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Abstract

In this thesis I discuss different aspects of high energy resummation in Quantum

Chromo-Dynamics and its relevance for precision physics at hadron colliders. The

high energy factorisation theorem is presented and discussed in detail, emphasizing its

connections with standard factorisation of collinear singularities. The DGLAP and the

BFKL equations are presented and leading twist duality relations between the evolution

kernels are discussed.

High energy factorisation is used to compute resummed coefficient functions for

hadronic processes relevant for LHC phenomenology. The case of heavy flavour

production is analysed in some detail and results already present in the literature

are confirmed. High energy effects can play an important role for such cross sections

which are to be used as standard candles at the LHC, such as W/Z production. To

this purpose Drell-Yan processes are studied in high energy factorisation.

The inclusive cross section for Higgs boson production via gluon-gluon fusion is

analysed both in the heavy top limit and for finite values of the top mass. The different

high energy behaviour of the two cases is studied, showing explicitly that the full theory

exhibits single high energy logarithms in contrast to the infinite top mass limit. The

correct high energy behaviour of the partonic cross section is then combined to the

NNLO calculation performed in the heavy top limit, in order to obtain an improved

coefficient function. Finite top mass effects at high energy on the hadronic cross section

are moderate.

As far as parton evolution is concerned, an approximate expression for the NNLO

contribution to the kernel of the BFKL equation is computed exploiting running

coupling duality relations between DGLAP and BFKL. This result includes all collinear

and anticollinear singular contributions and it is computed in various factorisation

schemes. The collinear approximation is tested against the known LO and NLO kernels

with the discrepancy being at the percent level. Therefore the approximate NNLO

contribution is likely to be close to the as yet unknown complete result in the region

relevant at leading twist.
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Chapter 1

Introduction

Hadron colliders such as the Tevatron at Fermilab and the Large Hadron Collider

(LHC) at CERN test our understanding of particle physics at the smallest scales,

trying to find deviations of the data from the Standard Model and hence discover new

physics. In order to be able to separate a tiny fraction of interesting events from a huge

background, the phenomenology of the Standard Model has to be understood with

very high accuracy. The vast majority of Standard Model events are due to strong

interactions.

The search for a theory of the strong force started in the Sixties of the past

century with the main target of explaining the growing number of hadrons produced in

experiments; one of the major breakthroughs was the quark model, proposed by Gell-

Mann. This model describes the hadronic spectrum in terms of elementary constituents,

the quarks; it also leads to the introduction of a new degree of freedom: the colour.

Nowadays Quantum Chromo-Dynamics (QCD) is accepted as the theory of strong

interactions. It is a non-Abelian gauge theory with gauge group SU(3)c: it describes

the interaction between fermionic and bosonic fields associated to quarks and gluons

respectively (see for instance [1]-[3] and references therein). The Lagrangian of QCD

is:

L = −1

4
GA

µνG
µν
A +

∑

flavours

ψ̄a(iγµD
µ −m)abψb , (1.1)

where Dµ is the covariant derivative and GA
µν is the field strength, defined by:

GA
µν = ∂µA

A
ν − ∂νA

A
µ − gsf

ABCAB
µA

C
ν .

It is well known that the strong coupling αs = gs/4π is a decreasing function of

the energy involved in the process. For this reason QCD has a low energy regime,

in which the theory is strongly interacting and a high energy one, in which it is

asymptotically free. This implies that strong processes are computable in perturbation
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theory if a sufficiently high energy scale is involved. However, the computation of

cross sections for hadronic processes always involves non-perturbative contributions,

because the initial states are hadrons, which cannot be described in perturbation

theory. Nevertheless factorisation enables one to separate the hard part of a process,

computable in perturbation theory, from a low energy one, which is process-independent

and can be taken as a phenomenological input. More details about factorisation are

given in Chapter 2.

In order to improve the accuracy of theoretical predictions in QCD phenomenology,

higher order terms in the perturbative expansion have been studied and cross sections

have been computed at next-to-leading order (NLO) and, in some cases, also at next-

to-next-to-leading order (NNLO). However, in certain regions of the phase space, the

expansion in powers of the coupling constant αs is no longer good. Cross sections

contain terms proportional to the logarithm of some kinematical variable ω:

σ = αsa0 lnω + α2
s

(
a1 ln2 ω + b0 lnω

)
+ . . . (1.2)

If ω is very large or close to zero the logarithm is large and hence:

αs lnω ∼ 1, (1.3)

even if the coupling is small; this clearly invalidates the perturbative expansion. In

order to get reliable predictions, these logarithms have to be resummed to all orders.

The perturbative expansion is reorganised as follows:

σ =
∑

k

(αs lnω)k+1 ak + αs

∑

k

(αs lnω)k+1 bk + . . . (1.4)

The first term corresponds to a leading order resummation, while the second one to

a next-to-leading order one. One may encounter different kinds of logarithms and

different techniques have to be used to perform the resummation. For instance, the

resummation of logarithms of the hard scale of the process (ω = Q2/µ2), due to the

emission of collinear partons, is performed thanks to the DGLAP evolution equation.

In this thesis the resummation of high energy logarithms is discussed in detail; in this

case ω = x, x being the ratio of the hard scale and the centre-of-mass energy. The high

energy, or small x, behaviour of QCD is described by the BFKL evolution equation.

Another important class of logarithms is given by ω = 1 − x and they are originated

by soft radiation.

The LHC explores a region of the kinematic plane (x,Q2) larger than any other

collider before, reaching x ∼ 10−6, as shown in fig. 1.1. Very small values of x can be

obtained at large rapidities y, which means that the produced particles are very close

to the beam-pipe. This is the field of diffractive physics and small x resummation is
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Figure 1.1: This plot shows the kinematical coverage of the LHC in the plane (x,Q2),
compared to previous colliders.

essential to describe diffraction [6]. However, high energy resummation is also relevant

in the region of central rapidities |y| . 2. In this case x ∼ 10−3, so the small x

behaviour is not the dominant one, but it may give corrections at the percent level to

many important processes, such as the production of heavy quark pairs, vector and

Higgs bosons. In recent years there has been important progress in understanding

the resummation of parton evolution (for a review about the different approaches

see [5]) so that now both collinear and high energy logarithms can be resummed

simultaneously. In order to use these results for LHC phenomenology one needs

resummed partonic cross sections for hadron-hadron collisions. An important part of

this thesis (Chapters 4 and 5) is dedicated to the calculation of the resummed partonic

coefficient functions for processes relevant to LHC phenomenology.

Finally, resummed results can be used to obtain approximate expressions to as yet

unknown fixed order calculations. This can be done both for the coefficient functions

and the evolution kernels. In Chapter 6 an approximate expression for the NNLO

BFKL kernel is derived from the DGLAP anomalous dimension.
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Chapter 2

Perturbative Quantum

Chromo–Dynamics

In this chapter some features of perturbative QCD are discussed. Using deep inelastic

scattering as an example the collinear factorisation theorem is introduced together with

the DGLAP equations. Then the analysis is focused on the high energy limit of QCD

and on the BFKL equation.

2.1 QCD and the parton model

The strong processes computable in perturbation theory are those which involve a high

energy scale so that the coupling is sufficiently small. Some examples which will be

discussed in this thesis are: deep inelastic scattering (DIS) of an electron off a proton,

where the hard scale Q2 is given by the transferred momentum, or the production of

heavy particles, such as bottom quarks and Higgs bosons, where the hard scale is given

by the mass of the produced particles. Even though QCD is asymptotically free the

computation of cross sections for any strong process always involves non-perturbative

contributions, because the initial states are not the fundamental degrees of freedom of

the theory but compound states of quarks and gluons which cannot be described in

perturbation theory. An important property of QCD is the factorisation theorem, which

basically enables one to separate (“factorise”) in every process a hard part, computable

in perturbation theory, from a low energy one, which is process-independent and can

be taken as a phenomenological input. The possibility of separating long and short

distance effects largely explains the success of the parton model, a predecessor of QCD,

introduced by Feynman and Bjorken in the late Sixties [7], [8]. The basic assumption of

the parton model is that the interactions of hadrons are due to interactions of almost free

constituents, called partons. The description of the hadron is given in terms of partonic

distributions that, at leading order, represent the probability of having a particular

6



2.1. QCD and the parton model

P

e−

e−

γ∗

X
...

...

Figure 2.1: Deep inelastic electron - proton scattering.

parton which carries a fraction of the total longitudinal momentum. Nowadays the

parton model is understood as the lowest order approximation of a perturbative QCD

calculation.

In the following sub-sections the case of deep inelastic scattering (DIS) is discussed

as an example in the framework of the parton model and then including QCD

radiative corrections, showing how factorisation arises in the collinear limit. The

choice of DIS is motivated by the fact that it involves only one hadron in the initial

state and consequently the formulae are easier; these ideas are then generalised to

hadronic processes. Finally the consequences of renormalization group invariance are

investigated [3].

2.1.1 Deep inelastic scattering as an example

One of the most powerful tests of perturbative QCD is provided by the description of

the inelastic scattering of a charged lepton off a hadronic target

e− p −→ e− X ,

where the lepton is an electron and the hadron a proton.

The incoming and the outgoing four-momenta of the electron are labelled lµ and l′µ

respectively and Pµ is the momentum of the target proton. As shown in fig. 2.1 the

scattering is mediated by the exchange of a vector boson with momentum qµ = lµ− l′µ.
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2.1. QCD and the parton model

DIS is usually described by the following kinematic variables

Q2 = − q2

x =
Q2

2P · q (2.1)

y =
q · P
l · P

ν = P · q . (2.2)

In the limit Q2 ≪ m2
Z the contribution arising from the exchange of a Z boson can be

neglected and the Feynman amplitude which describes such process is

M = i eū(l′)γµu(l)
gµν

q2
〈X|Jν |P 〉 , (2.3)

where Jν is the electro-magnetic current. The unpolarised cross section is proportional

to this amplitude squared and summed over final polarisation states. The cross section

can be factorised into a leptonic and a hadronic piece:

∑

pols

|M|2 =
LµνWµν

q4
.

The leptonic tensor is then given by a straightforward QED calculation; neglecting the

electron mass its expression is

Lµν = 4e2
(
lµl

′
ν + lν l

′
µ − gµν l · l′

)
. (2.4)

The hadronic tensor instead contains all the information about the interaction of the

electromagnetic current with the target proton; using the completeness relation among

the final states it can be written as

Wµν =
1

4π

∑

X

〈P |J†
ν |X〉〈X|Jµ|P 〉 = 〈P |J†

νJµ|P 〉 . (2.5)

This tensor can depend only on P and q, it must be symmetric under the exchange of

the two indices and respect the discrete symmetries of QCD: C, P and T. Because the

electromagnetic current is conserved it also satisfies the condition

qµW
µν = qνW

µν = 0 .

The most general tensor which respects the constraints above can be parametrised as

8



2.1. QCD and the parton model

P

p

B(p, P )

P

q

p

q

Figure 2.2: Deep inelastic electron - proton scattering: “handbag diagram”.

follows

Wµν(P, q) =

(
− gµν +

qµqν

q2

)
F1(x,Q

2) +

+

(
Pµ +

qµ

2x

)(
P ν +

qν

2x

)
F2(x,Q

2)

P · q , (2.6)

where F1 and F2 are two unknown functions called structure functions.

At the partonic level the scattering is due to the interaction between the virtual

photon and a quark with momentum p. It is convenient to introduce Sudakov

decomposition of the four momenta. The momentum of the quark can be written

in terms of two lightlike vectors, P and η and of a spacelike one p, whose only non-

vanishing components are the transverse ones. The quark momentum on this basis

is:

pµ = x1P
µ +

p2 + p2

2x1
ηµ + pµ . (2.7)

In a fast moving frame, where the proton mass can be neglected, the momentum of the

proton is lightlike

P = (P, 0, 0, P ) ,

and the four-vector η is defined by

η2 = 0 , P · η = 1 =⇒ η = (
1

2P
, 0, 0,− 1

2P
) . (2.8)

The hadronic tensor can be obtained, at lowest order, by the computation of the

9



2.1. QCD and the parton model

diagram shown in figure 2.2:

Wµν(P, q) = e2q

∫
d4p

(2π)4
[γµ(6p+ 6q)γν ]ij [B(p, P )]ji δ((p+ q)2) , (2.9)

where the function of B(p, P ) describes the non-perturbative physics. The assumption

of the parton model is that the virtual photon interacts with an almost free quark whose

momentum is proportional to the proton’s one. This translates into the requirement

that the function B(p, P ) has to be damped when the virtuality p2 of the quark and

its transverse momentum |p|2 are large. Such an assumption simplifies the integration

in eq. (2.9); in particular the delta function becomes

δ((p+ q)2) ≃ δ(2x1P · q −Q2) =
1

2P · q δ(x1 − x) . (2.10)

Hence, quite remarkably, a macroscopic parameter, namely the Bjorken variable x,

controls the momentum of the parton involved in the process. The leading order

contribution to structure function F2 is easily obtained acting on the hadronic tensor

with a suitable projector πµν :

F2(x,Q
2) = 2P · q πµνWµν =

= e2qx

∫
d4p

(2π)4
[Π]ij [B(p, P )]ji δ(x1 − x) = e2qxq(x) , (2.11)

where the quark distribution has been defined:

q(x) ≡
∫

d4p

(2π)4
[Π]ij [B(p, P )]ji δ(x1 − x) .

At this order the parton distribution has an appealing physical interpretation: it

describes the probability to find a parton which carries a fraction of momentum x

of the proton. According to eq. (2.11) the structure function does not depend on Q2

but only on the dimensionless variable x. This result is known as Bjorken scaling :

F2(x,Q
2) −→ F2(x) .

Eq. (2.11) suggests to write the structure function F2 as a convolution between a

partonic coefficient function C2 and the parton distribution function q(0):

F2 = e2q C2 ⊗ q(0) = e2q

∫ 1

x

dx1

x1
C2

(
x

x1

)
q(0)(x1) ; (2.12)

10



2.1. QCD and the parton model

q

p

q

p

k

p′

Figure 2.3: Virtual and real contributions to the coefficient function C2 at next-to-
leading-order

the leading order contribution to the coefficient function is a delta function:

C
(0)
2 = xδ(x1 − x) = δ(1 − z) , (2.13)

where z = x
x1

is often called partonic Bjorken variable.

The computation of the next-to-leading order (NLO) corrections is performed here

in d = 4 − 2ε dimension using dimensional regularisation. At O(αs) two classes of

contributions appear; the interference between the one-loop correction and the tree-

level amplitude has to be considered, together with the emission of one real gluon at

tree level as shown in figure 2.3. The virtual contribution is given by

[
C

(1)
2 (x,Q2, ε)

]

virt
=

1

8π

∫
dΦ(1) [MlM∗

0 + M∗
l M0] , (2.14)

where M0 and Ml are the tree-level and one-loop amplitudes respectively. The result

is [4]

[
C

(1)
2 (z,Q2, ε)

]

virt
= −(Q2)−ε (4π)ε CF

π

Γ(1 + ε)Γ2(1 − ε)

Γ(1 − 2ε)

1 − ε

1 − 2ε

1

ε2(
1 +

ε

2
+

3

2
ε2
)
δ(1 − z), (2.15)

where CF = 4/3. The double pole in ε originates from the region of the loop integration

where the exchanged virtual gluon is simultaneously soft and collinear to a massless

quark line. This singularity is cancelled by an analogous contribution from the emission

of one real gluon:

γ∗(q) + q(p) → q(p′) + g(k). (2.16)
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2.1. QCD and the parton model

The corresponding contribution to the coefficient function is given by

[
C

(1)
2 (z,Q2, ε)

]

real
=

1

8π

∫
dΦ(2)(k, p′) |M1|2 ; (2.17)

details about the two-body phase space in d-dimensions can be found in Appendix A.1.

The squared amplitude has the following structure:

|M1|2 = 4πCF
R(z, y)

p · k p′ · k , (2.18)

where y is a function of the scattering angle: y = (1+cosϑ)/2. The explicit expression

of the function R(z, y) is:

R(z, y) = −2Q4

z

[
2zy(2ε− 3)(zy − z − y)

+(ε− 1)(z + y)2 − 6zy + 2y + 2z − 2
]
, (2.19)

Soft and collinear singularities arise from the denominators of eq. (2.18):

p · k =
Q2

2z
(1 − y), p′ · k =

Q2

2z
(1 − z). (2.20)

The contribution to the NLO coefficient function coming from emission of a real gluon

is obtained integrating over the two body phase space:

[
C

(1)
2 (z,Q2, ε)

]

real
= (Q2)−ε CF

4π

(4π)ε

Γ(1 − ε)
z2+ε (1 − z)−1−ε

1

Q4

∫ 1

0
dy y−ε(1 − y)−1−εR(z, y). (2.21)

The computation is greatly simplified if one expands the factor (1 − z)−1−ε as

1

(1 − z)1+ε
= −1

ε
δ(1 − z) +

[
1

1 − z

]

+

− ε

[
ln(1 − z)

1 − z

]

+

+ O(ε2), (2.22)

where the + distributions are defined according to

∫ 1

0
dz [f(z)]+ g(z) =

∫ 1

0
dz f(z) [g(z) − g(1)] . (2.23)

The real contribution naturally splits into two terms

[
C

(1)
2 (z,Q2, ε)

]

real
=
[
C

(1)
2 (z,Q2, ε)

]

c
+
[
C

(1)
2 (z,Q2, ε)

]

l
, (2.24)

where the first term is proportional to δ(1 − z) and hence has the same kinematical

12



2.1. QCD and the parton model

structure as the virtual contribution; it is then natural to combine them together

[
C

(1)
2 (z,Q2, ε)

]

sv
=
[
C

(1)
2 (z,Q2, ε)

]

c
+
[
C

(1)
2 (z,Q2, ε)

]

virt

= (Q2)−ε (4π)ε CF

π

Γ(1 − ε)

Γ(1 − 2ε)

1 − ε

1 − 2ε

1

ε2[
1 − ε

4
− Γ(1 + ε)Γ(1 − ε)

(
1 +

ε

2
+

3

2
ε2
)]

δ(1 − z). (2.25)

The double poles in ε cancel out as anticipated and the coefficient function is free of soft-

collinear singularities. The residue of the simple pole can be computed by expanding

eq. (2.25) in a Laurent series:

α0

[
C

(1)
2 (z,Q2, ε)

]

sv
= −CFαs

2π

[
1

ε
− γE + ln(4π) − ln

Q2

µ2
+

2

9
π2 + 3

]

×3

2
δ(1 − z), (2.26)

where α0 = µ2εαs, as appropriate at next-to-leading order. The remaining term[
C

(1)
2 (z,Q2, ε)

]

l
can be computed expanding the factor (1 − y)−1−ε in analogy with

eq. (2.22):
1

(1 − y)1+ε
= −1

ε
δ(1 − y) +

[
1

1 − y

]

+

+ O(ε). (2.27)

Some algebra leads to the expression

α0

[
C

(1)
2 (z,Q2, ε)

]

l
=

CFαs

2π
z

{
−
[
1

ε
− γE + ln(4π) − ln

Q2

µ2

]
1 + z2

(1 − z)+

−1 + z2

1 − z
ln z + 3 + 2z − 3

2

[
1

1 − z

]

+

+(1 + z2)

[
ln(1 − z)

1 − z

]

+

}
. (2.28)

The final result is obtained adding the soft-virtual contribution, eq. (2.26), to eq. (2.28):

α0C
(1)
2 (z,Q2, ε) =

CFαs

2π
z

{
−
[
1

ε̄
− ln

Q2

µ2

] [
1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]

−1 + z2

1 − z
ln z + 3 + 2z + (1 + z2)

[
ln(1 − z)

1 − z

]

+

− 3

2

[
1

1 − z

]

+

−
(

9

2
+
π2

3

)
δ(1 − z)

}
=
αs

2π
z

{[
ln
Q2

µ2
− 1

ε̄

]
Pqq(z) + Cq

2(z)

}
.

(2.29)

13



2.1. QCD and the parton model

where according to the MS prescription

1

ε̄
=

1

ε
− γE + ln(4π). (2.30)

The function Pqq has also been introduced; it universally describes the splitting q → qg.

In order to obtain the structure function F2 one must convolute the coefficient

function C2 with the distribution q(0) of a quark in a proton and sum over the quark

flavours:

F2(x,Q
2) =

∑

q,q̄

e2q

∫ 1

x

dx1

x1
C2

(
x

x1

)
q(0)(x1, ε)

= x
∑

q,q̄

e2q

{
q(0)(x) +

αs

2π

∫ 1

x

dx1

x1
q(0)(x1, ε)

[
Pqq

(
x

x1

)[
ln
Q2

µ2
− 1

ε̄

]
+ Cq

2

(
x

x1

)]
+ ...

}
. (2.31)

One can regard q(0)(x, ε) as a d-dimensional bare distribution and therefore absorb the

collinear pole into this unmeasurable quantity, defining a renormalised object as

q(x, µ2, ε) = q(0)(x, ε) − αs

2π

∫ 1

x

dx1

x1
q(0)(x1, ε)

{
1

ε̄
Pqq

(
x

x1

)
+ . . .

}
(2.32)

Of course there is some arbitrariness in dealing with the finite contribution: different

choices correspond to different factorisation schemes; in the MS scheme only the

contribution proportional to 1/ε̄ is absorbed. The structure function is now free of

collinear singularities. Thus one can take ε→ 0, obtaining:

F2(x,Q
2) = x

∑

q,q̄

e2q

∫ 1

x

dx1

x1
q(x1, µ

2)

×
{
δ(1 − x

x1
) +

αs

2π

[
Pqq

(
x

x1

)
ln
Q2

µ2
+ Cq

2

(
x

x1

)]}

(2.33)

The distribution q(x, µ2) cannot be determined from first principles, since it receives

contribution from the non-perturbative regime of strong interactions.

In order to obtain a complete result at O(αs) one must consider the contribution

coming form the process

γ∗ + g → q + q̄ ,

in which the initial parton is a gluon that splits into two quarks, one of which scatters

14



2.1. QCD and the parton model

off the virtual photon. The computation is similar to the previous case and the result is

F2(x,Q
2) = x

∑

q,q̄

e2q

∫ 1

x

dx1

x1
q(x1, µ

2)

×
{
δ(1 − x

x1
) +

αs

2π

[
Pqq

(
x

x1

)
ln
Q2

µ2
+ Cq

2

(
x

x1

)]}

+ x
∑

q,q̄

e2q

∫ 1

x

dx1

x1
g(x1, µ

2)

×
{
αs

2π

[
Pqg

(
x

x1

)
ln
Q2

µ2
+ Cg

2

(
x

x1

)]}
+ O(α2

s) . (2.34)

where the gluon distribution g has been introduced together with the splitting function:

Pqg(z) = TR

[
z2 + (1 − z)2

]
, (2.35)

with TR = 1
2 For the explicit expression of the coefficient function Cg

2 see for example [3].

In this section it has been explicitly shown that at NLO in deep inelastic scattering

one can separate contributions coming from non-perturbative QCD from perturbative

ones. This is a fundamental feature of QCD which is known as factorisation. Parton

distribution functions (PDFs) have been introduced in order to describe the physics of

quarks and gluons in the proton. Presently non-perturbative methods such as lattice

QCD [9] have not reached an accurate description of such objects. However, while the

coefficient functions are process dependent, parton densities are universal and so can be

taken as a phenomenological input from previous experiments. Moreover, even though

PDFs are non-perturbative objects, their dependence on the factorisation scale µ2 can

be computed in perturbation theory, as described in the next section.

2.1.2 The DGLAP equations

In the previous section the structure function F2 has been computed at next-to-leading

order, considering the radiation of one parton and the one-loop virtual corrections.

Eq. (2.34) explicitly shows that at O(αs) the Bjorken scaling is broken by logarithm of

Q2/µ2. In the collinear limit this computation can be generalised to the radiation of n

partons fi

γ∗ + q → q +
n∑

i=0

fi ,

A more accurate analysis reveals that collinear divergences arise only from the region

in which the transverse momenta of the radiated partons are strongly ordered:

|kn|2 ≫ |kn−1|2 ≫ ...≫ |k2|2 ≫ |k1|2 . (2.36)
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2.1. QCD and the parton model

The computation of Feynman diagrams in the collinear limit leads to a squared

amplitude proportional to:

|Mn|2 ∼ (−1)n

n!

(αs

2π

)n
(

1

ε

(
Q2

µ2

)−ε
)n

Pi1,ji
⊗ · · · ⊗ Pin,jn ⊗ C

(0)
2 (2.37)

Similarly to the case of single emission, the collinear divergences can be absorbed into

renormalised quark and gluon distributions, leaving a logarithmic dependence:

F2(x,Q
2) ∼

(αs

2π

)n
lnn Q

2

µ2
. (2.38)

This behaviour is potentially dangerous because Q2 can be very large and hence the

product αs ln Q2

µ2 ∼ 1. Formally subleading terms become important, invalidating

the perturbative approach. Such collinear logarithms can be resummed using

renormalization group techniques which lead to evolution equations for the parton

distributions functions, as discussed in the following.

The factorisation of collinear singularities requires the introduction of an arbitrary

energy scale µ2, but physical observables such as hadronic structure functions cannot

depend on this parameter:

µ2 d

dµ2
F2(x,Q

2) = 0 . (2.39)

The right-hand side of eq. (2.34) implies that the parton density q(x, µ2) satisfies the

equation:

µ2∂q(x, µ
2)

∂µ2
= −αs

2π

∫ 1

x

dx1

x1

[
Pqq

(
x

x1

)
q(x1, µ

2) + Pqg

(
x

x1

)
g(x1, µ

2)

]
. (2.40)

This is the well-known Dokshitzer- Gribov-Lipatov-Altarelli-Parisi equation [10]-[12].

