
The Formal Synthesis of Control Signals for
Systolic Arrays

Jingling Xue

PhD
University of Edinburgh

1992

Abstract

The distinguishing features characteristic of systolic arrays are synchrony of com-

putations, local and regular connections between processors and massive decen-

tralised parallelism. The potential of the systolic array lies in its suitability for

VLSI fabrication and its practicality for a variety of application areas such as sig-

nal or image processing and numeric analysis. With the increasing possibilities

promised by advances in VLSI technology and computer architecture, more and

more complex problems are now solvable by systolic arrays.

This thesis describes a systematic method for the synthesis of control signals

for systolic arrays that are realised in hardware. Control signals ensure that the

right computations are executed at the right processors at the right time. The

proposed method applies for iterative algorithms defined over a domain that can

be expressed by a convex set of integer coordinates. Algorithms that can be im-

plemented as systolic arrays can be expressed this way; a large subclass can be

phrased as affine (or uniform) recurrence equations in the functional style and

as nested loops in the imperative style. The synthesis of control signals from a

program specification is a process of program transformation and construction.

The basic idea is to replace the domain predicates in the initial program specifi-

cation which constitute the abstract specification of control signals by a system of

uniform recurrence equations by means of data pipelining. Then, systolic arrays

with a description of both data and control signals can be obtained by a direct

application of the standard space-time mapping technique.

Acknowledgements

I would like to thank first of all my supervisor, Christian Lengauer, for his help,

encouragement and advice in the development of this thesis. His concern for clarity

and mathematical elegance has greatly influenced my work. Also, I would like to

thank Patrice Quinton and Björn Lisper for helpful discussions over the electronic

network. Finally, I would like to thank my wife Lill for her support and patience

in making this thesis possible.

My research work was supported financially by an Overseas Research Stu-

dentship, a University of Edinburgh Studentship, and the Science and Engineering

Research Council, Grant no. GR/G55457.

El

Table of Contents

Introduction
	

1

	

1.1 	Outline of the Thesis6

1.2 Notation and Terminology8

Data Flow Synthesis for (n-1)-Dimensional Systolic Arrays 	15

	

2.1 	Introductory Remarks15

	

2.2 	Affine and Uniform Recurrence Equations16

	

2.3 	The Systolic Array Model23

	

2.4 	The Space-Time Mapping24

2.5 Input and Output Extension29

2.6 Uniformisation33

	

2.7 	Conclusion 35

Control Flow Synthesis for (n—l)-Dimensional Systolic Arrays 38

	

3.1 	Introductory Remarks38

	

3.2 	The Requirements on Control Flow40

	

3.3 	The Synthesis of Control Flow42

3.3.1 The Computation Control Flow48

3.3.2 The Propagation Control Flow58

M

3.4 The Optimisation of Control Flow 	 61

3.5 	The Extension of the Space-Time Mapping64

3.6 	Related Work66

3.7 Examples67

3.7.1 	Dynamic Programming67

3.7.2 	LU- Decomposition74

3.8 	Conclusion 78

Data Flow Synthesis for One-Dimensional Systolic Arrays 82

4.1 Introductory Remarks 82

4.2 One-Dimensional Systolic Array Models 83

4.3 The Mapping Conditions88

4.4 The Space-Time Diagram 92

4.5 The Extension of the Index Space96

4.6 A Synthesis Procedure 100

4.7 Related Work 104

4.8 Conclusion 105

Control Flow Synthesis for One-Dimensional Systolic Arrays 	108

5.1 	Introductory Remarks 108

5.2 	The Synthesis of Propagation Control Flow 112

5.3 	The PCUREs for Three-Dimensional UREs 115

5.3.1 	The Evolution Control Flow115

5.3.2 	The Initialisation Control Flow 121

5.3.3 	The Termination Control Flow 126

Lw

5.3.4 	The Space-Time Mapping 131

5.4 The PCUREs for n-Dimensional UREs133

5.5 Related Work 139

5.6 Examples 139

5.6.1 	Matrix Product 139

5.6.2 	Dynamic Programming 141

5.7 Conclusion 142

6. The Elimination of Propagation Control Flow 145

6.1 Introductory Remarks 145

6.2 Example: 1-D Convolution 147

6.3 Systolic Arrays of n—i Dimensions151

6.4 Systolic Arrays of One Dimension154

6.5 Conclusion 155

The Loading, Recovery and Access of Stationary Data 	 156

	

7.1 	Introductory Remarks156

	

7.2 	The Loading and Recovery of Stationary Data157

	

7.3 	The Access of Stationary Data163

7.4 Conclusion167

Conclusion

A. The Normalisation of Domain Predicates 	 170

List of Tables

5-1 The host program for three-dimensional UREs (to be refined). . . . 	119

5-2 The cell program for three-dimensional UREs 	120

5-3 	The specification of initialisation control variables 123

5-4 The host program for three-dimensional UREs (the final version). 	129

5-5 The host program for n-dimensional UREs (n>2) 137

5-6 The cell program for n-dimensional UREs (n>2)..........138

A-i The abstract syntax of the domain predicates 171

lv

List of Figures

1-1 	The synthesis of control signals 	4

1-2 	Illustration of some concepts in R2 in convex analysis 	13

2-1 The data dependence graph of the AREs for matrix product 22

2-2 The data dependence graph of the UREs for matrix product 22

2-3 	S. Y. Kung's systolic array for matrix product 	28

2-4 	Kung-Leiserson's systolic array for matrix product 	31

2-5 Part of the extended data dependence graph for matrix product. . 32

3-1 The construction of the quotient set /3.............. 43

3-2 	Domain predicate replacement52

3-3 	The optimisation of pipelined UREs 	63

3-4 The data dependence graph for dynamic programming69

3-5 	Four systolic arrays for dynamic programming 73

3-6 	The data dependence graph for LU- decomposition76

3-7 	Two systolic arrays for LU-decomposition 	79

4-1 	Two one-dimensional systolic array models84

4-2 A systolic array in which the neighbouring communication cannot

be enforced . 	90

kv

4-3 	The space-time diagrams for one-dimensional arrays 93

VI

4-4 	Part of the extended index space for matrix product 	97

5-1 The space-time diagram for LU-decomposition............III

5-2 	The notation for specifying the cell program 113

5-3 The evolution of the evolution control variable117

5-4 	The evolution control variable for LU-decomposition 121

5-5 The interplay between the evolution control variable and the ini-

tialisation control variables22

5-6 	The initialisation control variables for LU-decomposition 127

5-7 The interplay between the evolution control variable and the termi-

nation control variables . 128

5-8 	The termination control variables for LU-decomposition 130

5-9 A hierarchical construction of the PCUREs for n-dimensional UREs. 135

5-10 Adaptation of the index space for the construction of the PCUREs. 143

6-1 	The elimination of the propagation control signals for i-D convolution. 150

7-1 The data dependence graph of the UREs with a load-recovery vari-

able for matrix product . 161

7-2 The systolic array for matrix product that handles the loading and

recovery of stationary data . 162

7-3 The data dependence graph of the UREs with an address variable

for dynamic programming . 166

A-i The points (Z', J, 1) satisfying predicate 2 Li/2j -1=0......... 176

Chapter 1

Introduction

The potential of VLSI for MIMD parallelism was first recognised by H. T. Kung

and C. E. Leiserson [37], when they introduced the term systolic array to describe

a processor network that was suitably restrained to meet the requirements of VLSI

technology. The characteristic features of a systolic array are synchronous and de-

centralised parallelism and local and regular interconnections between processors

(or cells). The proceedings of recent yearly or bi-yearly conferences and workshops

on regular array processors attest to the variety of areas in which systolic solutions

have been proposed since then, e.g., numerical analysis, signal and image process-

ing, pattern recognition and combinatorial theory. This suggests that systolic

computation has an important, enduring role to play in concurrent computation.

The special appeal of systolic arrays is that they can be derived systematically,

and often mechanically, by provably correct and (in a sense) optimal synthesis

methods. These methods transform algorithmic descriptions that do not spec-

ify concurrency or communication - usually functional programs or imperative

programs - into functions that distribute the computations prescribed by the pro-

gram over space and time. This process is called systolic design. The challenge, as

stated by H. T. Kung [35], is to ensure that the right data arrive at the right cells

at the right time. The distribution functions essentially describe the velocities and

distribution of data, i.e., the flow of data over space and time. They can then be

refined further and translated into a description for fabrication of a VLSI chip or

into a distributed program for execution on a programmable processor array.

I

FO

There have been a plethora of synthesis methods proposed in the literature.

These methods focus mainly on the synthesis of data flow. They are based on

geometry, linear algebra and convex analysis. The basic idea to describe a systolic

array by two distribution functions: a timing function that specifies the temporal

distribution of the computations and an allocation function that specifies their

spatial distribution such that concurrent computations are allocated to different

processors. The combination of the timing function and allocation function is

called a space-time mapping or space-time transformation. As has been proved

by S. K. Rao [64], a systolic array is a program resulting from an application of

the space-time mapping to the initial program specification. Of course, not every

space-time mapping describes a systolic array. A valid space-time mapping must

preserve the behaviour of the source program in some sense and must respect the

constraints imposed on resource such as channel connections in systolic arrays.

As pointed out by P. Quinton [55], the space-time mapping also needs to meet

conditions that allow a full mechanisation of the underlying synthesis method.

The timing and allocation function constitute a complete description for fab-

rication of a VLSI chip if every processor in the systolic array performs the same

computation at all time steps. The description is incomplete, however, if some

processor performs different computations at different time steps. In this case, a

control mechanism is called for that instructs the processors in the systolic array

when to perform which computation. L. J. Guibas, H. T. Kung and C. D. Thomp-

son [26] suggested a decade ago that this control mechanism may be implemented

by communicating control signals throughout the systolic array in much the same

way as the data are communicated. Like in the synthesis of data flow, the challenge

in the synthesis of control flow is to ensure that the right control signals arrive at

the right cells at the right time. So far, the systematic synthesis of control flow

has not received adequate attention. In most systolic solutions that have been

proposed in the literature, the derivation of the control flow is conducted after

that of the data flow and in an informal and problem-specific manner.

With the advent of powerful VLSI design and fabrication techniques and of

programmable processor networks, the development of formal methods for the

3

synthesis of control signals has become increasingly important. First, complex

applications, like the algebraic path problem [8,18,67], that were not considered

for a systolic design in the past are now solvable by systolic arrays. A manual

derivation of control signals for these applications is intractable and error-prone.

Second, increasing control complexity makes it necessary to evaluate and further

optimise the quality of the systolic array with respect to not only the data flow but

also the control flow. This is made possible by methods that allow the systematic

synthesis of control signals. Third, the synthesis of systolic arrays from algorithmic

descriptions is a process of program transformation. At any stage, many transfor-

mations are applicable. The choice of different transformations leads to systolic

arrays with differing quality. One should be able to assess a transformation by

its impact on the quality of the systolic array in terms of not only the data flow

but also the control flow. Methods that allow the systematic synthesis of control

signals accomplish this by making the specification of control signals explicit in

the early stages of the systolic design.

This treatise is concerned with the synthesis of control signals for systolic

arrays that are realised in hardware. The proposed method applies for iterative

algorithms defined over a domain that can be expressed by a convex set of integer

coordinates (or points) called the index space. Algorithms that are amenable to

systolic design can be expressed in this way. They are often informally referred

to as systolic algorithms; many can be expressed in the form of affine recurrence

equations (AREs) in the functional style [14,19,47,57,60,64] and nested loops in

the imperative style [23,27,41,50]. A recurrence equation defines recursively the

computation of a target variable indexed by one point in terms of variables indexed

by other points. The set of all index vectors associated with the target variable of a

recurrence equation is specified by a predicate called a domain predicate. A domain

predicate specifies the domain of an equation at which the target variable of the

equation is defined. Informally, control signals must ensure that the computation

of a recurrence equation takes place within the domain specified by the domain

predicate of the equation.

A subclass of AREs, called uniform recurrence equations (UREs), which was

11

Extended
Source UREs 	 Propagation UREs

I 	Source UREs

Computation
	 Propagation

Control Flow
	

Control Flow

____p

I 	Computation 	 Propagation 	I
Control UREs

i 	Control UREs 	 Control UREs
Ij -------j -----------------I-i

Figure 1-1: The synthesis of control signals.

proposed by R. M. Karp and R. E. Miller and S. Winograd for representing numer-

ical algorithms for a parallel implementation [32], has been used extensively for the

specification of systolic algorithms in systolic design. We shall present our method

based on input that is in the form of UREs. We refer to these initial UREs as the

source UREs. A generalisation of the method to certain other types of recurrence

equations is straightforward and will be alluded to where appropriate.

To conform to current VLSI fabrication technology, the exchange of input

and output data with the external environment is restricted to the border cells

of a systolic array. The source UREs may have to be extended to include the

specification of the propagation of input data from border cells to internal cells

and output data from internal cells to border cells. This added specification is

called propagation UREs. The extended specification, which consists of the source

UREs and propagation UREs, is called the extended source UREs. The domain

for which the extended source UREs are defined is called the extended index space.

(The source UREs might be called computation UREs since they prescribe the

computations to be performed by systolic arrays.)

The synthesis of control signals is a process of program transformation and

construction. The domain predicates of the extended source UREs constitute the

5

initial specification of control signals. We obtain systolic arrays with a description

of both data flow and control flow in two successive steps:

Transform the domain predicates of the extended source UREs to a system

of UREs called the control UREs (Fig. 1-1). The control UREs can be di-

vided into two systems of UREs: the computation control UREs (CCUREs),

which specify the control signals for the appropriate computations prescribed

by the source UREs, and the propagation control UREs (PCUREs), which

specify the control signals for the propagation of input and output data pre-

scribed by the propagation UREs. Then replace the domain predicates in

the source UREs by predicates in computation control variables and those

in the propagation UREs by predicates in propagation control variables.

Obtain systolic arrays with a description of both data and control flow from

the previously transformed UREs by applying different space-time mappings.

In the first step, the challenge lies in the specification of control signals in terms

of the control UREs. Once this is accomplished, the replacement of domain pred-

icates that arises due to the introduction of the control UREs is straightforward.

In the second step, the issues that need to be addressed are (1) the definition of

systolic array models, (2) the corresponding mapping conditions that ensure the

validity of the space-time mapping and (3) the procedures by which valid space-

time mappings, i.e., systolic arrays, are systematically generated. These three

issues will not be emphasised in the thesis; they have been studied extensively in

the realm of systolic design. Because the specification of control signals in the first

step depends on issues addressed in the second step, we shall conduct our presen-

tation in the reverse of the order in which systolic arrays are derived. That is,

we first describe the systolic array model under consideration, then the mapping

conditions for the validity of the space-time mapping, then some procedures for

the generation of systolic arrays, and finally the specification of control signals.

Next, we give an outline of this thesis. Each chapter contains a section of

introductory remarks to prepare the reader for its technical context.

6

1.1 Outline of the Thesis

In Chap. 2, we review the basic technique of the synthesis of data flow for (ri — i)-

dimensional systolic arrays from n-dimensional UREs. We start with the definition

of n-dimensional AREs and the systolic array model that has been used extensively

in systolic design. Next, we describe the standard space-time mapping technique,

which delivers systolic arrays of n—i dimensions with maximal parallelism, i.e,

a shortest execution (or latency) derivable from the n-dimensional source UREs.

This is followed by a brief description of uniformisation techniques that transform

AREs to UREs. This chapter concludes with a brief review of several current

research issues in systolic design.

In Chap. 3, we present our method for the specification of control signals for

(n - 1)-dimensional systolic arrays from n-dimensional UREs. The specification

of control signals relies on a partition of the extended index space such that all

the computations associated with one block in the partition are specified by a

common set of control signals. We provide necessary and sufficient conditions for

the correctness of control flow and a mechanisable procedure that constructs the

specification of control signals from the source UREs.

In Chap. 4, we review the synthesis of data flow for one-dimensional systolic

arrays and extend and improve previous results. We first define the two most

frequently adopted one-dimensional systolic array models. We then investigate

the corresponding mapping conditions for the validity of the space-time mapping.

In addition, we provide a range of equivalent mapping conditions, which increase

our understanding of various properties of one-dimensional systolic arrays and

provide insight into the construction of the control UREs for one-dimensional

systolic arrays in Chap. 5. Finally, we describe a procedure for the systematic

generation of one-dimensional systolic arrays.

In Chap. 5, we focus on the specification of control signals for one-dimensional

systolic arrays. We begin by demonstrating that the control UREs that are con-

structed in Chap. 3 for (n - 1)-dimensional systolic arrays may result in very

7

inefficient one-dimensional systolic arrays. The problem lies in the specification of

the PCUREs and is caused by the non-injectivity of the space-time mapping for

one-dimensional systolic arrays. We solve this problem by providing an alterna-

tive construction of the PCUREs. To complete our method for the specification of

control signals for systolic arrays, we show that the PCUREs constructed in this

chapter and the CCUREs constructed in the previous chapter apply for systolic

arrays of any r dimensions with 0 <r <n.

In Chap. 6, we are concerned with the elimination of control signals for systolic

arrays. We consider a special class of UREs that do not require the CCUREs. We

show how algebraic properties of some operators in the source UREs, like the

satisfaction of the Unit Law and the Zero Law (Sect. 1.2), can be exploited to

eliminate the PCUREs. We provide necessary and sufficient conditions for the

elimination of the PCUREs. Although it is difficult to give a general treatment

for arbitrary UREs, the underlying idea of the optimisation of control signals can

be generalised straightforwardly to other systolic algorithms.

In Chap. 7, we describe a scheme for loading, recovering and accessing station-

ary variables. It is sometimes beneficial to make certain variables stationary in

order to improve some aspects of the systolic array, e.g., to reduce the latency or

size of the array. Unfortunately, the space-time mapping does not provide any help

in handling stationary variables. We present a systematic method that modifies

the source UREs such that the specification for loading, recovering and accessing

stationary variables is included. Then, specifying the control signals for systolic

arrays synthesised from this new system of UREs is just a matter of constructing

the control UREs based on the methods described in Chaps. 3 and 5.

Finally, in Chap. 8, we give an overview of the results presented in the thesis

and comment on some open problems and suggestions for future research.

8

1.2 Notation and Terminology

Logic The logic connectives are -, (not), V (or), A (and), == (implies), ==

(if and only if), V (for all) and 3 (there exists). We use true and false to denote

the propositional constants. The notation if is also used for

The notation for a quantified expression is (quant: range: term), where quant

specifies a quantifier and a list of dummy variables for the quantification, range

specifies the range of the dummies and term is some function or predicate on

the dummies [20]. Any binary, commutative, associative operator that has an

identity element may be used as a quantifier (for the definition of identity element

of an operator, see the subsequent paragraph of this section on abstract algebra).

Examples of quantifiers (and the corresponding interpretation in the case of an

empty range) include: V (true), a (false), max (—oo) and mm (+oo); the values

true, false, —oo and +oo are the identity elements of the operators v, a, max and

mm, respectively.

Some proofs follow the notation of [20], in which a proof step has the following

layout:

-(PA-P)A(Qv--'Q)

{De Morgan's law; excluded-middle law}

(-iF V --'P) A true

in place of 	to the left of the brace may be ==, , c, etc. The brace may

contain a number of hints separated by conjunctive semicolons.

The symbol LI marks the end of theorems, definitions, examples, and so forth.

Programming Languages A conditional command, i.e., if-statement is written

as follows [20]:

9

if B1 -* S

B2 -* S2

j B -* S,

fi

or, if it is short and simple enough, on one line as:

9B,— Sfi

B• is a Boolean expression and Si a command. B -* Si is a guarded command; B

acts as a guard; it has to be validated before Si can be executed. One statement

Si whose guard Bi is true is executed; if no guard is true, the if-statement aborts.

If else appears in the place of B, it stands for (V i : 0 <i <n : -iB). skip denotes

the empty statement. All if-statements that appear in the thesis are deterministic.

A for-loop has the usual meaning and is written as follows:

for i from lb to rb do

Si

S2

sn

We indicate scoping by indenting: Si, S2, . , S are the statements executed at

each loop step.

Sets The notation {x I P(x)} denotes the set of elements x that satisfy the

condition 2(x). The set whose members are all the objects appearing in the list

X1 X27 	, X and no others is denoted by {x1, x2, 	, x}. The empty set is

denoted by 0. If two sets have no element in common, they are called disjoint.

The number of elements in a set S is denoted by ISI. Let A and B denote sets.

We say that A is a subset of B (or that A is contained in B) if every member

of A is also a member of B. Our notation for "A is a subset of B" is A c B.

When A C B and A B, we say that A is a proper subset of B and we write

10

A C B. If A and B are sets, the relative complement of B in A, denoted by

A\ B, is the set {x I xEAAxB}. Let A be a subset of given set S. The

complement of A in S is the subset {x I x e S\A}. It is denoted by G S A. For

the set-theoretic notions of union and intersection, we use the symbols U and fl.

For sets S1, 	, Sm, where the elements of every set Siare themselves sets, we

define (iiI i 0<im : S)={(fl i 0<im : X) i (V i 0<im : XeS)}.

Z, Q and R denote the set of integers, rationals and reals, respectively. Let S

be Z, Q or R. S denotes the positive subset, S the non-negative subset (i.e.,

SU{0}) and S' the n-fold Cartesian product of S.

Functions f: D -* R indicates that f is a function with domain D and range

(or codomain) R. The set If (x) I xES} for a set ScD is called the image of the

set S under f and is denoted by f(S). The composite f o g of two functions is the

function obtained by applying them in succession - first g, then f - provided the

domain of f is the image of g. The notation f: D >- R denotes that function f

is injective from domain D to range R. Two sets A and B are called isomorphic

if there exists a bijection f: A -f B. Let f: S - {a, b} be a surjective function.

If T c S and 1(T) fl f(S\T) =0, then f is called the characteristic function of T

in S and is denoted by XT: S - {a, b}. The function sign is a mapping from Q

to the set {-1,0,1}: sign(x)=if x<0 - —1 0 x=0 —*0 U x>0 -* 1 fi.

Linear Algebra Let V be a vector space over a field F. A set of vectors

X 1, X 2,", X in V is called linearly dependent if there are coefficients 	''21 *,Am

in F, but not all zero, such that (E i : 0 <i < in :).x1) = 0. Otherwise, it is

called linearly independent. A set B of vectors in V is a basis for a subspace L of

V if B is a maximal linearly independent subset of L. Every linear subspace L

has a basis, and all bases of L have the same number of elements. This common

number of elements is called the dimension of L. The vector space spanned by

the vectors x1,x2,•, Xm in V is the set span(x1,x2,.. ,Xm){(> i : 0<i<m

.Ax1) I (V i : 0<i(rn :)•eF)}. For an m x n matrix A over a field F, the set

of solutions to Ax = 0 is a vector space called the null space of A. The rank of

11

the matrix A, denoted by rank(A), is the number of maximal linearly independent

column (or row) vectors of A. Often we do not distinguish whether a vector is a

row or column vector and assume that this is deducible from the context. \\Thcn

we write xy for x, y E V, for example, we mean that x is a row vector and y is a

column vector with the same number of components. For an n-vector x in F, Lx

(O<in) denotes its i-th component.

Abstract Algebra For any two sets A and B, a subset R c A x B is called a

binary relation between A and B. (a, b) E is often written as aRb. Let X be a set.

A partition P of a set X consists of a set of disjoint subsets (called P-blocks) of X

whose union is the set X. A relation R between X and X is called an equivalence

relation on X when it has the following three properties: (1) Reflexivity: xRx for

all xX. (2) Symmetry. xRy implies yRx for all x,yEX. (3) Transitivity: xRy

and yRz imply xRz for all x, y, z e X. Given an equivalent relation F on a set

X, the equivalent class under F of any element x e X is the set CE(x) of all the

elements y of X that bear the relation E to x: CE(x) = {y I y E X A yEx}. Any

subset C of X that has the form C=CE(x), for some x, is called an equivalence

class of E (or an E- class). The set of all possible E-classes is X/E = {C I cc E

A C=CE(x) A xEX} and is called the quotient set of X by E. When restricting

E to a subset Scx, the quotient set of S by becomes: S/E={S} inX/E, i.e.,

S/E = IS fl C I CE X/E}. Let P and Q be partitions of a set X. P is finer than

Q if (Vx,y:x,yEX:(S:SEP:x,yeS) == (T:TeQ:x,yET)). Let F

and F be equivalence relations on a set X. E is finer than F if X/E is finer than

X/F, i.e., if (V x,y : x,yeX : xEy ==> xFy).

Let S be a non-empty set. A binary operation on S is any function * : SxS -i. S.

An element u e S is called a unit element for operation * if

(V s : sS : U * 33s * u) 	 (Unit Law)

A unit element is often called an identity element (or neutral element). We call

ualeft (right) unit for *if(Vs:sS:u*s=s)((Vs :sES:s*u=s)). An

element z E S is called a zero element for operation * if

(Vs:sES:z*s=z=s*z) 	 (Zero Law)

12

A zero element is also called an annihilator. We call z a left (right) zero if (V s

SES:z*s=z)((Vs:sES:s*z=z)).

Convex Analysis [66] Ifs C R' and x e ft the set x+S = {x+y I y E S} is

called a translate of S. For any two sets A and B, A + B {a + b I a E A A bE B).

A translate of a subspace of R'is called an affine set. Two affine sets are parallel

if one is a translate of the other. All non-empty parallel affine sets have a unique

subspace. The dimension of an affine set is the dimension of the corresponding

parallel subspace. The dimension of a set S is the dimension of the smallest affine

set containing it, and is denoted by dim(S). By convention, dim(ø) = —1. A set

ScRTh is full-dimensional if dim(S)=n. An affine set of dimension 1 is a line. An

affine set of dimension n—i is a hyperplane. Let {x I rx = 81 be a hyperplane, where

irEI\{O}, xER, and 8eR. The sets {x I 7rx61 and {x I 7rx6} are called

closed half-spaces. The sets {x
I

irx < 81 and {x
I

irx < 81 are called open half-

spaces. We may speak unambiguously of the open and closed half-spaces associated

with a given hyperplane. We denote the hyperplane {x
I
irx = 6} by [7r : 6]. We

use El to denote a fixed but arbitrary relational operator in {<, , >,> }. The

notation [7r El 8] stands for the half-space {x
I

xx El 6}.

The affine hull of a set S is the intersection of all affine sets that contain S.

It is denoted by aff(S). The unique linear subspace parallel to the affine hull of a

set S is denoted by un(S). A subset S of F is a convex set if (1—A)x+AyES for

every x e 5, y e S and 0< A < 1 in R (it is an affine set if the range of A is extended

to R). The convex hull of a set 5 is the intersection of all convex sets that contain

S. It is denoted by cony(S).

The hyperplane [ir 6] is said to bound the set S if either (V x : x E 5: 7rx < 8)

or (V x : xS: 7rx>6). A hyperplane H is said to support a set Sat a point XES

if x C H and H bounds S. A supporting half-space to S is a half-space containing

S and bounded by a supporting hyperplane to S.

Let A and B be two non-empty sets in RTh. A hyperplane H is said to separate

A and B if (1) A is contained in one closed half-space and B is contained in the

opposite closed half-space and (2) H is not a supporting hyperplane for both A and

13

	

I 	I 	 I

Convex 	Set S 	cony(S)

C: a convex set

II: a supporting hyperplane to C

	

Non-convex 	afT(S) 	un(S) 	5: a supporting half-space to C

Figure 1-2: Illustration of some concepts in U 2 in convex analysis.

B. The standard definition of separation only requires that A and B be contained

in the opposite closed half-spaces (i.e., (2) is not required). For the purpose of this

thesis, our definition of separation deliberately excludes the case when H supports

both A and B. A hyperplane H is said to separate A and B strictly if A and B

are contained in the two opposite open half-spaces.

Fig. 1-2 gives a pictorial illustration of some concepts defined previously.

A polyhedral convex set (or, convex polyhedron) is the intersection of finitely

many closed half-spaces. A polytope (or, convex polytope) is the convex hull of

finitely many points, i.e., a bounded convex polyhedron. Let S be a convex poly-

hedron in Utm . A subset F of S is called aface of 5 if either F=ø or F=S or if

there exists a supporting hyperplane to S such that F = S fl H. The faces 0 and

S are called improper. All other faces are called proper. If the dimension of F is

k, then F is called a k-face of S. It is customary to refer to the 0-faces of S as

vertices, the 1-faces as edges and the (n-1)-faces as facets. The notation facets(S)

stands for the set of all facets of S. For a facet F of 5, sup(S, F) denotes the

supporting half-space to S that contains F.

A subset S of Utm is called a cone if it is closed under positive multiplication, i.e.,

kxES for all xS and)teR+. A convex cone is a cone that is a convex set. The

cone finitely generated by the vectors x1, x 2,. , Xm is the set cone(x1, x2,.) Xm) =

{(>1 i : 0< i in : \x) I (V i : 0< i < m : Ai E R)}, i.e, it is the smallest convex

cone containing x1, X2 	7 X m. A cone that is a proper subset of a line is called

a ray (or half-line). A 1-face of a convex polyhedron that is a ray is called an

extreme ray.

14

Let X1, X2, 	, 5m be linearly independent vectors in fl'2 and o E fl'2 he the

reference point or (the origin). Let L1 be the line segment from the origin o to

the point ai xi for some non-zero ai in R. Then (E i : 0 < i m : L1) is called a

k-parallelepiped. It is called a hypercube if the vectors Xi, 	, 5m are mutually

orthogonal, i.e., if (V i,j : 0<imA0<jm : ij 	xx=O).

Let A be an rnxn real matrix and a E R'. The function from fl '2 to Rm that maps

every element x E fl to the element Ax E fl7fl is called a linear transformation. The

function from F to fl that maps every element x E F to the element Ax+a E fl

is called an affine transformation.

All concepts introduced so far in fl'2 have parallels in Qfl (Z'2). Let S = {x

P(x)} be any of the sets defined previously in fl'2 , the corresponding set in Q'2 (Z'2)

is the set of all the rational (integral) points in S, and is given by {x I 'P(x)Ax E Q'2 }

({x I P(x) A x E Z'2 }). For example, a convex polyhedron in Z (or an integral

convex polyhedron) is the set of all integral points in the intersection of finitely

many closed half-spaces.

Arithmetic As is customary, we write [x] for the floor of x E R, namely for

the greatest integer not greater than x, and we write 1] for the ceiling of x, i.e.,

for —[—x], the smallest integer not smaller than x. We write Ix for the absolute

value of x ER, i.e., ii =if x 0 -+ x jJ else -+ —x fi. The operator div denotes

integer division. The operator mod denotes the modulo operation. For x, y e Z,

xy ifs divides y, i.e., iffy mod x=0.

Symbols for Depicting Systolic Arrays Unless otherwise stated, we use the

following symbols in the depiction of systolic arrays. Boxes represent processors,

lines represent the communication channels between processors. Solid lines are

data channels; they carry the data flow. Dashed lines are control channels; they

carry the control flow. The delay buffers associated with data and control channels

are represented by fat dots and circles, respectively. The direction of data or

control signals that move along a channel is represented by an arrow tip at one

end of the channel.

Chapter 2

Data Flow Synthesis for (ri1 - 1)-Dimensional

Systolic Arrays

2.1 Introductory Remarks

The synthesis of systolic arrays from a program specification proceeds in two suc-

cessive steps:

the specification is refined and transformed to a systolisable source, and

the systolisable source is mapped to a systolic array.

Based on the work of [32], researchers have shown that a program in the form of

UREs [55,64] (or in the form of nested loops [50]) serves well as the systolisable

source. This has spurred research in systolic design in two major directions. One

is to develop methods for the mapping of UREs to systolic arrays. The main

design tool is a space-time mapping that delivers systolic arrays by means of

index transformations of the UREs. The other focuses on the transformation of

program specifications of a more general form to UREs. The main result achieved

so far is a uniformisation technique for transforming AREs to UREs.

This chapter provides the technical background for the thesis. We review

15

the basic techniques used in the previous two steps, i.e., the basic techniques

16

underlying the synthesis of data flow for systolic arrays. We only describe in

detail the techniques that are necessary for the understanding of the results of

this thesis. Other related issues are discussed in the conclusion.

The rest of this chapter is organised as follows. Sect. 2.2 presents the definition

of affine and uniform recurrence equations and some related concepts. Sect. 2.3

defines the most commonly used systolic array model. Sect. 2.4 describes the stan-

dard space-time mapping technique for the synthesis of the data flow with respect

to the systolic array model. In addition, it defines the validity of the space-time

mapping and the mapping conditions that ensure this validity. Sect. 2.5 describes

a technique for ensuring that input and output data are always handled at the

border cells of the systolic array, as required by the systolic array model defined in

Sect. 2.3. Sect. 2.6 presents three uniformisation methods for the transformation

of AREs to UREs. Sect. 2.7 concludes the chapter by outlining some other related

issues and commenting on some current research directions.

2.2 Affine and Uniform Recurrence Equations

Definition 2.1 A system of affine recurrence equations is a finite collection of

equations each of which has the form [57]

leD - V(I) = f(W(pw(I)),...) 	 (2.1)

where

D CZn is a union of disjoint convex polytopes in Z and is called the domain

of the equation. All defining equations with the same target variable must be

distinct. This simplifies the presentation with no loss of generality. Domains

of equations that have the same target variable must be disjoint. This ensures

that the system of AREs is well-formed. The index space, denoted 1, is the

convex hull of the union of all the domains of equations. The domain of

variable V, denoted T,, is the convex hull of the union of the domains of

all equations with target variable V. (deq stands for a domain of equation)

17

deq() denotes the set of all domains of equations. deq(V) denotes the set

of the domains of all equations with target variable V.

I is called an index vector or point. The predicate I G D is called a do-

main predicate. Each domain predicate can be put into disjunct normal

form, where each disjunct consists of a conjunction of predicates called con-

ditionals that are generally linear (or affine) functions of the index vector I.

Conditionals that are in one of the following forms:

7rI=5, irl 7~6, 7r1<8, 7rI8, 7rl>6, 7r1?5 	 (2.2)

are called basic conditionals, where 7r Zn is a coefficient vector and b E Z is

a constant. 7rl=8 is called an equality. irl=h5 is called an inequality. (Note

that irl=8 	7r ISAirI>8 and irI/z5 	irl.<SVirl>S.)A

domain predicate is said to be in normal form if its constituent conditionals

are basic conditionals.

V and W are variable names belonging to a finite set V.

The "• . ." stands for an arbitrary but fixed number of similar arguments.

f is a function that has time complexity 0(1).

Pw is an affine mapping from Z to Z1 (On) called an index mapping:

	

Pw(I) = AwI-9 	 (2.3)

where A E ZtxZ and V W E Z1. Aw is called the linear part of Pw• If C= n,

n-vector I — pw(I) is called a data dependence (vector).

The symbol -*+ separates the domain predicate from the corresponding defin-

ing equation. (Note that - is used in [57]. We choose -+ to avoid notational

confusion with the use of - in the if-statement (Sect. 1.2).) 	 LI

The elements of a variable V are partitioned into three subsets:

Input data are only read. They are identified by adding the following equa-

18

tions, called input equations, to the source program:

IEDv 	V(I)=vfl(I) 	 (2.4)

where iflV is a mapping from Z to Z 	(0 	ii). That is, input

element V(I) has the value Vjnv(I).

Output data are only assigned. They are identified by adding the following

equations, called output equations, to the source program:

IEEE -* VO V (J)=V(I) 	 (2.5)

where out s, is a mapping from Z' to Zh0tV (0 	n). That is, output

element V(I) has the value Vo,jv(I).

Intermediate data are read and assigned. Equations that are neither input

nor output equations are called computation equations. In other words, the

computation equations are thosed introduced by Def. 2.1.

Remark Input and output equations are not taken into account in the definitions

of deq(V), deq(), , and 4D (Def. 2.1). They only serve to declare which elements

of variables are input and output data. It is the computation equations that specify

the computations to be performed in the systolic array. 	 II

Following [14,58], we sometimes write the set of all defining equations with the

same target variable V in the following abbreviated form

leD1

V(I) =
	leD2 -+ f2(W(p2(I)),...) 	

(2.6)

IeD 	f(W(p(I)),...)

When specifying a system of AREs, we shall adopt one of the previous two styles

of notation, whichever is more convenient.

The concept of a data dependence graph plays an important role in systolic

design. A data dependence graph has one node for each point of the index space

and a directed arc from node J to node I if a variable indexed by J is an argument

in the equation for a variable indexed by I.

19

UREs are a subclass of AREs. They differ in the format of the index mapping.

In UREs, the index mapping Pw of (2.3) is of the form:

Pw(') = I19W 	 (2.7)

That is, the linear part of the index mapping is the identity matrix. The data

dependence vector I—pw(I) in the AREs becomes t9w in the UREs. 9W is a con-

stant, i.e., is independent of the index vector I. This exposes the unformity and

regularity of the computations prescribed by UREs, as opposed to AREs that are

not UREs. Data dependence vector I—Pw(I) in the AREs depends on the index

vector I if the linear part AW is not the identity matrix. If AW is singular, the

data dependence is not injective. Non-injective dependences are called broadcast

dependences. Injective dependences are called pipelining dependences. Broadcast

dependences allow the same variable to appear as arguments in the defining equa-

tions of an unbounded number of target variables. This represents the broadcast

of a datum from one processor to an unbounded number of processors. In addition,

irregular and non-constant data dependences result in irregular and non-constant

channel connections. The advantage of UREs is that they enforce pipelining and

regular and local channel connections.

By convention, a system of UREs is called unconditional if all its equations

are defined for the index space, i.e., if I J is the domain predicate for all the

equations. Otherwise, it is conditional.

We now introduce some concepts that are related to UREs. The data depen-

dence matrix V is a matrix whose column vectors are the data dependence vectors

[64]. For notational convenience, we assume that, for each variable name V, there

is only one associated data dependence vector, denoted ?9 v. When we write 0 E

we mean that 9 is a data dependence vector, that is, a column of V.

The points of the index space are called the computation points. If I is inside

and I-0v is outside the domain <DV of variable V, I is called a first computation

point of V. If I is inside and I+79V is outside the domain 	of variable V,

I is called a last computation point of V. The set of first computation points,

20

fst(v, 9v) and the set of last computation points, lst(v, t9V), of V are given by

fst(v,9v) = {I I IE v AI9vv} 	
(2.8)

lst(v,9v) = 11 1 IEv AI+i9vv}

The set in(v,9T) is the translate of fst(v,9v) by 	9v:

in(v,i9v) = fst(v,i9.t4—t9v 	 (2.9)

Since fst(v, 9v) and ifl(V, 19V) are translates of each other, we shall use either of

them in our analysis, as is convenient. By convention, the input data are supplied

at the points of in(v, z) and used for the first time at the points of fst(v, 19V).

The output data are assumed to be available at the points of lst(v, 19V). If this is

not the case, they can be made so by adding pipelining equations [64]; a pipelining

equation is of the form

leD _' V(I) = V(19v)
	

(2.10)

A variable is called a pipelining variable if it is specified by pipelining equations.

