop for a reduction variable, the dependence of the basic block on said 

reduction variable, and the dependence of the fourth loop on the basic block. b) The 

corresponding loop dependence graph. Nodes in the graph are labelled with the name 

of the array that they write to. 
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data dependent on the source loop, or if there exists some chain of data dependencies 

through basic blocks. 

The LDG is used in this thesis to reason about loop fusion for the program section 

that it represents. The nodes representing two conformable loops are possible candi-

dates to be fused (subject to further constraints detailed in the next section) if there 

is no dependency between them, or if they are directly dependent and all the distance 

vectors from the source to the target are non-negative. In the latter case an edge in 

the LDG representing such a dependency is labelled as collapsible, and concomitantly 

an edge representing a collection containing negative distance vectors, a dependency 

between non-conformable loops, or a dependency carried by a chain of basic blocks is 

non-collapsible. A dependency path (or just path) in the LDG is a set of edges describ-

ing, a path from a source node to a destination node through the graph following the 

directed edges. A path is collapsible if all its edges are collapsible, and non-collapsible 

otherwise. 

An example of a program section and associated LDG is given in Figure 8.1. 

8.2 Collective Loop Fusion and Fusion Partitions 

Loop fusion can be considered as a transformation on the LDG. Data dependencies are 

transitive, and so two nodes may be legally fused if there is no path between them in 

the LDG, or if there exist only collapsible paths of length one. When two loops are 

fused together, their corresponding nodes are removed from the graph and replaced 

with a node representing the aggregated loop. Any edges that were incident at either of 

the original two nodes are now incident at the new node, except those edges that linked 

the two original nodes which are removed from the graph entirely. 

If there is a legal opportunity, loop fusion can be applied again to the new LDG, and 

the process can be continued arbitrarily until at some point we run out of opportunities 

to apply the transformation. Repeatedly applying loop fusion in this way is called 

collective loop fusion, and can be treated as finding a legal fusion partition for the 

LDG. A fusion partition is a partitioning of the nodes of the LDG into disjoint sets 

(partitions or clusters) where the nodes in each set will be fused together to produce 
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a,b,cl 	 a,b 

a  

Key 

El 	cluster (partition) node 

- represents a fused loop 

_______ 	true dependence 

induced by use of an array 

_ 	fusion preventing true dependence 

A 	 B 	 induced by reduction variable 

Figure 8.2: The graphs of two possible fusion partitions of the LDG from Figure 8.1. 

Nodes in the graph (clusters) are labelled with the letters representing the loop nodes 

within that cluster. Both fusion partitions are the same size (2), but permit different 

amounts of array contraction - partition A allows two arrays to be contracted (a and b), 

whereas B allows only one (c). This corresponds (inversely) to the inter-cluster array 

dependency edges in the graphs of the fusion partitions, which are labelled with the 

non-contracted array they correspond to - one for partition A and two for B. 

the final transformed code. Note that the partitions themselves are not distinguished, 

so permuting any cluster labels (if they exist) for a fusion partition does not give a new 

fusion partition. 

The size of a fusion partition is the number of non-empty partitions it has (empty 

partitions are not allowed). A fusion partition itself can be represented by a graph 

where nodes are clusters, and there is an edge between cluster nodes for every edge 

that exists between the loop nodes that belong to the respective partitions in the LDG. 

For a fusion partition to be legal, it must be possible to fuse together all the nodes 

within a given partition, and the graph of the fusion partition must be acyclic. The first 

condition is satisfied by the absence of non-collapsible edges within the cluster, as the 

method of fusion does not re-order the iterations of the loops involved and so fusion is 

associative. In the context of fusion partitions, non-collapsible edges are also known as 

fusion preventing  edges. An example of two fusion partitions of the same size derived 

from the LDG in Figure 8.1 is.given in Figure 8.2. 

A given LDG has a lower bound on the size of its legal fusion partitions determined 

by the dependency path with the most fusion preventing edges in it, and trivially an 

upper bound determined by the number of nodes (loops are never split). The number 
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of legal fusion partitions of a given size for an LDG can be very large, usually reaching 

a maximum somewhere in the middle of the size range and becoming smaller at either 

end. 

8.2.1 Array contraction 

Finding a fusion partition equates to applying loop fusion to a program section. Subse-

quent (complete) contraction will be legal for an array in the transformed code if all the 

dependencies associated with it appear in the same partition, and they all have distance 

zero. This is equivalent to there being no edges corresponding to a dependence on that 

array existing between clusters in the graph of the fusion partition. 

Applying array contraction to the two fusion partitions of the same size. given in 

Figure 8.2 gives different contraction amounts. Conversely, different size partitions 

with the same amount of contraction are also possible. The simplest example is two 

separate nodes unconnected by any dependencies at all - fusing them together gives a 

partition of size one rather than two, but does not enable any contraction. 

A fusion partition on an LDG can be labelled with a pair of numbers that denote 

the size of the fusion partition and the amount of array contraction that it permits. For 

a large enough LDG there will be multiple fusion partitions with the same (contraction 

amount, partition size) label, and these can be grouped together to give (contraction 

amount, partition size) sets (see Chapter 10). 

8.3 The Motivation for Search 

The previous sections introduced the necessary concepts for the legality of collective 

loop fusion and array contraction. A given LDG is likely to have many legal fusion 

partitions though', so there needs to be some method for choosing one from the space 

of possible options based on the intention of improving some characteristic of the 

program. The two characteristics most studied are total space requirements [32] and 

'The exact number depends on the form of the loop dependence graph, and cannot be given in a 
formula. A loose upper bound (which may include many illegal configurations) is given in Section 
8.4.1. 
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program performance. Our focus here is on the latter. 

Section 7.2.3 introduced the effects of loop fusion and array contraction on per-

formance. The choice of fusion partition on an LDG usually involves a trade-off in 

locality for different pairs of references, and so the best choice depends on how the lo-

cality characteristics of the program interact with the architecture on which it is being 

run. These include considerations such as cache size, miss penalty and bandwidth lim-

its, for multiple levels of cache. Hence, choosing a good fusion partition with respect 

to temporal locality is architecture dependent and far from trivial. The following sec-

tions present previous work on choosing a fusion partition to try and maximise benefit, 

the technique of iterative optimisation, and the approach taken in this thesis. 

8.3.1 Standard model based approach 

Loop fusion has been used in many contexts to improve temporal locality or to enable 

other loop transformations (see [60] for one example). In this instance however we 

are interested in approaches that operate on some graph model, which represents a 

collection of loops in the program and the expected benefit of fusing any given subset. 

This collective loop fusion can be contrasted with a purely ad hoc case-by-case method 

of fusion with no consideration of global effects and choices. Associated with the 

model is a cost function that ranks the possible transformations that can be applied to 

it. 

The simplest example of this is preferring more fusion over less (e.g. [51] in the 

context of typed loop fusion), with all fusion partitions of the same size being equal. 

A more sophisticated (and more common) approach is to add to the LDG a set of 

edges and associated weights that model the expected benefit of fusing the loops that 

they connect, with the aim of finding a fusion partition with the minimum total cost, 

calculated as the sum of the weights on the non-collapsed edges between partitions. 

There have been numerous minor variations on the second approach, depending on the 

intended purpose of loop fusion. Some examples include transformations specifically 

for array contraction [37, 56], and a technique which minimises memory usage and 

simultaneously improves locality whilst limiting the Size of any fused loop that is pro-

duced (i.e. avoiding "over fusing") [80]. The limit exists to avoid introducing register 
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spills or associativity conflicts. One adaptation replaced edges in the cost graph with 

hyper edges to better capture re-use between array operands being read [29].  There 

have also been several composite approaches, such as a technique that prevents the 

creation of loops with parallelisation-preventing loop-carried dependencies [51], and a 

related approach that uses adjustable weights which can be altered to favour fusion for 

parallelism or fusion for locality [79]. 

The abstract formulation of various problems has been shown to be at least NP-hard 

[29, 26, 27]. Consequently, most work on loop fusion is based on heuristic algorithms 

to find some approximation to the optimum model answer. Approaches have included 

various greedy algorithms [56, 52], and algorithms based on max-flow mm-cut heuris-

tics [37, 29, 80]. 

As well as finding the best fusion partition, some authors have considered how to 

deal with less well-behaved loops using techniques such as preprocessing with peel-

ing/shifting etc [80, 27].  This can be related to other approaches using much more 

general formalisms, such as affine transformations - for example see [90] for locality 

optimisations and [57] which combines array contraction and tiling. However, these 

last two works are more ad hoc in that they are not collective - they do not attempt to 

find the optimal fusion partition with respect to some model, and in addition neither of 

them attempts to apply search. 

8.3.2 Iterative optimisation 

Current implementations of computer architectures contain a wide variety of complex 

structures [47], with variations including cache architecture (with differences in miss 

policy, replacement policy, capacity, line size, and set-associativity at multiple levels of 

cache etc), register renaming, and speculation (including differences in re-order buffer 

size, load/store buffer size, speculative loads and hardware instruction/data prefetch-

ing mechanisms etc). Consequently, they are very difficult to model accurately, and 

any idealisation of the hardware is likely to miss a large number of subtle interactions 

that can affect how a program executes - for one example of this see [68]. To combat 

this problem, the approach of iterative optimisation [16] treats the goal of finding good 

transformations as a search problem, with the space of possible transformations as the 
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space to be searched through, and the cost function as the empirical cost of executing 

the program that results from a candidate transformation. Typically the target of opti-

misation is single processor performance, using either high-level loop transformations 

[53, 36] or standard scalar optimisations [6], but combinations of performance and 

code size [88],  energy consumption for DSPs [39] and parallel performance [66] have 

also received attention. Here we are interested in single processor performance. 

Because it employs empirical testing, iterative optimisation can only be completely 

accurately applied in situations where the choice of transformations is the only variable 

that affects program execution across different runs (although some degree of dynamic 

difference between search runs and the final use can be accommodated [36]).  This 

rules out many programs that have strongly dynamic behaviour, but tends to be suited 

to numerical scientific and technical codes that manipulate large data structures (usu-

ally arrays) using simple, repetitive and entirely deterministic control flow. In addition, 

the process of iterative optimisation is very compute intensive, requiring each candi-

date to be compiled and executed. Consequently, conducting any significant amount of 

search will require large amounts of time and/or resources, and is only suitable when 

the cost can be recouped. Happily, this again fits with numerical scientific and tech-

nical codes that are typically very compute intensive and run for long periods of time. 

Another area where iterative optimisation has been profitably used is compiling for 

DSP applications, where again control flow is largely static [13] and the cost of search 

is amortised over many products. 

8.3.3 Previous approaches and this work 

There are two major weaknesses in previous model based fusion/contraction work. 

The first is the use in some approaches of overly simple search strategies to find some 

approximation to the solution of the idealised NP-hard problem (e.g. greedy search). 

As pointed out in [62], the majority of LDGs encountered in realistic programs will 

be small, and hence there is no real reason to emphasise the efficiency of the search 

so much at the cost of the quality of the approximation. Indeed, the authors generated 

a number of artificially large LDG problems and showed that, for their particular cost 

function, the problems could be exactly solved using a commercial integer linear pro- 
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gramniing package in a small number of seconds. The second problem is that although 

all the approaches discussed in Section 8.3.1 target slightly different optimisations, it 

can be assumed that their ultimate goal is to get the best performance for a given LDG, 

but no authors have adequately explored the possible differences between their ide-

alised problem and the implementation details of actual hardware, choosing instead to 

largely ignore the trade-offs outlined in Section 7.2.3. 

One illustration of this is that, for a given LDG, there may be many fusion parti-

tions all ranked equal according to some abstract cost function (e.g. all with the same 

amount of contraction). However, for any method in the literature there is not usually 

any indication of how any particular one is chosen, or any indication of how the actual 

quality of the equally ranked LDGs varies in practice. Another illustration is the lack 

of any indication as to how fusion for locality and fusion for contraction may con-

flict, how the trade-off should be managed to get the best performance, and crucially 

how this may vary depending on the form of the loops and the actual machine under 

consideration. 

The optimisation strategy adopted in this thesis is to apply the approach of iterative 

optimisation to finding good fusion partitions for array contraction on a single proces-

sor machine, with respect to performance. The responsibility for ensuring that a code 

is control flow deterministic, and the ultimate control of how much time to spend on 

optimisation, is left to the user. Using search simultaneously tackles both the problems 

with previous work, in that no unnecessary shortcuts are taken in searching for a so-

lution, and some attempt is made to take into account the full baroque complexity of 

modem machines. 

Almost all previous approaches to iterative optimisation deal exclusively with search 

spaces that are the Cartesian product of some number of options (e.g. array padding 

and tiling and unrolling factors for a loop [531), with a notable exception being [66] 

which searches through a space including legal and illegal transformations. This work 

similarly deals with search spaces that are themselves nontrivial to generate (see Sec-

tion 8.4.1). Also, loop fusion is rarely included in iterative optimisation work, with 

[66, 391 being two largely isolated examples. In the first of these papers loop fusion is 

implicitly included in the action of generated space-time mappings, but appears to be 
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applied in an ad hoc fashion with no mention of choosing fusion partitions etc (in fact, 

fusion is almost not mentioned at all) - the primary focus of the paper is on finding 

parallelisation transformations with good performance. In the second, a small experi-

ment on four loops with no fusion preventing dependencies finds that fusing all loops 

together gives the best reduction in energy use, but the main emphasis is on tiling and 

unrolling. Again, there is no mention of fusion partitions. In both papers there is no 

mention at all of array contraction. 

One specific piece of work that is interesting with respect to this thesis due to 

connections at different levels is [69], which considers a superset of the optimisa-

tions treated here, applies them to a similar problem domain (linear solvers and stencil 

codes), and uses empirical search to guide optimisation. Although it includes partial 

array contraction, the technique seems to be largely aimed at improving locality using 

fusion and a subsequent specialised version of tiling directed at the important loops de-

rived from two algorithms, red-black Gauss-Seidel relaxation and multigrid (applied 

to stencils similar to those in Chapter 6).  It does not fit into the previous overview 

as it does not construct and manipulate a graph based model of the expected benefit 

of fusion and contraction, and only applies them to a collection of loops in an ad hoc 

fashion. Contraction appears to be rarely applied in practice. Search over the space of 

parameters is only outlined. From the sparse details, it would appear that the search 

space is of the standard Cartesian kind, including yes/no options for contraction, some 

control over the degree of interleaving (fusion) of loops, and the space of tile shapes 

and sizes - there is no mention of trying different fusion partitions. Search is con-

ducted using simulated annealing, with no obvious motivation for why it was chosen 

over a simpler technique. 

8.4 Iterative Collective Loop Fusion 

The rest of this chapter describes the novel contribution of this thesis to the field of 

compiler optimisations. To perform iterative loop fusion exhaustively wie simply re-

quire a method of enumerating all the legal fusion partitions for a given LDG, and the 

means to empirically test their run-times. The size of the search space, that is the num- 
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her of legal fusion partitions, almost always makes testing each point in it unfeasible, 

so there must be some method of selecting a subset of the search space to test. For 

example, under the assumption that each empirical test takes about five to ten minutes 

to enumerate, compile, run and collect results from, and that a week is the longest 

that we are willing to spend searching, we are limited to testing roughly one to two 

thousand separate fusion partitions when, even for small problems, the total number of 

legal fusion partitions is likely to run into many thousands. 

Because generating computer representations of legal fusion partitions is much 

cheaper than testing them, the general idea is to generate the set of legal fusion parti-

tions, cut the set down to an acceptable size using some criteria, and then empirically 

test for the best one. However, although generating legal fusion partitions is cheap, it 

is not free, and the total space of them is too large to even generate in practice. This 

stems from the general case of the problem having at least NP complexity, which is 

the motivation for using heuristics to approximate answers (to the idealised problem) 

in previous work. Consequently it is necessary to come up with some method of gen-

erating a manageable amount of the search space. 

8.4.1 Generating legal fusion partitions 

Although clusters within a fusion partition are not distinguished, it is useful to label 

them with identification (ID) numbers to reason about the enumeration of the fusion 

partitions for an LDG. Clusters are numbered from 1 to n giving a total ordering on the 

loops produced from a fusion partition. 

The naive approach to generating fusion partitions of size n is to assign each node 

to a partition i with 1 <i < n. The vast majority of these configurations will be illegal 

though, so they will have to be filtered for legality and, more importantly, a large 

number will have to be generated and tested to find each legal point which makes this 

a bad option if many legal points are to be generated. The total space (of legal and 

illegal fusion partitions) has size: 

t±.'( i)(j_jy 

p=li=Oj=O 	j 
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for an LDG with n nodes, where the sum over p denotes the sum over all sizes of fusion 

partition. This space grows too rapidly with n to be able to generate and test all points, 

even if the legality test is very cheap. 

An alternative is to find some algorithmic way of enumerating only legal fusion 

partitions. The approach in this thesis is based on node numbering, which is described 

below, followed by the enumeration algorithm. 

8.4.1.1 Node numbering and range finding 

Given a loop dependence graph, a target size of fusion partition, and a set of nodes 

with pre-assigned partition numbers, the forward node numbering procedure provides 

a test to determine the lower bound on the ID number of the partition to which any 

given (unassigned) node may belong. 

Two directly connected nodes joined by at least one fusion preventing edge must 

belong to different partitions. Consequently, given any path from a source to a sink, 

the nodes along the path can be numbered to show the earliest partition that they may 

belong to (as determined by this path) by grouping the nodes into sets separated by 

fusion preventing edges and numbering the sets (and their elements) along the path 

consecutively, counting upward from one. If a set contains a pre-assigned node with 

a value different from the parent set, then the set is split into two with the second set 

starting with the pre-assigned node and labelled with its value. Numbering along the 

path continues as before counting upward from the new value. It is assumed that pre-

assigned nodes always have a legal value - i.e. a value greater than or equal to the 

original parent set to which they belong. 

If this procedure is repeated for all paths through the graph with each node being 

assigned the maximum value over all paths, then the final label Pmin  will denote the 

earliest possible partition that the node may belong to in this LDG with these pre-

assigned nodes. 

A pseudocode for the algorithm is provided in Figure 8.3. The description makes 

use of several simple utility functions: 

NODEsO: returns the set of vertices from an aggregate data structure (either an 

LDG or a set of (node, part itionlD) pairs). 
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NuMBERN0DEsF0RwARDs(preassigned, LDG) 

Description: Labels each unassigned node in the LDG with the earliest 

partition that it may belong to. 

I 
Input: 

LDG, a loop dependence graph 

preassigned, a set of (node, partitioniD) pairs 

Output: An integer label for each node as a set of (node, partitionlD) 

pairs 

sources := {(v, partitioniD = 1) Vv E SOURCES(LDG) \ 

NODES (preassigned) } 

assigned := preassigned U sources 

unassigned := {v I v E NODES(LDG) \ NODES(assigned) } 

repeat 

choose v E unassigned s.t. PARENTS(V) fl unassigned = 

rank 0 

foreach p EPARENTS(V) 

if Ve E JOINS(v, p), FUSIONPREVENTING?(e) = false 

rank, := RANK(p, assigned) 

else 

rank, 	1+ RANK(p, assigned) 

rank MAXIMUM( { rank }) 

assigned := assigned U {(v,rank)} 

unassigned := unassigned \ {v} 

until unassigned = 0 

return assigned \ preassigned 

Figure 8.3: Forward node numbering algorithm 
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. SOURCESQ: returns the set of root (source) vertices in the LDG. 

. PARENTSQ: returns the parents of a vertex (in the current LDG). 

. J0INsQ: returns the set of edges that joins two vertices (in the current LDG). 

. FUSIONPREVENTING?Q: returns a Boolean depending on whether the edge is 

collapsible not. 

RANKO: returns the partition ID (integer) of a vertex from a set of (node, partitionlD) 
pairs. 

. MAXIMUMO: returns the maximum from a set of integers. 

The algorithm does not actually enumerate all the paths through the LDG. Instead it 

successively selects nodes from the unassigned set only after all their parents have been 

processed. The method of choosing the node is left unspecified, but at the very least 

a naive approach could be implemented that would check each node for readiness at 

most 0(n2) times in the worst-case scenario2. 

Given a maximum number of partitions, the same numbering can be repeated in 

reverse working from sinks to sources, with each sink labelled with the maximum 

partition number from which one is subtracted each time a fusion preventing edge is 

passed. This gives NUMB ERNODESBACKWARDSO, the result of which denotes the 

latest possible partition that a node may belong to, P,. Taken together, the two 

procedures provide the range of partition IDs to which any unassigned node v may 

belong Pv,min  ID, < Pv,mwc  , and also the size of the range for that node PVniax - 
Pv,min + 1. Any node with a range of sizes less than or equal to zero indicates that 

no legal fusion partitions of this size exist for this LDG. This information is provided 

by the RANGES() function, which essentially just calls NUMB ERN ODESFORWARDSQ 

and NUMBERNODESBACKWARDSQ. 

An example of the results produced by applying the RANGESQ function to a small 

example problem is given in Figure 8.4. The labelling of the graph thus produced 

2A similar algorithm to NUMBERNODESFORWARDSQ , without the notion of accommodating pre-
assigned nodes, can be found in an early paper on the subject [37].  However, the authors do not apply the 
same technique in reverse, as described here, and do not attempt to enumerate different fusion partitions. 
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4)  

loop node 

collapsible edge from 

any type of dependence 

fusion preventing edge from 

any type of dependence 

Figure 8.4: An example showing the results produced by RANGESO when calculating 

possible partitionings into four clusters for a graph containing both collapsible and fusion 

preventing edges. Each node is labelled with a (minimum partition number, maximum 

partition number) tuple, with numbers in bold indicating that the value results from the 

node being either a source or a sink in the graph. 

shows for each node the earliest (minimum number) and latest (maximum number) 

cluster that it may belong to for the case of four partitions. Note that this is not the 

minimum number of partitions possible. 

8.4.1.2 Enumeration algorithm 

The enumeration algorithm successively generates the fusion partitions of a given size 

for an LDG. It starts by finding the ranges of the nodes in the LDG, then choosing 

a (node, range) pair. For the chosen node, the algorithm chooses a value in its range, 

treats the (node, value) pair as a pre-assigned node, and recursively calls itself. At each 

step, a check is made to ensure that either all partitions already have> 1 nodes, or that 

each empty partition is still part of the range of an unassigned node. This prevents 

generation of fusion partitions with empty clusters, and prunes the enumeration search 

when it can be shown that any assignment from the current ranges must leave at least 

one partition empty. 

For subsequent calls, a different value from the range of the last assigned node is 

chosen, until the range has been covered indicating that this recursive step is complete. 

Note that the ranges of unassigned nodes may change before each recursive function 

call, and that any unassigned node can be selected for enumeration within a call. 