The above derivation is valid only at the lowest order in perturbation theory, but an

all-order proof is possible. The result is a (2nf +1)-dimensional matrix equation in the

space of quarks, antiquarks and gluons:

∂

∂t

(
qi(x, t)

g(x, t)

)
=

αs(t)

2π

∑

qj ,q̄j

∫ 1

x

dx1

x1

×



 Pqiqj

(
x
x1
, αs(t)

)
Pqig

(
x
x1
, αs(t)

)

Pgqj

(
x
x1
, αs(t)

)
Pgg

(
x
x1
, αs(t)

)




(
qj(x1, t)

g(x1, t)

)
,

(2.41)

where

t = ln
Q2

µ2
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2.1. QCD and the parton model

and αs(t) is the running coupling constant. Although the parton distribution functions

are non-perturbative objects, the evolution kernels Pij can be computed in perturbation

theory:

Pij(αs(t), z) =

∞∑

n=0

(
αs(t)

2π

)n

P
(n)
ij (z) . (2.42)

The DGLAP equations enable one to compute the scale dependence of the PDFs, hence

they can be fitted from the data collected in a given experiment at some energy scale

t0 and used as a phenomenological input for a new experiment at a different energy

scale t. The leading order expressions of the evolution kernel are:

P (0)
qq (z) = CF

[ 1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]
,

P (0)
qg (z) = TR

[
z2 + (1 − z)2

]
,

P (0)
gq (z) = CF

[1 + (1 − z)2

z

]
,

P (0)
gg (z) = 2CA

[ z

(1 − z)+
+

1 − z

z
+ z(1 − z)

]
+

δ(1 − z)
(11CA − 4nfTR)

12π
, (2.43)

where the plus distribution has been formerly defined. At this order the splitting

functions Pij(z) have an attractive physical interpretation as the probabilities of

finding a parton of type i in a parton of type j with a fraction z of the longitudinal

momentum [12]. The splitting functions have been computed at next-to-leading

order [13], [14] and more recently at next-to-next-to leading order [15], [16].

An efficient method to solve the DGLAP equations and hence compute the evolution

of parton distributions, consists of defining particular linear combinations of the

individual quark distributions u, d, c, s, t, b. It is possible to write eleven non-singlet

flavour combinations which evolve independently [17]:

V =
∑

i

q−i ,

V3 = u− − d− ,

V8 = u− + d− − 2s− ,

V15 = u− + d− + s− − 3c− ,

V24 = u− + d− + s− + c− − 4b− ,

V35 = u− + d− + s− + c− + b− − 5t− (2.44)
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2.1. QCD and the parton model

T3 = u+ − d+ ,

T8 = u+ + d+ − 2s+ ,

T15 = u+ + d+ + s+ − 3c+ ,

T24 = u+ + d+ + s+ + c+ − 4b+ ,

T35 = u+ + d+ + s+ + c+ + b+ − 5t+ , (2.45)

where

q±i = qi ± q̄i . (2.46)

Then only one quark combination remains, it is the singlet one:

Σ =
∑

i

q+i ≡
∑

i

(qi + q̄i) , (2.47)

whose evolution is coupled to the gluon’s one:

∂

∂t

(
Σ(x, t)

g(x, t)

)
=

αs(t)

2π

∫ 1

x

dx1

x1


 Pqq

(
x
x1
, αs(t)

)
2nfPqg

(
x
x1
, αs(t)

)

Pgq

(
x
x1
, αs(t)

)
Pgg

(
x
x1
, αs(t)

)




(

Σ(x1, t)

g(x1, t)

)
.

(2.48)

In this thesis the singlet sector will be considered because it is the relevant one in the

high energy limit. The singlet quark distribution and the gluon can be grouped into

the vector

G(x, t) =

(
G(1)(x, t)

G(2)(x, t)

)
= x

(
Σ(x, t)

g(x, t)

)
(2.49)

Before solving the DGLAP equations it is useful to introduce a technical tool. The

expression for a physical observable, such as the structure function F2 given eq. (2.34),

consists of a convolution between a hard coefficient function and parton distribution

functions. Furthermore the DGLAP evolution is described by a set of coupled integro-

differential equations (see eq. (2.41)). A theorem states that the convolution product f

of two function g and h can be turned into an ordinary one by taking Mellin moments

of the functions. Suppose one has

f = g ⊗ h , (2.50)

then

M[f ] = M[g] × M[h] , (2.51)
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where M[f ] is the Mellin transformed of the function f , defined by:

M[f ](n) =

∫ 1

0

dα

α
αnf(α) . (2.52)

The proof is straightforward:

M[f ](n) =

∫ 1

0

dα

α
αn

∫ 1

α

dβ

β
g

(
α

β

)
h(β)

=

∫ 1

0

dβ

β

∫ β

0

dα

α
αng

(
α

β

)
h(β)

=

∫ 1

0

dβ

β
βn

∫ 1

0

dω

ω
ωng(ω)h(β) = M[g](n) M[h](n) .

(2.53)

In Mellin space the DGLAP equation for the singlet vector eq. (2.49) is

∂

∂t

(
G(1)(N, t)

G(2)(N, t)

)
=

(
γqq(N,αs(t)) 2nfγqg(N,αs(t))

γgq(N,αs(t)) γgg(N,αs(t))

)

×
(
G(1)(N, t)

G(2)(N, t)

)
,

(2.54)

where with some abuse of notation the function G(N, t) is the Mellin transformed of

G(x, t). The elements of the matrix of the singlet anomalous dimension are defined as

the Mellin moments of the splitting functions:

γij(N,αs(t)) =

∫ 1

0

dz

z
zNz

αs(t)

2π
Pij(z, αs(t)) . (2.55)

Note that with this definition the high partonic centre-of-mass energy limit z → 0

corresponds to N → 0 in Mellin space. In order to decouple the evolution in the singlet

sector one diagonalises the anomalous dimension matrix. The eigenvalues are

γ(±) =
1

2

[
γgg + γqq ±

√
(γgg − γqq)2 + 8nfγgqγqg

]
, (2.56)

and they admit the following perturbative expansion in powers of the strong coupling

αs(t):

γ(±)(αs(t), N) = αs(t)γ
(±)
0 (N) + αs(t)

2γ
(±)
1 (N) + αs(t)

3γ
(±)
2 (N)

+O
(
αs(t)

4
)
. (2.57)

The solution of the DGLAP equation in the singlet sector eq. (2.54) can be written on
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the basis of the eigenvectors G(±):

G(±)(N, t) = exp

[∫ αs(t)

αs(t0)
dα
γ(±)(N,α)

β(α)

]
G(±)(N, t0) , (2.58)

where the QCD β-function has been introduced. The solutions for the non-singlet case

have the same form, but with different anomalous dimensions.

The specific form of eq. (2.58) solves the problem of large collinear logarithms which

has been encountered in the computation of the structure function F2, eq. (2.38). In

fact all the leading logarithms of Q2/µ2 are resummed in the evolution factor if one

considers the leading order anomalous dimension:

exp

[∫ αs(t)

αs(0)
dα
γ(N,α)

β(α)

]
= exp

[∫ t

0
dt′γ(N,αs(t

′))

]
=

exp

[∫ t

0
dt′ αs γ0(N) + . . .

]
= exp [αs t γ0(N)] =

∞∑

n=0

(
αs ln

Q2

µ2
γ0(N)

)n

, (2.59)

where in the second line the running of the coupling has been neglected, as appropriate

at LO. If higher terms in the perturbative expansion of the anomalous dimension are

included, subleading logarithms can be resummed. The inclusion of γk enables to

perform the resummation of NkLO logarithms:

(αs(t))
k+n lnn Q

2

µ2
. (2.60)

2.1.3 Collinear factorisation theorem

In the previous sections deep inelastic scattering at one-loop was discussed, showing how

it is possible to absorb the singularities arising from the emission of collinear partons

into a redefinition of the parton densities. It was also argued that one can compute

the collinear behaviour to all orders in perturbation theory. The factorisation theorem

of collinear singularities states that it possible to write the hadronic cross section as a

convolution between a partonic, process dependent, coefficient function and universal

parton distributions. Corrections to factorisation are suppressed by powers of Q2. A

rigorous proof of factorisation to all orders exists for deep inelastic scattering in the

context of the operator product expansion (for a review see [18]). The plausibility

of factorisation properties for processes with one incoming hadron can be seen from

the following argument. As the centre-of-mass energy increases, the lifetime T of any

virtual partonic state in the hadron is lengthened, while the time t which the electron

takes to traverse the hadron is shortened because the hadron is Lorentz contracted.
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When t ≪ T the hadron can be viewed as a single virtual state characterised by a

definite number of partons during the entire time the electron takes to cross it. Since

the partons do not interact during this time, each one may be thought of as carrying

a definite fraction x of the momentum of the hadron. The electron interacts with

partons of definite momentum, rather than with the hadron as a whole. In addition,

if the momentum transfer is very high, the virtual photon is short-living and hence it

cannot travel far. Therefore, if the density of the partons is not too high, the electron

will be able to interact with only one single parton. Initial state interactions, which

give rise to soft and collinear singularities, are too early relative to the short time scale

of the hard scattering. Therefore it is appropriate that these singularities are included

in the parton density describing the incoming hadrons rather than in the short-distance

cross section. The proofs of factorisation confirm that this simple picture is in fact valid

in perturbation theory for a large class of processes.

In hadron–hadron collisions, the analysis is more complicated since the question

arises whether the partons in hadron h1, through the influence of their colour fields,

change the distribution of partons in hadron h2, thus spoiling the simple parton picture.

Factorisation of the cross section into a pure short-distance contribution, computable in

perturbation theory and non-perturbative, but universal, parton distribution functions

is more complicated because of these colour correlations. Nevertheless it can be proven

to all orders [19]. The cross section for hadron–hadron collisions can be written as:

σ(ρ,Q2) =
∑

j1,j2

∫ 1

ρ

dx1

x1

∫ 1

ρ

dx2

x2
σ̂j1,j2

(
ρ

x1x2
, Q2, αs(µ

2)

)

×fj1(x1, µ
2)fj2(x2, µ

2) , (2.61)

where ρ is the ratio between the hard scale of the process Q2 and the centre-of-mass

energy s.
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2.2 An Introduction to BFKL

In this section the high energy limit of Quantum Chromo- Dynamics is discussed and the

Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation is introduced. Many concepts which

are necessary in order to understand the framework of the BFKL equation come from

a description of strong interactions at high energy prior to QCD, the so called Regge

theory. A brief review of its basic ideas is provided, mainly following [6]. Afterwards

the main features of the BFKL equation at leading order and beyond are discussed.

2.2.1 Regge theory

Before the advent of a complete field theoretical description of strong interactions, an

attempt to describe the scattering of hadrons was carried out on the basis of few and

very general assumptions on the scattering matrix, defined as the overlapping of in and

out free particle states:

Sin,out = 〈out|in〉 . (2.62)

Three rather general postulates are assumed:

1. the S matrix is Lorentz invariant;

2. the S matrix is unitary;

3. the S matrix is an analytical function of its arguments, considered as complex

variables.

The first hypothesis says that the S matrix can be written as a function of Lorentz

invariant scalar products of the momenta of the incoming and outgoing particles. It is

useful to consider the special case of the scattering of two particles into two particles:

a+ b→ c+ d .

The kinematics is described by the Mandelstam variables:

s = (pa + pb)
2 ,

t = (pa − pc)
2 ,

u = (pa − pd)
2 . (2.63)

Energy-momentum conservation implies that

s+ t+ u =
∑

i=a,b,c,d

m2
i ,
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so the scattering matrix element can be written as a function of two independent

variables: s and t. The requirement of unitarity ensures the conservation of probability:

SS† = S†S = I . (2.64)

An important consequence of unitarity is the Cutkosky rule; introducing the scattering

amplitude A
Sin,out = δin,out + i (2π)4δ(4)(pin − pout)Ain,out , (2.65)

one can rewrite (2.64) in the following form:

2 ImAin,out = (2π)4δ(4)(pin − pout)
∑

n

Ain,nA∗
n,out . (2.66)

Thus the imaginary part of an amplitude can be deduced from the scattering amplitudes

of ingoing and outgoing particles, summed over the all possible intermediate states. A

particular case of the Cutkosky rule is the optical theorem, which relates the imaginary

part of the forward elastic scattering to the total cross section. For an elastic scattering

initial and final states are the same and in the forward case t = 0:

2 ImA(s, 0) = (2π)4δ(4)(pin − pout)
∑

n

|Ain → n|2 = FσTOT , (2.67)

where F is the flux factor. The third postulate states that the S-matrix is analytic on

the field of its complex arguments, with the exception of the singularities imposed by

the unitarity condition. Moreover one can determine the structure of such singularities

through the Cutkosky rule. According to eq. (2.66) the imaginary part of the amplitude

receives new contributions when s crosses an intermediate particle threshold. In a region

about the origin of the real s axis there are no contributions from the thresholds, so the

amplitude is real. An analytic continuation of a function A(s, t) with such properties

is given by A(s, t) ≡ A(s∗, t)∗ thanks to Schwartz reflection principle. In the whole

domain of analyticity the following relation holds:

A(s, t)∗ = A(s∗, t) .

Thus

ImA(s, t) =
A(s, t) −A∗(s, t)

2i
=

A(s, t) −A(s∗, t)
2i

, (2.68)

hence a contribution to the imaginary part of the amplitude for real s may arise only

through cuts along the real s axis with branch points at the n-particle thresholds

(n ≥ 2). A second useful consequence of analyticity is crossing symmetry, which relates
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the amplitude of processes in different channels. For an s-channel process

a+ b→ c+ d ,

s > 0 and t, u < 0 in the physical region. The scattering amplitude can be uniquely

analytic continued in the region where t > 0 and s, u < 0. This corresponds to a

t-channel scattering:

a+ c̄→ b̄+ d

and the relation between the amplitudes describing the two processes is:

Aa+c̄→b̄+d(s, t, u) = Aa+b→c+d(t, s, u) (2.69)

An analogue relation can be found for u-channel processes. It is clear that the amplitude

for a t (u)-channel scattering has cuts on the positive t (u)-axis as a consequence of

physical thresholds and, because of crossing symmetry, cuts on the negative real axes

as well.

The goal of Regge theory is to study scattering amplitudes in the high energy limit.

More precisely the Regge limit is defined as:

s≫ |t| (2.70)

It is convenient to start analysing a t-channel process because a partial wave expansion

can be performed:

Aa+c̄→b̄+d(s, t) =
+∞∑

l=0

(2l + 1)al(s)Pl(cosϑ) , (2.71)

where cosϑ = 1 + 2t
s is the scattering angle and Pl are Legendre polynomials. In

this expansion the amplitude is seen as a superposition of contributions coming from

the exchange of states with angular momentum l. Thanks to crossing symmetry it is

straightforward to rewrite this expansion for an s-channel process:

Aa+b→c+d(s, t) =
+∞∑

l=0

(2l + 1)al(t)Pl

(
1 +

2s

t

)
. (2.72)

An analytic continuation of this last expression in the plane of complex angular

momenta l is provided by

A(s, t) =
1

2i

∮

C
dl(2l + 1)

a(l, t)

sin(πl)
P

(
l, 1 +

2s

t

)
, (2.73)
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where the contour C goes along the real positive l axis and P
(
l, 1 + 2s

t

)
is the analytic

continuation of the Legendre polynomials. Note that the integrand has simple poles

in correspondence of integer real values of l and thus eq. (2.72) is reproduced. The

question that immediately arises is whether the function a(l, t) is unique; it turns out

to be not the case and one has to consider separately partial waves with even and odd

angular momenta. Therefore the analytic continuation can be done in terms of two

functions a(±1)(l, t) and the integral representation takes the form:

A(s, t) =
1

2i

∮

C
dl

(2l + 1)

sin(πl)

∑

η=±1

η + e−iπl

2
a(η)(l, t)P

(
l, 1 +

2s

t

)
, (2.74)

where η is called the signature of the partial wave amplitude. In order to study the

behaviour of this amplitude in the Regge limit eq. (2.70), it is convenient to deform the

countour of integration C into C̃, such that the new one goes parallel to the imaginary

axis at, for instance, Re l = −1
2 . In doing that one has to pick up all the contributions

coming from poles and cuts in the complex plane one may encounter. In the following

only the case of simple poles is considered for simplicity. Such singularities are called

Regge poles and they occur at

l = Ωnη(t) ,

as before η denotes the signature (even or odd) of the pole. The amplitude is written

as the sum of two different contributions:

A(s, t) = I(s, t) + P(s, t) . (2.75)

The first contribution comes from the integral along Re l = −1
2 :

I(s, t) =
1

2i

∫ − 1
2
+i∞

− 1
2
−i∞

dl
(2l + 1)

sin(πl)

∑

η=±1

η + e−iπl

2
a(η)(l, t)P

(
l, 1 +

2s

t

)

if s≫ |t|

≃ 1

2i

∫ − 1
2
+i∞

− 1
2
−i∞

dl
(2l + 1)

sin(πl)

∑

η=±1

η + e−iπl

2
a(η)(l, t)

Γ(2l + 1)

Γ(l + 1)2

( s
2t

)l
.

(2.76)

Because the integral is along Re l = −1
2 , one can write l = −1

2 + ib, obtaining

( s
2t

)l
=

√
2t

s
eib ln( s

2t) .

So in the Regge limit:

I(s, t) → 0 , when s→ ∞ .
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Hence the scattering amplitude is dominated by the contributions coming from the

Regge poles, which can be computed thanks to the residue theorem:

P(s, t) =
∑

η,nη

(2l + 1)π

sin(πl)

η + e−iπl

2
Res [a(η)(l, t)]P

(
l, 1 +

2s

t

) ∣∣∣
l=Ωnη (t)

if s≫ |t|

≃
∑

η,nη

(2l + 1)π

sin(πl)

η + e−iπl

2
Res [a(η)(l, t)]

Γ(2l + 1)

Γ(l + 1)2

( s
2t

)l ∣∣∣
l=Ωnη (t)

.

(2.77)

Moreover the leading energy behaviour for s → ∞ is determined by the rightmost

singularity:

A(s, t) ≃ η + e−iπΩ(t)

2
β(t) sΩ(t) , (2.78)

where the function β(t) contains the residue and the other coefficients. In the spirit of

the partial wave expansion, eq. (2.78) can be interpreted in the following way: in the

Regge limit the amplitude is dominated by an effective exchange in the t channel of

an object with angular momentum Ω(t); because this number is not an integer (or a

half-integer) this object cannot be a physical particle, it is called reggeon.

The theory developed so far predicts the Regge limit of a scattering amplitude: it

behaves like a power of the centre of mass energy s. Unfortunately it does not say

anything about the functional form of Ω(t). Information about it has to be extracted

from experimental data. A particular t-channel scattering amplitude exhibits poles in

correspondence of the exchange of physical particles with mass m and spin j such that

Ω(m2) = j. The plot of these data in the (t,Ω) plane would show that they lay on a

straight line called the Regge trajectory

Ω(t) = Ω0 + Ω′t , t > 0 . (2.79)

If this straight line is continued to negative values of t it provides information about

the behaviour of the s-channel amplitude.

Through the optical theorem the intercept of the Regge trajectory Ω0 determines

the asymptotic behaviour of the total cross-section

σTOT =
2

F
ImA(s, t = 0) ≃ 1

s
ImA(s, t = 0) ∼ sΩ

0−1 . (2.80)

A theorem due to Pomeranchuck, and revised afterwards in different forms, states that

the total cross section for a given scattering process vanishes for large s unless it is

dominated by the exchange of a state with quantum numbers of the vacuum. It is

experimentally known that total cross sections slowly increase with s. If one was to
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attribute this behaviour to a single reggeon exchange then, according to eq. (2.80),

it must have intercept Ω0
P > 1 and quantum numbers of the vacuum: this is called

the pomeron. Studies of the total cross sections enable one to fit the value of the

intercept [20], while the analysis of differential elastic cross sections determines the

slope Ω′
P and establishes that the pomeron has even signature [21]:

Ω0
P ≃ 1.08

Ω′
P ≃ 0.25 GeV . (2.81)

Deep inelastic scattering plays a crucial role in this analysis too. The Regge limit in

this process is s ≫ Q2 and so x ≪ 1. Analyses of the structure function F2 show that

at moderate values of the Bjorken variable (10−2 < x < 10−1) the data are in good

agreement with the pomeron picture. In the next section the high energy prediction of

strongly interacting processes will be discussed in the framework of perturbative QCD.

This will lead to a hard pomeron, as opposed to the soft one previously discussed, which

has intercept ω0 > Ω0
P .

2.2.2 The BFKL equation

The leading contribution to the BFKL equation has been derived in different ways [22]-

[25], and [26], [27]. In this sub-section a brief review is presented following the

construction explained in [6]. The aim of the calculation is to compute the QCD

pomeron by studying the behaviour of parton-parton scattering in the high energy

limit. An important ingredient of the calculation is the eikonal approximation, which

greatly simplifies the expressions of three-particle vertices when a soft gluon is emitted.

In such an approximation if the incoming parton has momentum p and the soft gluon

q the expressions for the vertices become:

qqg : −2i gs p
µ δλ1λ′

1
τa
ij

ggg : +2i gs p
µ gνρ TA

bc , (2.82)

where λi are the quark helicities. The process to be considered is

q(p1, λ1) + q(p2, λ1) −→ q(p1 − q, λ′1) + q(p2 + q, λ′2) ,

via the exchange of a colour singlet, to all orders in perturbation theory, keeping only

the leading ln s term. Note that with this choice of kinematics t = −q2. The first

contribution comes from the evaluation of one-loop diagrams as shown in fig. 2.4. The

calculation can be performed using the Cutkosky rule. The lowest order amplitude
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p2, λ2

p1, λ1

k k − q

p1 − q, λ′
1

p2 + q, λ′
2 p2, λ2

p1, λ1

k k − q

p1 − q, λ′
1

p2 + q, λ′
2

Figure 2.4: The lowest order contribution to quark-quark scattering via the exchange
of a colour singlet.

turns out to be purely imaginary

A1 = 4i α2
s δλ1λ′

1
δλ2λ′

2

C2
A − 1

4C2
A

∫
d2k

k2(k − q)2
, (2.83)

where on a Sudakov basis the momentum k has the expression:

k = yp1 + zp2 + k , (2.84)

and in the high energy limit k2 ≃ −k2, y = |z| ≪ 1. The next order in perturbation

theory is the two-loop case. Diagrams can be classified into two classes: the ones which

have a cut gluon line and the ones where the cut goes only through the quark lines.

The first ones can be computed considering the amplitude for two quarks going into

two quarks plus a gluon. The leading logarithmic contribution arises from the region

where the longitudinal component of the momenta k1 and k2 of the internal lines are

ordered:

y2 ≪ y1 ≪ 1 , |z1| ≪ |z2| ≪ 1 , (2.85)

while in contrast with the collinear case the magnitudes of the transverse momenta are

all of the same order

|k1|2 ≃ |k2|2 ≡ |k|2 ≪ s (2.86)

The complete 2 → 3 amplitude can be expressed as the amplitude for the emission

of a gluon along a vertical gluon line with the three-gluon coupling substituted by an

effective vertex Γσ
µ,ν(k1, k2). In order to compute the second class of diagrams one must

consider the one-loop corrections to the process qq → qq. Summing up the two classes
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of contribution one obtains:

ImA2 = −2CAα
3
s

π2
δλ1λ′

1
δλ2λ′

2

C2
A − 1

4C2
A

ln
s

k2

∫
d2k1d

2k2

[
q2

k2
1k

2
2(k1 − q)2(k2 − q)2

− 1

2

(
1

k2
1(k1 − k2)2(k2 − q)2

+ k1 ↔ k2

)]
.

(2.87)

Hence the two-loop amplitude contains a term for which the integrations over the

transverse momenta factorise, leading to a contribution proportional to the one-loop

amplitude.

The generalisation of such computation to n-loops is not an easy task even in the

leading logarithmic approximation. Firstly diagrams describing 2 → n + 2 processes

have to be analysed in the kinematical region where

k2

s
≪ yi+1 ≪ yi ≪ 1 ,

k2

s
≪ |zi| ≪ |zi+1| ≪ 1 , (2.88)

showing that such emissions can be still represented with a gluon ladder with the

effective vertices Γσ
µ,ν . The picture still works and there are no leading logarithmic

contributions coming from the emission of quarks. In the two-loop case there were

diagrams for which the cut went only through the quark lines. These graphs can be

seen themselves as the beginning of a ladder expansion and one can convince oneself

that in order to compute the imaginary part of the n-loop amplitude, it is necessary

to compute superpositions of gluon ladders. The effect of these superpositions is the

reggeization of the gluon [6]. A particle with mass m and spin j is said to reggeize if the

amplitude for a process which involves the t-channel exchange of the particle’s quantum

number behaves as M ∼ sω(t) and ω(m) = j . In order to prove the reggeization

of the gluon one has to perform a computation similar to the one for the pomeron

but considering an octet exchange. Reggeization means that the propagator of the ith

vertical gluon has the form (in the Feynman gauge):

dµν =
igµν

k2
i

(
ρi−1

ρi

)ǫG(k2
i )

, (2.89)

where ωG(−k2) = 1+ǫG(−k2) is the gluon Regge trajectory, and its one-loop expression

is:

ǫG(−k2) = −αsCA

π

∫
d2k′

2π

k2

k′2(k2 − k′)2
. (2.90)

It is convenient to consider Mellin moments of the amplitude for singlet exchange, in

order to unravel the nested integrals over the longitudinal momenta. Defining x = k2/s
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one obtains

∫
dxxN−1A(s, t)

s
≡ 4i α2

s δλ1λ′

1
δλ2λ′

2

C2
A − 1

4C2
A

∫
d2k1d

2k2

k2
2(k1 − q)2

f(N,k1,k2,q) , (2.91)

The function f is closely related to the four-gluon Green’s function and it is symmetric

upon the exchange of the transverse momenta of the gluons at the top and at the bottom

of the ladder (k1 ↔ k2). Henceforth only the case of zero momentum transferred

t = −q2 = 0 will be considered; this choice greatly simplifies the equations and it is

sufficient for the purposes of this thesis. The Green’s function f admits a perturbative

expansion in the strong coupling constant:

f(N,k1,k2) =
∞∑

n=1

(
αsCA

π

)n−1

fn(N,k1,k2) , (2.92)

whose first few coefficients are:

f1(N,k1,k2) =
1

N
δ(2)(k1 − k2) ,

f2(N,k1,k2) =
αsCA

π

1

N2

1

2π(k1 − k2)2
,

... (2.93)

Looking at the structure of such coefficients, it is possible to show that f can be obtained

as the solution of an integral equation, the renowned BFKL equation:

Nf(N,k1,k2) = δ(2)(k1 − k2) + αs [K0 ⊗ f ] (N,k1,k2) , (2.94)

where the action of the leading order kernel on f is given by

αs [K0 ⊗ f ] (N,k1,k2) =
αsCA

π

∫
d2k′

π(k1 − k′)2
[
− k2

1

k′2 + (k1 − k′)2
f(N,k1,k2) + f(N,k′,k2)

]
.

(2.95)

The first contribution to the kernel comes from the one-loop Regge trajectory, while the

second one describes the emission of one gluon along the ladder. The BFKL equation

is schematically shown in fig. 2.5.