Having explicitly defined the domains at which input data are supplied and the

domains at which output data are defined, we can make the input equations of (2.4)

and the output equations of (2.5) in the source UREs more explicit. Replacing

DV of (2.4) by in(v,'9v) yields the input equations:

(V V: VEV : IEin(v,?9v) —* V(I)_v,,(,)) 	 (2.11)

Replacing EV of (2.5) by lst(v,9v) yields the output equations:

(V V: VeV: Ielst(v,i9v) 	Vo,av(J)V(I) 	 (2.12)

where Vjnv(I) and vo,av(I) are input and output data of variable V, respectively.

Let us introduce some notation. For I, t9 e Q'1, ray(I, 9) denotes the set of the

elements I, I+9, I+2?9,••, i.e.,

ray(I,9) = {J I J=I+m9AmEZ}

We write ray(I, +79) for ray(I, 79) U ray(I, —79). For convenience, we write I -
19

 J if

Jeray(I,79) and I--",+J if Jray(I,79). For DcQ'2 , we define

rays (D,t9) = (U I:IeD: ray (I,79))

We write rays(D, +79) for rays(D, 79) U rays(D, —79).

21

Let us use the multiplication of n x n matrices as an example for illustration.

This example will be used for illustration throughout the paper.

Example 2.1 m x m Matrix Product

Specification: (Vi,j : 0<2'<mA0<j<m : c1 , = (E k : O<km : a,kbk,))

AREs:

	

A(i,j,k){ 0<1mA0=jA0<km 	alk

B(i,j,k){ 0=iA0<jmAO<km

	

0<imA0<jmA0=k 	- 0

C(i,j,k) = 0<imAO<jmA0<km - C(i,j,k-1)

+A(i, 0, k)B(0,j, k)

cj = { 0<imAO<jmAk=m 	C(i,j,k)

Index Space: 4 = {(i,j,k) I 0<imAO<jmA0<km}

Domains of Variables: 	A = 	= 	=

Index Mappings:

100

A 	000

001

0

A 	0

0

000 	 100

L\B = 010 AC 010

001 	 001

0 	 0

B 0 •9c= 0

0 	 1

Data Dependence Graph (rn=4):

'I

Figure 2-1: The data dependence graph of the previous AREs (m

UREs:

A(z • 	 I
0<imA0=jA0<km 	a

,j, k) =

I 0<7'mA0<1*mA0<km -+ A(i,j-1,k)

• 	 I
0=iA0<jrnA0<km 	bk

B(z,3,k)
0<irnA0<jmA0<krn -.+ B(i-1,j,k)

	

0<imA0<jmA0=k 	- 0

C(i,j,k) 	0<imA0<jmA0<km -'+ C(i,j,k-1)

+A(i, j-1, k)B(i— 1, j, k)

cj 	{ 0<imA0<jmAk=rn 	C(i,j,k)

Index Space:

Domains of Variables: 	A = = =

010

Data Dependence Matrix: V = [9 A, 19 B, 79C] = 1 0 0

001

First Computation Points: fst(,19A) = {(i,1,k)
I
0<i<m A0<km}

fst(,9B) = (1, k)
 I
0<jm A0<km}

fst(,t9) = (2, 1) I 0<im A0<jrn}

Last Computation Points: lSt(,9 A) = {(i,m,k) 0<i<m A0<km}

1st(,19B) = {(m, j, k)
I
0<j (mA 0< k(m}

lst(,9c) = {(i,j,m) 0 < i (m A0<j(m}

Data Dependence Graph (m=4):

22

Figure 2-2: The data dependence graph of the previous UREs (m=4).

23

2.3 The Systolic Array Model

There is one systolic array model that has been the basis of many synthesis meth-

ods [19,27,50,55,64].

Definition 2.2 A systolic array is a network of cells that are placed at the grid

points of an r-dimensional set £ E Z' (0 < r <n) and that satisfy the following

properties:

Prop. 1. (Synchrony of Computation) The array is driven by a global clock that

ticks in unit time. A cell is active at every clock cycle.

Prop. 2. (Uniqueness of Channel Connections) For every variable V, postulate the

existence of a unique, directed connection from the cell at location p to the

cell at location p+d, for some constant vector dv E Zr. This postulate is

either true for all p e £ or false for all p e L. A directed connection is also

called a channel; it is an input channel to the cell at its destination and an

output channel to the cell at its source. If p e £ and p - dv g £, cell p is

called an input cell of variable V. If p e £ and p+dv VC, cell p is called an

output cell of variable V. Both input and output cells of V are also called

border cells of variable V; they are connected to the external environment.

The cells that are not border cells of V are called internal cells of V.

Prop. 3. (Linearity of Velocity) All channels represented by d, for a fixed variable

V, are associated with the same number of delay buffers. Thus, all elements

of V move with the same constant velocity.

Prop. 1 assumes that the computation at a point in the index space takes unit

time. The sentence "a cell is active at every clock cycle" in Prop. 1 is interpreted

as follows. If a cell receives a value on an input channel at a given time step,

then it will receive a value on the same input channel and send a value on the

corresponding output channel at the next time step. As a special case, if the values

24

on all the input channels of a cell at a given time step are undefined (or I), then

the cell is conventionally regarded as inactive. However, it is sometimes convenient

to regard such a cell as active. In this case, the cell at the given step performs

an undefined computation; it will send the undefined value, I, at the next time

step on all its output channels. By Prop. 2, only border cells are connected with

the external environment. Depending on the length of a channel, a border cell

may be a processor inside the array - a few processors away from the real border

of the array. Prop. 2 requires that a cell always receives (sends) the elements of

a variable via a fixed input (output) channel. It also enforces the regularity and

locality of channel connections. Prop. 2 and Prop. 3 ensure that all elements of

the same variable move with a fixed velocity.

2.4 The Space-Time Mapping

The space-time mapping maps every computation (or point) in the source UREs

to a time step and a processor allocation. It is a linear (or affine) transformation

of the index space. The advantage of linear (or affine) index transformations is

that they enforce easily the linearity of variables' velocities and the regularity of

channel connections.

Definition 2.3 A space-time mapping consists of two components: step and place.

Useful functions defined in terms of step and place are flow and pattern.

step : 1 - Z, step(I) = Al,) E Z. step specifies the temporal distribution. \

is the scheduling vector. I is computed at step Al.

place : <D - Z', place(I) = cr1, crZ' <Th . place specifies the spatial distribution.

ci is the allocation matrix. P = {uI I I 	} is the processor space of r

dimensions. I is computed at cell cr1.

flow : V -* Q', flow(V) = ci9V/)t9, 79v e V. flow specifies the velocity with

which elements of a variable travel at each step. Variable V is called moving

25

if flow(V)JO and stationary if flow(V)=O. Oi9 V represents the direction and

length of a connecting channel at a cell for variable V; the number of delay

buffers associated with that channel is)9,—l.

pattern : V -* fst -* zr>n, 	pattern(V(I)) = place(I)—(step(I)—tr)fIow(V)

= (U V : V E V : fst(v,i9v)). tfst is the first step number. pattern

specifies the location of variables in the processor space at the first step.

step is called the step function or timing function. place is called the place function

or allocation function.

This chapter considers only space-time mappings with r=n-1. They describe

systolic arrays of n - 1 dimensions. The motivation for employing an (n - 1)-

dimensional array to implement a system of n-dimensional UREs is to obtain a

time-minimal systolic array, an array with the smallest number of execution steps

(called latency) derivable from the source UREs.

The space-time matrix, II, is the matrix formed by the scheduling vector in the

first row and the allocation matrix in the remaining rows:

II = 	 (2.13)
a

A space-time matrix uniquely determines a space-time mapping. For convenience,

we sometimes refer to the space-time matrix as the space-time mapping. We shall

denote the image of some x under a given space-time mapping with an overbar:

Y. Here, x may be a point, a set of points, a data dependence vector, and so on.

For example, the image WV of data dependence vector ?9 v is given by

- 	rv1
?9V = I 	I 	 (2.14)

L a 9v j

The space-time mapping can be interpreted geometrically. All points that are

scheduled concurrently belong to a hyperplane called a temporal hyperplane. The

set of points that are scheduled at step t is in the temporal hyperplane [\ : t]. The

processor space is obtained by a projection, namely, by eliminating one dimension

26

from the index space along a chosen direction called the projection vector, and

denoted by u. Here, u E Z' is a normalised vector that satisfies an = 0 [64].

The points that are in a line parallel to the projection vector are assigned the

same processor location. The set of points that are allocated to cell p is in the

line ray(I,+u), where uI=p. In what follows, we shall use either the projection

vector or the allocation matrix, as is convenient.

Data dependence vectors are projected onto channels. For variable V, depen-

dence vector Ov is projected onto channel iv. The first component of t9V decre-

mented by 1 represents the number of delay buffers associated with the channel

and the remaining components represent the length and direction of the channel.

The following mapping rules characterise the validity of a space-time mapping.

Definition 2.4 A space-time mapping is valid for the source UREs in the systolic

array model (Def. 2.2) if

Precedence Rule: The step assigned to a target variable is smaller than the steps

assigned to its arguments. (This ensures that the data dependences pre-

scribed in the source UREs are preserved.)

Computation Rule: Concurrent computations are mapped to different processors.

Communication Rule: At most one element of a variable is injected to a fixed

input cell at any time step.

Delay Rule: The number of buffers associated with a communication channel is a

non-negative integer. 	 U

The following mapping conditions ensure the validity of a space-time mapping

[57,64].

Theorem 2.1 A space-time mapping H is valid if

(V V: VeV : .X9>0) 	 (Precedence Constraint)

rank(H)=n, i.e.,)ui:~0 	(Computation and Communication Constraint)

27

It is straightforward to see that the precedence constraint is equivalent to the

precedence rule. We sometimes write 	1 instead of)9%,r >0 in the precedence

constraint if we want to emphasise the fact that the evaluation of a point takes unit

time. The computation and communication constraint implies the computation

and communication rule. This can be understood in two different ways. First, the

non-singularity of H (i.e., rank(H) = n) ensures that the space-time mapping is a

bijection from Qfl to Q'. Therefore, points that are mapped to the same step must

differ in their processor coordinates. Second, ,\u 0 means that the projection

vector is not orthogonal to the scheduling vector. Hence, any line parallel to the

projection vector can only intersect at most one point in any temporal hyperplane.

To see that the delay rule is satisfied, recall that data dependence vectors are

projected onto channels. The number of delay buffers associated with a channel

for variable V is the non-negative integer Ai9v —1.

We may view the synthesis of systolic arrays as a process of program transfor-

mations [14,56]. It amounts to finding a suitable linear index transformation, i.e.,

a space-time mapping of the index space. In the transformed UREs, one index rep-

resents time and the remaining indices represent processor coordinates. Finding

different systolic arrays means just finding different valid space-time mappings.

We use matrix product to illustrate both the geometrical and transformational

view of the synthesis of systolic arrays.

Example 2.2 m x m Matrix Product

The following space-time mapping describes S. Y. Kung's two-dimensional ar-

rays for matrix product [64] (Fig. 2-3):

111

H= 100

010

The array consists of m2 cells and runs in 3m-2 steps.

First, we consider the geometrical view. The processor space is obtained by

x, y)

projecting the index space along the projection vector u = (0, 0, 1). The points

b2,2 b1,2

b2,1 b1,1

Y
a','
a1,2 	a2,1

a2,2

Figure 2-3: S. Y. Kung's systolic array for matrix product with data distribution

at the first step (m=2).

that are scheduled at step t are in the hyperplane [A : t]. The points that are

mapped to cell p are in the line ray(I, +u), where on = p. Elements of A travel

along channel 919 = (0, 1) with a speed of one unit per cycle. Elements of B travel

along channel cn4 = (1,0) with a speed of one unit per cycle. Elements of C are

stationary because cr,9 c =0.

Second, we consider the transformational view. This array is described pre-

cisely by the following UREs called the space-time UREs obtained from the source

UREs and the space-time mapping by replacing (1) the indices i, j, and k of all the

variables by t, x and y, respectively, (2) all the data dependence vectors by their

images under the space-time mapping as defined in (2.14), and (3) the indices i,

J and k in the domain predicates of the source UREs by the expressions in the

corresponding components of vector H(t, x, y).

The Space-Time UREs:

A(t,x,y) = s
I 0<xmA0=yA0<t—x—ym

I. 0<mA0<ymA0<t—x—ym -*+ 	A(t-1,x,y-1)

B(t,x,y) = I
0=iA0<jmA0<km

I 0<xmA0<ymA0<t—x—ym -+ 	B(t-1,x---1,y)

0<xmA0<yrnA0=t—x—y - 	0

C(t,x,y) = 0<xmA0<ymA0<t—x—ym —s 	C(t-1,x,y)

+A(t— 1, x, y— 1)B(t— 1, x— 1. y)

= { 0<xmA0<ymAt—x—y=m C(t,x,y)

2

I

28

29

From the space-time UREs, we can directly extract the following information: the

latency, the number of channels required, the number of processors required, the

input/output characteristics, the storage requirement, etc. 	 LI

2.5 Input and Output Extension

There are space-time mappings that do not project first and last computation

points to border cells. The corresponding input and output data are mapped to

internal cells. This is costly because the I/O pins of a chip are restricted to the

boundary of the chip and, consequently, non-local communication channels may

be needed. To impose the restriction of border communication, the index space

can be extended in such a way that the resulting first and last computation points

are all projected to border cells.

The basic idea is to replicate a data dependence vector in the data dependence

graph forward and backward until the images of points so created are at the

boundary of the processor space. This extension depends on the projection vector

and works only for moving variables. We give a formal definition of such an

extension, based on an informal idea described in [64]. Note that rays(, ±u)

denotes the set of all the points in z whose images under the space-time mapping

are in the processor space.

Definition 2.5 The extended index space 'I' of the index space 1 with respect to

the projection vector u is defined as follows:

if flow(V)=O - 0

II flow(V)~4O -* rays(,+u)flrays(fst(v,t9v)-9v,-9v)

fi

if flow(V)=O - 0

AP V =
	flow(V)=AO -p rays(,+u)flrays(lst(v,19v)+79v,9v)

fi

WV =

TP 	= (U V:VeV: IV' ,UW,)

30

'If 	=

The points of 'Er. are called the soaking points of V; they are generated in the

extension of V along direction 	The points of 'I', are called the draining points

of V; they are generated in the extension of V along direction i9,. The points of

are called the undefined points of V; they are generated in the extension of

the other variables. Tv is the extended domain of variable V. TP contains the

soaking and draining points of all variables; they are called the pipelining points.

The data dependence graph resulting from the extension is called the extended

data dependence graph. 	 *

The following concepts are analogous to those defined for the index space. The

set of new first computation points of variable V over the extended index space

is fst('If v,-d V). The set of new last computation points of variable V over the

extended index space is lst('If v, 79 V).

The two sets in('I', 7 9V) and 	9) are isomorphic by the bijection:

in(Ifv,9v) -p 1fl(V,t9V), 7Jv(I)=J 	where
I 79J
	(2.15)

(fst('If v, 9v) and fst(v , t9V) are also isomorphic because they are translates of

in(Wv,i9v) and in(v,t9v), respectively.) Similarly, the two sets lst('I'v,9v) and

lst(v, 9v) are isomorphic by the bijection:

Ov : lst(Wv,t9v) -p lst(v,9v), Ov(I)J where 	 (2.16)

The motivation underlying the extension of the index space is to have the input

data of V supplied at the points of in(Wv, 79 w) and the output data of V defined

at the points of lst(Wv, 	The extended source UREs defined over the extended

index space are a refinedment of the source UREs; they are obtained as follows:

Replace the input equations as defined in (2.11) by

(V V: VeV : Iein('cPv,'t9v) 	V(I)v2fl(I(J))) 	(2.17)

a1,1

a1,2 	a2,1

31

	

C1,2 	C2,2

	

C1,1 	C2,1

a2,2

Figure 2-4: Kung-Leiserson's systolic array for matrix product with data distri-

bution at the first step (m=2).

•

	

	Replace the output equations as defined in (2.12) by

(VV:VV:I1st('Pv,9v) 	V otav(Ov(I)) = V(I)) 	(2.18)

• 	Add the following pipelining equations

(V V: VEV : IEWv\ v 	V(I)—V(119v)) 	(2.19)

Let us illustrate how Kung-Leiserson's two-dimensional array for matrix prod-

uct [37] can be obtained by extending the index space.

Example 2.3 m x m Matrix Product

The following space-time mapping describes Kung-Leiserson's two-dimensional

array for matrix product (Fig. 2-4):

11 	1

II = 	1 0 —1 	HI=I=(t,x,y)

0 1 —1

The array consists of 3m2 -3m+1 and runs in 5rn-4 time steps. Compared with

S. Y. Kung's array, 2m —2 extra time steps are needed for the propagation of

32

S

B

Figure 2-5: Part of the extended data dependence graph for matrix product

(in = 4). The extension along —t9 is not depicted; it is symmetric to that along

9c with respect to the projection vector. Extensions along 19A and OB are not

necessary because the output of A and B is of no interest.

input data from border cells to internal cells and output data from internal cells

to border cells.

The processor space is obtained by projecting the index space along the pro-

jection vector u = (1, 1, 1). Let us look at the case where the index space is not

extended. The set of first (last) computation points for each of the three variables

A, B and C are contained in a hyperplane (Fig. 2-2). Since the projection vec-

tor is not orthogonal to the normal of any of these hyperplanes, some input and

output data need to be handled at internal cells. For example, point (1, 1, 1) is

mapped to the cell at the center of the array. As a result, data elements a11, b1,1

and c1,1 must be injected at this cell, which by definition is not a border cell. The

extension of the index space enforces border communication (Fig. 2-5), because

all input and output data are now defined at the boundary of the extended index

space, which are projected to the border cells. 	 U

33

2.6 Uniformisation

The projection vector completely determines the size and shape of the processor

space and the channel interconnection pattern between processors. (The number

of buffers associated with a channel remains to be determined by the scheduling

vector.) Unless uniform, a system of recurrence equations cannot be mapped to a

systolic array. For example, no systolic array can be obtained from a projection

of the data dependence graph depicted in Fig. 2-1, since channels of unbounded

length would be generated.

Uniformisation refers to the process by which AREs are transformed to UREs

[57,58,79]. It aims at replacing non-constant data dependence vectors (i.e., broad-

cast and non-constant pipelining dependences) with constant ones (i.e., constant

pipelining dependences). For this reason, uniformisation is also referred to as data

pipelining. Uniformisation proceeds in two steps. In the first step, one identifies

a set of constant data dependence vectors called pipelining vectors for the UREs

to be constructed. In the second step, one expresses each data dependence vector

in the AREs as a linear combination of the pipelining vectors and then replaces

the data dependence vector by the pipelining vectors. Uniformisation is a difficult

problem because the choice in neither of these two steps is unique.

There are basically three different uniformisation methods. We distinguish

them by the way the pipelining vectors are introduced and used. We only describe

the idea underlying each method and refer details to the corresponding references.

The method of [57,58] uses the null bases of the linear parts of the index map-

pings as the pipelining vectors. Consider the AREs and the corresponding data

dependence graph depicted in Fig. 2-1. I—PA(I) and I—p(I) are broadcast depen-

dences. Every element of A or B needs to be broadcast to m points. Let us consider

variable A first. Element aI,k must be broadcast to the points (i, 1 k), (i, 2, k), 	,

(i, m, k). We want to find a pipelining vector such that a k can be routed incre-

mentally to the corresponding m points along the pipelining vector. This pipelin-

ing vector may be chosen from the null basis of the linear part AA of the index

34

mapping for variable A. Let us choose (0,1,0), since AA (0, 1,0) = 0. Similarly,

we choose (1,0,0) for the pipelining vector for variable B, since L\B(l,O,O) = 0.

Consequently, we have transformed the AREs to the UREs described in Sect. 2.2.

This method cannot transform non-constant pipelining dependences to constant

pipelining dependences. The reason is that the null basis of a non-singula.r matrix

is 0, which does not contribute pipelining vectors. The method also breaks down

if the point at which a datum is produced has a non-constant distance from the

point at which the datum is used for the first time in the pipeline.

The method of [79] uses canonical or non-canonical bases of the vector space

as pipelining vectors. Let there be a data dependence between two points I and

J. Choose n linearly independent integral vectors as canonical or non-canonical

bases of the vector space Qfl We then express the dependence vector I - J as

a linear combination of the ii pipelining vectors. If the linear parts of the index

mappings are either the identity matrix or singular, all dependences of this form

can be transformed to constant pipelining dependences. The resulting UREs may

not allow the existence of a step function, but it is possible to find multi-step

functions; one step function for each variable (Sect. 2.7; for details, see [64]).

The method of [57] uses the extreme rays of the cone generated by the data

dependence vectors in the AREs as the pipelining vectors. Consider the set of data

dependence vectors {(i - k, 0, 1) J k < i m A k j m+ 1 A 0< k m} for an ARE

specification of Gauss-Jordan elimination for square matrices [57]. There is one

extreme ray (1, 0,0) and one vertex (1, 0, 1) in the cone generated by these data

dependence vectors. We can express the original data dependence vector (Z'—k, 0, 1)

as a linear combination of the two pipelining vectors (1,0,0) and (1, 0, 1):

(i—k,0,1) = (i—k-1)(1,0,0)+(1,0,1)

Thus, the non-constant dependences are transformed to constant pipelining de-

pendences. Assuming that there exists a step function for the original AREs (i.e.,

that there exists a mapping of integers to the points in the index space such that

the integer mapped to a target variable is always smaller than those mapped to

its arguments) and that the original data dependence vectors generate a cone, all

AREs can be transformed to UREs that permit a step function.

35

2.7 Conclusion

We have presented the basic techniques for the synthesis of systolic arrays from

UREs and for the transformation of AREs to UREs. We conclude this chapter with

a brief description of some other related issues in systolic design and comments on

some further research topics.

The step function described previously is linear. A more general case is an

affine step function: step(V, I) = \I+av, where c, e Z. There is one step function

for each variable V E V in the source UREs [64]. The affine step function is more

general than the linear step function because it may apply in the presence of zero

data dependence vectors. The precedence constraint must be changed accordingly:

(V V,W,I,J: V,WEVAI,Je: W(I) --+ V(J) == step(V,J) > step(W,I))

where W(I) --+ V(J) denotes that W(I) is an argument appearing in the defining

equation of target variable V(J). For simplicity, we adopt linear rather than

affine step functions. The existence of an affine step function in the source UREs

guarantees the existence of a linear step function in the UREs resulting from a

pre-index translation to the source UREs [64]. A pre-index translation can he

obtained from the additive constants in {cEv I V E V}. It serves to eliminate zero

dependence vectors in the initial UREs. A search for more general forms of step

and place that are capable of describing more general systolic arrays has been one

of the research topics in systolic design [55,74].

A systolic array that is described by the space-time mapping as defined here

is often referred to as a parameterised systolic array, since its size grows with the

size of the problem. The partitioning of a parameterised systolic array to reduce

it to some prescribed shape and size has been an active research topic recently

[11,17,52,82]. Partitioning is achieved by first dividing the processor space into

a number of blocks such that no two processors in the same block are assigned

concurrent computations, and then merging the processors in the same block into

one processor. Partitioning is possible with an extension of the standard space-

time mapping [17]. An alternative approach to partitioning takes place at the

36

program level. The idea is to partition the problem into smaller problems that

can be mapped directly to individual systolic arrays [29,53].

As a special case, partitioning also solves the problem of designing space-time

minimal systolic arrays [9,12,16]. A systolic array is space-time minimal when it

uses as few processors as any systolic array that has a minimal latency. It is also

a parameterised systolic array since we need to retain the latency of the original

array. The step and place functions for the partitioned systolic arrays are no longer

linear functions (of the indices); they are piecewise linear and generally contain

mod or div operators [22,74].

The space-time mapping technique delivers a systolic array of n—i dimensions.

If the systolic array postulates more dimensions than are available, a projection

of the processor space becomes necessary. Projection can also be considered as a

special case of partitioning, but it deserves a solution in its own right. We shall

address this topic in Chap. 4, when we deal with the synthesis of data flow for

one-dimensional arrays.

There have been some attempts to automate the generation of step and place.

Early work on this subject reported in [46] only handles some specific problems.

The minimisation of the step function with respect to the computation of one

specific variable (rather than all variables) can be formulated as a linear program-

ming problem [69,70]. The step function can also be minimised by combinatorial

optimisation. A branch-and-bound method has been proposed and demonstrated

to be effective on practical problems [80]. A method for minimising the number of

processors has also been reported [81]. The solution space of projection vectors is

bounded for a given step function; the minimising place function can be obtained

by enumeration.

Systolic arrays can also be emulated in software [6,7,21,63,65]. The space-time

UREs can be coded in programming languages, which can then he executed in

processor networks like Warp [1] and Transputers [25]. Work on the parallelisa-

tion of nested loops is relevant here [5,40,77]. The formerly distinct areas of the

parallelisation of nested loops and the synthesis of systolic arrays from algorithmic

descriptions have reached closer proximity [31,76].

37

Two different methods for the synthesis of systolic arrays deserve particular

attention. One is based on graph theory. It transforms a synchronous circuit to a

systolic array by redistributing the delays buffers associated with channels using

the retiming theorem [43]. The retiming theorem is often transferred to the con-

text of systolic automata [15,30]. The other is based on the theory of functional

program transformations. It captures the regularity of algorithmic descriptions

by the regularity exhibited in function compositions (so-called circuit combina-

tors) rather than the regularity exhibited in data dependence graphs [49]. This

method is appealing for its simplicity, elegance and facility to reason about various

properties of systolic arrays in a concise manner.

A lot of issues in systolic design are now well-understood, but much remains to

be studied. Each issue mentioned previously needs further study. In addition, we

describe several research topics that have not received adequate attention. One

topic is the transformation of program specifications of a more general form to

UREs. A desirable specification should only allow the existence of data depen-

dences that enforce the correctness of the program, as is possible in GAMMA [3,4]

and Unity [13]. But these languages are too general to support an implemented

scheme of systolic design. They offer too many implementation choices because

they are targeted at a much wider range of architectures than systolic arrays. To

support the systematic development of systolic implementations, we need to de-

velop a set of transformation rules that are specifically targeted at systolic arrays.

A second topic is the synthesis of systolic arrays with multi-level pipelining pro-

cessors [48,73]. A large amount of computations prescribed by systolic algorithms

have efficient pipelined implementations [36]. A third topic is the analysis and

synthesis of programmable systolic arrays [28,42]. A further topic is the synthesis

of control hardware for systolic arrays. This is becoming increasingly important

if we are dealing with partitioned, projected or programmable systolic arrays. In

subsequent chapters, we shall present a method for the systematic derivation of

control signals for parameterised systolic arrays.

Chapter 3

Control Flow Synthesis for (ri - 1)-Dimensional

Systolic Arrays

3.1 Introductory Remarks

When the notion of a systolic array was introduced a decade ago [34,35], a systolic

array was defined to be a network of simple cells, which always perform the same

computation. Therefore, no control mechanism was required. Later, the notion of

a systolic array was extended to permit a cell to perform different computations at

different steps [26]. This made a control mechanism necessary that instructs the

cell when to perform what computation. An example in [26] suggested that this

control mechanism could be implemented by pipelining control signals, in addition

to the data, though.

In Chap. 2, we have reviewed the space-time mapping technique for the synthe-

sis of data flow for (n-1)-dimensional arrays. The space-time mapping provides

a description of the layout and velocities of data with a guarantee that the right

data arrive at the right cells at each step. But it fails to provide the control signals

necessary to guarantee that the right computations are executed at each step.

38

The formal derivation of control flow has not received adequate attention for

several reasons. First, there was an initial focus on the synthesis of data flow.

39

Application problems considered for systolic design were very simple. A manual

derivation of control signals was adopted. This is no longer feasible when complex

problems are implemented as systolic arrays. Second, a systolic array can he

viewed as a system of space-time UREs. Rather than in hardware, it can be

realised in software on processor networks like Warp or Transputers [7,21,65],

where the issue of the derivation of control flow becomes irrelevant. Third, the

space-time mapping technique does not provide a specification of the control flow.

Alternative means must be sought. The necessity and complexity of developing

a formal method for the derivation of control flow were not well understood and

therefore research on this topic was neglected.

This chapter describes a method for the systematic synthesis of control signals

for (n-1)-dimensional systolic arrays synthesised from iterative algorithms defined

over a convex set of integer coordinates. We first present the method with respect

the n-dimensional UREs and then generalise it to algorithms of a more general

form in Sect. 3.8.

Recall that a variable V in the source UREs is of the following form (see (2.6)):

ICD1 -

lED2 - 	f 2(W(I-92)) V(I)

= 1 	

(3.1)

IeD 	- 	f(W(I-9), ...)

We assume that {D1 , D2, . . . , D,} is a partition of the index space 4. If not, we

can always enforce it by adding the equation I E D+1 -+ I, where D +1 =

\(U i : 0 <i <p : D.). Therefore, deq(V), which is the set of all domains of

equations with target variable V (Def. 2.1), is a partition of the index space.

Just like the derivation of the data flow, the derivation of the control flow

is a process of program transformation and refinement. In the derivation of the

data flow, a problem specification is first transformed to a system of UREs and

then the data flow is derived from the UREs by means of a space-time mapping.

The derivation of the control flow can proceed along the same lines. The domain

predicates in the source UREs constitute the initial specification of the control

40

mechanism for the systolic array. We are motivated to transform these domain

predicates to a system of UREs called the control UREs. We then replace the

domain predicates by predicates in the variables of the control UREs. We say

that the domain predicates are pipelined. To derive the control flow, we simply

apply the same space-time mapping that was previously applied to the source

UREs, now to the control UREs. Of course, the space-time mapping must be

valid for both the source UREs and the control UREs.

To make the presentation more precise, we duplicate the terminology of source

UREs for control UREs and prefix the words "data" and "control", respectively.

That is, we speak of data variables vs. control variables, and so on.

The rest of this chapter is organised as follows. Sect. 3.2 characterises control

signals. Sect. 3.3 focuses on the construction of the control UREs and the subse-

quent replacement of the domain predicates of the source UREs by predicates in

control variables. Sect. 3.4 discusses some techniques for optimising the specifica-

tion of control signals before and after the space-time mapping is chosen. Sect. 3.5

extends the standard space-time mapping technique so that systolic arrays with a

description of both data and control flow are directly synthesised from both the

source and control UREs. Sect. 3.6 contains a survey of related work. Sect. 3.7

illustrates our method with two examples. Sect. 3.8 contains the conclusion of this

chapter. It discusses the generalisation of our method to recurrence equations of

a more general form.

3.2 The Requirements on Control Flow

We aim at implementing the control mechanism for a systolic array by pipelining

control signals across the array. The control signals received at the input channels

of a cell determine the computation to be performed by that cell. The commu-

nication of control signals in systolic arrays needs to satisfy certain requirements.

Different requirements may lead to different specifications of control signals. We

adopt the requirements on the communication of data defined in the systolic ar-

41

ray model (Def. 2.2) for the communication of control signals. When viewed as

electronic signals, control signals and data need not be distinguished.

The control signals in (n-l)-dimensional arrays must satisfy four restrictions:

Rst. 1. Control signals are both input and output at the border cells of the array.

Rst. 2. The number of different control values that travel along a control channel

is a constant, i.e., is independent of the size and dimension of the source

UREs.

Rst. 3. A control signal moves with a constant velocity.

Rst. 4. Once input, a control signal remains unchanged.

Rst. 1 keeps the number of pins required in the systolic array to a minimum. Rst. 2

ensures that the bit-width of a channel is a constant. Both restrictions cater to the

constraints imposed by the current VLSI technology. Rst. 3 stems from the fact

that the control signals are specified by UREs and that the space-time mapping

is linear. Rst. 4 is not imperative but useful. It happens to be a property of the

control UREs constructed for (n- 1)-dimensional arrays, but will not hold for the

control UREs constructed for one-dimensional arrays in Chap. 5.

Rsts. 1 and 3 are imposed on the data in the systolic array model (Def. 2.2).

Rst. 2 is guaranteed by the implicit assumption that a data channel has constant

bit-width.

Remark The domain predicates of the source UREs constitute the initial spec-

ification of control signals. As far as the synthesis of control signals is concerned,

the defining equations of the variables in the source UREs are irrelevant. When

we use the source UREs for illustration, it is sufficient to describe them by the

sets deq(V) for all the variables VEV. We shall not specify these sets in terms of

predicates in indices. Rather, we specify them by means of diagrams; one diagram

per variable. The diagram associated with variable V depicts the partition of the

index space specified by deq(V).

42

3.3 The Synthesis of Control Flow

Our systolic array model requires that the data are exchanged with the external

environment only through border cells. The restriction to border communication

can be enforced by an extension of the index space with respect to the projection

vector. The source UREs defined over the index space Ii can be extended to the

extended index space 'I' by adding pipelining equations for all variables at the

newly generated points, i.e., in C. For notational convenience, we write the

extension of (3.1) over the extended index space as follows:

IC10 A leD1
I CIP A I E D2

V(I) =

IC-0 A I E D

IEC

- 	f(W(I-19),...)

V(I-19)

(3.2)

The last defining equation of V corresponds to the pipelining equations in (2.19).

In other words, it specifies that the elements of V at the cells of ptace(CJ?) are

propagated at the steps step(C). This suffices for the purpose of the control

flow derivation, because it is the domain C 	rather than the dependence vector

9 that determines the specification of control signals.

We shall construct the control UREs for the extended source UREs. The

construction is based on a characterisation of the points in the extended index

space. This characterisation aims at partitioning the extended index space into

blocks such that all points in one block may be specified by a common set of

control signals. For this purpose, we introduce the concept of a type for points. It

relies on the following equivalence relation on I.

Definition 3.1 ® is the following equivalence relation on

J®J 	(V D : DEdeq() : leD 	JeD)

We say that I and J are of the same type if I(j)J. Points that are not of the same

type are said to have different types. 	 El

43

Recall that the defining equations of all domains with the same target variable are

distinct (Def. 2.1). Therefore, the defining equations for a variable of the source

UREs agree at points of the same type and do not agree at points of different

types. The definition of j does not take the input and output equations in the

source UREs into account. Remember that deq() does not contain the domains

of input and output equations (Sect. 2.2). Input and output equations only serve

to declare which elements of variables are input and output data. They do not

specify the computations to be performed in the systolic array.

The quotient set of by 3 is given by

= (nn V:VeV:deq(V))
	

(3.3)

To see why this is so, we note that deq(V) for a fixed variable V is a partition of

the index space. So a subset of 	is a -class if it is the intersection of I/j

blocks, one from every partition deq(V)

Example 3.1 Let the source UREs be specified as in Figs. 3-1(a) and (b).

(a) deq(U)

P3I
D4

D5 I

(b) deq(W)

Figure 3-1: The construction of the quotient set

The quotient set /@ depicted in Fig. 3-1(c) follows from (3.3):

= {/@ of (3.3)1

(1i11 V: VeV: deq(V))

= IV= {U,W}}

deq(U) Th deq(W)

= 	{Definition of fli in Sect. 1.21

{D1 nD3 ,D1 flD4,D1 nD5 ,D2 n D3 , D2 nD4 ,D2 nD5 }

= 	{D1 flD3 =D3;D1 fl D=0;D2 fl D3 =0;D2 flD5 =D5 }

{D3 , D1 flD4 ,D2 nD4,D5 } U

44

Once the control UREs are constructed, we need to replace the domain pred-

icates of the extended source UREs by predicates in control variables. Here, the

quotient set D/@ of a domain D E deq() of equation by 	comes into play.

The quotient sets D/© for all domains DE deq() in Ex. 3.1 are:

D1 / = 	{D3 ,D1 nD4 }

D2/t = 	{D2 nD4 ,D5 }

D3 / = 	{D3 }

D4 /® = 	{D1 nD4 ,D2 nD4 }

D5 /t = 	{D5 }

They are subsets of 	The following lemma states that this is always so.

Lemma 3.1 (V D : Dedeq() : D/ c/).

Proof The domain D of an equation is a subset of I, i.e., D c 4. D/ is the

quotient set /3 restricted to D. That is, D/©={D} nn /®. By the hypothesis,

DEdeq(). An application of (3.3) yields DI(j) ={ D} iii /jC/j. 	Eli

We sometimes write 4 (O<irAr= /) for afixed but arbitrary -class if

we are not concerned with the exact elements in the class. This enables us to write

I O<ir}. 	 .,} is a partition of the extended index

space T. All points in one block of the partition can be specified by a common

set of control signals. The specification of control signals proceeds in two steps:

1. Construct the control UREs from the domain predicates in the extended

source UREs. The control UREs are divided into two systems:

Computation control UREs (CCUREs) distinguish different types of

computation points, (i.e., different -classes). They specify the control

signals for the evaluation of the computation points in the index space.

Propagation control UREs (PCUREs) distinguish pipelining points (of

C) from computation points (of 1). They specify the control signals

for the pipelining of input (output) data that are mapped to the internal

cells of the array from (to) the border cells.

45

The dichotomy exhibited by the control UREs is natural since 	I} is a

partition of the extended index space W. The points in C 	are specified by

pipelining equations, and the points in are specified by the source UREs.

2. Replace the domain predicates in the extended source UREs by equivalent

predicates in the control variables: replace those that are in the source UREs

by predicates in computation control variables and those that are in the

extended source UREs but not in the source UREs, i.e., I 	and IeCI,

by predicates in propagation control variables. The resulting extended source

UREs and the control UREs are called pipelined UREs.

If the source UREs are unconditional, i.e., if I e 'T' is the domain predicate of

all equations, then /?j = {}. In this case, computation control is not needed.

If all input and output data prescribed by the source UREs are mapped to border

cells, propagation control is not needed.

The specification of a control variable V proceeds in three steps:

Choose a non-zero normalised vector dv e Z as the control dependence

vector. (Each control variable is associated with one control dependence

vector.)

Define the set of control values, denoted sig(V), and the input equation that

specifies the initialisation of V with control values in sig(V). The domain of

the input equation is in(W, VV).

Define the computation equation as I E W - V(I) V(I-9.4.

The control signals of control variable V are initialised at in(W, 	and pipelined

along ?9v across the extended index space T. We shall address the minimisation of

the domains of control variables in Sect. 3.4. The control UREs are unconditional.

Otherwise, we would need to add a second level of control UREs that governs the

computations prescribed by the initial control UREs, and so on.

Let us discuss how the control UREs specified this way satisfy the four restric

tions on control signals described in Sect. 3.2. The sets fst(W, 9) and lst(W, t9V)

46

of control variable V are part of the boundary of the extended index space.

The extension of the index space ensures that all first and last computation

points of data variables are mapped to border cells. That is, only points of

(U V : V e V : fst(1'v,9v)Ulst(Wv,9v)) are mapped to the border cells. The sets

fst('I',t9v) and lst(W,i9v) may contain points that are mapped to internal cells.