The enumeration algorithm is given in Figure 8.5. As well as the recursive call, 

it uses two other functions; RANGEsQ, explained in the previous section, and Fu- 
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ENUMERATEFUSIONPARTITIONS(LDG, size, fixed) 

Description: Enumerates the fusion partitions of an LDG 
LDG, a loop dependence graph 

Input: 	size, the required size of fusion partition 

fixed, a set of (node, partitionlD) pairs 
Output: the set of fusion partitions of size size in LDG 

if N0DEs(LDG) \ NODES(fixed) = 0 then return FUSIONPARTITI0N(fixed) 

fps:=O 

ranges := RANGEs(LDG, size, fixed) 

if Vp e {1,... ,size} (v,p) E fixed V (v, rm jn , rm ) E ranges such that 

(rmin <p<r) 

choose (v, rankv,m jn, rankv,m ) from ranges 

for i := rankv,min  to rankv,m  

newFixed fixed U {(v, i)} 

fps := fpsU ENUMERATEFUSIONPARTITIONS(LDG, size, newFixed) 

return fps 

Figure 8.5: Fusion partition enumeration algorithm 
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SIONPARTITIONO, which makes a fusion partition data structure from a list of (node, 

partitionlD) pairs. In the current implementation there is no special criterion for 

choosing nodes to fix (they are taken in whatever order they are provided in by the 

function that calculates the ranges) or values from their ranges (currently they are taken 

sequentially, from bottom to top by the loop on line 6). 

An example of how enumeration works is given in Figure 8.6, based on some initial 

steps of the algorithm applied to the graph from Figure 8.4. The nodes that are fixed 

and the values they are fixed at have been chosen to keep the demonstration manage-

able rather having the two examples as strictly consecutive steps of the algorithm. 

8.4.1.3 Outline of correctness for enumeration algorithm 

A numbering of a graph giYes a set of ranges for its nodes. The Cartesian product 

of these ranges is the set of configurations for that numbering, and the set of config-

urations from the initial numbering of the graph the initial configurations. Note that 

not all configurations from, the initial set are necessarily legal - when the ranges of 

a parent and a child overlap it is possible to generate a configuration in which the 

parent is assigned a later partition number than the child, which clearly violates data 

dependencies. 

For all paths in the graph including a given node, the set of nodes that may appear 

before the given node on any of these paths is called its set of ancestors. Similarly, the 

set of nodes that may appear after it on any of these paths is called its set of descen-

dants. 

8.4.1.3.1 No double counting The enumeration procedure never generates the same 

configuration from the initial set twice. At a given recursive step (i.e. an invocation of 

ENUMERATEFUSIONPARTITIONSO) and for each value of the node under considera-

tion (i.e. in the range [rankv,min, rank,,]), assume that the corresponding recursive 

call to ENuMERATEFUSIONPARTITIONS() does not double count (i.e. a given recur-

sive invocation never assigns the same values to the remaining unassigned nodes twice 

thus resulting in duplicate full configurations). If this is true, the only way that the 

same partial configuration can be generated twice for the union of the current node 
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: 	(1,2) 	(1,3) 

(4,4) 

Key 

o 	loop node with ranges (mm, max) 

fixed loop node 

collapsible edge from 

any type of dependence 

fusion preventing edge from 

any type of dependence 

Figure 8.6: Two examples showing how ENUMERATEFUS ION PARTITIONS() proceeds. 

The initial graph in both cases (not shown, implicitly to the left of the figure) is the 

numbering taken from Figure 8.4. All graphs show the new numbering after the chosen 

node has been fixed, and in both final graphs (i.e. on the right) any further choice from 

the ranges of the unassigned nodes will produce a legal fusion partition (i.e. further calls 

to RANG ESO will not adjust the ranges on the graph). After all of these combinations 

have been enumerated by the procedure in the top example, the relevant recursive 

steps will complete and a new value of the second fixed node will be chosen from its 

previous range (e.g. 2) followed by renumbering. After enumerating all of the values in 

the range of the second fixed node (and the subsequent recursive steps for other nodes 

etc), that step will complete and the fixed value of the first node will change to 3, as in 

the first graph of the second example. Choosing a different node for the next recursive 

step and continuing the process through several of its values gives the second example. 
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and the remaining unassigned nodes is if this recursive step has already completed and 

another recursive step is being executed on this node. However, if this is the case, at 

least one value of the previously fixed nodes that are not members of the partial con-

figuration in question must have already changed, meaning that all full configurations 

generated that include these repeated partial configurations must be different. This is 

trivially true for the final node to be picked from a graph, and thus is true for all the 

other nodes inductively. This also shows why the order that the values from a range are 

used within any given recursive step is irrelevant so long as all the values are visited 

once and only once. 

The only further problem is the possibility of multiple full configurations mapping 

onto the same final program, but this can only occur When at least one fusion partition 

is empty, and this possibility is explicitly avoided. 

8.4.1.3.2 No illegal solutions Once a graph has been numbered, there must be at 

least one legal configuration for every value in the range of a given node. This can 

be achieved by assigning all ancestors of the node in question the minimum partition 

number in their respective ranges and all descendants the maximum - any value from 

the range of the node in question now gives a legal graph (provided we give the remain-

ing nodes that are neither ancestors nor descendants some sensible values). Hence, it 

is legal to pick any one node and fix it at any of the values in its range provided by the 

initial numbering. By the same argument, it must be possible to renumber the graph, 

and thus fixing a subsequent node at a value from the new ranges must permit at least 

one legal configuration. This applies inductively to all further choices of nodes to fix 

and subsequent renumberings, and consequently all full configurations generated in 

this way must be legal. 

8.4.1.3.3 No missed solutions The initial numbering of a graph is general, in that 

no legal solution can exist outside the ranges given. Similarly, any renumbering of a 

graph that includes fixed nodes must contain all legal solutions that can be generated 

from the ranges of the unassigned nodes. Consequently, selecting a given node from 

the initial graph, assigning it each of the values in its range, and renumbering for each 

value gives a collection of graphs that contain between them all legal solutions. The 
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same argument can be given inductively for each of the individual graphs with one 

node fixed at a given value, thus showing that all the legal solutions will be generated. 

8.4.2 Search heuristics and search space reduction 

Although generating legal fusion partitions is much cheaper than compiling and run-

fling their associated code, the total number of fusion partitions means that generating 

and storing all of them (i.e. the search space) before applying heuristics to, select the 

empirical tests would take far too much time and space. Consequently, there must be 

some way of selecting a region of the search space to generate. The choice of this 

region is governed by the characteristics of the points we hope to find, and therefore 

stems from the search heuristics themselves. 

There are two heuristics to select candidates to empirically test: 

More array contraction is likely to be better. 

A smaller size fusion partition (i.e. less clusters) is likely to better. 

Both heuristics stem from the goal of improving memory performance, as discussed in 

Section 7.2.3. 

The heuristics are not independent. Given some initial LDG in which all possible 

array contraction has been done, it is necessary to fuse some loops (i.e. choose a fusion 

partition) to uncover any more opportunities. Repeated application with a greedy ap-

proach does not necessarily apply though, in that the smallest possible fusion partition 

size may not contain the fusion partition with the most contracted arrays. Neverthe-

less, the assumption is made that, for a non-pathological LDG derived from an average 

program, more fusion and more contraction are likely to be related. This last assump-

tion allows us to use the second heuristic to guide the generation of points in the space 

with the assumption that those points generated will include (the majority of) the good 

points as determined by the first heuristic. 

The algorithm to generate legal fusion partitions allows us to specify the size of 

fusion partition, and quickly identifies sizes for which no fusion partition exists. This 

enables a user to (partially) prioritise the space based on fusion partition size and gener-

ate points starting with the smallest fusion partitions, moving upward in size if desired. 
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Although this gives no specified order in which to generate the elements of a particular 

size, in practice the number of legal fusion partitions gets much smaller toward each 

end of the size range, and this makes it far more likely that all the legal partitions of 

some small subrange at the bottom end of the size range can be generated (see Section 

10.2 for the generation of all fusion partitions of size 3-6 for a given LDG). 

As well as an order in which to generate the search space, there needs to be some 

halting criterion. This could either be expressed as an amount of space to search, 

such as a total number of points or a fusion partition size subrange, or a total amount 

of time to spend generating the search space. Currently it is expressed as a partition 

size subrange, the extents of which are provided by the user. In a similar vein, the 

subsequent use of heuristics to select points to test from those that have been generated 

must be formalised by giving some prioritisation when the number of generated points 

is larger than the number that can be tested. Currently, the limit on the number of 

points to test is given by the user. Although it is not used in the experiments in Chapter 

10, one method to use in such a case is suggested here for completeness. The points 

are ranked first by the number of arrays contracted (more is better) followed by the size 

of the fusion partition (smaller is better). Tie-breaks between equally ranked points are 

decided in favour of first-come first-served. 

8.4.3 Algorithm for generating test cases 

Using the enumerating procedure, the overall algorithm for generating cases to test 

empirically is given in Figure 8.7. 

The algorithm starts at small fusion partition sizes, and with each successive iter-

ation the size of fusion partitions that are considered increases by one. Note that the 

amount of search space to generate and the number of points to try are arguments, as 

discussed previously. The function SELECTBEST() orders the set total based on the 

search heuristics (e.g. contraction, then partition size, then first come-first served) and 

then cuts it down to the first maxCandidates elements. 
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GENERATETESTCASES (LDG, maxCandidates, minPartitions, maxPartitions) 

Description: Enumerates the fusion partitions of an LDG 

LDG, a loop dependence graph 

Input: 	
maxCandidates, the maximum number of fusion partitions to generate 

minPartitions, the minimum size of fusion partition to generate 

maxPartitions, the maximum size of fusion partition to generate 
Output: fusion partitions of LDG 

candidates:=O 

for i := ininPartitions to maxPartitions 

fps := ENUMERATEFUSIONPARTITIONS(LDG, i, 0) 

total := fps U candidates 

candidates := SELECTBEST(maxCandidates, total) 

return candidates 

Figure 8.7: Generation of test cases 

8.4.4 Code generation 

The only requirements on the code generated from the fusion partition of an LDG is 

that dependencies between partitions are respected inthe final ordering of the loops 

generated from them, and similarly that the dependencies within a partition are re-

spected in the ordering of the bodies from the original loops to form the body of the 

partition. The first requirement is automatically satisfied by ordering the loops ac-

cording to the partition label sequence, and the second can be satisfied by a simple 

topological sort. Currently all legal orderings within a given partition are considered 

equivalent, under the assumption that the instructions within the body of a partition 

loop will be rescheduled by some later compilation stage and possibly at run-time by 

dynamic execution on an out-of-order processor, with any differences in performance 

being slight. 

The placement of basic blocks must also be handled during code generation. The 

non-contractible dependence edges induced by the presence of basic blocks means that 
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it will always be possible to place them in at least one gap in between fusion partition 

loops. The simplest approach is to schedule them as early as possible when a choice 

exists. Data dependencies between basic blocks themselves must also be respected, 

and again this can be achieved by a topological sort of the basic block dependence 

graph. 

8.5 Summary 

This chapter has introduced a novel means of applying collective loop fusion and array 

contraction using iterative optimisation, which we call iterative collective loop fusion. 

The standard approaches to the problem attempt to transform the LDG based on simple 

metrics such as the resulting number of loops and the amount of array contraction pos-

sible, and implicitly rank all the possible different transformations that are equal under 

the metric as being equivalent. As such, the techniques produce one fusion partition 

candidate, and typically little or no consideration is made of the target architecture in 

the choice. Iterative collective loop fusion, on the other hand, employs a search over 

different fusion partitions and evaluates candidates using empirical measurement on an 

actual machine. This reflects the fact that the amount of contraction (or fusion partition 

size) is only a loose approximation to the fitness of an individual fusion partition can-

didate, and that the optimum choice is likely to be different for different architectures. 

The search problem is similar to standard iterative optimisation problems in that 

it is a very large space, but is dissimilar in that the space of transformations is not a 

simple Cartesian product of options and is itself nontrivial to generate. As a result, the 

generation of points in the transformation space is guided by the heuristic of starting 

with small fusion partitions, and the choice of points to empirically test from those 

generated is guided by the heuristic of prioritising those fusion partitions with the most 

array contraction and the smallest size. 

The following chapters will describe the prototype implementation of this tech-

nique (Chapter 9) and present results collected using it (Chapter 10). 



Chapter 9 

Prototype and LDG Construction 

In this thesis it is assumed that the LDG has already been constructed, both in the 

theoretical treatment and the prototype implementation used for experiments. This 

chapter contains a brief outline of how to recover the necessary information for Aldor, 

with reference to standard techniques and the specific idiosyncrasies of the language 

in question. After this there follows a description of the prototype used for the experi-

ments. 

91 LDG Recovery 

The information required to construct an LDG is as follows: 

. Control flow, to identify program sections from which an LDG can be con-

structed and the loops in that section. 

. Loop index variable ranges and strides, to be able to test for conformability. 

. All statement dependencies, to construct edges in the LDG. 

These are discussed briefly in the following sections, followed by the outline of an 

approach to cope with the problems introduced by envEnsure instructions. 

147 
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9.1.1 Control flow 

The dependence structure of the program is determined by which instructions may be 

executed, and therefore control flow must be known (or approximated) to recover it. 

In addition, it must be shown that control flow in a program section conforms to the 

requirements given in Chapter 8. 

9.1.1.1 Function calls 

Function calls within the program section of an LDG are not automatically illegal. 

However, without interprocedural analysis, we have to assume that a function call may 

depend on any variables visible to it, and similarly that it may write to any of those 

variables. This will not include unaliased objects pointed to by purely local (i.e. stack 

allocated) references unless they are passed as arguments, but will include anything 

that can potentially be aliased by any member of an environment, such as a lexically 

scoped reference. The possibility of reading/writing those visible variables may induce 

dependencies from/to loops in the parent function and alter variables such as those used 

for loop control (and may therefore affect conformability). Similarly, a second func-

tion call may be dependent on the first etc. Although some of this information may be 

recoverable with an interprocedural analysis, the problem is potentially severely ex-

acerbated by the functional aspects of the language, where the use of closures could 

necessitate a higher order control flow analysis to know which function is being called. 

Hence, due, to the associated difficulties with recovering potential data dependencies 

and side-effects, allowing any kind of function call within the program section of an 

LDG is unlikely to be feasible. In addition, the generation of code for a fusion parti-

tion requires the building of custom loops, so there is little point in leaving in place 

functions that contain loops. 

For these reasons it makes sense to position collective loop fusion after the gener-

ation of FOAM and the action of the mimer. This also has the benefit of recovering 

control flow by converting into simple loops the potentially complex generator con-

structs that would otherwise require a higher order analysis. Relying on the mimer to 

turn interprocedural problems into local ones (a general strategy adopted by the current 

compiler) is simple, but very sensitive to how miming is done. As such, issues with 
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the current miming strategy ought to be highlighted - see Section 9.3.2. 

9.1.1.2 Loop recovery 

One side-effect of this positioning of the transformations is that control flow gets low-

ered to the level of labels and branches due to the way in which FOAM is generated. 

As a result, information about loops will have to be recovered using some kind of 

structural analysis, along with some induction variable recognition (for both issues 

see [65]).  Induction variable recognition will be simple as the binding of induction 

variables to values in for constructs is very restricted. 

9.1.1.3 envEnsure instructions 

Unfortunately, requiring program sections to be free of function calls is not enough of a 

restriction on control flow to eliminate possible problems with dependencies and side-

effects. Any call to a function that reads from/writes to its lexical environment must 

be preceded by an envEnsure instruction (see Section 2.2.5), which still remains after 

the function has been inlined. The effect of an envEnsure instruction is at least as bad 

as a function call, and is probably even less amenable to analysis due to the possible 

triggering of multiple lazy objects at run-time. Requiring a program section to be 

free of envEnsure instructions is almost certainly too restrictive however, as they are 

frequently littered throughout generated FOAM code. In particular, given a domain 

whose functions contain loops that refer to an outer scope for the range and stride 

values (see Section 9.1.2), any program section created by inlining copies of these 

functions will contain an envEnsure before each loop due to the lexical references. 

A method of removing envEnsure instructions using a combination of static opti-

misations and run-time tests on domains is given in Section 9.1.4. 

9.1.2 Loop index variable ranges and strides 

Part of the legality test for loop fusion is the requirement of conformability. For this, 

the induction variable range and stride of both loops must be known to be equal. This 

is trivial in the case of statically known numeric constants, but requires analysis in 
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the case of symbolic constants/variables and involves the implementation of lexical 

scoping by the compiler. 

The first example we consider is that of two loops derived from two inlined func-

tions from the same domain, where the loop control values (i.e. range and stride) 

belong to the scope of the domain. This is a very natural style for certain domains 

where all functions iterate over a fixed size object, e.g. loops over a vector (see Figure 

2.2 for an example). Each loop in the inlined code is preceded by an envEnsure in-

struction, where the FOAM format (i.e. the type) of the environment being acted on is 

statically known in both cases, and therefore known to be the same. 

For non-parameterised domains there can only be one domain of a given type, and 

so it follows that the lexical references refer to .the same symbolic variable/constant. If 

the symbolic values are defined as constants then the loops must be conformable. If 

they are variables, some further analysis must be performed to show that they cannot 

change between uses (which again brings in control flow and the potential side-effects 

of functions and envEnsures). The case is more complex for parameterised domains, 

as there may be more than one domain object of the same type, and therefore the 

lexical references may refer to different symbolic constants/variables from different 

environments. One way around this is to insert dynamic checks in a similar fashion to 

those suggested for envEnsures in Section 9.1.4. 

Interestingly, it ought to be possible to check that two parameterised domains are in 

fact the same object, and simultaneously ensure more lexically scoped symbolic values 

are defined as constants, by using the existing type system. All that is required is to 

encourage users to write parameterised domains with domain scope values as param-

eters (unlike Figure 2.2). The compiler already knows how to type-check expressions 

using parameterised domains to ensure that the same domain is referred to, and the 

implementation of the type system implies that arguments to parameterised domains 

are effectively considered as constants within the domain. However, this information 

is not currently transmitted down to the level of FOAM code. 

The second example is similar to the first, but involves two loops taken one each 

from separate domains. An example of this would be a loop to apply a stencil from 

an operator domain, and a loop from a vector domain. In order for the loops to share 
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common lexical variables (for range, stride, etc) and thus reduce the problem to being 

essentially the same as the first example, they would now have to refer to variables at 

the level where the domains themselves are defined - i.e. outside of domain scope. 

This is a less natural style. Again though, the existing type system ought to be able 

to help. The type-checking mechanism can ensure that two different domains have the 

same value for some parameter, and it ought to be possible to transmit the equivalence - 

of two such symbolic constants to the level of FOAM. 

9.1.3 All statement dependencies 

Given a program section that conforms to the necessary restrictions and information 

on the loops it contains, the nodes of an LDG can be constructed. Discovering depen-

dencies between these nodes that result from their statements requires alias analysis 

for array references, and dependence testing (an introduction to these subjects can be 

found in [65], although not in the context of LDGs; the standard tool for dependence 

testing is the Omega test [70]). 

Alias analysis for Aldor ought to be simplified by the fact that the original op-

erations are pure (i.e. they each allocate a new array to hold their results), objects 

cannot overlap in memory and thus partial aliases are not possible. In addition, for the 

types of program section considered here (i.e. taken from a recurrence), any object 

that is written to must have been allocated in the function due to the use of pure func-

tions (assuming they have been inlined). Destructive update hints would also allow the 

compiler to immediately recycle objects, even within the same loop as they are read, 

as long as the relevant antidependencies are introduced into the LDG and not violated. 

Static dependence testing for the programs covered in this thesis would be very 

simple once the conformability of two loops is known (see Section 7.3.3 for a descrip-

tion of the dependence structure). 

9.1.4 Guarded sections 

This section describes an approach to dealing with the envEnsure instruction in gen-

erated FOAM by creating sections of code where they have been removed. 
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Domains are initialised at most once. Executing an envEnsurp instruction on a 

pointer to an environment that already exists does nothing. Consequently, it ought 

to be possible to eliminate a large number of them that can be shown statically (by 

means of data flow analysis) to be dominated by another envEnsure applied to the 

same environment. However, some may remain. In this instance, a section of code 

without envEnsure instructions can be created by duplicating it and splitting control 

flow such that either the original section of code or a new version with all envEnsure 

instructions removed is executed, depending on the status of all the environments that 

may be touched within the original section. If all the environments exist, the new 

section can safely be executed. This guarded section can be optimised more intensively 

than the original, as suggested above, as more precise information about the potential 

alteration of lexical environments is available. 

An arbitrary section of code can be guarded, provided all the environments that 

may be touched within it are available to be tested at the head of the section. This 

includes unknown closures that are available at the start of the section, but unknown 

closures produced by other functions or fetched from nonconstant lexical variables 

during the section may not be safe (although this could be attacked with further anal-

ysis). Guarded sections can contain arbitrary branching, but sections with no forward 

branches have the benefit that the unguarded version will be executed at most once. 

This dovetails neatly to the program section for an acyclic LDG, as discussed in Sec-

tion 8.1. 

9.2 Prototype Implementation 

The prototype implementation can be roughly split into two parts, the construction and 

manipulation of the loop dependence graph and its fusion partitions, and the final step 

of generating Aldor code for a fusion partition on the LDG. The whole prototype is 

written in Aldor. Note that construction of the LDG refers here simply to the building 

of the data structure using constructor functions rather than the analysis of a piece of 

code to recover its LDG. 
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9.2.1 LDG data structures 

The construction of the LDG and fusion partition data structures is done using several 

libraries, which can be separated into layers, each building on the next with further spe-

cialisation. The bottom layer is general utilities and data structures for undirected and 

directed graphs, such as nodes, (directed) edges etc, and algorithms such as depth first 

search, topological sorting etc. To this are added the extra components necessary for 

an LDG, namely labelled edges (collapsible, non-collapsible etc). The fusion partition 

data structure over LDGs is built on top of this, along with the associated algorithms 

such as node numbering and enumeration. The final layer concerns the specifics of 

code generation, and associates loop bodies with loop nodes, specifying the uses of 

arrays (which arrays are read and written, and whether the result is a temporary), that 

give rise to the data dependencies already represented in the LDG. It also contains the 

methods to generate code from a fusion partition, part of which is the discovery of 

contractible temporaries. 

9.2.2 Code generation 

Generating code for a given fusion partition on an LDG is relatively simple. Each loop 

node in the LDG is labelled with the code from its body in a simple abstract syntax 

tree (AST) form. The code represented by the AST consists of variables and opera-

tions from the scalar and/or Wilson subdomain level, with the body of the stencil term 

operation to calculate the result at a specified site also available as a single function so 

that it may be incorporated into an arbitrary loop. The partition nodes are processed in 

order based on their ID number, and code generation proceeds one partition at time. To 

generate the code for a given partition, the loop nodes in its sub-graph are topologically 

sorted, the loop control code is written, and the bodies of the loops in this partition are 

then written out (unparsed) in order to form one large composite body. 