So far only partonic processes have been considered; in order to make contact

between the BFKL equation and phenomenology, the coupling of the pomeron to

hadrons must be described. The Mellin transform of the forward amplitude for hadron-
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f ff
+=

Figure 2.5: The BFKL equation for the gluon Green’s function f . The vertical double
lines represent reggeized gluons, while the black blobs are the effective vertices Γσ

µ,ν .

hadron scattering has the form

A(hadr)(N, t = 0) = C
∫

d2k1

(2π)2
d2k2

(2π)2
Φ1(k1)Φ2(k2)

k2
1k

2
2

f(N,k1,k2) , (2.96)

where C is the colour factor of the process. The pomeron-hadron coupling is

parametrised by the functions Φi, which clearly depend on non-perturbative physics.

The unintegrated gluon density is then defined as the hadronic scattering amplitude

obtained when one of the hadron-pomeron couplings is replaced by a delta function,

e.g. Φ2(k2) = 2πk2
2 δ

(2)(k2 − k):

G(N,k) =
1

(2π)3

∫
d2k1

k2
1

k2Φ1(k1)f(N,k1,k) . (2.97)

In order to recover the parton distribution function which enters the DGLAP evolution

eq. (2.58), this gluon density has to be integrated over the transverse momenta up to

the relevant energy scale Q2:

G(N,Q2) ≡
∫

d2k

πk2 Θ(Q2 − k2)G(N,k) . (2.98)

The BFKL equation (2.94) can be cast in the form of an evolution equation in x for the

unintegrated gluon density G, inverting the N -Mellin and performing a second Mellin

transform in order to turn the convolution integral into an ordinary product. The
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Mellin transform of the evolution kernel is given by

χ0(M) =

∫
d2k′K0(k

′,k)

(
k′2

k2

)M−1

=
CA

π
[2ψ(1) − ψ(M) − ψ(1 −M)] , (2.99)

where ψ is the logarithmic derivative of the Euler Gamma function. The BFKL equation

takes the form:

d

dξ
G(ξ,M) = αsχ0(M)G(ξ,M) , with ξ = ln

1

x
. (2.100)

It is clear from eq. (2.99) that the exchange symmetry k1 ↔ k2 in Mellin space becomes

M ↔ 1 −M . (2.101)

This property will be extensively used in this work. It is not difficult to solve eq. (2.100)

at LO; the solution in (ξ, t) space has the form:

G(ξ, t) =

∫ c+i∞

c−i∞

dM

2πi
exp [Mt+ αsχ0(M)ξ]G(0,M) . (2.102)

The asymptotic behaviour of this function is determined, in the saddle point approx-

imation, by the stationary point of the exponent; in the Regge limit t
ξ → 0 and one

obtains:

G(ξ, t) ∝ exp

[
−αsχ0

(
1

2

)
lnx

]
= x−(ω0−1) . (2.103)

This result is the hard pomeron prediction, which has been anticipated at the end of

section 2.2.1:

c(αs) ≡ ω0 − 1 = αs
CA

π
4 ln 2 > Ω0

P − 1 . (2.104)

2.2.3 BFKL kernel at next-to leading order

The computation of the next-to-leading order correction to the BFKL kernel took

almost ten years. The program was set up by Fadin and Lipatov in [28], where it

was shown how to extend the computation previously described to the next-to-leading

logarithmic accuracy. Firstly the two-loop gluon Regge trajectory is needed [29], [30].

Secondly the one-loop correction to the vertex Γρ
µν for the emission of one gluon along

the ladder has to be considered [31]. Finally, at this accuracy, the tree level vertices

for the emission of two gluons and for the production of a quark-antiquark pair along

the ladder have to be included [32], [33]. The calculation of the BFKL pomeron in

the next-to-leading approximation was completed by Fadin and Lipatov in [34] and

by Camici and Ciafaloni in [35] and [36]. The evolution equation for the unintegrated
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parton distribution at NLO can be written as:

d

dξ
G(ξ,k) =

[(
αs(λ

2)K0 + α2
s(λ

2)K1

)
⊗ G

]
(ξ,k) . (2.105)

It is clear from the previous equation that the running of the coupling constant cannot

be neglected beyond leading order. In particular working at this accuracy requires one

to consider

αs(λ
2) =

αs(µ
2)

1 + αs(µ2)β0 ln λ2

µ2

, (2.106)

where β0 is the QCD β-function at one loop. A delicate issue has to be faced, namely

the choice of the scale λ2 for the running coupling. If one chooses λ2 = k2 upon Mellin

transform the BFKL equation becomes

d

dξ
G(ξ,M) =

(
α̂sχ0(M) + α̂2

sχ1(M)
)
G(ξ,M) , (2.107)

while for λ2 = k′2:

d

dξ
G(ξ,M) =

(
χ0(M)α̂s + χ1(M)α̂2

s

)
G(ξ,M) . (2.108)

The differential operator α̂s represents the running coupling constant in Mellin space:

α̂s =
αs(µ

2)

1 − αs(µ2)β0
∂

∂M

; (2.109)

different arguments for the running coupling correspond to different orderings of the

operators. In particular it is possible to compute contributions coming from the choice

of the energy scale in an algebraic way:

α̂sχ0 = χ0α̂s + [α̂s, χ0] . (2.110)

These considerations are fundamental in order to understand running coupling duality,

which will be introduced in the following chapter. The O
(
α2

s

)
contribution to the

Mellin-transformed kernel in eq. (2.108) is given by:

χ1(M) = −
(CA

2π

)2[(11

3
− 2nf

3CA

)1

2
(χ0

2(M) − ψ′(M) + ψ′(1 −M))

−
(67

9
− π2

3
− 10nf

9CA

)
χ0(M) − 6ζ(3)

+
π2 cos(πM)

sin2(πM)(1 − 2M)

(
3 +

(
1 +

nf

CA
3

) 2 + 3M(1 −M)

(3 − 2M)(1 + 2M)

)

−ψ′′

(M) − ψ
′′

(1 −M) − π3

sin(πM)
+ 4φ(M)

]
. (2.111)

33



2.2. An Introduction to BFKL

0 0.2 0.4 0.6 0.8 1

M
-10

-8

-6

-4

-2

0

2

4

6

8

10

χ

LO
LO + NLO

Figure 2.6: Plots of the BFKL kernel at leading order approximation (dashed line) and
LO + NLO (dot-dashed line) with αs = 0.2 and nf = 4. The perturbative expansion
is unstable.

The function φ(M) is:

φ(M) = −
∫ 1

0

dx

1 + x
(xM−1 + x−M )

∫ 1

x

dt

t
ln(1 − t)

=
∞∑

n=0

(−1)n
[ψ(n+ 1 +M) − ψ(1)

(n+M)2
+
ψ(n+ 2 −M) − ψ(1)

(n+ 1 −M)2

]
.

(2.112)

The above expression is not symmetric under the exchange M ↔ 1 − M in

contrast to the LO case. Specifically the contribution which breaks the symmetry is

−ψ′(M) + ψ′(1 −M). The origin of this term can be understood looking at eq. (2.110):

[α̂s, χ0] = α̂2
sβ0χ

′
0(M) = α̂2

sβ0
CA

π

(
−ψ′(M) + ψ′(1 −M)

)
+ O

(
α̂3

s

)
. (2.113)

In fig. 2.6 the kernel χ is plotted as a function of the variable M , between zero and

one, at leading and next-to-leading order. It is clear that the perturbative expansion

is not stable. The NLO corrections are large and they change the qualitative shape of

the kernel even for reasonable values of αs. This is mainly due to poles of increasing

order and alternating sign in M = 0 and M = 1. For instance the Laurent expansions
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Figure 2.7: The pomeron intercept c(αs) = χ(1
2 , αs), plotted as a function of the strong

coupling constant.

about M = 0 of the LO and NLO kernels are:

χ0 ∼ 1

M
+ O

(
M2
)
,

χ1 ∼ − 1

M3
+ O

(
M−2

)
. (2.114)

The slow convergence of the perturbative expansion can also be seen looking at the

plot of the pomeron intercept c(αs) = χ(1
2 , αs) in fig.2.7. The NLO curve sensibly

departs from the LO one at very small values of the coupling constant (αs . 0.05).

In order to perform reliable phenomenological predictions it is necessary to cure the

perturbative instability of the kernel. This can be achieved by resumming to all orders

the troublesome terms. In Chapter 3 it will be shown how the DGLAP anomalous

dimension can be used in order to perform such a resummation. Alternatively one

can try to compute higher order contributions to the kernel. However, beyond NLO

the BFKL evolution presents various problems. A direct computation shows that the

universality of the pomeron exchange is broken at NNLO [37]. Furthermore, a new class

of contributions involving the t-channel exchange of four gluons enters at NNLO (see

[38] and references therein). These are higher twist (power suppressed) contributions

which can mix with the two-gluon operator, spoiling the ladder picture previously

described. The form of the full BFKL equation at NNLO is thus different from that

one at LO and NLO, in contrast to the DGLAP equation which has the same form
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Progress has been recently made [39], [40] but a complete description of the BFKL

at NNLO is not yet available. The computation of the collinear approximation of the

BFKL kernel at O
(
α3

s

)
has been performed in [41]. The details of this computation

are presented in Chapter 6.
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Chapter 3

High energy resummation

The purpose of this chapter is to continue the analysis of perturbative QCD processes

at high energy. This is particularly important in order to achieve a good understanding

of the enormous background which characterises hadron colliders such as the LHC. In

the high energy, or semi-hard, regime the following hierarchy of energy scales is realised:

Λ2 ≪ Q2 ≪ s ; (3.1)

Q2 sets the scale of the coupling and so the first strong inequality ensures that

perturbation theory is applicable as αs(Q
2) ≪ 1. This scale can be identified, for

instance, with the transferred momentum in deep inelastic scattering or with the mass

of some heavy particles produced in the final states such as heavy quarks, Higgs boson

or with the invariant mass of a lepton pair. The analysis of collinear factorisation

carried out in the previous chapter enables one to resum large logarithms of the ratio

Q2/Λ2 thanks to the DGLAP equation. However, the second strong inequality could

destroy the reliability of this picture because both coefficient and splitting functions

contain logarithms of the ratio Q2/s, which become dangerous in the high energy limit.

Because for deep inelastic scattering at high energy this ratio corresponds to the Bjorken

variable x, the high energy regime is often called small x limit. In the previous chapter

the high energy behaviour of QCD has been discussed, introducing the BFKL equation

in order to resum high energy logarithms. In this chapter the general framework in

which the high energy resummation of hard processes is performed is presented.

3.1 kT -factorisation

The basic idea in this analysis consists of replacing the standard collinear factorisation

eq. (2.34) and eq. (2.61) of hard coefficient functions and parton distributions with a

corresponding high energy factorisation [44], [47]. This factorisation is kT -dependent

and enables one to resum leading high energy logarithms in the coefficient function
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3.1. kT -factorisation

to all orders in perturbation theory. In order to simplify the formulae, the case of

photon-hadron scattering (photoproduction) will be analysed in this section; this eases

the connection with standard collinear factorisation discussed in the previous chapter

for deep inelastic scattering. The generalisation to processes with two hadrons in the

initial state will be presented afterwards. The kT -factorisation theorem states that in

the high energy limit the dimensionless hadronic cross section Σ ≡ Q2σ can be written

as

Σ(ρh, Q
2) =

∑

j

∫ 1

ρh

dx1

x1

∫
d2k1

πk2
1

Σ̂off
j

(
ρh

x1
,
k1

Q
,αs(µ

2)

)
Fj(x1,k

2
1, µ

2),

(3.2)

up to terms suppressed by powers of the hard scale Q2; ρh is the ratio between the hard

scale of the process Q2 and the centre-of-mass energy s (the equivalent of the Bjorken

variable for hadronic processes). The unintegrated parton distribution function Fj

has been defined in eq. (2.97). Because the dominant contribution in the high energy

limit is given by gluons, the summation over the parton index in (3.2) will be dropped

in the following discussion and only the gluon distribution G will be considered. A

full proof of eq. (3.2) would require a detailed analysis of gluon emission in the small x

limit [42], [43]. Choosing an axial gauge multi-gluon exchange diagrams are subleading;

it is then possible to show that initial soft gluon radiation can be factorised in the

kinematic region where the longitudinal momenta are strongly ordered, building up

the unintegrated distribution function G. Then, what is left is the hard vertex of the

process initiated by the photon and an off-shell gluon. Such a gluon is attached to

an external parton with an eikonal vertex eq. (2.82), hence the off-shell cross section

which enters the kT -factorisation is:

Σ̂off
g

(
ρh

x1
,
k1

Q

)
=

ρh

2x1

2x2
1p

µ
1p

ν
1

k2
1

Aµν(k1, k2) , (3.3)

where the obvious dependence on the strong coupling has been dropped. A detailed

description of the kinematics of processes with initial off-shell partons is reported in

Appendix A.2. In eq. (3.3) the momentum p1 in the numerator comes from the eikonal

vertex; A is the contribution coming from the relevant hard process to the imaginary

part of the γg → γg amplitude. A more careful analysis at the level of the matrix

element can simplify the structure of eq. (3.3), as shown in the following. The off-shell
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3.1. kT -factorisation

matrix element saturated with the eikonal coupling is

Moff(k1, k2; p3, p4) =

√
2x1 p

µ
1

|k1|
Mµ(k1, k2; p3, p4)

=

√
2x1 p

µ
1

|k1|
dµν(k1)M̂ν(k1, k2; p3, p4) ,

(3.4)

where the polarisation tensor dµν comes from the off-shell gluon. This object is gauge

dependent and one might wonder about the gauge invariance of Moff. All the derivation

is performed in an axial gauge, so the polarisation tensor has the form:

dµν(k) = −gµν +
nµkν + kµnν

n · k − n2 kµkν

(n · k)2 , (3.5)

with, for instance, n = ap1 + bp2. A straightforward calculation gives:

pµ
1dµν(k1) =

k1 ν

x1
, (3.6)

so that the gauge dependence cancels out and the off-shell matrix element becomes:

Moff =
√

2
k

µ
1

|k1|
M̂µ . (3.7)

If hadron-hadron processes are considered, then the matrix element M̂ itself contains

gauge-dependent contributions, because of the non-Abelian diagrams. Nevertheless it

is possible to check for specific processes that it is gauge invariant too because the

eikonal couplings induce physical polarisation for the initial gluons, despite being off-

shell [44]. Therefore the hard cross section which enters the kT -factorisation theorem

is gauge invariant and it is given by the leading order diagrams of the relevant process

computed with initial off-shell gluons whose polarisation vectors are given by eq. (3.7);

the squared matrix element has to be averaged over colour and polarisations of the

initial particles. It is then integrated over the final state phase space with flux factor

given by the longitudinal contribution to the centre of mass energy ν = 2x1p1 · p2:

Σ̂off
g =

Q2

2ν

∫
dΦ
∣∣∣M off

∣∣∣
2
. (3.8)

The convolutions over transverse and longitudinal momenta in eq. (3.2) can

be turned into ordinary products by taking the Mellin transforms with respect
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3.1. kT -factorisation

to ρh and Q2:

Σ(N,M) =

∫ 1

0

dρh

ρh
ρN

h

∫ ∞

0

dQ2

Q2

(
Q2

µ2

)−M

Σ(ρh, Q
2) , (3.9)

so that the factorisation formula becomes:

Σ(N,M) = Σ̂off
g (N,M)G(N,M) , (3.10)

where on the right-hand side of the equation the double Mellin transformed of the off-

shell cross section and of the gluon density have been introduced. The factorisation

formula eq. (3.10) is valid in the high energy limit (N → 0) and in the collinear limit

(M → 0). In order to make contact with standard collinear factorisation it is better to

deal with integrated parton distributions, rather than unintegrated ones

G(x,Q2) =

∫ Q2

0

dk2

k2
G(x, k2) , (3.11)

which in double Mellin space (N,M) becomes

G(N,M) =
1

M
G(N,M) (3.12)

It is convenient to define an impact factor h(N,M) by multiplying the Mellin

transformed of the off-shell cross section by the factor M , coming from the parton

densities:

h(N,M) = M Σ̂off
g (N,M)

= M

∫ 1

0

dρ

ρ
ρN

∫
d2k1

πk2
1

(
k2

1

Q2

)M

Σ̂off
g

(
ρ,

k1

Q

)
,

with ρ =
ρh

x1
. (3.13)

The physical cross section is then obtained inverting the Mellin transforms:

Σ(ρh, Q
2) =

∫ c+i∞

c−i∞

dN

2πi
eξN

∫ c+i∞

c−i∞

dM

2πi
etMh(N,M)G(N,M) ,

with ξ = ln
1

ρh
, t = ln

Q2

µ2
.

(3.14)

Here N and M have to be considered as complex variables. The two contours of

integration have to be kept to the right of the singularities of the integrand near N = 0

and M = 0. The purpose of this discussion is the resummation of the collinear and high
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3.1. kT -factorisation

energy logarithms, which contaminate the coefficient function evaluated at fixed order

in perturbation theory. In Mellin space such logarithms correspond to inverse powers of

M and N respectively. It turns out that these logarithms are single logarithms: at each

order in perturbation theory there is at most one extra logarithm of each type for every

power of the strong coupling. Hence a typical contribution to integrand in eq. (3.14)

has the form αl
sM

−mN−n, with m,n ≤ l . In order to obtain meaningful results such

contributions have to be factored into the gluon distribution G(N,M) and resummed

by solving the DGLAP and BFKL evolution equations (2.54) and (2.100) respectively.

Taking the double Mellin transform both equations simplify to pure algebraic ones;

neglecting the running of the coupling the two equations become:

MG(N,M) = G0(N) + γ(N,αs)G(N,M) ,

NG(N,M) = Ḡ0(M) + χ(M,αs)G(N,M) , (3.15)

where G0(N) and Ḡ0(M) are non-perturbative initial conditions and, unless stated

differently, γ = γ(+) is the larger eigenvalue of the anomalous dimension matrix in the

singlet sector. The two evolution equations admit the simple solution:

G(N,M) =
1

M − γ(N,αs)
G0(N) =

1

N − χ(M,αs)
Ḡ0(M) . (3.16)

The leading twist solution is determined by the pole in the perturbative factors:

M = γ(N,αs) , N = χ(M,αs) . (3.17)

Hence the evolution kernels must satisfy the consistency conditions:

M = γ(χ(M,αs), αs)

N = χ(γ(N,αs), αs) . (3.18)

These are called duality relations [52], [53], [55] and they state that the two evolution

kernels are one the inverse of the other one. Therefore χ determines the high energy

(N = 0) singularities of the DGLAP anomalous dimension and γ the collinear

poles (M = 0) of the BFKL kernel. Further implications of duality, its extension

beyond the fixed coupling approximation and the resummation of the kernels will be

investigated in section 3.2. Fixed coupling (or naive) duality can be also used to

perform the resummation of the logarithms which contaminate the hard coefficient

functions. Factorisation states that all the collinear and high energy logarithms can be

factored into the gluon distribution, hence the impact factor h(N,M) in eq. (3.14) is a

regular function of its arguments in a neighbourhood of the origin. The singularity

close to the origin is thus determined by G(N,M) and eq. (3.16) can be used to
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3.1. kT -factorisation

perform, via the residue theorem, one of the Mellin inversions in eq. (3.14). Usually the

M -inverse Mellin transform is performed in this way, while the contour integral over

N is computed numerically. According to eq. (3.17), the singularity close to the origin

is at M = γ(N,αs), so the hadronic cross section evaluated at the pole becomes

Σ(ρh, Q
2) =

∫ c+i∞

c−i∞

dN

2πi
eξNetγ(N,αs)h(N, γ(N,αs))G0(N) . (3.19)

The anomalous dimension computed from naive duality, eq. (3.18), contains itself

resummed poles in N :

γ(N,αs) = γs

(αs

N

)
=

∞∑

k=1

g
(s)
k

(αs

N

)k
, (3.20)

so the leading high energy logarithms in the hard coefficient function are effectively

resummed. The first few terms of the series in eq. (3.20) are

γs

(αs

N

)
=
CA

π

αs

N
+ 2ζ3

(
CA

π

αs

N

)4

+ 2ζ5

(
CA

π

αs

N

)6

+ . . . (3.21)

It is important to notice that with this procedure it is straightforward to extract

from the impact factor the leading high energy singularities of the fixed order coefficient

function C(N,αs). The perturbative expansion of the standard coefficient function,

computed from collinear factorisation is

C(N,αs) =
∞∑

n=0

αn
sC

(n)(N) . (3.22)

On the other hand, the explicit N dependence of the impact factor can be neglected

because it is subleading: h(N,M) is free of the high energy poles. One can set N = 0

and Taylor expand the impact factor with respect to M :

h(0,M) =
∞∑

m=0

αs hmM
m . (3.23)

In order to get leading high energy singularities of the coefficient function it is sufficient

to use the pole condition eq. (3.17), substituting as γ(N,αs) the small N limit of

the fixed order expansion of the anomalous dimension γ(N,αs) =
∑∞

k=0 α
k+1
s γk(N)

or, equivalently, the resummed expression eq. (3.20) truncated at the appropriate
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3.1. kT -factorisation

perturbative order. One obtains:

C(N,αs) =
∑

n=0

αn
sC

(n)(N)

= αs

∑

m

hm

[
∑

k

g
(s)
k

(αs

N

)k
]m

(1 + O(N)) .

(3.24)

Thanks to this observation the matching between resummed results and fixed order

calculations is under control.

However, some care has to be taken in comparing results from collinear and high

energy factorisation beyond leading order. It was shown in [46] that the parton density

defined from collinear factorisation and the gluon Green’s function extracted from high

energy factorisation have different normalisations; the ratio of the two distributions is a

universal factor. This result is obtained considering the dimensional regularised version

of kT -factorisation eq. (3.2):

Σ(N,Q2) =

∫
d2−2εk1 Σ̂off

(
N,

k1

Q
,

(
Q2

µ2

)ε

, ε

)
fbare(N,k1, αs, µ, ε)G

bare(N,µ, ε) ,

(3.25)

where fbare is the bare gluon Green’s function and Gbare is the bare gluon density. In

the case of a collinear safe process, the off-shell cross section is free of collinear poles

and can be computed in four dimensions. All the ε poles are in the Green’s function

and they can be factorised through a universal transition function. In the ε→ 0 limit,

one obtains [46]:

fbare =
γgg(N,αs)

πk2 R

(
k2

µ2

)γgg

Γgg , (3.26)

where the MS transition function is defined as:

Γgg = exp

(
1

ε

∫ αse−ε(ln 4π−γE)

0

dα

α
γgg(N,α)

)
. (3.27)

In the high energy limit

γgg(N,αs) = γs

(αs

N

)
+ O

(
αs

(αs

N

)k
)
. (3.28)

As before the anomalous dimension γs = γs

(
αs

N

)
is the naive dual to leading order

BFKL kernel χ0 and R gives the normalisation mismatching between collinear and

high energy factorisation. The poles are then absorbed into the bare gluon distribution

G(N,µ2) = ΓggG
bare . (3.29)
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More details about the functional form of R will be discussed in Chapter 6. The

mismatch in the normalisation can be regarded as a difference in the factorisation

schemes. Traditionally the factorisation scheme related to high energy factorisation is

called Q0, so the relative normalisation of the gluon in the two schemes is given by:

R(N, t) =
GQ0(N, t)

GMS(N, t)
. (3.30)

The impact factor computed so far is in Q0, while the MS result is given by

hMS(N,M) = h(N,M)R(N,M) , (3.31)

so that eq. (3.19) becomes:

Σ(ρh, Q
2) =

∫ c+i∞

c−i∞

dN

2πi
eξNetγsR(0, γs)h(0, γs)G0(N) , (3.32)

with

R
(
0, γs

(αs

N

))
= 1 +

8

3
ζ3

(
CA

π

)3 (αs

N

)3
− 3

4
ζ4

(
CA

π

)4 (αs

N

)4

+
22

5
ζ5

(
CA

π

)5 (αs

N

)5
+ O

((αs

N

)6
)
. (3.33)

The normalisation factor induces a scheme dependence on the anomalous dimension as

it will be explicitly shown in the next section.

So far kT -factorisation for photoproduction processes has been discussed. However

the main purpose of this thesis is to discuss collider phenomenology and thus processes

with two hadrons in the initial state must be considered. The factorisation formula

eq. (3.2) generalises to:

Σ(ρh, Q
2) =

∑

j1,j2

∫ 1

ρh

dx1

x1

∫ 1

ρh

dx2

x2

∫
d2k1

πk2
1

∫
d2k2

πk2
2

Σ̂off
j1,j2

(
ρh

x1x2
,
k1

Q
,
k2

Q
,αs(µ

2)

)
Fj1(x1,k

2
1, µ

2)Fj2(x2,k
2
2, µ

2) ,

(3.34)

The partonic cross section is computed as in the photoproduction case, eq. (3.8) but
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with two initial off-shell gluons. The impact factor is defined as

h(N,M1,M2) = M1M2Σ̂
off
gg (N,M1,M2)

= M1M2

∫ 1

0

dρ

ρ
ρN

∫
d2k1

πk2
1

(
k2

1

Q2

)M1 ∫ d2k2

πk2
2

(
k2

2

Q2

)M2

× Σ̂off
gg

(
ρ,

k1

Q
,
k2

Q

)
, with ρ =

ρh

x1x2
, (3.35)

and the high energy singularities can be computed as discussed in the previous case.

Finally, the quark contributions have to be considered. At the leading logarithmic

accuracy the splitting of a quark into a gluon has to be considered γgq ∼ CF /CAγgg

while the other splittings are subleading γqg = γqq = 0. The unintegrated quark parton

density can be written as

Fq(N,k) =
CF

CA

[
G(N,k) − δ(2)(k)

]
. (3.36)

It is then possible to compute the impact factors for quarks in terms of the one for

gluons; the results in MS are

hgq(N,M1,M2) =
CF

CA

[
h(0,M1,M2)R(0,M1)R(0,M2) − h(0,M1, 0)R(0,M1)

]

+O(N) .

hqq(N,M1,M2) =

(
CF

CA

)2
[
h(0,M1,M2)R(0,M1)R(0,M2)

−h(0,M1, 0)R(0,M1)

−h(0, 0,M2)R(0,M2) + h(0, 0, 0)

]
+ O(N) . (3.37)

Many studies about the high energy resummation of hadronic processes rely on

the described procedure [44]-[50]. The prediction is a strong but unstable growth in

the cross section due to singularities at positive values of Mi. This problem has been

investigated in [51] where a way to correctly treat these singularities has been found.

This procedure is summarised in section 3.3.

High energy factorisation not only provides a way to resum leading logarithms to

all order in perturbation theory but also can be used to improve fixed order results. For

instance, in the case of the cross section for the production of a Higgs boson via gluon

gluon fusion, kT -factorisation can be used to compute the exact high energy behaviour

of the partonic cross section and improving the NNLO order calculation performed in

the heavy top limit. This computation is discussed in detail in Chapter 5.
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3.2. Duality

3.2 Duality

In this section duality relations eq. (3.18) are investigated more in depth, looking

at their extension beyond the leading logarithmic accuracy. In addition the small x

resummation proposed by Altarelli, Ball and Forte (ABF) is presented in detail. The

result of this construction is a perturbatively stable evolution for the parton densities

at next-to-leading-logarithmic accuracy.