To enforce the border communication of control signals, i.e., Rst. 1, we extend the

extended index space (with respect to the projection vector) for the control UREs

in the same way as we extended the index space for the source UREs in Def. 2.5

(see Figs. 6-1(a) and (c)). Rst. 2 is satisfied if we restrict Jsig(V)J to be a constant,

Rst. 3 is satisfied since the space-time mapping is linear, and Rst. 4 is satisfied

since the computation equations of control variables are pipelining equations.

The construction of the control UREs relies on the following theorem about

the separation of two convex sets in R'2 by hyperplanes [66].

Theorem 3.1 (Separation Theorem) If C1 and C2 are non-empty disjoint convex

polytopes in R', there always exists a hyperplane that strictly separates C1 and C2.

To apply the Separation Theorem, each 3-class must be a convex polytope in

Z. If not, it must be partitioned into a union of convex polytopes. We refer to

a partition of the index space as a ®-partition if it is finer than the quotient set

/?3 and if every block of the partition is a convex polytope. The quotient set

/® is a ®-partition if all 3-classes are convex.

Let us address the problem of obtaining ®-partitions from the source UREs.

We can approach this problem in two different but equivalent ways. In the first

approach, we obtain ®-partitions by partitioning each -class into a union of

convex polytopes. We refer to a partition of a (D-class C E '/© as a convex class

partition, denoted clapar(C), if the blocks of the partition are convex polytopes.

This gives rise to a ®-partition, denoted ®c1ap:

®clap. = (U C : CC (D /@ : clapar(C)) 	 (3.4)

In the second approach, we obtain @3-partitions by partitioning each domain of

equations into a union of convex polytopes. We refer to a partition of a domain

47

D e deq() as a convex domain partition, denoted dompar(D), if the blocks of the

partition are convex polytopes. We define

condeq(V) = (U D : Dedeq(V) dompar(D)) 	 (3.5)

condeq() = (U V: VeV: condeq(V)) 	 (3.6)

This gives rise to a ®-partition, denoted ®dompa.r

®dompar = (liii V:VeV:condeq(V)) 	 (3.7)

®dompar is a ®-partition because condeq(V) is finer than deq(V) and its blocks

are convex polytopes.

The previous two ways of obtaining ®-partitions are equivalent.

Lemma 3.2 Let @r be the set of all ®-partitions defined by (3.), and ®d be the

set of all ®-partitions defined by (3.7). Then, Oc =®.

Proof Every ®clapar in ® is also in ®d if we choose dompar(D) = {D} nn ®cIapa,

for every domain of equation D e deq(). Every ®dompar in ®d is also in ® if we

choose clapar(C) = {C} tiii ®dompar for every(D-class Ce 	 LI

To find ®-partitions, we do not need to construct the quotient set 0 /J in order

to obtain convex class partitions for non-convex ?j-classes. Lemma 3.2 states

that finding different ®-partitions amounts to finding different convex domain

partitions for all domains of the equations in the source UREs. Recall the definition

of AREs in Def. 2.1. Each domain of an equation must be expressed as a union

of disjoint convex polytopes. This means that the set of these convex polytopes is

a convex domain partition. Therefore, the domain predicates in the source UREs

uniquely determine a ®-partition, which is defined by (3.5), (3.6) and (3.7), where

convex domain partitions dompar(D) for every D € deq() are specified in the

source UREs. To distinguish this partition from the others, we denote it by ®src

Remark From now on, when using the source UREs for illustration, we shall

describe them by the sets condeq(V) for all variables V e V in the source UREs. We

continue to use diagrams to depict these sets. In the diagram for a variable j/, all

48

solid lines form the partition deq(V), all dashed lines inside the region that depicts

a non-convex polytope Dedeq(V) form the convex domain partition dompar(D)

and, consequently, all solid and dashed lines form the partition condeq(V). 	fl

3.3.1 The Computation Control Flow

The construction of the CCUREs imposes a ®-partition by means of the compu-

tation control variables. To do so, we must find a set of separating hyperplanes

that mutually separate all @3-blocks. Each of these separating hyperplanes divides

Z into two halves. We write 	for the set of half-spaces associated with these

hyperplanes, one half-space per hyperplane, and define 45c = {C7n8 I Se 6 }, i.e.,

c contains the complements of the half-spaces of 6.

Definition 3.2 A set S of half-spaces is called a set of defining half-spaces of

an integral convex polytope C if C is the intersection of these half-spaces, i.e., if

C=(flH:HeS:H). 	 El

Definition 3.3 A set 16 of half-spaces is called a separation set (of a @3-partition)

if 45 U 4&c contains a set of defining half-spaces for every @3-block. 	 LI

Since @3-blocks are disjoint convex polytopes, the existence of a separation set

is guaranteed by the Separation Theorem. In Sect. 3.3.1.1, we present the specifi-

cation of computation control flow from a separation set for a fixed but arbitrary

@3-partition. In Sect. 3.3.1.2, we describe the construction of a separation set for

the @3-partition ®src The way that this separation set is constructed permits

the development of a mechanisable procedure for the specification of computation

control flow directly from the source UREs.

3.3.1.1 Specifying Computation Control Flow from a Separation Set

The construction of the CCUREs form a separation set 6 is straightforward. For

S E e, the notation S stands for the corresponding hyperplane. We associate

a distinct computation control variable, C1, with S= = [7r1 : 5] for every SiC

49

where 7ri E Z is normalised and bi E Z. The associated control dependence vector

9c, of C• is a solution of 	C, takes on two different values: ci in the half-

space Si and in the half-space C7 S. That is, sig(C) = Ici ,zi l. For convenience,

we define ci = 1 and ci = 0. (This is data pipelining (Sect. 2.6). Instead of

performing tests I C Si and IECrS2 for every point in the extended index space,

the results of these tests at the corresponding half-space are shared.)

The CCUREs are defined as follows:

{ 	- =o

[
	zi

1 IEin(,t9c)flS 	C(I)=c1
vsi : sZ E 	:

C(I) = IEin(W,9c.)flCinS 	C1 (I)=

Remark We abuse the notion of UREs slightly here. The equation 79c 7r=0 is

not a URE; it specifies that i9c, is any vector that is orthogonal to ir1. 	El

Once the CCUREs are constructed, we can proceed to replace the domain

predicates in the extended source UREs that are also in the source UREs by

predicates in the computation control variables.

Definition 3.4 Let S c T. 2(S) denotes the predicate in computation (pipelin-

ing) control variables that replaces predicate I E S. S' contains the points of kJI at

which 2(S) holds:

5' = {IlIEAP(S)} 	 U

The definition of 2(S) aims at the establishment of the equality of S and S'.

Definition 3.5 The computation control flow is correct if (V D : D E deq()

D=D'). 	 LI

The following lemma permits a hierarchical definition of predicates in control

variables for the purpose of replacing the domain predicates of the source UREs.

Lemma 3.3 Let 51,52," .,5 be subsets of a set SçW. Let P(S) (3 i:

5 : 2(Sj). Then (1) S'= (U i : O<i.s : 8'). () S=((J i : O<i<s : 8') ==

' S=S .

50

Proof Since (1) implies (2), it suffices to prove (1).

SF

= {Def. 3.41

{I I IE1IAP(S)}

= {P(S)=(i : 0<is : P(S)) by hypothesis}

{I I Ie'I A (i : 0<is : P(S)}

= {Algebraic manipulation}

(U i:0<is: III IElIIAp(5)})

= {Def. 3.41

(U i:0<is:S') 	 U

We need to define predicates P(D) in order to replace domain predicate I € D

for D e deq(). By Lemma 3.1, D/® c /©, i.e., all the elements of DIt are

®-classes. 'P(D) is defined in terms of predicates P(S) for the ®-classes Se D/j:

P(D) = (3 5: SeD/ : P(S)) 	 (3.9)

Lemma 3.4 (V D: Dedeq() : D=D') == (V C: Ce/@ : C=C').

Proof Sufficiency follows from Lemma 3.3 by using (3.9) and the hypothesis.

Let us prove necessity. For every C e /® either of the following must be true by

the definition of j: (1) Cedeq(), and (2) there are at least two elements X and

Yin deq() such that CcX, CcY, C=X fl Y, X\Y$ø and Y\Xø. In (1),

C = C' by the hypothesis. In (2), we assume that C C'. By (1) of Lemma 3.3

and (3.9), X'= (U S: SeX/(D : 5') and Y'= (U 5: SeY/(5 : S'). Since C c X

and C c Y, we obtain C e X/@ and C e Y/@. We consider two sub cases: (a)

C'\C~4 ø, and (b) C'cC. In (a), C' cannot be contained in both X and Y, since

X \ Y 0 and Y \ X 0. Hence, either X 54 X' or Y Y'. Let us consider (b).

C'cC implies C\C'~ø. In order for X=X' to hold, there must be some S7~C

in X/ such that 5' contain some elements in C\C'. This implies that S'\So.

S is a ?j-class. Regarding S as the previous C, we are back to (a) via (2). 	LI

Next, we define predicates P(,) for all -classes in 	= Jt j 1 0 <i r}.

®-class -(Di is the union of the convex polytopes in partition clapar(1). Hence,

51

2(t) is defined in terms of predicates 2(S) for the blocks SEc1apar(1):

= (3 S: SEclapar() : 2(5)) 	 (3.10)

Lemma 3.5 (V C: C E /® : C = C') 	(V C: CE 	: C = (U S: S E

clapar(C) : S')).

Proof Lemma 3.3 and (3.10). 	 701

Finally, we define the predicates 2(5) for all the blocks in clapar(). All these

blocks are convex polytopes. Let X c be a ®-block. We define h(X,) to be

any subset of 45 U 6c that is a set of defining half-spaces of X. If no such set

exists, 71(X,) = 0. 2(X) is given by

ifSe 6 —*C1(I)=c1

2(X) = 	Si E 	 (3.11)

fi

The next lemma establishes the containment of a set of defining half-spaces of

X in e U 	as a necessary and sufficient condition for the equality of X and X'.

Lemma 3.6 Let X 40 be a convex polytope. Then 71(X,) 34 ø 	X=X'.

Proof

X

	

== 	{'K(X,) is a set of defining half-spaces of X; Def. 3.21

(fl S:S1 E71(X,):S1)

{2(X) of (3.11); the CCUREs of (3.8)1

{IIIeWA2(X)}

	

4= 	{Def. 3.41

X' 	 LI

We have completed the definition of predicates 2(D) for every D E deq().

Let us have a look at the situation when these definitions can be simplified. If S

in deq() (/) is a convex polytope, predicate 2(5) defined by (3.9) (by (3.10))

can be defined directly by (3.11). ._

52

Lemma 3.7 Let S in deq() or 'I/j be a convex polytope. If & is a separation

set, then 7I(S,

Proof If Sedeq(), then S=(U X : XeS/j : (U Y YEclapar(X) Y)) by

Lemma 3.1 and the definition of a ®-partition. If e is a separation set, ?(P,) :~

0 when P is a ®-block. Thus, (V X : XES/©: (V Y: Yeclapar(X) : 7-1(Y, s)))

contains a set of defining half-spaces of S. The proof is similar when SE/. Li

By definition, the blocks in dompar(D) for all non-convex domains Dedeq(),

i.e., in condeq()\deq(), are convex polytopes. However, Lemma 3.7 may not

hold for every one of them, as the following example demonstrates. This example

also provides insight to the formulation of the sufficient condition for Lemma 3.7

to hold for all these blocks.

Example 3.2 Figs. 3-1(a) and (b) depict the source UREs as specified in Ex. 3.1

with dompar(D2) = {D2,1, D2,21 and dompar(D5) = {D5,1, D5,21.

Si.

S2..

D2,2 	_S

Figure 3-2: Domain predicate replacement. deq() = {D1, D2, D3, D4, D5 }.

condeq() = {D1,D21,D22,D3,D4,D51,D52 }. 	S and 52 are supporting

half-spaces to D1, S3 and S4 to D4, and 55 to D5,1.

Fig. 3-2(c) depicts the ®-partition @,,. For simplicity, we shall not include the

supporting half-spaces of the index space in a separation set. 4={S1, 82 , S3, S41

is a separation set of the ®-partition depicted in Fig. 3-2(d), since

= 	{ CZ- Si, S2 }

7-((D31 t) 	= {S1, C7n531

7- (D1 fl D41 4) 	= {52, S3}
(3.12)

1-1(D2 nD4,) 	= { CZ- S2 ,S3 ,S4 }

fl(Da,) 	= {C7 S2,C7 S3,S4}

= {C7S4}

D
D [.3Di flD4 [D2,1 DinD4

[nD5,i D2 n D4 	Da D2 fl D4
2,2 --- D5,2 --Dh

(a) condeq(U) 	5 (b) condeq(W) 	(c) ®src 	(d)A ®-partition

53

Lemma 3.7 holds for convex domains D1, D3 and D4 in deq(), since

{S1 , S2 }

{S1,C7S3} 	 (3.13)

= 	{S3 ,S4 }

D2 and D. are non-convex domains in deq(). condeq()\deq() = {D 1 , D2,21 D5 ,1)

D5,21. Lemma 3.7 holds for D2,1 and D2,21 since

7I(D2,11 S) = {CZ-Si , S21
	

(3.14)
= {C7-S2}

But it does not hold for D5,1 and D5,2 since 71(D5,1, 45)=0 and 71(D5,2,) 0.

Thus, we cannot define predicates P(D5,1) and P(D5,2) by (3.11).

The set 6 is a not a separation set of ®srC since fl(D2,2 fl D5,1,) = 0 and

7-I(D5,21) = 0. Adding S5 to it gives rise to a separation set of ®src 	=

IS,, S2, 53, S4, S5}, since, in addition to the first four equations of (3.12), we have

fl D5,,) = {C7nS2, C7 S3, S5 }

1(D5,21) = { CZ- S4, CZ- S51

For the new separation set, Lemma 3.7 is valid for every element in condeq(),

since, in addition to (3.13) and (3.14), we have

1-1(D5,1,) = {CznS1,CzS3,S5}

1-1(D5,2, ') = {Czn4 C1 S51

Lemma 3.8 If 6 is a separation set of ®src, 71(S,) 0 for every Se condeq().

Proof By (3.7), every Secondeq() is a union of ®src ocks. The rest of proof

proceeds exactly as for Lemma 3.7.

This lemma allows us to define predicate P(D) for every D e condeq() by

(3.11). So, predicate P(D), which replaces domain predicate I e D for every

Dedeq(), is given by

P(D) = (I 5: Sedompar(D) : P(S)) 	 (3.15)

Lemma 3.8 is the basis for the procedure, presented in Sect. 3.3.1.2, for the syn-

thesis of computation control from the source UREs.

54

Replacing domain predicates I C D2 in (3.2) by the new predicates P(D) yields

V(I) = IEW

if I 	AP(D1)

B IEAP(D2)

IEAP(D)

II IEC w

fi

-* f1 (W(I- 1) 1 ...)

-f f2 (W(I-92),...)

(3.16)
-

V(I-19)

The new predicates are part of the guards in this equation. There are as many

guards as there are domain predicates in the original equation. From now on, when

we speak of the guards in the pipelined UREs, we mean the predicates P(D). Note

that the resulting extended source UREs after domain predicate replacement and

the CCUREs have the same domain predicate I E T. They are unconditional.

Therefore, deriving control signals for the source UREs amounts to transforming

the source UREs to a system of unconditional UREs such that the input and

output data prescribed by the new system are mapped to border cells.

Theorem 3.2 If 45 is a separation set of some ®-partition, then the computation

control flow is correct.

Proof We consider only predicates P(D) for D E deq() that are defined by

(3.9). The proof is similar if they are defined by (3.15).

46 is a separation set of some ®-partition

{Def. 3.2; Del. 3.31

(V X : Xe® : (3 S: SC 45 U 	A (S is a set of defining half-spaces of X)))

{Choose fl(X, 1) as S; X is convex and N(X,) 0; Lemma 3.61

(V X : Xe®: X=X')

==. {/© of (3.3); P() of (3.10); Def. 3.4; Lemma 3.51

(V i : O<i<r :

{(V V: VeV: (V D : DEdeq(V) : D/c/)); Def. 3.4; Lemma 3.41

(V V: VeV: (V D: Dedeq(V) : D=D'))

== {Def. 3.51

The computation control flow is correct 	 LI

55

The definition of P(D) of (3.9) amounts to redefining the domain Di of the

domain predicate I e Di to:

(U X : XED/: (U Y: Yeclapar(X) : (fl II : He?L(Y,6) : H)))

A search for different separation sets is a search for different ®-partitions, which

amounts to searching for source UREs with different specifications of domain pred-

icates by the virtue of Lemma 3.2. Different separation sets may lead to computa-

tion control of varying quality. Take Ex. 3.2 for example. The second separation

set is inferior to the first, since it contains one more element (i.e., S5) and thus

results in one more control variable in the CCUREs.

This thesis does not provide systematic solutions to finding the best control

UREs. We shall at the end of Sect. 3.3.1.2 describe some heuristics that guide

the user in the optimisation of domain predicates. The user is responsible for the

choice of domain predicates that yields efficient systolic arrays. Systolic design

systems [2,54,56,75] generally rely on the user in difficult decision-making and

performance optimisation. In the synthesis of data flow, optimisations of step and

place [46,70,80,81] are carried out with respect to the source UREs (rather than

the initial problem specification). Also for their choice, the user is responsible.

In Sect. 3.3.1.2, we present a mechanisable procedure for the construction of a

separation set of ®src, denoted 	from the source UREs. The construction of

src completely depends on the domain predicates of the source UREs. So does

the subsequent domain predicate replacement.

3.3.1.2 Specifying Computation Control Flow from the Source UREs

This section describes a procedure for the synthesis of computation control from

the source UREs. We assume that the domain predicates of the source UREs are

in normal form (Sect. 2.2), i.e., their constituent conditionals are in one of the

following forms:

7I=61 irI 7!6, 7i-I<8, rIS, 7rI>5, 7rI8 	 (3.17)

56

For simplicity and without loss of generality, we further assume that all condi-

tionals are neither equalities nor inequalities. If not, we can always replace every

equality 7r1=8 by 7rI<6A7rI>8, and every inequality 7rI6 by 7r1<6V7rI>8.

App. A discusses the normalisation of domain predicates.

Each conditional, ir El 6, in one of the rightmost four forms depicted in (3.17)

corresponds to half-space [ir 0 8]. The idea underlying the construction of sepa-

ration set esrc is to just to collect the half-spaces corresponding the conditionals

in the domain predicates. If two half-spaces are complements of each other, it is

only necessary to put one of them in 6src (rC will contain the other). Once

src is obtained, the CCUREs follow from (3.8) with E5 =src The replacement

of the domain predicates of the source UREs relies on (3.15). That is, we define

predicate 'P(D) for every D E condeq() by finding a set of defining half-spaces

of D from src u

	

	For every conditional 7r06 in the domain predicates, the src

corresponding half-space [ir El 6] is contained in src u 15c . By the specification src

of the CCUREs, any two complement half-spaces in e,rc U 'rc are associated

with a unique control variable; the variable takes on the value 1 at the points in

the half-space in 45rrc and the value 0 at the points in the half-space in 	Let src

C be the control variable associated with [ir El 6]. We replace conditional 7r06 by

predicate C(I) = 1 if [ir El 6] is in e5 and predicate C(I) = 0 if [7r El 8] is in 15c src

This amounts to defining fl(D, 6s,j for D e condeq((D) as the set of half-spaces

that correspond to the constituent conditionals of I E D. Trivially, h(D, src) is

a set of half-spaces of C.

From now on, we shall use C.S to denote the control variable associated with

a half-space S in 6 U 6c. Conversely, we use H.0 (H'. C) to denote the half-space

in 6 (SC) associated with a control variable C.

Procedure 3.1 (Construction of computation control flow from the source UREs)

INPUT: 	The source UREs.

OUTPUT: 	The specification of computation control flow.

1. 6src 0.

57

Replace every conditional 7rl <8, in 	6, 7n1> 6, or 7n1 6 in the domain

predicates by —7n> —6, —in ? —6, —in < —8, or —in 	—6 if the first

non-zero component of ir is not positive. (For fixed in and 6, this prevents

simultaneous occurrences of in I < b and —in 	—6 or irl<S and —7n1> —6.)

For every conditional in El S in the domain predicates:

-* 	src+{1l71<6}

-*

-+

- 	src+{hl7n16}

The CCUREs are given by (3.8) with '='src

Replace the domain predicates of the source UREs by predicates in compu-

tation control variables. A conditional in El 6 is replaced by C. [7r El 8](I) = 1

if [inS 6] E 45 and by C. [r S 6](I)=O otherwise. 	 .
The choice of 6rrc is unique because the first two steps of Proc. 3.1 are determin-

istic. So is the specification of computation control flow.

Lemma 3.9 6rrc is a separation set of ®-partition ®src

Proof We need to show that 45srcU 6scrc contains a set of defining half-spaces for

every S E ®src By construction, src U 45Crc contains [7rI El 6] for every conditional

ml 5 6 in the domain predicates. Choose 11(S, src) as the half-spaces that are in

'src u 15c and that correspond to the constituent conditionals of I E S. src

Theorem 3.3 The computation control flow specified by Proc. 3.1 is correct.

Proof Lemma 3.6, Lemma 3.8 and Thm. 3.2. 	 U

Each conditional of the domain predicates corresponds to a distinct control

variable. The more conditionals there are in the domain predicates, the more

control variables there are in the CCUREs. We describe some heuristics that

58

guide the user in the minimisation of the number of conditionals when he/she is

searching for URE specifications from the initial problem specification.

Procedure 3.2 (Construction of the domain predicates of the source UREs)

INPUT: 	The set deq() of the domains of all equations of the source UREs.

OUTPUT: The specification of the domain predicates of the source UREs.

1. H:=ø.

For every convex domain D in deq(), choose a set of defining half-spaces

of D from H whenever possible, and add to H the new half-spaces and their

complements.

For every non-convex domain D in deq(), use the half-spaces in H or their

translates to form a convex domain partition of D whenever possible, and

add to H the new half-spaces and their complements. 	 U

The motivation for using translates of the half-spaces in convex domain partitions

is that we can always combine the control variables whose associated hyperlanes

are parallel to one control variable (Sect. 3.4).

Let us use this procedure to obtain convex domain partitions for non-convex

domains D2 and D5 in Ex. 3.2. Assume that H = {S1,S2,S3,S4} when Step 2

of Proc. 3.2 completes. The choice of dompar(D2) = { D21, D2,21 in Ex. 3.2 is

permitted by the procedure. It amounts to partitioning D2 to {C7 S1 fl S2 , CZ- S2}.

But, the choice of dompar(D5) = {D51,D52 } is not permitted. This is because

we can use the half-spaces in H to obtain a convex domain partition for D5. One

possible solution is dompar(D5) = { D21 U Da, DO= {C7 S1 fl 	fl S4, C jnS}.

We thus get rid of the conditional corresponding to S5.

3.3.2 The Propagation Control Flow

The construction of the PCUREs proceeds along similar lines. We redefine the

partition {, C} of the extended index space T. To do so, we must find a set of

59

defining half-spaces of I: 	={sup(,F) I Ffacets()}. B plays the same role

as 46 previously. We associate a distinct propagation control variable, P, with

= [7r : 8J for every B1 e 93 (0< i 193 where 7ri E Z" is normalised and S j EL.

The associated control dependence vector t9p of Bi is a solution of t9p, 7r1 =0. Each

propagation control variable takes on two different values: p1 in the half-space B1

and fij in the half-space C7 B1. That is, sig(P) =(pi,pil . For convenience, we

define p1 =1 and

The PCUREs are defined as follows:

I

VBi:BiE 	
IEin(W,t9p.)flB1 	F(I)=p 	

(3.18)[: 	 I
Pi(I) =

IEin(W,9p$)nCrB,

-~ P(I)= pi

I IET 	 -

Predicate P() and P(C) replace predicate I 	and IEC, respectively:

P() = (V i : 0<iI93I : F(I)=p1) 	
(3.19)

P(C) = (i : 0<iI93I :

{', C'} is the partition defined by the PCUREs:

= {IIIEWAP()}
(3.20)

= {JIJEWAP(C)}

Replacing the domain predicates I E and J E C 	in the extended source

UREs by predicates P() and P(CØ) changes (3.16) to

V(J) = { JEW

if P() A P(D1)

II P()AP(D2)

0 P()AP(D)

II P(C)

fi

-+

-

(3.21)

V(I-9)

Definition 3.6 The propagation control flow is correct if =4' and Ci=C'.

60

Theorem 3.4 The propagation control flow as defined by (3.18), (3.19) and

(3.21) is correct if 93 is a set of defining half-spaces of&

Proof Similar to the proof of Thm. 3.2.

Definition 3.7 The control flow (the specification of the pipelined UREs) is cor-

rect if the computation control and the propagation control flow are correct.

The PCUREs serve to propagate data from the internal cells to (from) the

border cells. The half-space sup(, F) in 93 is superfluous if all data variables at

the pipelining points in WflC7 sup(, F) are undefined. That is, control signals are

unnecessary if no input/output data are pipelined across domain WflC7nsup(1i, F).

The fact that valid space-time mappings are bijections from lJ1 to T gives rise

to the following lemma, which allows us to regard CCUREs also as PCUREs. The

image of X' under the space-time mapping is given by

= {7 1 7eAP(X)}

2(X) denotes the image of predicate 2(X); it is the predicate with all the occur-

rence of index vectors I appearing in 2(X) substituted by 1.

Lemma 3.10 X=X' = X=X'.

Proof The bijectivity of valid space-time mappings from Q' to Q'2 . 	El

This lemma allows us to redefine 2('1') and 2(C ç,) of (3.19) using computation

control variables only.

P() = true

= (V S: SE/© P(S)) 	
(3.22)

Lemma 3.11 The propagation control flow as defined by (3.18), (3.21) and

(3.22) is correct iff(V i O<i<r : Tj

Proof To prove necessity, we assume that k 	for some k. By Lemma 3.4,

there is some Dedeq() such that 77Y. Since a valid space-time mapping is

61

bijective over , V C F. So, some pipelining point is treated as a computation

point. Let us prove sufficiency. Since (V i 	0 < i z r : 	=), we have

(V D D E deq() : 	= 7Y) by Lemma 3.4. Thus. 'P(D) = P() and

(V S: S/© : -'P(S)).

Theorem 3.5 The propagation control flow as defined by (3.18), (3.21) and

(3.22) is correct.

Proof Lemmata 3.10 and 3.11.

In the synthesis of systolic arrays of reduced dimension, a valid space-time

mapping is non longer a bijection. In Chap. 5, we shall see that Lemma 3.10 and,

consequently, Thm. 3.10 are not valid for one-dimensional arrays.

If the propagation control flow is specified by (3.18), (3.19) and (3.21), we can

disregard the half-spaces of 6 that support the index space. That is, we just need

to find a set 6 such that 	U 6c contains a set of half-spaces for every ®-block

such that the intersection of these half-space contains that block and does not

intersect the remaining blocks. This is due to the fact that W and 	can he

identified by propagation control.

The notations C.S, H.0 and HC.0 that are defined in Sect. 3.3.1.1 for compu-

tation control flow also carry over to propagation control flow.

3.4 The Optimisation of Control Flow

This section describes three techniques for the optimisation of control flow (i.e.,

pipelined UREs). Our objective is to eliminate redundant control hardware in

the systolic array. The first two optimisations are independent of the space-time

mapping, while the third is dependent on the projection vector.

The first optimisation is to merge control variables in order to reduce the

number of control signals. Assume that tUB contains p half-spaces S1, S2, . . , S,

whose corresponding hyperplanes are parallel. Instead of introducing p control

62

variables, one per hyperplane, we introduce only one control variable, C, for the p

hyperplanes. The control dependence vector i9c is perpendicular to the normal of

these hyperplanes. The p hyperplanes partition in('I',t9c) into p+l subsets; each

is initialised with a distinct control value, which is pipelined along the pipelining

vector t9c across the extended index space IF. Let sig(C) = {c1 , c2,• 	c1 } and

S1 C S2 c ... C S. The specification of C is as follows:

{ IEin(W, c)flSi 	 Cl

IEin(1Il,19c)flC/nSi flS2 	C2 	
(3.23) C(I) =

IEin(W,l9c)flC/nS 	-9

This optimisation reduces the number of control signals from 2p for the p variables

to p+l for the variable that replaces them.

The second optimisation is to minimise the domain of each control variable.

The values of a control variable C at some points may not appear in the guards the

pipelined UREs. Thus, C need not be defined at these points. Let DC be the set of

all points I such that C(I) appears in the guards of the pipelined UREs. DC is the

union of all domains of equations D1 , D2,• . . , Dd such that every predicate P(D1)

refers to C(I) (see (3.9)). Thus, we can substitute rays(, +u) fl ray(Dc, +1)C) for

W in the defining equation of C. The domain of C is given by

	

Wc = rays(, +u) fl ray(Dc, +19C) 	 (3.24)

The CCUREs serve to distinguish different types of computation points; they are

defined for the index space. If C is a computation control variable, ray(Dc, +9) c
ray(, ±79c). The PCUREs serve to distinguish pipelining from computation

points. If C is a propagation control variable, ray(D, +19C) = rays(kTJUHC.C, +19c)U

ray(, +lC).

Remark To apply Proc. 3. 1, we must replace 7r1 = 6 by 7r1 < 6 A in 	6. This

implies that the corresponding control variable must be defined at the two half-

spaces. If the control variable is only referenced at the points of the hyperplane

[in : 6J, the domain of the control variable can be reduced to the intersection of the

hyperlane and the index space. 	 11

63

S

Figure 3-3: The optimisation of pipelined UREs. The solid rectangle depicts

the index space. Se 6 supports '1.

The third optimisation can be applied after the projection vector u has been

chosen (Fig. 3-3). It removes conditionals in the space-time UREs that become

redundant due to the chosen projection vector. For control variable C (its associ-

ated half-space in 45 is S), we can partition the extended index space into three

blocks:

Tt = {I I ray(I,±u)CSAray(I,+u)C7nS}

l r = {I I ray(I,+u)cSAray(I,+u)CC7nS} 	 (3.25)

= W\(WtUr)

Imagine that we draw lines parallel to the projection vector u in the extended

index space. The three sets defined in (3.25) are the union of lines that only

contain points in S, the union of lines that only contain points in G7nS and the

union of the remaining lines. Thus, we can substitute true for C(1) = 1 at the

cells of place(lI',) and for C(J) = 0 at the cells of pIace(IJ), but we must retain

predicates C(J)=1 and C(1)=O at the cells of pIace('.I').

If after this optimisation some guard of an equation with domain D is true, the

processors at place(D) can be pre-designed to apply that equation. An extreme

case occurs when the projection vector is orthogonal to the normal of the separat-

ing hyperplane S= associated with control variable C. In this case, AP, =0. Then

the corresponding control variable is said to be redundant. This is because W fl S

and 'W fl C7nS are projected to two disjoint sets of processors. They are already

separated spatially and do not have to be separated temporally.

Theorem 3.6 If all computation (propagation) control variables are redundant

under the space-time mapping, then the CCUREs (PCUREs) are unnecessary.

64

Proof If all computation control variables are redundant, all 5-classes are pro-

jected to disjoint sets of processors. The CCUREs are unnecessary because a

cell can be pre-designed to compute the computation points mapped to it. The

PCUREs are unnecessary, if all propagation control variables are redundant. Then

there are no pipelining points, i.e., 	 LI

Unfortunately, the advantage of making control variables stationary does not

carry over to data variables. Complications arise when some data variables become

stationary. A local processor memory is required to store the stationary data

allocated to the processor. The control UREs do not provide a specification for

handling stationary variables. In Chap. 8, we shall present a systematic method

for handling stationary variables. The basic idea is to rewrite the source UREs to

encompass the specification for handling stationary variables.

3.5 	The Extension of the Space-Time Mapping

The mapping conditions for the space-time mapping stated in Thin. 2.1 must be

augmented such that the specification of the control UREs is taken into account.

Theorem 3.7 A space-time mapping is valid if

The scheduling vector A satisfies:

- (V 9 : i9EV: At9>O)
	

(3.26)

- (VS: SeU 	:(3 9 : i9E lin(S) : .At>O)) 	 (3.27)

The projection vector u satisfies)uLO.

Proof The pipelined UREs are UREs. Apply Thm. 2.1. 	 LI

(3.27) means that any vector 79 in lin(S) can be taken as the control de-

pendence vector for the control variable associated with S=, provided it satisfies

At9 > 0. If we choose control dependence vectors from the set of data dependence

vectors (the control dependence vectors must be normalised), the latency of the

systolic array can be retained when the PCUREs are not needed.

65

Let C be the set of scheduling vectors satisfying (3.26), and let C be the

set of scheduling vectors satisfying (3.26) and (3.27). Both C and C are cones.

First, we show that, if there is a valid scheduling vector for the source UREs, there

must be valid scheduling vectors for the pipelined UREs.

Theorem 3.8 C* ø = C** ø.

Proof Let 0* be the cone generated by the data dependence vectors in V. To

prove that C** is not empty, it suffices to prove that we can obtain a cone,

which contains 0* and one vector from lin(S) for every S e 6 U B. Take any

non-zero vector i9Elin(S). Either 0* U {9} or 0 U {-9} must be a cone. 	LI

Thm. 3.8 indicates that all domain predicates can be pipelined. The proof of

the theorem has the following implication. If we choose all control dependence

vectors from 0*, then a space-time mapping that is valid for the source UREs

must also be valid for the pipelined UREs.

Next, we show that the set of scheduling vectors that are valid for the source

UREs but are not valid for the pipelined UREs is just the set N(6 U) of the

normals (up to some scalars) of the corresponding hyperplanes of some half-spaces

in 45 U B:

N(u) = {wrJrI06]EU 93 AoEZ}flC*

Theorem 3.9 C* = C** U N(E5 U B) and C** n N(45 U)=ø.

Proof Clearly, C*DC**. For S=[irl El 8] in 0 U , (V z9 t9lin(S) : A9=0)

if A = ar for some a E Z. 	 LI

Thm. 3.9 indicates that the price paid for the pipelining of domain predicates is

that the set of valid scheduling vectors may be reduced. Thus, in the formulation of

the domain predicates, we should try to avoid conditionals that exclude desirable

scheduling vectors from C*. Finally, if we change ">" to "=" in (3.27), then

C = C. This implies that all control signals must be broadcast across the array.

It is also possible to broadcast some control signals selectively to optimise some

aspects of the array, e.g., its latency or number of delay buffers.

66

3.6 Related Work

Chen [14] proposed a method that replaces a time-dependent conditional of a

space-time equation by a control signal pipelined from the boundary of the array.

We explain the basic idea by considering the pipelining of a generic time-dependent

conditional bt El (i : O<i<ri : ap), where t represents time and P1, P2,

represent processor coordinates. If the conditional evaluates to true at processor

(x1,-. . , x,,. - - , x_) at step to, it also evaluates to true at processors (x1, - ,

mb,- , x_1) at steps t0+rna (m C- Z). Instead of performing the test bi El (i

0 <i <n : a.p2) at each of these processors, the results of these tests can be shared.

This is achieved by injecting a one-bit control signal at the appropriate border

cell and pipelining it along direction (0,. , 0, b/as, 0,. , 0) across the array at a

velocity of b/as, i.e., passing b processors per a j clock ticks.

This method does not apply for time-dependent conditionals of the form btEla;

they do not consist of processor coordinates. In this case, the corresponding control

signals must be broadcast (Thin. 3.9). This happens when the control dependence

vectors associated with these conditionals are orthogonal to the scheduling vector.

But, Chen's method provides no means for preventing these conditionals with the

choice of the space-time mapping. Our method does away with these conditionals

by the introduction of control dependence vectors. Chen's method cannot enforce

design constraints on the control signals since there is no notion of control de-

pendence vector. In the previous example conditional, (V i : 0 <i <n : b/a1 > 1)

will result in non-neighbouring channels. The question whether we can get away

with only neighbouring channels cannot be answered. Chen's method also does

not address control for the propagation of input/output data that are mapped to

internal cells of the array. Our method specifies this control with the PCUREs.

Finally, Chen's method does not generalise to systolic arrays of reduced dimension

because it relies on space-time mappings for (n— 1)-dimensional arrays.

The method reported in [71] is similar to Chen's method. The method reported

in [58] only deals with conditionals that are equalities.

67

3.7 Examples

This section illustrates the synthesis of control signals with two examples: dynamic

programming and LU-decomposition. The construction of the PCUREs is similar

to that of the CCUREs. We shall therefore restrict ourselves mainly to the latter.

For the former, we only present a set .8 of defining half-spaces of the index space.

So, the presentation of the extended source UREs is unnecessary. Proc. 3.1 is

completely mechanical. We go through its steps to highlight the roles that the

various concepts and theorems introduced so far play in the construction of the

control UREs. For each example, we present the -classes and the separation set

src (with optimisations) returned by Proc. 3.1. We then describe the pipelined

UREs (without the propagation UREs and the PCUREs). We shall omit the half-

spaces in a separation set which are the supporting half-spaces to the index space.

We shall depict every point of the index space by a graphical symbol (e.g., •,

A, etc). When we write 	for a graphical symbol s, we mean the set of all the

points of the index space depicted by that symbol. When we label a computation

equation of the source UREs by a number of graphical symbols, we mean that the

equation is only defined for the points depicted by those symbols.

We use the first example to show how control complexity should be taken into

account in the appraisal of the systolic array, and the second example to show how

the CCUREs or PCUREs can be avoided by an appropriate choice of space-time

mapping. These two examples will also be used for illustration in Chap. 5.

3.7.1 Dynamic Programming

We apply dynamic programming to solve the optimal string parenthesisation prob-

lem [26]. Let a string of items be indexed by integers 1 through m from left to

right. A parenthesisation of a string of in items has rn —1 pairs; each parenthesis

pair encloses two elements each of which is either an item or another parenthesis

68

pair. The optimal cost, denoted c, of parenthesising the substring consisting

items i through j-1 is defined recursively as follows [14,24,58]:

Specification: 	c,j = (mm k : i<k<j : c k +ck) + w.

where wij is the additional cost for the outermost parenthesis pair. c 1 is the

optimal cost for parenthesising a string of rn items.

3.7.1.1. The Source UREs

This specification can be transformed into a system of UREs using the methods

described in [57,58,79]. The following UREs are adapted from [58].

UREs:

j—i=2k - 	D(i,j,k)
j—i42k A(i,j-1,k) i *
k=1 -+

{
C(i+1,j,k) U

B(i,j,k)

= k1 B(i+1,j,k-1) • *
/=1 -

{
C(i j ,-1,k) 4 	U

D(i,j,k)

= k1 D(i,j-1,k-1) • *
j—i=2k -' 	B(i,j,k)

j—i2k - 	E(i+1,j,k) U *
= C(1,rn+1,1)

k=1Aj—i=2k-1 -

A(i,j, k) + B(i,j, k)

k=1 Aj—i>2k -'k mill C(i,j,k+1) 	+w 	4

D(i,j, k) + E(i,j, k)
C(i,j,k) =

A(i,j, k) + B(i,j, k)

k1Aj—i2k - mm C(i,j,k+1) 	• .