There are several minor points of interest in code generation. The first is preallo-

cating space for uncontracted temporaries by adding it to the lexical environment of 

the function from which the LDG is taken. This means that temporaries are allocated 

once for the entire run of the program, rather than having to allocate space for them for 
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each call of the function with the associated garbage collection overhead. Secondly, 

any array that has been labelled as contracted is replaced with a scalar temporary in 

the AST before it is unparsed. The last is loop rerolling, which -applies to the Wilson 

problem. If a partition does not involve the Wilson stencil term in any way, then any 

operation involving spinor objects reduces to repeatedly applying a scalar operation to 

every element of the spinor object in turn. As such, a loop of dimension n over spinor 

objects can be replaced by a loop of dimension n x 12 over complex double floats. This 

transformation is intended to ease pressure on the instruction cache. 

The result of code generation is an Aldor source file consisting of loops and op-

erations from the scalar domain/Wilson subdomain stub files, and some small files 

associated with temporary preallocation. These source files are included into the body 

of a driver function in the original code using preprocessor directives, and the whole 

lot is compiled to form part of an executable. 

9.3 Issues with Prototype 

There are a handful of issues with the prototype. The following sections describe sev-

eral problems that arise due to limitations of the current compiler, and their workarounds. 

All workarounds exist within the language itself - thus they are mostly presentation or 

modularity issues. The final section describes a potential problem with iterative op-

timisation in the context of Aldor's run-time system and the prototype, and how it is 

taken into account. 

9.3.1 Constant folding 

Currently the Aldor compiler does not do constant folding for double precision float-

ingpoint values, despite the optimisation existing for single precision values. This 

causes a slight inefficiency in some functions from the Projector package, which 

can be circumvented by rewriting multiplication by a constant factor of i in terms of a 

special function that does the same thing. 
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9.3.2 Action of the mimer 

In the case of type parameters to a functor, the information required for miming func-

tions from the parameter type only becomes available once the functor is instantiated 

- i.e. when domains are assembled together. In theory, given the static information in 

a top-level file that plugs together elements from a library of parameterised domains, 

the compiler could instantiate all domains and produce flat codes by using aggressive 

miming (assuming a restricted use of the domain mechanism). There are a number of 

problems with this in practice though. 

The miming pass starts from the top-level in the call tree and expands child func-

tions (including parameterised domains) based on some criteria, and subsequently adds 

any new child functions to the pool of candidates considered for miming (see Section 

2.3.1.1). In practice, the mimer usually runs out of steam before reaching the bot-

tom level of the domain hierarchy, leaving the most basic domains to be handled via 

indirection. This is very inefficient. 

Because of these problems with the mimer, some driver domains have no param-

eters. This is a simplification of the original design of the domains (see Appendix 

D), where type parameters are profitably used in numerous places. These include the 

Krylov space recurrence algorithm that very naturally generalises over the vector, op-

erator and scalar domains that it manipulates. Avoiding type parameters means that 

the inliner has enough information to operate on each domain when it is compiled sep-

arately, in effect reversing the action of the mimer to bottom-up rather than top-down. 

The use of parameterisation (and dependent types) is still present in its original 

form in the category hierarchy however, as its presence there does not affect code 

generation. 

9.3.3 miming of generated code 

There is no direct control over the compiler at the source level, so the only means of 

controlling the extent of optimisations is through coarse settings on the command line 

interface that are coupled in some way to the algorithms used by the compiler. After 

the removal of domain parameters as described above, miming for the simple operator 
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codes is not generally a problem. However, even with the most aggressive settings 

the compiler sometimes has difficulty with the Wilson code, probably because the 

subdomain functions that are being inlined, and specifically the (body of the) stencil 

term itself, are much larger than their counterparts for the simple operator code. This 

problem manifests as a sensitivity to the command line settings, with a fine balance 

between not managing to fully inline all the stencil term and causing the compiler to 

crash or fail to terminate. 

The remedy employed for the Wilson problem is to compile a special version of 

the body of the stencil term separately with aggressive settings and allow it to be called 

as a function from within the generated loops. The stencil term body takes the source 

vector, the gauge field, kappa and the index tuple of the site as arguments, and returns 

the value of a 4-spinor object manually flattened into a collection of machine double 

floats. A normal 4-spinor object cannot be returned due to the associated allocation 

and garbage collection overheads which would otherwise swamp performance. This 

flattening simulates what the emerger would to if the stencil term were properly inlined. 

9.3.4 Emerging and unboxing hints 

The emerger usually works well and removes all allocations for loops with double float 

running sums (see Section 2.3.1.3) and general use of domains whose representation 

uses a tree of boxed objects with multiple levels, such as the 4-spinor domain (which 

is a record of colour vectors, which themselves are records of complex double floats, 

which in turn are records of double floats). 

The emerger does not however work fully for the accumulation of a complex double 

float scalar for an inner product, removing only one level of boxing. This leaves the 

allocation of two boxed double floats per iteration of the loop, which is enough to 

destroy the overall performance of the code. The remedy for complex double floats is 

to insert a custom function call, called an unboxing hint, into the source. The scalar 

used for the running sum is passed as an argument to the unboxing hint immediately 

after the inner product/norm loop, and the result becomes the value returned by the 

function. The unboxing hint itself does nothing except copy the contents of its boxed 

argument into two machine variables, and then copy the values from those variables 
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into a newly allocated complex double float which is then returned. The action of 

the inliner and emerger completely removes the hint function, but its existence in the 

source prompts the emerger to fully flatten the use of the running sum within the loop. 

9.3.5 Data cache associativity 

As mentioned in Section 7.2.3, loop fusion may increase the amount of live data for the 

body of a loop, thereby putting pressure on cache associativity. The form of the loops 

makes associativity problems unlikely as the amount of live data even for fused loops 

is very small and the caches on the architectures used have more associativity than 

simple direct mapping (see Section 10.3). However, it cannot be arbitrarily ruled out. 

The allocation of memory is entirely controlled by the run-time system, which means 

that potential associativity problems may occur "randomly" across runs of a binary, if 

the pattern of allocation is not deterministic. Checks for this behaviour were performed 

with several sets of tests which turned up little or no variation in the run-time, so this 

effect was considered not to be a problem (for the architectures concerned). 

A possible means of attacking this problem in future is to alter the run-time system 

to be aware of the mapping that the cache uses so that the element of nondeterminism is 

removed, and the allocation of objects to lines in the cache could be exposed to enable 

a compiler to arrange object allocation to its own ends (e.g. to improve performance 

by getting rid of associativity conflicts). 

9.4 Summary 

The first half of this chapter summarised techniques to recover an LDG from the 

FOAM code generated by the Aldor compiler for programs derived from the algorith-

mic framework developed in this thesis. They include recovering control flow that has 

been lowered to the level of labels and branches, identifying conformable loops in the 

case of symbolic loop bounds, and recovering data dependencies between statements 

(and loop iterations). Most of the analyses are straightforward and well represented 

in the literature, but the implementation of lexical scoping and unpredictable control 

flow introduced by run-time artefacts of the type system require some more careful 
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consideration. Full investigation of these issues is left as future work. 

The second half of the chapter introduced the prototype implementation (in Aldor) 

of iterative collective loop fusion used for the experiments detailed in Chapter 10. It 

consists of several libraries for the construction and manipulation of loop dependence 

graphs, and a system for generating Aldor source code to represent the resulting fusion 

partition. Due to the limitations of the current compiler, several simple modifications 

had to be made to the harness surrounding the generated code and the generated code 

itself. These included removing domain parameters and specialising a function due to 

problems with the mimer, and adding hints to circumvent a problem with the environ-

ment emerger. 



Chapter 10 

Experimental Results 

This chapter presents results collected using the iterative collective loop fusion algo-

rithm applied to an example taken from the application presented earlier in the thesis. 

The experiments are conducted on two machines with substantially different architec-

tures and with three different operators. The results are compared against alternative 

methods of collective loop fusion (greedy and max-flow mm-cut), and completely dif-

ferent methodologies such as using a different language (C/Fortran), and using assem-

bly kernels. 

The goals of the experimental work are as follows: 

To show that temporal locality is an important consideration for the style of 

programs discussed in this thesis, in that targeting it through loop fusion and 

array contraction provides significant speedups over the original programs. 

To show that iterative loop fusion gives better performance than the two other 

algorithms (under some assumptions about how they choose their solution). 

To motivate the use of search - to compensate for the under-specification of the 

choice of transformation using contraction amount and/or partition size in the 

standard model. This is based on showing that transformations that result in the 

same amount of contraction and/or partition size can give substantially different 

performance. 

To motivate the use of search to compensate for the distance of optimum solu- 
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tions on the standard model (using the metrics of fusion and contraction) from 

the actual problem. This is based on showing that the heuristics are a reasonable 

guide but do not automatically give the best transformations, and that the best 

transformation differs for changes in hardware and the sub components of the 

LDG (changing the operator does not change the LDG itself). 

To provide some approximate quantitative comparison against alternative method-

ologies; 

The results show significant benefits from our technique, which gives a speedup of 

up to 3.7 over the original code. In addition, it outperforms the alternative methods 

with a speedup of up to 1.41 over them, and is comparable to the alternative method-

ologies. 

10.1 Example LDG 

The example in this chapter is derived from the code for the general step of the two-

sided Krylov space update given in Figure 5.7. A decorated version of the associated 

LDG is presented in Figure 10.1. A number of changes have been made from the true 

LDG construct used for the experiments to make it more readable: 

The LDG is presented with the scalar basic blocks added rather than simply the 

edges resulting from dependencies carried by them. 

Dependencies to a pseudo-node called "exit" have been added to show when a 

value is still live at the end of the program section. This information is necessary 

to know if array contraction is possible, but it is not strictly speaking represented 

in the LDG as a node. 

The type of each loop node is identified. 

Input dependencies to data live-in to the program section have been added. 

Some redundant dependencies have been deleted to reduce clutter. 
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Table 10.1 Basic LDG properties 

property 	 value 

total number of loop nodes 	 18 

number of simple nodes 	 13 

number of reduction nodes 	 3 

number of operator application notes 	2 

total number of edges 24 

number of fusion preventing edges 4 

number of true dependencies 

(including fusion preventing) 21 

number of antidependencies 3 

number of output dependencies 0 

minimum number of partitions 	 3 

total number of array temporaries 	12 

maximum number of contracted 

arrays (as determined by search) 	10 

This LDG was constructed by hand for the purpose of the experiments, using the pro-

totype described in Section 9.2. The different types of loop node and the form of the 

actual dependencies between them are described in Section 7.3.2. In this instance, the 

fact that possible dependencies from a simple node to an operator application node are 

obscured by the use of a dynamic data structure (the offset table) is irrelevant, as the 

loops are not directly fusible even if the exact dependencies are known. 

Some information on the constructed LDG is given in Table 10.1 (note that the 

number of nodes and edges differs from Figure 10.1 as the scalar basic blocks and exit 

node do not exist in the actual LDG). 
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Table 10.2: Fusion partition information 

FP size no. legal time to enumerate no. FPs with n contracted arrays 

FPs (in minutes) 10 9 8 7 6 

3 80 <1 2 24 39 13 2 

4 3557 <1 4 174 960 1395 792 

5 63801 <4 2 366 4974 17066 22362 

6 633799 <57 0 307 10350 71951 178862 

10.2 Enumeration of Fusion Partitions 

The times taken to enumerate fusion partitions (FPs) of a particular size presented 

in Table 10.1 were recorded using a moderately loaded departmental compute server. 

They are intended as a rough guide as the implementation of the enumeration algo-

rithm itself is not particularly efficient, and the time taken to test individual partitions 

dominates the overall cost of the approach. 

Table 10.2 shows that the general method of starting with small fusion partition 

sizes is a good approach to the problem of enumerating and testing the points in the 

loop fusion/array contraction space. The (contraction amount, partition size) pair sets 

(see SectiOn 8.2. 1) in the bottom corner of the search space are of a reasonable size for 

this LDG and, from the points that were actually enumerated, it is possible to find some 

fusion partitions with the most contraction even with a very small amount of search in 

the very bottom corner of the space (i.e. partitions of size 3). Verifying the approach 

against the number of fusion partitions with maximum contraction in the whole space 

would be interesting but is almost certainly impossible due to its size, thus preventing 

a complete evaluation of the heuristics. 
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10.3 Evaluation Environment 

10.3.1 Machines 

The machines used for the experiments in this chapter were a 1 GHz Pentium 3 (Cop-

permine) and a 2.6 GHz Pentium 4 (Northwood). Both architectures have split level 

1 instruction/data caches and a unified level 2 cache, with 4-way set associativity in 

the level 1 data cache and 8-way set associativity in the unified level 2 cache. The 

Coppermine has 32 kB each for the level 1 caches, 256 kB of level 2 cache, 256 MB of 

RAM and a 133 MHz frontside bus (FSB), whereas the Northwood has 8 kB each for 

the level 1 caches, 512 kB of level 2 cache, 512 M13 of RAM and an 800 MHz FSB. As 

well as different clock rates and memory hierarchies, the two processors have substan-

tially different internal organisation, including functional unit characteristics, pipeline 

- 12 stages for the Coppermine, and 20 stages for the Northwood - and slightly dif-

ferent instruction sets (different short vector extensions). The operating system in both 

cases is version 2.4.20 of the Linux kernel. 

The choice of machines used for the experiments was limited by the development 

status of the Aldor compiler. Although the compiler and its associated run-time system 

have been ported to various UNIX platforms in the past, at the time of the experiments 

the primary supported platform was x86/Linux. Currently, the two major suppliers 

of binary compatible x86 processors for mid- to high-performance workstations are 

AMD and Intel. AMD CPUs were not used to due to their reliance on direct mapped 

caches and the possible problems this could pose for collecting performance results 

(see Section 9.3.5). The only other recent Intel CPUs that could be used are those based 

on the Prescott and Dothan1  cores; which bear some similarity to the Northwood and 

Coppermine cores respectively, but these are left for future work alongside gathering 

results from more different architectures (see Section 11.2.5). 

10r later Pentium M derivatives. 
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10.3.2 Compilers 

The compilers were the Aldor compiler, version 1.0.1 generating C, the Intel C com-

piler icc version, 8.0 (used to compile the output from the Aldor compiler and any C 

based codes), the Intel Fortran compiler if c  version 8.0, and the GNU C compiler gcc 

version 3.2.2 (used to compile the assembly code discussed in Section 10.6.2.3). 

Optimisation switches for the Aldor compiler were chosen as follows: 

-Q9 - to give a high level of optimisation and allow large amounts of inlining. 

. -inline-all -inline-limit=15 - set inlining to very aggressive. 

Optimisation switches for the icc/if c were chosen as follows: 

-02 or -03 - C code generated from Aldor was compiled using -02 to invoke 

general-purpose low-level optimisations such as register allocation, scheduling, 

common subexpression elimination etc. but avoid high level loop transforma-

tions such as fusion, distribution, tiling, interchange etc. This option can also en-

able vectorisation and unrolling (see Section 10.7.3). For the Fortran programs, 

the choice between the two was made empirically to give the best performance. 

In practice there was no difference in code generated. 

-xK (Pentium 3) or -xN (Pentium 4) - code generation specifically targeted at 

the architecture in question (including SSE1/2 instructions). 

-static - static linking of libraries. 

-align -use aligned loads where possible. 

-pref etch - insert software prefetch instructions. 

-ip or -ipo - do intra-file (for icc on generated C) or inter-file (for if c on 

Fortran) interprocedural optimisations. 

-p - instrument for profiling. 
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The low level code generated by if c and icc are discussed in Section 10.7.3. 

Optimisation switches for gcc were not used as the compiler only serves to stitch 

together assembly macros. 

10.3.3 BLAS routines 

Any reference to BLAS routines refers to the level 1 BLAS binaries from the ATLAS 

project [96] (version 3.4.2) for the respective machines. Note that these routines are 

highly tuned assembly rather than compiler generated code, unlike the non-binary dis-

tribution or the high-level (2 and 3) BLAS routines generated by local search using a 

machine and its compiler. 

10.3.4 Generation of timing results 

Profiles of executables were generated by instructing the Fortran/C compilers to in-

strument the code for profiling, and processing the results using the GNU profiling 

tool gprof version 2.13.90.0.18. A single performance figure is taken as the total time 

reported in the profile, and this measure is used everywhere except in Section 10.6.2 

where a breakdown provided by the profile is discussed. Profiling is done when only 

a single figure is required in order to check that the amount of time spent in domain 

initialisation and garbage collection is negligible. 

Times for a given code were generated by supplying a numerically difficult problem 

(but not one that is ill-posed enough to cause fioatingpoint exceptions) and running the 

Krylov space generation procedure or full iterative solver for 1000 iterations. These 

lông runs were used to minimise noise in the results from sampling inaccuracies and 

minimise the relative cost of run-time domain initialisation. All times are given in 

seconds throughout the rest of this chapter. 

Instrumented code is generated by the compiler at the entry and exit of any func-

tion that is compiled for profiling. Aldor code generation for the 3D and 4D operator 

programs (see below for a description of the programs used for experiments) results in 

a single C function that is invoked once per iteration. The code for the Wilson-Dirac 

operator program contains one additional function call within an iteration to the oper- 
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ator itself, which takes a significant amount of time relative to the rest of the iteration. 

Consequently, potential interference from code instrumentation was considered to be 

minimal. The use of library routines in Section 10.6.2 introduces more instrumenta-

tion code at call sites (although the library code itself is not instrumented), but this was 

again considered minimal due to the size of the vectors that each routine manipulates 

for the Wilson-Dirac problem (their minimum size is 243kB per vector for a 64  grid). 

10.4 Iterative Search Experiments 

The iterative search experiments show how iterative collective loop fusion might be 

used for the example LDG, and also give a general picture of the loop fusion problem 

in a concrete setting. This amounts to testing the sets of (contraction amount, partition 

size) pairs in Table 10.2 with reasonable sizes - i.e. the top row, the first column and 

most of the second column. Throughout the rest of the thesis, (contraction amount, 

partition size) is abbreviated as (c, p) - for example, (9c, zip) denotes the set of fusion• 

partitions with four clusters and nine contracted arrays, and (lOc, 3-5p) denotes the 

union of (lOc, 3p) , (lOc, zip) and (lOc, 5p). 

Sets of (c, p) points were tested for different operator types (3D, 4D and Wilson-

Dirac as described in Chapter 6), machines (Pentium 3/4), and data set sizes. Note 

that the Wilson-Dirac operator is only tested on the Pentium 4 as the Pentium 3 was 

insufficiently powerful to run problems of a reasonable size and does not have the SSE2 

instructions used by the assembly control in Section 10.6.2. Data set sizes are given as 

the size of an individual vector, in terms of the length of one side of the uniform grid 

that the vector represents. For the 3D and 4D problems, each site in the grid is 16 bytes, 

whereas for the Wilson-Dirac problem each site is 192 bytes (ignoring the gauge field) 

- see Chapter 6. Vector size ranges are intended to give examples of problems that are 

feasible to solve on an individual workstation. For each size range and machine, the 

smallest vector size fits within the level 2 cache and the largest vector size is larger 

than the level 2 cache. 

Note that for any (c, p) set that gets tested, all of its points are executed, so the 

heuristics for choosing a subset of points to test within a given (c, p) set are not used. 
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However, the general approach of generating the elements of (c, p) sets with smaller 

fusion partitions and/or more contraction is kept. 

The results are grouped by operator, then machine, then data set size. Points on 

the plots are labelled by the set they come from (i.e. a different point type for each 

(c, p) set). This is denoted in the legend by the amount of contraction r and the size 

of the partition s respectively in the shorthand form rcsp. The vertical axis denotes 

execution time, so points closer to the bottom of a plot give better performance. The 

horizontal axis denotes the rank of a point within a (c, p) set. Results for a (c, p) set are 

sorted based on execution time before plotting (fusion partitions are not generated in 

an order correlated with performance), so partitions of the same rank on different plots 

do not necessarily correspond to the same fusion partition. The ranking is reversed (i.e. 

larger number is better) to prevent all the important points bunching up in one corner, 

so points further to the right within a (c, p) set have better performance. In addition, 

the result of some sets are smeared out along the x-axis to improve visibility. 

10.4.1 3D operator 

10.4.1.1 Pentium 3 

The following three plots show the performance of fusion partitions from various (c, 

p) sets for the 3D stencil problem, on the Pentium 3. The different plots correspond to 

different data set sizes. 
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Figure 10.2: Performance of fusion partitions from various (c, p) sets for the 3D problem 

on the Pentium 3 with grid size 103  
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Figure 10.3: Performance of fusion partitions from various (c, p) sets for the 3D problem 

on the Pentium 3 with grid size 30 
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Plot of FP times, size 50, machine P3 
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Figure 10.4: Performance of fusion partitions from various (c, p) sets for the 3D problem 

on the Pentium 3 with grid size 50 

In the latter two plots, the two members of (lOc, 3p) down in the bottom left corner 

have the best performance, whereas in the first plot the best members of (9c, 4p) and 

(9c, 5p) are ranked equal best. The step-like banding of performance in the first plot 

arises from quantisation effects due to the executable having a short run-time. 

For the two large (c, p) sets, the plots show fairly large difference in performance 

between the best and worst points. There is a tendency for differences between neigh-

bouring points to be small across the majority of the set, but they get larger at either 

extreme with the largest jumps occurring between the worst performers (toward the 

top of the plots on the left-hand side). This is also reflected in the smaller (c, p) sets. 

The amount of array contraction appears to be the biggest factor in determining prfor-

mance when comparing the best performers from different sets, with more contraction 

being better. Some results run counter to this though --for example, the best fusion 

partition from (8c, 3p) in the second plot is better than the best fusion partition from 

(9c, 5p). Also, there is significant overlap between sets over their full range, and size 

of fusion partition does play a role. For example, there are many members of (9c, 

3-5p) that are better than the worst member of (lOc, 5p) in the third plot, and in all 
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three plots the best member of (9c, 4.p) is better than the best member of (9c, 3p) even 

though its fusion partitions are larger. 

Changing data set size does not appear to dramatically affect the overall shape of 

a set, but does appear to alter the position of the sets relative to one another. Note that 

the sorting of sets by performance before plotting means that the points on different 

plots in the same position do not necessarily correspond, and therefore the same shape 

of (c, p) set on different plots may result from a completely different order of rank for 

the fusion partitions involved. 

10.4.1.2 Pentium 4 

The following three plots show the performance of fusion partitions from various (c, 

P) sets for the 3D stencil problem, on the Pentium 4. The different plots correspond to 

different data set sizes. 
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Figure 10.5: Performance of fusion partitions from various (c, p) sets for the 3D problem 

on the Pentium 4 with grid size 30 
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Plot of FP times, size 50, machine P4 
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Figure 10.6: Performance of fusion partitions from various (c, p) sets for the 3D problem 

on the Pentium 4 with grid size 50 
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Figure 10.7: Performance of fusion partitions from various (c, p) sets for the 3D problem 

on the Pentium 4 with grid size 703  
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For the Pentium 4, the larger fusion partitions with the maximum contraction (i.e. 

members of (lOc, 4-5p) ) give the best performance across all data set sizes, unlike the 

Pentium 3 where members of (lOc, 3p) give the best performance for larger problem 

sizes. Apart from this, the analysis of the plots for the Pentium 3 largely carries over to 

the Pentium 4. However, the difference in performance between neighbouring points 

at either end of a set is less and the separation between sets is somewhat clearer. Also, 

array contraction seems more dominant in determining performance, and there is less 

overlap between the (c, p) sets with the maximum contraction (10) and those with less. 