3.2.1 Duality beyond leading order

It has been already shown that at small x and large Q2 the mutual consistency of the

DGLAP and BFKL equations implies that the evolution kernels must satisfy:

M = γ(χ(M,αs), αs) , (3.38)

N = χ(γ(N,αs), αs) . (3.39)

Such relations can be expanded order by order in perturbation theory, for instance

considering eq. (3.39), one gets

N = αsχ0(γs + αsγss) + α2
sχ1(γs) + O(α3

s) , (3.40)

where

γ(N,αs) = γs(αs/N) + αsγss(αs/N) + . . . (3.41)

The second term γss contains the sum of the subleading singularities. Fixed coupling

duality expanded up to O(α2
s) reads as

χ0 (γs (αs/N)) =
N

αs
,

γss (αs/N) = −χ1 (γs(αs/N))

χ′
0 (γs(αs/N))

. (3.42)

Before introducing the running of the coupling a few comments on the function χ1

are due. It is known [34] that this function cannot be immediately identified with the

NLO contribution to the BFKL kernel eq. (2.111). The reason for this discrepancy

is the choice of kinematical variables (x,Q2). In the context of semi-hard processes

there is one hard scale Q2 and consequently the dimensionless variable is defined as

x = Q2/s. Conversely in the derivation of the BFKL equation k1 ≃ k2 ≃ k and so

the definition xs = k2/s reflects the symmetry k1 ↔ k2. The difference between x

and a symmetric choice such as xs =
√
Q2k2/s results into a reshuffling of the Mellin
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variables N and M :

xN

(
Q2

k2

)−M

=

(
Q2

s

)N (
Q2

k2

)−M

=

(√
Q2k2

s

)N (
Q2

k2

)−M+N
2

= xN
s

(
Q2

k2

)−M+N
2

. (3.43)

The kernel which enters duality is related to the one computed by Fadin and Lipatov

(χFL) through the shift in the Mellin variable M →M − N
2 :

χ(M,αs) = χFL

(
M − N

2
, αs

)
, (3.44)

or, using duality, through the implicit relation

χ(M,αs) = χFL

(
M − 1

2
χ(M,αs), αs

)
. (3.45)

The previous equation can be expanded in powers of the strong coupling, obtaining an

expression which relates the kernels in different variables, order by order in perturbation

theory

χ0(M) = χFL
0 (M)

χ1(M) = χFL
1 (M) − 1

2
χ′

0(M)χ0(M) , (3.46)

where the prime denotes the derivative with respect to M . It is clear that the LO

contribution is not affected by the choice of kinematical variables. The effect on the

NLO contribution is to remove the third order pole at M = 0 eq. (2.114), so that χ1

in asymmetric variables has a double pole in the origin. The calculation of the O
(
α̂3

s

)

contribution is described in Chapter 6; in that case the computation is more subtle

because the running of the coupling can no longer be neglected.

It has been already shown that the running coupling constant in Mellin space

becomes a differential operator, therefore the DGLAP and the BFKL equations in

double Mellin space, eq. (3.15), are no longer simple algebraic equations:

MG(N,M) = G0(N) + γ(N, α̂s)G(N,M) ,

NG(N,M) = Ḡ0(M) + χ(M, α̂s)G(N,M) . (3.47)

Running coupling duality states that given the BFKL kernel χ computed to some

accuracy in αs there exists a function γ such that the solutions of the eqs. (3.47)

coincide at leading twist once Mellin inverted in the (x,Q2) space. Conversely, given

γ, there exists a function χ with such property. The proof of this statement was
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first performed in [56] using a perturbative construction. In that approach the running

coupling BFKL equation is solved at a given accuracy in the (N,M) space; the solution

is then transformed into the (N, t) space and it is compared to the solution of the

DGLAP equation at the same order. The anomalous dimension is then determined

as the lower order one plus some running coupling corrections. Subsequently in [62]

an all-order proof of duality was given, based on an operator approach, which will be

described in the following. The solution to the DGLAP equation can be written as

G(N,M) = [M − γ(N, α̂s)]
−1G0(N) ; (3.48)

collinear factorisation ensures that all the non-perturbative physics is factorised into

the initial condition G0. The leading twist solution is determined by the position of

the perturbative pole of eq. (3.48) in the M space:

MG(N,M) = γ(N, α̂s)G(N,M) . (3.49)

The statement of running coupling duality in this approach is then that such equation

can be inverted at the pole:

NG(N,M) = χ(M, α̂s)G(N,M) . (3.50)

The two operators χ(M, α̂s) and γ(N, α̂s) then satisfy

MG(N,M) = γ(χ(M, α̂s), α̂s)G(N,M) , (3.51)

NG(N,M) = χ(γ(N, α̂s), α̂s)G(N,M) . (3.52)

It is important to emphasise the different meaning of these two equation with respect

to naive duality eq. (3.18). At the running coupling level eqs. (3.51) state that the

operator M and γ(M, α̂s) (or similarly N and χ(M, α̂s)) act in the same way on the

solution G(N,M), despite being in general different operators. From now on the proof

proceeds very similarly to the fixed coupling case; the expansion of eq. (3.48) about a

generic N0 gives:

G(N,M) =
[
M − γ(N0, α̂s) − γ′(N0, α̂s)(N −N0) + . . .

]−1
(G0(N0) + . . . ) . (3.53)

Then N0 is chosen as the position of the perturbative pole in the N plane for given M :

N0 = χ(M, α̂s). Using eq. (3.51) one gets

G(N,M) = [N − χ(M, α̂s)]
−1 [−γ′(χ(M, α̂s), α̂s)

]−1
G0(χ(M, α̂s)) + . . .

≡ [N − χ(M, α̂s)]
−1 Ḡ0(M) + . . . . (3.54)
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This is the solution of the running coupling BFKL equation, with kernel obtained

from duality. At leading twist, the all-order factorisation of the solution into a non-

perturbative boundary condition and a evolution factor is a direct consequence of all-

order factorisation of the DGLAP equation. Of course the existence of an operator-

valued function χ(M, α̂s) which is the running coupling dual of the DGLAP kernel is

not obvious; nevertheless a constructive proof exists.

The problem can be formalised as follows: given an operator equation of the form

p̂ G = q̂ G (3.55)

and given a function f(q̂), determine the function g(p̂) such that

f(q̂)G = g(p̂)G . (3.56)

As a matter of fact, if one considers p̂ = α̂−1
s N and q̂ = α̂−1

s χ(M, α̂s), then eq. (3.55)

is clearly the same as the pole condition eq. (3.50). One can choose f as the function

γs which is the naive dual to the leading order BFKL kernel:

γs(χ0(M)) = M (3.57)

and then in eq. (3.56) the function g is the running coupling dual γ(N, α̂s) of the initial

χ(M, α̂s)

MG = g(p̂)G = γ(N, α̂s)G . (3.58)

For operators with non-vanishing commutation relations the determination of the

function g in eq. (3.56) is not trivial, but it can be obtained by using the Baker-

Campbell-Hausdorff formula for a pair of operators A and B. This relation to cubic

order is [65]:

eAeB = exp{A+B + 1
2 [A,B] + 1

12([A, [A,B]] + [B, [B,A]]) + ...}. (3.59)

Letting A = q̂ and B = p̂− q̂ one gets

eq̂ep̂−q̂ = exp{p̂− 1
2 [p̂, q̂] + 1

6 [q̂, [q̂, p̂]] + 1
12 [p̂, [p̂, q̂]] + 1

24 [q̂, [q̂, [q̂, p̂]]]

+ 1
24 [q̂, [p̂, [p̂, q̂]]] + ....}. (3.60)

Multiplying the right-hand side by the identity ep̂e−p̂ = 1 on the left, and using the

Baker-Campbell-Hausdorff formula again with A = −p̂ and B set equal to the exponent
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on the r.h.s., the equation can be written as

eq̂ep̂−q̂ = ep̂ exp{−1
2 [p̂, q̂] + 1

6 [q̂, [q̂, p̂]] + 1
3 [p̂, [p̂, q̂]] + 1

24 [q̂, [q̂, [q̂, p̂]]]

+1
8 [q̂, [p̂, [p̂, q̂]]] − 1

8 [p̂, [p̂, [p̂, q̂]]] + ...}. (3.61)

This expression can be further simplified because according to eq. (3.55) one has

(p̂ − q̂ )G = 0 ⇒ ep̂−q̂G = G . (3.62)

Hence eq. (3.61) relates the action of the exponential of two operators which act in

the same way on physical states. This result can be generalised to any function f by

observing that

f(q̂) = eq̂
d

dλ f(λ)
∣∣
λ=0

. (3.63)

Rescaling the operators p̂ and q̂ by letting p̂→ p̂ d
dλ , q̂ → q̂ d

dλ , eq. (3.61) becomes

f(q̂)G = ep̂
d

dλ exp
{
− 1

2 [p̂, q̂] d2

dλ2 + 1
6 [q̂, [q̂, p̂]] d3

dλ3 + 1
3 [p̂, [p̂, q̂]] d3

dλ3

+ 1
24 [q̂, [q̂, [q̂, p̂]]] d4

dλ4 + 1
8 [q̂, [p̂, [p̂, q̂]]] d4

dλ4 − 1
8 [p̂, [p̂, [p̂, q̂]]] d4

dλ4 + ...
}

f(λ)
∣∣
λ=0

G . (3.64)

The expansion of the exponential on the r.h.s. leads to an expression in terms of f(p̂),

its derivatives and multiple commutators of p̂ and q̂

f(q̂)G =
{
f(p̂) − 1

2f
′′(p̂) [p̂, q̂] + 1

6f
′′′(p̂) [q̂, [q̂, p̂]]

+1
3f

′′′(p̂) [p̂, [p̂, q̂]] + 1
8f

′′′′(p̂)[p̂, q̂]2 + . . .)
}
G

≡ g(p̂)G , (3.65)

where the expansion in the commutators is justified because, as it will be shown in

the following, it corresponds to an expansion in powers of α̂s. Eq. (3.65) is the result

aimed for, because it gives an expression for the function g in terms of the function f .

More specifically, if f is chosen to be the naive dual as in eq. (3.57) then the anomalous

dimension γ(N, α̂s), which is the running coupling dual to a given kernel χ(M, α̂s),

can be written as the fixed coupling dual γs, plus running coupling contributions.

Such corrections simply involve derivatives of the naive dual and commutators of the

operators p̂ = α̂−1
s N and q̂ = α̂−1

s χ(M, α̂s).

The commutators which are relevant in order to compute the running coupling

corrections can be easily calculated from the basic one:

[
α̂−1

s N,χ0(M)
]

= −Nβ0χ
′
0(M) , (3.66)
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where the running coupling has been considered at one loop accuracy, i.e. including

only β0 terms. Because O(N) = O(α̂s) the expansion in the commutators in eq. (3.65)

is justified. Thanks to this result eq. (3.58) can be written as

MG =
{
γs(α̂

−1
s N) − 1

2γ
′′
s (α̂−1

s N)
(
−Nβ0χ

′
0(M)

)

+1
3γ

′′′
s (α̂−1

s N)
(
(Nβ0)

2χ′′
0(M)

)
+ 1

8γ
′′′′
s (α̂−1

s N)
(
−Nβ0χ

′
0(M)

)2

+O(α̂3)
}
G , (3.67)

where the prime always denotes the derivative of a function with respect to its entire

argument. Eq. (3.67) cannot be seen yet as a DGLAP-type equation because of the

residual dependence on M in the evolution factor through χ0 and its derivatives.

However, such a dependence can be perturbatively removed by solving the equation at

the lowest order and back-substituting the result to determine the next order solution,

and so on. Some care has to be taken in the back-substitution because non-commuting

operators are involved; for instance given MG = γs(α̂
−1
s N)G, then

χ′
0(M) =

{
χ′

0(γs(α̂
−1
s N)) − 1

2χ
′′′
0 (γs(α̂

−1
s N))[M,γs(α̂

−1
s N)] + . . .

}
. (3.68)

Performing the back-substitutions and expressing the derivatives of γs in terms of

derivatives of χ0 eq. (3.67) can be written as resummed DGLAP evolution equation:

MG =
{
γs(α̂

−1
s N) + α̂sβ0∆γss + (α̂sβ0)

2∆γ(0)
sss + O

(
α̂3

s

)}
G , (3.69)

where the running coupling corrections are

∆γss(α̂
−1
s N) = −χ0

χ′′
0

2χ′2
0

∣∣∣∣∣
M=γs(α̂

−1
s N)

∆γ(0)
sss(α̂

−1
s N) = −χ2

0

15χ′′3
0 − 16χ′

0χ
′′
0χ

′′′
0 + 3χ′2

0 χ
′′′
0

24χ′5
0

∣∣∣∣∣
M=γs(α̂

−1
s N)

(3.70)

A complete calculation of running coupling duality at the considered accuracy should

include the NLO contribution to the BFKL kernel and the QCD β-function at two

loops:

β(αs) = −β0α
2
s(1 + αsβ1 + . . . ) ; (3.71)

the running coupling operator at this accuracy becomes:

α̂−1
s =

1

αs
− β0

∂

∂M
+ β1

(
−αsβ0

∂

∂M
− 1

2
(αsβ0)

2 ∂2

∂M2

)
+ O

(
α̂3

s

)
. (3.72)

Moreover, at higher orders, one should rearrange eq. (3.65) in such a way that f(p̂) acts
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directly on the physical state G. Higher-order running coupling duality was investigated

in [66] and [67] and the results were published in [41]. The complete NNLO running

coupling corrections are

∆γsss = ∆γ(0)
sss + 1

β0
∆γ(1)

sss + β1

β0
∆γss , (3.73)

where

∆γ(1)
sss =

(
1
2χ0χ

′
0γ

′′
ss + 1

2χ0χ
′
1γ

′′
s + 1

2χ
′
0χ1γ

′′
s + 1

2χ
′
0χ

′′
0γ

′′
s γss

) ∣∣
M=γs(α̂

−1
s N)

. (3.74)

The choice of the kinematical variables and running coupling contributions are not

the only effects that must be taken into account beyond leading order. As already

mentioned in section 2.2, the BFKL equation naturally describes the evolution of the

unintegrated gluon density G, while the usual parton distribution G, which enters

DGLAP evolution is integrated over the transverse momenta. The relation between

integrated and unintegrated distributions in Mellin space is given in eq. (3.12). It

follows that if G satisfies a BFKL equation with kernel χ(M, α̂s), then the evolution of

G is described by a different kernel

χi(M, α̂s) = M−1χ(M, α̂s)M . (3.75)

Therefore the anomalous dimension which describes the evolution of G must be

computed through duality from the kernel χi(M, α̂s). The perturbative expansion of

eq. (3.75) in powers of α̂s shows that the LO kernel is not affected, while the NLO one

receives a contribution proportional to β0

χi(M, α̂s) = α̂sχ0 + α̂2
sχ1 +

[
M−1, α̂s

]
χ0M + O

(
α̂3

s

)

= α̂sχ0 + α̂2
s

(
χ1 + β0

χ0

M

)
+ O

(
α̂3

s

)
. (3.76)

It has already been discussed that there is a normalisation mismatching between

collinear and high energy factorisation eq. (3.30); beyond leading order it is necessary

to specify the scheme in which both the impact factor eq. (3.31) and the evolution

kernel are computed. The anomalous dimension obtained through running coupling

duality from the usual BFKL kernel is in the Q0 scheme. The function which describes

the scheme change to MS can be computed exponentiating the R factor:

γQ0 = γMS +
d

dt
lnR(N, t) . (3.77)

52



3.2. Duality

3.2.2 Small x resummed evolution

The resummation of high energy logarithms have always faced the fact that collider

data show little evidence for such effects. For instance global parton distributions fits

obtained with standard NLO DGLAP evolution describe the experimental DIS data

from the HERA collider in a wide kinematic region [68], even where low x effects

were supposed to be significant. On the contrary the most direct implementation

of LO BFKL resummation predicts a fairly strong growth at small x as described by

eq. (2.103). Moreover the calculation of the NLO kernel χ1 shows that the perturbative

expansion behaves badly. On the other hand the recently determined NNLO DGLAP

splitting functions exhibit a small x instability, requiring a treatment of high energy

logarithms. The puzzle of a correct inclusion of high energy resummation has been

studied in the past years by different groups: ABF, CCS(S) [69]-[72] and Thorne–

White [73]. In this section the ABF resummation is summarised. For simplicity only

the case of a pure Yang-Mills theory is considered. In order to consider full QCD

with nf 6= 0 and the resummation of the different entries of the anomalous dimension

matrix some subtleties have to be addressed. These issues have been recently solved

in [64] where the full resummation with quarks has been performed. However the most

important features of the resummation are present in the pure gluonic case.

The first key element to understand is conservation of longitudinal momentum,

which implies for the anomalous dimension [54]

γgq(1, αs) + γqq(1, αs) = 0

2nf γqg(1, αs) + γgg(1, αs) = 0

}
⇒ γ(1, αs) = 0 , (3.78)

where γ is the larger eigenvalue of the anomalous dimension matrix. Duality relations

then constrain the all-order behaviour of the BFKL kernel in the collinear regionM = 0:

χ(γ(N,αs), αs) = N
∣∣
N=1

⇒ χ(0, αs) = 1 , (3.79)

up to subleading running coupling corrections. Thus the BFKL kernel is regular and

the alternating-sign poles which characterise the fixed order expansion resums to one:

χs ∼
αs

αs +M
=
αs

M
− α2

s

M2
+

α3
s

M3
+ . . . (3.80)

The kernel χs, which is the fixed coupling dual of γ0, is free of collinear poles, therefore

the instability of the BFKL kernel can be cured reorganising the perturbative series

into a double leading expansion (DL) [57]:

χDL = χDL LO + αsχDL NLO + . . . (3.81)
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Figure 3.1: Graphical representation of different expansions of χ: vertical lines
correspond to terms of the same fixed order in αs, while contributions along a diagonal
line are of the same order in αs at fixed αs/M . Following a line of a given colour one
finds all terms contained in the double leading expansion at a given order.

The DL expansion is pictorially shown in fig. 3.1. The LO term is the sum of the

leading order BFKL kernel χ0 and χs:

χDL LO(M,αs) = αsχ0(M) + χs

(αs

M

)
− CAαs

πM
, (3.82)

where the last term avoids double counting. At NLO one has to subtract three double

counting terms

χDL NLO(M,αs) = αsχ1(M) + χss

(αs

M

)
− αs

(
f2

M2
+
f1

M

)
− f0 , (3.83)

with

f0 = 0 , f1 = 0 , f2 =
11C2

A

12π2 , in the nf = 0 case . (3.84)

The functions χs and χss are the analogous of eq. (3.42)

γ0 (χs (αs/M)) =
M

αs
,

χss (αs/M) = −γ1 (χs(αs/M))

γ′0 (χs(αs/M))
. (3.85)

The DL expansion of the BFKL kernel is now perturbatively stable in the collinear
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region, however the instability in the anticollinear region M ∼ 1 has still to be cured.

This is particularly bad when one includes the NLO correction: at M = 0 the kernel is

regular and positive, while it has a pole in M = 1 with negative coefficient. It follows

that there is no minimum and hence the high energy behaviour cannot be predicted

as in eq. (2.103). This problem can be solved exploiting the symmetry of the BFKL

kernel eq. (2.101), which enables one to construct a double leading expansion also in

the anticollinear region [74], [63]. However, as previously discussed, this symmetry

is realised only for the BFKL kernel written in terms of Mellin variable M , which

corresponds to a symmetric choice of the kinematic variables eq. (3.45). The DL

kernel eq. (3.81) can be written in symmetric variables shifting M →M + N
2 ; it is then

symmetrised using M ↔ 1 −M and finally it is brought back to asymmetric variables.

For instance, indicating with χσ the kernel in symmetric variables and with χΣ the one

in asymmetric variables, the symmetrisation of the χs term in eq. (3.82) is

χ̄σ(M,N,αs) = χs

(
αs

M+
N
2

)
+ χs

(
αs

1−M+
N
2

)
,

χ̄Σ(M,N,αs) = χs

(
αs

M

)
+ χs

(
αs

1−M+N

)
. (3.86)

The kernel χ̄(M,N,αs) can be viewed as an “off-shell” continuation of the usual kernel

χ(M,αs). The latter can be found putting on-shell the N dependence, i.e. solving the

implicit equation

χ(M,αs) = χ̄(M,χ(M,αs), αs) . (3.87)

In Ref. [63] a full symmetrised double leading off-shell BFKL kernel has been computed

χ̄σ DL(M,N,αs) = χ̄σ LO(M,N,αs) + αsχ̄σ NLO(M,N,αs) + . . . (3.88)

The leading and next-to-leading contributions are

χ̄σ LO(M,N,αs) = χs

(
αs

M+
N
2

)
+ χs

(
αs

1−M+
N
2

)
+ αsχ0(M,N)

+χmom(N) ,

χ̄σ NLO(M,N,αs) = χss

(
αs

M+
N
2

)
+ χss

(
αs

1−M+
N
2

)
+ αsχ1(M,N)

+χmom(N) , (3.89)

where χ(M,N) is the off-shell continuation of the fixed order expansion of the BFKL

kernel and χmom enforces momentum conservation. The double leading on-shell kernel

is shown in fig. 3.2: it is clear that the symmetrisation ensures the presence of a

minimum. Moreover, while the fixed order perturbative expansion is pathological, the

double leading one is very stable. The kernel in asymmetric variables can be obtained
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Figure 3.2: Plot of different kernels χ in symmetric variables [63]. The fixed order
BFKL kernel are αsχ0 (blue) and αsχ0 + α2

sχ1 (black). The resummed DL expansion
kernels χσ at LO (green) and NLO (red) both on-shell. All curves are determined
with β0 = 0 (fixed coupling), αs = 0.2 and nf = 0. Note that χ(0, αs) = 1 implies
χσ(−1

2 , αs) = χσ(3
2 , αs) = 1.

through the relation

χ̄Σ DL(M,N,αs) = χ̄σ DL(M − N
2 , N, αs) . (3.90)

Once a stable on-shell BFKL kernel in asymmetric variables has been constructed

one would like to compute from it a resummed anomalous dimension using running

coupling duality:

χΣ(γΣ(N, α̂s), α̂s) = N . (3.91)

It has already been shown in eq. (3.69) that a perturbative treatment of running

coupling effects leads to the following result

γpert
Σ (N,αs(t)) = γ̃Σ(N,αs(t)) + αs(t)β0 (∆γss + 1) , (3.92)

where the tilde stands for an anomalous dimension obtained from naive duality. The

running coupling correction ∆γss was defined in eq. (3.70) and the last term avoids

double counting. Unfortunately this perturbative treatment of the running coupling

effects introduces a new source of instability [56]. This is due to unphysical singularities

in the small x region. Because χ0 has a minimum at M = 1
2 , its first derivative has a

zero, thus the lowest order running coupling correction, as a function of M , has a pole.

Moreover, at each order in perturbation theory, the running coupling corrections contain
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increasing inverse powers of χ′
0. Such strong singularities dominate the Mellin inversion

at small x, so that formally subleading running coupling corrections overwhelm the

leading contribution. Therefore, running coupling corrections cannot be considered

order by order in the strong coupling but they must be resummed. In order to achieve

this the running coupling BFKL equation has to be solved in a closed form rather than

perturbatively. This is possible if one considers a quadratic approximation to the LO

kernel about its minimum M0 = 1
2

χq(M, α̂s) = c(α̂s) + 1
2κ(α̂s)(M −M0)

2 + . . . (3.93)

In the case of intercept and curvature linear in αs the BFKL equation can be solved

in terms of Airy functions [75]; however, in the symmetrised case, the kernel to be

considered is the quadratic approximation to the one obtained by solving eq. (3.87)

and hence the two parameters c and κ have a non-trivial dependence upon αs. At

leading logarithmic level the BFKL equation can still be solved in terms of Bateman

functions [63]. The Bateman anomalous dimension is then defined in the usual way by

taking the logarithmic derivative of the solution

γB(N,αs) =
d

dt
lnGB(N, t) . (3.94)

The resummed anomalous dimension at NLO is then obtained adding the Bateman

result to the anomalous dimension obtained solving perturbatively running coupling

duality, eq. (3.92)

γres
Σ (N,αs(t)) = γpert

Σ (N,αs(t)) + γB(N,αs(t))

−
[
γB

s

(
αs

N

)
+ αs(t)γ

B
ss

(
αs

N

) ]

+ γmom(N,αs(t)) + γmatch(N,αs(t)) . (3.95)

The terms in square brackets cancel the double counting between the Bateman

anomalous dimension and the one obtained from running coupling duality. The terms

in the last line are subleading corrections which enforce exact momentum conservation

and exact matching to the fixed order NLO anomalous dimension at large N . The final

result for the resummed anomalous dimension as obtained in [63] is plotted in fig. 3.3

and the correspondent splitting function in fig. 3.4. The NLO resummed splitting

function is very close to the standard DGLAP case also for very small values of x;

the rise starts only for x < 10−6. The BFKL regime is softened by the resummation,

explaining the success of standard NLO fits to HERA data.
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Figure 3.3: The fixed order DGLAP anomalous dimensions (blue and black) are
compared to the resummed ones eq. (3.95) (green and red); the resummed results
are very stable.

Figure 3.4: The LO and NLO resummed splitting function, obtained by Mellin
transformation of the anomalous dimension are compared to fixed order DGLAP at
LO, NLO and NNLO.
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3.3 Resummation of the coefficient function

In section 3.1 a procedure to compute and resum the high energy logarithms has been

derived. One of the key-points of the calculation was the fixed-coupling pole condition

eq. (3.17), which enables one to perform theMi-Mellin transforms analytically. However

in the previous section it was shown that naive duality fails to describe the correct

behaviour of the PDFs at high energy. For this reason one might expect a similar

inadequacy of the fixed coupling approximation for the resummation of the partonic

cross section too. Moreover, as the position of the pole in the evolution factor moves

away from the origin, the inverse-Mellin contour of integration may encounter new

singularities. Indeed the impact factor h(N,M1,M2) as defined in eq. (3.13) usually

has a rather complicated structure of singularities. Firstly, one finds poles at negative

values of M1 and M2 which lead, upon Mellin inversion, to negative powers of Q2.