D(i,j, k) + E(i,j, k)

k1Aj—i<2kAj—i2k-2 -+ 00 *

Index Space: 	'={(i,j,k) I O<i<j m+1 AO<k(j—i)/2+1}

RE

—1 0 0 —1

Data Dependence Matrix: 	V = [t9 A, 79B, dC, 19 D, 19 E] 	1 	0 	0 1 	0

1 —1 1 0

Data Dependence Graph (in = 7):

(1,2,1)

Figure 3-4: The data dependence graph for dynamic programming (rn = 7).

3.7.1.2. The Computation Control Flow

the 	-classes are:

= 	n{(i,j,k)Ij—i=kAk=1}

= 	fl{(i,j,k) Ii — i= 2kAk=1}

= 	fl{(i,j,k) 	j—i>2kAk=1}

= 	f'fl{(i,j,k) li—i<2kAi—i2k-2}

= fl{(i,j,k) Ii—i=2kAk71}

I, 	= n{(i,j,k)j—i>2kAk1}

All six -classes are convex polytopes. Thus, /j is a ®-partition.

The set grc = {S1 , S2 , S3 } given by

70

S1 = {(i,j,k) I k1}

S2 	{(i,j,k) —i+j-2k-1}

S3 = {(ik)j —i+j-2k0}

is a separation set of cI'/j, since

7(.,src) = 	{S1,S2 }

71(i, src) = 	{S1,C7 S2,S3 }

7 It14 , 	src) = 	{S1, CZ- S31

= 	{C7 S1,S2}

7l(•, src) {C7 S1 ,C7 S2,S3}

71(0, src) 	= {Gi'Si,Gr'S3}

S andS are parallel. The two control variables associated with them can

be merged (Sect. 3.4). Thus, the CCUREs must specify two computation control

variables: P and Q. P is associated with S1. Sig(P) = {Pl,P2}. Q is associated

with S2 and S3. sig(Q)={q1,q2,q3 }. An application of (3.8) and (3.23) yields the

following CCUREs:

(0' 0' I)tgp = 0

I IEin('IJ,'t9p)flS1 	" Pi

P(I) = 	Iin(W,)p)flC7S1 	P2

Ie'I' 	 —a P(I)=P(I-9)

(-1,1,-2)9Q = 0

{ IEin(W,t Q)flS2 	—a q1

Q 	
IEin(l,t)Q)flCJS2flS3

IEin('1,9Q)flG/nS3 	—'+ q3

IE1p 	 Q(J)=Q(J9Q)

The previous six 3-classes are redefined in the computation control variables

by (3.10) and (3.11):

71

{I I Ie T! AP(1)} = 	III 1E4' A P(I)=p1 A Q(I)=q1 }

= 	{I I Ie I' AP()} = 	{I I IE4' A P(I)=p1 A Q(I)=q2 }

= 	{I I I 	WAP(I)} = 	{I I1E'IAP(1)=Pi AQ(I)=q3 }

(= 	{IIIeWAP()} = 	{IjIEWAP(I)=p2 AQ(I)=q1 }

= 	{I 	Ie 11AP(,)} = 	{I 	IEWAP(I)=p2 AQ(I)=q2 }

{I I IC 'I' A 	1.)) = 	{I 	IE'J/ A P(I)=p2 A Q(I)=q3 }

By Lemma 3. 1, D/3C/® for every Dedeq(). D/© for the domain D of

an equation in the source UREs in Sect. 3.7.1.1 contains the (j)-classes whose sub-

scripts are those labeling the equation. The calculation of predicate P(D) follows

from (3.9). Replacing the domain predicates in the source UREs by predicates in

the computation control variables as in (3.16) with optimisations yields:

A(i,j,k)

= 	
f Q(i1 j) k)=q2 -'* 	D(i,j,Ic)

Q(i,j,k)q2 A(i,j-1,k) I U *

B(i,j,k) I P(i,j,k)=p1 -a C(i+1,j,k) 4 	U

P(i,j,k)=p2 B(i+1,j,k-1) I *

D(i,j,k) f 	P(i,j,k)=p1 -+ 	C(i,j-1,k) U

P(i,j,k)=p2 D(i,j-1,k-1) I *

E(i,j,k) f 	Q(i,j,k)=q2 - 	B(i,j,k) 4+

Q(i,j,k)q2 E(i+1,j,k) I U *

Cl,m+l = C(1,m+1,1)

C(i,j,k) =

P(i,j, k)=p1 A Q(i,j, k) q, -a
A(i,j, k) + B(i,j, k)

P(i,j,k)=p1 AQ(i,j,k)Lq1 	min C(i,j,k+1) 	+w,j 4

D(i,j, k) + E(i,j, k)

A(i,j, k) + B(i,j, Ic)

P(i,j,k)=p2 AQ(i,j,Ic)q1 - mm 	C(i,j,k+1) 	 • •
D(i,j, k) -- E(i,j, k)

P(i,j,Ic)=p2 AQ(i,j,k)=q1 - 00*

72

3.7.1.3. The Propagation Control Flow

There are four supporting half-spaces to the index space:

B1 	(Z', 	k) I ki}

B2 - {(i,j,k)Ii1}

B3 = {(i,j,k)j<m+1}

B4 = {(i,j,k) I —i+j-2k>-2}

No data variables are defined at the points of 'I' fl C Z-B2 and 'P fl C Z-B3- Hence

3.7.1.4. The Space-Time Mapping

The following space-time matrices describe the systolic arrays depicted in

Fig. 3-5; H, (x E {a, b, c, d}) describes the array shown in Fig. 3-5(x).

—2 2 —1 —2 2 —1

ll= 10 0 "b = 10 0

01 0 01 0

—2 2 —1 —2 2 	—1

ll = 0 1 0 Hd = 0 —1 1

00 1 j 1 0 1

The four arrays each run in 2m-1 steps. Array (c) has [m/2]([m/2]+1)+m

cells if m is odd and rn2/4+m-1 cells if m is even. The other three arrays each

have m(m+1)/2 cells.

The space-time mapping of array (a) is chosen with respect to the source UREs

only; it restricts the choice of the control dependence vectors. The best choice

for control variable Q results in non-neighbouring channels, each connecting every

other processors along the direction of these channels. A control signal of Q passes

two processors in three time steps.

Array (b) can be regarded as a modification of array (a) as follows. First,

eliminate all channels that connect processors (x, y), where x + y is even. Second,

73

0

Asp

AD P

:

(c)
	

(d)

Figure 3-5: Four systolic arrays for dynamic programming (m = 5). (a)

Guibas- Kung- Thompson's array [26] is described by A=(-2,2, —1) and u=(0, 0, 1)

with i9p = (-1,0,0) and OQ = (0,2,1). (b) Chen's array [14] is a modification

of Guibas-Kung-Thompson's array (see text). (c) Gachet-Joinnault-Quinton's

array [24] is described by .\ = (-2,2,—i) and u = (1,0,0) with 79p = (0,1,0)

and 19 Q = (-2, 0, 1). (d) A new systolic array that we propose is described by

X=(-2,2,-1) and u=(-1, 1,I) with 9=(-1,0,0) and Q=(0,2,1).

74

remove all buffers from the remaining channels, make the remaining channels con-

nect neighbours and then place one buffer on each output channel of the processors

(x,y), where x+y is even. This adaptation is a significant improvement, but it is

hard to generalise. Note that the control flow of Q is not constant. Optimisa.tions

of this kind are problem-specific.

The motivations for array (c) is to reduce the number of processors. Again, the

space-time mapping is chosen with respect to the source UREs only. The control

channels of control variables P and Q are neighbouring channels.

Array (d) is synthesised from the pipelined UREs. We have two reasons for

proposing it. First, we want to enforce neighbouring communications for both

data and control variables. Second, we do not allow the existence of stationary

variables. The concept of pipelined UREs enables all these design constraints to be

taken into account straightforwardly. We derived this array by hand, but it could

be derived using the methods in [23,51,83]. These methods allow the synthesis of

systolic arrays with prescribed channel interconnections.

Let us review the control complexity of the four arrays. The control complexity

of array (b) is similar to that of array (a). In arrays (a) and (d), different weights

wij reside in different cells. Accessing these weights is simple. In array (c), weights

W , j with fixed j reside in the same cell. Additional access control is needed to

choose the correct i. Array (a) needs to recover C, which is stationary. The

stationary E in array (c) does not cause any problem because E needs not be

recovered.

3.7.2 LU-Decomposition

LU-decomposition is the unique decomposition of a non-singular m x m matrix

C into a lower-triangular matrix A and an upper-triangular matrix B such that

AB = C. The elements of the upper triangle of A and the elements of the lower

triangle of B (excluding the diagonal) are 0; the diagonal elements of A are 1.

Specification: 	(V i,j : 0<im A0jm: > k: 0<km : akbk =

75

3.7.2.1. The Source UREs

UREs:

, j •, k) A(z = I k<imAIc=jAO<km -+ 	C(i,j,k—l)B(i,j,k) 	A

k<imAk<jmA0<kin -** 	A(i,j-1,k)

k=iAk<jrnA0<krn -'+ C(i,j,k-1) 	V

B(i,j,k) = k=iAk=jA0<krn -+ C(i,j,k-1)' 	I

k<imAkjmA0<krn -+ B(i-1,j,k) 	• A

0<imA0<jmA0=k - 	c

C(i)j,k) = - 	C(i,j,k-1)—A(i,j-1,k)

B(i-1,j,k) 	U • A V

al,k = { k<imAm=jA0<km A(i,j,k)

bk,j = { m—iAk<j<mA0<k<m 	•'.' B(i,j,k)

Remark Element b,1 for every i in the source UREs is the reciprocal of its

corresponding element in the previous specification. 	 LI

Index Space:

010

Data Dependence Matrix: V = [9 A B' 9cI = 1 0 0

001

Data Dependence Graph (rn=4):

Figure 3-6: The data dependence graph for LU-decomposition (m=4). The

dotted line will be referred to in Chap. 5.

76

3.7.2.2. The Computation Control Flow

/={.,T) A ,(T)y,(I).}, the 	-c1asses are:

{(i,j,k) I k=iAk=jAO<knil

4D A = {(i,j,k)I k<imAk=jAO<km}

T J = {(i,j,kflk=iAk<jmAO<km}

= {(i,j,Jc) Ik<imAk<irnt\O<km}

All four (D-classes are convex polytopes. Thus, I/ is a ®-partition.

The set src = {S, S21 given by

S = {(i,j,k)i—k(O}

S2 = {(i) j,k)Ij—k(O}

is a separation set, since

h1(u ,1 src) 	= {S1,S2}

= {C7aS1,S2}

'11(y, src) 	= {S1 ,C7 S2}

?1(01src) 	= {C7 S1 ,C7 S2}

The CCUREs specify two computation control variables: P and Q. P is

associated with S1 . Sig(P) = {p1,p2}. Q is associated with S2 . sig(Q) {q1 , q2}.

An application of (3.8) yields the following CCUREs:

0

IEin('P,i9p)flS1 	Pi

P(I) = 	IEin(l','9)flC7nS1 	P2

I ET 	 P(J)P(J—i9)

(O,l) —l)9 = 0

IEin(W,9Q)flS2 - q1

Q(I) = 	Iin(lJ',9q)flC7nS2 —n q2

Ie1 	
'S.'

Q(I)Q(19Q)

77

The previous four (D-classes are redefined in the computation control variables

by (3.10) and (3.11):

{IEWAP(I')} = 	{I I IEWAP(I)=p1 AQ(I)=q1 }

= 	{IEW AP()} = 	{I I JEW A P(I)=p2 A Q(I)=q1 }

= 	{IeWAP(,)} = 	{IIeWAP(I)—_p1 AQ(I)=q2 }

= 	{IE1]AP(I,)} = 	{IIeWAP(I)=p2 AQ(I)=q2 }

The calculation of predicates P(D) for every D E deq() proceeds exactly as in

Sect. 3.7.1.2. Replacing the domain predicates of the source IJREs by predicates

in the computation control variables as in (3.16) yields:

A
• 	. k) (z,j, I P(i,j,k)=p2 AQ(i,j,k)=q1 C(i,j,k-1)B(i,j,k) 	A

I
P(i,j,k)=p2 AQ(i,j,k)=q2 -** 	A(i,j-1,k)

P(i,j,lc)=p1 AQ(i,j,k)=q2 -'+ 	C(i,)',k-1) 	V

B(i,j,k) = P(i,j,k)=p1 AQ(i,j,k)=q1 - C(i,j,k-1) 	•
P(i,j,k)=p2 -* B(i-1,j,k) 	I A

. I 0<imA0<jmA0=k * 	c j

true - C(i,j,lc-1)—A(i,j-1,k)B(i-1,j,k) U I A V

a,k ={ k<imAm=jA0<km A(i,j,k)

= { m=iAkjmAO<km B(i,j,k)

3.7.2.3. The Propagation Control Flow

There are five supporting half-spaces to the index space:

B1 = 	{(i,j,k) Iim}

B2 = 	{(i,j,k) Iim}

B3 = 	{(i,j,k) I k>11

B4 = 	{(1,j,k)i—k0}

B5 = 	{(i,j,k)Jj—k0}

The input of A and B is undefined and the output of C is not of interest. That is,

all data variable are undefined at the points in W fl C7 B4 and W fl C7 . B5. Hence,

93 ={B1 , B2, B31.

78

3.7.2.4. The Space-Time Mapping

Choose the following space-time mapping (Fig. 3-7(a)):

11 1

Ho = 0 1 -1

1 0 -1

The projection vector is u = (1, 1, 1). By Thin. 3.6, all computation control vari-

ables are redundant. Three propagation control variables, P1, P2 and P3 (associ-

ated with B1 , B2 and B3, respectively), are necessary for propagating the input

data of C to the array and the output data of A and B from the array. Let us

choose the data dependence vectors as control dependence vectors: 19P,= (0, 1, 0),

t9 2 =(1,0,0) and t9 3 =(0,1,0).

Choose the following space-time mapping (Fig. 3-7(b)):

111

= 1 0 0

010

The projection vector is u = (0, 0, 1). By Thm. 3.6, the propagation control vari-

ables P1 and P2 are redundant. P3 serves to propagate the input data of variable

C to the array; it is unnecessary since C is stationary variable, i.e., J' fl C7 B3 = 0.

Following the previous line of reasoning, we set 19p = (0, 1, 0) and i9Q = (1, 0, 0).

3.8 Conclusion

We have presented a method that enables a specification of control signals for

systolic arrays in terms of control UREs. We have given necessary and sufficient

conditions for the correctness of the pipelined UREs. These conditions allow the

user to rewrite the domain predicates in order to obtain a better control flow. We

have also shown how the pipelined UREs can be optimised to eliminate redundant

control hardware in the systolic array.

79

P,

I
I
I

P1 P3
i_I
II

I 	I
I

Pi
I

P1 P3 	I I
P1 P3
Ii

iI 	I
II 	PI P3

7i

I
x 	II

PI P3
P1 P3 	II
Ii 	LL

I
P1 P3

Ii 11
	

PI P3
P1 P3 	ii

il
II

P1 P3
i_J_

II 	II
11 	17)3

1P3
11

±1
11

1P3 	11
11 	11

11
1P3

ll
i_P3

II 	11 i_l
i_I 11 	11. 1P3

P2-P2P2P2--1l , A

P2 -Lj- P2 -L J- P2 J- J- P2 J- J- J- J- J- J- J-[~6

2II2lIp2I1p2lI 	 Y I11IllI sI - -E~6 - -E~~
(a)

-

J- J- 	J- J- 	J- 1 	1 J- 	J- J-Mv - 4!i~l - -E~~ - 4!t P2 	P2 	P2 -Lj- P2 	-L -L 	-L

Pi
P2

Pi 	P2

Pi
P2

P2 	P2
P2 	-L
1 	1

Pi 	I 	I 	I

(b)

Figure 3-7: Two systolic arrays for LU- decomposition with control distribution

at the first step (m=4). I represents an arbitrary choice from the two values in

the respective input sequence. Computations at cells receiving I are undefined

and therefore can be interpreted as either pipelining or computation points. (a)

The space-time mapping is H. The highlighting of a processor by a symbol in

In, A, Y, .} indicates that only computation points depicted by that symbol in

Fig. 3-6 are mapped to the processor. (b) The space-time mapping is [Ii.

80

Our method has the following advantages. First, by specifying the control

signals in terms of control UREs, we can choose space-time mappings following

prescribed design criteria with respect to both data and control flow. For exam-

ple, we can easily enforce neighbouring communication for both data and control

signals, if possible, because both data and control dependence vectors are explicit

in the pipelined UREs [83]. Second, the correctness of the pipelined UREs is in-

dependent of the space-time mapping. The pipelined UREs can be viewed as a

refinement of the source UREs with the domain predicates substituted by pred-

icates in variables of UREs. Therefore, the pipelined UREs can be manipulated

like the source UREs by available synthesis methods [56]. For example, they can

be easily mapped to fixed-size arrays [11,17]. Of course, such a partitioning calls

for extra control signals due to the change in the specification of the pipelined

UREs. These extra control signals can be specified to preserve the behaviour of

the control UREs.

Our method for the construction of control UREs applies for any recurrence

equations that are defined over a domain in Z. This class of recurrence equations

is an extension of AREs (Def 2.1); each equation is of the following form:

lED -'* V(I) = f(W(pw(I)),") where pw(i) : Z - Z 	(3.28)

Pw is any function from Zn to Z. The domain predicate I E D is defined as in

Tab. A—i, if we apply Proc. 3.1 to derive control signals. Otherwise it can be any

predicate in the index vector I c Z, provided that one can construct a separation

set. Recall that only UREs map directly to systolic arrays. If we are concerned

with the design of systolic arrays, we must first transform the specifying recurrence

equations to UREs and then add control UREs (say by applying Proc. 3.1) in order

to obtain pipelined UREs.

Equivalence relation 	plays an important role in the construction of the

control UREs. This relation can be replaced by the equivalence relation ±:

I 1J 	(V D : Dedeq() : leD = JeDV V(J)=I)

That is, two points are of the same type if, for every data variable of the source

UREs, either the defining equations at both points agree or the defining equation

S1

at one of the two points is undefined. ?j is finer than 	. The use of J1 is feasible

because the defining equation of a variable at a computation point 7 = (t, p), if

undefined, is of free interpretation. Cell p can be instructed at step t to perform

any computation. Thus, this relaxation increases the space of separation sets at

no extra cost.

If the index space itself is the only -class (/j = {F}), the CCUREs are

unnecessary. In this case, the PCUREs may be eliminated by exploiting some

algebraic properties of operators in the source UREs. This is the topic of Chap. 6.

The notion of an extended index space serves us well in the construction of

the control UREs by (3.8) and (3.18). But our method does not depend on the

space-time mapping. This follows from the fact that the construction of 6 in

Sect. 3.3.1 and 93 in Sect. 3.3.2 are independent of the space-time mapping. The

knowledge of the projection vector does allow us to remove redundant elements in

16 and Z (Thm. 3.6), though. Both the CCUREs and the PCUREs are defined

conceptually for the extended index space. An explicit extension of the index

space is unnecessary. To see which of two control values of a control variable, C,

needs to be input at border cell p = (p1,p2, . ,p,) at step t, we only need to

perform the test (t, PI) p2,. . . 	eRJ (R—.C— denotes the image of H.0 under

the space-time mapping). We input control value 1 if the test succeeds and 0 if it

fails.

There have been a number of publications on the optimisation of the latency

and processor count of a systolic array [69,80,81]. In these papers, latency is

defined with respect to data only. An accurate definition should also include

control signals. The concept of pipelined UREs enables us to synthesise systolic

arrays that satisfy prescribed design criteria with respect to both data and control

signals.

Chapter 4

Data Flow Synthesis for One-Dimensional

Systolic Arrays

4.1 Introductory Remarks

The space-time mapping technique described in Chap. 2 is for the synthesis of

time-minimal (n - 1)-dimensional arrays from n-dimensional UREs. The (n —1)-

dimensional processor space is obtained by a projection of the data dependence

graph along the projection vector. If the resulting systolic array requires more

dimensions than are available, further projections of the processor space become

necessary. A sequence of projections is called a multi-projection [38,64]. The

dimensions that are eliminated by the multiprojection are traded to time.

In practice, one-dimensional arrays have the following advantages [36]: 100%

utilisation of non-faulty cells on a wafer, a constant I/O bandwidth that can be

achieved by restricting external communication to the two boundary cells, and a

clock rate that is independent of the size of the array. This chapter is concerned

with the synthesis of data flow for one-dimensional arrays. There are two aspects to

this study. The first one is an extension and improvement of previous results, and

the second is a characterisation of some properties of one-dimensional arrays that

will be used in the synthesis of control flow for one-dimensional arrays presented

in Chap. 5.

$2

83

The rest of this chapter is organised as follows. Sect. 4.2 defines the two

most frequently used one-dimensional systolic array models: one allows non-

neighbouring channel connections, the other does not. Sect. 4.3 formulates condi-

tions for the validity of a space-time mapping in both models. Sect. 4.4 discusses

the space-time behaviour of one-dimensional arrays. In particular, it characterises

the distribution of pipelining points. Sect. 4.5 discusses the space-time behaviour

of one-dimensional arrays further (in the extended index space). This leads to

the realisation that the non-injectivity of the space-time mapping plays a crucial

role in the analysis and synthesis of one-dimensional arrays. Sect. 4.6 describes a

procedure for the synthesis of data flow for both models. Sect. 4.7 reviews related

work. Sect. 4.8 contains the conclusion of the chapter.

4.2 One-Dimensional Systolic Array Models

Recall that a space-time mapping that describes an r-dimensional systolic array

consists of two components: step and place.

step: 40 -p Z, step(I)=AI,)eZ. step specifies the temporal distribution.

place: 	-+ Z, ptace(I)=o-I, aZ'. place specifies the spatial distribution.

This chapter considers only space-time mappings that describe one-dimensional

arrays (r=1). In this case, a is a vector, the allocation vector. It determines the

coordinate of the leftmost cell 	and the rightmost cell Pmax of the array:

	

= (mm I: I 	: al)

	

Pmax = (max I: I 	: al)

By convention, variable V moves to the right if flow(V) >0, to the left if flow(V) <0.

To distinguish them from space-time mappings H that describe (n—l)-dimensional

arrays, we denote the space-time mappings for one-dimensional arrays by ir:

A Al) A2,. . =
a 	a1,a2, . .. ,a

84

U ____ ____ ____ ____ ____ ____ ____ 0.

 4 	 4 	 4 	 V

14/

(b)

Figure 4-1: Two one-dimensional systolic array models. '9u = 2, oz9u = 2,

)' 9v=3, a9v=-1,)u9=l and n9w =1. (a) The ir-model. (b) The k-model.

The space-time mapping can be interpreted geometrically. The interpretation

of the scheduling vector). is the same as for (n - 1)-dimensional arrays. That is,

the points that are scheduled concurrently belong to a hyperplane whose normal

is A. The processor space is obtained by projecting the index space along the

(n-1)-dimensional space that is orthogonal to the allocation vector a. The points

that are mapped to the same cell belong to a hyperplane whose normal is a.

We study space-time mappings with respect to two one-dimensional array mod

els. They differ in channel topology. One model is called the ir-model; in it both

the direction and length of a channel depend on the space-time mapping ir. This

model is an instance of the r-dimensional systolic array model of Def. 2.2 when

r = 1. The other model is called the x-model; it allows only neighbouring commu-

nication. In the -model, only the direction of a channel depends on the space-time

mapping; its length is constant.

Definition 4.1 (7r-model) A one-dimensional systolic array consists of a finite

sequence of cells with the following properties (Fig. 4-1(a)):

Prop. 1 (Synchrony of Computation) The array is driven by a global clock that

ticks in unit time. Each cell is active at every clock cycle.

85

Prop. 2 (Uniqueness of Channel Connections) The image 19V of data dependence

vector 9v is given by:

- 	 1
= if flow(V)=O - 	Ii fIow(V)O - 	fi

0

For variable V, every cell p has an unique input (output) channel, which

connects to cell p—av (p+cn9v). The number of buffers associated with

the channel is the first component of WV decremented by 1. If P — v

cell p is an input cell of V. If p+crv 07', cell p is an output cell of V. Both

input and output cells of V are called border cells of V; they are connected

to the external environment. The cells that are not border cells of V are

called internal cells of V.

Prop. 3 (Linearity of Velocity) A variable moves with a constant velocity. 	LI

Prop. 1 is the standard assumption that the evaluation of a point takes unit time.

Prop. 2 ensures that a cell receives elements of a fixed variable from a fixed channel.

Depending on the length of the channel, a border cell may be a processor inside the

array - a few processors away from the real border. (In Fig. 4-1(a), the two cells on

the left (right) are the input (output) cells of U. All four cells are the border cells

of U.) The definition of Wv for stationary variable V implies that each element

of V travels along a loop channel without delay buffers. This definition conforms

to the space-time diagram that will be introduced in Sect. 4.4. (In the systolic

array model of Def. 2.2, the definition of ?9v does not distinguish stationary from

moving variables. There, each element of stationary variable V can be viewed as

travelling along a loop channel associated with Mv —1 delay buffers.) Prop. 3 is

guaranteed by the linearity of space-time mappings.

We refer to the sequence of all the channels associated with a variable in which

every two adjacent channels connect to the same cell as a link for that variable.

There are I oV V I links for variable V. Therefore, there are Icr9vl input (output) cells

for variable V, one per link. By the i-th input (output) cell of V (i is numbered

from 1) we mean the input (output) cell that has distance i -I from the input

(output) cell of V which is the leftmost or rightmost cell.

86

Next, we determine where and when an input (output) value is injected (ejected).

Recall that pattern specifies the distribution of the input data in the processor

space at the first step. For one-dimensional arrays, it is more convenient to reason

about the temporal and spatial distribution of input (output) data separately.

Function pi specifies the coordinates of the input cells:

pi: V 	fst " Z, fst = (U V: VEV : fst(v ,t9v))

if flow(V)>O - 	 mod 12. 9

pi(V(I)) 	II flow(V)<O 	,' Pmax+(PI(l)Pmax) mod

fi

We write ®, for the equivalence relation on fst(v, 9v) such that two points I

and J are in the same cv-class if V(I) and V(J) are injected at the same input

cell, i.e.,

(V I, J: I, JEfst(4v, 19V) : IJ 	p(V(I))= pi(V(J)))

There are Icn9v ®v-classes, as many as there are links for variable V.

Function p0 specifies the coordinates of the output cells:

V -f 	—p Z, 101,t = (U V: VEV : lst(vi90)

" if flow(V)>O -* pmax+(place(I)—pmax) mod I2•9vI

po(V(I)) 	0 flow(V)<O 	,' p n+(pIace(I)—pmjn) mod I2. v I

fi

We write ©v for the equivalence relation on lst(v, t9V) given by

(V I,J: I,JE1st(v,t9v) : I©,J 	po(V(I)) = po(V(J)))

There are k9vI@v-classes, as many as there are links for variable V.

Having defined functions that determine the cells that perform input (out-

put), we next define functions that determine the steps at which input (output)

is performed.

Function input specifies the steps at which input data are injected into the

array:

input : V ' fsL " Z, fst = (U V : VeV : fst(4 v,79v))

input(V(I)) = step(I) - (place(I) - pi(V(I))/flow(V)

87

Function output specifies the steps at which output data are ejected from the

array.

output: V -f I -* z, is = (U V : VEV : lst(v,t9v))

output(V(I)) = step(I) - (place(I) - po(V (I)) /flow (V)

The first step tfst at which an input value is injected and the last step tl,,t at which

an output value is ejected are given by

tfst = (min V, I: V E V A I E fst : input(V(I)))

= 	(max V, I: V E V A I E 101,t :output(V(I)))

Definition 4.2 (X-model) A one-dimensional systolic array consists of a finite

sequence of cells with the following properties (Fig. 4-1(b)):

Prop. 1 (Synchrony of Computation) The array is driven by a global clock that

ticks in unit time. Each cell is active at every clock cycle.

Prop. 2 (Uniqueness of Channel Connections) The image , of data dependence

vector i9v is given by:

- 	 1 	 \t9v/IcT v I
= if flow(V)=O - 	 f1ow(V)'~O -* 	 fi

0 	 sign(flow(V))

For variable V, there is a unique channel between every two neighbouring

cells. The number of buffers associated with the channel is the first com-

ponent of 	decremented by 1. 	is the input (output) cell of V and

Prnax is the output (input) cell of V if flow(V) > 0 (flow(V) <0). Both input

and output cells of V are called border cells of V; they are connected to the

external environment. The cells that are not border cells of V are called

internal cells of V.

Prop. 3 (Linearity of Velocity) A variable moves with a constant velocity. 	LI

Prop. 2 requires that, for variable V travelling along non-neighbouring channels

in the ir-model, neighbouring communication must be enforced in the -model.

SS

This is achieved by breaking a non-neighbouring channel into 10,19 v neighbouring

channels, making the new channels connect Io9i,I-1 intermediate cells, and evenly

distributing the)'ô -1 buffers associated with the original channel over the new

channels (see variable U in Fig. 4-1). Since each intermediate cell acts as a delay

buffer, the number of buffers associated with a new channel is (.A79 v -1-(n9v I-
1))/lav, which simplifies to \z9 v/Ia 9 vI -1. The definition of '9V for stationary

variable V is consistent with the previous interpretation for moving variables.

Each element of V travels along a loop channel without delay buffers.

Remark The definitions of pi, po, input, output, @v and @V for the ir-model

carry over to the -model. Since the k-model enforces neighbouring communica-

tion, fst(v, 9v)/®v ={fst(v, 19V)} and lst(v, 	= {lst(v, t9 V)}.

The functions pi po, input and output are undefined for stationary variables.

Whenever we apply these functions, it is understood that the variable they are

applied to is moving. For example, when we write (V V : V e V : a9vI\t9v) we

mean (V V: VVAfIow(V)O : ui9vlAi9v). 	 LI

4.3 The Mapping Conditions

We cannot ensure the computation and communication rules of Del. 2.4 by simply

choosing non-singular space-time matrices, because these matrices are of size 2 x n

and are not square when n > 2. The previous mapping conditions for (n - 1)-

dimensional arrays must be modified and extended.

Theorem 4.1 A space-time mapping ir is valid for the source UREs in the ir-

model if

(VV:VV:)9v 1)
	

(Precedence Constraint)

ir : 	 (Computation Constraint)

(V V: VeV: (V S: SEfst(v,i9v)/ v : input : S >-+ Z))

(Communication Constraint)

89

Proof The precedence, computation and communication constraint are equiva-

lent to the respective rules of Def. 2.4. The delay rule is enforced by Prop. 2 of

the ir-model. 	 LI

Theorem 4.2 A space-time mapping ir is valid for the source UREs in the x-

model if

(VV:VV:)t9v 1)
	

(Precedence Constraint)

7r : 	>-' Z2
	

(Computation Constraint)

(VV:VEV:cn9v I)9v)
	

(Delay Constraint)

(V V: VEV: (V S: SEfst(v,9v)/ v : input : S >-* Z))

(Communication Constraint)

Proof By Thm. 4.1, we only need to consider the delay constraint. By Prop. 2

of the k-model, the delay constraint is equivalent to the delay rule of Def. 2.4. Li

The communication constraint in Thm. 4.2 can be written equivalently as

(V V : V E V : input : fst((Dv, 9v) >- Z), since fst(v, 9v)/®v = {fst(v, t9 v)}.

The fact that the communication constraint can be phrased equivalently in both

models allows us to talk about it without an explicit reference to either model.

It is easy to see that the set of mapping conditions is stronger for the k-model

than for the ir-model. Put another way, space-time mappings that are valid in the

-model are also valid in the ir-model, but the converse is not true. Let us use

matrix product as example to illustrate this fact and the essential role that the

communication constraint plays in ensuring the validity of the space-time mapping.

Example 4.1 4 x 4 Matrix Product.

Choose the following space-time mapping:

21 2 =
1 1 —2

90

1

C B.
b4,4
fl14:.:...LIE

a1,4

Figure 4-2: A systolic array in which the neighbouring communication can-

not be enforced. The cell highlighted by a doubly bounded box is computing

point (1,4,4); it is performing the last accumulation of element c14. The delay

buffer above the cell is propagating element c311 which is the value represented by

C(3, 1,3). If the two links associated with C were merged, the cell would have to

both accumulate C1 ,4 and propagate c31 at the same step.

The precedence, delay and computation constraint are satisfied. The communica-

tion constraint is satisfied for variables A and B. Let us consider variable C with

AVC = 2 and üi9C = -2. In the k-model, only one link per variable is allowed. The

communication constraint is violated since input(C(1,4, 0))= nput(C(3, 1,0)) =5

and input(C(2, 4,0)) = input(C(4, 1,0)) = 8 (Fig. 4-2). In the ir-model, there are

two links associated with variable C; each link consist of channels that connect ev-

ery other cells. The communication constraint is satisfied because pi(C(1, 4, 0))=

pi(C(4, 1,0)) Pmax -1 and pi(C(3, 1,0)) = pi(C(2, 4,0)) Prnax That is, elements

C(1,4,0) and C(3,1,0) are injected at the same step but at different input cells.

They travel along different links. The same is true of elements C(2, 4,0) and

C(4,1,0).

Choose the following space-time mapping:

6 22
71 	=

1 -2 1

The precedence, delay and computation constraint are satisfied. The communi-

cation constraint is satisfied for variables A and B. Let us consider variable C

with Az9C = 2 and OiC = 1. There is only one link consisting of neighbouring

channels associated with variable C in both models. Since nput(C(1, 3, 0)) =

input(C(4, 1,0)) = 34 and input(C(1, 4,0)) = input(C(4, 2,0)) = 40, the communica-

tion constraint for variable C is violated in both models. 	 0

91

Remark There are two one-dimensional array models. Some of the following

analysis applies to one model but not to the other. For example, the definitions

of Fv in (4.3) and bv in (4.4) are intended for the -model only. It would be

confusing to switch constantly between the two models in the presentation. We

avoid this confusion by giving the definition of a concept for two array models

even if the concept is meaningful for only one of the two models. So F1, in (4.3)

and 6V in (4.4) are also defined for the ir-model. All our results apply for both

array models unless specified otherwise.

The next lemma provides conditions under which the communication constraint

implies the computation constraint. (The converse is generally not true as has

been demonstrated by Ex. 4.1.) Intuitively, if two distinct points are computed

simultaneously at the same cell, the two elements of a fixed variable indexed by

the two points must travel along a common link and, consequently, must be input

simultaneously at the corresponding input cell of the link.

Lemma 4.1 Let 	and)i9LO.

(V S: SEfst(v,t9v)/®v : input: S >-+ 7) = 7r: >-4 Z2 	(4.1)

Proof Assume irl=irJ for two distinct points ILJ Al, JE.

true

{Assumption}

7rI=7rJ A IJ

= 	{Definition of input}

input(V(I))=input(V(J)) A I~J

{A9v O; AI=\J}

input(V(I))Hnput(V(J)) A I4J

{Choose I,Lfst(v, v) such that I—IAL4J}

input(V(K)) = input(V(L)) A K L

{Definition of @}

(3 S: SEfst(v,l9v)/@v : K,LES)

== 	{Antecedent of (4.1)1

false 	 El

92

4.4 The Space-Time Diagram

In this section, we discuss the space-time behaviour of one-dimensional arrays and

describe a different formulation of the communication constraint.

The set T of space-time points for a one-dimensional array is given by:

T = {(t,P)Itfst ttlst APmin PPmax AtEZAPEZ}

where t represents time and p represents space. The space-time points in the

systolic array are divided into two categories.

The set T of computation points is the image of . The defining equations

of variables at these points are those at the inverse images of the points.

The set CTT of pipelining points is the complement of in T. The defining

equations of variables at these points are pipelining equations.

Note that we refer to the points in both 4D and c1 as computation points and the

points in both V' and CT-6 as pipelining points ('P' now contains the set of points

generated in the extension of the index space with respect to the allocation vector;

it will be formally defined in Def. 4.3). No confusion should arise since T and TP

are disjoint under valid space-time mappings.

We introduce the concept of a path, which contains the points of the index

space at which a given element of a variable is computed. p(S, V , I), called a

i9-path or path, is the intersection of the set S and the set ray(I, +):

p(S,'9,I) = Sflray(I,+9)

So p(S,z9,I)=p(S,9,J) if land J are in the same 9-path. We write paths(S,t9)

for the set of all i9-paths associated with a set 8:

paths(S,9) = {p(S,i9,I) 11eS}

93

48,14)
.*. .*. . .*. . . •J..*.

• . •'. •*. • .* . *. • 	 . ..
. • . . *• . .*. .*. . •*/ . .. 	•. 	 •— *. . . *'• . *• . • *. */• ••. •.. . •. . . .

. . . . 	• •. •4./. •. .. .

...

P 	 • 	
.

	

. 	.

. • • 	• *..*.• • 	. •*. •
. . ..'.• 	• •.. .*. 	.. .*.. *• . •.. . 	. .*..* 	.*.• .*.. .*. • .*. . .**. •*.• •**. •*. . .* *• • .. • .•**• 	..**..*.. .**. *. .

• .. • ..* 	*..**..**. .**. . .*• .*. . .*
*. •**. S. 	***.**S-***.**. . .* . *. . .*.

. .. .**. *• 	.***.**..***•*. . . .*. . •*. .*. . .*
*. **. 	*.***.***.***.*.*. .*. . .*. *. . . .*.**• 	******.*******.*.*. *. . .*• •*. . .

. .• . .*.*. • 	*******.******s .*.*• . •*. .*. • •* . *. •

(-6, —4) b3,4 	42,1 	 t

cij .(48,14)
..*.*.*'. .*.*.*.*. •*.*.*.*. •*•*/*•.
.N.*.*.*'. 	

'k•*•*•*'• ••••• •*.***/**.•*..

	

..... _,,.
N(.*.*.*'..*.*.*.*..*.*.*.%.*5.**•.*.._

.*.*.*.*. .*.**p'.**. 	
.k•*•*'A 	 P*.*.*'..*.*.*...* .**..**. 	..*..*.*.*.s.*.**..* .**..* 	.*.•**..**.*.*.s.**..*..*.. 	.**.**..*.*
.... . *.*..**..*..**. 	..**.**..*.*.*
.......**.***.*..* 	.*..**.***.*.*.*.* *.***. 	S . 	•**.**S****..*.*.*.*
....*** .**.**. 	..**.**..***.*..*.*.*.*

(-6, —4) b3,4 	a3,1

Figure 4-3: The space-time diagrams with respect to (a) the ir-model and (b)

the k-model that are described by the following space-time mapping [41] (in =4):

2m-2 1 m/2 	 2m 1 (m+1)/2
even = 	 odd =

rn—i 1 —rn/2 	 rn 1 —(m+1)/2

even applies for even rn and 7rodd for odd rn. The point at the bottom-left corner is

	

(tf5t, pfl) == (-6, —4), that at the top-right corner is 	Prnax) = (48, 14). The fat

dots represent computation points. The regular dots and stars represent pipelin-

ing points; the stars depict the pipelining points at which at least one element is

propagated but exclude those that only propagate data elements of A and B which

are no longer used, since the output of A and B is of no interest. The pipelining

points highlighted by circles are referred to in this section and in Sect. 4.5. Arrows

depict related paths. Their tails are labelled with the corresponding input data.