Somewhat surprisingly, the best members of (9c, 5p) are close to the absolute best 

performance for the larger data set size. 

10.4.2 4D operator 

10.4.2.1 Pentium 3 

The following three plots show the performance of fusion partitions from various (c, 

p) sets for the 4D stencil problem, on the Pentium 3. 
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Figure 10.8: Performance of fusion partitions from various (c, p) sets for the 4D problem 

on the Pentium 3 with grid size 6 
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Plot of FP times, size 12, machine P3 
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Figure 10.9: Performance of fusion partitions from various (c, p) sets for the 4D problem 

on the Pentium 3 with grid size 12 
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Figure 10.10: Performance of fusion partitions from various (c, p) sets for the 4D prob-

lem on the Pentium 3 with grid size 18 
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Broadly similar patterns to those described in the analysis for the 3D operator on 

the Pentium 3 apply to these plots for the 4D operator. However, the best result in the 

first plot is a fusion partition with maximum contraction from (lOc, 4p) , rather than 

(lOc, 3p) in the latter two plots. 

10.4.2.2 Pentium 4 

The following three plots show the performance of fusion partitions from various (c, 

p) sets for the 4D stencil problem, on the Pentium 4. The different plots correspond to 

different data set sizes. 
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Figure 10.11: Performance of fusion partitions from various (c, p) sets for the 4D prob-

lem on the Pentium 4 with grid size 8 
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Plot of FP times, size 16, machine P4 
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Figure 10.12: Performance of fusion partitions from various (c, p) sets for the 4D prob-

lem on the Pentium 4 with grid size 16 
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Figure 10.13: Performance of fusion partitions from various (c, p) sets for the 4D prob-

lem on the Pentium 4 with grid size 24 
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The plots are similar to those for the 3D operator on the Pentium 4. The latter two 

plots show a lessening of the separation between the worst performers in a given set, 

giving a sharper step down between ranks 50 and 100, and all three plots suggest that 

the influence of array contraction is less dominant as there is more overlap amongst 

sets. The best performance comes from the larger fusion partitions with the maximum 

contraction, (lOc, 4-5p) , across all data set sizes, but interestingly the best members 

of (9c, 4p) and (9c, 5p) come close. The first plot shows similar quantisation effects 

to earlier plots from small data set sizes on the Pentium 3. 

10.4.3 Wilson-Dirac operator 

10.4.3.1 Pentium 4 

The following five plots show the performance of fusion partitions from various (c, 

p) sets for the Wilson-Dirac stencil problem, on the Pentium 4. The different plots 

correspond to different data set sizes. Results for an extra (c, p) set are plotted for this 

operator (namely (9c, 6p) ) to investigate the anomalous performance behaviour. 
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Figure 10.14: Performance of fusion partitions from various (c, p) sets for the Wilson-

Dirac problem on the Pentium 4 with grid size 6 
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Figure 10.15: Performance of fusion partitions from various (C, p) sets for the Wilson-

Dirac problem on the Pentium 4 with grid size 8 

Figure 10.16: Performance of fusion partitions from various (c, p) sets for the Wilson-

Dirac problem on the Pentium 4 with grid size 104 
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Plot of FP times, size 12, machine P4 
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Figure 10.17: Performance of fusion partitions from various (c, p) sets for the Wilson-

Dirac problem on the Pentium 4 with grid size 12 
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Figure 10.18: Performance of fusion partitions from various (c, p) sets for the Wilson-

Dirac problem on the Pentium 4 with grid size 14 
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The above plots show that, somewhat surprisingly, the best performance is no 

longer given by a fusion partition with the maximum contraction (although the dif-

ference is not pronounced), but by members of (9c, 6p). See Section 10.7.2. Also, 

performance across a (c, p) set is less consistent than for the other problems. This can 

be seen by the more pronounced dip as performance nears the best result for any given 

set (i.e. toward the right hand side), which gets more exaggerated as the data set size 

increases, to the point of having a separate cluster of "best" points. 

10.4.4 Variability within (C, p) pair sets 

This section aims to give some idea of the potential inaccuracy of assuming that all 

members of a (c, p) set produce equal performance on an actual machine. 

Variability within (c, p) sets is presented as the time of the worst result as a per-

centage of the best for a combination of machine, operator type, and data set size. 

Only operator and machine are given as separate axes, as including data set size as 

well would make the tables too large. Instead, the largest variation out of all the data 

set sizes is used. The results are presented in Table 10.3, and clearly show the degree 

of inaccuracy resulting from treating all members of a (c, p) set as equal. Any broader 

grouping, such as contraction amount alone, will be even less accurate. Of particular 

interest are the sets of size 3 and 4 with the maximum contraction (10), as these sets 

usually contain the best result. 

Examining the results shows that search is a useful addition to loop fusion and ar-

ray contraction, due to the under-specification of the standard approach to the problem 

- that is, relying purely on contraction amount or fusion partition size. In the particular 

instance of the LDG presented here with the 3D and 4D operators, the three (c, p) pair 

sets containing the best results measured by contraction are small (eight elements in 

total) and have fairly low variability across their combined members. However, it is 

clear that in general the larger (c, p) pair sets have high variability (up to 130%), so 

different LDGs with larger numbers of fusion partitions with the maximum contrac-

tion stand more to gain by the application of the technique. Also, all the sets with 

the maximum contraction ought to be tested as the smallest fusion partitions with the 

maximum contraction are frequently not the best, and LDGs that have lots of different 
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Table 10.3: Variability within (c, p) pair sets (as % of best) 

Pentium3 	 Pentium4 

(c, p) pair set 3D 4D 3D 4D Wilson-Dirac 

(10c, 3p) 3 8 4 4 3 

(9c, 3p) 59 55 35 50 8 

(8c, 3p) 64 91 29 44 11 

(7c, 3p) 50 68 20 37 9 

(6c, 3p) 28 3 2 3 2 

(10c, 4p) 9 14 10 22 5 

(10c, 5p) 28 4 1 4 1 

(9c, 4p) 116 79 41 56 14 

(9c, Sp) 93 130 46 62 20 

(9c, 6p) 31 

(10c, 3-5p) 	55 	21 	10 22 	5 

size fusion partitions with the maximum possible contraction ought to see significant 

benefit. For example, the maximum variation across different size partitions with the 

maximum amount of contraction (i.e. (lOc, 3-5p) ) is 55%, which gives a more accu-

rate picture of the need for search to find a good solution. The amount of potential gain 

is proportional to effort - small sets are cheap to search, and larger sets typically have 

more variability that must be dealt with - so the technique introduces little overhead 

when there is less gain to be exploited. 

10.4.5 Variability across setting 

Variability across operator/machine/data set size shows the necessary limitations of 

any static approach that makes its decisions based purely on the LDG. Assuming that 

some hypothetical static method picks the fusion partition that gives the best known 

result in a given setting (i.e. combination of operator/machine/data set size such as the 

3D operator on a Pentium 3 with data set size 50), that particular fusion partition may 

not be the best for other settings (e.g. 4D operator on a Pentium 4 with data set size 
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Table 10.4: Best case time for 3D vs. FP from best case for other settings 

best case FP from other: 

machine 	size best operator (41)) operator (Wilson) machine 

Pentium3 	10 0.30 0.32 0.32 0.34 

30 26.3 29.7 33.25 30.5 

50 136.8 147.2 162.0 147.2 

Pentium4 	30 3.83 3.90 4.48 4.55 

50 18.5 18.6 21.2 21.7 

70 55.34 55.7 59.4 62.7 

70). This can be highlighted by picking a given setting, collecting the fusion partitions 

that were found to be the best in other settings and trying them On this problem. The 

discrepancy between the worst result from the other "best" fusion partitions and the 

actual best for this problem gives some measure of how any method that chooses its 

result based purely on information from the LDG lacks portability across operator type, 

machine etc. 

Rather than varying all the options at once, we limit ourselves further by only 

changing one of the three (i.e. operator, data set size, machine) at a time, which gives 

an even stronger result. This excludes the Wilson problem however, as the experiment 

was not done on the Pentium 3, and so comparing it against results for that machine 

necessarily involves changing both operator and machine. The results are given in 

Tables 10.4, 10.5 and 10.6. Data set size is not given as a separate option as it tended 

to give little or no variation. 

The results show that picking the optimum LDG transformation in a given setting 

can lead to missing the optimum in a different setting by > 30%. An important ad-

vantage of search is that it offers portability by coping with the different choice of best 

fusion partition as the data set size, machine or program (operator) changes. 
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Table 10.5: Best case time for 4D vs FP from best case for other settings 

best case FP from other: 

machine 	size best operator (3D) operator (Wilson) machine 

Pentium3 	6 0.41 0.51 0.50 0.46 

12 22.3 28.8 28.0 24.9 

18 118.6 152.4 156.6 137.5 

Pentium4 	8 0.49 0.50 0.52 0.55 

16 11.4 11.4 12.4 13.3 

24 59.75 61.1 65.8 67.0 

Table 10.6: Best case time for Wilson vs. FP from best case for other settings 

best case FP from other: 

machine 	size best operators (314D) P3 operator (314D) P4 

Pentium4 	6 6.55 7.26 7.01 

8 22.3 24.6 23.7 

10 55.4 61.5 59.3 

12 117.2 130.8 126.3 

14 226.7 253.6 243.9 
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10.5 Control Experiments 

To give some context for the best results achieved using iterative collective loop fu-

sion in the previous section, we compare the results with some control experiments. 

The first control is simply the original Aldor programs with no fusion or contraction 

to show whether the optimisations improve program performance. .The second set of 

controls are alternative (static) loop fusion strategies taken from the literature. The 

third set of controls are completely different methodologies. These include a function-

ally equivalent program written in Fortran, and combinations of assembly code and C 

code. 

10.5.1 Naive control 

This is simply the original program with no fusion (and hence no contraction) applied. 

The results are given in Tables 10.7, 10.8 and 10.9. 

Loop fusion and array contraction clearly bring important benefits on these ma-

chines. The range of speedups against the naive control over the different experiments 

is 2.1 —3.7 for the 3D/4D problem, and 1.38— 1.43 for the Wilson problem. 

10.5.2 Other methods of collective loop fusion 

To give some idea of how other methods from the literature compare to fusion parti-

tion enumeration, we implemented versions of the max-flow mm-cut heuristic method 

presented in [37], and the simple pair wise greedy algorithm presented in [52]. The 

more complex version of the algorithm presented in the latter paper is not considered 

as it is functionally equivalent to the simple method, and the time to compute the fu-

sion partitions calculated by the controls is not the main focus, but rather which fusion 

partition they produce. 

In both control algorithms not all steps are completely specified, so how they are 

implemented will affect which fusion partition they produce. The most extreme of the 

two is the greedy algorithm. Given an LDG in which all edge weights are equal, there 

may be many pair wise collapsing actions that are ranked equally at a given step of the 

algorithm, and therefore many different fusion partitions could be generated depending 
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Table 10.7: Times from best search and control methods for the 3D problem 

machine size best search greedy max-flow mm-cut naive 

Pentium3 	10 0.30 0.37 0.37 0.72 

30 26.3 33.7 32.7 69.5 

50 136.8 186.3 163.6 329.6 

Pentium4 	30 3.83 4.3 5.1 9.4 

50 18.5 21.3 24.8 43.8 

70 55.3 64.2 76.6 122.3 

on how a selection is made from equally ranked alternatives. Thus, fusion partitions 

of different sizes with different numbers of contracted arrays are possible depending 

on this degree of freedom. For the max-flow mm-cut method, any subgraph that must 

be partitioned may have a number of different minimum cuts that are ranked equal. 

So, this method gains over the greedy algorithm in that it will always produce fusion 

partitions of the same size and contract the same number of arrays, but the particular 

choice of fusion partition with that degree of contraction is still not specified. 

This makes providing, a precise set of control experiments difficult. Instead, we 

attempted to measure the cases that can result by varying this degree of freedom, and 

compare them to enumeration. For the both algorithms, these points were determined 

by some brute force search over the tree of possible transformation sequences resulting 

from multiple equally ranked choices at any given step. The whole space of choices 

could not been enumerated as it is too large 2  The results are given in Tables 10.7, 

10.8 and 10.9. 

From the relatively small amount of space that could be searched in the time avail-

able, the greedy algorithm always produced a (9c, 3p) fusion partition, and max-flow 

mm-cut produced a (8c, 3p) fusion partition. 

The results show that iterative collective loop fusion is consistently better than 

the greedy or max-flow mm-cut methods. The argument is complicated by the fact 

2Although many different sequences of choice for the greedy algorithm result in the same fusion 
partition, it is not possible to directly list the distinct fusion partitions that will be created without 
considering the choices involved in generating them. 
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Table'10.8: Times from best search and control methods for the 4D problem 

machine size best search greedy max-flow mm-cut naive 

Pentium3 	6 0.41 0.56 0.58 1.53 

12 22.3 26.6 28.4 55.2 

-18 118.6 141.3 148.5 291.1 

Pentium4 	8 0.49 0.67 0.68 1.08 

16 11.4 13.1 15.6 24.4 

24 59.7 69.7 79.2 126.9 

Table 10.9: Times from best search and control methods for the Wilson problem 

machine size best search greedy max-flow mm-cut naive 

Pentium4 	6 6.55 7.48 8.00 9.42 

8 22.3 24.9 26.4 31.9 

10 55.4 63.0 66.8 79.1 

12 117.2 133.9 140.5 164.3 

14 226.7 261.9 270.9 314.6 
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that the results given by these methods are not entirely specified, but it holds under 

some reasonable assumptions about their efficacy. Our technique offers a speed up of 

1.36 over worst-case greedy and 1.41 over worst-case max-flow mm-cut for the 3/4D 

problem, and 1.15 and 1.22 respectively for the Wilson problem. 

10.6 Other methodologies 

This set of controls is intended to give some idea of how iterative collective loop fusion 

as a tool compares against other approaches. Two alternatives are considered. The first 

is a version of the QMIR algorithm implemented in Fortran (the full solver had to be 

used for the comparison, as described below). The second is a set of experiments based 

on the original Aldor program for the Krylov update step considered in the previous 

sections, with alterations to use high-performance binary BLAS routines to manipulate 

vectors. 

10.6.1 Fortran 3D stencil 

This program is a version of the 3D stencil code written completely in Fortran 77 and 

compiled from source. Fortran is widely used for numerical scientific computation, so 

this control provides important context for the optimisation results. 

QMRpack is a well-known and freely available implementation of the QMR al-

gorithm [33].  The code does not come with any implementation of the operator, but 

is designed to be joined to code to calculate applications of an operator by means of 

callbacks. Vector operations are handled using standard level 1 BLAS style routines, 

supplied as and compiled from source. Note that this means that some degree of fusion 

is already built in due to the form of the BLAS routines. 

The original code from QMRpack had to be modified/supplemented in several 

ways. Firstly, as there is no operator we added Fortran code to apply the stencil. Sec-

ondly, the code is designed to skip certain steps of the algorithm based on floatingpoint 

error tolerances, and these branches were removed to make the amount of "work" (in 

terms of vector operations) fixed and equal to that of the Aldor code. Finally, all the 

source files for the whole program were compiled using the cross-file inlining options 
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Table 10.10: Times for linear solve (search vs. Fortran) 

machine size best search Fortran 

	

Pentium3 10 	0.58 	0.36 

	

30 	43.4 	64.1 

	

50 	209.1 	303.7 

	

Pentium4 30 	5.26 	7.20 

	

50 	24.5 	33.6 

	

70 	71.6 	95.6 

of I f  to remove any artificial barriers to optimisation by the compiler. 

One important difference needs to be highlighted for this control experiment. All 

other experiments in this chapter deal with an LDG derived from a Krylov space update 

procedure. This is primarily because this procedure dominates execution time for a 

two-sided solver and gives by far the largest LDG with the richest structure, and hence 

the most interesting and challenging optimisation problem. There is no reason why 

the same technique could not be applied to the update steps for the other recurrences, 

but a lack of time prevented us from performing the experiments. However, because 

QMRpack is an entire solver, the comparison must be performed against a full Aldor 

solver assembled from the three separate recurrences. For this we used the best fusion 

partition of the two sided Lanczos process discovered by search, along with the search 

recurrence and solution update recurrence (from the template) described in Chapter 5, 

each of which were separately fused and contracted by hand. Both of the search and 

solution update recurrence can be trivially fused into a single loop with the maximum 

possible array contraction. The results are presented in Table 10.10. 

Although it is hard to give a precise measure when comparing substantially dif-

ferent approaches to a problem, it is clear from the results that the performance of 

programs compiled in Aldor using iterative collective loop fusion is at the very least 

competitive for these types of problem with an equivalent program written entirely in 

Fortran and compiled by a mature commercial optimising compiler. The Aldor version 

does better in all but one case, with the relative performance gain being 1.46 on the 
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Pentium 3 (ignoring the smallest problem size) and 1.35 on the Pentium 4. For more 

details on the code generated by the two different approaches, see Section 10.7.3. 

The direct cost of using the higher order features that remain after optimisation 

must be fairly small, as the Aldor version outperforms the Fortran version (with no 

higher order features) in all but one case. Based on this, it is reasonable to suggest 

that problems with higher order features are more likely to arise indirectly through 

extra load on the garbage collector (if the programmer is not managing storage) or lost 

opportunities to do optimisation across components. This argument can be extended 

to Aldor programs in general. 

The splitting of the algorithm into three recurrences does not introduce any more 

barriers than implementing the algorithm using BLAS style routines, so, if barriers 

between components are already enforced by the use of opaque libraries (see below). 

Aldor is a prime candidate for writing the glue code. However, it should be noted that 

these experiments tend to play down the overheads of the language (such as the run-

time costs of domains and very large code sizes) as the active portions of the programs 

are small, and they are run for a long time to minimise noise in the profiles. The 

overhead is revealed when contrasting the results for Aldor and Fortran for the smallest 

problem size. 

10.6.2 Use of high-performance libraries 

These control experiments take the original Aldor program for the general update step 

of the two sided Lanczos algorithm and replace the manipulation of vectors with high-

performance BLAS routines (which is equivalent to introducing a certain amount of 

fusion by hand). 

Three different versions of the operator are used with this harness - the original 

written in Aldor, a version written in C and a version written in assembler. These three 

experiments are intended to provide a comparison between the "bottom-up" approach 

of starting with an algorithm in some language and substituting compute intensive 

parts of the program with small sections of extensively tuned code against the less 

intensive but more global approach of fusion/contraction. Although the original Aldor 

program is used as the harness, this is largely irrelevant as almost no time is spent 
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outside of the work intensive routines (i.e. the operator and BLAS routines), so the 

version with the operator written in C can be can be considered equivalent to starting 

from an implementation purely in C and adding binary BLAS routines. 

The results for all three versions are given in Table 10. 11, along with a comparison 

to the best search result. A breakdown of where the time is spent in each of three 

versions is given in Table 10.12. 

10.6.2.1 Aldor + BLAS 

This control is an implementation of the two-sided Lanczos process using the Wilson-

Dirac operator, where vector operations have been replaced by high performance BLAS 

binaries. 

10.6.2.2 C + BLAS.Wilson-Dirac stencil 

This program is the same as that above, but the Wilson-Dirac operator has been re-

placed by a version written in C [82]. 

10.6.2.3 Assembly code + BLAS Wilson-Dirac stencil 

This is similar to the C based version described above, but represents a further step 

along the path of local specialisation by using an application/machine-specific hand 

written assembly routine for the delta term [59]. As only the delta term is supplied, 

calculating the full stencil term needs a subsequent axpy, and this is performed using 

a BLAS routine. This is reflected in the breakdown, which shows significantly more 

time spent in the BLAS routines than for the other two versions. 

The results show that, for the Wilson problem, using optimising transformations 

and compiling from Aldor source is competitive with the approach of starting from 

Aldor or C and substituting generic high-performance routines where possible, giving 

a small speed up of around 3 - 7%. It does less well against the combination with the 

assembly based operator. These results are discussed in detail in Section 10.7.4. 
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Table 10.11: Times for alternate methodologies vs search, Pentium 4 

BLAS augmented version 

size best search Aldor C asm 

6 6.55 6.77 6.94 4.84 

8 22.3 23.74 24.51 17.82 

10 55.4 59.33 61.54 45.63 

12 117.2 125.50 130.00 96.06 

14 226.7 241.84 251.61 179.52 

Table 10.12: Breakdown for alternate methodologies, Pentium 4 

stencil or delta term BLAS rest of code. 

size Aldor C asm Aldor C asm Aldor C asm 

6 4.84 5.56 3.18 1.85 1.33 1.59 0.08 0.05 0.07 

8 17.69 18.87 10.48 5.99 5.50 7.25 0.06 0.14 0.09 

10 44.47 46.73 26.7 14.67 14.60 18.71 0.19 0.21 0.22 

12 94.27 99.34 55.73 30.85 30.25 39.94 0.38 0.41 0.39 

14 183.32 192.37 104.72 57.72 58.41 74.01 0.8 0.83 0.79 
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10.7 Discussion of Results 

This section presents some broader discussion of the result presented previously. 

10.7.1 Interloop locality in Aldor 

Interloop locality is likely to be important for the performance of Aldor programs 

on cache based architectures as a result of the modular structure that the language 

encourages. This can be extended to general cross-component optimisations, and other 

goal functions for which temporal locality is important. 

10.7.2 Search 

As well as giving portability and dealing with variation within (c, p) sets, search is 

a useful addition to loop fusion and array contraction due to the non-triviality of the 

problem. By this it is meant that maximum array contraction does not always give the 

best result (and neither does minimum size). An example of this is the Wilson problem. 

For these experiments the extra benefit of searching the larger fusion partitions is not 

great, 5%, but different LDGs may provide examples where there is larger benefit to 

be had when searching away from the sets with maximum contraction. 

It is not obvious why this pattern occurs for the Wilson problem. The best fusion 

partition always places each stencil term on its own in a separate loop, and again it is 

not immediately obvious why this gives the best performance. An important distin-

guishing factor for the Wilson problem is that the code required to execute the stencil 

is much larger than the equivalent for the 3D and 4D problems, as well as requiring 

many more operations. Consequently, instruction cache behaviour and the use of loop 

rerolling (see Section 9.2.2) may all be important, alongside secondary factors such as 

data prefetch hardware etc. 