These are higher twist contributions which are not relevant in this discussion. More

worrying are infrared singularities which show up as poles at positive values of the

Mellin variables and lines of singularities such as

M1 +M2 = n , n > 0 . (3.96)

For instance the line of singularities at n = 1 correspond to an s-channel gluon going

on-shell. In the case of heavy flavour production [44], [48] such a singularity is touched

by the contour integration of the Mellin inversion, resulting into a strong but unstable

enhancement of the cross section. A way to perform the inverse Mellin in a more reliable

way has been discussed in [51] and it is presented in the following.

It is often convenient in collider phenomenology to introduce the gluon-gluon

luminosity:

L(z, t1, t2) =

∫ 1

ρh

dx1

x1

∫ 1

ρh

dx2

x2
δ(z − x1x2)G(x1, t1)G(x2, t2) , (3.97)

which in Mellin space becomes

L(N,M1,M2) = G(N,M1)G(N,M2) . (3.98)

Then the dimensionless hadronic cross section in (N,Q2) space can be written as

Σ(N,Q2) = α2
s

∞∑

m1=0

∞∑

m2=0

hm1,m2(N)

∫ c+i∞

c−i∞

dM1

2πi

dM2

2πi
et(M1+M2)

Mm1
1 Mm2

2 L(N,M1,M2) , (3.99)

where the impact factor h(N,M1,M2) has been Taylor expanded about the origin.
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The Mi-Mellin inversions can be performed observing that the first term of the series

m1 = m2 = 0 is trivial because it simply gives the gluon luminosity L(N, t) and

subsequent powers of Mi can be seen as derivative with respect to t

Σ(N,Q2) = α2
s

∞∑

m1=0

∞∑

m2=0

hm1,m2(N)
∂m1+m2

∂tm1
1 ∂tm2

2

L(N, t1, t2)
∣∣∣
t1=t2=t

.

(3.100)

In this derivation no assumptions on the running of the coupling have been made. For

this reason, provided that the series converges, the previous equation generalises the

pole approximation. This is even more explicit if one writes the derivatives of the gluon

luminosity in terms of the anomalous dimension. For instance one finds

∂

∂t1
L(N, t1, t2)

∣∣∣
t1=t2=t

= γ(N,αs(t))L(N, t) ,

∂2

∂t1∂t2
L(N, t1, t2)

∣∣∣
t1=t2=t

= γ2(N,αs(t))L(N, t) . (3.101)

These expressions are as the ones one would obtain from the pole approximation

Mi = γ(N,αs). However, the anomalous dimension depends on t through the running

coupling and hence it leads to subleading corrections

∂2

∂t21
L(N, t1, t2)

∣∣∣
t1=t2=t

=

(
γ2(N,αs(t)) +

∂

∂t
γ(N,αs(t))

)
L(N, t) (3.102)

The previous argument suggests a way of dealing with the infrared singularities too.

Suppose the impact factor has a line of nth-order singularities at M1 + M2 = 1. The

following relation holds [76]

1

(1 −M1 −M2)n
=

1

n!

∫ ∞

0
dττn−1e−τ(1−M1−M2) . (3.103)

The dimensionless cross section behaves like

Σ(N,Q2) =

∫ c+i∞

c−i∞

dM1

2πi

dM2

2πi
et(M1+M2) 1

(1 −M1 −M2)n
L(N,M1,M2)

=
1

n!

∫ ∞

0
dττn−1e−τ

×
∫ c+i∞

c−i∞

dM1

2πi

dM2

2πi
e(t+τ)(M1+M2)L(N,M1,M2)

=
1

n!

∫ ∞

0
dττn−1e−τL(N, t+ τ) . (3.104)

The previous result can be Taylor expanded in τ and hence written as a series of
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3.3. Resummation of the coefficient function

derivatives of the gluon luminosity in analogy with eq. (3.100)

Σ(N,Q2) =

∫ ∞

0
dτ

∞∑

m=0

τm+n−1

n!m!
e−τ ∂

m

∂tm
L(N, t)

=
∞∑

m=0

(n+m)!

n!m!

∂m

∂tm
L(N, t) . (3.105)

In order to understand the effect of the running of the coupling one can consider

an impact factor which is simply given by

htoy(N,M1,M2) =
α2

s

1 −M1 −M2
. (3.106)

At fixed coupling

L(N, t) = e2γ(N,αs)tL0(N) (3.107)

and eq. (3.104) gives the same result as the pole approximation:

Σ(N,Q2) =

∫ ∞

0
dτ e−τe2γ(N,αs)(t+τ)L0(N) =

1

1 − 2γ(N,αs)
L(N, t) . (3.108)

As a consequence there is a new singularity in the N plane which enhances the growth

of the cross section; if one consider the LO anomalous dimension γ0 ∼ αs/N , the Mellin

inversion gives

Σ(ρh, Q
2) =

∫ c+i∞

c−i∞
dN
2πie

ξN 1
1−2γ0

L(N, t) ∼
∫ c+i∞

c−i∞
dN
2πie

ξN N
N−2αs

L(N, t)

∼ e2αsξL(ξ, t) = ρ−2αs

h L(ρh, Q
2). (3.109)

Thus the cross section at low ρh grows faster than the parton luminosity. However

eq. (3.104) is valid at the running coupling level as well. If one considers αs(t) = 1/β0t

then L(N, t) = t2γ0/β0L0(N) and the τ integral can be still performed analytically

Σ(N, t) =

∫ ∞

0
dτ e−τ (t+ τ)2γ0(N)/β0L0(N)

= t−2γ0(N)/β0etΓ(1 + 2β−1
0 γ0(N), t)L(N, t) . (3.110)

The result is given in terms of the incomplete Γ function, which has no singularities

for t > 0, therefore the asymptotic behaviour of the cross section is given by the

evolution of the parton luminosity. The strong enhancement observed in the previous

case is smoothed by the running coupling. This observation suggests a way to perform

the high energy resummation of the coefficient functions. Rather than using the pole

approximation, one performs running coupling resummation, dealing separately the
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3.3. Resummation of the coefficient function

infrared singularities. More precisely, one Taylor expands the impact factor in powers

of Mi about the origin, keeping the infrared singularities unexpanded. Then the powers

of Mi are dealt with eq. (3.100), while the inverse Mellin of the infrared singularities

are performed using eq. (3.104) or eq. (3.105). This procedure smooths out the strong

enhancement predicted by the pole approximation; as a consequence the high energy

growth of the cross sections is universal, driven by the parton distributions.
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Chapter 4

Hadronic processes at high

energy

In this chapter two different hadronic processes are studied in the framework of

kT -factorisation. Firstly the production of a pair of heavy quarks, specifically bb

is considered. Secondly Drell-Yan processes are studied and a resummed partonic

coefficient function is computed.

4.1 Heavy flavour production

Heavy flavour production has been widely studied in the literature, both at fixed order

and resummed level. The production of bb pairs at LHC is one of the perturbative

process with the lowest hard scale and hence the one which is likely to show important

high energy corrections:

Q2 = 4m2 ≪ s , (4.1)

where m is the mass of the b-quark and as usual s is the centre-of-mass energy.

The LHC has a dedicated experiment, LHCb, on the physics of b quarks; moreover

many background studies rely on an accurate prediction for the total cross section

σbb. Historically the production of heavy quarks was the first process to be studied

in kT -factorisation [44], [47]. In this section the calculation of the leading high energy

singularities is performed and the result is in full agreement with the one published in

the literature [48], [49].

4.1.1 The coefficient function at high energy

The LO cross section for the hadroproduction of heavy quarks is collinear safe, hence

the calculation of the high energy behaviour is a straightforward application of the

method described in the previous chapter. More specifically the reduced cross section
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4.1. Heavy flavour production

g∗

g∗

b

b g∗

g∗

b

b b

b

g∗

g∗

Figure 4.1: Diagrams for heavy quark hadroproduction g∗g∗ → bb. The Abelian
contribution is on the left and in the centre, while non-Abelian one on the right.

Σ = m2σ obeys a factorisation formula like eq. (3.34), where in this case

ρ =
ρh

x1x2
=

4m2

ν
, (4.2)

and the partonic cross section Σ̂off
gg is computed considering the process

g∗(k1) + g∗(k2) → b(p3) + b(p4) . (4.3)

The kinematics of this kind of processes is described in Appendix A.2, eq. (A.14). The

cross section can be written as

Σ̂off
gg = Σ̂Ab + Σ̂non−Ab =

1

2nc
AAb +

nc

2(n2
c − 1)

Anon−Ab =

=
1

2(n2
c − 1)

[
nc

(
AAb + Anon−Ab

)
− 1

nc
AAb

]
= Σ̂0 + Σ̂1 . (4.4)

The leading and subleading colour contributions to the off-shell cross section are

determined integrating over the phase space eq. (A.16) the squared matrix element

obtained from the three diagrams in figure 4.1:

Σ̂i

(
ρ,

k1

m2
,
k2

m2

)
=

α2
sm

2

2(n2
c − 1)

∫
dΦ(2)Wi(k1,k2, z1, z2,p,m

2) , (4.5)

where

W1 = nc

[
1

s

(
1

m2 − t
− 1

m2 − u

)
(1 − z1 − z2) −

B2 + C2

k2
1k

2
2

+
2(B − C)

k2
1k

2
2 s

(
(1 − z2)k

2
1 + (1 − z1)k

2
2 − k1 · k2

)

+
2

νs
− 2

k2
1k

2
2

(
(1 − z2)k

2
1 + (1 − z1)k

2
2 − k1 · k2

)2

s2

]
.

W2 =
1

nc

[ −1

(m2 − u)(m2 − t)
+

(B + C)2

k2
1k2

2

]
, (4.6)
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4.1. Heavy flavour production

and

B =
1

2
− (1 − z1)(1 − z2)ν

m2 − u
+
ν(1 − z1 − z2)

2s
+

(p − k2) · (k1 − k2)

s
,

C =
1

2
− z1z2ν

m2 − t
− ν(1 − z1 − z2)

2s
− (p − k2) · (k1 − k2)

s
. (4.7)

The Mandelstam variables are

s = (k1 + k2)
2 ,

t = (k1 − p3)
2 ,

u = (k1 − p4)
2 . (4.8)

It turns out that it is better to perform the Mellin transforms before doing the

phase space integrals. Thus one considers the impact factor

h(N,M1,M2) = M1M2
α2

sm
2

2(n2
c − 1)

∫
dν
d2k1

πk2
1

d2k2

πk2
2

dz1dz2d
2p

(
4m2

ν

)N (
k2

1

m2

)M1 (
k2

2

m2

)M2

νδ((1 − z2)z1ν − |p|2)δ((1 − z1)z2ν − |k1 + k2 − p|2) [W1 +W2] ,

(4.9)

and one performs the N Mellin exploiting one of the delta functions; the second delta

is used to fix the value of one of the longitudinal momenta, either z1 or z2. For instance

z2 =
|k1 + k2 − p|2
ν(1 − z1)

. (4.10)

Despite a great amount of effort has been put into, it has not been possible to compute

the remaining Mellin moments and phase space integrals keeping the fullN dependence.

If one sets N = 0, then the result can be expressed in terms of Euler Gamma

functions. The impact factor h(0,M1,M2) is enough to compute the leading logarithmic

behaviour, as previously discussed. However, for future phenomenological studies, it

would be important to keep the N dependence, in order to have a better control of

the singularities [51]. This issue will be discussed more in detail in section 4.1.2. The

calculation of the impact factor is not straightforward because of the presence of scalar

products between the transverse components of the momenta in the denominators,

through the Mandelstam variables s, t and u, which leads to complicated angular
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4.1. Heavy flavour production

integrations. It is useful to combine the denominators with Feynman parameters:

1

AB
=

∫ 1

0
dα

1

[Aα+ (1 − α)B]2
,

1

A2B2
=

∂2

∂A∂B

1

AB
=

∫ 1

0
dα

6α(1 − α)

[Aα+ (1 − α)B]4
, (4.11)

where A,B = s, t, u. Because the denominators now only contain linear combinations

of the Mandelstam invariants, one can complete the squares shifting the integration

variable p → l, which leads to denominators of the form:

D = l2 + ∆ , (4.12)

where ∆ does not contain scalar products between the vectors l and ki; hence the

angular dependence appears only in the numerators. Using this trick the integrals in

eq. (4.9) can be performed. The calculation is lengthy, especially for the non-Abelian

contributions, but the results is rather simple:

h(0,M1,M2) =
α2

sπ

n2
c − 1

Γ(1 +M1)Γ(1 −M1)Γ(1 +M2)Γ(1 −M2)

[
4nc

(Γ(3 −M1 −M2))
2

(1 −M1 −M2)Γ(6 − 2(M1 +M2))

(
1 +

( Γ(1 −M1 −M2)

Γ(1 −M1)Γ(1 −M2)

)2)

− 2

nc
(7 − 5(M1 +M2) + 3M1M2)

Γ(2 −M1)Γ(2 −M2)Γ(1 −M1 −M2)

Γ(4 − 2M1)Γ(4 − 2M2)

]
.

(4.13)

The term proportional to nc comes from the non-Abelian diagram in fig. 4.1; it contains

a line of triple poles at M1 +M2 = 1, whose origin is the s-channel gluon propagator:

h(0,M1,M2) ∼
α2

sπ

n2
c − 1

nc

6

1 − (M1 −M2)
2

(1 −M1 −M2)3

[
1 + O(1 −M1 −M2)

]
. (4.14)

This singularity is of the same kind as the one discussed in the toy-model, eq. (3.106)

and hence it dominates the cross section at high energy. However the degree of this line

of singularities changes if the N dependence is kept; in the vicinity of M1 = M2 = 1/2

one finds the singularity structure [44]:

h(0,M1,M2) ∼
α2

sπ

n2
c − 1

nc

6

1

(1 −M1 −M2)

1

(1 +N −M1 −M2)2
. (4.15)

If the resummation is performed at fixed coupling, neglecting the N dependence in the

impact factor, it results into a large enhancement of the cross section. As discussed

at the end of the previous chapter this effect is smoothed when the resummation is
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4.1. Heavy flavour production

performed at the running coupling level, and consequently the N dependence is less

crucial. Nevertheless the calculation of impact factors with full N and Mi dependence

might be phenomenologically relevant. Moreover it has theoretical interest of its own,

because it gives access to a class of subleading contributions at high energy.

4.1.2 The N dependence of the impact factor

In this section the impact factor for heavy quark production is computed in the limit

M1 = M , M2 = 0 ,

but keeping the N dependence. The limit M2 → 0 corresponds to setting one of the

initial gluon lines on-shell:

lim
M2→0

h(N,M1,M2) = lim
M2→0

M1M2

∫ ∞

0
dξ1

∫ ∞

0
dξ2ξ

M1−1
1 ξM2−1

2 Σ̂off
gg (N, ξ1, ξ2)

= − lim
M2→0

M1

∫ ∞

0
dξ1

∫ ∞

0
dξ2ξ

M1−1
1 ξM2

2

∂

∂ξ2
Σ̂off

gg (N, ξ1, ξ2)

= −M1

∫ ∞

0
dξ1ξ

M1−1
1 Σ̂off

gg (N, ξ1, ξ2)

∣∣∣∣∣

ξ2=∞

ξ2=0

= M1

∫ ∞

0
dξ1ξ

M1−1
1 Σ̂off

gg (N, ξ1, 0) ,

(4.16)

where the dimensionless variables ξi =
k2

i

m2 , with i = 1, 2 have been introduced. The

cross section with only one off-shell gluon can be deduced from eq. (4.5); in this case

it is more convenient to perform all the phase space integrals first, so that one is left

with

h(N,M, 0) = M

∫ ∞

0

dk2

k2

(
k2

m2

)M ∫ 1

0
dρρN

[
Σ0(ρ,k

2/m2) + Σ1(ρ,k
2/m2)

]
Θ

(
1

ρ
− 1 − k2

m2

)
.

(4.17)

The leading and sub-leading colour contributions are obtained from eq. (4.5), taking

the on-shell limit k2 → 0, and averaging over the azimuthal angle. Their explicit
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4.1. Heavy flavour production

expressions are:

Σ0(ρ,k
2/m2) =

α2
snc

2(n2
c − 1)

πβ

2

{
(1 − β2)2 (−10 − 11ρ+ 6(1 + ρ)L(β))

6ρ2

+

(
k2

4m2

)
(1 − β2)2 (76 + 69ρ− 24(1 + 2ρ)L(β))

6ρ

+

(
k2

4m2

)2

(1 − β2)2 (−29 − 16ρ+ (7 + 13ρ)L(β))

+

(
k2

4m2

)3

(1 − β2)2
2

3
ρ (41 + 10ρ− 9(1 + ρ)L(β))

+

(
k2

4m2

)4

(1 − β2)2
2

3
ρ2 (−14 + 3L(β))

}
, (4.18)

Σ1(ρ,k
2/m2) = − α2

s

2nc(n2
c − 1)

πβ

2

{
− 1 − ρ+

(
1 + ρ− 1

2
ρ2

)
L(β)

+
k2

4m2
ρ [8 + ρ− (2 + 3ρ)L(β)]

+

(
k2

4m2

)2

ρ2[−8 + 2L(β)]

}
. (4.19)

where the following notation has been introduced

L(β) =
1

β
ln

1 + β

1 − β
, β =

√

1 − ρ

(
1 − ρk2

4m2

)−1

. (4.20)

The two Mellin transforms can be computed by noticing that the off-shell cross section

is only a function of β; thus one has to evaluate the following kind of integral

∫ ∞

0

dk2

k2

(
k2

m2

)M ∫ 1

0
dρρNΘ

(
1

ρ
− 1 − k2

m2

)
f(β) . (4.21)

This can be achieved by changing the variables of integrations

(ρ,k2) → (η,k2) , (4.22)

with η = 1 − β2 and by performing the the integral with respect to k2 first:

∫ ∞

0

dk2

k2

(
k2

m2

)M
1

(
1 + ηk2

4m2

)N+2

∫ 1

0
dη ηNf(

√
1 − η) =

4M Γ(M)Γ(2 −M +N)

Γ(N + 2)

∫ 1

0
dη ηN−Mf(

√
1 − η) . (4.23)
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The only two integrals which have to be computed are:

∫ 1

0
ηα
√

1 − η =

√
π Γ(1 + α)

2Γ
(

5
2 + α

) ,

∫ 1

0
ηα ln

1 +
√

1 − η

1 −√
1 − η

=

√
π Γ(1 + α)

(α+ 1)Γ
(

3
2 + α

) . (4.24)

After some algebraic manipulations of the Euler Gamma functions one obtains the

following expression:

h(N,M, 0) =
α2

sπ

n2
c − 1

4NΓ(1 +N −M)2Γ(1 +M)Γ(3 +N −M)

Γ(N + 4)Γ(6 + 2N − 2M){
2nc

(
48 + 79N + 48N2 + 12N3 +N4

−M(24 + 23N + 7N2) −M2N(N + 1)
)

− 2

nc

(
14 + 20N + 9N2 +N3 −M(10 + 7N +N2)

)

×(5 + 2N − 2M)

}
. (4.25)

The colour suppressed contribution, which comes from the Abelian diagrams, is in

agreement with the result for photoproduction of heavy quarks in Ref. [45]. The non-

Abelian contribution is instead a new and unpublished result.

4.2 Drell-Yan processes

The production of lepton pairs through Drell-Yan mechanism [77] is one of major

success of perturbative QCD. The inclusive cross section has been computed at NLO

[78] and NNLO [79]. The hard scale of the process is given by the invariant mass of

the lepton pair

Q2 = m2
ll
. (4.26)

At LHC energies this quantity can be much smaller than the centre-of-mass energy,

so the resummation of high energy logarithm is of phenomenological interest, even at

the inclusive level. Furthermore the calculation of the Drell-Yan cross section is very

similar to the one for vector boson production. The W± and the Z cross sections are

meant to be used at LHC as a normalisation for the other cross sections and as a real-

time monitor for the luminosity. These tasks require a precision in the computation at

the percent level. For this reason the inclusion of the high energy corrections to these

processes, even if they are not expected to be dramatic because x ∼ 10−3 for central

rapidities |y| . 2, is important in order to get the sought precision.
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4.2. Drell-Yan processes

4.2.1 The Drell-Yan cross section

In the following the high energy behaviour of the partonic Drell-Yan cross section is

computed; for simplicity only one flavour of quarks with electric charge eq is considered.

The MS partonic cross section for the production of a lepton pair via an off-shell photon

with squared momentum q2 = Q2 can be written as:

σ̂(τ,Q2) = σ̂0(Q
2)
∑

i,j

Dij(τ,Q
2) , (4.27)

where τ = Q2/ŝ and the sum indices run over initial different partons q, q̄, g. The LO

cross section is

σ̂0(Q
2) =

e2qα
2

Q4

4π

3nc
, (4.28)

and the dimensionless coefficient function Dij contains the QCD radiative corrections

Dij(τ,Q
2) =

∞∑

k=0

(αs

2π

)k
D

(k)
ij (τ,Q2) . (4.29)

At LO the only partonic process process is qq̄ → γ∗ and the coefficient function is

simply a delta

D
(0)
qq̄ (τ,Q2) = τδ(1 − τ) . (4.30)

At NLO the channel qg → qγ∗ opens, while the process with two gluons in the initial

state occurs at NNLO.

The Mellin transform of the hadronic coefficient function can be written as

D(N,Q2) = Dqq q q +Dqg q g +Dgg g g , (4.31)

where q = q(N,µ2) and g = g(N,µ2) are the Mellin moments of the parton distribution

functions. The behaviour of the different partonic coefficient functions in the high

energy limit is

Dqq = 1 + O
(
αs

(αs

N

)k
)
,

Dqg = O
(
αs

(αs

N

)k
)
, k = 0, 1, 2, . . .

Dgg = O
(
α2

s

(αs

N

)k
)

; (4.32)

hence the quark-gluon contribution is NLL, while the gluon-gluon one is NNLL. The

high energy singularities of the Dqg coefficient function can be computed to all orders

in perturbation theory, using kT -factorisation. However, the Drell-Yan partonic cross
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4.2. Drell-Yan processes

section has collinear singularities, because of the massless quark line and so the

procedure is more complicated than the one described in the previous chapter and used

for heavy quark production. More specifically, high energy factorisation in d = 4 − 2ε

dimensions states that

Dqg(N,Q
2) =

∫
d2−2εk Σ̂off

qg (N,
k2

Q2
, ε)fbare(N,k, αs, µ

2, ε)qbare(N,µ2, ε)gbare(N,µ2, ε) .

(4.33)

As opposed to eq. (3.25) the partonic cross section is not free of collinear poles and

hence, in principle, has to be evaluated in d-dimensions. The factorisation of collinear

singularities has to be treated carefully; the renormalised quark and gluon distributions

can be written in terms of the bare ones and of the transition functions Γab, analogously

to eq. (3.27):

q = Γqq q
bare + Γqg g

bare

g = Γgq q
bare + Γgg g

bare , (4.34)

where the explicit arguments of the functions have been omitted for simplicity.

Substituting eq. (4.34) into eq. (4.31) one obtains

D(N,Q2) = Dqq

[
Γqq q

bare + Γqg g
bare
] [

Γqq q
bare + Γqg g

bare
]

+Dqg

[
Γqq q

bare + Γqg g
bare
] [

Γgq q
bare + Γgg g

bare
]

+Dgg

[
Γgq q

bare + Γgg g
bare
] [

Γgq q
bare + Γgg g

bare
]
. (4.35)

The coefficient of qbaregbare reads as

Dbare
qg = Dqq ΓqqΓqg +Dqg ΓqqΓgg +Dgg ΓgqΓgg

= Γqg +Dqg Γgg + O
(
α2

s

(αs

N

)k
)
, (4.36)

where the high energy behaviour of the different coefficient functions eq. (4.32) have

been used. Moreover:

Γqq(αs, ε) = 1 + O
(
αs

(αs

N

)k
)
,

Γqg(αs, ε) =
1

ε

∫ αse−ε(ln 4π−γE)

0

dα

α
γgg(N,α)Γgg(α, ε) + O

(
αs

(αs

N

)k
)
. (4.37)

The high energy singularities of Dqg are computed using a procedure described in [44] in

the case of deep-inelastic scattering. It consists of considering the logarithmic derivative
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of the coefficient function with respect Q2

∂

∂ lnQ2
Dbare

qg =

[
γqg + γggDqg + εαs

∂

∂αs
Dqg

]
Γgg . (4.38)

This expression has now the same factorisation properties of eq. (3.25), and all the ε

poles can be factorised through the transition function. Thus the terms in the square

brackets is collinear safe. On the other side, high energy factorisation states that:

∂

∂ lnQ2
Dbare

qg =

∫
d2−2εk

∂

∂ lnQ2
Σ̂off

qg (N,
k2

Q2
, ε)fbare(N,k, αs, µ, ε) . (4.39)

Thus, comparing eq. (4.38) and eq. (4.39) taking the ε→ 0 limit, one obtains:

γggDqg + γqg = h(N,M)R(0,M) . (4.40)

The impact factor in eq. (4.40) is the Mellin transform of the logarithmic derivative of

the off-shell cross section qg∗ → qγ∗ with respect to Q2:

h(N,M) = M

∫ ∞

0
dξξM−1 ∂

∂ lnQ2
Σ̂off

qg (N, ξ)

= −M
∫ ∞

0
dξξM ∂

∂ξ
Σ̂off

qg (N, ξ)

= M2

∫ ∞

0
dξξM−1Σ̂off

qg (N, ξ) , (4.41)

where ξ = k2/Q2. Even though the off-shell cross section Σ̂off
qg has collinear singularities

and a consistent computation in MS would require its evaluation in d-dimensions, its

logarithmic derivative is collinear safe; hence it can be computed in four dimensions and

used to determine the high energy behaviour of the coefficient function Dqg through

eq. (4.40).

4.2.2 The off-shell calculation

The process which has to be considered is

g∗(k) + q(p) → γ∗(q) + q(p′) ;
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g
∗

q γ
∗

q g
∗

q γ
∗

q

Figure 4.2: Diagrams for the Drell-Yan process with one off-shell gluon g∗q → γ∗q.

the relevant Feynman diagrams are shown in fig. 4.2 and the Sudakov decomposition

of the four momenta is

k = x1p1 + k

p = x2p2

q = z1x1p1 + (1 − z2)x2p2 + q

p′ = (1 − z1)x1p1 + z2x2p2 + k − q . (4.42)

The two-body phase-space is given in eq. (A.16); with the current convention for

the momenta it becomes:

dΦ(2) =
d4q

(2π)3
d4p′

(2π)3
δ(q2 −Q2)δ(p′2)(2π)4δ(4)(k + p− q − p′) =

=
d4q

(2π)2
δ(q2 −Q2) δ(p′2) =

=
ν

8π2
dz1dz2d

2q δ((1 − z2)z1ν − |q|2) (4.43)

×δ((1 − z1)z2ν − |k − q|2) .