94

It is convenient to represent a one-dimensional array as a space-time diagram,

which is obtained by viewing the space-time points as a two-dimensional lattice,

where the horizontal axis represents time and the vertical axis space (Fig. 4-3).

From the space-time diagram, we can directly extract the following information:

the latency, the number of cells required, the velocities of variables, and input and

output characteristics. To find out how the input and output data are handled in

the systolic array, we note that the elements of variable V must be injected at the

first points of v-paths and ejected at the last points of -paths. Some Wu-paths

of V may not start at input cells in the following two cases:

V is a moving. The input data for these paths must be I; they can be

disregarded; i.e., they need not be supplied from the external environment.

V is a stationary. The input data for these paths must be loaded before the

computation starts, i.e., before step tfst.

The two sets fst(v, 79,) and paths(-(Dv, t9,) are isomorphic by the bijection

nv : fst(v, 9v) -p paths(4)V, 9v) 	1v(I) P(v, 19v, I) 	(4.2)

The communication constraint states that at most one element of a variable can

be injected at any input cell at a given step. Expressed in terms of the mapping

from paths(v, t9V) to paths(T,i v), this means that different79V-paths must have

different images, i.e., different WV-paths in the space-time diagram. This is not

true if V is stationary, because more than one input value, i.e., more than one

79 V-path may be projected to the same cell.

Lemma 4.2 For a moving variable V, let TV : paths(v,t9v) -* paths(T, v),

Tv(p(4v,?9 v,I))=p(T, iv, I). The communication constraint is satisfied if

(V V: VEV : TV: paths(v,9v) >-* paths(T, v))

Proof

(V V: V€V : 'rv : paths(v,t9v) >- paths(T, v))

{nv of (4.2)}

95

(qD 	k-' paths (T,t9v)

4 	(Definition of i v -path}

(V V: VEV: (VS : SEfst(v,9v)/(Dv : input: S >- Z)) 	 LI

Next, we characterise the distribution of pipelining points in the space-time

diagram. There are two types of79V -paths (Fig. 4-3):

Paths that contain computation points. These paths can be viewed as con-

sisting of the following three consecutive segments:

- The first segment consists of pipelining points called oaking points.

- The second segment consists of both computation and pipelining points.

These pipelining points are called relaying points. There are F, - 1

relaying points between every two neighbouring computation points:

rV = if flow(V)=0).i9v [I fIow(V)O -* 1 fi (71-model) 	
(

if flow(V)=O - 	El flow(V) 540 -p (F v1 fi (k-model)

The relaying points arise in the k-model due to the conversion of non-

neighbouring channels to neighbouring channels. (E.g., see the79B-path

depicted by the solid arrow in Fig. 4-3(b); in this case, FB =3.)

- The third segment consists of pipelining points called draining points.

Paths that do not contain computation points. The points of these paths

are called undefined points. (E.g., see the ac-paths depicted by the dashed

arrows in Figs. 4-3(a) and (b).)

Remark If V is stationary variable, the definitions of t9V in both models are

consistent with the definitions of cv. In this case, each element of V is accessed

every Fv steps. For any 	path in the space-time diagram, there are F, - 1

relaying points between every two neighbouring computation points. 	Eli

The soaking points of V serve to propagate the input data of V from input

cells to internal cells; the draining points of V serve to propagate the output

data of V from internal cells to output cells; the relaying points of V serve to

96

employ intermediate cells as delay buffers for relaying the data of V between non-

neighbouring cells. (E.g., see the79B-path highlighted in Fig. 4-3(b).)

4.5 The Extension of the Index Space

This section describes how pipelining points are generated by means of a two-step

extension of the index space. The first step follows from Def. 2.5 and the second

step does not apply for the ir-model. The extension of the index space leads to the

realisation that the non-injectivity of the space-time mapping causes complications

in the synthesis of control flow for one-dimensional arrays. In addition, it allows

several different formulations of the communication constraint.

The generation of the extended index space depends on the allocation vector.

In the first step, we impose the restriction of border communication, just as for

(n-1)-dimensional arrays (Def. 2.5). In the second step, we impose the restriction

of neighbouring communication for the -model. The new data dependence vector

Sv of t9V is defined by:

= 	if flow(V)=O - t9v/)t9v 0 fIow(V)O 	i9v fi (7r-model) 	
(

= 	if flow(V)=O -4~dv/AOV flow(V)O 	i9v1Joz9v J fi (X-model)

The directed arc represented by 	between any two neighbouring points in the

same 9v-path that was created in the previous step is sliced into FV consecutive

directed arcs 6V. This creates F,—1 points in the original arc. Consider one such

point K; cell place(K) serves at step step(K) as a delay buffer to propagate an

element of V from the cell at location place(I) to the cell at location place(J).

Remark Recall the interpretation of 	in the two one-dimensional array mod-

els. Its first component decremented by 1 represents the number of delay buffers

associated with a channel of V. Its second component represents the direction

and length of that channel. Such an interpretation is consistent with the standard

interpretation of channel connections and buffer distributions as in (2.14), since

is the image of 6, under the space-time mapping as defined in (2.14). 	El

97

Figure 4-4: Part of the extended index space with respect to the allocation

vector of Fig. 4-3 for matrix product (m=4). The cube depicts the original index

space. The three polytopes labelled A, B and C represent the points created in

the extension along direction -I9 A, 	and i9c, respectively. The extension along

—9c is not depicted. Extensions along 19A and 79 B are not necessary because the

output of A and B is of no interest.

To formalise the extension of the index space, we need the following notation.

For Sc Q' and ir E Q', planes(S, ir) denotes the union of all parallel hyperplanes

that intersect the set S and whose normal is ir:

planes(S,2r) = {I I IE Qfl A 7r1=IIJA JeS} 	 (4.5)

Note that planes(, a) plays the role in one-dimensional arrays that rays(, ±u)

plays in (n-1)-dimensional arrays. That is, it is the set of the points in Q' that

are mapped to the space-time diagram.

Definition 4.3 The extended index space 1J1 of the index space 1 is defined as

follows (Fig. 4-4):

if flow(V)=O - 0

= 	II fIow(V)LO - planes(,a)flrays(fst((Dv,Ov)-5v,-60

fi

if flow(V)=O 	0

IJ flow(V):~O -

fi

= 	(rays(v, 	v) fl rays (v,))

WV =

98

(VV:VEV: IV, UW',U)

IF =

=

The portion attributed to variable V is 'IJ, (compare Def. 2.5). 	 LI

We have given a formal definition of the extended index space for (n - 1)-

dimensional arrays in Def. 2.5. Every set defined in Def. 4.3, except 	has a

parallel in Def. 2.5. The interpretation of the points of the two corresponding sets

is identical. The points of 	are mapped to the relaying points of V. Because

of the existence of relaying points, the second step in the extension of the index

space depends on the scheduling vector in the presence of stationary variables.

The points of W\ may be rational rather than integral: WcQ. The images

of the points in 4'\ are the pipelining points at which data may be propagated.

The computations at the remaining pipelining points are undefined. They can be

interpreted as propagating the undefined value I.

The extended source UREs over the extended index space are as defined in

Sect. 2.5 except that all data dependence vectors z9v are replaced by S.

The following concepts are analogous to those defined for the index space.

The set of new first computation points of variable V over the extended index

space is fst(4rv, 5v) The set of new last computation points of variable V over

the extended index space is lst(lIf v, 5v). The points of fst("Pv, 5v) are mapped to

input cells. We write 	for the equivalent relation on fst(lhIv, 5) given by

(V I, J: I,Jfst(W v,Sv) : I(fJ',,J == pi(V(I))=pi(V(J))) 	(4.6)

The points in a 	-class are mapped to the same input cell. Thus, the communica-

tion constraint ensures the injectivity of step for each ®-class. This formulation

of the communication constraint is useful in the validity proof of the space-time

mappings generated by the procedure described in Sect. 4.6.

Lemma 4.3 The communication constraint is satisfied if

(V V: VeV: (V S: SEfst(Wv,6v)/, : step: S > 	Z))

99

Proof

(V V: VeV: (V S: SEfst(Wv,Sv)/(iJ,. : step: S 	7))

== 	{(V I,J: I,JES: place(I)=place(J))}

(V V: VeV: (VS: SEfst(Wv,Sv)/(D' : input :8 -* Z))

,9
{Define Pv : fst(v,9v) -fst(Wv,5v), p(I)J, where J-v I.

Then Pv is a bijection and input(V(I))=nput(V(J))}

(V V: VeV: (V 8: Sfst(v,9v)/ v : input : S >- 7)) 	 LI

The next lemma rephrases the communication constraint by viewing the space-

time mapping as a mapping from Tv to T.

Lemma 4.4 The communication constraint is satisfied if

(VV:VEV:7r:Wv 	Z2)

Proof Similar to the proof of Lemma 4.1. 	 .
This lemma indicates that the communication constraint is to ensure that the

space-time mapping is injective over W. However, valid space-time mappings

from iji to T are generally not injective; one example is the mapping displayed

in Fig. 4-3. Take the pipelining point I = (12, -1) highlighted in Fig. 4-3(b)

as an example. Elements a3,1, b34, and c1,1 are propagated at this point, since

the paths p(T, WA, J), p(T, B,l) and p(T, c,J) intersect there. In the extended

source UREs, A(3, -8, 1) = a311 B(1/3, 4,3) = b3,4 and C(1, 1,5/2) = c1,1, where

7r(3,-8,1)=7r(1/3,4,3)=7r(1,1,5/2)=7. Point lhas three inverse images in the

extended index space. In general, a space-time point may have as many inverse

images (in the extended index space) as there are data variables - one inverse

image per variable. We also note that the inverse images of the three paths, i.e.,

p(1IJA, 64, (3, -8,1)), p(W B, 6B (1/3,4,3)), and p(W, 6c, (1,1,5/2)) do not inter-

sect. A similar analysis applies for the pipelining point J = (6, -4) highlighted in

Fig. 4-3(a). Elements a2,1 and b3,4 are propagated at this point.

Theorem 4.3 A valid space-time mapping may not be injective from 'I' to T.

Proof The space-time mapping in Fig. 4-3 is not injective from 'I' to T. 	LI

100

This theorem is not valid for (n-1)-dimensional arrays because a valid space-

time mapping, in this case, is a bijection from Q'2 to Qfl•

In general, the non-injectivity of the space-time mapping increases the im-

portance of control signals in one-dimensional arrays. Take the array shown in

Fig. 4-3(b). For example, cell p= -1 must be instructed at step t = 12 to prop-

agate rather than accumulate element c11. However, the non-injectivity of the

space-time mapping is a virtue rather than an evil. It permits the parallelism in

the propagation of data between cells to be fully exploited. If (t, p) is a pipelining

point, cell p at step t is allowed to propagate up to IVI elements; one element

for every variable in V. If the injectivity of the space-time mapping from 'I' to

T is enforced, a cell can propagate at most one element at a given step. This

will certainly increase the latency of the array. On the other hand, propagation

control signals may be eliminated for a special class of systolic algorithms; this is

the topic of Chap. 6.

4.6 A Synthesis Procedure

Based on the results developed in the previous sections, we now present a synthesis

procedure for the generation of valid space-time mappings for both models. The

procedure first constructs nxn matrices and then converts them to 2xn matrices,

which are valid space-time matrices.

First, we construct a space-time matrix, denoted II, that is an n x n integer

matrix, whose first n-i rows, denoted by A, form a scheduling matrix and whose

last row is the allocation vector.

A1 	A1,1 A1,2 .

A 	
A2 	A2,1 A2,2 ... A2,

H = 	= 	=
or

A 1,1 A_1,2 ... A_1,

U,

7 = HI = (t1,t2, 	,t-1)p)

101

Point I is computed at cell p at multi-dimensional time step (t1, t21. . ,

To realise the systolic array in hardware, we need an (n— 1)-dimensional clock,

whose most (least) significant hand represents t1 (t,_1). The scales for the n—i

hands of the clock are represented by a vector (si, 2,• 	 One unit of the

i-th hand is equal to si units of the (i+1)-st hand. si is the difference between

the maximum and minimum of the i-th time components of all space-time points.

We shall later provide a procedure for deriving these scales.

Theorem 4.4 Let the validity of space-time mappings be defined in the absence

of the delay rule of Def. 2.4. A space-time mapping H is valid for the source UREs

if

(V V: VeV : A9v >0). 	 (Precedence Constraint)

rank (H) = n. 	 (Computation and Communication Constraint)

Proof The proof of the precedence constraint is similar to that of Thms. 4.1

and 4.2, except we need to consider (n - 1)-dimensional time. When H is non-

singular, it is a bijection from Qfl to Qfl• The satisfaction of the computation and

communication constraint is obvious. 	 U

This theorem is due to Moldovan [50]. The mapping conditions depend on

the data dependence vectors but not on the index space. The search for a space-

time mapping II that satisfies these conditions can be formulated as an integer

programming problem [64]. The delay rule of Def. 2.4 is not part of mapping

conditions of Thin. 4.4. It can be trivially satisfied by an appropriate scaling of

the scheduling vector that is converted from a scheduling matrix.

Next, we convert the (n - 1) x n scheduling matrix to a scheduling vector by

a procedure that depends on the index space or, more precisely, on the extended

index space. This is accomplished by a calculation of scales s, 	sn—i, from

which we obtain a vector (91, 92, . . , g,_) such that one unit of the i-th component

is equal to gi units of the (n-1)-st component. This vector is calculated by setting

= 1 and g2 =g 1s21. By setting g_1 to 1, we assume that (0,0,..., 0,1) is

the smallest unit of the (n - 1)-dimensional clock. (Scale s, does not contribute

102

to the calculation of the vector (91,92, 	 Then (n—l)-dimensional time

(t1 , t 2, - , t_) is converted to scalar time t = (>1 i : 0< i< n : tg1).

Procedure 4.1 (Conversion of (n-1)-dimensional to one-dimensional time)

INPUT: 	The extended index space 'I' and a scheduling matrix A.

OUTPUT: 	A scheduling vector A.

(Vi:1<i<n:s=(max I,J:I,JEW:IA1(I—J)+1)).

(Vi:0<i<n:A2 =(min I,J:IJAI,JEW:IA(I—J)j)).

g_1 =1/z_1 , (V i : 0 < i < n — 1 : g

(Vk:0<kn: Ak=(>12 i:0<i<n:gA)). 	 LI

Let us explain the role that quantities Al, A2, • . . , An-1play in Proc. 4.1. /ij

represents the smallest difference among the i-tb time components of all space-

time points. If all the i-th time components are integers, then Ai e Z. Ai can

be disregarded (i.e., treated as 1). But, retaining Ai minimises the components

91, 92, • , gi and thus the latency of the systolic array. If the i-th time components

of some space-time points are not integers (because some points of kJJ are not

integers), Ai may not be integral. Ai is essential in ensuring that different multi-

dimensional time steps are converted to different scalar time steps.

Lemma 4.5 If III satisfies Thm. H, the transformation of A to .A by Proc. 4. 1

preserves the following properties:

(V I,J: I,Je4' : AI=AJ ==-)I=AJ) 	 (Bijectivity)

(V I,J: I,JEW : AI<AJ ===> \I<AJ) 	 (Precedence)

3. (V V: VeV: (V I,J: I,J'1 : AI= AJ+M9 v == I=J+\t94)

(Linearity)

103

Proof Algebraic manipulation.

Procedure 4.2 (Construction of the space-time mappings for the source UREs

with respect to either the ir-model or the k-model)

INPUT: 	The source UREs.

OUTPUT: Valid space-time mappings 7r.

Find space-time mappings II that satisfy Thm. 4.4.

Obtain the extended index spaces 'P by Del. 4.3 (with respect to either the

ir-model or the k-model).

Transform A to \ by Proc. 4.1.

Scale). to satisfy the delay constraint for the k-model. 	 El

Theorem 4.5 The space-time mapping 7r returned by Proc. 4.1 is valid.

Proof If a space-time mapping H satisfies Thm. 4.4, ir satisfies the precedence and

computation constraint by Lemma 4.5. Scaling). ensures that it satisfies the delay

constraint. We remain to prove that it satisfies the communication constraint.

H is non-singular

== {Non-singularity}

II:Q -*Q

{Restriction of II to a subset of Q'}

H: fst('Pv,5v)

= {c,of(4.6)}

(V 8: SEfst(v,5v)/', : H: S >- Qfl)

== 	{Lemma 4.51

(V 8: SEfst(v,8v)/@,, : it: S - Q2)}

== 	{(V I,J: I,JeS: place(I)=place(J))}

(V S: SEfst(v,6v)/(D : step: S >-' Q))}

104

== {Appropriate scaling of X; Lemma 4.31

The communication constraint is satisfied 	 U

The space-time mappings generated by Proc. 4.2 may be inefficient because

Proc. 4.1 preserves the injectivity of the space-time mapping H over the extended

index space (Stat. 1 of Lemma 4.5). This follows from two observations. First, the

parallel injection and ejection of the elements of different variables at the same

cell is excluded by Proc. 4.1. But the communication constraint only requires the

injectivity of step over every @c,,-class. Second, Thin. 4.5 still holds if we allow two

points scheduled at different multi-dimensional time steps to be converted to the

same scalar time step, provided that they are mapped to different cells, i.e., if the

scheduling vector obtained satisfies a weakened version of Stat. 1 of Lemma 4.5:

(V I, J: I,J1' : (AI=AJ = \I= \J) A (AIAJAaI=aJ = .AI \J).

4.7 Related Work

Depending on how the scheduling vector is derived, we distinguish two methods for

the synthesis of data flow for one-dimensional arrays: the one-dimensional method

searches the scheduling vector directly, and the multi-dimensional method does so

via an (n-1)-dimensional scheduling matrix. In the one-dimensional method, one

applies a 2xri space-time matrix ii to the source UREs. In the transformed UREs,

one index represents time and the other space. In the multi-dimensional method,

one applies an nxn space-time matrix II to the source UREs. In the transformed

UREs, n - 1 indices represent time and the remaining index represents space.

Then, the (n—l)-dimensional scheduling matrix is converted to a one-dimensional

scheduling vector.

Ramakrishnan, Fussell and Silberschatz [61] were the first to introduce the

k-model. Their synthesis of the data flow amounts to embedding two- or three-

dimensional data dependence graphs in a space-time diagram. The correctness

of an embedding is ensured by certain embedding rules, which are equivalent in

105

nature to the mapping conditions specified in Turn. 4.1. However, this graph em-

bedding approach does not lead to a systematic embeddings of any UREs. This

method has been recently improved by the one-dimensional method proposed by

Lee and Kedem [41]. They adopt the -model and formulate the previous embed-

ding rules in terms of relations on the data dependence vectors (Thm. 4.2). This

data dependence approach is superior to the previous graph embedding approach

in that it applies for any n-dimensional UREs and that the search for valid space-

time mappings can be formulated as linear and integer programming. Rao [64]

presents a multi-dimensional method without providing a model; his concept of ex-

tended index space conforms to the it-model but not the -model. Kumar and Tsai

[33] present a method that converts two-dimensional arrays to one-dimensional ar-

rays. They adopt the it-model, although this is not explicitly mentioned. Wong

and Delosme [78] present a procedure for converting (n - 2)-dimensional to one-

dimensional time in the context of the synthesis of two-dimensional arrays. The

index space rather than the extended index space is used in the conversion. Hence,

input and output data may have to be handled at internal cells.

4.8 Conclusion

We have formally defined the two most frequently used one-dimensional array

models: the it-model allows non-neighbouring connections and the k-model does

not. We have extended previously known mapping conditions to both models.

This allows synthesis methods formulated for one model to be applied to the

other model. For example, Lee and Kedem's one-dimensional method [41] can

be extended to the it-model. The only requirement is that we must choose the

allocation vector before the scheduling vector, because the definition of ® (or

in the communication constraint depends on the allocation vector.

The synthesis procedure (Proc. 4.2) is built on previously known results, but

it applies for both models. Valid space-time mappings can be obtained for either

of the two models, depending on how the extended index space is defined.

106

We have represented the communication constraint in a variety of forms: each

equivalently enforces the restriction that a channel cannot transfer more than one

datum per step but conveys the properties of the space-time mapping from a

distinct perspective. For example, Lemma 4.2 justifies the geometrical approach

of [10] in which one-dimensional arrays are constructed by a manual embedding

of 9v-paths in the space-time diagram.

We have investigated properties characteristic of one-dimensional arrays. First,

we have characterised the regular distribution of pipelining points over the space-

time diagram. This will be the basis of the construction of propagation control

signals for one-dimensional arrays in Chap. 5. Second, we have shown how the non-

injectivity of a space-time mapping can be understood by an extension of the index

space. The non-injectivity of the space-time mapping makes the implementation

of the control UREs inefficient. This is our reason to look for a different but more

efficient specification of propagation control signals for one-dimensional arrays in

Chap. 5.

The concept of the extended index space can be used in the optimisation of

a schedule. The points that are mapped to iç and t must be extreme points

in (U V : V E V : fst(Wv, 6) U lst(Wv, 8w)). Since a valid space-time mapping

must satisfy the precedence constraint, some extreme points can be excluded as

candidates. Assume that F (L) is the set of extreme points that may be scheduled

at the first (last) step tft (t). A space-time mapping that minimises the latency

must minimise the objective function:

(max I:IL: AI) —(min I:IeF:AI)

The computation constraint aims at preventing intra-cell parallelism. This is

enforced by requiring too much: no two points that are scheduled simultaneously

can be mapped to the same cell. The necessary and sufficient condition should

state that no concurrent computations for a fixed variable can be mapped to the

same cell. (So, two points can share the same image if every variable is undefined

at at least one of the two points). This is guaranteed by the communication

constraint. Therefore, the computation constraint can be neglected.

107

The communication constraint defined in this chapter is overconstrained. Two

9vpatI1s may be mapped to the same i v-path if, for example, variable V is

undefined at all the points in one of the two paths. In general, two 9v-paths can

share the same image if, for every pair of points that share the same image (one

point per path), variable V is undefined at at least one of the two points, i.e., if

(V x,y :

= (VI,J:IxAJEy:J=J == V(7')=IvV(7)=I))

Unfortunately, the verification of this formula depends on both the space-time

mapping and the index space. In addition, more complex control is required.

Chapter 5

Control Flow Synthesis for One-Dimensional

Systolic Arrays

5.1 Introductory Remarks

In Chap. 3, we have provided a constructive method for the synthesis of con-

trol signals for (n - 1)-dimensional arrays from n-dimensional UREs. The basic

idea is to transform the source UREs to pipelined UREs. Then, finding (n — i)-

dimensional arrays is just finding space-time mappings that are valid with respect

to the pipelined UREs and the (n-1)-dimensional array model.

In Chap. 4, we have defined two one-dimensional array models and stated

mapping conditions for the synthesis of data flow from n-dimensional UREs for

these two models. The pipelined UREs constructed in Chap. 3 are a special form

of UREs. Just like for the synthesis of (n - 1)-dimensional arrays, finding one-

dimensional arrays is just finding valid space-time mappings with respect to the

pipelined UREs and one-dimensional array models.

This chapter is concerned with the construction of control UREs for one-

dimensional arrays. To illustrate why the specification of the control UREs con-

structed previously may result in inefficient one-dimensional arrays, we state in

a theorem the mapping conditions for the validity of space-time mappings with

108

109

respect to the pipelined UREs and the two one-dimensional array models; this

theorem is a direct application of Thms. 4.1 and 4.2 to the pipelined UREs. From

now on, we write V (V p) for the set of computation (pipelining) control variables,

and Vd for the set of data variables. V is the union of V, V and Vd.

Theorem 5.1 A space-time mapping is valid for the pipelined UREs (in either

the 71-model or the k-model) if

(VV:VEV:)l9v >0)
	

(Precedence Constraint)

7r : 'I - 	 (Computation Constraint)

(V V : VeV: cn9v I 9v) 	 (Delay Constraint for the -Mode[)

(V V : VEVd : (V S: SEfst(v,t9v)/Ov : input : S >-* Z)) 	 (5.1)

(V V: VEV: (V 5: SEfst(1J v,t9v)/(?jv : input : S >- Z)) 	 (5.2)

(V V: VEV: (V S: SEfst(Wv,Ov)/@' : input : S >- Z)) 	 (5.3)

(Communication Constraint)

Proof Thms. 4.1 and 4.2. 	 U

Domain 1J!v of a control variable V in (5.2) and (5.3) is defined in (3.24):

TV = planes(,r)flrays(Dv,+9v) 	 (5.4)

DV is the set of points I such that V(I) is referenced in the guards of the pipelined

UREs. It has the following relationship with the index space 4 and the extended

index space hf (Sect. 3.4):

(V V: VeV : rays(Dv,+9v)C rays(,+t9v))
	

(5.5)

(V V: VEV : rays(Dv, +t9V) = rays(h' U H.V, +,) U rays(, +h9V)) (5.6)

The communication constraint for a variable ensures that all input data of the

variable are input at distinct time steps. In general, the higher the number of

input data of a variable, the higher the latency of the systolic array. This makes

it desirable to keep the number of inputs of a control variable as small as possible.

110

The CCUREs serve to distinguish different types of computation points. They

need only be defined for the index space. fst('I' v,t9) of a computation control

variable V contains no more elements than fst(, 	The latency of the systolic

array may be retained when it is possible to choose data dependence vectors as

the control dependence vectors for computation control variables (Sect. 3.5). The

PCUREs serve to distinguish pipelining points from computation points. They

must be defined for the extended index space. However, fst(Wv, 9v) of a prop-

agation control variable V contains more elements than fst(, t9 V), leading to a

higher latency of the systolic array. (This is not true for (n-1)-dimensional arrays

because the corresponding mapping conditions depend only on data and control

dependence vectors but not on the (extended) index space.) We avoid the higher

latency by providing a different construction of the PCUREs. The domain of a

propagation control variable V in the new PCUREs is defined for the extended in-

dex space IF. But, the construction of the new PCUREs will allow us to replace lJf

in the communication constraint (5.3) by a subset of 1P called the communication

constraint domain of V and denoted QV :

	

QV = planes(,cr)flrays(Dv,+9v)
	

(5.7)

where DV satisfies (5.5), eliminating the need for (5.6). Before doing so, we

illustrate with LU-decomposition why the behaviour of the original PCUREs is

not preserved if we directly substitute QV for 'v of the communication constraint

(5.3). This also indicates that the PCUREs play a more important role for one-

dimensional arrays than for (n-1)-dimensional arrays.

Example 5.1 4x4 LU-Decomposition

Recall the pipelined UREs constructed in Sect. 3.7.2. The CCUREs consist of

two computation control variables P and Q. The PCUREs were not presented.

They follow from the set B = {B1, B2, B3 } given in Sect. 3.7.1.3 and (3.18). By our

convention, we write C.B1, C.B2 and C.B3 for the three corresponding propagation

control variables. By (3.19), we obtain

= 	(V i : 0<i3 : C.B1(I)=1)
(5.8)

P(C) = (i 0<i3 C.B1(I)=O)

III

C3,4 	4' 	 (48,14)

Figure 5-1: The space-time diagram for LU-decomposition (rn = 4). The two

(identical) long-dashed paths depict XT, c B1,') and p(T, 3 ,J); they are equal

and should be viewed as overlapping each other. The short-dashed path depicts

p(T,t9c p2,l). The dotted path will be referred to in Sect. 5.3.

P() holds at point I if 1e4:. (That is, P(C4) holds at point I if IeC.) For

the purpose of illustration, we choose 19 P =9C.B1 =9C.B3 =(0, 1,0) and 19Q zlC.B2 =

(1, 0, 0). The following space-time mapping, which describes Ramakrishnan and

Varman's one-dimensional array for matrix product, is valid by Thin. 5.1 if we

replace T v of (5.3) by fZ, of (5.7) (Fig. 5-1):

	

2rn-2 1 rn/2 	 2m 1 (m+1)/2
even = 	 odd = 	 (5.9)

	

rn-i 1 -rn/2 	 rn 1 -(m+1)/2

In the resulting systolic array, control variables F, C.B1 and C.B3 each travel at

the same velocity as data variable A, and control variables Q and C.B2 each travel

at the same velocity as data variable B.

Two observations can be made on this example. First, the behaviour of the

PCUREs is not preserved by the chosen space-time mapping. Consider the three

dashed paths pointing towards the northeast shown in Fig. 5-1. If we input control

signal 1 at each of these three paths, the pipelining point highlighted by a circle

will be interpreted as a computation point, since P() holds at this point. If we

input control signal 0 at one of these three paths, then the computation points

in the path will be interpreted as pipelining points, since P(C) holds at all

points of the path. The problem is that two different t9c B -paths for a fixed i are

mapped to the same 9c B -path - a condition that is not permitted by the premises

of Thm. 4.2.

112

Second, Lemma. 3.10 does not apply due to the non-injectivity of the space-

time mapping. For example, P(.) holds not only at the computation points

highlighted by fat dots, as intended, but also at the pipelining point highlighted

by a circle in Fig. 5-1. This implies that 	albeit 1 	Thus, predicate

P(I) in the pipelined equation of (3.21) is essential and cannot be disregarded as

in the case of (n-1)-dimensional arrays. So Thm. 3.3.2 is not valid. This indicates

that propagation control is more important for one-dimensional arrays than for

(n— 1)-dimensional arrays. 	 El

In this chapter, we focus on the construction of PCUREs for one-dimensional

arrays. To do so, we need to lift one of the four restrictions imposed on the

specification of control signals in Sect. 3.2, namely, Rst. 4. That is to say, we shall

allow the control value of some propagation control variable to change during its

propagation throughout the array. We call a control variable an evolution control

variable if some value of the variable changes before it is ejected from the array.

The rest of this chapter is organised as follows. Sect. 5.2 describes some no-

tation and the basic idea underlying the construction of the PCUREs. Sect. 5.3

presents the construction of the PCUREs for three-dimensional UREs. Sect. 5.4

generalises this construction to n-dimensional UREs. (We do not consider two-

dimensional UREs here; they have already been covered in Chap. 3.) Sect. 5.5

comments on some related work. Sect. 5.6 illustrates our method with two exam-

ples. Sect. 5.7 contains the conclusion of the chapter.

5.2 	The Synthesis of Propagation Control Flow

To avoid unduly complex notation, we present the specification of propagation

control signals in the form of programs (rather than in the form of UREs). The

program for the host, called the host program, corresponds to the input equations

and injects propagation control signals to the array. The program for the cells of

the array, called the cell program, corresponds to the computation equations and

specifies the control signals of the output channels of a cell based on the control

Uin

won

U0 t

wi n

113

Figure 5-2: The notation for specifying the cell program.

signals of the input channels of the cell. The cell program is identical for all cells

and is executed by every cell at every time step.

How can UREs be expressed as programs? Since all cells are given the same cell

program, we can abstract from the index vectors of propagation control variables.

This results in one program that will be executed by every cell of the array.

Let us consider the situation where cell p is computing point 1= (t, p) at step

t (Fig. 5-2). The cell receives its input signal V(J— v) of propagation control

variable V at step t —1 and sends its output signal V(J) at step t. We abstract
-- 	 - from the index vectors of V by writing Vin for V(I—i9v) and Vout for V(I). That

V" out is, V (V out) denotes the input (output) channel for V at this cell.

The domain of every propagation control variable is the extended index space

IF. There are two types of propagation control variables V:

Pipelining Control Variables. Every cell directly sends the control signal

received at the input channel of V to its corresponding output channel.

That is, the computation equation is given by

V0'1t 	V" 	 (5.10)

If the cell is an input cell, Vtm represents one of the values in sig(V) (which is

the set of control values of V in Sect. 3.3) to be injected by the host program.

Evolution Control Variables. Every cell may change the control signal re-

ceived at the input channel of V before sending the (changed) control signal

114

to the corresponding output channel. The computation equation is given by

if B1 (Wm,...) -* f1 (Vm)

B(W",.•.) - 	f2 (Vi.)

yout =

	

	 ... 	 (5.11)

Bb (Win'...) -* f(V in)

fi

The guard B(Wm,...) can always be written in disjunctive normal form,

where each disjunct consists of a conjunction of tests of an argument (i.e., a

propagation control variable) for a control signal. f(V
in) is a function that

recursively defines the control value of yIt in terms of argument Vin.

Similarly, if the cell is an input cell, V in represents one of the values in sig(V)

to be injected by the host program.

The propagation control flow is correct if there exists a construction of a char-

acteristic function XT in the propagation control variables of 1 in T:

x(J)=ifTiE-x 11 else -*xfi 	(5.12)

That is, 7 is a computation point if x(T) = x and a pipelining point otherwise.

The notation (J) with 7= (t, p) stands for the tuple of propagation control

signals associated with the input channels of cell p at step t —1, one component

per input channel.

=
(%/tm,...)

=
	 (5.13)

The basic idea underlying the construction of the PCUREs is to exploit the

regular distribution of pipelining points in the space-time diagram. Remember

that the space-time points of T are divided into five categories with respect to

a fixed variable V (Sect. 4.4): the set of soaking points denoted by T,, the set

of draining points denoted by T, the set of relaying points denoted by T,,, the

set of undefined points denoted by T, and the set of computation points T. By

choosing one propagation control variable, say, V as a reference, we shall construct

115

the PCUREs in such a way that the five types of points with respect to V, i.e.,

the five sets {o(J) I JeT,}, {(J) JET}, {o(J) I 7ET,}, 	(7) I iET},

and {o(J) I IE} are disjoint.

The PCUREs constructed this way apply for both one-dimensional array mod-

els. We shall conduct our presentation with respect to the k-model only. This is

justified since a space-time mapping that is valid with respect to the -model is

also be valid with respect the ir-model.

The construction of the PCUREs depends on the dimension of the index space.

To provide a better understanding, we shall first present the PCUREs for three-

dimensional UREs and then describe the generalisation to n-dimensional UREs.

We say a space-time mapping is valid for a variable if the computation con-

straint is satisfied and the precedence, delay and communication constraint for

that variable are satisfied. Our construction of the PCUREs requires that all

propagation control variables are moving. In Sect. 5.3.4, we shall state this con-

straint explicitly as part of the mapping conditions for the validity of space-time

mappings. In the sections before, we shall assume this constraint implicitly.

5.3 The PCUREs for Three-Dimensional UREs

5.3.1 The Evolution Control Flow

We need to use only one evolution control variable; we name it E. Its specification

exploits the regular distribution of pipelining points over the space-time diagram.

In this section and subsequent sections, when we refer to soaking points, drain-

ing points, relaying points, undefined points, first computation points and last

computation points with no explicit reference to a variable, we mean the points

associated with the evolution control variable.

The PCUREs are supposed to ensure that the sets

{o(7) JJeT}, {'O') IiET2}, {'O') I1ET}, {ço(J) IJeT}, {'(T) 17E}

116

are disjoint. We classify the remaining propagation control variables, which are

pipelining control variables, into two categories:

Initialisation Control Variables F1,1, F12 , F21, F2,21 	,Fj,1 , Ff2. Let 13(F)

be a predicate in the initialisation control variables. We shall construct

initialisation control variables such that 8(F) is a characteristic function of

the first computation points of E:

8(F) = if 7efst(,i9E) - true 0 else - false fi 	(5.14)

The idea behind the construction of the initialisation control variables is to

partition fst(,19E) into a number of subsets, fst(,t9E)l , fst(I,9E)2, . . •,

fst(,L9E) f, such that dim(fst(,9E)1)n-1. We write

= {fst(,OE), I O<i:f}

One possible solution is to first decompose fst(, 19E) into the union of facets

of the index space 4 and then build a partition from this decomposition.

(These facets intersect at their boundaries.) In our construction, we as-

sociate two initialisation control variables, F,i and F,2, with fst(, 9E)i.

sig(F1) = {f1,1,7,1}. s'9(F) = {f1,2,722}. The reason for employing ex-

actly two initialisation control variables will become clear later on in this

section (Thm. 5.3).

Termination Control Variables L1 , L2,• . . , L,. Let 8(L) be a predicate in

the termination control variables. We shall construct termination control

variables such that 8(L) is a characteristic function of the last computation

points of E:

8(L) = if 7Elst(,9E) —f true Fl else - false fi

For reasons of symmetry, the construction of the termination control vari-

ables proceeds in a similar way as that of the initialisation control variables.

We decompose lst(,l9E) into a number of subsets, lst(,9E)1, Ist(,t9E)2 ,

.., lst(,t9),, such that dim(Ist(,t9E)) < n — i and the union of these

subsets is lst(,9E). We write

= 1lst(4E) I O<ie}

117
I 	I 	 I 	I

	

e e 	e eel C2 	Cr,. Ci 	 C FE Cd Cd 	Cd Cd
. . . -k)•-$•--4:J--- 	,. p-.- . . .

Figure 5-3: The evolution of the evolution control variable. Arrows depict L)E.

Fat dots are computation points, circles are soaking points, boxes are relaying

points and ovals are draining points.

(Our construction does not require © to be a partition of lst(Ii,90.) One

possible solution is to decompose lst(, t9 E) into the union of facets of the

index space '. In our construction, we associate one termination control

variable, L2, with lst(,l9E)1. sig(L1) = Ifi, iij.The reason for employing

one termination control variable will be explained in Sect. 5.3.3.

Let us describe the specification of evolution control variable F. The commu-

nication constraint domain of E is given by

QE 	= planes(, u) fl rays(, +t9 E) 	 (5.16)

This is to ensure that all 19E-paths that contain computation points are mapped to

different OE-paths in the space-time diagram. Thus, each WE-path that contains

computation points contains a unique first computation point of E (Lemma 4.2).

We consider two types of 19 E-paths in the space-time diagram:

Path p(T, E,J) contains computation points (Fig. 5-3). It must contain

one first computation point of fst(, VE)i for some i. We input e at the

first point of the path and adopt this value for all soaking points of E.

(The superscript i in e identifies the soaking points in the FE-paths that

contain first computation points of fst(, 9E)•) 13(F) holds at the first

computation point of the path. There, e2 is converted to e1. Then, if a point

receives element ek of F, it sends e(k mod rE)+1; k is the distance of a relaying

point from its preceding computation point. Thus, the considered element

of F periodically adopts the values e11 	CFE• 13(L) holds at the last

computation point of the path. There, erE is converted to ed, the value for

all draining points of F. If path p(T, WE, J) contains only one computation

point, which is, therefore, both a first and last computation point, e changes

to ea at that point.

118

Path p(T, E,f) contains no computation points; it contains only undefined

points of E. We input eu at the first point of p(T, E ,J) and adopt this

value for all the points of the path.

By the construction of E, we inject e at steps input(E(I)) for I C: fst(, i)E)j for

every i and eu at the remaining steps. sig(E)= 	e, e, 	, e, e1, e2, 	CrE Cd).