10.7.2.1 The greedy algorithm 

The comparison of searching for good fusion partitions vs. a simple greedy algorithm 

probably flatters the greedy method somewhat. This is because the LDG does not have 
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any bad local minima that the greedy method might get stuck in, and the variability 

of the (c, p) set that it reaches is artificially low. A general investigation of potential 

problems with the greedy approach requires some notion of an "average" LDG though 

- see the future work in Chapter 11. 

10.7.2.2 Best fusion partitions 

A handful of fusion partitions recurred as the best choice in several different settings, 

mostly for different operators on the same machine. This suggests that there may be 

further features of a fusion partition other than just its size and the amount of contrac-

tion that consistently indicate that it is likely to be a good choice for a given machine. 

10.7.3 Code generation 

This section highlights some points about code generation for the target machines. 

10.7.3.1 The architectures 

The Pentium 4 has a small architectural register file, a high clock rate and correspond-

ing long relative access latency to main memory, and short vector instructions for float-

ingpoint arithmetic (SSE2). The , first two points suggest that there are likely to be sig-

nificant latency hiding benefits from issuing software prefetch instructions (although 

some of this may be covered by the limited automatic hardware prefetching), and the 

third suggests that proper utilisation of short vector instructions will give a significant 

boost to performance on floatingpoint intensive programs. The Pentium 3 is similar, 

but has a lower clock rate and less latency problems, no hardware prefetching, and its 

short vector instructions (SSE1) are only single precision and therefore not suited to 

the programs in this thesis. 

For a given section of code, the potential return from specialised code generation 

is likely to be large for the Pentium 4. The exploitable potential for the Pentium 3 is 

likely to be less given that only software prefetching is applicable and the latency to 

main memory is less severe. However, the lack of hardware prefetching may make the 

latency problem more important. 
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10.7.3.2 Code generated by icc and if c 

Examining the output of icc resulting from Aldor generated C shows that vectorisa-

tion is not done for the Pentium 4 (it is not possible for the Pentium 3). The compiler 

produces "scalar" SSE2 instructions, which, strictly speaking, are from the short vec-

tor instruction set, but they only operate on one rather than two operands at a time. 

This apparently redundant strategy is understandable in light of the well-documented 

poor performance of the Pentium 4 on x87 instructions. The lack of vectorisation is 

hardly surprising given the output of the Aldor compiler and the potential difficulties 

of recovering alias information from it. However, vectorisation was not performed by 

if c for the Fortran programs either, and this was unchanged by adding -fno-alias 

(i.e. assume no aliasing in the program) which is more surprising. Software prefetch 

instructions were rarely issued in any of the generated assembly code, and no loop 

unrolling appeared to be done by either compiler. 

The amount of inlining performed on the Fortran codes by if c  was small, being 

limited to all but the smallest routines. In addition, it did not perform any high level 

loop restructuring (including fusion/distribution) even with -03 enabled, possibly as a 

result of the lack of inlining. No miming of any of the significant routines was formed 

by icc, probably due to the large amount of miming done by the Aldor compiler. 

The failure of icc to produce vectorised and adequately prefetched code from the 

generated C affects the discussion on local code tuning (below) and prompted several 

of the suggestions for future work (see Chapter 11). 

10.7.4 Local tuning and code generation 

This section presents a detailed discussion of the results of comparing iterative col-

lective loop fusion against the substitution of sections of code with BLAS routines or 

assembly (for the operator) on the Pentium 4. 

10.7.4.1 Generated code versus BLAS routines 

The machine code for the level 1 BLAS binaries is reasonably assumed to be substan-

tially better than that which a standard compiler would produce from equivalent source 
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code. This is due to the authors having information that the compiler does not, as well 

as more sophisticated strategies to get better performance, and the high relative gain 

available from targeting certain features of the Pentium 4 when compared to a compiler 

that does not (see Section 10.7.3). However, the tuning effort is limited to very small 

components in isolation and misses opportunities for optimisation across the bound-

aries between them. Compiling from Aldor (via icc) using fusion/contraction thus 

pits the exploitation of global knowledge with comparatively weak subsequent code 

generation against local tuning. 

Given the form of the level 1 BLAS routines, and assuming they are perfectly 

prefetched and use the short vector instructions, their operation can be broken down 

into three stages. The first is filling the logical pipeline by issuing loads/prefetches 

and waiting for the first operands to appear, the second is when the pipeline is full 

and the arithmetic is being done in conjunction with loads/prefetches and stores, and 

the third is draining the pipeline when only arithmetic and stores are left to do. The 

floatingpoint operations are an unavoidable cost, so the avoidable costs that collective 

fusion/contraction cuts out probably result from under-utilisation of the floatingpoint 

unit. This occurs during the pipeline fill stage, and may occur during the middle stage 

if the floatingpoint unit is not the limiting factor on the bandwidth of the pipeline. 

10.7.4.2 Interpreting the results 

Examining the breakdown for Aldor + BLAS tells us that 24-27% of the time is 

spent in the BLAS routines for this program. In the fused case, the best fusion partition 

places both stencil calculations on their own in separate loops, so although the profile 

does not give us the exact cost of the stencil term, it is reasonable to assume that it takes 

the same amount of time as for Aldor + BLAS. By subtracting the expected time spent 

in the stencil from the result for the best search, the improvement of fusion/contraction 

over tuned BLAS routines can be calculated as 25%. 

There are several possible explanations for why the global approach is competitive 

with local tuning in this context. The start-up costs will be small given large enough 

vectors, so the real difficulty with local tuning is likely to be that the logical pipeline is 
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limited by the bandwidth of the memory subsystem3. By eliminating loads and stores 

(or if not eliminating them, ensuring that they hit in the cache which will have much 

higher bandwidth), this is precisely the difficulty that loop fusion/array contraction 

avoids under the assumption of global perfect prefetching (i.e. no latency costs). In 

practice, the code produced by fusion/contraction will suffer some latency costs itself 

as it is not perfectly prefetched, and the potential benefit is limited by failing to gen-

erate short vector instructions, which means that the floatingpoint unit will become a 

bottleneck much sooner than it ought to. Despite this, fusion/contraction compares 

favourably, and the elimination of these low-level problems may bring significant ben-

efit and result in substantial further gains over local tuning. 

The situation is somewhat different for the tuning of the operator. Although the 

assembly is unlikely to be as highly tuned as the BLAS routines, it does exploit register 

tiling, double precision short vector instructions, and some software prefetching. By 

calculating the cost of the stencil term as the cost of the delta term from the breakdown 

plus the extra time spent in the BLAS routines compared to the other two methods, 

the assembly based operator is 1.5 times faster than the Aldor version, and this is 

enough to give an overall speed up of 1.3 - 1.4 over Aldor + BLAS and 1.2— 1.3 

over the best search result. Removing prefetch instructions from the assembly kernel 

degrades its performance by 	10%. Together, these facts suggest that, in contrast 

to the level 1 BLAS routines, the balance of the component between loads/stores and 

floatingpoint operations is probably such that the floatingpoint unit rather than the 

memory subsystem is the bottleneck. So, in this instance the real problem is the failure 

to generate short vector instructions from the Aldor generated C. 

10.8 Summary 

This chapter has shown that: 

. Collective loop fusion and array contraction is an important technique for ex- 

3 There are also the potential problems of structural conflicts between issuing loads/prefetches/stores 
and floatingpoint instructions in the processor, and instruction cache spill, but given the architecture in 
question and the size of the routines, these are unlikely. 
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ploiting interloop locality in highly modular Aldor programs such as those de-

veloped in this thesis, giving speedups of up to 3.7. 

Iterative collective loop fusion does better than the other collective loop fusion 

strategies and brings in addition portability across hardware and problem type. 

It gives speedups of up to 1.36 over the greedy method, and 1.41 over max-flow 

mm-cut. 

Starting from a modular program in a high level language such as Aldor and 

using iterative collective loop fusion gives better performance than an equivalent 

program written from scratch in Fortran, with speedups of up to 1.47. Hence, 

elegance of expression need not mean sacrificing performance. 

Our transformation strategy is better than starting from the original program or 

an equivalent version in C and substituting high-performance BLAS libraries for 

vector manipulation, giving an estimated speedup of around 24-27% over the 

library routines themselves. Even in a situation where one single loop dominates 

execution time and the assembly version of that loop is 1.5 times faster than 

the Aldor version, our global technique is only a factor of 1.2— 1.3 worse in 

terms of overall performance. It is not obvious how to address the architecture 

specific low-level code generation issues with the Aldor version of the operator 

to improve its performance compared to the assembly version whilst maintaining 

the portability model of the current compiler (i.e. generating standard C code). 

However, if this problem could be resolved, our technique is likely to provide 

overall better performance and obviate the need for laborious machine specific 

hand tuning. 



Chapter 11 

Conclusion 

This chapter collects together the conclusions dotted throughout the text into a mean-

ingful whole, and adds some extra comment. After this there follows some suggestions 

for follow-up work. 

11.1 Summary 

In this thesis we have shown how to express the modularity inherent in a family of 

numerical algorithms (the Krylov space-based iterative solvers) by using the advanced 

abstraction mechanisms of Aldor (domains, categories etc) to build an algorithmic 

framework. This represents a significant improvement over the standard approach of 

collapsing structure into a recipe with a set of choices already made, by making the 

structure explicit, eliminating redundant replication of code, and allowing rapid as-

sembly of different algorithms by combining pieces. This modularity is expressed at 

different levels, ranging from independence of the algorithms with respect to imple-

mentations of scalar, vector and operator domains, to the ability to mix and match 

methods of generating a projected operator and decomposing it into factors. 

We have argued that the direct (and to a lesser extent indirect) costs of the use of 

higher order language features to structure the algorithms by joining separate recur-

rences is small. Conversely, we have shown that the abstraction with respect to the 

vector and operator domains has a large indirect cost on a cache based architecture 
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arising from the lack of temporal locality in the resulting programs, even when the 

direct cost (coming from separation into functions/domains and use of simple higher 

order features such as generators etc) is removed. We have characterised this problem 

as an extreme form of a similar problem (i.e. interloop locality) affecting numerical 

programs written in standard third-generation languages'. We have argued that the 

severity of the problem is what makes interloop rather than intraloop locality (where 

it exists) a priority for investigation in the context of the language and the solvers, and 

suggested that cross-component optimisations, of which this problem is an example, 

are likely to be important in general to languages such as Aldor. 

We have adopted the loop dependence graph (LDG) formalism from the literature 

and shown how to enumerate fusion partitions of a given size, and how this can be 

used to collect fusion partitions (of that size) with a given amount of contraction - i.e. 

how to generate (contraction amount, partition size) sets ((c, p) sets). This is used as 

the basis for empirical selection of fusion partitions based on actual performance. We 

have given heuristics to suggest which (c, p) sets to prefer (more contraction, followed 

by smaller size), a heuristic method for systematically finding the elements of the pre-

ferred (c, p) sets in a large space (start from small fusion partitions and work upward), 

and suggested a heuristic approach to choose points to test from a (c, p) set that is too 

large to test exhaustively (first come first served). The overall technique, parameterised 

by how much of the space to enumerate, and how many points to empirically test, is 

called iterative collective loop fusion. 

We have demonstrated empirically that cross-component optimisations achieved 

using collective loop fusion/contraction can provide a speedup of up to 3.7 in this 

context. We have also shown that it is difficult to pick the right transformations based 

purely on static information, given that performance varies within a (c, p) set (up to 

130%) and across different problems and machines,by testing complete sets of fusion 

partitions on an LDG extracted by hand from the iterative solver framework. This 

exposed the crudeness of using (c, p) set (or just contraction) as a metric to indicate 

performance. At the same time this shows how iterative collective loop fusion could 

be used to find a good fusion partition in the case where several (c, p) sets chosen by 

'They suffer the problem to a lesser extent as a programmer will usually implement some degree of 
fusion already by hand. 
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the programmer are exhaustively enumerable and testable. We have also shown that in 

some cases large amounts of search are necessary to find a good fusion partition when 

the heuristics are less accurate (such as for the Wilson problem). 

We have compared iterative collective loop fusion to other methods of collective 

loop fusion (greedy and max-flow mm-cut) with an emphasis on the weakness that 

arises from relying on simple metrics. This leads to  speedup of up to 1.36 and 1.41 

respectively: We have also given some measure of how any static method that relies 

solely on (c, p) as a metric will be limited if the machine or program changes. We have 

given some comparison against other methodologies such as using Fortran or hand-

tuned assembly. Using Aldor with iterative collective loop fusion does better on the 

whole, except in comparison against the assembly Wilson-Dirac operator - we have 

suggested that this is most likely due to SIMID vectorisation issues, which it is not easy 

to attack directly when generating standard C code. 

11.2 Future directions 

This work could easily be extended in a number of largely orthogonal directions. We 

give a brief outline of some possibilities below. 

11.2.1 Framework design 

For the category framework in Chapter 5, there are numerous fairly simple extensions 

that can be investigated. These include (but certainly are not limited to): 

Look-ahead to deal with breakdown in the two-sided Lanczos process. 

Using k-step restarting for the long recurrence methods. 

Partial pivoting to deal with breakdown in an LU decomposition. 

Preconditioning. 

Methods based on the normal equations - CGNR, CGNE etc. 

Nested Krylov space algorithms. 
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Various different types of halting condition. 

Incorporating eigensolver algorithms. 

The first two of these deal with the interface between the Krylov space and the pro-

jected system, where the projected matrix is no longer just tridiagonal but has varying 

upper band width from step to step. This may also have an impact on the interface to 

the search vectors, in a similar manner to the third item. The fourth item ought to be 

easy to add with small wrappers, as already outlined in Section 3.6.4. The next three 

items may require some broader adaptation of the framework with some mechanism 

to pass more information around, outside the interface provided by the current pieces. 

The design could also be cleaned up by removing the abuse of the valuation domain, 

and pinpointing the root of the type system problems discussed in Section 5.3.1.1. The 

last item would require more work, but is certainly a natural extension of the modular 

approach. 

11.2.1.1 Alternative factorisations 

A possible use of the framework would be to investigate alternative factorisations of the 

projected systems. There are good reasons for the standard couplings of orthogonality 

condition and matrix decomposition. The LU decomposition is cheap to compute, and 

will only break down when the Galerkin condition cannot be satisfied for a given step 

(see Section 3.4.3). The QR decomposition directly gives a solution to the projected 

least squares problem from the minimum residual condition without having to form 

the normal equations, and also provides the recurrence residual. Using the QR decom-

position for the minimum error condition reduces the projected system to something 

more manageable, and allows the use of search vectors in the short recurrence version. 

Nevertheless, it is possible to use different factorisations for any given condition. 

Separating the algorithm into components at the program level may enable inves-

tigation of techniques that make some of the assumptions behind the standard parings 

redundant. For instance, the added numerical stability of a QR factorisations may be 

an advantage for a short recurrence Galerkin algorithm that has the ability to skip steps 

where the orthogonality condition cannot be satisfied. This is similar to the idea of 
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allowing partial pivoting to cope with one type of breakdown in an LU factorisation. 

11.2.2 Solver domains 

For the solver domain implementations in Chapter 5, the simplest extension would be 

to add more Krylov space generating algorithms such as those in [73] and [41], or pos-

sibly algorithms based on Householder transformations or selective re-orthogonalisation. 

In addition, there remains some work to be done to flesh out the full implementation of 

the minimum error orthogonality condition (and associated search vector recurrence), 

and the long recurrence and incomplete orthogonalisation methods. 

11.2.3 Operators 

The category structure for the operators presented in Chapter 6 is not as developed as 

it could be. The obvious future direction is to adapt the initial work to properly capture 

the structure of the Wilson-Dirac operator (for example using [30] as a starting point) 

and other operators and linear systems of interest to mathematical physics. This in turn 

would feed into the design of the linear solvers package. Some of the interesting issues 

are discussed in [43, 35], including red-black preconditioning, y5-Hermiticity, choice 

of algorithm, and the interaction with molecular dynamics. 

11.2.4 Iterative collective loop fusion 

There are several ways in which the approach outlined in Chapter 8 could be extended 

and or adapted: 

Experiment with different search heuristics, or attempt to refine the heuristics 

to reduce the amount of empirical evaluation that is necessary. The repeated 

occurrence of some fusion partitions as the best performers in different settings 

suggests that within a (c, p) pair set there may be some characteristics of a fusion 

partition that make it more likely to do well regardless of operator/machine/prob-

lem size. If these characteristics could be discovered, they could be used to fur-

ther narrow down the amount of search necessary to find good results. Some 
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possibilities in this regard are hand analysis or automatic feature extraction tools 

from artificial intelligence. 

As well as cutting branches of the search tree based on empty partitions, it ought 

to be possible to significantly speed up search by having a cut-off based on the 

number of contracted arrays - that is, once the number of contracted arrays is 

guaranteed to exceed the required amount, further search along that branch of 

the space can be abandoned. 

Investigate methods of dealing with less well behaved loops (e.g. non-conformable). 

This could include using standard transformations such as flattening/peeling/shift-

ing etc. to preprocess the code, or using a more general abstraction such as affine 

transformations. Another improvement in this vein would be to develop tech-

niques that can cope with branching within the program section. This extension 

to more complex control flow could be approached by generating multiple trans-

formed versions of the original code and selecting execution at run-time based 

on the evaluation of the branch conditions. 

Develop a more rigorous way of dealing with enumerated slices of the search 

space that are too big to test exhaustively by empirical experiment. 

11.2.5 Empirical results 

The following are some suggestions to broaden the empirical results given in Chapter 

10. 

11.2.5.1 More precise results 

A closer analysis of the performance of different fusion partitions by detailed simula-

tion or the collection of data from hardware event counters would give a better idea of 

how search is balancing trade-offs and making its gains. This would also give a better 

idea of how exactly local tuning gets its advantage (in the case of the assembly oper-

ator) or fails to exploit the full performance of the machine (with the BLAS routines). 
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Information derived from such an analysis would also, feed into the search for more 

precise heuristics (see below). 

11.2.5.2 More architectures 

Provided that the Aldor compiler and run-time system could be ported, transferring the 

experiments to other architectures ought to be straightforward. This would provide in-

teresting further results in terms of the variability across machines of what constitutes a 

good fusion partition, and the ability of search to cope with this. Other x86 compatible 

architectures could also be included. 

A comparison against hand tuned code (such as the BLAS routines) on a machine 

that does not require the use of short vector instructions to achieve reasonable floating-

point performance would also prove interesting. In some sense it is the counterpart of 

studying how well the optimisations do when vectorisation is added for architectures 

that require it (see below). 

11.2.5.3 More LDGs 

It would be nice to extend this work with further experiments on different LDGs. How-

ever, for this to be relevant to Aldor (or languages like it), the benchmarks would have 

to be taken from programs written in a natural style rather than standard benchmarks 

transplanted from C or Fortran. This puts such an extension well outside the scope 

of an individual project, as multiple different benchmarks would be necessary, and is 

likely to require the effort of a community of developers. An alternative would be to 

do some experiments on randomly generated synthetic LDGs. 

Having more LDGs would also allow a better evaluation of the technique against 

the greedy approach (and to a lesser extent max-cut mm -flow). 

11.2.6 Other optimisations 

Searching for a good fusion partition targets locality between loops, and this approach 

suffers from Amdahl's law when one loop takes 70% of the total execution time, as 

in the case of the Wilson problem. However, optimisation of the delta term (or general 
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code for that matter) with low-level code generation techniques, such as vectorisation, 

was considered a lower priority in the context of this thesis due to the following rea-

sons: 

The issue is not really specific to this type of language in any way, but rather to 

a particular architecture. The same problems arise when compiling from e.g. C. 

. This would be hard if not impossible to do in a portable way fora compiler that 

achieves its portability by generating standard C. 

Nonetheless, the interaction of iterative collective loop fusion with other optimisations, 

especially vectorisation if it is necessary (and possible) and the stencil tiling outlined 

in Appendix B, would be interesting indeed2. 

Improving the performance of loops resulting from iterative collective loop fusion 

would also be interesting. The additional optimisations would include at least software 

pipelining, loop unrolling and software prefetching, although there may be interaction 

with others as well (such as tiling, padding etc). A related subject is the interaction of 

inlining with collective loop fusion, given that it is likely to be used as a preprocessing 

step for LDG recovery. The most natural way of incorporating other optimisations 

would be to apply the methodology of iterative optimisation to give portability etc (see 

the literature outlined in Section 8.3.2). 

11.2.7 Other languages 

Iterative collective loop fusion as a technique in itself could be ported for use with other 

languages or in other settings. For use with more traditional languages such as Fortran 

or C, the standard style of codes will probably mean that preprocessing techniques 

such as scalar expansion and loop distribution will be necessary to prevent artificial 

dependencies in the LDG, and that the total achievable benefit will be less (as some 

fusion/contraction has already been done by hand), as mentioned in Section 7.3.4. 

Porting to languages that have similar modularity issues to Aldor, such languages with 

array statements (e.g. Fortran 90), or object oriented languages (e.g. C++), may avoid 

2Especially in the wider context of QCD simulations, where techniques such as red-black precondi-
tioning put even greater emphasis on the efficiency of the stencil routine. 
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most of these problems. The main advantage of porting would be instant access to a 

large number of benchmarks and machines to test the technique on. 

Another application for the technique is in the setting of automatic loop based 

parallelisation, which occurs frequently in the literature. Loop fusion is used here 

primarily to reduce the overhead of barrier synchronisation between loops. In this 

instance, contraction would only be applied to the subsection of each array that belongs 

to each processor, rather than reduction to a single scalar. 



Appendix A 

Conjugate Gradients and the Lanczos 

Type Product Methods 

This appendix gives the relationship of the framework used in this thesis to some other 

members of the family of Krylov subspace based iterative solvers - namely conjugate 

gradients, biconjugate gradients, and the Lanczos type product methods. 

A.1 Conjugate gradients 

Arguably the most popular iterative method for Hermitian operators is CG (conjugate 

gradients), and one of the most popular short recurrence methods for non-Hermitian 

operators is its two-sided cousin, BiCG. The CG (BiCG) algorithm is very closely 

related to the algorithm given in Chapter 3 based on the Hermitian (two-sided) Lanczos 

process, the Galerkin condition and the LU decomposition, but the Krylov basis is 

generated by coupled two-term recurrences rather than three-term recurrences. 

Because of this, CG and BiCG don't easily fit into the framework that is developed 

in this thesis. What were previously separate pieces, that is the generation of the basis 

vectors, the matrix decomposition and the updating of the search vectors, are now 

inextricably coupled. This is why it is forsaken in favour of a less traditional approach. 

It is also possible to generate the Krylov basis using linked two-term recurrences 

in the modular version, but this comes at the cost of extra vector storage and manipula- 
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tions. In addition, the linked two-term recurrences implicitly make use of the Galerkin 

condition and consequently will break down if it cannot be satisfied at every step for 

an indefinite operator. This becomes an issue if a modular algorithm is developed that 

avoids this problem with the Galerkin condition by modifying the components from 

the projected system onward, as the potential for breakdowns is re-introduced in the 

Krylov space generating component. 