The squared matrix element is computed using as usual eikonal polarisation for the

gluon, while the Lorentz indices coming from the photon-quark coupling are contracted

with gµν , because of the conservation of the electro-magnetic current. The result is

|M|2 = − e2
qg2

s

nc

{
t
s + s

t +Q2|k|2
(

1
s2 + 1

t2

)
+ 2|k|2

(
1
t − 1

s

)
+ 4 (k·q)

s

−4Q2(k·q)
t2

+ 4Q2(k·q)2

|k|2t2
+ 1

st

[
2|k|4 − 4|k|2(k · q) + 4(k · q)2

−4(k · q)Q2 + 2|k|2Q2
]}

, (4.44)
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where the usual Mandelstam invariants have been introduced

s = (p+ k)2 = ν − |k|2

t = (p− q)2 = Q2 − z1ν

s+ t+ u = Q2 − |k|2 . (4.45)

The matrix element eq. (4.44) in the on-shell limit reduces to

lim
|k|→0

〈|M|2〉ϑ = −
e2qg

2
s

nc

{ t
s

+
s

t
+ 2

Q2u

st

}
, (4.46)

in agreement with the standard NLO calculation [78].

The phase space integration can be easily performed shifting the variable of

integration: ∆ = q − z1k. One delta function is used to perform the integral over

the longitudinal fraction of the momentum z2

dΦ(2) =
1

8π2

dz1
(1 − z1)

d2∆ δ((1 − z2)z1ν − |q|2) , (4.47)

with

z2 =
|(1 − z1)k − ∆|2

(1 − z1)ν
. (4.48)

With the second delta one can compute the integral over |∆|2:

dΦ(2) =
1

16π2
dz1dϑ , (4.49)

with

|∆|2 = (1 − z1)[z1(ν − |k|2) −Q2] . (4.50)

0 < ϑ < 2π
Q2

ν − |k|2 < z1 < 1 . (4.51)

One may introduce the dimensionless variables:

τ =
Q2

ν
, ξ =

|k|2
Q2

. (4.52)

The reduced cross section, averaged over the azimuth, can be written as follows

Σ(τ, ξ) =
e2q
nc

αs

2π

τ

2

∫ 1

τ
1−τξ

dz1

∫ 2π

0

dϑ

2π
|M|2 , (4.53)

where, according to eq. (4.28), the factor e2q/nc has been absorbed into the LO cross
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section. The explicit result of the integration gives

Σ(τ, ξ) =
αs

2π
TR τ

{
1

1 − τξ
ln
(

(1−τ)(1−ξτ)
τ2ξ

)[
(τ2 + (1 − τ)2)

+τ2ξ
(
10 + ξ + 18τ2ξ − 6τ(3 + 2ξ)

)
]

+
1 − τ − τξ

2(1 − τ)(1 − τξ)3

[
− 1 + 36τ5ξ3 + 7τ(2 + ξ)

−6τ4ξ2(15 + 7ξ) + 2τ3ξ(35 + 49ξ + 4ξ2)

−τ2(15 + 71ξ + 14ξ2)

]}
Θ

(
1

τ
− ξ − 1

)
. (4.54)

The on-shell limit ξ → 0 is

Σ(τ, ξ) =
αs

2π
τ

[
− Pqg(τ) ln ξ + Pqg(τ) ln

(
1 − τ

τ2

)

+
1

2

(
−1

2
+ 7τ − 15

2
τ2

)]
+ O(ξ) , (4.55)

where Pqg(τ) = TR(τ2 + (1 − τ)2). The fixed order NLO coefficient function in MS is

D(1)
qg (τ,Q2) =

αs

2π
τ

[
− Pqg(τ)

(
−1

ε
− ln 4π + γE + ln

Q2

µ2

)

+Pqg(τ) ln

(
(1 − τ)2

τ

)
+

1

2

(
1

2
+ 3τ − 7

2
τ2

)]
. (4.56)

Only the coefficient of the collinear singularity is the same in the two expressions: it is

the DGLAP splitting function. The finite parts instead clearly differ. This is because

the virtuality of the gluon acts as a mass regulator and hence the off-shell calculation in

four dimensions is performed in a factorisation scheme which is not MS, as extensively

discussed in [81]. However, as already said, the logarithmic derivative of this cross

section provides, through eq. (4.40), the MS result for the coefficient function Dqg.

The impact factor is defined in eq. (4.41) as the double Mellin transform of the

logarithmic derivative of the off-shell cross section eq. (4.54). It is useful to change the

integration variables according to

α = τξ

β =
τ

1 − τξ
; (4.57)

the Jacobian determinant is 1/β. In this way the Θ function condition is satisfied for
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all α, β ∈ [0, 1] and the region of integration becomes simpler:

h(N,M) =
αs

2π
TRM

2

∫ 1

0
dα

∫ 1

0
dβ αM−1(1 − α)N−MβN−M

×
[
ln

1 − (1 − α)β

αβ
d1(α, β) − 1

2

1

1 − (1 − α)β
d2(α, β)

]
, (4.58)

where the function di are

d1(α, β) = 1 + α2 − 2β + 12αβ − 22α2β + 12α3β + 2β2 − 22αβ2

+56α2β2 − 54α3β2 + 18α4β2 ,

d2(α, β) = (1 − β)
(
1 − 6α+ 8α2 − 14β + 71αβ − 98α2β + 42α3β + 15β2

−85αβ2 + 160α2β2 − 126α3β2 + 36α4β2
)
. (4.59)

Thus only two master integrals are needed in order to compute the Mellin moments

of the off-shell cross section. Moreover the integral containing the logarithm can be

further simplified, integrating by parts with respect to the variable β:

∫ 1

0
dα

∫ 1

0
dβ αM−1+pα(1 − α)N−MβN−M+pβ ln

1 − (1 − α)β

αβ
=

1

1 +N −M + pβ

∫ 1

0
dα

∫ 1

0
dβ αM−1+pα(1 − α)N−MβN−M+pβ

1

1 − (1 − α)β

(4.60)

where pα and pβ stand for the exponents of α and β in each terms of the functions

di(α, β). Thus only one integral is actually needed:

∫ 1

0
dα

∫ 1

0
dβ αM−1+pα(1 − α)N−MβN−M+pβ

1

1 − (1 − α)β
=

Γ(M + pα)Γ(1 −M +N)

Γ(1 +N + pα)(1 +N −M + pβ)
×

3F2

[
{1, 1 +N −M, 1 +N −M + pβ}, {1 +N + pα, 2 +N −M + pβ}; 1

]
.

(4.61)

It is instructive to rewrite the hypergeometric in the previous expression, in order to

show the singularity in M = 0. Thomae’s theorem [82] states that

3F2({a, b, c}, {e, f}; 1) = Γ(s)Γ(e)Γ(f)
Γ(s+b)Γ(s+c)Γ(a) 3F2({s, e− a, e− b}, {s+ b, s+ c}; 1) . (4.62)
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It is then possible to rearrange the expression in eq. (4.61) as

3F2

[
{1, 1 +N −M, 1 +N −M + pβ}, {1 +N + pα, 2 +N −M + pβ}; 1

]
=

Γ(M + pα)Γ(2 +N −M + pβ)

Γ(1 +N + pα + pβ)
3F2

[
{M + pα, N + pα, 1 +N −M + pβ},

{1 +N + pα, 1 +N + pα + pβ}; 1
]
. (4.63)

Thus the integral in eq. (4.41) has a double pole in M = 0 coming from the terms with

pα = 0, but the impact factor is regular in the origin because of the prefactor M2.

The expression of impact factor h(N,M) is a fairly complicated sum of terms involving

generalised hypergeometric functions 3F2:

h(N,M) =
αs

2π
TRM

2
4∑

pα=0

3∑

pβ=0

Γ(M + pα)2Γ(1 +N −M)Γ(1 +N −M + pβ)

Γ(1 +N + pα)Γ(1 +N + pα + pβ)

3F2

[
{M + pα, N + pα, 1 +N −M + pβ}, {1 +N + pα, 1 +N + pα + pβ}; 1

]



 ∆̃
(1)
1+pα,1+pβ

(1 +N −M + pβ)
+ ∆̃

(2)
1+pα,1+pβ



 . (4.64)

The coefficients are deduced from eq. (4.59) and they are collected in the following

matrices:

∆̃
(1)
i,j =




1 −2 2 0

0 12 −22 0

1 −22 56 0

0 12 −54 0

0 0 18 0




; ∆̃
(2)
i,j = −1

2




1 −15 29 −15

−6 77 −156 85

8 −106 258 −160

0 42 −168 126

0 0 36 −36



, (4.65)

where i = 1 + pα and j = 1 + pβ .

4.2.3 The coefficient function at high energy

The leading high energy behaviour of the coefficient function Dqg can be computed

through eq. (4.40), using the pole condition M = γs

(
αs

N

)

γsDqg + γqg = h(0, γs)R(0, γs) , (4.66)

remembering that γgg = γs + O
(
αs

(
αs

N

)k)
. The explicit N dependence of the impact

factor is subleading, so it has been set N = 0; in this limit the hypergeometric functions
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in eq. (4.64) become

3F2

[
{M + pα, pα, 1 −M + pβ}, {1 + pα, 1 + pα + pβ}; 1

]
, (4.67)

which for integer values of pα and pβ can be written as combinations of sine and rational

functions. Using the following relation between Euler Gamma function

Γ(1 + z) = zΓ(z) ,

the result remarkably simplifies to:

h(0,M) =
αs

2π
TR

4Γ(1 −M)2Γ(1 +M)2

(1 −M)(2 −M)(3 −M)
. (4.68)

The Taylor expansion about M = 0 gives

h(0,M) =
αs

2π
TR

[
2

3
+

11

9
M +

(
85

54
+

2π2

9

)
M2 +

(
575

324
+

11π2

27

)
M3

+

(
3661

1944
+

85π2

162
+

2π4

45

)
M4 + O

(
M5
)
]
. (4.69)

In order to compute the high energy behaviour of the MS coefficient function, one needs

the the BFKL anomalous dimension eq. (3.21) and the scheme change factors between

MS and Q0, given in eq. (3.33). Finally the quark anomalous dimension at high energy

was computed in [44] up to O
(
αs

(
αs

N

)5)
:

γqg

(αs

N

)
=

αsTR

3π

[
1 +

5

3

CA

π

αs

N
+

14

9

(
CA

π

αs

N

)2

+

(
82

81
+ 2ζ3

)(
CA

π

αs

N

)3

+

(
122

243
+

25

6
ζ3

)(
CA

π

αs

N

)4

+

(
146

729
+

14

3
ζ3 + 2ζ5

)(
CA

π

αs

N

)5

+ . . .

]
.

(4.70)

Substituting into eq. (4.40) one obtains

Dqg

(αs

N

)
=

(αs

2π

)
TR

[
1

9
+
(αs

N

) CA

2π

(
29

27
+

4π2

9

)

+
(αs

N

)2
(
CA

2π

)2(1069

243
+

44

27
π2 +

16

9
ζ3

)

+
(αs

N

)3
(
CA

2π

)3(9031

729
+

340

81
π2 +

14

45
π4 +

584

27
ζ3

)
+ . . .

]
.

(4.71)
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The coefficients of O (αs) and O
(
α2

s

)
are in agreement with the high energy limit of

the fixed order NLO and NNLO computations [80]. This is a very non-trivial check of

the procedure. The higher order coefficients are instead new results.

The high energy singularities of the quark-quark coefficient function are easily

obtained thanks to the colour charge relation between Dqq and Dqg at high energy

Dqq

(αs

N

)
− 1 −O(αs) =

CF

CA

[
Dqg

(αs

N

)
− TR

(αs

2π

) 1

9

]
+ O

(
α2

s

(αs

N

)k
)
. (4.72)

The explicit result is

Dqq

(αs

N

)
− 1 −O(αs) =

CF

CA

(αs

2π

)
TR

[(αs

N

) CA

2π

(
29

27
+

4π2

9

)

+
(αs

N

)2
(
CA

2π

)2(1069

243
+

44

27
π2 +

16

9
ζ3

)

+
(αs

N

)3
(
CA

2π

)3(9031

729
+

340

81
π2 +

14

45
π4 +

584

27
ζ3

)

+ . . .

]
. (4.73)

Again the O
(
α2

s

)
term is in agreement with the high energy limit of the fixed order

NNLO computation, while the higher order contributions are new results.

4.2.4 Vector boson production

The hadroproduction of vector bosons, either W± or Z, is closely related to the one

just discussed. The partonic cross section can be written as

σ̂V (τ,m2
V ) = σ̂V

0 (m2
V )
∑

i,j

Dij(τ,m
2
V ) , V = W±, Z , (4.74)

where

σ̂V
0 =

π

nc

√
2GFm

2
V , (4.75)

GF = 1√
2v2 is the Fermi constant and nc = CA. The perturbative QCD corrections to

vector boson production are the same as the Drell-Yan ones at NLO and they only differ

at NNLO because of the diagram with an internal quark triangle, which contributes to

the Z boson cross section but it vanishes in the case of a virtual photon or W±. The

high energy singularities are determined by the off-shell process

g∗ + q(p) → W±/Z + q′ ,
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at O(αs); the triangle diagram does not contribute, being O
(
α2

s

)
hence the calculation

is the same as the one previously described. The gauge bosons couple differently to

the various quark flavours, but because there is only one electro-weak vertex for each

diagram, such a contribution factorises in the squared matrix element and it results

into an over all coefficient:

Cqq′ =

{
|Vqq′ |2 for W± ,(
v2
q + a2

q

)
δqq′ for Z

(4.76)

where Vqq′ is the appropriate CKM matrix element and vq, aq denote the vector and

axial couplings of the Z bosons to the different quark flavours.
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Chapter 5

Higgs boson production via

gluon-gluon fusion

In this chapter the inclusive production of a Higgs boson via gluon-gluon fusion is

studied in kT -factorisation. The different high energy limits of the cross section in the

case of infinite and finite top mass are analysed in detail. A method to improve the

coefficient function obtained in the heavy top limit is proposed.

5.1 Higgs boson at hadron colliders

It is well known that the electro-weak gauge symmetry of the Standard Model

Lagrangian forbids explicit mass terms for any particle. Because the weak bosons

and the fermions are massive, one should provide a mechanism that allows it. This

can be achieved by spontaneous symmetry breaking, which in the Standard Model is

realised by the Higgs mechanism. In this framework one introduces a complex scalar

SU(2) doublet φ, with a potential given by

V(φ†φ) = λ(φ†φ)2 − µ2(φ†φ)4 ; (5.1)

this potential has a circle of degenerate minima at

|φ| =
v√
2

=

√
µ2

2λ
. (5.2)

The choice of any of the equivalent vacuum expectation values v breaks the gauge

symmetry because it identifies a particular direction in the symmetry group space.

The introduction of a scalar doublet in the theory increases the number of degrees

of freedom by four. Three of these provide the longitudinal polarisation for the massive

W± and Z bosons; the one that remains, which is a neutral scalar, is a new fundamental
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Figure 5.1: This plot shows the limits on the Higgs boson mass coming from electro-
weak precision data (blue) and from direct search at LEP (yellow) [83].

particle of the spectrum, the renowned Higgs boson. Thus this mechanism not only

gives a solution to the mass problem, but also it provides a way to test it, because it

predicts the existence of a new particle. The search for the Higgs is one of the most

exciting challenge in modern physics. So far no evidence of its existence has been found

at present and past colliders such as Tevatron at Fermilab and LEP at CERN. However,

fits to electro-weak precision data constrain the range of values for the Higgs mass [83].

Figure 5.1 shows the result of such fits together with the region excluded by direct

searches; Standard Model fits prefer a fairly light Higgs boson, which can be observed

at the LHC.

The theoretical and experimental effort which has been put into Higgs studies for

LHC phenomenology is remarkable. In the following the attention will be focused on the

inclusive Higgs production via gluon-gluon fusion, which is the dominant production

channel at the LHC. Because the coupling of the Higgs to any particle is proportional

to the mass of the particle itself, the top contribution overwhelms the ones coming from

the other quark flavours. The inclusive hadronic cross section can be obtained by the

82



5.1. Higgs boson at hadron colliders

convolution of the partonic contribution with the parton distribution functions:

σ(τh; yt,m
2
H) =

∑

i,j

∫ 1

τh

dx1

x1

∫ 1

τh

dx2

x2
σ̂ij

(
αs;

τh
x1x2

; yt,m
2
H

)

× fi

(
x1,m

2
H

)
fj

(
x2,m

2
H

)
, (5.3)

where the dimensionless variables τh and yt parametrise the hadronic centre-of-mass

energy and the dependence on the top mass, respectively:

τh =
m2

H

s
, (5.4)

yt =
m2

t

m2
H

. (5.5)

Even though beyond LO different initial partons contributes to the process, only the

gluon channel will be considered in detail. As discussed in Chapter 3, the leading high

energy contribution in the different channels can be easily derived from the gluon-gluon

one as shown in eq. (3.37). It is convenient to define a dimensionless hard coefficient

function C(αs(m
2
H); τ, yt), factoring out the LO cross section σ0

σ̂gg

(
αs; τ ; yt,m

2
H

)
= σ0(yt)C(αs(m

2
H); τ, yt) (5.6)

C(αs(m
2
H); τ, yt) = δ(1 − τ) +

αs(m2
H)

π C(1)(τ, yt)

+
(

αs(m2
H)

π

)2
C(2)(τ, yt) + O

(
α3

s

)
, (5.7)

where τ = τh

x1x2
and hence 0 ≤ τh ≤ τ ≤ 1. The leading order cross section was

determined long ago [84]:

σ0(yt) =
α2

sGF

√
2

256π

∣∣∣∣4yt

(
1 − 1

4
(1 − 4yt)s

2
0(yt)

)∣∣∣∣
2

, (5.8)

where

s0(yt) =





ln
(

1−√
1−4yt

1+
√

1−4yt

)
+ π i if yt <

1
4

2 i tan−1
(√

1
4yt−1

)
= 2 i sin−1

(√
1

4yt

)
if yt ≥ 1

4 .
(5.9)

Note that if yt <
1
4 the intermediate quark-antiquark pair can go on-shell.

The NLO corrections to this processes were computed some times ago [85], [86] and

recently confirmed in [87]; they turned out to be very large, about 80% − 100% of the

LO result. The bulk of these corrections comes from the radiation of soft gluons [88],

which gives the leading contribution in the soft limit, where the partonic centre-of-mass

energy ŝ tends to the Higgs mass m2
H (or equivalently τ → 1). In the kinematic region

covered by the LHC such regime dominates the hadronic cross section, after convolution

with the parton distributions.
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Figure 5.2: The leading order contribution to gg → H with finite mt (on the left) and
in the heavy top limit (on the right). When mt → ∞ the top triangle shrinks to a
pointlike interaction.

The dominant soft contribution does not resolve the gluon-gluon-Higgs (ggH)

coupling induced by the top loop. As a consequence, the QCD corrections can be

evaluated quite accurately in the limit mt → ∞, where the calculation simplifies

considerably because the ggH coupling becomes pointlike and the corresponding

Feynman diagrams have one less loop. In the heavy top limit the interaction between

the Higgs boson and the gluon can be described by an effective Lagrangian:

Leff = −W
4v
Ga

µνGaµνH , (5.10)

where Ga
µν is the gluon strength tensor, H is the Higgs field and W is a Wilson

coefficient, whose MS expression is [90]

W =
−1

3π

{
1 +

11

4

αs

π
+
(αs

π

)2
[
2777

288
− 19

16
ln
m2

t

µ2
− nf

(
67

96
+

1

3
ln
m2

t

µ2

)]}
. (5.11)

In this approximation the NLO corrections were calculated in [89] and [91] and, more

recently, the NNLO corrections have been computed by different groups [92]-[94]. The

NNLO result appears to be perturbatively quite stable, and this stability is confirmed

upon inclusion [95] of terms in the next few perturbative orders, that are logarithmically

enhanced as τ → 1 and that can be determined [96] using soft-gluon resummation

methods. This suggests that also at NNLO the large mt approximation should provide

a good approximation to the yet unknown exact result.

The infinite mt approximation, which becomes exact in the soft limit, fails in the

opposite (hard) limit of large partonic centre–of–mass energy ŝ → ∞ or equivalently

τ → 0. This is due to the fact that the ggH vertex is pointlike in the heavy top

limit, whereas for finite mt the quark loop provides a form factor, which softens the

high energy behaviour. For instance one can compare the NLO contribution to the

dimensionless coefficient function eq. (5.7) obtained in the heavy top limit [91] to the
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5.1. Higgs boson at hadron colliders

one with finite mt [86], namely:

C(1)(τ,∞) = (π2 +
11

2
)δ(1 − τ) − τPgg(τ) ln τ − 11

2
(1 − τ)3

+ 12

[(
ln(1 − τ)

1 − τ

)

+

− τ [2 − τ(1 − τ)] ln(1 − τ)

]
(5.12)

and

C(1)(τ, yt) = (π2 + ω(yt))δ(1 − τ) − τPgg(τ) ln τ + Rgg(τ, yt)

+ 12

[(
ln(1 − τ)

1 − τ

)

+

− τ [2 − τ(1 − τ)] ln(1 − τ)

]
. (5.13)

The second lines of each equation contain the terms which are logarithmically enhanced

as τ → 1. They coincide because, as already stated, the heavy top approximation is

exact in the soft limit. It is straightforward to compute the hard limit of eq. (5.12):

lim
τ→0

C(1)(τ,∞) = −2CA ln τ − 11

2
+ O(τ) . (5.14)

More complicated is the calculation of τ → 0 limit of Rgg in eq. (5.13); it has not been

possible to perform it analytically, but looking at the plot shown in figure 5.3 one can

convince oneself that the logarithmic growth at small τ cancels and the high energy

behaviour is given by

lim
τ→0

C(1)(τ, yt) = CAC(yt) + O(τ) . (5.15)

It was discussed in [44], and it will be explicitly shown in the following sections,

that a pointlike interaction at k–th perturbative order has double energy logarithms,

while in the resolved case only single logarithms appear. This means that as τ → 0 the

hard coefficient function behaves as

C(αs; τ, yt) ∼
τ→0






∑∞
k=1 α

k
s ln2k−1

(
1
τ

)
pointlike: mt → ∞

∑∞
k=1 α

k
s lnk−1

(
1
τ

)
resolved: finite mt

(5.16)

Hence, as the centre-of-mass energy grows, eventually mt → ∞ ceases to be a good

approximation to the exact result. Moreover the difference at high energy between

the exact and approximate behaviour is stronger at higher orders, so one might expect

the relative accuracy of the infinite mt approximation to the k–th order perturbative

contribution to the cross section to become worse as the perturbative order increases.

The computation of the high energy logarithms can be performed thanks to

kT -factorisation. It is then useful to consider Mellin moments of the perturbative
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Figure 5.3: The NLO hard coefficient function plotted as a function of τ . The curves
from top to bottom correspond to mt = ∞ (black), and to mt = 170.9 GeV (red), with
mH = 130, 180, 230, 280 GeV.

coefficient function eq. (5.7):

C(αs(m
2
H), N, yt) =

∫ 1

0
dττN−1C(αs(m

2
H), τ, yt) , (5.17)

C(αs(m
2
H), N, yt) = 1 +

αs(m2
H)

π C(1)(N, yt)

+
(

αs(m2
H)

π

)2
C(2)(N, yt) + O

(
α3

s

)
. (5.18)

As usual the high energy, or small τ , limit corresponds to N → 0 in Mellin space.

5.2 The mt → ∞ calculation in kT -factorisation

In this section the leading high energy behaviour of the gg → H process is computed

to all orders in perturbation theory, in the heavy top limit. In particular the origin of

double high energy logarithms is investigated, proving the first line of eq. (5.16). This

calculation was firstly performed in [97]; the result obtained in the following differs from

the original one, but only for terms which are subleading in the high energy limit. The

off-shell matrix element for this process was also computed in [98] but the result was

not used to compute high energy corrections to the perturbative coefficient function.

As discussed in section 3.1, the leading logarithmic contribution can be computed
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5.2. The mt → ∞ calculation in kT -factorisation

considering the LO process with off-shell gluons:

g∗(k1) + g∗(k2) → H(p), (5.19)

The kinematics of the process is described by

k1 = z1p1 + k1,

k2 = z2p2 + k2,

ŝ = (k1 + k2)
2 = ν − |k1 + k2|2 , (5.20)

where p1 and p2 are, as usual, lightlike vector. The phase space integral is remarkably

simple

dΦ(1) =

∫
d4p

(2π)3
(2π)4δ(4)(k1 + k2 − p)δ(p2 −m2

H)

=
2π

m2
H

δ(
1

τ
− 1 − |k1 + k2|2

m2
H

) , (5.21)

where τ = m2
H/ν. The Feynman amplitude obtained from the effective Lagrangian

eq. (5.10) is

Mµν = 4 ((k1 · k2)g
µν − kν

1k
µ
2 ) . (5.22)

The Lorentz indices are contracted with eikonal polarisations eq. (3.6); the colour-

averaged squared matrix element is

|M|2 =
α2

s

32

GF

√
2

9π2

(k1 · k2)
2

|k1|2|k2|2
ν2 . (5.23)

Thus, the reduced off-shell cross section becomes

Σ̂off
gg =

α2
sm

2
HGF

√
2

288π

(k1 · k2)
2

|k1|2|k2|2
1

τ
δ(

1

τ
− 1 − (k1 + k2)

2

m2
H

). (5.24)

The impact factor is defined by taking Mellin moments of the reduced cross section

h(N,M1,M2) = M1M2

∫
d2k1

π|k1|2
( |k1|2
m2

H

)M1 ∫ d2k2

π|k2|2
( |k2|2
m2

H

)M2

×
∫ 1

0

dτ

τ
τN Σ̂off

gg . (5.25)

The N Mellin transformation can be performed using the delta function; the result can
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5.2. The mt → ∞ calculation in kT -factorisation

be expressed in terms of dimensionless variables:

ξi =
|ki|2
m2

H

=⇒ d2ki

π|k1|2
=
dϑi

2π

dξi
ξi
, i = 1, 2 .

Thus eq. (5.25) becomes:

h(N,M1,M2) =
α2

sm
2
HGF

√
2

288π
M1M2

∫ +∞

0
dξ1(ξ1)

M1−1

∫ +∞

0
dξ2(ξ2)

M2−1

1

(1 + ξ1 + ξ2)N

∫ 2π

0

dϕ

2π

cos2 ϕ

(1 +
√
α cosϕ)N

, (5.26)

where α = 4ξ1ξ2
(1+ξ1+ξ2)2

and ϕ is the angle between the two transverse momenta,

ϕ = ϑ2 − ϑ1. The angular integration can be expressed as the sum of two hypergeo-

metric functions:

∫ 2π

0

dϕ

2π
cos2 ϕ(1 +

√
α cosϕ)−N =

+∞∑

n=0

(−N)!