For the host and cell program for three-dimensional UREs, see Tabs. 5-1 and 5-2.

The notation Inject(s, pi(V")) stands for the injection of control value s E sig(V)

to input cell pi (Vin).

In Tab. 5-2, the first guard of Eout selects first computation points of E but

excludes points that are both a first and last computation point of E. The second

guard of E0Lt establishes whether a point is a last computation point of E. 8(F)

holds at first computation points of E and E" = erE holds at computation points

that are not first computation points of E. Thus, if fst(, E) and 'St(, 19E) are

disjoint, the first guard of E can be simplified to 8(F). The third guard handles

soaking points, draining points and undefined points of E. The else guard of E0ut

captures points that are relaying or computation points but neither first nor last

computation points of E.

Lemma 5.1 Let the space-time mapping be valid for the evolution control variable

in 	i 	 . 	 . E 	for every z holds at the points of T E.

Let I be a point in a 19E-path that contains a first computation point of

fst(,i9E). if is the first point in the path at which 8(F) or 8(L) holds,

then E" = e holds at I and all points that precede 7 but not at any point

that succeeds I in the path.

If 11,12,.. •.,I is a subpath of a 19E-path such that (a) 8(F) holds at 1 but

not at the remaining points of the path and (b) 1, is the first point of the

path at which 8(L) holds, then 	= erE holds at all points 7i of the sub path

satisfying i 1 A (1— 1)mod FE = 0 but not at the remaining points of the

path.

119

PROGRAM: HostProg

(V i, i : tfst < t < ti A 0< i f f 1,1 (t) E sig(J 1))

(V t, i : tfst i tl,t A 0< i f : f1,2 (t) E sig(F 2))

(V t, i : tfst < t < tl~t A 0< i £ : £2 (t) E sig(L1))

for t from tfst to t1 do

for i from 1 to f do

inject(f1(t), pi(Fmfl))

inject(f1,2(t), pi(F'))

for i from 1 to £ do

inject(4(t), pi(L'))

if t {input(E(I)) I Ie fst('I, ?9 E)} -* inject(e, Em)

Ii else - for i from 1 to f do

if t{input(E(I)) I Iefst('1,t9E)I } -k inject(e, p1(Etm))

LI else -* skip

fi

fi

Table 5-1: The host program for three-dimensional UREs (to be refined). The

specification of the initialisation and termination control variables are refined in

Sects. 5.3.2 and 5.3.3.

. If 1 is the first point in a WE-path at which 13(L) holds and 13(F) does not

hold at any point that succeeds 7 of the path, then E" = ed does not hold at

7 nor at any point that precedes 7 but holds at all points that succeed 7 in

the path.

Proof Follows from the host and cell programs (Fig. 5-3). 	 El

Theorem 5.2 Let 8(F) and 13(L) be characteristic functions of first and last com-

putation points, respectively. If the space-time mapping is valid for the evolution

control variable, the PCUREs are correct.

Proof Proving the correctness of the PCUREs means proving that x- as defined

in the cell program, is a characteristic function of . By the hypothesis, 13(F)

120

PROGRAM: CellProg

(Vi:O<iFE :e1 = i)

(Vi:0<if: °u in
t = F

t'I
)

(Vi:0<if:F°t = F)

(V i : 0<ie : Lout = Lm)

EOUt = if 13(F) A -i13(L) —

(1 13(L) —* Cj

i 	
in 	'

II ((:0<if:E =e
1 iA-'B(F))V
SI

= ed V E" =eu — f

Ill else —* (Em mod l'E)+1

fi

XT 	= if 13(F) V E in = 	— x III else 	fi

Table 5-2: The cell program for three-dimensional UREs.

is a characteristic function of fst(, E). It suffices to prove that E" = e rE is

a characteristic function of the set of the computation points that are not first

computation points of E. This follows from (3) of Lemma 5. 1, since 13(F) (13(L))

is a characteristic function of fst(, E) (lst(, 9E)). (The validity of the space-

time mapping for E ensures that Lemma 5.1 applies.) 	 L

Remark If 1@1 = 1, there are two initialisation control variables F1,1 and F1,2

and one control value el for the soaking points of E. The index i = 1 will be

omitted. Similarly, we write L instead of L1 for the termination control variable

when I©I=1.
	 *

Example 5.2 4x4 LU-Decomposition

Without loss of generality, we choose E = z9C. fst(, 9E) by itself is a facet.

We choose ®={fst(,9E)}. Because of the choice of 19E, the space-time mapping

(5.9) is valid for evolution control variable E (Fig. 5-4(a)). The 19c-path depicted

by the dashed line in the data dependence graph in Fig. 3-6 is mapped to the

9c path depicted by the dotted line in Fig. 5-1. This path is also depicted at the

bottom of the array shown in Fig. 5-4(b). Let us consider the evaluation of the

121

 --------------- 	-
UIBIUEEII!!i

Figure 5-4: The evolution control variable for LU- decomposition (m = 4). (a)

e is input at the E-paths depicted by the dotted lines and C, at the remaining

E-paths. (b) The evolution of the evolution control variable along the JE-path

depicted by the dotted line in Fig. 5-1.

points in this path. Element c3,4 is input at this path. By the specification of

the evolution control variable and the fact that t9E=?9C, we input e5 at the time

step at which c3,4 is input. e5 and c34 travel with the same velocity. e5 changes

to e1 at the first computation point. Then the control value changes alternatively

from e1 to e2 (sig(E) = {e, e5, e1, e2, Cd} since rE = 2). e2 changes to Cd at the

last computation point; it is propagated to the output cell. The same reasoning

applies for the other FE-paths. The correctness of the PCUREs is straightforward

and is independent of the choice of 9E• 	 El

Once evolution control variable E is constructed, or more precisely, once control

dependence vector i9E is chosen, the specification of initialisation and termination

control variables is completely determined. The following two sections present

their respective constructions.

C3,4

C.
-

Cd -

5.3.2 The Initialisation Control Flow

Initialisation control variables are pipelining control variables. Their specification

must enable us to define 8(F) as a characteristic function of fst(, E)• We shall

122

,
erE ed 	ed • • 	• • • Cd 	Cd

i,2 6i,2 	fi,2 	6i,2 6i,2 	'i,2 6i,2 	i,2 6i,2

Figure 5-5: The interplay between the evolution control variable and the mi-

tialisation control variables. The arrows pointing down depict 	The arrows

pointing up depict t9 F 2 • 	and j2 satisfy 	= fi, j A ,2 =fi,2)

construct Fj, j and F,2 such that 8(Fj, defined below, is a characteristic function

Of fst(, E)1:

8(F) = Em=eAF=f 1 AF=f 2 	 (5.17)

Note that evolution control variable E also acts as an initialisation control variable.

This is because a space-time point is a first computation point only if (I i : 0 <

i < f : E" = e) ((1) and (2) of Lemma 5.1). Clearly, if 8(F1) is a characteristic

function of fst(, t9E)1, for every i, 8(F) defined below is a characteristic function

Of fst(,9E):

8(F) = (3 i : 0<if : 8(F)) 	 (5.18)

Let soak(E, i) be the set of soaking points in the E-paths that contain first

computation points of fst(, t9E)I. {soak(E, i) I 0< i f} is a partition of T. The

next lemma is the basis of the construction of the initialisation control variables.

Lemma 5.2 Let the space-time mapping be valid for the evolution control variable.

8(F1) is a characteristic function of fst(, 79A if F = 	A F 	ft,2 holds at
I'l

fst(, 9E)2 but not at the soaking points ofsoak(E,i).

Proof The validity of the space-time mapping for evolution control variable E

ensures that Lemma 5.1 applies.

"=": If F =f, A F =fI,2 does not hold at fst(, E), then 8(F) is not a

characteristic function of fst(, 9E). If it holds at some soaking points of

soak(E, i), then 8(F) must hold at some soaking points of soak(E, i), by (2)

of Lemma 5.1. Thus, 8(F2) is not a characteristic function of fst(, 9E).

123

for t from tf st to tI, ,t do

for i from 1 to f do

if t E {input(F11(I)) I Ifst(cT, E)l} - 1nject(f1,1, pi(F))

El else -* 1nject(71,1, pi(F))

fi

if t e {input(F 2(I)) I Iefst('t, E)1} - inject(f 2, pi(F))

Ill else -* inject(71,2, pi(F))

fi

Table 5-3: The specification of initialisation control variables.

(1) of Lemma 5.1 asserts that 8(F) does not hold at the undefined points

of E. A further application of (2) of Lemma 5.1 completes the proof. 	LI

Let us describe the specification of initialisation control variables F,1 and F,2 .

The communication constraint domains of Fi,1 and Fi,2 are given by

(V i : O<if : 	i,l = 0) 	 (5.19)

Thus, the communication constraint is disregarded in the definition of the validity

of the space-time mapping for the initialisation control variables. This is attributed

to the construction of the initialisation control variables described below.

To make B(F) a characteristic function of fst(, t9A, we must establish 8(F2)

at fst(4, E)• To establish 8(F,) at fst(, 19E)2 , we must ensure that F = f11 A

F= f 2 ,2 holds at fst(,?9E)2 (Lemma 5.2). Then, we must inject flk (k=O, 1) at

steps fst(F2 ,k(I)) for Ifst(, 79A and fi,k at the remaining steps (Fig. 5-5). For

the refined specification of the initialisation control variables in the host program,

see Tab. 5-3. However, this specification is insufficient to ensure that 8(F) is a

characteristic function of fst(,19E)l by Lemma 5.2, since P=f1,1 AF,=f 2,2 and,

consequently, 8(F) may also hold at some soaking points of soak(E, i) due to the

non-injectivity of the space-time mapping. This happens, for example, if f2,1 which

is injected at step nput(Fj1(I)) meets f,2 which is injected at step 1nput(F22(J))

for different I, Jfst('Ii, 19A We avoid this situation by means of an appropriate

choice of control dependence vectors for initialisation control variables.

124

We choose two linearly independent control dependence vectors 19F 1 and

from lin(fst(, 9E)i)- We write 3i for the intersection of rays (fst(, E)i, 9 p,) and

rays(fst(, 't9E)j, t9F.,2). We write a for the union of SFI,

= 	rays(fst(, E)i, 9F,1) fl rays(fst(, E)i, 42) 	(5.20)
ZF = (Ui:0<if:)

It is easy to see that 	 and thus 	fst(,t9E). This choice of control

dependence vectors ensures that B(F) only holds at 	(by Lemma 5.3, which will

be presented shortly). Still, 8(F) is not a characteristic function of fst(, 9E)1 if

ai \fst(,t9E) contains soaking points of soak(E,i). In order for Wi \ fst(,L9E)

and soak(E, i) to be disjoint, we simply redefine (enlarge) the communication

constraint domain of evolution control variable E to:

QE 	= planes (,a)fl rays (,+t9) 	 (5.21)

(Compare (5.16).) Under a valid space-time mapping for evolution control variable

E, all t9E-paths of paths(,, 0E) are mapped to different19E-paths. Thus, no

two points of ai can have images in the same 9E-path. That is, no point of

ai \fst(, 19E)i is mapped to a E-path that contains a first computation point of

fst(, Mi, i.e., (1 \fst(, 19E)1) fl soak(E, i) = 0.

The advantage of choosing control dependence vectors this way is that we know

precisely that 8(F) can hold only at the image of ai. ai depends on the choice of

and 19 Fi,2 but is independent of the space-time mapping. This enables us to

enforce the disjointness of Wi \ fst(, t9E)1 and soak(E, i) by an appropriate choice

of the communication constraint domain for the evolution control variable.

Remark By Lemma 5.2, 	and e2, as shown in Fig. 5-5 at all points succeeding

the first computation point can take any value. However, this does not seem to be

practically useful, because the verification of a space-time mapping that satisfies

this constraint depends on the space-time mapping. 	 El

Theorem 5.3 If the space-time mapping is valid for the evolution and initialisa-

tion control variable, 13(F) is a characteristic function of fst(, WE).

125

The proof of this theorem requires the following lemma, which states that

two paths of variables moving with different velocities only share an image at

the intersection point. - This lemma is the reason why we use two initialisation

control variables for every fst(, 19A and why the communication constraint for

the initialisation control variables can be disregarded.

Lemma 5.3 Assume 0fIow(V) 7~fIow(W):~0.

(VI,J,K: 	 ray(K,+9w) :I=J = I=J=I')

Proof 1=J 	step(I)=zstep(J)Aplace(I)=place(J))I=)JAcrI=crJ.

Ie ray (K,+9) 	(I m: mEZ : K=m9v+I) and JE ray (K,+t9,)

(3 n : nZ : K—nt9w+J). A simple algebraic calculation establishes

m.Xt9v = nAt9w 	 (5.22)

mcT9v = nadw 	 (5.23)

We consider all four possible geometric relationships between I and J relative to

K (the proof proceeds to show that only I=J=K can hold).

• I = K A JK. This implies m=O and consequently)9=O, contradicting

the hypothesis flow(W) h 0.

I 	K A J = K. This implies n = 0 and consequently AVV =0, contradicting

the hypothesis fIow(V)O.

ILKAJ54K. By hypothesis we infer mai9v 0y-1 ncn9 w. Dividing (5.23) by

(5.22) yields u7.9v[A19v = atwfA79 w, i.e., flow(V) = flow(W), contradicting

the hypothesis flow(V)zAflow(W).

I = K A J=K. Trivially true. 	 .

This proof does not require the containment of I, J and K in the index space;

it only relies on the geometric relationship of the three points. It is easy to see

that, if i9, and i9w are not co-linear for two moving variables V and W, then they

126

must travel with distinct velocities, i.e., flow(V) :Aflow(W). This is why we require

and L9 F 2 to be linearly independent.

Proof of Thm. 5.3 By the construction of the initialisation control variables,

and 	are linearly independent vectors from the linear space lin(fst(, E)J-

Thus, for every 9F ,-path that passes through some point of fst(I, 9E)j, there must

exist a 79F2-path that passes through some point of fst(, 9E)i such that the two

paths intersect, and vice versa. By definition, a j denotes the set of these inter-

section points. By Lemma 5.3, the images of all these paths intersect only at

the points of Wi since the space-time mapping is valid for the initialisation control

variables and by our assumption that all propagation control variables are moving.

lithe space-time mapping is valid for evolution control variable F, no point con-

tained in \fst(, 19 E)i is in the same19E-path as a point contained in fst(,

This means that (\fst(, 9E)) flsoak(E, i) = 0. That is, F in
= fi,1 A F = fi,2

does not hold at soak(E, i). But it does hold at fst(, ?9E)1 by the construction of

the initialisation control variables. An application of Lemma 5.2 establishes that

8(F) is a characteristic function of fst(, 9E)1. By the definition of 8(F), 8(F)

is a characteristic function of fst(, E)•
	 .

Example 5.3 4 x 4 LU-Decomposition

Let us continue to choose 9E=9C and ®={fst(,t9E)}. We need two initiali-

sation control variables F1 and F2. We choose 19F, = A and i9 F2 = 19 B. This gives

rise to 15 =fst(,l9E) (Fig. 5-6). 	 LI

5.3.3 The Termination Control Flow

Termination control variables are pipelining control variables. Their specification

must enable us to define 8(L) as a characteristic function of 1st(, 19E). However,

the specification of the termination control variables can be greatly simplified for

two reasons. First, we can construct them incrementally based on the specification

of evolution and initialisation control variables. A space-time point is a last com-

putation point only if it is a computation point, i.e., only when 8(F) V E0t

127

/ 	i 	/ 	$6 Ic Ic le V, 	 (48,14)

/f

(-3,2) 	-... ... / / 	
t

. 	. 	. 	S 	 S 	. 	V

Figure 5-6: The initialisation control variables for LU-decomposition (m = 4).

(a) f1 (f2) is input at the WF,-paths (WF2-paths) depicted by the dotted (dashed)

lines and 71 (12) at the remaining FF1-paths (WF2-paths). (b) The interplay be-

tween evolution control variable E and initialisation control variables F1 and F2

in the?9E-path depicted in Fig. 5-1. Control signals e8, 11 and 12 will meet at the

fourth cell from the left three time steps after c34 is input. At this step, 13(F)

holds at that cell, indicating that the point to be computed by the cell is a first

computation point.

holds at the point. Second, we have dealt with the non-injectivity of the space-

time mapping during the construction of initialisation control variables (Thin. 5.3).

This enables us to associate one rather than two control variables with every

1st(, l9E). Besides, ® needs not be a partition of lst(, 9 E). (® must be a par-

tition of fst(,l9E). If two ®-blocks fst(,19E) I and fst(09E) intersected, the

construction of E would require the simultaneous injection of e and 	for the

19 E-paths that intersect both fst(, 9E) and fst(, 79E).)

We shall construct L• such that 8(L1), defined below, is a characteristic func

tion of lst(, 19 E)l:

8(L1) = (8(F) V Em=eFE) A L'1?1

Note that the evolution and initialisation control variables also act as termination

128
2 	2 	 2 	2

	

e e 	e e e e2 e e1 	erE e 3 ed 	ed i • • 	 • • • -4i--.cJ---.- • • • 	• . . __..9_.
I 	 £. I

Figure 5-7: The interplay between the evolution control variable and the termi-

nation control variables. The arrows pointing up depict 19 L .. I denotes any value

in sig(L2).

control variables. If Ist(, 9E)t does not contain first computation points of E,

i.e., if fst(, 9E) and 'St(, E)i are disjoint, 8(F) V E"=erE can be simplified to

Em = erE. Clearly, if 8(L1) is a characteristic function of lst(, 79 E)i for every i,

8(L), defined below, is a characteristic function of lst(, 9E):

13(L) = (I i : O<ie :8(L1))

The next lemma is the basis of the construction of the termination control vari-

ables.

Lemma 5.4 Let the space-time mapping be valid for the evolution and initialisa-

tion control variables. 8(L1) is a characteristic function of 'St(, 19 A if L in = ei

holds at lst(,t9E)l and L"- 1 holds at\1st(,?9E)1.

Proof Sufficiency follows from the definition of a characteristic function (Sect. 5.2).

Let us prove necessity. Since the space-time mapping is valid for the evolution and

initialisation control variables, 8(F) is a characteristic function of fst(, 9E) by

Thm. 5.3. An application of (3) and (4) of Lemma 5.1 completes the proof. 	LI

Let us describe the construction of the termination control variables. The

communication constraint domain of L1 is given by

	

(V i : O<i?: 	= planes (,u) fl rays(, +9L.)) 	(5.24)

This is to ensure that all 9 L .-paths that contain computation points are mapped to

different L .-paths. Following the same reasoning as in the specification of initial-

isation control variables, we inject fi at time steps input(L2 (I)) for Ielst(1,i9E)1,

and fi at the remaining steps (Fig. 5-7). For the final version of the host program

for three-dimensional UREs, see Tab. 5-4.

129

PROGRAM: HostProg

for t from tfst; to 'ist do

for i from 1 to f do

if t e {input(F 1(I)) I Ifst(, E)i} —f inject(f1,i, pi(F'))

II else —* inject(7 1,pi(F))

fi

if t {input(F 2(I)) I Iefst(J, t9)} —+ inject(f1,2, pi(F'))

II else — inject(7,,21 pi(F))

11

for i from 1 to £ do

if t E {input(L1(I)) I I E 1st(, 79AI — inject(1, pi(L))

11 else —* inject(?, pi(L'))

fi

if t{input(E(I)) I IEfst(,t9E)} —~ inject(e,E")

F] else —p for i from 1 to f do

if t e {input(E(I)) I I€fst(, ?9E)i} —* inject(e, pi(E'))

F] else — skip

fi

fi

Table 5-4: The host program for three-dimensional UREs (the final version).

Similarly to the choice of control dependence vectors for initialisation control

variables, we choose ?9 L j from the linear space 1in(1st(, 79 EV We introduce do-

main Zi analogously to 3, of (5.20). Since each 1s4, 19 E)1 is associated with one

termination control variable, Zi is defined as the intersection of the index space

and the 9L1-paths that pass through some point of 1st(, 9E)j We write £ for the

union of £1,2,

lb n rays(lst(, ZWi, 	
(5.25)

£ 	(Ui:0<i:.)

Theorem 5.4 If the space-time mapping is valid for all propagation control vari-

ables, then 8(L) is a characteristic function of 1st(, 19 E).

130

(48,14)
I 	I 	Vile ' IV

(-3,2) 	- 	- - 	- - 	
-•', 	

/

. 	 I 	. 	I 	• 	V

Figure 5-8: The termination control variables for LU-decomposition (m=4). (a)

£1 (t2) is input at the zL1-paths (t9L2-paths) depicted by the dotted (dashed) lines

and £ (t2) at the remaining 9L1-paths (L2-paths). (b) The interplay between

evolution control variable E and termination control variables L1 and L2 in the

CE-path depicted in Fig. 5-1. £ and £2 and the control value of E will meet at

the sixth cell from the right in three time steps. Then, 13(L) evaluates to true,

indicating that the point to be computed by the cell is a last computation point.

Proof Under a valid space-time mapping for the termination control variables,

L"= .€ holds at lst(,t9E) I and Lm= holds at \lst OP, t9E)1. By Lemma 5.4,

B(L) is a characteristic function of lst(, ?9E). By the definition of 8(L), 8(L) is

a characteristic function of lst(, 9E). 	 LI

Remark It is not difficult to see that £ = lst(, t9E) is necessary and sufficient

for 8(L) to be characteristic function of lst(, E). Decomposing lst(, 19E), as de-

scribed here, and choosing t9Lj from the linear space lin(lst(, 19E)) is unnecessary,

but there is an advantage to doing so: £ = lst(, OE) is automatically satisfied.

Otherwise, we may have to verify the equality of £ and lst(, 19 E) explicitly. III

Example 5.4 4 x 4 LU-Decomposition

We continue to choose 19 E = 19 C, 19 F, = 19 A and 19p2 = 	We choose ®

{'St(, 9E)i, lst(, E)2}1 where lst(, E)1 and lst(, E)2 are two facets of the

131

index space:

lst(,l9E)1 = I n {(i,j, k) i- k=O}

'St OD, 9 E)2 = 	n {(Z', k) j-k=O}

We choose 19 L, = Z9A e 1in(fst(, 19EW and Z9L, = 9B E lin(fst(4, E)2). The space-

time mapping (5.9) is valid for the termination control variables (Fig. 5-8). 	LI

5.3.4 The Space-Time Mapping

Let us summarise the previous construction of the PCUREs in a procedure.

Procedure 5.1 (Construction of the PCUREs for one-dimensional arrays from

three-dimensional source UREs)

Choose control dependence vector 19 E E Z for evolution control variable E.

Find a partition ® 	{fst(,t9E)I I 0 < i 	f} of fst(,79E) such that

dim(fst(,19E)) < n-1. Choose two linearly independent vectors VF,,I and

9F,2 for initialisation control variables F,1 and F,2 from the linear space

lin(fst(, E)i) for every fst(, 19 EV

Find a set Ej={lst(,19E) I 0<i?} such that dim(lst(,t9E)).n-1 and

the union of its elements is lst(, 9E). Choose control dependence vector

for termination control variable L1 from the linear space lin(1st(, 19E)) for

every lst(,19E)1 .

The cell program and host program are given in Tabs. 5-2 and 5-4. 	LI

The communication constraint domains of the propagation control variables

are given in (5.19), (5.21) and (5.24). Our objective for a different specification

of PCUREs stated in Sect. 5.1 was to replace 1J/%, in the formulation of the com-

munication constraint (5.3) by 1l,, which satisfies (5.7). This objective has been

achieved.

132

The mapping conditions for the validity of space-time mappings are stated in

Thm. 5.1. Remember that we require all propagation control variables to be mov-

ing (Sect. 5.1). We call this constraint the velocity constraint. For completeness,

we state in a theorem the mapping conditions, including the velocity constraint,

for the validity of space-time mappings. We rewrite the communication constraint

for propagation control variables to dispense with the concept of the extended

index space. We write Vt for the set of termination control variables.

Theorem 5.5 A space-time mapping is valid for the pipelined UREs (in either

the ir-model or the k-model) if

(VV:VEV:)t9v >O)

r : 'I >__+- Z2

(PrecedenceConstraint)

(Computation Constraint)

(VV:VEV: cnvI)v)
	

(Delay Constraint for the -Mode[)

(V V: VEVd : (V S: SEfst(v,9v)/©v : input: S) Z))

(V V: VEV: (V S: SEfst('1v,9v)/(I3, : input: S >-+ Z))

(V S : Sefst(,19E)/®E : input: S - Z)

(V V: VeV1 : (V S: Sfst(,79v)/®v : input: S >-+ Z))

(Communication Constraint)

(V V: VeV : fIow(V)O) 	 (Velocity Constraint)

Proof Thms. 5.1, 5.21 5.3 and 5.4. 	 LI

Evolution control variable E may be stationary. Then, additional control is

needed to direct its loading, access and recovery, just like for stationary data

variables. In general, we should choose 79E and the space-time mapping such that

E is moving. Initialisation and termination control variables must be moving for

the following reasons. Their (control) values serve to change the control values of

E; they must be supplied from the outside environment such that they can arrive

at the right cells at the right time. If they are stationary, we have to pre-load

133

their control signals - but we cannot, because the presence of these control signals

ahead of time will validate some guards of Eout in the cell program at the wrong

time (unless we add a second level of control variables, this one governing the

access of stationary control variables, and so on).

Let us have a look at the requirements that the PCUREs impose on hardware.

Recall our discussions about the injection of input data and the ejection of output

data in the systolic array in Sect. 4.4. Some i9 v-paths may start at internal cells

(see Figs. 5-4, 5-6 and 5-8). If the corresponding input values at these paths

are required to be input, the input can be implemented by a system reset or

by pipelining before the first step tf st. In the construction of the PCUREs, the

specification of the evolution control variable requires that all corresponding input

channels of E be reset to e. Similarly, the specification of initialisation control

variables requires that all corresponding input channels of F,1 be reset to f i,1 and

of F,2 to f2,2, and the specification of termination control variables requires that

all corresponding input channels be reset to £.

The bit width required to communicate values of V is F1092 lsig(V) fl. For

example, evolution control variable E needs 	 bits - FE -1 for

relaying points, one for computation points, I®1 for soaking points, one for draining

points and one for undefined points. We should choose E and the space-time

mapping such that FE becomes a constant in order to satisfy Rst. 2 of Sect. 3.2.

The modulo operation in the cell program can be implemented by a circular shift

(or rotate) operation if FE is a power of 2. It is superfluous if FE = 1.

5.4 The PCUREs for n-Dimensional UREs

Both Thm. 5.2 and Thm. 5.4 work for n-dimensional UREs. But, unfortunately,

Thm. 5.3 cannot be generalised to n-dimensional UREs. Recall that, in the specifi-

cation of the initialisation control variables for three-dimensional UREs, fst(1, 19E)

is partitioned into a union of subsets each of which is contained in a hyperplane.

We associate two initialisation control variables with each subset. The proof of

134

Thm. 5.3 relies on Lemma 5.3, which assumes that each subset has no more than

two dimensions. This is because the two linearly independent vectors, which are

associated with the two initialisation control variables of a subset forms a basis of

two-dimensional space. We failed to find an analogue of Lemma 5.3 that applies

for more than two control variables.

There is a brute-force application of Thm. 5.3 to n-dimensional UREs. All

we need to do is to partition fst(, 9E) into a union of subsets each of which

has no more than two dimensions. The number of initialisation control variables

needed will be twice the number of these subsets. Clearly, this number will depend

on the size of the problem. In the extreme, each subset contains only one first

computation point. Such a simple-minded scheme is rather impractical.

We choose a construction scheme for initialisation control variables for n-

dimensional UREs that is based on the observation that our previous construction

of the PCUREs supports a hierarchical specification of control signals. To identify

the first computation points in fst(, 19 E), we treat fst(1, E) as a new index space

and subject it to the previous construction of the PCUREs. We repeat this proce-

dure until we obtain an index space of three dimensions. We then apply Thm. 5.3

to the three-dimensional index space. This decomposition produces a binary tree

structure. The left (right) node at a level denotes the set of first (last) compu-

tation points of the set denoted by the father node. Since the initial index space

is bounded and the new index space resulting from each decomposition always

contains less points than the preceding one, this decomposition must eventually

lead to a three-dimensional domain.

To speed up the convergence and thus reduce the number of control variables,

we make the new index space at one level one dimension less than that at the level

above, by an appropriate choice of control dependence vector for the evolution con-

trol variable at every level in the decomposition tree. This choice is always possible

if we extend the initial index space appropriately prior to the decomposition, as

will be discussed in Sect. 5.7.

Let us assume that the new index space at one level is one dimension less than

the index space at the level above. Let us denote the evolution control variable

I(2,r)

(3,e) •'
(3,r)

(n - 1,

e) 	% -
1) (n - 1, r)

Figure 5-9: A hierarchical construction of the PCUREs for n-dimensional UREs.

associated with the resulting index space at level i by E(i). The decomposition

tree has n-2 levels; the first level is labelled 1. The following recursive equation

assigns a unique identifier to each node in the decomposition tree (Fig. 5-9):

=

(V i : 1<1<n : 'D(', t) = fst(4i(i1,1?),l9E(I_l))) 	 (5.26)

(V i : 1 <i<n : 	(i, r) = lst((i-1,4 E(i-1)))

(i, £) is called a left node and (i, r) a right node. Note that the range of i

is extended by 1 so that the specification of the PCUREs for three-dimensional

UREs, as presented previously, becomes a special case.

Next, we present the specification of the PCUREs as constructed previously, for

an index space that is n-parallelepiped. Let E(i) 9E(2) 	be the n linearly

independent vectors that generate the parallelepiped. (i+1, £) and 4D (i+1, r) are

the sets of first and last computation points of (i, £). We choose (P31 = {E(2+1, £)}

and (Di ={(i+1,r)} for 40 (i,); @j plays the role of® and Qj the rOle of® in

the case of a three-dimensional index space.

Evolution Control Variables. Every left non-leaf node (i, £) is a facet of its

father node 4)(1- 1, £). It is associated with one evolution control variable

E(i). sig(E(i)) = {e(i), e(i), e(01, e(02, . . . , e(i)J'E(.), e(i)d }. The commu-

nication constraint domains of the evolution control variables are given by:

(V i : O<in-2 : 	= planes(,u)flrays((i,1),+9E(1)))

135

136

Initialisation Control Variables. The left leaf node (n - 1, £) is a (two-

dimensional) facet of 4)(n -2,f). It is associated with two initialisation

control variables, F(n-1)1 and F(ri-1)2. sig(F(n-1)1) = {f(n-1)1 , J(71-1) }.

sig(F(n— 1)2) = {f(n— 1)2,1(n— 1)2}. We choose 	and 	such

that they are parallel to two adjacent edges of (n-1, £), which are parallel to

7 9 E(n_1) and 9E(n), respectively. Clearly, this ensures that 9 F(n1)1 , F(n-1)2 E

lin((n-1,€)). The communication constraint domains of the initialisation

control variables are given by

F(n-1)j = F(n-1)2 = 0

Termination Control Variables. Every right node 4)(i, r) is a facet of its

father node (i-1,). It is associated with one termination control vari-

able, L(i). sig(L(i)) = {(i),(i)}. We choose 	from the linear space

span(t9E(+l), 9E(i+2) • , 	Clearly, L(i) e lin((i, r)). The commu-

nication constraint domains of the termination control variables are given

by

(Vi: 1 < i < n : L(i) = planes(P,cr)flrays((i-1,),+t9L(I)))

Because of the recursive nature of the specification of the PCUREs, the control

variables associated with all the nodes in the subtree rooted at node (i, £) act

as initialisation control variables for the evolution control variable associated with

the father node 40 (i-1,).

Next, we define the characteristic functions of all nodes in the decomposition

tree. Let 8(F(i)) be the characteristic function of every left node (i, £), except

the root (1, £), and B(L(i)) the characteristic function of every right node (i, r).

These characteristic functions are recursively defined as follows:

B(F(n-1)) = E(n-2)m=e(n-2) A F(n-1)"=f(n-1)1 A F(n-1)in =f(n-1)2

(V i: 1 <i<n—1 : B(F(i)) = E(i-1)m=e(i-1) A 8(F(i+1)) A

(V i: 1 <Z'< n : !3(L(i)) = (B(F(i)) V E(i— 1)'= e(i— 1)FE(. 1))
A L(i)m =(i))

The characteristic function x - of 'I! in T is given by

XT = if 8(F(2)) V E(1)"=e(l)i_E() - 	0 else —p XP fi 	(5.27)

137

PROGRAM: HostProg

for t from tfst to t l t do

if t e {input(F(n— 1)(I)) I I 	(n— 1, £)) - inject(f(n— 1), p(F(n - 1)'))

[I else —* 1nject(7(n-1)1, p(F(n — I)r))

fi

if i e {input(F(n— 1)2(I)) I IE(n— 1, £)} —f inject(f(n— 1)2, p(F(n— 1)))

El else —+ 1nject(7(n-1)2 , pi(F(n-1) 1'))

fi

for i from 2 to n1 do

if t {nput(L(i)(I)) I IET'(i, r)} , inject(t(i), pi(L(i)m))

Iii else —+ inject((i), pi(L(i)"))

fi

for i from lton-2do

if t e {input(E(i)(I)) I I e (i, £)} —* nject(e(i), pi(E(i)m))

[] else —* inject(e(i), pi(E(i)"))

fi

Table 5-5: The host program for n-dimensional UREs (n>2).

B(F(n-1)) is the previous 13(F) and B(L(n—i)) is the previous 5(L). These

characteristic functions can be simplified by removing redundant predicates.

For the host and cell program for an n-dimensional parallelepiped index space,

see Tabs. 5-5 and 5-6. Thin. 5.1 provides the mapping conditions for the va-

lidity of space-time mappings for the pipelined UREs whose index space is an

n-dimensional parallelepiped index space. For completeness, we state in a theo-

rem the mapping conditions, including the velocity constraint, for the validity of

space-time mappings. We rephrase the communication constraint for propagation

control variables to dispense with the concept of the extended index space.

Theorem 5.6 A space-time mapping is valid for the pipelined UREs (in either

the 7r-model or the X-model) if

(V V: VEV:)9>O) 	 (Precedence Constraint)

138

PROGRAM: CeliProg

(V i,k: 0<1n-2 AO<kFE(2) : e(i)k =k)

t _
-

_ 	in

	

F(n-1)ou1 	F(n-1)

F(n-1)out F(n-1)in

	

2 	 2

(V i: 1<i<n : L(i)0l' = L(i)m)

E(n _2)out = if B(F(n-1)) A -8(L(n-1)) — e(n-2)

1 13(L(n-1)) —* e(n-2)

9 (E(n-2)m=e(n-2)5 A -8(F(n-1))) V

E(n-2)m=e(n-2)d V E(n-2)m=e(n-2) —* E(n-2)m

9 else —* (E(n-2)m mod FE(Th_2))+1

fi

(V i : O<i<n-2

E(i)out = if B(F(i-1)) A -'B(L(i—l)) —

9 B(L(i-1)) -

U (E(i)' = e(i) A -iB(F(i —1)))

VE(i)m=e(i)d V E(i)=e(i)

9 else —* (E(i)' mod

fi

xT = if B(F(2)) V E(1)" = e(1)FE(l) — x 1 else 	XP fi

Table 5-6: The cell program for n-dimensional UREs (n>2).

r : 	>_ 	 (Computation Constraint)

• 	(VV:VEV: az9vP'9v)
	

(Delay Constraint for the k-Model)

(VV:VEVd :(VS:SEfst(V ,9V)/®V : input: S>—Z))

(V V: VeV : (V S: SEfst(Wv ,19v)/(D'%,. input: S —p Z))

(V i : O<i<n-2 : (V S: SEfst((i,),19E()) : input : S —' Z))

(V i : 1<i<n : (V S: Se fst((i-1,),79 L(2)) : input : S)—+ Z))

(Communication Constraint)

0 (V V : VeV : fIow(V)O) 	 (Velocity Constraint)

139

Proof The proof is an induction on the reverse order of the decomposition of

the index space (Fig. 5-9). To prove that 13(F(i)) is a characteristic function of

(i,?), it suffices to show that 8(F(i+1)) is a characteristic function of T(i+1,)

and 8(L(i+1)) is a characteristic function of 1(1+1,r) by Thm. 5.2. To prove

that B(L(i+ 1)) is a characteristic function of (i+ 1, r), it suffices to show that

B(F(i+1)) is a characteristic function of (i+1, £) by Thm. 5.4. Thus, to prove the

correctness of the PCUREs, it suffices to show that 8(F(n-1)) is a characteristic

function of 0 (n-1,). This follows from Thm. 5.3. 	 LI

5.5 Related Work

Ramakrishnan and Varman [9] present a one-dimensional array for matrix product.

They supply the flow of data and control and use linear algebra to prove the

correctness of the array. Kumar and Tsai [10] propose a method that transforms

two-dimensional to one-dimensional arrays. Their method requires an explicit

choice of the communication topology and the sequencing of input data. The flow

of data and control is then derived by solving a set of constraint equations on

timing. Lang [11] shows how control signals can be pipelined to solve problems

such as matrix product and merging two matrices. This method only applies

for iterative algorithms defined over three-dimensional index spaces. All these

methods do not include procedures that allow the systematic derivation of control

signals. Rather, the synthesis of control signals is ad hoc and problem-specific.

5.6 Examples

5.6.1 Matrix Product

We recommend to choose a data dependence vector as the control dependence

vector VE. For reasons of symmetry, it makes no difference which data depen-

dence vector we choose: 19 A , 19B or 79C . Let us choose 19E =79c.Both fst(, E)

140

and lst(,t9E) are facets of the index space D. We choose ® - {fst(,19E)}

and 0 = {lst(,9E)}. We need two initialisation control variables, F1 and F2 ,

and one termination control variable, L. Hence, 19F, 19F2 E lin(fst(, 19E)) and

L E lin(lst(,19E)). We should choose two data dependence vectors 19A and 1913

as i9 F, and F2 This makes =fst(,79E). Without loss of generality, we choose

= 19A and 19F2 = 	We should choose either '19A or 19B as 79L Let us take

L=A• Because /c= {}, the CCUREs are unnecessary. The PCUREs spec-

ify the control signals for all one-dimensional systolic arrays that realise matrix

product whose three data variables A, B and C are moving.

Choose the space-time mapping that describes Ramakrishnan and Varman's

array (Fig. 4-3). Our array runs in (9M2 -9m+2)/2 steps. The array of Ramakr-

ishnan and Varman runs in (12m2+7m+2)/2 steps. Both arrays require the same

hardware for data flow. But our array is superior in terms of control requirement:

it has a total of bit-width of four bits for control signals. Ramakrishnan and

Varman's array requires five bits and an encoder and decoder for every cell.

As discussed in Sect. 5.3.4, the evolution control variable can be stationary. If

all79E-paths of paths(4, E) are mapped to distinct cells, we only need one buffer

in each cell to store the corresponding element of E mapped to the cell. Here is a

space-time mapping that has this property:

m+lml =
imO

Both data variable C and control variable E are stationary. Each cell needs a

buffer for accumulating one element of C. Similarly, each cell needs a buffer to

store one element of E. The buffers for C must be initialised to zero and the

buffers for E to e before the first step.