A.2 The Lanczos type product methods 

The original Lanczos type product method was CGS introduced by Sonneveld [81], 

and most other product methods are variations upon this theme. The algorithm is 

derived from BiCG by considering the polynomials in A generated by the recurrences 

and algebraically manipulating (squaring) them. It fundamentally relies on the coupled 

two-term recurrences of BiCG. 

In CGS, the Hermitian transpose of the operator is not used, and this is handy if the 

operator is both non-Hermitian and its Hermitian transpose is expensive or impossible 

to generate. Although we still generate the same scalars, we no longer explicitly gen-

erate the residual vectors or the search vectors from BiCG, and so some other method 

of recovering the candidate solution must be found. The approach in CGS is to take 

the vectors generated by the squared recurrence for the BiCG residual vectors, and im-

pose them as the residual vectors of the algorithm by updating the candidate solution 

appropriately. Note that this doesn't require the inverse of the operator because of the 

way in which the CGS residuals are generated, which in turn relies on its derivation 

from coupled two-term recurrences and the Galerkin condition. 

Imposing the result of the squared BiCG residual recurrence as the residual of the 

CGS algorithm means that it no longer obeys any simple orthogonality condition, and 

is not directly related to any decomposition of the projected matrix from the Arnoldi 

relations. The residual is now taken from a Krylov subspace that is twice the size of 

the original BiCG Krylov subspace, and it is reasonable to assume that the approximate 

solution generated in this manner might be a better one - put another way, the work 

done in applying the operator a second time is not "wasted" in that it goes toward 
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updating the residual, in contrast to the application of the transpose in BiCG. However, 

the scalar factors for the CGS Krylov space are still directly related to those taken from 

BiCG. 

For two-sided methods, there is no particular reason why the polynomial for the 

dual Krylov space has to be the same as that of the original one, as long as the scalars 

that the algorithm relies on can still be derived. For BiCG, this is irrelevant, as the only 

function of the dual space is to produce the scalars, and so changing the polynomial 

would make no material difference. For a product method though, the dual polynomial 

is used to determine the residual, and so changing it changes the approximate solution 

produced by the algorithm. This is a degree of freedom that can be used to improve 

the approximation generated, and the many follow-ups to Sonneveld's work consist of 

various methods of defining the dual polynomial, such that the necessary scalars can 

still be produced and the residual vector is hopefully better in some sense. In practice, 

an appropriate product method will usually provide a significantly better approxima-

tion for the same number of operator applications, and this is important as the cost of 

the the operator application is almost always the single largest cost in the algorithm. 

Because of the way in which they are derived, the Lanczos product type methods 

do not fit into the framework used in this thesis. It is possible to take the two-sided 

Lanczos process and square it, but in order to be able to calculate the search vectors 

and the approximate solution in the same way as before, it is also necessary to calculate 

the original Krylov basis, and this means using an extra application of the operator per 

iteration step [21]. Hence, there is little point in having this extra expense unless the 

Hermitian transpose of the operator is not available, and there is some good reason 

for not wishing to use one of the standard product methods. It would be interesting to 

develop a framework for the product methods where the pieces constituted recurrences 

for certain polynomials, but that will certainly have to be left to future work. 

A.3 Functional parallelism and product methods 

As mentioned in Section 3.3.3.1, the vector sequences in the two-sided Lanczos pro-

cess evolve in parallel, whereas the applications in a product method are sequentialised 
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due to the presence of inner product operations in between them. While the product 

methods usually take many fewer steps (operator applications) to converge than the 

two-sided methods, they may not converge twice as fast. Indeed, the choice of itera-

tive method to use for a non-Hermitian problem is usually considered to be problem 

dependent and very much an open question [73, 41]. 

This induces an interesting trade-off. On a large enough parallel machine, where 

the vector sequences from the two-sided Lanczos process could be computed in paral-

lel, one step of a two-sided process. ought to take roughly half the time of one step of a 

product method. Although a two-sided method is likely to take more steps to converge 

than a product method, it may converge quicker in terms of wall clock time. It ought 

to be noted however, that the margin of difference between a two sided method and 

a product method is likely to be small (i.e. a product method may take almost half 

the number of iterations of a two sided method) [34], and thus the benefits of using a 

parallel two-sided method may not be great compared to the amount of extra comput-

ing resources required. Nonetheless, exploitable parallelism should be noted under the 

assumption that available compute resources tend to get cheaper very quickly, and it is 

easier to exploit them than to develop new algorithms. 

The above reasoning translates to sequential machines with a cache hierarchy due 

to temporal locality. The lack of synchronisation points between the application of 

operators in two-sided methods means that they can be overlapped, allowing the re-

use of data for an operator with a concrete representation that is common to both the 

original and adjoint representations. Where an operator has no concrete representation, 

there is still an advantage in terms of greater flexibility to re-order computation: 



Appendix B 

Re-use in theOperator Application 

This appendix briefly summarises "stencil tiling" in the context of the operators con-

sidered in Chapter 6, and a cache based architecture. Re-use in a 3D stencil operation 

(for a pure stencil) is covered in [71] (along with techniques for choosing tiles sizes 

for direct mapped caches based on simple models). The idea can be illustrated by con-

sidering vectors that represent some regular three-dimensional cube composed of two 

dimensional slices, where the loop that calculates the stencil is constructed to traverse 

the sites in the three-dimensional cube slice by slice. Calculating one slice of the result 

vector requires at most three neighbouring slices of the source vector. 

The following simplifications are used for the discussion: 

. The cache allocates space for writes - this assumption is conservative, as a write-

allocate policy uses more cache than no-write-allocate. 

There are no associativity conflicts - this is not a conservative assumption, but 

only requires 4-way, set associativity to guarantee the premise (in the absence of 

self-conflicts within a slice due to awkward grid dimensions). It may be satisfied 

for 2-way set associativity depending on the degree of overlap between address 

ranges, and is least likely for direct mapped caches. 

The cache eviction policy is FIFO - this assumption is not as conservative as 

random replacement, but it makes the analysis easier. 
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. The points in a slice can be traversed in an arbitrary order - this is conservative, 

and requires that all of the slices must fit in the cache simultaneously. 

Possible effects of cache line size are ignored, i.e. no unwanted data is ever 

loaded into the cache. This is not fully conservative, but it is reasonable to 

expect the addresses within a given slice to be consecutive, which only leaves 

very small effects at its beginning and end. Cache line effects may also make 

the reloading of partial data from a site more expensive than necessary if the 

data has been evicted from the cache. However, this is only relevant for missed 

opportunities for re-use of SU(3) matrices from the Wilson operator, as in other 

cases all data is used from a site, and would have to be loaded anyway (see later). 

Boundary conditions are ignored. 

All possible re-use is captured provided the four entire slices in use can fit simultane-

ously into the cache. If not, locality can be improved by dividing the cube along the 

axis perpendicular to the slices and changing the problem into computing the applica-

tion of the stencil for successive subsections of the cube, the dimensions of which are 

chosen to ensure that four slices thereof will fit into cache. 

131 	3D Pure Stencil with One Level of Cache 

In the general case where sites in the vector have size s bytes and the machine has a sin-

gle level of cache of size c bytes, given a cube of size n, tiling improves locality when 

4n2s> c. To keep the discussion simple, we require both vectors necessary to compute 

the stencil to fit into the next level of memory (of size m bytes) after cache, otherwise 

misses at that level of the memory hierarchy may dominate the overall performance 

characteristics of the program. This implies 2n 3s< m, and so: 

nc/2 < 2n3s 

nc<2m 
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showing that the memory must be 0(n) larger than the cache. As the size of the cache 

c grows, n grows like 0(/) and to satisfy the constraint m must grow like 0(c/). 

One possible way of extending this to systems with multi-level memory hierarchies is 

to consider each pair of adjacent levels separately using the same approach. 

The argument given above implies why re-use along only one axis of the space is 

considered important, as n would have to be much larger for a single line in the space 

(rather than a slice) to fill the cache and make tiling in two dimensions necessary. 

Additionally, the memory would have to be of size 0(n2) for the vectors to fit, and 

taken together these two factors suggest that the ratio of cache size to memory would 

rapidly become unrealistic. 

The cost of'not tiling when 4n2s> c is that (ignoring the extremes of the cube) 

all three slices of the source vector will have to be loaded to calculate the slice of the 

result due to,  the cache eviction policy. Each slice of the source, and therefore the 

whole vector itself, is loaded three times rather than one, thus missing a factor of two 

re-use. 

B.2 4D and Concrete Operators 

The idea outlined above can trivially be extended to four dimensional stencils, where 

three neighbouring cubes (3-cubes) of the total space (4-cube) must fit simultançously 

into cache, so tiling has an effect when 4n3s> c. Again the memory must be 0(n) 

larger than the cache, but for a given size of cache n will be smaller and thus the 

amount of memory needed to hold the entire problem at the level after the cache will 

be smaller. A related point is that tiling will have an effect at much lower values of n. 

The discussion can be extended to the Wilson problem by also considering the 

space requirements and re-use of the operator on a per site basis. The gauge field 

associates four SU(3) matrices with each site in the space. However, the way the gauge 

field is touched differs from the way that the vector is accessed, where the calculation 

for a given 3-cube of the vector touches all the information from the sites in the current 

and both neighbouring 3-cubes. In contrast, for a given axis of the 4-cube one SU(3) 

matrix associated with the current site and one matrix associated with the site one 
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step backward along that axis is used. To calculate a 3-cube of the target vector thus 

requires all the SU(3) matrices associated with the sites in the current cube plus one 

matrix for each site in the previous 3-cube (and none of the matrices from the sites in 

the next 3-cube). That is, each SU(3) matrix is only used twice. 

Given the assumed cache policy, two full 3-cubes of the gauge field must fit into 

memory in addition to the vector cubes to avoid any reloading, i.e. 4n3s + 2n3s0  < c, 

where s is the per site size (in bytes) of vector information and s0  is the per site size 

of the operator (i.e. four times the size of an SU(3) matrix). Failure to tile when n 

becomes large enough requires the vector to be reloaded as before, but only requires 

the gauge field to be loaded 11  times rather than once, as only the re-use along one 

direction of one axis of the 4-cube (i.e. one SU(3) matrix per site) is lost. 

13.3 Operator Tiling in Practice 

To give some idea of what this means in practice, consider the simple 3D operator 

problem with complex double float elements at each site (s is 16 bytes), and a machine 

with two megabytes of cache (c is 2 x 220  bytes). Tiling becomes important when: 

4n2 x16 > 2x220  

n > 	l82 sites (approx) 

which is already a large factor, although not unreasonably big (requiring the memory 

to be at least nc = 182MB large). However, the super linear growth in memory 

requirement suggests that as cache sizes grow the effects of misses at the next level of 

memory hierarchy may come into play. 

For 4D problems, the threshold for n will be lower due to the cubic term. Because 

of the gauge field and the fact that each site in the vector is larger, the threshold of n 

for the Wilson problem will be much lower. 



Appendix C 

Categories 

This appendix contains verbatim Aldor code for the category hierarchy discussed in Chapter 5. 

One macro definition1  is used, namely SI to stand for Singlelnteger from axilib. 

CA 	Linear Algebra Categories 

The convention for naming parameters throughout this section is straightforward. The valua-

tion and ground field parameters are named as such, and capital letters are used to stand for 

linear spaces (i.e. domains of vectors). 

define Orderedtield: Category == join (Field, OrderedRing); 

define FieldwithValuation(ValuatiOn: OrderedField) 	Category == Field with.  

valuation: % -> Valuation; 

coerce: Valuation -> %; 

define Module(R : Ring) : Category == AbelianGroup with 

* : )R, %) -> %; 	 ++ Left multiplication by a scaler 

* : )%, R) -> %; 	 ++ Right multiplication by a scalar 

default 

(v : %) * (a : R) : 	== a * v 

Tor a description of Aldor macros, see [93] 
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define LinearSpace)GroundField : Field) : Category == Module (GroundField) with 

/ 	(%, GroundField) -> %; 	#+ Division by a scalar 

default 

(v : %) / (a 	GroundField) 	== (1/a) * V 

define LinearAlgebra(GroundField 	Field) 	Category 

== LinearSpace(GroundFjeld) with Monoid; 

define LinearSpaceWithDual(GroundField 	Field, 

DualSpace : LinearSpace(GroundField)) 	Category 
== LinearSpace(GroundFjeld) with 

* :,(DualSpace, %) -> GroundField; 	++ apply a linear functional 

apply 	(DualSpace, %) -> GroundField; 

default 

apply(a : DualSpace, b 	%) : GroundField == a * b 

define Normedtinear Space (Valuation : OrderedField, 

GroundField 	FieldWithValuation)Valuation)) : Category 

== 

 

Join (LinearSpace(Valuation) , LinearSpace(Groundpield)) with 

norm 	% -> Valuation; 

norm 	% -> GroundField; 

define NormedLineaSpacewithnual(Valuatjon 	OrderedField, 

GroundField : FieldWithValuation(Valuation) 

DualSpace NormedtinearSpace(Valuation, 

	

GroundField)) 	Category 
== 

 

Join (NorrnedtinearSpace(valuation, GroundField) 

LinearSpaceWithDual(GroundField, DualSpace)) 

define InnerProductSpace(GroundField 	Field) 	Category 

== LinearSpaceWithDual(GroundField, %) with; 
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define NorinedlnnerProduct Space (Valuation : OrderedField, 

GroundField : FieldwithValuation(ValUatiOfl)) 	Category 

== Join(NormedtinearSpacewithDual(ValuatiOn, GroundField, %) 

InnerProductSpace(GroundField) ) with 

norinsq 	% -> Valuation; 

normsq 	% -> GroundField; 

default 

import from GroundField; 

norinsq(a : %) 	GroundField == a * a; 

norinsq)a 	 Valuation == valuation(norxnsq a); 

define GroupAction(GroundField 	Field, 

V LinearSpace)GroundField)) : Category 

== Group with 

apply 	)%, V) -> V; 

V) -> V; 

V) -> V; 

default 

(A 	%) \ (v : V) : V == inv(A) * v; 

define LinearMapping(GroundField : Field, 

V : LinearSpace(GroundField), 

W : LinearSpace)GroundField)) : Category 

== with 

* : (GroundField, %( -> %; 

* : (%, GroundField) -> %; 

(%, GroundField) -> %; 

* 	W) ->V; 

apply : (%, W) -> V; 

explicitMapping 	% -> (W -> V) 

++ multiplication by a scalar 

++ division by a scalar 

++ action on a vector 

++ create a general function 

++ ('forget' some type info) 

default 

(A 	%( * (a 	GroundField) 	== a * A 

(A 	%) / (a : GroundField( : 	== (1/a) * A 

apply(A : %, w : W) : V == A * w 
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explicitMapping(a : 	: W -> V == (u 	W( : V +-> a u; 

define LinearOperator(GroundFjeld 	Field, 

V : LinearSpace (GroundField(( 	Category 
== LinearMapping(GroundField, V V( with 

* 	(%, %( -> (V -> V(; 	++ allow composition of operators by 'forgetting' 

++ type info - doesn't require the category to 

++ be a proper monoid 

default 

(a 	%( * (b : %( 	(V -> V) == 

	

(v 	V( 	V +-> explicitMapping(a( explicitMapping(b( v; 

define LinearOperatorwithDual(GroundFjeld : Field, 

V : LinearSpace (GroundField( 

W 	LinearSpaceWithDual(GroundField, V(( : Category 
== Joifl(LinearOperator(Groundpield, V(, LinearOperator(GroundField, W() with 

V( -> (W -> GroundField); ++ allow the action on the dualspace to 

++ be reduced to an explicit (lazy) function 

default 

(A : %( * (v : V( 	(W -> GroundField( == (w : W( 	GroundField +-> { v(A w(; 

define Linea rOperatoronlnnerproduct Space (GroundFjeld : Field,, 

V 	InnerProduct Space (GroundField(( 	Category 
== LinearOperatorwithDual(GroundField, V, 

V pretend LinearSpaceWithDual(GroundField, V(( with 

adjoint 	% -> %; 

* 	(V, %( -> V; 	 ++ multiply by adjoint 

bilinearForm : % -> (V, V( -> GroundField; ++ define a bilinear form by 

++ currying over the operator 

default { 

(v 	V( * (A 	%( : V == adjoint (A) * 

bilinearForm(A : %((v : V, w 	V( : GroundField == w (A v(; 
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define HermitiantinearOperatOr(ValUatJ.On 	OrderedField, 

GroundField 	FieldwithValuat±Ofl(ValUatiOfl), 

V : NormedlnnerProductSpace(ValuatiOn, 

GroundField)) 	Category 

== LinearOperatorOnlnnerProductSpaCe(GrOUndField, V) with 

quadraticForm 	-> V -> Valuation; ++ define a norm-like quadratic form 

++ by currying over the operator 

default 

quadraticForm(A : %) (v : V) : Valuation == 

import from GroundField; 

valuation (bilinearForm(A) (v, v) 

adjoint(A : %( : 	A; 	++ operator is self adjoint 

(V : V) * (A 	%) : V == A V; 

define PositiveDefiniteHermit±anLinearOperator(ValUation 	OrderedField, 

GroundField 	FieldWithValuation(Valuation(, 

V : NormedlnnerProductSpaCe(ValUatiOfl, GroundField)( 	Category 

== HermitianLinearOperator (Valuation , GroundField, V( with 

innerproduct : % -> (V. V( -> GroundField; ++ HPD matrix defines a proper 

++ inner product 

norm 	% -> v -> Valuation; 	 ++ which in turn defines a norm 

default 

innerproduct(A 	%).(v 	V. w 	V( : GroundField 

bilinearForm(A((v, w); 

norm(A : %)(V : V) 	Valuation == quadraticForm(A( (v( 

define opera torAlgebra(GroundField : Field, 

V : LinearSpace(GroundField() : Category 

== Join(LinearAlgebra(GrOundField( 

LinearOperator(GroundField, V() with; 

define IndexedVector(GroundField 	Field( : Category 

== LinearSpace(GroundField( with 

index 	(%, SI( -> GroundField; 

apply : (%, SI) -> GroundField; 
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canonicalBasisVector : (SI, GroundField) 

unitCanonicalBasisvector : SI -> %; 

default 

apply(v 	%, i 	SI) 	GroundField == index(v, i); 

import from GroundField; 

unitCanonicalBasisVector(i : SI) 	% == canonicalBasisVector(i, 1); 

define FinitelndexedVector(GroundField 	Field) : Category 

== LinearSpace)GroundField) with 

size 	% -> SI; 

define Matrix (GroundField : Field, 

V LinearSpace(GroundField(, 

W : IndexedVector(GroundField)) 	Category 

== LinearMapping(GroundField, V, W) with 

apply 	(%, SI) -> V; 

column 	(%, SI) -> V; 

default 

apply (A : %, ± 	SI) : V == column (A, i); 

define SquareMatrix)GroundField 	Field, 

V : IndexedVector(GroundField)) : Category 

== Join )LinearOperator)GroundField, V) 

Matrix (GroundField, V, V)) with 

apply 	(%, SI, SI) -> GroundField; 

define UpperPriangularMatrix)GroundField : Field, 

V : IndexedVector(GroundField)) : Category 

== SquareMatrix)GroundF±eld, V) with; 
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define TriDiagonalMatrix(GroundField : Field, 

V : IndexedVector(GroundField)) 	Category 

== Join(LowerHessenbergMatrix(Groundrjeld, V) 

UpperHessenbergMatrix(GroundField, V)) with; 

The use of the pretend keyword in the definition of the linear operator on an inner 

product space is due to the problems with typing the InnerProductSpace category as 

a LinearSpaceWithDual of itself, as discussed in Section 5.3.1.1. 

The explicitMapping functions are a way of forgetting type information, by turning 

objects into general functions. These functions can exist because losing information 

and turning what may be a strict function into a lazy object is never a problem. The 

converse is more problematic, that is having a constructor for a category that takes the 

general function and then pretends it is e.g. a linear operator. There may be no way 

of checking a function for a given property, or such a check may be horrendously inef-

ficient, and expanding a lazy object into a strict representation may not terminate etc. 

Similar reasoning is the basis of the philosophy of never including constructors into gen-

eral categories, applied throughout the code - instead, they are attached as anonymous 

extensions when typing a specific domain. 

Linear mappings/operators are not vector spaces, as some conceivable domains that one 

may wish to type using these categories do not have that structure, such as a domain 

of nonsingular matrices. Similarly, the group action category is not a linear space as 

the group may not be closed under linearity. However, the operator and group action 

categories share the notion that they can act on some other type of object, and the linear 

mappings category introduces the functions for linearity by hand. Introducing more 

roots into the hierarchy such as generic mapping, action, and linear categories would 

help clean this up. An affine space category would also be a useful addition. 
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C.2 Problem Specific Categories 

Due to the large number of parameter domains to categories in this section, including linear 

spaces and domains of matrices, the naming conventions are different to the previous section. 