(−N − n)!

αn/2

n!

∫ 2π

0

dϕ

2π
cos2+n ϕ

=
+∞∑

k=0

(−N)!

(−N − 2k)!

αk

(2k)!

(2k + 1)!!

(2k + 2)!!

=
1

2

[
2F1(

N

2
,
N + 1

2
, 2, α) +

α

4
N(N + 1)2F1(

N + 2

2
,
N + 3

2
, 3, α)

]
.

(5.27)

In order to perform the M Mellin transforms, it is useful to change the variables of

integration. Introducing

u = ξ1 + ξ2 , (5.28)

t =
ξ1

ξ1 + ξ2
.

the impact factor can be expressed as

h(N,M1,M2) =
α2

sm2
HGF

√
2

576π M1M2

∫ +∞

0
du uM1+M2−1

(1+u)N

∫ 1

0
dt tM1−1(1 − t)M2−1

[

2F1

(
N
2 ,

N+1
2 , 2, 4u2t(1−t)

(1+u)2

)
+

N(N + 1)u2t(1−t)
(1+u)2 2F1

(
N+2

2 , N+3
2 , 3, 4u2t(1−t)

(1+u)2

)]
.

(5.29)

The integration variables only enter the last argument of the hypergeometric functions,
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5.2. The mt → ∞ calculation in kT -factorisation

which in turn have the same structure as the prefactor in the integrand. Thus, writing

the series representation of the hypergeometric and swapping the integral and the

summation, one can integrate the series term by term. The result can be written in

terms of generalised hypergeometric functions:

h(N,M1,M2) =
α2

sm
2
HGF

√
2

576π
Γ(N −M1 −M2)

[
Γ(1+M1)Γ(1+M2)

Γ(N) ×

4F3

({
N
2 ,

N+1
2 ,M1,M2,

}
,
{
2, N

2 ,
N+1

2

}
; 1
)

+

N(N + 1)M1M2
Γ(1+M1)Γ(1+M2)

Γ(N+2) ×

4F3

({
N+2

2 , N+3
2 , 1 +M1, 1 +M2,

}
,
{
3, N+2

2 , N+3
2

}
; 1
)
]

(5.30)

This expression can be simplified and reduced to ratios of Euler Gamma functions

thanks to the following identities:

4F3({a, b, c, d}, {a, b, e}; z) = 2F1(c, d, e, z) , (5.31)

2F1(a, b, c, 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
. (5.32)

The impact factor can be expressed in a rather compact form:

h(N,M1,M2) =
α2

sm
2
HGF

√
2

576π

Γ(N −M1 −M2)Γ(1 +M1)Γ(1 +M2)

Γ(N)
×

Γ(2 −M1 −M2)

Γ(2 −M1)Γ(2 −M2)

[
1 +

2M1M2

1 −M1 −M2

]
.

(5.33)

A crucial point in the resummation of high energy logarithms discussed in Chapter 3

was the observation that all the singularities in N = 0 and Mi = 0 are factored into

the parton densities, so that the impact factor has a finite radius of convergence in

the neighbourhood of the origin. However, this is not the case in the process currently

analysed; in particular the Mellin integral eq. (5.26) diverges for all M1, M2 when

N = 0, and it has only a finite radius of convergence when N > 0. As a consequence

eq. (5.33) has singularities in the (M1,M2) plane, whose location depends on the value

of N :

h(N,M1,M2) =
α2

sm
2
HGF

√
2

576π

Γ(N −M1 −M2)

Γ(N)

[
1 + O (M1,M2)

]

=
α2

sm
2
HGF

√
2

576π

N

N −M1 −M2
+ . . . (5.34)
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5.3. The finite top mass case

Thus the expansion in powers of M1+M2 converges for M1+M2 < N , resulting into an

expansion if powers of M1+M2
N . The leading high energy singularities are found setting

M1 = M2 = γ(αs, N), with γ(αs, N) ≃ αsCA

πN

h(N,M1,M2) =
α2

sm
2
HGF

√
2

576π

[
1 +

M1 +M2

N
+

(
M1 +M2

N

)2

+ . . .

]

=
α2

sm
2
HGF

√
2

576π

[
1 +

αs

π

2CA

N2
+
(αs

π

)2
(

2CA

N2

)2

+ . . .

]
,

(5.35)

which exhibits double N poles at every perturbative order. The Mellin inversion of this

result is readily computed by noticing that

M
−1

[
1

Np

]
=

1

(p− 1)!
lnp−1 1

τ
, p ≥ 1 . (5.36)

For instance the leading high energy behaviours of the NLO and NNLO coefficient

functions are

lim
τ→0

C(1)(τ,∞) = −6 ln τ + O(τ0) ,

lim
τ→0

C(2)(τ,∞) = −6 ln3 τ + O(ln2 τ) , (5.37)

in agreement with the high energy limit of the fixed order calculations.

5.3 The finite top mass case

In this section the calculation of the leading high energy singularity of the coefficient

function is performed keeping the full top mass dependence. The results of this

computation have been published in [102].

5.3.1 The off-shell cross section

The LO amplitude for the production of a Higgs boson from two off-shell gluons,

through a top loop is equal to

Mµν
ab = 4i δab g

2
sm

2
t

v

[
kµ

2k
ν
1

m2
H

A1(ξ1, ξ2; yt) − gµνA2(ξ1, ξ2; yt)

+

(
k1 · k2

m2
H

A1(ξ1, ξ2; yt) −A2(ξ1, ξ2; yt)

)

k1 · k2k
µ
1k

ν
2 − k2

1k
µ
2k

ν
2 − k2

2k
µ
1k

ν
1

k2
1k

2
2

]
, (5.38)
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where a, b are the colour indices and the dimensionless kinematical variables are the

same as in the previous section. The dimensionless form factors A1(ξ1, ξ2; yt) and

A2(ξ1, ξ2; yt) have been computed in [99] and subsequently re-derived in [100], where

an expression for the Higgs production cross section from the fusion of two off-shell

gluons was also determined; there it was used in a numerical study and not to obtain

high energy corrections to perturbative coefficient function. Explicit expressions for

form factors in eq. (5.38) are collected in Appendix B. The spin- and colour-averaged

dimensionless cross section is

Σ̂off
gg (τ, ξ1, ξ2, ϕ) = 8

√
2π3α2

sGFm
2
H

y2
t

ξ1ξ2

∣∣∣∣
1

2τ
A1 −A2

∣∣∣∣
2

δ

(
1

τ
− 1 − ξ1 − ξ2 −

√
ξ1ξ2 cosϕ

)
. (5.39)

As in the infinite top mass case the delta function is used to perform the N Mellin

transformation. Because the form factors Ai are independent of ϕ, all the angular

integrals can be performed in terms of hypergeometric functions, with the result

Σ̂off
gg (N, ξ1, ξ2) = 8

√
2π3α2

sGFm
2
Hy

2
t

1

(1 + ξ1 + ξ2)N

{
|A1|2

2

(
2F1(

N

2
,
N + 1

2
, 2, α) +

α

4
N(N + 1)2F1(

N + 2

2
,
N + 3

2
, 3, α)

)

+ξ1ξ2|A3|22F1(
N

2
,
N + 1

2
, 1, α) −N

[
|A1|2(1 + ξ1 + ξ2)

−(A∗
1A2 +A1A

∗
2)
] 1

1 + ξ1 + ξ2
2F1(

N + 1

2
,
N + 2

2
, 2, α)

}
.

(5.40)

where α is the same as in eq. (5.26), and the new impact factor A3 is defined as:

A3(ξ1, ξ2, yt) ≡
1

ξ1ξ2

[
1 + ξ1 + ξ2

2
A1 −A2

]
. (5.41)

The mt → ∞ of the form factors can be computed using eq. (B.9)

lim
mt→∞

m2
tA1 = m2

H

1

48π2
,

lim
mt→∞

4m2
tA2 = m2

H

1

48π2

1 + ξ1 + ξ2
2

,

lim
mt→∞

m2
tA3 = 0 . (5.42)

Thus the last two lines of eq. (5.40) vanish in the heavy top limit and the remaining

terms, proportional to |A1|2, give the result in the pointlike limit.
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The spurious high energy growth in the pointlike approximation is due to the fact

that the Mellin integral eq. (5.26) had an N -dependent radius of convergence, vanishing

for N = 0. In order to prove that the result obtained with finite mt has the correct

high energy behaviour, one should study the radius of convergence of the integral:

h(0,M1,M2) = 8
√

2π3α2
sGFm

2
Hy

2
t

×M1M2

∫ +∞

0
dξ1ξ

M1−1
1

∫ +∞

0
dξ2ξ

M2−1
2

[
1

2
|A1|2 + ξ1ξ2|A3|2

]
.

(5.43)

The analytic computation of the full impact factor is hampered by the complicated

structure of the scalar integrals B0 and C0 eq. (B.4), (B.5). However, their expressions

greatly simplify in particular limits; for instance the form factors are regular for

ξ1, ξ2 → 0. Furthermore defining

C0 =
C̄0(ξ1, ξ2, yt)√

∆3
, (5.44)

one can notice that the functions C̄0 and B0 are complicated combination of logarithms

and dilogarithms [101], which in the limit of large virtualities behave at most as powers

of logarithms. Because logarithmic factors in the integrand cannot change the position

of the poles of its Mellin transformed, one can study the Mellin transform of the rational

factors and look for the singularities in the (M1,M2) plane. The position of these

singularities determines the radius of convergence of the integral. If the logarithmic

dependence is ignored the structure of the integrals that one has to compute is similar

to the one found in the heavy top case, but with an extra factor in the denominator,

which softens the behaviour at large virtualities:

∫ +∞

0
dξ1(ξ1)

M1−1

∫ +∞

0
dξ2(ξ2)

M2−1 1

(1 + ξ1 + ξ2)N

1

∆p
3

=

Γ(M1)Γ(M2)Γ(N−M1−M2+2p)
Γ(N+2p) 3F2({p,M1,M2} ,

{
N+2p

2 , N+1+2p
2

}
; 1) ,

(5.45)

where

∆3 = 1 + ξ21 + ξ22 − 2ξ1ξ2 + 2(ξ1 + ξ2) = (1 + ξ1 + ξ2)
2 − 4ξ1ξ2 . (5.46)

One can use Thomae’s theorem [82] to rearrange the hypergeometric function in

eq. (5.45) in a more instructive way; setting N = 0 wherever is safe, one can rewrite

the r.h.s. of eq. (5.45) as

Γ(M1)Γ(M2)Γ(2p+1
2 )Γ(N + 2p−M1 −M2)Γ(N + p+ 1

2 −M1 −M2)

Γ(2p)Γ(p+ 1
2 −M1)Γ(p+ 1

2 −M2)
. (5.47)
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The form factor |A1|2 contains, for instance, a contribution like (ξ1ξ2)2

∆2
3

, which upon

Mellin transform becomes

∫ +∞

0
dξ1(ξ1)

M1−1

∫ +∞

0
dξ2(ξ2)

M2−1 (ξ1ξ2)
2

∆3
3

∝ Γ(N + 2 −M1 −M2)Γ(N − 1

2
−M1 −M2) . (5.48)

The first Gamma function in eq. (5.48) is safe but not the second one, because when

N = 0, the line of singularities is atM1 +M2 = −1
2 and hence the radius of convergence

is zero. The origin of this problem can be traced down to the behaviour of the integrand

along ξ1 = ξ2 = ξ. In this direction because of a cancellation, the denominator eq. (5.46)

is linear in ξ, rather than quadratic:

∆3

∣∣∣
ξ1=ξ2=ξ

= 1 + 4ξ ; (5.49)

if one setsM1 = M2 = 0, then the integral in eq. (5.48) is ultra-violet divergent. In order

to prove that there are no double logarithms, one has to show that all these problematic

contributions cancel out and the integrand is well behaved at large virtualities. In

particular when ξ1 → ∞, ξ2 → ∞ with ξ1 6= ξ2 one has

lim
ξ1→∞, ξ2→∞

A1(ξ1, ξ2, yt) = 0 ,

lim
ξ1→∞, ξ2→∞

A3(ξ1, ξ2, yt) = 0 ,

lim
ξ1→∞, ξ2→∞

A2(ξ1, ξ2, yt) =
1

(4π)2
. (5.50)

If ξ1 → ∞, ξ2 → ∞ with ξ1 = ξ2 the limit is more subtle. For instance, in the case of

A1 one obtains

lim
ξ→∞

A1(ξ, ξ, yt) = lim
ξ→∞

C̄0(ξ, ξ, yt)

4

√
ξ

− 1

16π2

[
1

2
ln
yt

ξ
− 1 +

√
4yt − 1 tan−1

√
1

4yt − 1

]

+O

(
1√
ξ

)
. (5.51)

However, it turns out that

lim
ξ→∞

C̄0(ξ, ξ, yt) =
1

16π2
√
ξ

[
2 ln

yt

ξ
− 4 + 4

√
4yt − 1 tan−1

√
1

4yt − 1

]

+O

(
1

ξ

)
, (5.52)
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similar relations hold for the other form factors. Hence eq. (5.50) holds also when

ξ1 = ξ2. These conditions ensure that one can safely set N = 0 in the computation of

the impact factor and the Mellin integrals in eq. (5.43) have finite radius of convergence.

Therefore the coefficient function contains only single high energy logarithms to all

orders in perturbation theory.

5.3.2 The high energy behaviour

The impact factor eq. (5.43) resums the high energy logarithms to all orders, once

the identification Mi = γs has been made. On the other hand one can take this

result, expand it in powers of the strong coupling and determine the leading high

energy behaviour of the coefficient function order by order in perturbation theory.

Because of the complexity of the scalar integrals which appear in the form factors, one

cannot perform the Mellin transformations analytically. Alternatively, one can first

Taylor expand eq. (5.43) in powers of Mi and then compute the coefficients numerically.

Because powers ofMi correspond to powers of the strong coupling, this method provides

the leading high energy behaviour of the coefficient function to any desired order in αs.

The first term in the expansion h(0, 0, 0) is determined by the on-shell limit of the

form factor A1

h(0, 0, 0) = 8
√

2π3α2
sGFm

2
Hy

2
t

[
1

2
|A1|2 + ξ1ξ2|A3|2

]

ξ1=ξ2=0

= 8
√

2π3α2
sGFm

2
Hy

2
t

1

2
|A1(0, 0)|2 ; (5.53)

using the on-shell limit of the scalar integrals eq. (B.11), one obtains

A1(0, 0) =
1

8π2
+

1

32π2

(
ln2 −z−

z+

)
(4yt − 1) . (5.54)

Substituting this expression into eq. (5.53) one recovers the leading order cross section

eq. (5.8):

h(0, 0, 0) = m2
Hσ0 . (5.55)

In order to be consistent with the definition of the coefficient function in eq. (5.6), the

LO contribution is factored out from the Taylor expansion of the impact factor:

h(0,M1,M2) =

σ0m
2
H

[
1 + s21(M1 +M2) + s22(M

2
1 +M2

2 ) + s21,1M1M2 + . . .
]
,

(5.56)
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where the coefficients are

s2k(yt) = (8π2)2

|(1− 1
4
(1−4yt)s0(yt)2)|2

∫ +∞

0
dξ

lnk ξ

k!

(
−d|A1(ξ, 0)|2

dξ

)
,

(5.57)

s21,1(yt) = (8π2)2

|(1− 1
4
(1−4yt)s0(yt)2)|2

∫ +∞

0
dξ1

∫ +∞

0
dξ2

[
ln ξ1 ln ξ2

∂2|A1(ξ1, ξ2)|2
∂ξ1∂ξ2

+ 2|A3(ξ1, ξ2)|2
]
. (5.58)

A rather compact expression for the form factor with one on-shell gluon can be derived:

A1(ξ, 0) =
1

32π2

1

(1 + ξ)2

{
(4yt − 1 − ξ)

(
s0(yt)

2 − ln2

(
−1 − β

1 + β

))

+ 4ξ

(
i
√

4yt − 1 s0(yt) + β ln

(
−1 − β

1 + β

))
+ 4(1 + ξ)

}
,

(5.59)

with β =
√

1 + 4yt

ξ . The N → 0 limit of the NLO coefficient function is obtained

from the O(Mi) terms in eq. (5.56), after the identification of M1 and M2 with the

anomalous dimension. One obtains:

C(1)(N, yt) = C(1)(yt)
CA

N
[1 +O(N)] ,

C(1)(yt) = 2 s21(yt). (5.60)

The value of the coefficient C(1) is determined from a numerical evaluation of the integral

in eq. (5.57) with k = 1, using the Fortran routine DGAUSS. The result is tabulated in

the second column of table 5.1, for different values of the Higgs mass. Upon inverse

Mellin transformation, one finds that

lim
τ→0

C(1)(τ, yt) = CAC(1)(yt). (5.61)

The values of the coefficient are indeed found to be in perfect agreement with a

numerical evaluation of the small τ limit of the full NLO coefficient function C(1)(τ, yt)

eq. (5.13); this is a very non-trivial test of the computation.

The determination of the hitherto unknown NNLO leading singularity proceeds in

a very similar way. At this order the Mellin transformed of the coefficient function

behaves like

C(2)(N, yt) = C(2)(yt)
C2

A

N2
[1 +O(N)] ; (5.62)
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mH C1 C2 C3 C4

110 5.0447 16.2570 38.4552 79.6844
120 4.6873 14.5133 32.8727 66.6218
130 4.3568 13.0155 28.2489 56.2102
140 4.0490 11.7196 24.3760 47.8068
150 3.7607 10.5919 21.0998 40.9517
160 3.4890 9.6058 18.3040 35.3079
170 3.2318 8.7406 15.8989 30.6251
180 2.9872 7.9794 13.8145 26.7138
190 2.7536 7.3085 11.9953 23.4288
200 2.5297 6.7166 10.3969 20.6571
210 2.3140 6.1946 8.9833 18.3108
220 2.1057 5.7346 7.7247 16.3197
230 1.9037 5.3303 6.5965 14.6285
240 1.7072 4.9761 5.5780 13.1921
250 1.5151 4.6677 4.6517 11.9753
260 1.3267 4.4012 3.8021 10.9492
270 1.1409 4.1738 3.0159 10.0907
280 0.9568 3.9828 2.2807 9.3818
290 0.7731 3.8269 1.5849 8.8095
300 0.5884 3.7049 0.9168 8.3643
310 0.4006 3.6171 0.2631 8.0421
320 0.2063 3.5655 -0.3928 7.8457
330 -0.0008 3.5556 -1.0783 7.7914
340 -0.2400 3.6074 -1.8669 7.9446
350 -0.5321 3.7511 -2.8444 8.4097
360 -0.7258 3.8390 -3.4840 8.6865

Table 5.1: Numerical results for the coefficients C(i)

the coefficient is given by the sum of two terms:

C(2)(N, yt) = 2 s22(yt) + s21,1(yt) . (5.63)

The first term is given by a numerical evaluation of the integral in eq. (5.57) with k = 2

using the Fortran routine DGAUSS; the second term comes from the two-dimensional

integral in eq. (5.58), which has been computed with the Fortran routine DGMLT (from

CERNLIB). The results are shown in the third column of table 5.1. Upon Mellin inversion,

one finds that the behaviour of the NNLO coefficient function at small τ is logarithmic

lim
τ→0

C(2)(τ, yt) = −C2
AC(2)(yt) ln τ + O(τ0) , (5.64)

while in the heavy top case it exhibits a spurious ln3 τ growth as in eq. (5.37).

The computation of higher-order terms in the expansion of the impact factor in
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powers of Mi is a straightforward generalisation of the procedure just described.

h = σ0m
2
H

[
1 +

(
αs

π

CA

N

)
C(1) +

(
αs

π

CA

N

)2

C(2) +

(
αs

π

CA

N

)3

C(3)

+

(
αs

π

CA

N

)4

C(4) +O
(
α5

s

)
]
. (5.65)

The new coefficients are:

C(3) =
2s23 + 2s21,2∣∣(1 − 1

4(1 − 4yt)s0(yt)2
)∣∣2 ,

C(4) =
2s24 + s22,2 + 2s21,4∣∣(1 − 1

4(1 − 4yt)s0(yt)2
)∣∣2 , (5.66)

where s2k is defined as in eq. (5.57) and s2i,j are the numerical results of the following

integrals:

s1,2(yt)
2 = (8π2)2

∫ +∞

0
dξ1

∫ +∞

0
dξ2

[
1

2
ln2 ξ1 ln ξ2

∂2|A1(ξ1, ξ2)|2
∂ξ1∂ξ2

+2 ln ξ1|A3(ξ1, ξ2)|2
]
, (5.67)

s2,2(yt)
2 = (8π2)2

∫ +∞

0
dξ1

∫ +∞

0
dξ2

[
1

4
ln2 ξ1 ln2 ξ2

∂2|A1(ξ1, ξ2)|2
∂ξ1∂ξ2

+2 ln ξ1 ln ξ2|A3(ξ1, ξ2)|2
]
, (5.68)

s1,3(yt)
2 = (8π2)2

∫ +∞

0
dξ1

∫ +∞

0
dξ2

[
1

6
ln3 ξ1 ln ξ2

∂2|A1(ξ1, ξ2)|2
∂ξ1∂ξ2

+ ln2 ξ1|A3(ξ1, ξ2)|2
]
. (5.69)

Explicit results are collected in table 5.1.
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5.4. Improvement of the NNLO coefficient function

5.4 Improvement of the NNLO coefficient function

The knowledge of the leading small τ behaviour of the exact coefficient function

C(αs; τ, yt) can be used to improve its determination. This is particularly interesting

at NNLO, where the fixed order computation has been performed only in the heavy

top limit, so it is affected by the wrong high energy behaviour. More specifically,

having determined the exact small τ limit, one can improve the approximate pointlike

determination of the coefficient function by subtracting its spurious small τ growth and

replacing it with the exact behaviour.

The NLO is known both for infinite and finite mt, so it can be used as a testing

ground. In the pointlike approximation, the high energy behaviour is dominated by a

double pole in N , whereas it is given by the simple pole eq. (5.60) in the exact case. As

already discussed, this corresponds to a NLO contribution which grows logarithmically

at small τ in the heavy top case, and which tends to a constant when the top mass is

kept finite:

C(1)(τ,∞) = d
(1)
point(τ) +O (τ) ; d

(1)
point(τ) = c12 ln τ + c11 (5.70)

C(1)(τ, yt) = d(1)
ex (τ, yt) +O (τ) ; d(1)

ex (τ, yt) = 3C(1)(yt) , (5.71)

where

c12 = −6; c11 = −11

2
. (5.72)

The NLO term C(1)(τ, yt) has already been plotted in fig. 5.3, both in the pointlike

approximation, and in its exact form, computed for increasing values of the Higgs mass,

i.e. decreasing values of yt. It is clear from that plot that the pointlike approximation

is very accurate, up to the point where the spurious logarithmic growth eq. (5.70) sets

in. Therefore, one can construct an approximation to C(1)(τ, yt) by combining the

pointlike curve with the exact small τ behaviour:

C(1),app.(τ, yt) = C(1)(τ,∞) +
[
d(1)

ex (τ, yt) − d
(1)
point(τ)

]
T (τ, τ0) , (5.73)

where d
(1)
point(τ) and d

(1)
ex (τ, yt) are defined as in eq. (5.70) and eq. (5.71) respectively,

while T (τ, τ0) is a matching function, which may be introduced in order to tune the

point τ0 where the small τ behaviour given by d
(1)
ex (τ, yt) sets in. As τ → 0 the

approximation eq. (5.73) reproduces the small τ behaviour of the exact coefficient

function eq. (5.71), provided only that the interpolating function satisfies

lim
τ→0

T (τ, τ0) = 1 ,

Furthermore, the pointlike approximation is exact for τ → 1 because the behaviour of
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5.4. Improvement of the NNLO coefficient function

the coefficient function in such a limit is to all orders controlled by soft logarithms,

which do not depend on yt. Because the functions d
(1)
ex (τ, yt) and d

(1)
point(τ) are regular

as τ → 1, the exact soft behaviour is also reproduced by the approximation eq. (5.73),

provided only limτ→1 T (τ, τ0) is finite. In the following the function T (τ, τ0) is chosen in

such a way that T (1, τ0) = 0, so that C(1)(τ, yt) agrees with the pointlike approximation

C(1)(τ,∞) in a neighbourhood of τ = 1. For instance, fig. 5.3 suggests to choose

T (τ, τ0) = Θ(τ0 − τ) , (5.74)

where Θ(τ) is the Heaviside function, so that C(1),app.(τ, yt) only differs from the

pointlike approximation when τ < τ0. The plot in fig. 5.3 suggests to choose, for each

yt, the matching point τ0 as the value of τ where the pointlike approximation equals

the exact asymptotic small τ constant. However, the choice of the matching function

eq. (5.74) leads to a form of C(1),app.(τ, yt) whose first derivative is discontinuous at

τ = τ0. A smoother behaviour can be obtained using instead an hyperbolic tangent as

matching function

T (τ, τ0) =
1

2

[
1 + tanh

(
τ0 − τ

w

)]
. (5.75)

In fig. 5.4 and 5.5 the approximate NLO term eq. (5.73) is compared to the exact and

pointlike results, for two different values of the Higgs mass, namelymH = 130, 280 GeV.

The values of the matching points are found to be τ0 = 0.057 and τ0 = 0.315,

respectively. The approximate NLO coefficient function is very close to the exact one

in the all region 0 < τ < 1.