The systolic array consists of n2 cells and runs in m3 +"Z 2 - 1 steps. There

is an array proposed by Kumar and Tsai [33] that has the same number of cells

but runs in 3rn2-m-4-3 steps. The lower latency is obtained at the expense of one

additional link for data variable B. Elements of B must be frequently routed from

one link to the other, complicating the control circuitry.

141

To compare the hardware required for the control flow: both arrays use a

two-bit buffer for E in each cell. In Kumar and Tsai's array, there are three one-

bit moving control variables; two control variables need two buffers per channel;

one needs one buffer. In our array, there are also three one-bit moving control

variables: F1 , F2, and L; F and F2 do not need buffers; L needs m buffers per

channel.

5.6.2 Dynamic Programming

Recall that the CCUREs consist of two computation control variables P and Q

(Sect. 3.7.1.2). We choose 19p =(-1, 0,0) and 0 Q = (0, 2, 1).

Since data variable E has the same variable name as the evolution control

variable, we rename it ot E' to avoid confusion. It is desirable to choose one of the

three data dependence vectors t9A, 79C and VE, as the evolution control dependence

vector 	We choose t9 E 9 E'

Let us first consider the specification of the initialisation control variables. We

choose ®{fst(4,19E)1,fst((D,19E)2}:

fst(,t9E)l = 	n {(i,j, k) I 1- -i=2k-11

fst(4,19E)2 = ; n {(i,j, k) I j-1=2k-21

We need to choose 19F1 ,,19FI2 E lin(fst(,t9E)l) and I9F21 ,19F22 e lin(fst(,79E)2).

Let us choose F1,1=9F2,, =(0,2,1) and

The specification of termination control is simple. lst(, E) is a facet of the

index space. We choose (D = {lst(, 9E)}. We name the associated termination

control variable Land choose 19 L=(0, 1,0)Elin(lst(,9E)).

The following space-time mapping describes the one-dimensional array in [62]:

IT 	
—4 2(n+2) —2

=
—1 	1 0

Data variable C is stationary. Elements of C must be loaded before the computa-

tion starts and recovered after the computation completes. Elements of A, B, D,

142

E', E F1,1, F1,2, F2,1 , F2,2 and L encounter a delay of 2n+3, 1, 2n+1, 3, 3, 2n+2,

2n+2, 2, 2 and 2n+3 at the respective channel (remember that our analysis is

conducted with respect to the -model).

5.7 Conclusion

We have provided a construction of propagation control flow for one-dimensional

arrays from n-dimensional UREs. For notational convenience, we have presented

the PCUREs in terms of two programs: a host program that is executed by the

host and that is responsible for the injection of the propagation control signals, and

a cell program that is executed by all cells of the array and that specifies the out-

put control signals of a cell based on the input control signals received by that cell.

Similarly to the control UREs constructed in Chap. 3, the control dependence vec-

tors of the propagation control variables in the PCUREs remain to be determined.

We have summarised in a procedure how to choose these dependence vectors. We

have stated the mapping conditions for the pipelined UREs constructed for one-

dimensional arrays. Once the control dependence vectors have been chosen, as

demonstrated by two examples in Sect. 5.6, finding one-dimensional arrays is just

finding valid space-time mappings.

The idea underlying the construction of the PCUREs may also shed light on

solving other issues in systolic design. As has been proved in [64], a systolic array is

a system of space-time UREs. Once we have formulated a systolic array model and

the corresponding mapping conditions for the validity of space-time mappings, we

can conduct our analysis at the source level, i.e., independently of the space-time

mapping. This has the benefit that we do not have to be concerned with temporal

and spatial issues of the systolic array. Rather, the synthesis of control signals can

be considered as a process of program construction and transformation.

Let us now have a look at how an adaptation of the index space can simplify the

specification of the initialisation and termination control variables. We describe

the basic idea with respect to an artificial example shown in Fig. 5-10. fst(1, 19E)

143

Figure 5-10: Adaptation of the index space for the construction of the PCUREs

(a) The control dependence vectors 19 E, 19 F, i 9 F2 L are shown. (b) The dashed

polytope depicts the index space C Both fst(, E) and lst(, 9E) are not facets

of . The polytope that encloses 1' depicts the adapted index space 1A•

and 1st0, 9E) each contain two facets of the index space. Therefore, I®I 2 and

2. Assume that 1@1 = I©I = 2. We then need four initialisation control

variables and two termination control variables. A simple adaptation of the index

space can reduce the number of each type of control variable by half. Let us denote

the two initialisation control variables by F1 and F2 and the termination control

variable by L. Let their control dependence vectors be as shown in Fig. 5-10(a).

Let H(F1, F2) be the unique hyperplane that is spanned by t9 F, and 9F2 and that

bounds the index space from below:

H(F1,F2) = {I!('t9F1 x9F2)I=c}

where "x" denotes vector product. We extend the index space along 9E until

the points intersect H(F1, F2). Similarly, let H(L) be a hyperplane whose normal

is orthogonal to 19 L and that bounds the index space from above (the choice of

this hyperplane is not unique):

H(L) = {II7rLI=I3A7rL 9 L=0}

We then extend the index space along E until the extension intersects H(L). The

adapted index space, denoted by A, is given by

= 	(planes (fst(9E),VF, x'9F2)flrays(fst(t',l9E),—'9E)) U 1 U

(planes (lst(, E) lrL) fl rays(lst(, 19E), E))

Both fst(A, 9E) and lst((DA, 9E) are facets of the adapted index space A

144

A is a superset of . A fixed space-time mapping may yield the same latency

and processor space in both cases. This happens when the extension does not

change the longest dependence path and the size of the projection space. If such

an adaptation of the index space degrades the performance of the systolic array

too much, it had better be avoided.

Finally, we point out that the PCUREs presented in this chapter work for

systolic arrays of r-dimensions (1 <r <n) that conform to the systolic array model

defined by Def. 2.2 and that are described by the space-time mappings defined in

Def. 2.4, whose validity is given by Def. 2.4. The reason is that Lemma 5.3, on

which the construction of the PCUREs (or more precisely, the construction of the

initialisation control variables) depends, is independent of the dimensionality of

the systolic array. Lemma 5.3 is still valid if a is an r x n allocation matrix rather

than an allocation vector.

However, the PCUREs constructed here can be greatly simplified in the case of

(n— 1)-dimensional systolic arrays, since valid space-time mappings are bijections

from Qfl of Qfl• This has the following two consequences. First, the hierarchical

decomposition of the index space, as in Sect. 5.4, in order to construct the PCUREs

for n-dimensional UREs is not necessary. The PCUREs that are presented with

respect to three-dimensional UREs apply for n-dimensional UREs. Second, the

construction of the initialisation control variables can be conducted in exactly the

same way as that of the termination control variables. This halves the number of

initialisation control variables required.

Now, we have two different constructions of the PCUREs for (n-1)-dimensional

arrays. In general, the PCUREs that are constructed in Chap. 3 are superior to

the PCUREs constructed here, partly because they are simpler and partly because

they do not degrade the latency of the systolic array as they do in the case of one-

dimensional arrays (Sect. 5.1).

Chapter 6

The Elimination of Propagation Control Flow

6.1 Introductory Remarks

Why would we want to eliminate propagation control signals for systolic arrays?

Consider source UREs that do not require any CCUREs, i.e, that satisfy /(J) =

{}. That is, all cells in the systolic array are identical. At any given step, a

cell is in one of two possible states: the computation state when it is performing a

common computation as specified by the source UREs and the propagation state

when it is propagating input/output data. The PCUREs specify when a cell is in

which of these two states.

Recall that pattern specifies the distribution of the input data of a variable for

(n-1)-dimensional arrays and input and pi together play the same role as pattern

for one-dimensional arrays. If a variable is not given a value at a given step, the

undefined value I. is injected. If we substitute any value for I, we still obtain the

output data specified by the source UREs from the systolic array. We use this

fact to eliminate the propagation control signals in the systolic array. Rather than

replacing I arbitrarily, we choose the substitute value carefully. We then let all

cells of the array adopt the computation state at every step. If we still obtain the

output data specified by the source UREs, we can do without propagation control

signals.

145

146

Let us examine this scheme formally. Because of our assumption that I/j

{}, i.e., that (V V: V e V: I,). a variable V in the extended source UREs

is specified by the two equations:

IE'I? V(I) = 	f(W(19w),") (6.1)

V(I) V(1i9v) (6.2)

The first equation is from the source UREs. The second equation results from the

extension of the index space (Def. 2.5). Propagation control is required if the two

equations for some data variable differ.

Since the space-time mappings for one-dimensional arrays are non-injective, we

discuss the elimination of propagation control with respect to space-time UREs

(Sect. 2.4) rather than the source UREs. Assume that W(1—) = I at pipelining

point 1 = (t,p). Instead of letting cell p evaluate equation V(J) = V(1—) at

step t, we let it evaluate the equation V(1) = f(W(1— w),.•) by substituting

W(l— w)=w-j' for W(1—)=I. The choice of value w7 will be explained later.

We still obtain the output data specified by the source UREs from the systolic

array if the following two conditions are satisfied.

Cond. 1. W is undefined at all points of theWW-path that passes through

the point 1, i.e., (V 7 : 7Ep(i, w,1) : W(J)=I). (This ensures that value

vq can be injected from input cells, as is required in systolic array models.)

Cond. 2. V(1—)=f(W(7—),. . .). (This preserves the behaviour of the

(extended) source UREs.)

To satisfy Cond. 1, we choose the space-time mapping carefully. To satisfy Cond. 2,

we exploit the algebraic properties of the operators in the equation (6.1).

There cannot be a general method for all systolic algorithms, since the algebraic

properties of operators are problem-specific. We shall present our method with

respect to a restricted class of UREs called inner-product UREs. The inner-product

UREs are a subclass of UREs as defined in [55]. The basic idea can be generalised

to other systolic algorithms.

147

Inner-Product UREs:

A(I) = J
IEin(A , A) 	A(I) = a2flA(I)

t 1 	 - A(I) = A(I-19 A)

B(I) = I
IEin(B, B) 	B(I) =

j 1 	 - B(I) = B(I-79B)

C 	
Iein(c,t9c) 	C(I) = Cinc(fl

I IEc 	- C(J) = C(I-9c)ED(A(I—t9 A)®B(I-9B))

where A = 	= c = 4, and the functions inA 2B and incare defined in

Sect. 2.2. The output equations are irrelevant for our discussion and are thus

omitted. We assume that the values represented by variables A, B and C belong

to a set M. ® and ED are binary operations on the set M. To satisfy Cond. 2, we

postulate the existence of elements u, z1, z2 (which may be equal) in M satisfying:

(V s : sEM : s3u=s)

(Vs:sM:z1Ø.s=u) 	 (6.3)

(Vs : .sM : sØz2=u)

The element u is a right unit of g. The idea is to replace A(7) = I (B(7) =1) by

A(1)=z1 (B(I)= Z2). Examples that are instances of inner-product UREs are 1-D

convolution and matrix product. In this case, 	becomes addition, 0 becomes

multiplication, M becomes Fl, and z1 z2 = u = 0. 0 is both the unit element for

addition and the zero element for multiplication.

The rest of this chapter is organised as follows. Sect. 6.2 motivates the elimina-

tion of propagation control signals with the example of 1-D convolution. Sect. 6.3

discusses the elimination of propagation control signals for (ii - 1)-dimensional

systolic arrays. Sect. 6.4 continues our presentation for one-dimensional arrays.

6.2 Example: 1-D Convolution

Given two input sequences x1, x2.. , X and 1017 7D2 .. , w, 1-D convolution com-

putes an output sequence Yi, Y2 	, Y2m-1 where yj is given by:

148

Specification: (V i : 0<i<2m : y2 (
k : 0<km A0i—k<m : X_k+1wk))

Source UREs:

0,<Z- <m A k=0 	-

X(i,k) =

Wk) =

Y(i,k) =

yi =

rn(i2m-2Ak=0 - 0

0=iAO<k<rn 	-+ 0

0<1<2mA0<kn2 -+ X(i-1,k-1) •

0=iA0<krn 	- Wk

0<i<2rnA0<krn -+' W(i-1,k) •

0(i<2mAk=0 	-" 0

0<i<2rn A0<krn - Y(i,k-1)+X(i-1,k-1)W(i-1,k) I

0<1<2mAk=m - Y(i,k)

Index Space: 	= {(i,k) I 0<i<2rn A0<km}

101
Data Dependence Matrix: V = [19X,9y,I9W] =

110

First Computation Points: 	fst(,L9x) = {(i,k) I (0<i<2m A 1=k) V

(1=i A 1<km)}

fst(,9y) = {(i,k) I 0<i<2m A 1k}

fst(,i9w) = {(i,k) I 1=iA0<km}

Last Computation Points: 	lst(,t9y) = {(i,k) I 0<i<2m A km}

Data Dependence Graph (m=2): 	
k

(1,1) I

The UREs for 1-D convolution satisfy /3 = {}. Thus, CCUREs are not

required. Only PCUREs are necessary to tell whether a cell is in a state of com-

putation or propagation. Let us consider the specification of the PCUREs. 93

contains the following supporting half-spaces to the index space:

149

B1 = {(i,j,k) ii}

B2 = f(i,j,k) I i2m-1}

B3 = {(i,j,k) k1}

B4 = 	(Z', k) I km}

The PCUREs follow from (3.18). If we observe that the two hyperplanes corre-

sponding to B1 and B2 are parallel, we can combine the two associated control

variables into one, denoted by P1. This reduces the number of control values from

four to three. Variable P1 defines three control values at the domains 'I' fl C Z-BI ,

kJl fl B1 fl B2 and I1 fl C Z-B2. It suffices to use the same control value for the two

domains 'I' fl C Z-B, and 4' fl C Z-B2, because both contain pipelining points. We

denote the control value defined at 4' fl B1 fl B2 by Pi and the control value at

4' n CZ-B, and 4' fl C Z-B2 by T91. For reasons of symmetry, we use one control

variable, P2, for B3 and B4. We denote the control value defined at 4' fl 133 fl B4

by P2 and the control value defined at 4' fl C7 B3 and 4' fl C Z-B4 by p2. By (3.19),

cell p is in the computation state at step t if P1(1)=p1 A P2(J)=p2 holds at point

J=(t,p) and in the propagation state otherwise.

We choose the space-time mapping (Figs. 6-1(a), (c) and (d)).

1 =
1 —1

The projection vector is u = (1, 1).

Both X and W are specified by pipelining equations over the extended index

space. The only reason why we need propagation control is that Y is defined

by the equation Y(I) = Y(I —i9) at the pipelining points and by the equation

Y(I) = Y(I_19y)+X(I-19x)W(I--19w) at the computation points. We can eliminate

propagation control signals in the systolic array if we do the following:

Inject 0 instead of I for variable W at steps tfst, t1 +2, tfst+4,• excluding

those at which w1,w2,. ,Wm are injected.

Evaluate Y at the pipelining points 7 using equation Y(7) = Y(7—)+X(7—

x)W(7) rather than Y(7)= Y(1—).

/

El

Y1
(b)

150

P2 1P2 I P 1 P2 'P2 'P2

I 111w21w11111

0101w2 1w1 1010

0 x1 x2 0

- - - 1P11P11P11P1J4i11

LI—IJ—lJ-1J "1Y1'Y2-'-Y3-'-11

0 a;i x2 0

111Y1'Y2'Y3'1'

Figure 6-1: (a) The extended dependence graph with respect to projection vector

u=(1, 1) (m=2). (b) The extension of the extended data dependence graph of (a)

for the purpose of substituting W(7— w)=0 for W(J— w) = I. (c) The extension

of the extended data dependence graph of (a) by Def. 2.5 for propagation control

variables P1 and P2. The ovals depict the new points generated in the extension.

(d) The systolic array with the distribution of both data and control signals at the

first step. (e) The systolic array without the propagation control signals.

151

To see why Conds. 1 and 2 are satisfied, we classify the pipelining points of W'

(Def. 2.5) into two categories:

'I contains the points at which Y is undefined. At these points I, we can

replace the equation Y(I)=Y(I-t9) by any equation.

'P,U'I' contains the points at which input/output data of Y are propagated.

Because t9y and t9w are orthogonal, W is undefined at these points I:

(V I: IE W, U 	(V J: JEp(W,t9w,I) : W(J)=±))

The space-time mapping (6.4) is a bijection from Qfl to Q' (n=2). So

(VJ:1E,U TY : (VJ : ep(J,,J) : W(7)±))

Thus, Cond. 1 is satisfied. 0 is both the unit element for addition and the

zero element for multiplication. Substituting W(i- w) = 0 for W(T-) = I
-d at the points of qi-s U 'J!, gives rise to

Y(I-19) =

Thus, Cond. 2 is satisfied.

The previous illustration can be understood by an extension of the extended

index space (Fig. 6-1(b)); the extension is carried out by first replicating 19W

throughout the extended index space and then extending 9q and -VW until the

points so created are at the boundary of the processor space. Fig. 6-1(e) displays

the systolic array without propagation control signals.

6.3 	Systolic Arrays of n-i Dimensions

We present necessary and sufficient conditions for the elimination of propagation

control signals for (n-1)-dimensional arrays synthesised from inner-product UREs.

These conditions depend on the data dependence patterns of the source UREs and

on the projection vector.

152

Theorem 6.1 PCUREs are unnecessary for inner-product UREs if

(VI:IEW'U Dd :C(I)~kI 	
(64)

(VJ:JEp(,t9A,I):A(J)=I)V(VJ:JEp(W,t9B,I):B(J)=±))

Proof We show that the inner-product UREs can be refined to a system of

unconditional UREs defined over the extended index space. Thus, propagation

control is not needed. We explain at the end of the proof why Conds. 1 and 2 are

satisfied.

The extended source UREs of the inner-product UREs follow from Def. 2.5:

A(I)

= {

Iein(WA,A)

IEWA 	-

B(I)

= {

IEin(WB,t9B)

IEW B

C(I) 	

{

IEin(c,c)

= IE c
IET -L UTs U Td

A(I) = a$fl A(I(I))

A(I) = A(I-9A)

B(I) = bjfl B(I(I))

B(I) = B(I—t9B) 	 (6.5)

C(I) = Cinc(I(I))

C(I) = C(I-9c)U(B(I—t9A)ØB(I-9B))

C(I) = C(I-9)

The computation equations of both A and B over the extended index space 'P are

pipelining equations. The only reason why we need propagation control signals

is that C is defined by different equations at pipelining and computation points.

To eliminate propagation control signals, as discussed informally in Sect. 6.2, we

replace the defining equation at the pipelining points by the defining equation at

the computation points and add some new input equations for A or B or both.

Let A1 (B1) be the union of the t9A-paths (t9B-paths) that intersect 	U

and whose points are undefined points of A (B). The extension of the index space

ensures

in(A1, A) fl 1n(WA, A) = 0

in(Bj,9B)nin(iIt B ,9B) = 0

IEin(Al,19 A) - A(I) = I

IEin(Bj ,t9 B) 	B(I) = I

153

Hence, the following defining equations of A and B are a refinement of their

counterparts of (6.5):

Iein(AI ,19 A) - 	A(I) =
A(I) 	= 	IEin(W A,9A)

{
- 	A(I) = alfl A (r(I))

IE'lA -+ 	A(I) = A(I-79 A)
(6.6)

IEin(B±,t9 B) - 	B(I)=z2

I

B(I) 	= 	IEin(4r B,19 B) - 	B(I) = bjflB (I(I))

IEW -'i 	B(I) = B(I—t9 B)

To eliminate propagation control, it suffices to show that the following defining

equations of C are a refinement of their counterparts of (6.5):

C(I) = I
IEin(Wc,9c) 	C(I) = Cjnc(I(I)) 	 (6.7)

I IE4c 	-3+ C(I)=C(I-9c)EB(A(I—l9 A)ØB(I-9B))

Variable C is undefined for the domain W. For the points of '1 and the points I

ofT, U 	at which C(I) = I, the defining equation of C is free of interpretation.

For point I e '.1 U k1 at which C(I) I, hypothesis (6.4) states:

(V J: JEP(W,t9A,I) : A(J)=±) or

(V J: Jep(,9,I) : B(J)=k)

So, the introduction of the two new equations in (6.6) gives rises to:

(V J: JEP('J!,19 A,I) : A(J)=z1) or

(V J: JEp(W,9B,I) : B(J)=z2)

In either case, assumption (6.3) ensures the equality of C(I-0) and C(I-9)E3

(A(I-9A)Ø B(I -19B))-

(The satisfaction of Cond. 1 is enforced by hypothesis (6.4) and the bijectivity

of space-time mappings. The satisfaction of Cond. 2 is enforced by assumption

(6.3).) 	 LI

The PCUREs are not needed for a special instance of inner-product UREs,

independently of the projection vector, namely, when

rays(, A) 1 rays(c, 9) = rays(p, B) n rays(, 9) =

In this case, hypothesis (6.4) is always satisfied, independently of the projection

vector. Examples include matrix product and 1-D convolution.

154

6.4 Systolic Arrays of One Dimension

Thin. 6.1 is not valid for one-dimensional arrays due to the non-injectivity of

the space-time mapping. A counterexample is Ramakrishnan and Varman's one-

dimensional array for matrix product (Fig. 4-3). Hypothesis (6.4) is only nec-

essary but no longer sufficient for the elimination of propagation control in one-

dimensional arrays. A sufficient condition must depend on the scheduling vector.

Theorem 6.2 PCUREs are unnecessary for inner-product UREs if

(V1:1ETuT,UT:C(1)~I
= 	 (68)

(VY:JEp(T, A,1):A(J)=±)V(VJ:JEp(T,iB,J):B(J)=i))

Proof Similar to that of Thm. 6.1, except that the proof is conducted with

respect to the space-time diagram T instead of the extended index space iJF 	LI

The following space-time mapping satisfies hypothesis (6.8):

6m-1 1
=

The elimination of propagation control may increase the latency of the array in

order to satisfy the hypothesis (6.8). In the presence of propagation control signals,

this hypothesis need not be satisfied. One valid improvement of the previous space-

time mapping that violates the hypothesis is:

2rn-2 1
=

1 1 -1

The latency of the former space-time mapping is 18m2 -18m+1 steps, the latency

of the latter is only 6m2 -9m+4. According to the PCUREs for matrix product

in Sect. 5.6.1, the latter array needs three one-bit links for propagation control

signals.

155

6.5 Conclusion

We have made an attempt of a formal treatment of the elimination of propaga-

tion control for systolic arrays that do not require computation control. We first

described informally two prerequisites, Conds. 1 and 2, for the elimination of the

propagation control. We then presented necessary and sufficient conditions for

the elimination of propagation control with respect to a restricted class of UREs:

inner-product UREs. We distinguish two cases: the synthesis of (71-1)-dimensional

arrays and of one-dimensional arrays. We have not given a general method for 72-

dimensional UREs. But the underlying idea is general enough to be applied to

other systolic algorithms.

We have stated before that the synthesis of systolic arrays from programs is

a process of program transformation. Most transformations that are reported in

the literature are syntactic adaptations of the source program; they amount to a

rearrangement of the data dependences in the source program. Transformations

such as uniformisation and space-time mapping are typical syntactic adaptations.

The transformations that we have applied here to inner-product UREs for the

purpose of eliminating propagation control are semantic adaptations; they take

semantic aspects of the source programs into account. The relevance of semantic

adaptations to systolic design cannot be overemphasised. By realising that some

variables always denote the same value, wrap-around channels can be eliminated

from systolic arrays for transitive closure [39]. The latency of two-dimensional

arrays for band matrix product can be reduced by counting the accumulating

index (k in Ex. 2.1) down rather than up [27]. We succeeded in eliminating

diagonal channels in systolic arrays for pyramidal algorithms by means of removing

redundant computations in the source program [45]. A more formal treatment of

the exploitation of commutativity and associativity of operators in systolic design

is reported in [59]. We expect to see more work along this line.

Chapter 7

The Loading, Recovery and Access of

Stationary Data

7.1 Introductory Remarks

The control UREs provide a complete specification of control signals for systolic

arrays if all the data variables are moving. In the presense of stationary data

variables, local processor memory is required. The space-time mapping does not

provide any help for handling stationary data. Thus, a scheme for loading, re-

covering and accessing stationary data and the according control signals required

remain to be developed. In practice, it is sometimes advantageous to selectively

make certain data variables stationary in order to satisfy certain performance re-

quirements, e.g., to reduce the latency and/or the size of the systolic array. Thus,

the systematic derivation of a scheme for handling stationary data is of practical

importance.

We describe a systematic method for handling stationary data; the method ex-

hibits a continuation of the idea underlying the construction of the control UREs,

especially the idea underlying the construction of the PCUREs for one-dimensional

arrays. The basic idea is to rewrite the source UREs so as to include the speci-

fication for the loading, recovery and access of stationary data. Essentially, this

new system of UREs contains two additional types of variables:

156

157

Load-recovery (data) variables are responsible for the loading and recovery

of the elements of stationary data variables of the source UREs.

Address (control) variables provide the addresses for the access of the ele-

ments of stationary data variables of the source UREs.

They are pipelining variables; each is associated with one data dependence vector.

To specify the control signals for systolic arrays synthesised from this new sys-

tem of UREs, we need only construct the control UREs according to the methods

described in Chaps. 3 and 5.

The place function determines which data variables are stationary. Therefore,

the construction of load-recovery and address variables depends on the choice of

place function. We describe the construction of load-recovery and address vari-

ables for both (n—l)-dimensional and one-dimensional arrays synthesised from n-

dimensional UREs. We distinguish the dimensionality of the systolic array under

consideration by the the rank of the allocation matrix u. It describes an (n - 1)-

dimensional array if rank(a) = n—i and a one-dimensional array if rank(or) = 1.

The rest of this chapter is organised as follows. Sect. 7.2 describes the con-

struction of load-recovery variables. Sect. 7.3 describes the construction of address

variables. Sect. 7.4 contains the conclusion of this chapter.

7.2 The Loading and Recovery of Stationary Data

We associate a distinct load-recovery variable with every stationary data variable

in the source UREs. We shall conduct our presentation with respect to a fixed but

arbitrary stationary data variable V. We write Pv for the load-recovery variable

associated with V. Variable P, serves to load the input elements of V into and

recover the output elements of V from the respective cells. Thus, we must choose

such that Pv is moving.

Recall that the input data of V are initialised at the points of in(v, 	and

used for the first time at the points of fst(v , t94, and the output data of V are

158

available at the points of lst(v, 9v). The construction of load-recovery variable

PV proceeds in two independent and symmetric steps: one step deals with the

loading of the input data of V and the other step deals with the recovery of the

output data of V.

Let us consider the input data first.1. contains the points across which the

input data of V are loaded:

if 	rank(a)=n-1 	rays(, +tt) fl rays(fst(v, t9V)t9V, 	Pv)

PV = U rank(a)=1 -*

fi

To determine the initialisation of variable P, with the input data of V, we partition

fst(v, t9V) into two subsets: the set E, contains the points that are mapped to

border cells and the set fst(v,i9v)\, contains the points that are mapped to

internal cells, where

if rank(a)=n-1 -* {I I Ifst(v,t9v) A I-9 grays(, ±u)}

= U rank(u)=1 	-*

fi

The loading of the input data V(I-9) for I e 	is unnecessary; Pv(I — t9 p)

is initialised with the input value that V(I—V v) is initialised with. The initial-

isation of P, with the remaining input data is defined as follows. The two sets

in(,,i9p) and fst(v,t9v)\, are isomorphic by the bijection:

-~ fst(v,t9v)\,, Lv(I)J, where I-t9P J 	(7.1)

P(I) is initialised with the input value that V(J—O) is initialised with. It is

then pipelined along t9p1, to the corresponding point of Ist(Ol 9p1,). PV

Finally, we initialise variable V with its input data loaded via variable Pv by

substituting Pv(I—?9p) for all arguments V(I-9v) for every Ifst(v,790.

Next, we consider the recovery of the output data.
'.

contains the points

across which the output data of V are recovered:

if 	rank(or)=n-1 - rays(, +u) fl rays(Ist(, ?9v) +9v, 9 p,)

= U 	rank (cr)=1 	-*

fi

159

The recovery of the output data of V is symmetric to the initialisation of P7. We

partition lst(v, v) into two subsets: the set V contains the points that are

mapped to border cells and the set lst(v,i9v)\, contains the points that are

mapped to internal cells, where

if rank(o)=n-1 - {I I IElst(4v, 9v) A I+9p, rays(, +u)}

= 	III rank(a)=1 	-* {I I IElst(v, 9v) A I+ 9p 	planes(, :7)}

fi

The recovery of the output data V(I) for I 	is unnecessary. The recovery of

the output data V(I) for Ilst(J v,9v)\, is defined as follows. The two sets

1st(,,i9p) and lst(v,9v)\. are isomorphic by the bijection

rv : 1st(4)r 	 t9
p ,9pv) "lst(v, v) \, r,(I)=J, where J 	I

V(J) is first copied to Pv(J+i9p), which is then pipelined along i9pv and finally

copied to P(i), which is mapped to a border cell.

The specification of stationary data variable V must be updated to reflect

the change caused by the introduction of load-recovery variable PV in the source

UREs. This update and the specification of P, are summarised in a procedure.

Procedure 7.1 (Construction of the load-recovery variable PV for stationary

data variable V of the source UREs)

The specification of load-recovery variable PV is as follows:

-
-+ 	Pv(I)Pv(I—)p)

Pv(I) V(I — 9p)

-' = V(I)

)' 	Voiv(rv(I)) = PV

where tI cp =(lst(v,9v) \,)+9p.

Delete the input and output equations of variable V.

Substitute Pv(J-9p) for all arguments V(I-9), where IEfst(v,9v). LI

160

In the rest of this section, we illustrate the construction of load-recovery vari-

ables with the example of matrix product. Let us consider S. Y. Kung's two-

dimensional array for matrix product of Fig. 2-3. Its space-time mapping is:

111

H = 	1 0 0 	 (7.2)

010

The projection vector is u=(0,0, 1). Variable C is stationary.

Pc is the load-recovery variable associated with C. We choose OPC = (1, 0' 1).

An application of Proc. 7.1 rewrites the original source UREs for matrix product

as described in Sect. 2.2 to the following set of equations:

UREs with load-recovery variable Pc:

A(z, 	k) 3, 	= I
0<imAO=jA0<km

(0<i(mA0<jmA0<km -* A(i,j-1,k) 	Al

B(z, 	k) 3, 	= I 0=iA0<jmA0<km 	bkJ

I 0<imA0<jmA0<km -** B(i-1,j,k) 	Al

i=0A0<jrnA-rn<k0

k) = (O<iA0<jmA1-m<k0)V

imA0<jmAm+1<k<i+m - P(i-1,j,k-1) 	•
1<irn A0<jm A k=m+1 	-+ C(i-1,j,k--1) 	V

0<imA0<jmAk=1 	- P(i-1,j,k-1)

C(z, 	k) .j, 	= +A(i,j-1,k)B(i-1,j,k)

0<imA0<jmA1<krn - C(i,j,k-1)

+A(i,j-1, k)B(i-1,j, k)

I i=mA0<jmAk=m 	C(i,j,k)
C2m_Ij = S

(i=mAO<jrnAm<k<2rn -'* P(i,j,k)

Fig. 7-1 depicts the corresponding data dependence graph. The cube depicts

the original index space. The input elements of C are now initialised at the right

facet of the lower triangle translated by -0p,and propagated towards the bottom

facet of the cube. This implements the loading of C. Similarly, the output elements

A

I

161

Figure 7-1: The data dependence graph of the UREs with load-recovery variable

Pc for matrix product (m=4).

of C that are available at the top facet of the cube are now propagated towards

the left facet of the top triangle. This implements the recovery of C.

Once the loading and recovering scheme is devised, the derivation of the cor-

responding control signals is a matter of construction of the control UREs. There

are four ?3-classes:

=

PCUREs are unnecessary because of the particular choice of the projection vec-

tor: F = W. We construct the CCUREs by identifying a separation set 6 =

162

cI1 I:•DC

C1,2 c2,2

b2,2 b1,2

C1,1 C2,1

b2,1 b1,1

z1
a1,1 z2
ai ,2z3 	a2,1 Z2

a2,2 Z3

Z4

Figure 7-2: The systolic array for matrix product that handles the loading and

recovery of stationary variable C (in = 2). The distribution of the data and control

signals is the snapshot at the first step.

{ S1, S2, S3, S41:

S1 = {(i,j,k) I k0}

S2 = {(i,j,k) I k1}

83 = {(i,j,k) I km}

S4 = {(i,j,k)jkm+1}

Since the corresponding hyperplanes of these three half-spaces are parallel, we

can combine the three control variables associated with these half-spaces into one,

namely Z. sig(Z)={z1,z2,z3,z4 }. The CCUREs follow from (3.8) and (3.23):

(0,0, 1)79 	= 0

IEin(4',i9z)(flS1 UC7nS4) - z1

IEin(W,19z)flC/nS1 flS2 	z2

Z(I) 	IEin(W,l9z)flCinS2flS3 -3+ Z3

IEin(W,9z)flCi S3 flS4 -+

Ie11 	 -** Z(I-79)

The replacement of the domain predicates by predicates in control variable Z

is straightforward and omitted. Let us choose i9z = (0, 1, 0). The previous space-

time mapping (7.2) describes the systolic array shown in Fig. 7-2. This array runs

163

in 5rn-2 steps; 2m+1 extra steps are used to load and recover the elements of

stationary variable C. Note that the loading (recovery) of some elements of C

overlaps with the computations of other elements of C.

Remark The search of loading and recovery schemes reduces to a search for

dependence vectors of load-recovery variables. Consider the previous example.

If we choose 4c = (2, 0, —1) instead, the latency of the original array (which

is 3m +2 execution steps) is retained. That is, the loading and recovery of C

overlaps completely with the computation of C. The price paid is that the loading

and recovery of C requires non-neighbouring channel connections (albeit without

delay buffers, since Ai9p, = 1). 	 Li

7.3 The Access of Stationary Data

Address variables provide the addresses for accessing the stationary elements

stored in the local memory of a cell. They can be dispensed with in (n - 1)-

dimensional arrays, because at most one element per variable can be mapped to a

cell. (Recall that the systolic arrays we consider are parameterised systolic arrays

(Sect. 2.7).) The size of the local processor memory associated with a stationary

variable is at most 1. The access of the corresponding stationary element - if

any - can be predesigned in hardware. However, address variables are essential

for one-dimensional arrays, because more than one element per variable can he

mapped to the local memory of a cell. We need to supply the right address at the

right cell at the right step so that the right stationary element can be accessed.

We shall present the construction of address variables for one-dimensional arrays

only, i.e., we only consider the allocation vector a.

Similarly to the construction of load-recovery variables, we associate a distinct

address variable with every stationary data variable of the source UREs. Again,

pick a fixed but arbitrary stationary data variable V. We write XV for the address

variable associated with V. We must choose t9, such that X, is moving. Essen-

164

tially, variable XV serves to supply the addresses for the access of the elements of

V stored in the local processor memories of the array.

Assume that m elements of V are mapped to a cell. Thus, m different 19 v-paths

are mapped to that cell. A stationary element is successively computed at the

points of the corresponding i9v-path. Therefore, all the points in one 9v-path are

mapped to the same memory location. (Of course, different stationary elements

mapped to a cell must be stored at different memory locations.) X(I) must

be the same for all points I of a 9v-path. The construction of address variable

X, is as follows. We choose an n-vector 7rX, and, thus, obtain a sequence of

parallel hyperplanes addr1v , addr1v 	. .. , addr1v (L 	L
V
max) that intersect

mMi. mlxi 	 max
V
mi

the domain of stationary data variable V. We choose the control dependence

vector i9xv of address variable XV such that i9 x ,7r, = 0 and construct XV such

that X(I) = £ for all points I in hyperplane addr. Therefore, we must choose

7x such that

X,, and a are not co-linear, and

7rxi9v = 0.

The first condition ensures that X, is a moving variable. The second condition

ensures that Xv(I) is the same address for all points of a VV-path.

The specification of address variable X is as follows:

I IEil(v, 9 xv) fl addrv. 	LV.
mlxi 	 mm

I
IEin(v,t9x)fladdrtv+1 	LV +1 mn

Xv(I) = 	 ... 	 (7.3)

I IEIEin(v,t9xv)fladdrev Lv
max 	 max

[Ie,

According to the specification of address variable XV, different elements of V that

are contained in the same hyperplane addrt are necessarily projected to different

cells. They are stored at the same location L at the respective cells. This ensures

that the address variable XV can be pipelined across these cells.

165

The specification of stationary data variable V must be updated to reflect the

change caused by the introduction of address variable Xv in the source UREs.

This update and the specification of XV are summarised in a procedure.

Procedure 7.2 (Construction of the address variable X, for stationary data van-

able V of the source UREs)

The specification of address variable XV is given by (7.3).

Replace all V(I) in the source UREs by V(X(I)).

In the rest of this section, we use dynamic programming as an example. Let

us consider the one-dimensional array of Sect. 5.6.2. Its space-time mapping is:

—4 2(n+2) —2
'Jr = 	 (7.4)

—1 	1 0

Variable C is stationary. The specification of the loading and recovery of the

stationary elements of C follows from Proc. 7.1.

XC is the address variable associated with stationary variable C. We choose

9 x 	(-1,0, 1). (rx = (0, 1,0)). A simple calculation shows that fc. = 2 and
nun

rn-I-i. An application of Proc. 7.2 rewrites the source UREs for dynamic Max

programming, as described in Sect. 3.7.1, to the following set of equations:

UREs with address variable Xc:

I
1<ijA2jm+1Ak=0

X(i,j,k) 	0<1<1 m+1AO<k(j-1)/2+1 X(i+1,1',k-1)

A(i,j,k) = J
j—i=2k 	D(i,j,k)

(,
j—i2k -'+ A(i,j-1,k) 	I • *

f k1 	C(X(i+1,j,k))
B(i,j,k)

= 	
k7~1 	B(i+1,j,k-1) 	• I *

166

(1,2,1)

Figure 7-3: The data dependence graph of the UREs with address variable Xr .

for dynamic programming (m = 7). The dashed vectors depict i9x.

f
k1 	C(X(i,j1,k)) 4 	U

D(i,j,k) =

	k1 	D(i) j-1,k-1) 	• I *

E(i,j,k) = { j—i=2k —+ B(i
) j,k) 	4+

j—i 742k — E(i+1,j,k) 	• • *

c1, 1 = C(Xc(1,rn+1,1))

k=lAj-1=2k-1 — wi,j •

C(X(i,j, k)) =

A(i,j, k) + B(i,j, k)

k=1Aj—i2k —'f mm C(X(i,j,k+1)) 	+Wj I

D(i,j, k) + E(i,j, k)

A(i,j, k) + B(i,j, k)

k5L1Aj—i2k — mm C(X(i,j,k+1)) 	• .