The domain of coefficients for the projected linear operator, ground field and valuation are 

labelled directly as such. The matrix of Krylov space basis vectors, and the domains of ele-

ments used to construct the projected system and search recurrence are labelled with a name 

composed of a letter related to those used in Chapter, 3 (with lowercase letters for domains of 

vectors and uppercase letters for domains of matrices) and the suffix Dam. In the instance of 

multiple identifiers in Chapter 3 being used for elements of the same domain (e.g. the vectors 

y and z)  one of the labels is chosen arbitrarily. 

define KrylovSpace(ValuatiOn : Orderedpield, 

GroundField : FieldWithValuatiOfl)ValUatiOn) 

Coeffs : FieldWithValuation)ValuatiOfl) 

yDom IndexedVector(Coeffs) 

Vector 	Join (LinearSpace (Coeffs) 

NorrnedLinearSpace(Valuation, GroundField)) 

Operator 	LinearOperator(GroundField, Vector), 

VDom : Natrix(Coeffs, Vector, yDom), 

HDom 	UpperHessenbergMatrix(COeffS, yDom) 

Category 

== with 

basis : % -> VDoin; 

coefficients : % -> HDom; 

operator 	% -> Operator; 

startVector : % -> Vector; 

define DirectLUSolve(GroundField : Field, 

zDom : IndexedVector(GroundField) 

HDom : tlpperHessenbergMatrix(GrOufldField, zDom), 

UDom UpperTriangularMatrix(GrOUfldField, zDom)) 	Category 

== with 

directLU : (HDom, zDom) -> (UDoIn, zDom); 

define DirectQRSolve(GroundField 	Field with { sqrt 	% -> % }, 

zDom IndexedVector)GroundField), 

HDom : UpperHessenbergMatrix(GroundField, zDom), 

RDom UpperTriangularMatrix(GroundField, zDom)) 	Category 

== with 

directQR : (HDom, zDom) -> (ROom, zDom, zDom); 
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define LongRecurrenceKrylovSpace(Valuation : OrderedField, 

GroundField FieldwithValuation(Valuation( 

Vector : NormedlnnerProductSpace(Valuation, GroundField( 

Operator 	LinearOperatorOnlnnerProduct Space (GroundField; 

Vector) 

yDom : FinitelndexadVector(GroundField) 

VDom : Hatrix(Groundpield, Vector, yDom), 

HDom : tjpperHessenbergMatrix(GroundField, yDom) 

Category 

== KrylovSpace (Valuation, 

GroundField, 

GroundField, 

yDom, 

Vector 

Operator, 

VDoin, 

HDom( with 

orthonormalKrylovBasis : (Operator, Vector) -> %; 

default 

iterativeSolve(correction : (HDom, Valuation) -> yDom) 

(A : Operator, 

X Vector, 

b : Vector) : Vector == 

import from VDom; 

if x = 0 

then r : 

else r 	b - A x; 

rNorm : Valuation 	norm r; 

K 	orthonormalKrylovBasis(A, r/rNorm); 

H := coefficients(K(; 

V := basis (K); 

y : correction(H, rNorm); 

X : x + V y; 

return x; 
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define ShortRecurrenceKrylovSpace(Valuation 	Orderedpield, 

GroundField : FieldWithValuation(Valuation) 

Coeffs 	FieldwithValuation(ValuatiOfl) 

yDom IndexedVector(Coeffs) 

Vector : Join(LinearSpace (Coeffs) 

NormedLinearSpace(Valuation, 

GroundField) 

with { dispose! : %-> () ; 

Operator : LinearOperator(GroundField, Vector), 

VDom : Matrix(Coeffs , Vector, yDom) 

HDom UpperHessenbergMatrix(CoeffS yDom) 

Category 

== KrylovSpace(Valuation, GroundField, Coeffs, yDom, Vector, 

Operator, VDom, HDom) with 

iterativeSolve : ((Operator, Vector) -> 

(HDom, VDom, Valuation) -> (VDom, SI -> Boolean)) -> 

(Operator, Vector, Vector) -> 

Vector; 

default 

iterativeSolve(krylovBasis 
	

(Operator, Vector) -> 

correction 
	

(HDom, VDom, Valuation) 

-> )yDor 
	

VDom, SI -> Boolean)) 

(A : Operator, 

X : Vector, 

b : Vector) 
	

Vector = 

import from SI, VDom; 

if x = 0 

then r 	b; 

else 	:b - Ax; 

rNorm : Valuation 	norm r; 

K := krylov3asis (A, r/rNorm) 

H 	coefficients)K); 

V := basis (K); 

(z, P, lastlteration?) 	correction(H, V, rNorm); 

for ± in 1.. repeat 

xNew := x + z(i) * P(i); 

dispose! )x); x := xNew; 

if lastlteration?(i) then break; 

return X; 
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define ArbitraryBasisKrylovSpace(Valuation : OrderedField, 

GroundField 	FieldWithValuation)Valuation) 

Vector : NorrnedlnnerProductSpace(Valuation, GroundField) 

with { dispose! 	% -> )) }, 

Operator : LinearOperatorOnlnnerProductSpace(GroundField, Vector), 

yDoin : IndexedVector(GroundField) 

VDom 	Matrix)GroundField, Vector, yDorn), 

HDoxn 	BandedupperHessenbergMatrix)GroundField, yDoxn) 

Category 

== ShortRecurrenceKrylovSpace)Valuation, 

GroundField, 

GroundField, 

yDorn, 

Vector, 

Operator, 

VDom, 

HDorn) with 

incoxnpletelyOrthogonalKrylovBasis : SI -> (Operator, Vector) -> 

define BiorthogonalBasisKrylovSpace)Valuation 	OrderedField, 

GroundField : FieldWithValuation)Valuation) 

DualSpace 	NorrnedLinearSpace(Valuation, GroundField) 

with { dispose! 	% -> (); }, 

Vector NorinedLinearSpaceWithDual)Valuation, GroundField, DualSpace) 

with{ dispose! :%-> )) 

Operator 	LinearOperatorWithDual)GroundField, DualSpace, Vector), 

yDom IndexedVector)GroundField) 

VDom 	Matrix)GroundField, Vector, yDon), 

TDom 	TriDiagonalMatrix(GroundField, yDoin). 

Category 

== ShortRecurrenceKrylovSpace(Valuation, 

GroundField, 

GroundField, 

yDorn, 

Vector, 

Operator, 

VDom, 

TDoin) with { 

biorthogonalKrylovBasis : DualSpace -> (Operator, Vector) -> 

biStartVector : % -> DualSpace; 
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define RerinitianOperatorKrylovSpace(Valuation : OrderedField, 

GroundField : FieldwithValuation(Valuation), 

Vector : NormedlnnerProductSpace)Valuation, GroundField) 

with ( dispose! : %  

Operator : HermitianLinearOperator)Valuation, GroundField, Vector) 

yDom 	IndexedVector(Valuation) 

VDoIn : atr.ix(Valuation,Vector, yDom) 

TD0In : TriDiagonalMatrix)Valuation, yDom) 

Category 

== ShortRecurrenceKrylovSpace)Valuation, 

GroundField, 

Valuation pretend FieldwithValuation)Valuation) 

yDom, 

Vector 

Operator, 

VDoxn, 

TDom) with 

orthonormalKrylovBasis 	(Operator, Vector) -> % 

define SearchVectorRecurrence)Coeffs 	Field, 

zDorn : IndexedVector)Coeffs), 

Vector 	LinearSpace)Coeffs) 

VDorn : Matrix)GroundField, Vector, zDom), 

RDom 	BandedlipperTriangularMatrix(GroundField, zDom)) : Category 

== with 

recurrence: (V : VDom, ,R : RDom) -> VDoin; 

The type of a parameter to a category can be the union of a named category and an 

anonymous extension. This is used, for example, to provide the square root function 

necessary for computing Givens rotations used in DirectQRSolve, which is not pro-

vided by a generic Field. 

As mentioned in Chapter 5, it may be desirable to use a different type to represent the 

ground field of the general vector space and the coefficients of the projected matrix. 

This is captured by having both types as parameters to a general KrylovSpace, ensur-

ing that the vector space is also a linear space over the coefficient type, and using the 

derived categories to specify the type of the coefficients - i.e. either the ground field (for 

the biorthogonal or incompletely orthogonal methods) or the valuation domain (for the 
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Hermitian method). This means that the three derived categories do not have one of the 

parameters to the general short recurrence Krylov space category. When the coefficient 

type is the valuation (i.e. for the Hermitian method) the pretend keyword is used to 

assert that it is a field whose valuation is itself to circumvent the difficulty with incorpo-

rating this constraint into the type requirement for the valuation domain parameter. This 

is discussed in Section 5.3.1.1. 

. The dispose! function appears in the template algorithm contained in the short recur-

rence Krylov space category due to reasons discussed in Section 5.3.1.2. 



Appendix D 

Domains 

This appendix contains code extracts to further illustrate the design of various domains, in-

cluding those involved with the solver algorithms themselves (discussed in Chapter 5) and the 

implementations of the linear systems (discussed in Chapter 6). 

Unlike the categories in Appendix C, code in this appendix is abridged for conciseness. 

Some directives such as import and inline have been dropped, some functions (and re-

lated exports) have been omitted when they are similar to those already included or are simple 

enough to need no explanation, and the less important tests for common. errors have been re-

moved. Macro abbreviations1  are also used, namely: 

SI for Singlelnteger (same as Appendix C) 

. DF for DoubleFloat 

CDF for CoinplexDoubleFloat 

CV for ColourVector 

. SpF for SpinorField 

Another difference from Appendix C is that the code has been presented in its original form 

as opposed to that which is actually used for the experiments. More specifically, a number of 

alterations to the code that had to be made due to problems with the current compiler are not 

present. These include removing the parameterisation of certain domains, the manual unboxing 

of the result of the Wilson-Dirac stencil term (both due to problems with the mimer), unboxing 

'For a description of Aldor macros, see [93] 
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hints for reduction operations and workarounds for the lack of constant folding on double 

precision floatingpoint values, all of which are discussed in Section 9.3. One further detail that 

has been left out of the code is a workaround to sidestep the problems that the current compiler 

has with type-checking domains whose domain representation is a function. This applies to the 

"lazy" matrices/vectors: 

D.1 Scalar Domains 

extend DoubleFloat : Join(OrderedField, FieldW±thValuation(DF), Module (SI)) with 

sqrt 	% -> %; 

conjugate : % -> %; 

== add 

valuation( x : 	) 	DF == abs (x); 

coerce (a 	DF) 	== a pretend DF; 

conjugate(x 	%) 	% == x; 

sqrt(a 	: % == sqrt(a)$DoubleFloatElementaryFunctjoris; 

ComplexDoubleFloat 	Join (FieldWithValuation(DF), Module (SI)) with 

sqrt: % -> %; 

conjugate: %  

== Complex(DF) add ( 

Rep == Coxnplex(DF); 

valuation (a : 	: DF 

inag a = zero)) => abs(real a); 

real a = zero() => abs(iniag a); 

sqrt(norm(rep a((@DF; 

sqrt(a : %) : 	== per (sqrt(rep a)$DoubleFloatElementaryFunctjons(; 

conjugate (a : %) : 	== per (conjugate rep a); 

The valuation operation for complex double floats tests for the simple cases when 

either the real or imaginary parts are zero to avoid using the square root operation un- 
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necessarily, as it can reduce numerical stability. The valuation of a complex number 

with zero imaginary part occurs for inner products that implement the normsq to the 

valuation domain using the default method in NorrnedlnnerProductSpace. 

Both the double float and complex double float domains are extensions of the original 

domains taken from the axilib library. 

The conjugation operation for the double float domain exists to satisfy the requirements 

of the parameterised solvers, but does nothing. 

D.2 Wilson-Dirac Subdomains 

ColourVector 	Join(Module(SI) , InnerProductSpace(CDF)) with 

bracket : (CDF, CDF, CDF( -> %; 

apply : (%, SI) -> CDF; 

Rep == Record (a 	CDF, b 	CDF, C : CDF); 

apply(v : %, i 	SI) 	CDF == 

± = 0 => (rep v(.a; 

± = 1 => (rep v(.b; 

± = 2 => (rep v)-c; 

never; 

bracket (a : CDF, b : CDF, c : CDF( 	== per [a, b, c]; 

(a 	SI) * (v : %( : % == [a * v(0( , a * v(l( , a * v(2) 

(a 	CDF) * (v 	%) : 	== [a * v(0) , a * v(l) , a * v(2)] 

(v : %( + (w : %) 	== [v(0( + w(0( , v(1( + w(l) , v(2( + w(2( 

(v 	%) * (w : %( : CDF == 

v(0( * conjugate(w(0)( + v(l) * conjugate(w(l() + v(2) * conjugate(w(2(( 
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Spinor4 	InnerProductSpace)CDF) with 

apply 	)%, SI) -> CV; 

bracket : )CV, CV, CV, CV)  

} == !cid 

Rep == Record (a 	CV, b 	CV, c 	V, d : CV); 

bracket (a 	CV, b : CV, c : CV, d 	CV) : 	== per [a, b, c, d]; 

apply (S : %, i : SI) 	CV == { 

i = 0 => )rep s).a; 

± = 1 => )rep s).b; 

I = 2 => )rep s).c; 

± = 3 => )rep s).d; 

never; 

)a : CDF) * )v : %) 	% == [a * v)O) , a * v)l) , a * v)2) , a * v(3) 

)v : %) + )w : %) : % == [v (0) + w(0) , v)1) + w(l) , v)2) + w)2) , v)3) + w)3)l; 

)v 	%) * )w 	%) 	CDF == { 

v)O) * w(0) + v)l) * w)1) + v)2) * w)2) + v)3) * w)3); 

SU3 : GroupAct±on)CDF, CV) with 

bracket : )CDF, CDF, CDF, 

CDF, CDF, CDF, 

CDF, CDF, CDF)  

add 

Rep == Record)a: CDF, b: CDF, c: CDF, 

d: CDF, e: CDF, f: CDF, 

g: CDF, h: CDF, I: CDF); 

bracket)a: CDF, b: CDF, c: CDF, 

d: CDF, e: CDF, f: CDF, 

g: CDF, h: CDF, I: CDF) 	== per record)a, b, c, d, e, f, g, h, 1); 
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inv(M : %) 	== { 

A 	(rep M(; 

conjugate (A(a( ) 	conjugate (A(d( ( 	conjugate (A(g( 

conjugate (A(b) ) , conjugate (A(e) ) 	conjugate (A(h) 

conjugate(A(c)(, conjugate(A(f)) conjugete(A(i()1; 

(M : %) * (v 	CV) 	CV == { 

A 	(rep M(; 

A(a) * v(0( 	+ A(b) * v(1) 	+ A(c( * v(2( 

A(d( * v(0( 	+ A(e( * v(1( 	+ A(f) * v(2( 

A(g( * v(0( 	+ A(h) * v(1) 	+ A(i) * v(2)1; 

(M 	%) \ (v 	CV( 	CV == 

A := (rep M(; 

conjugate(A(a)( * v(0) 	+ conjugate(A(d(( * v(1( 	+ conjugate(A(g() * v(2), 

conjugate(A(b(( * v(0) 	+ 	conjugate(A(e(( * v(1( 	+ conjugate(A(h)) * v(2), 

conjugate(A(c(( * v(0) 	+ conjugate(A(f)( * v(1) 	+ conjugate(A(i)) * 

Projector : with 

gammalpos 	: (SU3, Spinor4( -> 	Spinor4; 

gammalneg (SU3, Spinor4( -> 	Spinor4; 

gamxna4pos 	: (SU3, Spinor4) -> 	Spinor4; 

gamina4neg (SU3, Spinor4) -> 	Spinor4; 

i ==>complex(0.0, 1.0); 

gamina4pos (U : SU3 s : Spinor4) : Spinor4 == 

uO 	U * (s (0) + i * s (2)) 

ul 	U * (s (1) - ± * s (3)) 

return [u0, ui 	(-i) * uO, ± * ui]; 

gamina4neg(U 	SU3, S : Spinor4) : Spinor4 == 

uO 	U \ (s (0) - ± * s(2); 

iii 	U \ (s(1) + ± * s(3)); 

return [uO, ui i * uO, (-i) * ul]; 
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In keeping with the rest of the code, constructors (here presented as bracket functions) 

are added in anonymous category extensions. 

Among the missing details are the packed array functions that are used by the SpinorField 

domain, and the 0 element for the linear spaces. 

The subdornains (and the vector and operator domains that use them) are not param-

eterised. It may be useful to introduce some degree of parameterisatidn, for example 

with the aim of being able to use the same domains for a different gauge theory (which 

would involve different size gauge matrices and colour vectors etc). However, other 

forms of parameterisation may be less meaningful. For instance, it is less obvious how 

to parameterise over the scalar domain. 

D.3 Vector and Operator Domains 

Vector3D 	Join )NormedlnnerProduct Space )DF, CDF) with 

apply : )%, SI) -> CDF; 

apply : )%, SI, SI) -> CDF; 

set 	: (%, SI, CDF) -> CDF; 

Rep == PackedArray(CDF); 

dim ==> xDimension * yDimension * zDimension; 

set !)v: %, 1: SI, a: CDF): CDF == set !)rep v, i, a); 

apply (v: %, i: SI): CDF == apply (rep v, i); 

apply)v : %, i : SI, mu : SI) : CDF == 

latticeDimensions : SI == 3; 

pointsPerLatticeDim : SI == 2; 

entriesPerSite : SI == latticeDimensions * pointsPerLatticeDim + 1; 

centre : SI == )entriesPerSite quo 2) + 1; 

jump : SI == entriesPerSite; 

index := offsetTableGlobal))juinp * )i-1)) + centre + mu); 

return )rep v) )index) ; 
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(x: CDF) * (a:  

result : 	:= new(); 

for ± in l..dirn repeat result(i) := x*a(i);  

result 

(a: %) + (b: %) : 	== { 

result : % := newH; 

for ± in 1.. dim repeat result (i) := a(i) + b(i) 

result 

(v: %) * (w: %) : CDF == 

ip : CDF := 0; 

for ± in l..dim repeat ip := ip + v(i) * conjugate w(i); 

ip 

normsq(a: %): CDF == V * 

norm(a: %): CDF == sgrt(normsq(a)@CDF); 

norxn(a: %) : DF == valuation (norm(a)ICDF); 

SimpleOperator3D : LinearOperatorOnlnnerProductSpace(CDF, Vector3D) 

Rep == Record(kappa : CDF); 

dim ==> xDimension * yDimension * zDimension; 

apply(A : %, v : Vector3D, ± : SI) : CDF == 

r := v(i, 1) + v(i, -1) + 

v(i, 2) + v(i, -2) + 

v(i, 3) + v(i, -3) 

- 6*v(i);  

return rep(A).kappa * 

(A : %) * (v : Vector3D) : Vector3D == 

u : Vector3D := new)); 

for i in l..dim repeat u(i) := apply(A, v, i); 

return u; 

adjoint(A : %) : % == per record (conjugate (rep A) kappa) 
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The simple 4D operator is a simple generalisation of the one given above. 

Constructor and destructor functions (new and dispose!) have been left out as they are 

very simple (they both directly call equivalents from the underlying domain representa-

tion). 

The grid dimensions (xflimension, yDimension etc) used by the vector and operator 

domains are lexically scoped constants. This scheme illustrates one approach to the 

problem of permitting symbolic constants whilst still being able to prove the conforma-

bility of loops from separate domains, as discussed in Section 9.1.2. A simpler scheme 

would be to require loop dimensions to be known compile-time constants, in which 

case proving conformability is trivial. The offset table (of fsetTableGlobal) is also a 

lexical variable. 

Rather than writing multiple loops, vector/operator functions could be written in terms of 

higher order functionals such as map etc. However, the loops are already so concise that 

not much would be gained in terms of presentation, and implementing any functionals 

themselves as loops leads to the same FOAM code after miming, so the differences are 

marginal. 

The simple operators support an explicit adj oint operation as it is cheap, unlike, for 

example, explicitly taking the adjoint of an element from the Wilson-Dirac domain. 

SpinorField : Normedlnnerproduct Space (DF, CDF) with 

apply : (%, SI) -> Spinor4; 

apply : (%, SI, SI) -> Spinor4; 

set! : )%, SI, Spinor4) -> Spinor4 

== add 

Rep == PackedArray(Spinor4); 

dint ==> tDimension * xDiinension * yDimension * zDilnension7 

set! (v: %, i: SI, a: Spinor4): Spinor4 == set! (rep v, i, a); 

apply(v: %, i: SI): Spinor4 == apply(rep V 

apply(v : %, i : SI, mu : SI) : Spinor4 == 

latticeDimensions : SI == 4; 

pointsPerLatticeDiin : SI == 2; 

entriesPerSite : SI == latticeDimensions * pointsPerLatticeDim + 17 
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centre 	SI == (entriesPerSite quo 2) + 1; 

jump : SI == entriesPerSite; 

index := offsetTableGlobal))jump * (i-i)) + centre + mu); 

return )rep v))index); 

)v: %) * )w: %) : CDF == 

ip 	CDF 	0; 

for i in 1.. dim repeat ip := ip +v(i) * w)i) 
ip 

NaturallyOrdetedWilsonDiracOperator 	LinearOperatorWithDual)CDF, DualSpF, SpF) 

== add 

Rep == Record (kappa : CDF, gaugeField 	PackedArray(StJ3) ); 

dim => tDimension * xDimension * yDimension * zDimension; 

apply (U 	PackedArray )SU3) 	± : SI, mu 	SI) : St13 == 

latticeDimensions 	SI == 4; 

pointsPerLatticeDim : SI == 2; 

entriesPerSite 	SI == latticeDimensions * pointsPerLatticeDim + 1; 

centre 	SI == (entriesPerSite quo'2) + 1; 	c 

offsetJump 	SI == entriesPerSite; 

gaugeJump := latticeDimensions; 

mu > 0 => index := (gaugeJump * )jl)) + mu; 

mu < 0 => 

lookup : 	)offsetJump * )i-1)) + centre + mu; 

index := gaugeJump * offsetTableGlobal)lookuP) - mu; 

never; 

return U)index); 

apply)A : %, v : SpF, i : SI) 	Sp±nor4 == 

U 	)rep A) .gaugeField; 
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k 	rep(A).kappa; 

r 	Spinor4 := zero(); 

r 	r + gamnialpos)U)i, 1), v(i, 1)) 

+ gaeimalneg)U)i, -1), v(i, -1)); 

r 	r + gainma2pos)U(i, 2), v(i, 2)) 

+ garnna2neg(U)i, -2), v(i, -2)); 

r : r + gainma3pos)U(j, 3), v(i, 3)) 

+ gamina3neg)U(i, -3), v(i, -3)); 

r := r + garnma4pos(U(i, 4), v(i, 4)) 

+ gamma4neg)U(i, -4), v(i, -4)); 

return v(i) - k * 

	

(A 	%) * )v : SpF) 	SpF == f 
u : SpF 	new)); 

for ± in 1..dim repeat u)i) 	A)v, ±); 

return U; 

The Wilson-Dirac vector and operator domains are very similar to the simple 3D do-

mains. As a result, only a small amount of code is given for them to highlight the 

important differences. 

In the vector domain, the main differences are the number of dimensions, the element 

type of the loops (Spinor4 objects rather than elements of CDF) and the fact that the inner 

product operation is implemented in terms of inner products on the elements rather than 

multiplication and conjugation. Having loops over Spinor4 objects is what led to to 

implementing loop rerolling to keep the code size of the loops down. 