D(i,j, k) + E(i,j, k)

kL1Aj—i<2kAj—i2k-2 —oo*

167

Note that ' =. The data dependence graph for this new system of UREs is

the data dependence graph for the original source UREs, as shown in Sect. 3.7.1,

with data dependence vector i9x, replicated uniformly across the index space

(Fig. 7-3, compare Fig. 3-4). The CCUREs are specified in Sect. 3.7.1.2. The

PCUREs are specified in Sect. 5.6.2. Under the previous space-time mapping (7.4),

address variable XC encounters a delay of one unit along a neighbouring channel

(in the k-model). This control variable was derived informally in [62].

Remark Similarly to the specification of load-recovery variables, the search of

schemes for the access of stationary data variables reduces to a search of depen-

dence vectors for address variables. 	 U

7.4 Conclusion

We have presented a systematic method for the construction of the specification

of loading, recovery and access of stationary variables. The method was presented

for (n - 1)-dimensional and one-dimensional arrays synthesised from UREs. It

generalises directly to systolic arrays of r dimensions (O<r <n) synthesised from

systolic algorithms that are defined over a domain that can be expressed by a

convex set of integer coordinates.

The advantage of our methods on handling stationary variables is that they are

only dependent on the place function but independent of the step function. That

leaves plenty of freedom of choice for control dependence vectors for load-recovery

and address variables and the scheduling vector.

Chapter 8

Conclusion

We have shown how control signals for systolic arrays can be systematically derived

by program transformation and construction. The method we propose applies for

systolic algorithms defined over a convex set of integer coordinates. The basic idea

is to transform the domain predicates in the initial program to UREs that we call

control UREs. Then, the search of systolic arrays with a description of both data

and control signals reduces to a search of space-time mappings.

In Chap. 2, we have reviewed the basic techniques for the synthesis of data

flow for (n - 1)-dimensional arrays. In Chap. 3, we have presented our method

for the construction of control UREs from n-dimensional UREs. We have pro-

vided necessary and sufficient conditions for the correctness of the control UREs

and a mechanisable procedure that constructs the control UREs from the source

UREs. We have provided some heuristics for guiding the user of interactive systolic

design systems in the optimisation of the domain predicates (optimised domain

predicates lead to a more efficient control flow). We have also shown how redun-

dant control hardware can be completely removed once the space-time mapping

has been selected. In Chap. 4, we have reviewed the synthesis of data flow for one-

dimensional arrays. We have improved and extended previous results. We have

provided unified mapping conditions for the validity of space-time mappings for

two one-dimensional array models. We have also presented a variety of equivalent

mapping conditions that highlight the properties of one-dimensional arrays from

different perspectives. We have concluded that the control UREs constructed for

168

169

(71-1)-dimensional arrays can be inefficient for one-dimensional arrays. In Chap. 5,

we have provided a more appropriate construction. In Chap. 6, we have shown

how to eliminate the control signals for a class of systolic arrays by exploiting the

algebraic properties of some operators in the source UREs. Finally, in Chap. 7,

we have described a systematic method for the construction of UREs that specify

loading, recovery and access of stationary elements in the local processor memories

of a systolic array.

There are several areas that require further research. In Chap. 3, we have

presented a procedure that delivers the control UREs from the source UREs.

The control UREs returned by this procedure are completely determined by the

specification of the domain predicates of the source UREs. We have shown by

example that different specifications of the domain predicates of the source UREs

lead to different specifications of the control UREs. It is worthwhile searching for

a method for finding the specifications of the domain predicates that lead to (in

some sense) optimal control signals.

Once the control UREs are constructed, there are many possible control de-

pendence vectors. The choice of control dependence vector affects the quality of

the systolic array. This thesis does not provide a systematic way of making a good

choice.

Finally, the control UREs are targeted directly at parameterised systolic ar-

rays. In reality, we need to map both the source and the control UREs to fixed-size

arrays (i.e., partitioned arrays). This can be done in three successive steps. First,

we obtain a parameterised systolic array by the space-time mapping technique.

Second, we partition the array [11,17,52,82]. There is no need for distinguishing

which recurrence equation specifies data or control signals. The partitioning de-

mands additional control, which ensures that the right values (data and control

signals) as specified by the source and the control UREs arrive at the right cells

in the partitioned array at the right steps. This is the task of the third step. The

regularity exhibited in the partitioning can be exploited in the derivation of this

additional control. This regularity has been recently captured by a more general

form of step and place that contains mod or div operators [17,82].

Appendix A

The Normalisation of Domain Predicates

Proc. 3.1 for the construction of separation set 	expects that domain predicates

are in normal form. This appendix describes a procedure for the normalisation of

certain more general domain predicates. Tab. A-i gives a syntactic definition of

these domain predicates in terms of a set-theoretic abstract syntax [68]. The do-

main predicates defined in Tab. A-i are distinguished from the domain predicates

in normal form in that they may also contain the six operators in the following

set:

0 = 111, max, mm, 11, Li div} 	 (A.1)

These six operators are the most frequently used in practice. For example, the

URE specification for dynamic programming of [14] contains operator [j, the

URE specification for transitive closure of [72] contains operators max and mm,

and the URE specification for LU-decomposition of [44] contains operator mm.

We specify a language's syntax by listing its syntax domains and its BNF rules.

In Tab. A-i, the phrase DE Domain- Predicate indicates that D is the non-terminal

that represents an arbitrary member of the syntax domain Domain-Predicate.

The structure of domain predicates is given by the BNF rule D ::= C; (D); D1 A

D2; D1 V D2 which says that any domain predicate must be either a conditional, or

a conditional enclosed in a pair of parentheses, or a conjunction of two conditionals

or a disjunction of two conditionals.

170

An expression E is called a basic expression if E is of the form irl-}i5, i.e., an afline

expression of index vector I in Z. A conditional E®0 is called a basic conditional

171

D EDomain-Predicate

C e Conditional

E E Expression

A{irI+6l 7rEZ'1 AIEZ"A5EZ}

nEZ

D 	C; (D); D1 A D2; D1 V D2

C ::= E®O

E::== L; El;

E®L; max(E, L); min(E, L); 1(E@ L)/nl; [(E@L)/nj; (E®L) div n

L@E; max(L, E); min(L, E); [(L®E)/nl; [(L@E)/nj; (E®L) div n

L 	A;nL; ILI;max(Li,L2);min(Li ,L2)

® ::=<; ; >; ;=;

Table A—i: The abstract syntax of the domain predicates.

if E is a basic expression. Conditionals of the from E = 0 are called equalities, those

of the from E =A 0 inequalities. A domain predicate is a basic domain predicate if

all its constituent conditionals are basic conditionals. A domain predicate is said

to be in normal form if it is a basic domain predicate. For convenience, we refer

to anything that is not a domain predicate as a non-domain predicate.

Domain predicates exhibit a nested parentheses property. To see this, let us

make a syntactic substitution in rule E: we replace (E@L) div n by r E®L, n I and

(L@E) divn by fL@E,n1. If we delete all symbols except those in {1 L,r*,1j, 11

from a domain predicate and let n be the length of the resulting string, then the

i-th symbol (0 < i n/2) from the left forms an operator (either F 1 or L j or r *i)

with the i-th symbol from the right.

Example A.1 These examples illustrate the structure of domain predicates.

Domain predicates:

F1/21-i0

li+21—kO

172

(i+j)div2—k>O

max(i,j)+k=O

min([i/2],k)—jO

Non-domain predicates:

2[i/2]—j=O

21(idiv2+j/3)1+1O

idiv2+[(j+k)/2]=O

fi/2 - f(j+k)/31 <0

max(fi/2, 1i/21+i/2]):~0

The normalisation of domain predicates relies on the notion of rewriting. In

general, it is achieved according to a number of pre-defined rewriting rules. A

rewriting rule rewrites a domain predicate of a certain form to a domain predicate

of a different form. The following lemma states algebraic laws of the six operators

in the set 0 of (A.1). It is the basis of the formulation of the rewriting rules in

Lemma A.2.

Lemma A.1 Let u,v,wR, x,yEZ, cE Z+.

max: 	w®max(u,v) == (w®uAuv)V(vuAw®v)

mm: 	w®min(u,v) (w®uAuv)V(vuAw®v)

II: 	 Iu®v (u®vAuO)V(—u®vAuO)

11: 	Iy/cl®x (y®cxVy®cx-1v...vy®cx—c--1)

[j: 	[y/cj®x == (y®cxVy®cx+1V ... Vy®cx--c---1)

div: 	(ydivc)®x (xOA(y®cxVy®cx+1v ... vy®cx+c_1) V

(xO A(y®cx Vy®cx-1 V . .. V y®cx—c-3-1))

Proof Algebraic manipulation. 	 LE

The following lemma states the rewriting rules that are used in the normali-

sation of domain predicates. The notation 	in rule I 1-elimi has the following

meaning: the overbar denotes the following mapping (whose argument is ®) from

173

onto itself:

if

El 	(= = =

fi

Lemma A.2

	

0-law: 	 E®0=E+0®0

max-dist: nmax(Li,L2)®0 max(nL1,nL2)®0

	

min-dist: 	nmin(L1,L2) 	min(nLi,nL2)®0

	

I I-law: 	nILI00 	InLI00

	

max-elimi: max(E, L1)+L2®0 	(E±L2®OAE—L1 0)V(L1 —E0AL1 +L2®0)

	

max-elim2: L2 +max(E, L1)®0 	(L2 +E®OAE—L1 0)V(L1 —E0AL2 +L1®0)

	

min-elimi: min(E, L1)+L2®0 	(E+L2®OAE—L1 0)V(L1 —EOAL1+L2®O)

	

min-elim2: L2 +min(E, L1)®0 	(L2 +E®OAE—L1 0)V(L1 —E0AL2 +L1®0)

-elimi:

	

I-elim2: 	L+IEI®0 	(L±E80 A E0 V L+E®0 A E0)

11-eliml: IE/nl±LOO =E±nL®0VE±nL+1®OV ... VE+nL+n-1®O

11-elim2: L+IE/nl®0 =nL+E®0VnL+1+E®0V ... VnL+n-1+E®O

L j-eliml: [E/rij±L®O 4=> E±nL®0 V E±nL-1®O V V E+riL—n+100

L j -elim2: L+ [E/n]®0 	nL + E®0 V nL —1 + E®0 V V mL - n + 1 + E®0

div-eliml: E div n+L®0 ==

(+L0 A (E+nL®O V E+nL+1®0 V ... V E+nL-I-n-1®0)) V

(±L0A (E+nL®O V E+nL-1®0 V ...V E+nL—n+1®0))

div-elim2: L+E div n®0

(L0A(nL+E®0VnL-i-1+E®0V ... VnL+n_l+E®O)) V

(L ,<O A (nL+E®O V nL-1+E®0 	V nL—n-j-1+E®O))

174

Proof The first rule follows from the fact that 0 is the zero element in Z. The

next three rewriting rules follow from the conventional semantics of max, mm, and

11. The remaining rewriting rules follow from Lemma A.I. 	 El

To illustrate the rewriting rules in Lemma A.2, we normalise the domain pred-

icates of Ex. A.I.

[1/21—j(0

	

4== 	{1]-eliml}

i-2jO V i-2j+10

i+2I—kO

	

== 	{I I-eliml}

(i+2—k0 A i+20) V (—i-2--k~40 A i+20)

(i+j)div2—k>0

== {div-eliml}

(—k0A(i+j-2k>0Vi+j-2k+1>0)) V

(—k0 A (i+j-2k>O V 2'+j-2k-1>0))

max(i,j)+k=O

{max-eliml}

(i+k=0 Ai—j0) V (j—i0 Aj+k==0)

min([i/2j,k)—j0

{min-eliml}

([i/2j-1>0 A [i/2j—k<0) V (k—i/2j O A k—j>0)

{Apply L j-eliml for the first two conditionals and L j-elim2 for the third}

	

== 	((i-21'0Vi-2j-10)A(i-2kOVi-2k-1O)) V

(2k—i0 V2k-1—i0) A k—jO)

Theorem A.1 Any domain predicate can be put into normal form.

Proof It suffices to show that the theorem holds for conditionals of the form

E®0. For reasons of symmetry, we shall not consider expressions that are of the

last seven forms of rule E. The proof is conducted by a structural induction on the

175

number of the operators in the set 0 of (A.1) in a conditional. Assume that the

theorem holds for conditionals that contain less than m such operators. Let E®0

be a conditional that contains rn such operators. E can be put into the following

forms by rule E:

max(E, L)®0. Apply 0-law and max-elimi.

min(E,L)®0. Apply 0-law and min-elimi.

EI@0. Apply 0-law and I I-eliml.

(E@ L) divn®0. Apply 0-law and div-eliml.

1(E®L)/nl®0. Apply 0-law and 1-eliml.

[(E@L)/n]®0. Apply 0-law and j-eliml.

L®0. L can be put into the following forms by rule L:

- A®0. It is already in normal form.

- nL®0. Each domain predicate is finite. We apply rule L recursively

until we are in one of the other four cases.

- nmax(L1, L2)80. Apply max-dist, 0-law and max-elimi.

- nmin(Li,L2)®0. Apply min-dist, 0-law and min-elimi.

- nILI00. Apply I I-law, 0-law and I 1-elimi.

E@L®0. Again, E can be put into the following forms by rule E.

- max(E, L)®L®0. Apply max-elimi.

- min(E, L)@L®0. Apply min-elimi.

- IEI®L®0. Apply I -elimi.

- (E@L1) div n@L®0. Apply div-eliml.

- 1(E@Li)/n]@L®0. Apply I 1-eliml.

176

Figure A-i: The points (i,j, 1) satisfying predicate 2[i/2]-j=0.

- L(E®Li)/ni@L®O. Apply [j-eliml.

- L1 @L®O. L1 can be put into the following forms by rule L:

* A@ LOO. L can be put into the following forms by rule L:

- A@A1®O. It is already in normal form.

A@nLi®O. Consider rule L for L1 recursively.

- A®max(L2 , L3)00. Apply max-elim2.

A@min(L2, L3)60. Apply min-elim2.

A@ILI®O. Apply I l-elim2.

* nL2 @L®O. Consider rule L for L2 recursively.

* max(L2 , L3)@L®O. Apply max-elimi.

* min(L2, L3)@L®O. Apply min-elimi.

* IL1 I@L®O. Apply J j-eliml.

In each of the above cases, the resulting predicate is still a domain predicate, each

of whose constituent conditionals contains less than in operators in the set 0 of

(A.1). The proof is completed by an application of the induction hypothesis. L

Finally, we discuss informally how non-domain predicates can be put in normal

form. Let us consider non-domain predicate 2[i/2]-j = 0 given in Ex. A.1. Rule Li-

elimi does not apply. Fig. A-i exposes geometrically the difficulty in normalising

this predicate. The points in any of the two lines are not consecutive. They cannot

be specified by a finite number of basic conditionals in i and J. Algebraically,

predicate 2Li/2j -3' = 0 implies the evenness of J.

177

A non-domain predicate can be put in normal form if it can be rewritten as a

domain predicate. The motivation for this transformation is to reuse the indices

that do not appear in the non-domain predicate or to introduce extra indices.

For example, letting [2*/2] = k rewrites the previous example predicate to domain

predicate [i/2] —k=0 A]'-2k=0, where 1*-2k=0 specifies the evenness of j. By

the same token, we rewrite the other four non-domain predicates in Ex. A.1 to the

following domain predicates:

2f(i div 2+j)/3]+10

{Let k=1(i div 2+j)/3]}
2k+1=0 A k—[(i div 2+j)/31=0

i div 2-1-f(j-1-lc)/2]=0

== 	{Let L=1(j+k)/21}
i div 2+L=O AL— f(j+k)/21 =0

Ii/21
- 1(i + k)/31 <0

== 	{Let L=Ii/21}

L— 1(i+k)/31 <OAt— Ii/21 =0

max(fi/2], Li/2i+1i/21)0

{Let k=[i/2]+Ij/21)}

max([i/2], k) :~O A k— Li/2i - [j/2] =0

== {LetL=Li/2]}

max(t, k)0 A k—t— Ii/21 =0 AL— Li/2i =0

The five non-domain predicates in Ex. A.1 become domain predicates if we

replace rule E (this implies the deletion of rule L) by:

E::=A; El;

E1 ®E2; max(E1, E2); min(E1, E2); [(E1@E2)/n]; L(E1 ®E2)/nj; (E1 ®E2) div n

It is not difficult to see that all domain predicates defined this way can be put in

normal form if extra indices are introduced as discussed previously. However, the

introduction of extra indices increases the dimensionality of the index space and

consequently degrades the efficiency of systolic arrays.

Bibliography

M. Annaratone, E. Arnould, T. Gross, H. T. Kung, M. Lam, 0. Menzilcioglu,

and J. A. Webb. The Warp computer: Architecture, implementation, and

performance. IEEE Trans. on Computers, C-36(12):1523-1538, Dec. 1987.

J. Annevelink and P. Dewilde. HIFI: A functional design system for VLSI

processing arrays. In K. Bromley, S.-Y. Kung, and E. E. Swartzlander, ed-

itors, Proc. mt. Conf. on Systolic Arrays, pages 413-452. IEEE Computer

Society, 1988.

J.-P. Banâtre, A. Coutant, and D. Le Métayer. A parallel machine for multi-

set transformation and its programming style. Future Generation Computer

Systems, 4(2):133-144, Sept. 1988.

J.-P. Banâtre and D. Le Métayer. The GAMMA model and its discipline of

programming. Science of Computer Programming, 15(1):55-77, Nov. 1990.

U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic

Publishers, 1988.

M. Barnett and C. Lengauer. The synthesis of systolic programs. In Proc.

Seminar on Research Directions in High-Level Parallel Programming Lan-

guages. Springer-Verlag, 1991. To appear.

M. Barnett and C. Lengauer. A systolizing compilation scheme. Technical

Report TR-91-03, Department of Computer Sciences, The University of Texas

at Austin, Jan. 1991. Also: Technical Report ECS-LFCS-91-134, Department

178

179

of Computer Science, University of Edinburgh. Abstract: Proc. 1991 mt.

Jonf. on Parallel Processing, Vol. II, Pennsylvania State University Press,

1991, 305-306.

A. Benaini, P. Quinton, Y. Robert, and B. Tourancheau. Synthesis of a new

systolic architecture for the algebraic path problem. Science of Computer

Programming, 15(2-3):135-158, Dec. 1990.

A. Benaini and Y. Robert. Spacetime-minimal systolic architectures for

Gaussian elimination and the algebraic path problem. Parallel Computing,

15(1):211-226, 1990.

A. Benaini and M. Tchuente. Matrix product on modular linear systolic

arrays. In M. Cosnard, Y. Robert, P. Quinton, and M. Raynal, editors,

Parallel & Distributed Algorithms, pages 79-88. North-Holland, 1989.

J. Bu, E. F. Deprettere, and P. Dewilde. A design methodology for fixed-

size systolic arrays. In S. Y. Kung and E. E. Swartzlander, editors, Applica-

tion Specific Array Processors, pages 591-602. IEEE Computer Society Press,

1990.

P. R. Cappello. A spacetime-minimal systolic array for matrix product. In

J. V. McCanny, J. McWhirter, and E. E. Swartzlander, editors, Systolic Array

Processors, pages 347-356. Prentice-Hall, 1989. To appear in IEEE Trans.

on Parallel and Distributed Systems titled: A processor-time-minimal systolic

array for cubical mesh algorithms.

K. M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley, 1988.

M. C. Chen. A design methodology for synthesizing parallel algorithms and

architectures. J. Parallel and Distributed Computing, 3(4):461-491, 1986.

C. Choifrut and K. Culik. On real-time cellular automata and trellis au-

tomata. Acta Informatica, 21:393-407, 1984.

ISO

P. Clauss, C. Mongenet, and G. R. Perrin. Calculus of space-optimal map-

pings of systolic algorithms on processor arrays. In S. Y. Kung and E. E.

Swartzlander, editors, Application Specific Array Processors, pages 5-18.

IEEE Computer Society Press, 1990.

A. Darte. Regular partitioning for synthesizing fixed-size systolic arrays.

Technical Report 91-10, Laboratoire LIP-IMAG, Ecole, Normale Supérieure

de Lyon, Apr. 1991.

J.-M. Delosme. A parallel algorithm for the algebraic path problem. In

M. Cosnard, Y. Robert, P. Quinton, and M. Raynal, editors, Parallel & Dis-

tributed Algorithms, pages 67-78. North-Holland, 1989.

J. M. Delosme and I. C. F. Ipsen. Systolic array synthesis: Computability

and time cones. In M. Cosnard, P. Quinton, Y. Robert, and M. Tchuente,

editors, Parallel Algorithms J Architectures, pages 295-312. North-Holland,

1986.

E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Seman-

tics. Texts and Monographs in Computer Science. Springer-Verlag, 1990.

B. R. Engstrom and P. R. Cappello. The SDEF systolic programming system.

In S. K. Tewksbury B. W. Dickinson and S. C. Schwartz, editors, Concurrent

Computations, chapter 15. Plenum Press, 1987.

H. A. Fencl and C.-H. Huang. On the synthesis of programs for various

parallel architectures. In Proc. 1991 mt. Conf. on Parallel Processing, Vol. II,

pages 202-206. Pennsylvania State University Press, 1991.

J. A. B. Fortes and D. I. Moldovan. Parallelism detection and algorithm

transformation techniques useful for VLSI architecture design. J. Parallel

and Distributed Computing, 2(3):277-301, Aug. 1985.

181

P. Gachet, B. Joinnault, and P. Quinton. Synthesizing systolic arrays using

DIASTOL. In W. Moore, A. McCabe, and R. Urquart, editors, Systolic

Arrays, pages 25-36. Adam Huger, 1987.

I. Graham and T. King. The Transputer Handbook. Prentice-Hall, 1990.

L. J. Guibas, H. T. Kung, and C. D. Thompson. Direct VLSI implementation

of combinatorial algorithms. In Proc. Gait ech Conf. on VLSI, pages 509-525,

1979.

C.-H. Huang and C. Lengauer. The derivation of systolic implementations of

programs. Acta Informatica, 24(6):595-632, Nov. 1987.

R. P. Hughey. Programmable Systolic Arrays. PhD thesis, Department of

Computer Science, Brown University, May 1991. Technical Report CS-91-34.

K. Hwang and Y. H. Chung. Partitioned algorithms and VLSI structures for

large-scale matrix computations. In Proc. Symp. on Computing Arithmetic,

pages 222-232, 1981.

0. H. Ibarra, S. M. Kim, and M. A. Palis. Designing systolic algorithms using

sequential machines. IEEE Trans. on Computers, C-35:531-542, June 1991.

F. Irigoin and R. Triolet. Dependence approximation and global parallel

code generation for nested loops. In M. Cosnard, Y. Robert, P. Quinton,

and M. Raynal, editors, Parallel & Distributed Algorithms, pages 297-308.

North-Holland, 1989.

R. M. Karp, R. E. Miller, and S. Winograd. The organization of computations

for uniform recurrence equations. J. ACM, 14(3):563-590, July 1967.

V. K. Prasanna Kumar and Y.-C. Tsai. Designing linear systolic arrays.

J. Parallel and Distributed Computing, 7(3):441-463, Nov. 1989.

[34] H. T. Kung. Let's design algorithms for VLSI systems. In Proc. Caltech

Con!. on VLSI, pages 65-87, 1979.

182

H. T. Kung. Why systolic architectures? Computer, 15(1):37-46, Jan. 1982.

H. T. Kung and M. S. Lam. Wafer-scale integration and two-level pipelined

implementations. J. Parallel and Distributed Computing, 1(1):33-63, Aug.

1984.

H. T. Kung and C. E. Leiserson. Algorithms for VLSI processor arrays. In

C. Mead and L. Conway, editors, Introduction to VLSI Systems, chapter 8.3.

Addison-Wesley, 1980.

S.-Y. Kung. VLSI Processor Arrays. Prentice-Hall Int., 1988.

S.-Y. Kung, S.-C. Lo, and P. S. Lewis. Optimal systolic design for the

transitive closure and shortest path problems. IEEE Trans. on Computers,

C-36(5):603---614, May 1987.

L. Lamport. The parallel execution of DO loops. Comm. ACM, 17(2):83-93,

Feb. 1974.

P. Lee and Z. Kedem. Synthesizing linear-array algorithms from nested for

loop algorithms. IEEE Trans. on Computers, C-37(12):1578-1598, Dec. 1988.

P. Lee and Z. M. Kedem. On high-speed computing with a programmable

linear array. J. Supercomputing, 4:223-249, 1990.

C. E. Leicerson and J. B. Saxe. Optimising synchronous circuitry by retiming.

In R. Bryant, editor, Proc. Caltech Conf. on VLSI, pages 87-116, 1983.

C. Lengauer. Code generation for a systolic computer. SOFTWARE

Practice and Experience, 20(3):261-282, Mar. 1990.

C. Lengauer and J. Xue. A systolic array for pyramidal algorithms. J. VLSI

Signal Processing, 3(3) :239-259, 1991.

C. J. Li and B. W. Wah. The design of optimal systolic algorithms. IEEE

Trans. on Computers, C-34(10):66-77, Jan. 1985.

183

B. Lisper. Synthesizing Synchronous Systems by Static Scheduling in Space-

Time. Lecture Notes in Computer Science 362. Springer-Verlag, 1989.

B. Lisper. Synthesis of time-optimal systolic arrays with cells with inner

structure. J. Parallel and Distributed Computing, 10(2):182-187, 1990.

W. Luk, G. Jones, and M. Sheeran. Computer-based tools for regular ar-

ray design. In J. McCanny, J. McWirther, and E. E. Swartzlander, editors,

Systolic Array Processors, pages 589-598. Prentice Hall Int., 1989.

D. I. Moldovan. On the design of algorithms for VLSI systolic arrays. Proc.

IEEE, 71(1):113-120, Jan. 1983.

D. I. Moldovan. ADVIS: A software package for the design of systolic arrays.

IEEE Trans. on Computer-Aided Design, CAD-6(1):33-40, Jan. 1987.

D. I. Moldovan and J. A. B. Fortes. Partitioning and mapping algorithms

into fixed-size systolic arrays. IEEE Trans. on Computers, C-35(1):1-12,

Jan. 1986.

F. J. Nüñez and M. Valero. A block algorithm and optimal fixed-size systolic

array processor for the algebraic path problem. J. VLSI Signal Processing,

1(2):153-162, October 1991.

E. T. L. Omtzigt. Systars: A CAD tool for the synthesis and analysis of VLSI

systolic/wavefront arrays. In K. Bromley, S.-Y. Kung, and E. E. Swartz-

lander, editors, Proc. hit. Con!. on Systolic Arrays, pages 383-391. IEEE

Computer Society, 1988.

P. Quinton. Automatic synthesis of systolic arrays from uniform recurrent

equations. In Proc. 11th Ann. Int. Symp. on Computer Architecture, pages

208-214. IEEE Computer Society Press, 1984.

P. Quinton. Derivation of regular parallel algorithms with the ALPHA lan-

guage. In Proc. Seminar on Research Directions in High-Level Parallel Pro-

gramming Languages, June 1991.

184

P. Quinton and V. van Dongen. The mapping of linear recurrence equations

on regular arrays. J. VLSI Signal Processing, 1(2):95-113, Oct. 1989.

S. V. Rajopadhye. Synthesizing systolic arrays with control signals from

recurrence equations. Distributed Computing, 3:88-105, 1989.

S. V. Rajopadhye. Algebraic transformations in systolic array synthesis: A

case study. In L. J. M. Claesen, editor, Formal VLSI Specification and Syn-

thesis (VLSI Design Methods-I), pages 361-370. North-Holland, 1990.

S. V. Rajopadhye and R. M. Fujimoto. Synthesizing systolic arrays from

recurrence equations. Parallel Computing, 14(2):163-189, June 1990.

I. Ramakrishnan, D. Fussell, and A. Silberschatz. Mapping homogeneous

graphs on linear arrays. IEEE Trans. on Computers, C-35(3):189-209, Mar.

I. V. Ramakrishnan and P. J. Varman. Dynamic programming and transitive

closure on linear pipelines. In Proc. mt. Con!. on Parallel Processing, pages

359-364. IEEE Press, 1984.

J. Ramanujam and P. Sadayappan. A methodology for parallelizing programs

for multicomputers and complex memory multiprocessors. In Supercomputing

'89, pages 637-646. ACM Press, 1989.

S. K. Rao. Regular Iterative Algorithms and their Implementations on Pro-

cessor Arrays. PhD thesis, Department of Electrical Engineering, Stanford

University, Oct. 1985.

H. B. Ribas. Automatic Generation of Systolic Programs from lVested Loops.

PhD thesis, Department of Computer Science, Carnegie-Mellon University,

June 1990. Technical Report CMU-CS-90-143.

[66] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

185

C. Rote. A systolic array algorithm for the algebraic path problem (shortest

paths; matrix inversion). Computing, 34(3):191-219, 1985.

D. A. Schmidt. Denotational Semantics. Wm. C Brown, 1988.

W. Shang and J. A. B. Fortes. On the optimality of linear schedules. J. VLSI

Signal Processing, 1(2):209-220, Oct. 1989.

W. Shang and W. A. B. Fortes. Time optimal linear schedules for algorithms

with uniform dependences. IEEE Trans. on Computers, C-40:723-742, June

1991.

J. Teich and L. Thiele. Control generation in the design of processor arrays.

J. VLSI Signal Processing, 3(1/2):77-92, June 1991.

J. D. Ullman. Computational Aspects of VLSI. Computer Science Press,

1984.

M. Valero-Garcca, J. J. Navarro, J. M. Liaberfa, and M. Valeo. Implemen-

tation of systolic algorithms using pipelined functional units. In S. Y. Kung

and E. E. Swartzlander, editors, Application Specific Array Processors, pages

272-283. IEEE Computer Society Press, 1990.

V. van Dongen. Quasi-regular arrays: Definition and design methodology. In

Systolic Array Processors, pages 126-135. Prentice-Hall mt., 1989.

V. van Dongen and M. Petit. PRESAGE: A tool for the parallelization of

nested loop programs. In L. J. M. Claesen, editor, Formal VLSI Specification

and Synthesis (VLSI Design Methods-I), pages 341-359. North-Holland, 1990.

M. E. Wolf and S. lam. A loop transformation theory and an algorithm

to maximize parallelism. IEEE Trans. on Computers, C-2(2):452-471, Oct.

1991.

[77] M. Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, 1989.

186

Y. Wong and J. M. Delosme. Optimal systolic implementations of

dimensional recurrences. In Proc. IEEE mt. Conf. on Computer Design

(ICCD 85), pages 618-621. IEEE Press, 1985. Also: Technical Report 8810,

Department of Computer Science, Yale University, Apr. 1988.

Y. Wong and J.-M. Delosme. Broadcast removal in systolic algorithms. In

K. Bromley, S.-Y. Kung, and E. E. Swartzlander, editors, Proc. mt. Conf. on

Systolic Arrays, pages 403-412. IEEE Computer Society, 1988.

Y. Wong and J. M. Delosme. Optimization of computation time for systolic

arrays. Technical Report YALEU/DCS/RR-651, Department of Computer

Science, Yale University, May 1989.

Y. Wong and J. M. Delosme. Optimization of processor count for systolic

arrays. Technical Report YALEU/DCS/RR-697, Department of Computer

Science, Yale University, May 1989.

X. Zhong and S. Rajopadhye. Deriving fully efficient systolic arrays by quasi-

linear allocation functions. In E. H. L. Aarts, J. van Leeuwen, and M. Rem,

editors, Parallel Architectures and Languages Europe (PARLE '91), Vol. I:

Parallel Architectures and Algorithms, Lecture Notes in Computer Science

505, pages 219-235. Springer-Verlag, 1991.

X. Zhong, S. Rajopadhye, and I. Wong. Systematic generation of linear al-

location functions in systolic array design. J. VLSI Signal Processing. To

appear.

Index

(p,9,I), 92 T,, 114

I--*J,20 T,,114

I?+ j, 20 aff(S), 12

S', 49 93,59

S, 48 CA, 10

V", 113 IS,48

V't, 113 src, 55

{7r:6],12 El, 12

[7rEIS], 12 fl(X,), 51

110 I, 30

liii, 	10 Ov, 30

cv, 95 2, 24

, 16 2(S), 49

v, 16 V, 17

111 , 29, 97 -model, 87

11w, 291 98 XT, 10

/v, 29, 97 ®, 116

W, 301 98 @v, 86

'n, , 29, 97 @11/ , 98

iJJ,, 97 ®, 117

W,,, 29, 97 @v, 86

m v, 18 ®-partition, 46

OUti, 18 ®src 47

T,92 ®,42

114 cone(xi,x2,•••,xm), 13

114 cony(S), 12

Ill

96 tfst, 25, 87

deq(V), 16 87

deq(), 17
adapted index space, 145

dim(S), 12
address variable, 159

facets(S), 13
allocation

fst(v,t9v), 20
function, 25

flow) 25
matrix, 24

in(I v,9v), 20
vector, 83

inject, 119
AREs, 16

input, 86

lst(v,t9v), 20 border cell, 23, 85, 87

lin(S), 12 broadcast dependence, 19

span(x1,x21 . 	,Xm), 10
CCUREs, 5,44

output, 87
cell program, 112

paths(S,i9), 92
communication constraint domain, 110

pattern, 25
computation

-model, 84
control flow, 4

place, 24
equation, 18

planes(S,ir), 97
point, 19, 92

p1, 86
conditional, 17, 173

p0, 86
control

rank(A), 11
channel, 14

ray(I,?.9), 20
UREs, 5, 40

rays(D,9), 20
variable, 40

sig(V), 45

step, 24
convex

class partition, 46
sup(S, F), 13

domain partition, 47
48

, 25 data

114 channel, 14

i.x, 11 dependence graph, 19

k-parallelepiped, 14 dependence matrix, 19

dependence vector, 17

pipelining, 33

variable, 40

domain

of a variable, 16

of an eqaution, 16

predicate, 17, 173

draining point, 30, 95

evolution control variable, 112

extended

data dependence graph, 30

domain of a variable, 30

index space, 29, 97

source UREs, 301 98

first

computation point, 19

step number, 25, 87

host program, 112

image under a space-time mapping (over-

bar), 25

index

mapping, 17

space, 16

vector, 17

initialisation control variable, 116

inner-product UREs, 148

input

cell, 23, 85, 87

data, 18

equation, 18

111

intermediate data, 18

internal cell, 23, 85, 87

last

computation point, 19

step number, 87

latency, 25

link, 85

load-recover variable, 159

non-injectivity of a space-time map-

ping, 99

normal form of domain predicates, 17,

173

output

cell, 23, 85, 87

data, 18

equation, 18

parameterised systolic array, 35

partitioning, 35

PCUREs, 5, 44

pipelined UREs, 45

pipelining

dependence, 19

equation, 20

point, 30, 92

variable, 20

vector, 33

place function, 25

point, 17

processor space, 24

projection, 36

vector, 26

propagation control flow, 4

relaying point, 95

scheduling

matrix, 100

vector, 24

separation set, 48

set of defining half-spaces, 48

soaking point, 30, 95

source UREs, 4

space-time

diagram, 94

mapping, 24

matrix, 25, 83, 100

point, 92

UREs, 28

step function, 25

systolic algorithm, 3

systolic array model, 23

temporal hyperplane, 25

termination control variable, 116

timing function, 25

type of a point, 42

undefined point, 30, 95

UREs, 19

validity of a space-time mapping, 26,

88, 89, 101, 133, 139

for a variable, 115

iv

ERRATA (4 March, 1992)

p21, 11 and p141, last paragraph and p165, (7.4): Replace n by m.

p26, Precedence Rule and p34, last sentence: Replace "smaller" by "larger".

p28: Replace 0=iAO<jmA0<kmby O=xA0<ymAO<i-x-ym.

p43, 11: Replace the sentence starting with "Therefore" by "Therefore, the defining equations for

a variable agree at points of the same type and the defining equations for some variable do not agree

at points of different types.".

p43, 12, below (3.3): Replace lI'/ 	by IVI.
p49, (3.8): Delete C1 (I)= at the right hand side of each

p52, Ex. 3.2: Replace Figs. 3-1 by Figs. 3-2.

p57, Step 3 of Proc. 3.1: Replace the second irl<i5 (irI<6) by 7rI5 irl<6.

p57, below Lemma 3.9 and p65, above and below Thm. 3.9: Replace [7rI0ö] by [irD5].

p59, (3.18): Delete Pi(I) = at the right hand side of each

p62, (3.23): Add IEW - C(I-t9c).

p62: Replace ray(, ±9c) (ray(Dc,±9c)) by rays('I,±t9c) (rays(Dc ,d'Oc)).

below (3.24) and p109, (5.6): Replace '1 U HC.0 by fl H.C.

Fig. 3-3: Add "extended" before "index space".

p65, last paragraph: Replace "=" by "", and the succeeding sentence by "This implies that

some control signals can be broadcast across the array.".

p80, 11, last line: Replace "control" by "pipelined".

p80, last paragraph: Replace the definition of 01 by

I j J 	(VV:VEV:(VD:DEdeq(V):IED=='JEDVV(J)=±))

p83, the definition of place: Replace the first 7 by 7'.

p95, above (4.3): Replace "oaking" by "soaking".

p101, ¶ 1: Replace the first si by s21.

p102:, Step. 1 of Proc. 4.1: Replace 1 by

pl02:, Step. 2 of Proc. 4.1: Change it to:

/ 	 (if(V1,J:I,J:A11=A1J)-+1
(V i : 0<i<n : /X= El else --+ (min I,J : I,JEWAAIOA1J : IA(I-J)I)(

I
p118, Stat. 3 of Lemma 5.1, after (a): Replace J by Ji.
p124, last paragraph: Replace fst(Fi,k(I)) by input(F2 ,k(I)).

p126: Replace nun9v000nn9v by mv0O:An.\t9v.

p152, (6.4): Replace 	by Td

p154, last sentence: Replace "three" by "four".

p158, 12: Replace rays(fst(v, t9v)-6v, -t9p) by rays(fst(v , 3v), -19p))\fst(v,
p158, last paragraph: Replace rays(lst(v, z9vWv, '9p,) by rays(lst(v, 9v), 3p))\,lst(v, 'v).
p167, the end of 7.4: Add the following:

The construction of addressing control presented in Sect. 7.3 works only for three-dimensional

UREs. For n-dimensional UREs, we simply associate n - 2 address variables, X, X.)

X 2 with every stationary data variable V. Element V(I) is associated with memory location

(X(I), X,(I), . . . , X 2(I)) at cell place(I). The specification of these address variables is as in

(7.3). We must choose lrx, and 	with lrx 9x = 0 such that (1) O9X.. 0 0 (this ensures that

X, is a moving variable), (2) 7rx. 9v = 0 (this ensures that X' (I) is the same address for all points

of a 79v-path), and (3) lrxi, 7rx,, . ., 7_2, o are linearly independent (this ensures that different

elements of stationary variable V that are mapped to the same cell are given different memory

locations).