In the operator domain the differences include an index function to retrieve elements 

of the gauge field, and a more complex stencil term written using functions from the 

Projector package. The stencil term for the adjoint action has been omitted, but is 

very similar. Note, however, that it acts on members of DualSpF - this domain has been 

omitted, as it is an empty wrapper around the original SpinorField domain, which 

implements the action of the dual space using the inner product operation after casting 

the dual vector as a member of SpinorField. The domain exists only to satisfy the type 

requirements of the Wilson-Dirac operator being a LinearOperatorwithflual. 
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D.4 Solver Domains 

LazyVector(GrourldField : Field) : IndexedVector(GroundField) with 

bracket : (SI -> GroundField) -> %; 

Rep == SI -> GroundField; 

bracket(f 	SI -> GroundField) : 	== per f; 

index (v 	%, I : SI) 	GroundField == (rep v))i); 

apply(v : %, I 	SI) 	GroundField == index(v, I); 

canonicalBasisVector(i : SI, coeff : GroundField) 	== { 

[(j : SI) : GroundField +-> if j = i then coeff else 0;1; 

LazyMatrix)GroundField Field, 

V : LinearSpace(GroundField), 

W : IndexedVector)GroundField)) : Matrix)GroundField, V, W) with 

bracket : (SI -> V) -> %; 

}== i4 { 

Rep == SI -> V; 

bracket (f 	SI -> V) 	== per f; 

column (A 	%, I 	SI) : V == (rep A) (I); 

LazyTriDiagMatrix(GroundField Field, 

yDosl IndexedVector)GroundField) 

with { bracket 	(SI -> GroundField) 

TriDiagonalMatrix)GrOUfldField, yDom) with { 

bracket 	)SI -> Record)u:Groundpield, d:GroundField, l:GroundField)) -> 
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Rep == SI -> Record (u: GroundField, d: GroundField, l: GroundField) ; 

bracket (f : SI -> Record (u: GroundField , d: GroundField, l: GroundField) ) : % == per f; 

column (A 	%, j 	SI) : yDom 

r : 	)rep A((j); 

[(1 : SI) 	GroundField +-> 

i = j => r.d; 

i+l =j => r.u; 

i-i 	j => r.l; 

0; 

apply(A 	%, i 	SI, j 	SI) 	GroundField == { 

i < j-1 => 0; 

i > j+l => 0; 

r := (rep A)(j); 

j = i+l => r.u; 

j = i => r.d; 

j = i-i => r.l; 

never; 

ThreeEandedRFactor(GroundFjeld Field, 

yDom •IndexedVector(GroundField( 

with (bracket 	(SI -> GroundField(  

BandedUpperTriangularMatrix(GroundField, yflom( with 

bracket 	(SI -> Record(d:GroundField, ul:GroundField, u2:GroundField)) -> %; 

)== add 

Rep == SI -> Record (d:GroundField, ul:GroundField, u2:GroundField); 

bracket(f : SI -> Record(d:GroundField, ul:GroundField, u2:GroundField)) : 	== per f; 

column (U 	%, j : SI) 	yDorn 

r 	Record (d: GroundField, ul:GroundField, u2:GroundField( := (rep U) (i 

[(i 	SI) 	GroundField +-> { 

i = j => r.d; 

i+l = j => r.ul; 

i+2 = j => r.u2; 

0; 
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apply(U : %, ± : SI, j 	SI) : GroundField == { 

r 	Record )d:GroundField, ul:GroundF±eld, u2 :GroundField) := )rep U) (j); 

± = j => r,d; 

)j+l) = j => r.ul; 

= j => r.u2; 

0; 

upperBandWidth)A 	%) : SI == 2; 

The matrix domains outlined above are very simple wrappers around one of the re-

currences described later in the appendix. Although they are typed using the Matrix 

category (or some derivative thereof) they do not support any of the exports demanded 

by LinearMapping. There are two reasons for this. The first is that using a lazy repre-

sentation for a domain makes it more difficult to implement operations that manipulate 

elements - this applies to the multiplication/division by a scalar. The second is that 

calculating the result of the linear mapping itself is not obvious when the size of both 

the matrix and vector may be unbounded, as the standard procedure for forming a linear 

combination of the columns of the matrix will not terminate. 

. Constructors are added as part of an anonymous category extension, either to the domain 

itself or to its parameters as required. 

BiKrySpc (Valuation : Orderedpield, 

GroundField : FieldW±thValuation(ValUatiOfl) 

with { conjugate: % -> %; }, 

DualVector : .NormedLinearSpace)ValUatiOfl, GroundField) 

with { copy : % -> %; dispose 	: % -> () ; 

Vector : NorrnedLinearSpaceWithDual)Valuatiofl, GroundField, DualVector) 

with 	copy : % -> %; dispose! : % -> 	; }, 

Operator : LinearOperatorWithDual)GrOUfldField, DualVector, Vector), 

yflom : IndexedL±nearSpace)GroundField) 

VDoxn : Matrix(Groundpield, Vector, yDoIn) 

with { bracket : (SI -> Vector) -> %; }, 

TDom : TriDiagonalMatrix.)GrOufldField, yDoin) 

with { bracket : (SI -> Record(u:GroufldField, 

d:GroundField, 

l:GroundField)) -> %; 

BiorthogonalsasisKrylovSpace(Valuatiofl, GroundField, 

DualVector, Vector, Operator, 

yDom, VDom, TD0Tn) 

} == !I 
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Rep == Record)A : Operator, 

start : Vector, biStart : DualVector, 

V : VDom, 

T 	TDoin); 

biorthogonalKrylovBasis)argsiStart : DualVector) 

(A: Operator, argStart: Vector)  

cachedtiStart := copy argBiStart; 

cachedStart := copy argStart; 

normStart : Valuation := norm cachedStart; 

if not ((normStart - 1) * )normStart - 1) << 1 ) then 

error " [BiKrySpcJStartvector,not,normal" 

AM ==> A; 	-- Convention to indicate use of Hermitian transpose 

local) 

vl : Vector; v2 : Vector; 

wl : DualVector; w2 : DualVector; 

alpha : GroundField; beta : GroundField; gamma : GroundField; 

delta : GroundField; deltaOld : GroundField; 

state : SI := 0; 

goToState! (i : SI) : () 

free { state; vl; v2; wl; w2; alpha; beta; gamma; delta; deltaOld; 

step!)) : )) == 

free { state; vl; v2; wl; w2; alpha; beta; gamma; delta; deltaOld; 

tl := AM wl - conjugate (alpha) * wl - conjugate (beta) * w2; 

dispose! (w2); w2 := ti; 

(deltaOld, deltaTemp) := (delta, )v2 * w2)); 

delta := deltaTemp / )gamma * gamma); 

)vl, v2) : = (v2/gamma, vl) 

)wl, w2) := )w2 /conjugate )gamma), wl); 

U := A vl; 

alpha : 	)u * wl)/delta; 

beta := gamma * delta / deltaOld; 

t2 := u - alpha * vl - beta * v2; 

dispose! )v2) ; v2 := t2; 

gamma := norm v2; 
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state := state + 1; 

if valuation(deltaTemp) = 0 

then error 

= state => return; 

i = 1 => { 

vi : copy cachedStart; 

wl := copy cachedBiStart; 

delta : 	(vi * wi); 

deitaoid := 0; 

U 	A vi; 

alpha 	)u * wi)/delta; 

beta := 0; 

v2 := u - alpha * vi; 

gamma := norm v2; 

state := 1; 

> sate => C 

if state = 0 

then goToState (1) 

for j in 1. .i-state repeat step!)); 

i < 	tate => ( goToState! (1); goToState! (i); 

vCoiumnAccess)i : SI) : Vector == 

goToState 1(i); 

return vi; 

tCoiumnAccess)i 	SI) : Record)u:Groundpield, d:Groundpieid, l:GroundField) == { 

goToState )i) 

return record)beta, alpha, gamma); 

return per record (A, cachedS tart, cachedBiSt art, [vCoiumnAccess], ( tColumnAccess] ) ; 
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basis (k : 	: VDorn == rep (k(.V; 

coefficients(k : %) : TDorn == rep(k).T; 

operator (k : 	: Operator == rep (k( .A; 

As indicated by a comment in the code, the use of the AH macro instead of the identifier A 

is to indicate to the reader that the Hermitian transpose of the operator being applied to a 

(dual) vector. No such direction is necessary for the compiler however, as the operation 

to use (i.e. apply the original or the transpose) is specified by the type of the object being 

acted on (i.e. a vector or a dual vector). 

The Krylov space generating algorithm deals explicitly with conjugation of scalars if 

they are complex, and so the requirement for a conjugate export is added to the ground 

field parameter. 

The constructors necessary for wrapping the recurrences defined by the domain are 

added as requirements to the domain for the matrix of basis vectors and the tridiago-

nal matrix of coefficients. This addition of constructor exports occurs for the domains 

below as well. 

tridiagDirectQRSolve(Valuat±on : OrderedField, 

GroundField FieldWithValuation(Valuation) 

with { conjugate: % -> % sqrt : % -> % 1, 

zflon IndexedVector(GroundFjeld( 

with { bracket : (SI -> GroundField(  

TOom : TriDiagonalMetrix(GroundField, zDo( 

ROom : BandedupperTriangularMatrix(GroundFjeld, zOom) 

with { bracket : (SI -> Record(d:GroundField, 

Ui: GroundField, 

u2:GroundField()  

DirectQRSoive(GroundFjeid, zOom, TDom, ROom) 

add 

directQR(T : TDom, y : zOom) : (RDom, zDom, zDom( == 

local { 

state : SI := 0; 

R : Record(d : GroundField, ul : GroundField, u2 : GroundField( := [0, 0, 0]; 

C : GroundField; s :GroundFieid; 

cOld : GroundField; sOld : GroundField; 
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z : GroundField; zTemp : GroundField; 

	

goToState ) i : SI) 	() == 

free { state; R; C; s; cold; sold; z; zTemp; 

step!)) : 

free { state; R; c; 5; cold; sold; z; zTemp; 

state 	state + 1; 

R.u2 	sold * T)state - 1, state); 

ulTexnp 	cold * T)state - 1, state); 

R.ul 	)c * ulTeinp) + )s * P)state, state)); 

local dTeinp 	)c * P)state, state)) - (conjugate (s) * ulTenip); 

cold : c; 

sold := 5; 

local r : GroundField; 

)c, a, r) 	givensRotation(dTemp, T)state + 1, state)); 

R.d 	r; 

z : 	(c * zTemp) + ( * y)state+1)); 

zTemp := (c * y)state+l)) - )conjugate(s) * zTemp); 

i = state => return; 

± = 1 => 

R.u2 := 0; 

R.ul : 0; 

(c, a, r) 	g±vensRotation)T)l,l), T(2,1)); 

R.d := r; 

yl 

y2 	y(2); 

z : 	)c * y1) + ) * y2); 

zTemp : 	)c * y2) - (conjugate)s) * y1); 

state 	1; 
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i = 2 => { 

if state 	1 then goToState (1); 

R.u2 : 0; 

R.ul : 	(C * T(1,2)) + ( * T(2,2)); 

dTemp := (c * T(2,2)) - (conjugate(s) * T(1,2)); 

cOld 	C; 

sOld 

)c, 5, r) := givensRotation(dTemp, T(3,2); 

R.d 	r; 

z 	(c * zTemp) + ( * y3); 

zTemp := (c * y3) - (conjugate(s) * zTemp); 

state := 2; 

± > state => 

for j in state.. i-1 repeat 

= 0 => goToState! (1); 

j = 1 => goToState! (1); 

j > 1 => step!(); 

± < state => 

if i < 3 then goToState 1(i); 

else goToState (2) ; goToState (i) 

(V 

rColuxnn(i 	SI) : Record(d : GroundField, ul 	GroundField, u2 	GroundField) == 

goToState (i( 

return R; 

zEntry(i : SI) 	GroundField == { 

goToState 1(i); 

return z; 
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residualEntry(i 	SI) : GroundField 

goToState )i) 

return zTemp; 

return ([rColumn], [zEntry], [residual Entry ]); 

Similarly to the Krylov space algorithm, the QR solve explicitly needs the operations of 

conjugation (for complex scalars) and square root, and these are added to the require-

ments of the scalar domain parameter. The need for both arises from the calculation of 

Givens rotations (the code for which has been omitted as it is entirely standard). 

The solve is specialised to tridiagonal matrices and this is reflected in the stricter type 

requirement for the domain of matrices to be decomposed (the category only requires 

upper Hessenberg matrices). 

length2SearchRecurrence(GroundField Field, 

zDom : IndexedVector(GroundField) 

Vector : LinearSpace (GroundField) 

VDom 	Matrix)GroundField, Vector, zDom) 

with { bracket : (SI -> Vector) -> %; ), 

RDorn EandedtjpperTriangularMatrix(GroundField, zDom) 

SearchVectorRecurrence)GroundField, zDom, Vector, VDom, RDoin) == add { 

recurrence (V : VDom, R : RDoTs) : VDom == { 

local) p1 	Vector; p2 : Vector; state 	SI 	0; 

goToState )i 	SI) 	() == 

free { p1; p2; state; 

step!)) 	() == { 

free { p1; p2; state; 

state 	state+1; 

ti : 	l/R) state ,state) * ( V) state ) - R)state -1, state) * p1 

- R)state-2, state) * p2); 

dispose! )p2); p2 :* ti; 

(p1, p2) := (p2, p1); 
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i = state => return; 

i = 1 => 

p1 : ( 1/R(1,1) ) * 

state := 1; 

i = 2 => 

if state = 1 then goToState (1); 

p2 : 	( 1/R)2,2)  ) * (V(2) - R)1, 2) * p]); 

(p1, p2) := (p2, p1); 

state := 2; 

i > state => 

for j in state.. i-i repeat 

= 0 => goToState (1); 

= 1 => goToState (1); 

j > 1 => step!)); 

i < state => 

if i < 3 then goToState! (i); 

else goToState (2); goToState )i) 

pColumn)i : SI) : Vector == 

i < 1 => error " [pColumn]outof,boundsaccess" 

goToState )i) 

return p1; 	 - 

return [pColuxnn]; 

The search vector recurrence is specialised to upper triangular factors with a band width 

of two. However, this is not checked for by the type system, as it would require a 

separate type for every different band width. Although it has not been included, it would 

be easy enough to add a dynamic check on the band width value. 
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QMRwrapper (Valuation : OrderedField, 

GroundField 	FieldWithValuation(Valuation) 

DualVector : NormedLinearSpace(Valuation, GroundField), 

Vector 	NorrnedLinearSpaceWithDUal(ValUatiOn, GroundField, DualVector) 

Operator 	LinearOperatorwithflual(GroundField, DualVector, Vector), 

zDom IndexedLinearSpace(GroundField) 

VDom : Matrix(GroundField, Vector, zDom), 

TDoxn : TrioiagonalMatrix(GroundField, zDom), 

KDom : BiorthogonalBasisKrylovSpace(ValuatiOfl, GroundField, DualVector, 

Vector, Operator, zDom, VDom, TDom), 

RDom UpperTriangularMatrix(GroundField, zDom), 

QRDecomp 	DirectQRSolve(GroundField, zDom, TD0m, RDomn), 

SolvewithStete : SearchVectorRecurrence(GroundField, zDom, Vector, VDom, RDom) 

):with( 

QMR 	(Operator, Vector, Vector, Valuation) -> Vector; 

	

QMR(A 	Operator, x : Vector, b : Vector, t : GroundField) : Vector == 

tolerance 	valuation(t); 

minimuumResidualCorrection(T 	TDora, V : VDom, beta 	Valuation) 

(zDom, VDom, SI -> Boolean) == { 

(R : RDom, z 	zDom, res : zDom) 

directQR(T, canonicalOasisVector(l, beta::GroundField)); 

	

P 	recurrence(V, R); 

lastlteration?(i : SI) : Boolean == 

residual : GroundField := res(i(; 

if valuation(residual) < tolerance then true else false; 

return(z, P, lastlteration?); 

solveFunction := iterativeSolve(biorthogonalKrylovBasis(b), 

mninimumResidualCorrection); 

return solveFunction(A, x, b); 
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Anonymous category extensions have been dropped from the parameter domains in this 

extract to prevent the code from becoming too cluttered. 



Appendix E 

Published Papers 

This appendix lists the three papers related to this work that were published during the 

course of the thesis, and provides some notes as to how they relate to the thesis proper. 

The papers are presented in chronological order. The first was a workshop paper that 

accompanied a poster, and the second two were refereed conference papers. 

E.1 	"The Paraldor Project" - 2003 

[7] - this early paper was written in conjunction with colleagues from physics, and 

was primarily intended for an audience from computational physics. The first half 

of the paper describes the advantages of the Aldor language model as compared to 

other better-known languages such as C/FortranlC++/Java and macro systems. The 

second half of the paper describes a toy code for an initial investigation into perfor-

mance questions. The benchmark is the standard conjugate gradients algorithm (as 

opposed to the use of a modular framework) written in terms of domain exports, acting 

on a fully dense operator (i.e. n x n matrix). The results compare the performance 

of this algorithm implemented using various different domains, including a pure Al-

dor version with or without some degree of manual memory management (i.e. use of 

dispose! functions), and a version that uses foreign function calls to operations writ-

ten in C (for both matrix-vector multiplication and all vector operations), again with or 

without manual memory management. The baseline against which the different imple- 
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mentations are measured is a pure C version of the algorithm. The pure Aldor results 

are significantly worse (i.e. by a factor of more than 100) than the baseline. The C 

back-end does much better, but is still worse than the baseline. 

The paper differs philosophically from the work in the thesis in that it recommends 

the use of high-performance libraries (or assembly kernels) to implement low-level 

domains, such as matrix-vector application and vector operations, regardless of the cost 

of modularity. This stems, in part from the tradition of this approach in computational 

physics. Also, it makes no direct mention of developing a framework for iterative 

solvers rather than the recipe used for the benchmark. 

Because this was exploratory work, there was no detailed study of the code gen-

erated by the Aldor compiler. Hence, there is no information on why the pure Aldor 

results are so bad even when manual memory management is used, but factors such 

as failing to inline and emerge any generators (or higher order functions such as map) 

used for loops over the low-level domains are capable of incurring this kind of dramatic 

penalty. Failure to optimise such constructs can easily happen due to the difficulties 

that the inliner has with e.g. parameterised domains, but this is often a case of se-

lecting the correct command line option or simple compiler implementation issues. In 

addition, the use of a dense matrix for the benchmark (rather than a stencil) has cer-

tain implications. A C compiler could apply certain blocking optimisations to improve 

temporal locality, and the cost of the matrix-vector multiplication will vastly outweigh 

any other operation. 

The concluding sections of the paper contain some important points. The introduc-

tion of modularity makes manual memory management difficult (a theme which also 

occurs in Section 5.3.1.2) and, at the same time, certain automatic garbage collection 

strategies may be sub-optimal for applications like the iterative solvers. Particularly, a 

mark+sweep tracing collector tends to encourage the creation of many vectors before 

they are recovered, leading to poor temporal locality of reference to memory, and the 

process of root finding in the stack and tracing pointers is too expensive to incur reg-

ularly enough to maintain temporal locality of vector objects. The proposed solution 

is that of memory spaces, where different classes of object can be assigned different 

garbage collection strategies. The motivation behind this was to provide a mechanism 
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to allow vector objects to be collected by reference counting, and also to eliminate 

the possibility of object pinning which accompanies conservative garbage collectors. 

Ultimately, this direction was abandoned due to a lack of specificity to the application 

area, and the potential difficulties of integrating the scheme into Aldor and its current 

compiler. The future work section mentions implementing multiple iterative solvers, 

eigenvalue solvers, low-level objects for QCD (gauge fields etc), and the high level al-

gorithmic structures for Monte Carlo algorithms that make use of the iterative solvers. 

Progress has been made on all of these, except for the Monte Carlo algorithms. 

E.2 "A Modular Iterative Solver Package in a Categori-

cal Language" 2003 

[8] - this paper introduces and describes the algorithmic framework for the iterative 

solvers and its domain level implementation, as detailed in Chapter 5. In addition to 

this, it presents a continuation of the argument against other popular approaches, as 

started in the workshop paper, and a move toward examining cross-component opti-

misations. This includes benchmark results comparing a pure Aldor version of a full 

QMR solver derived from the framework and transformed by hand against a version 

that makes calls to binary level 1 ATLAS BLAS routines. The operator in question is 

a simple 3D operator, and the machine is a 1GHz Pentium 3 Coppermine. The results 

show a speedup of up to 1.42 for the hand transformed code over the BLAS version. 

The arguments against other approaches will be summarised here, as they are not 

covered in the thesis. The main arguments against traditional third-generation lan-

guages such as C and Fortran is that they do not provide adequate support for abstrac-

tion, the type systems do not provide much security (in the presence of type casts etc), 

and certain parts of the language definitions can be a significant obstacle to optimisa-

tion (e.g. pointers). The main arguments against object-oriented languages is that class 

inheritance is the wrong abstraction for representing groups of mathematical objects, 

and that while object mechanisms allow a certain degree of generalisation they still 

rely heavily on type casts, in contrast with static dependent typing. The objection to 

class inheritance is that it represents a subset relationship (i.e. C) rather than member- 
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ship (i.e. E) as defined by categories. For example, given a class called group, two 

classes that inherit from it representing different groups are not both subsets of some 

larger group - elements of the different groups cannot interact. In addition, object sys-

tems are weak when it comes to specifying binary operations, as the model is based on 

sending messages to one object that owns the function being invoked. 

A notable addition to the list of rejected alternatives is the use of expression tem-

plates [89], an example of compile time meta-programming based on the C++ template 

mechanism. In the paper it is dismissed based on arguments against its implementation 

- i.e. the inherent disadvantages of using any macro system (lack of type checking, se-

mantic analysis etc), and the inherited problems from the underlying language being 

manipulated by the macros. In addition to this, the flaws in the general approach of 

meta-programming ought to be highlighted, namely that it is fundamentally a static 

approach that does not incorporate feedback from empirical evaluation of transforma-

tions, and therefore are no more adaptable to architectural differences than the static 

approaches to LDG optimisation given in Chapter 8. 

The future work section lists formalising the transformations done by hand, and 

possible extensions to the general framework (a subset of those suggested in Chapter 

11 as future work). The formalisation of the transformations has been covered in this 

thesis - see Chapters 7 and 8. 

E.3 	"Cross-Component Optimisation in a High Level Cat- 

egory Based Language" - 2004 

[9] - this paper is mostly an expansion of the experimental results presented in [8], 

again investigating a QMR solver derived from the algorithmic framework, with a sim-

ple 3D operator, on a 1 GHz Pentium 3 Coppermine. The paper is presented in terms of 

cross-component optimisation. A more detailed description of the actual (hand) trans-

formations is included, with several different variations that compare different levels 

of aggressiveness for fusion, and the introduction of the Fortran program QMRpack as 

another control. The results plot the relative performance of the different versions and 

controls against data set size, with a speedup for the transformed code of up to 1.5 over 
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the Fortran control, and 1.43 over the ATLAS BLAS version. 

The benefit of the (cross-component) optimisations is described in terms of max-

imising instruction level parallelism by avoiding the memory bandwidth bottleneck. 

There is also a brief discussion on the trade-offs between latency and prefetching that 

the transformations explore. In keeping with the emphasis on cross-component optimi-

sation, the related work section deals mostly with alternative approaches to embedding 

domain specific components into a host language and then optimising the result, rather 

than traditional optimisations or LDG transformations. Examples discussed include 

expression templates, library annotations and the development of customised parsers 

for what are effectively domain specific extensions to a language, all of which rely on 

the specification of domain specific optimisation rules by the developer of the compo-

nent library. 

The suggestions for extension of the work include conducting experiments on more 

complex operators such as the red-black preconditioned Wilson-Dirac operator, incor-

porating other solvers, and using iterative optimisation to attack possible latency prob-

lems in individual loops after fusion and contraction. In this thesis the work has been 

extended to include the unpreconditioned Wilson-Dirac operator, the loop transforma-

tions have been fully formalised, and iterative optimisation has been applied to the task 

of fusion/contraction itself - further application of iterative optimisation to individual 

loops resulting from collective loop fusion is an important part of the future work given 

in Chapter 11. 
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