At NNLO, the pointlike approximation to the coefficient function exhibits a ln3 τ

growth, while the exact result only rises linearly with ln τ :

C(2)(τ,∞) = d
(2)
point(τ) +O (τ) ,

d
(2)
point(τ) = c24 ln3 τ + c23 ln2 τ + c22 ln τ + c21 (5.76)

C(2)(τ, yt) = d(2)
ex (τ, yt) +O (τ) ,

d(2)
ex (τ, yt) = −9 C(2)(yt) ln τ + C(2)

0 (yt), (5.77)

where from Ref. [92] one gets

c24 = −6 , c23 = −231

4
+ nf

17

18
,

c22 =

(
−2333

8
+ 3π2

)
+ nf

641

108
,

c21 =
27ζ3 + 15π2

2
− 6591

16
+ nf

(
14939

1296
− 17

54
π2 − ζ3

3

)
. (5.78)

Analogously to the NLO case, one can construct an approximation to the unknown
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Figure 5.4: The hard coefficient function C(1)(τ, yt) with mH = 130 GeV. The black
curve corresponds to mt = ∞ and the red one to the exact case with mt = 170.9 GeV
(same as fig. 5.3). The blue curve corresponds to the approximation eq. (5.73), with
interpolating function as in (5.75), τ0 = 0.057 and w = 1/50.
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Figure 5.5: Same as fig. 5.4 for mH = 130 GeV. In this case τ0 = 0.315 and w = 1/20.
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coefficient function using the pointlike limit, combined with the exact small τ behaviour

eq. (5.62):

C(2),app.(τ, yt) = C(2)(τ,∞) +
[
d(2)

ex (τ, yt) − d
(2)
point(τ)

]
T (τ, τ0) . (5.79)

Note that kT -factorisation only provides the leading behaviour at small τ . This implies

that in the NLO case the approximation eq. (5.73) reproduces the exact result up to

terms which vanish at least as O(τ). At NNLO the high energy calculation with finite

mt only reproduces the slope C(2)(yt) of the logarithmic growth in eq. (5.77), while

the asymptotic constant C(2)
0 (yt) remains undetermined. The plot in fig. 5.6 shows the

NNLO coefficient function in the mt → ∞, together with correct asymptotic limit at

small τ for mH = 130 GeV; it is clear that different choices of the subleading constant

would lead to fairly different results. Thus, at NNLO the approximate coefficient

function eq. (5.79) suffers from a twofold ambiguity: the choice of the matching point

τ0 and the value of the subleading constant C(2)
0 (yt). The dependence of the result on

either of these choices contributes to the uncertainty related to the matching procedure.

As far as the matching point is concerned, two different choices have been studied.

In the first procedure one takes the same matching point as in the NLO case:

τ0 = 0.057 , for mH = 130 GeV ,

τ0 = 0.315 , for mH = 280 GeV . (5.80)

Alternatively one can choose τ0 as the point where the difference between the derivative

of the mt → ∞ curve and the asymptotic slope is at its minimum, so that

d

d ln τ
C(2)(τ,∞)

∣∣∣
τ=τ0

≃ −9 C(2)(yt) . (5.81)

This second choice is motivated by the expectation that the coefficient function should

have a fairly steady behaviour. The values for the matching point obtained with this

second procedure for the two cases previously analysed are

τ0 = 0.011 , for mH = 130 GeV ,

τ0 = 0.317 , for mH = 280 GeV . (5.82)

Thus, for a light Higgs one obtains a value of the matching point sensibly lower than

the NLO case, while for a heavier Higgs the result is the same.

Once the value of the matching point has been chosen, one can turn one’s attention

to the subleading constant C(2)
0 (yt). A sensible criterion to adjust it appears to be

the continuity of approximate coefficient function C(2),app.(τ, yt) at τ = τ0, when the
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Figure 5.6: The NNLO hard coefficient function plotted as a function of τ . The solid
black curve is to mt = ∞. The dashed lines correspond to the asymptotic slope for
mt = 170.9 GeV and mH = 130 GeV, with different choices of the subleading constant.
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matching is performed with the Heavyside function:

C(2)(τ0,∞) = C(2)(τ0,∞) +
[
d(2)

ex (τ0, yt) − d
(2)
point(τ0)

]
, (5.83)

which gives

C(2)
0 (yt) = c24 ln3 τ0 + c23 ln2 τ0 + c22 ln τ0 + c21 − 9C(2)(yt) ln τ0 . (5.84)

In fig. (5.7) the approximate coefficient function is plotted in the case of a light Higgs,

for the two different choices of the matching point τ0. As already noticed the two

methods give fairly different results for τ0 . However, in the region about τ = 0.02 the

mt → ∞ curve exhibits a linear behaviour in ln τ , with slope very close to C(2)(yt) for

mH = 130 GeV. Hence the approximate coefficient functions obtained with the two

matching procedure are actually very close. The impact of this difference on a physical

observable will be discussed in the following. For the heavier Higgs boson, the two

matching procedures provide almost the same value for τ0. However, in this case the

approximate coefficient function does not look as smooth as the previous case. The dip

in the right-hand plot, in fig. 5.8, suggests that in such a region positive powers of τ

play a non-negligible role.

It is well known that the pointlike approximation to the NLO inclusive cross section

is very good, and thus the impact of the improvement eq. (5.73) is moderate. Also at

NNLO one would not expect large deviations from the heavy top approximation, mainly

for kinematical reasons. In order to give a quantitative assessment, one can define a K

factor by letting:

σgg(τh; yt,m
2
H) = σ0

gg(τh; yt,m
2
H)K(τh; yt,m

2
H) , (5.85)

where σ0
gg is the LO contribution eq. (5.3) to the gluon–gluon cross section, computed

with LO parton distributions and LO coupling constant. The value of the NLO and

NNLO K factors, determined using the MRST2002 [103] gluon distribution in eq. (5.3)

are given in table 5.2 at the LHC centre-of-mass energy s = 14 TeV. In the table the

pointlike, exact and approximate (eq. (5.73) and eq. (5.79)) cases are shown. At NLO

the discrepancy between the infinite top mass approximation and the exact result is

tiny, less than 1% even for a fairly heavy Higgs. Finite top mass effects at small τ are

not very large, but as table 5.2 shows, once they are included the deviation from the

exact result is considerably reduced. At NNLO the exact result is not known. The

inclusion of the correct small τ dependence of the partonic coefficient function changes

the K factor by 0.3% for mH = 130 GeV. For mH = 280 GeV, the effect is at the

percent level.

Less inclusive quantities can be more sensitive to the small τ tail of the partonic
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Figure 5.7: The NNLO coefficient function for mH = 130 GeV. In the plot on the top
the matching point τ0 is the same as in the NLO case, while in the bottom one, it is
chosen according to eq. (5.81).
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Figure 5.8: The NNLO coefficient function mH = 280 GeV on a logarithmic (top)
and linear scale (bottom). The curves determined with the two different matching
procedures coincide.
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KNLO KNNLO

mH = 130 GeV

pointlike 1.800 2.140
exact 1.797 n.a.
appr. 1.796 2.136

mH = 280 GeV

pointlike 1.976 2.420
exact 1.958 n.a.
appr. 1.959 2.395

Table 5.2: The NLO and NNLO K factors eq. (5.85), computed with centre-of-mass
energy s = 14 TeV, and mt → ∞, denoted with pointlike, or mt = 170.9 GeV, denoted
with exact or approximate. The approximate result uses eqs. (5.73),(5.79). The NNLO
matching point has been determined according to eq. (5.81). The two different choices
for τ0 lead to very similar values for the K factors. The MRST2002 [103] gluon
distribution has been used.

coefficient functions. For instance rapidity distribution has been computed both at

NLO [104] and NNLO [105] only in the mt → ∞ limit. This quantity can show more

pronounced finite top mass effects at large rapidities.
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Chapter 6

BFKL from DGLAP at

next-to-next-to-leading order

In this chapter an approximation to the BFKL kernel at O
(
α3

s

)
is computed. This

result includes all collinear and anticollinear contributions and it is derived using duality

relations between the DGLAP and BFKL evolution kernels.

At the end of section 2.2.3 was pointed out that the calculation of the NNLO

contribution to the BFKL kernel is hampered by various issues. In particular the

framework in which the NLO corrections were computed does not seem to be valid at

the next perturbative order. Nevertheless collinear factorisation and all-order duality

relations, presented in section 3.2, guarantee the existence of a universal and factorised

leading twist kernel for high energy evolution. It was shown in section 3.2.1 how duality

relations eq. (3.39) are modified by running coupling corrections; an operator method

to compute these corrections order by order in perturbation theory was also presented.

Such an approach was used to derive the running–coupling corrections to the small x

resummation of the DGLAP kernel eq. (3.70).

Conversely, because at fixed-coupling duality maps the expansion of γ(N,αs) in

powers of αs at fixed N onto the expansion of χ(M,αs) in powers of αs at fixed αs/M ,

it is possible to use it to determine the collinear behaviour (M → 0) of the BFKL kernel.

This remains true also when the coupling runs, because running–coupling corrections

to duality are given as a series in αs of terms each of which is a function of the fixed-

coupling dual expressions. Specifically, if one considers the expansion

χ(M, α̂s) = α̂sχ0(M) + α̂2
sχ1(M) + . . . (6.1)

then

χi(M) =
ci,−i−1

M i+1
+
ci,−i

M i
+ . . . (6.2)

for some coefficients ci,j . Through duality it is possible to determine from the NNLO
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DGLAP anomalous dimension, the first three orders of the expansion eq. (6.1) of χi(M)

for all i, i.e. ci,j for all i and j = −i − 1,−i,−i + 1. This means that knowledge of

the anomalous dimension γ at NNLO allows one to determine all the collinear singular

contributions to the NNLO BFKL kernel χ2. Furthermore, the symmetry properties

of χ allow one to determine its expansion about M = 1 from the knowledge of the

coefficients of the expansion about M = 0. This procedure requires some care in the

treatment of the running of the coupling, which affects the way the symmetry is realised.

6.1 Factorisation schemes

Beyond leading order, both the DGLAP and BFKL kernels are only defined up to

a choice of factorisation scheme. Namely, if the normalisation of the parton density

G is redefined by a subleading function R(N,αs) = 1 + O(αs), then the evolution

kernel beyond leading order changes, as shown for instance in eq. (3.77). Thus,

before the computation of the collinear approximation to the kernel is performed, a

full understanding of this issue has to be achieved. This is particularly important in

this calculation because the BFKL kernel has different symmetry properties in different

schemes.

The normalisation of the parton distribution which appears in the DGLAP equation

is fixed by the standard factorisation of collinear singularities, and a choice of

subtraction prescription such as dimensional regularisation and the MS prescription.

This defines the anomalous dimension in the MS factorisation scheme. Duality

then implicitly defines a corresponding factorisation scheme for the BFKL equation.

However, the gluon density which enters the kT -factorisation formula is normalised

differently. Even though the gluon Green’s function itself is computed in the MS

scheme, the evolution kernel extracted from it corresponds to a scheme which is

not MS, because it describes the evolution of a quantity which differs from the MS

parton distribution by a normalisation factor, i.e. it can be obtained from the MS

parton distribution by the scheme-change function R, eq. (3.30). This scheme change

function defines the so-called Q0 factorisation scheme. Furthermore, the quantity which

naturally enters kT -factorisation formulae is the unintegrated parton distribution G, so

Q0 scheme results are usually given for this quantity.

The normalisation mismatch between kT -factorisation and collinear factorisation,

and thus the precise definition of the Q0 scheme, has been determined in [46] at the

leading nontrivial order, which affects the definition of χ1 in the expansion of the BFKL

kernel χ, and therefore its dual DGLAP anomalous dimension at NLO in the expansion

of γ(N,αs) in powers of αs at fixed αs/N . It is important to notice that while in the

literature a leading-order redefinition of the gluon normalisation is usually called a

leading-log scheme change, here it is called a next-to-leading scheme change, because

108



6.1. Factorisation schemes

it affects the next-to-leading kernel.

The normalisation mismatch between collinear and high energy factorisation,

beyond the leading accuracy, was investigated in [106]. The main result of that study

is an expression, proven up to NNLO, but conjectured to hold in general, which relates

the t dependence of the integrated parton distributions G(N, t) (as defined in standard

collinear factorisation) in the MS and Q0 scheme. This relation is expressed in terms

of the BFKL kernel for the unintegrated distribution. Specifically, the t dependence

can be written in terms of a saddle-point evolution factor E(t, t0), a running–coupling

duality correction N (N, t), and a normalisation factor R(t0) which is characteristic of

the way minimal subtraction with dimensional regularisation is defined:

GQ0(N, t) = N (N, t)E(t, t0)R(N, t0)G
MS(N, t0) . (6.3)

The saddle-point evolution factor is obtained by solving the running–coupling BFKL

equation for the unintegrated distribution in the saddle-point approximation. This

leads to evolution driven by the anomalous dimension γ̃u(N,αs(t)), obtained from the

BFKL kernel using fixed-coupling duality, but with αs = αs(t):

E(t, t0) = exp

[∫ t

t0

γ̃u(N,αs(t
′)) dt′

]
, (6.4)

where the index u indicates a DGLAP kernel which describes the evolution of an

unintegrated parton distribution; similarly an index i denotes an integrated BFKL

kernel, as in eq. (3.75). Henceforth the tilde indicates a kernel obtained through fixed-

coupling duality. The running–coupling correction to duality eq. (3.70) can be combined

with the contribution eq. (3.75), which relates the integrated and unintegrated parton

distributions into the factor N . This gives

N (N, t)

N (N, t0)
=

γ(N,αs(t0))

γ(N,αs(t))
exp

{∫ t

t0

[
γu(N,αs(t

′)) − γ̃u(N,αs(t
′))
]
dt′
}

= exp

{∫ t

t0

[
γ(N,αs(t

′)) − γ̃u(N,αs(t
′))
]
dt′
}
. (6.5)

Finally, the normalisation factor R is related to the definition of anomalous dimension

in MS and it can be computed considering the analytic continuation of the evolution

kernels in d = 4 − 2ε dimensions. The explicit calculation of the R factor is described

in section 6.2.1.

Equation (6.3) gives the scale dependence of the parton distribution in either scheme

in terms of a boundary condition determined in the other scheme: therefore, it fully

specifies both the relation between the two schemes, and the scale dependence in either

of them. Letting t = t0 in eq. (6.3) immediately gives the relation between GQ0(N, t)
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6.1. Factorisation schemes

and GMS(N, t), through the function

R(N, t) ≡ N (N, t)R(N, t) . (6.6)

The scale dependence of the parton distribution in the Q0 scheme is found by

keeping t0 fixed in eq. (6.3) and varying t: thus

GQ0(N, t) =
N (N, t)

N (N, t0)
E(t, t0)G

Q0(N, t0)

= exp

[∫ t

t0

γ(N,αs(t
′)) dt′

]
GQ0(N, t0), . (6.7)

So the integrated parton distribution in the Q0 scheme evolves with the anomalous

dimension γ(N,αs(t)) which is related to the starting unintegrated BFKL kernel by

running–coupling duality combined with the transformation to the integrated level.

The scale dependence in the MS scheme is instead given by

GMS(N, t) =
R(N, t0)

R(N, t)
E(t, t0)G

MS(N, t0)

=
R(N, t0)

R(N, t)
exp

[∫ t

t0

γ̃u(N,αs(t
′)) dt′

]
GMS(N, t0) , (6.8)

namely, the integrated parton distribution in the MS scheme evolves with an anomalous

dimension which is closely related to the fixed-coupling dual γ̃u(N,αs(t)) of the starting

BFKL kernel, and only differs from it through the scale dependence of the R factor. It

is possible, and useful, to define an auxiliary scheme, MS
∗
, which differs from MS by a

factor R(N, t): namely

GMS
∗

(N, t) = R(N, t)GMS(N, t) (6.9)

In this MS
∗

scheme the parton distribution evolves with the naive dual anomalous

dimension:

GMS
∗

(N, t1) = exp

[∫ t1

t0

γ̃u(N,αs(t)) dt

]
GMS

∗

(N, t0) . (6.10)

The relations between different quantities in various schemes, which will be

computed in the following, are summarised in figure 6.1. In the figure, horizontal lines

denote duality: either at the running–coupling level, relating χ to γ, or at the fixed-

coupling, relating γ to χ̃. Vertical lines denote relations between schemes, specifically

the Q0, MS
∗

and MS schemes. Eq. (6.10) means that the anomalous dimension in

the MS
∗

scheme coincides with the naive dual of the Q0 scheme BFKL kernel (at the

unintegrated level):

γ̃Q0
u (N,αs) = γMS

∗

(N,αs) , (6.11)
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χMS

χMS
∗

γMS
∗

γMS χ̃MS

χ̃MS
∗

N

R

nd

χ̃Q0γQ0

rcd + int/unint

rcd + int/unint

rcd + int/unint

nd

nd

χQ0 nd

rcd + int/unint

Figure 6.1: Schematic relation between BFKL kernels χ and DGLAP anomalous
dimensions γ in various schemes. Horizontal lines denote running coupling and
naive duality relations (rcd and nd, respectively), together with the relation between
integrated and unintegrated parton densities (int / unint). Vertical lines denote scheme
transformations. The diagonal lines express the identities eq. (6.11), (6.12).

and thus, by duality, also that

χ̃MS
∗

i (M,αs) = χQ0(M,αs) , (6.12)

where χ̃MS
∗

i (M,αs) is the naive dual of the standard DGLAP anomalous dimension in

the MS
∗

scheme, while χQ0(M,αs) is the kernel for the BFKL equation satisfied by

the unintegrated parton distribution in the Q0 scheme. This further implies that if

χ̃MS
∗

i (M,αs) is interpreted as an operator by letting αs → α̂s (ordered in the same way

as χQ0(M, α̂s)), then it is related by running–coupling duality to γQ0(N,αs). These

relations are denoted by diagonal lines in the figure.

6.2 The collinear approximation

The starting point for the computation of the collinear approximation of the BFKL

kernel is the DGLAP anomalous dimension, which, as already said, has been computed

at O(α3
s) in [16]. The largest eigenvalue of the anomalous dimension matrix in the

singlet sector eq. (2.57) admits the following expansion

γ0(N) =
g0,−1

N
+ g0,0 + g0,1N +O(N2) ,

γ1(N) =
g1,−1

N
+ g1,0 +O(N) ,

γ2(N) =
g2,−2

N2
+
g2,−1

N
+O(N0) ; (6.13)
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6.2. The collinear approximation

the explicit MS coefficients can be found in Appendix C. One can compute the running

coupling dual to this object exploiting the operator formalism presented in section 3.2.

In this case the starting equation is the DGLAP one in the double Mellin space (N,M):

MG(N,M) = γ(N, α̂s)G(N,M) ; (6.14)

thus the operators which enters eq. (3.65) are

p̂ = γ(Nα̂−1
s , α̂s) ,

q̂ = M ,

and the function f is chosen to be the naive dual to the anomalous dimension. The

relevant commutators are computed considering the running coupling operator at two

loops, as given in eq. (3.72); they can be easily calculated if one considers the expansion

of the anomalous dimension in powers of αs at fixed αs/N :

γ(Nα̂−1
s , α̂s) = γs(Nα̂

−1
s ) + α̂sγss(Nα̂

−1
s ) + O

(
α̂2

s

)
. (6.15)

The commutators which are needed are

[p̂, q̂] = −(Nβ0 +Nβ0α̂sβ1)
∂γ(Nα̂−1

s , α̂s)

∂Nα̂−1
s

+β0α̂
2
s

∂γ(Nα̂−1
s , α̂s)

∂α̂s
+O(α̂3

s) , (6.16)

[p̂, [p̂, q̂]] = O(α̂3
s) , (6.17)

[q̂, [q̂, p̂]] = (Nβ0)
2∂

2γ(Nα̂−1
s , α̂s)

∂(Nα̂−1
s )2

+O(α̂3
s) , (6.18)

([p̂, q̂])2 = (Nβ0)
2

(
∂γ(Nα̂−1

s , α̂s)

∂Nα̂−1
s

)2

+O(α̂3
s) . (6.19)

Substituting these commutators into eq. (3.65) and back-substituting lower order

expressions to remove the explicit N dependence in the evolution kernel, one recovers

a BFKL-type equation

Nα̂−1
s G =

{
χi

0(M) + α̂sχ
i
1(M) + α̂2

sχ
i
2(M)

}
G

=
{
χ̃0(M) + α̂s (χ̃1(M) + ∆rcχ1(M))

+α̂2
s (χ̃2(M) + ∆rcχ2(M))

}
G . (6.20)

The index i reminds that the kernel describes the evolution of the integrated parton

distribution G. The running-coupling dual is written in terms of the function obtained
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6.2. The collinear approximation

from the anomalous dimension through naive duality (χ̃) plus running coupling-

corrections:

∆rcχ1(M) = −1

2
β0
χ̃0χ̃

′′
0

χ̃′
0

,

∆rcχ2(M) = −1

2
β0β1

χ̃0χ̃
′′
0

χ̃′
0

+
1

4
β2

0

χ̃0

(χ̃′
0)

2

(
2χ̃′

0χ̃
′′′
0 −

(
χ̃′′

0

)2)

+
1

24
β2

0

(χ̃0)
2

(χ̃′
0)

4

(
12
(
χ̃′′

0

)3 − 14χ̃′
0χ̃

′′
0χ̃

′′′
0 + 3

(
χ̃′

0

)2
χ̃IV

0

)

−1

2
β0
χ̃0χ̃

′′
1

χ̃′
0

− β0
χ̃1χ̃

′′
0

χ̃′
0

+
1

2
β0
χ̃0χ̃

′′
0χ̃

′
1

(χ̃′
0)

2 . (6.21)

In order to obtain the evolution kernel at the unintegrated level, one has to consider

χ(M, α̂s) = Mχi(M, α̂s)M
−1 = M

(
α̂sχ

i
0 + α̂2

sχ
i
1 + α̂3

sχ
i
2

)
M−1

= α̂sχ
i
0 + α̂2

sχ
i
1 + α̂3

sχ
i
2 + [M, α̂s]

χi
0

M
+
[
M, α̂2

s

] χi
1

M
+ O

(
α̂4

s

)
.

(6.22)

The computation of the commutators is straightforward and it leads to the following

relations

χ0 = χi
0 ,

χ1 = χi
1 − β0

χi
0

M
,

χ2 = χi
2 − β0β1

χi
0

M
− 2β0

χi
1

M
. (6.23)

Collecting the contributions from eq. (6.21) and eq. (6.23) it is possible to write an

expression for the BFKL kernel in the MS scheme to NNLO, in terms of the naive

duals of the DGLAP anomalous dimension

χMS
0 = χ̃0 ,

χMS
1 = χ̃1 + ∆rcχ1 − β0

χ̃0

M
,

χMS
2 = χ̃2 + ∆rcχ2 − β0β1

χ̃0

M
− 2β0

χ̃1 + ∆rcχ1

M
. (6.24)
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6.2. The collinear approximation

In order to obtain an explicit result, the naive duals to eq. (6.13) have to be computed.

Using perturbative duality eq. (3.85), one obtains

χ̃0(M) =
g0,−1

M
+ O

(
M2
)

χ̃1(M) =
g0,−1g0,0

M2
+
g1,−1

M
+
g2,−2

g0−1
+ O (M)

χ̃2(M) =
(g0,−1)

2g0,1 + g0,−1(g0,0)
2

M3
+
g1,0g0,−1 + g0,0g1,−1

M2
+
g2,−1

M
+ O

(
M0
)
.

(6.25)

Substituting the previous expressions into eq. (6.24), one obtains the collinear

approximation to the BFKL kernel at O(α̂3
s). The factorisation scheme is the same

as the anomalous dimension’s one, namely MS. However, as already discussed, a direct

diagrammatic computation would lead to the kernel in the Q0 scheme rather than

MS. Moreover, it is only in Q0 that one can exploits the symmetry of the underlying

Feynman diagrams eq. (2.101) and extend the results into the anticollinear region

M ∼ 1. Thus, before the symmetrisation, one should compute the scheme change

function which relates the BFKL kernel in MS and Q0. The diagram in fig. 6.1 suggests

that one may achieve the same result transforming the initial anomalous dimension

from MS to the auxiliary scheme MS
∗

(vertical line in the middle) and then simply use

fixed-coupling duality to obtain χQ0 , going along the diagonal line. The scheme change

function R has been studied beyond the leading logarithmic accuracy in [106], where an

expression for the NNLLx scheme change was written in terms of an unknown function,

which basically comes from the analytic continuation of the NLO BFKL kernel χ1 in

d-dimensions. In the next section it is shown how it is possible to go about this problem

and compute the collinear approximation to the scheme change R to O(α3
s).

6.2.1 The R factor

The factorisation of collinear singularities in dimensional regularisation was discussed

in Chapter 2. A generic partonic cross section σ̂ which depends on a single dimensional

variable Q2 can be written in d = 4 − 2ε dimensions as

σ

(
Q2

µ2
, αs(µ

2), N, ε

)
= σ(0)(Q2, α0, N, ε) exp

[∫ αs(µ2)

0
dα
γ(N,α, ε)

β(α, ε)

]
, (6.26)

where αs(µ
2) is the dimensionless renormalised coupling, α0 is the bare coupling,

σ(0)(Q2, α0, N, ε) is the regularised cross section and σ(Q2

µ2 , αs(µ
2), N, ε) is free of

collinear singularities. The d–dimensional DGLAP kernel γ(N,αs, ε) is defined as

the Mellin transform of the d–dimensional Altarelli–Parisi splitting function. The β-
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6.2. The collinear approximation

function in d-dimension is given by

β(αs, ε) = αsε+ β(αs) , (6.27)

where β(αs) is the four dimensional β-function eq. (3.71).

In MS the anomalous dimension is the residue of the simple pole in ε in the integrand

of the exponential in eq. (6.26), namely

γMS(N,αs) = Resε

[
αsγ(N,αs, ε)

β(αs, ε)

]

= γ(N,αs) −
β(αs)

αs
γ̇(N,αs) +

(
β(αs)

αs

)2

γ̈(N,αs) + . . . (6.28)

where the various coefficients are defined through the Taylor expansion

γ(N,αs, ε) ≡ γ(N,αs) + εγ̇(N,αs) + ε2γ̈(N,αs) + . . . . (6.29)

Thus the MS anomalous dimension receives two different classes of contributions:

pure collinear singularities and interference terms between the ε-dependent anomalous

dimension and the poles arising from the expansion of the d-dimensional β-function.

In particular up to next-to-next-to leading order one obtains

γMS
0 = γ0 ,

γMS
1 = γ1 + β0γ̇0 ,

γMS
2 = γ2 + β0β1γ̇0 + β2

0 γ̈0 + β0γ̇1 . (6.30)

The R factor defines the auxiliary scheme MS
∗

eq. (6.9), where the anomalous

dimension is simply given by γ(N,αs, 0), i.e. γ0(N), γ1(N), etc. Hence in order to

compute γMS
∗

one has to subtract from the MS anomalous dimension the contributions

coming from the interference between the d-dimensional kernel and the β function,

i.e. the dotted terms in eq. (6.30). The O(ε) and O(ε2) contribution to the LO

anomalous dimension, γ̇0 and γ̈0 respectively, are obtained from the Mellin transform

of the d-dimensional leading order splitting kernel. Such objects have been known for
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a long time [108], at least for x < 1:

Pqq(x, ε) = CF
1

(1 − x)ε

[
1 + x2

1 − x
− ε(1 − x)

]
+ aqq(x, ε)δ(1 − x) ,

Pqg(x, ε) = CF
1

(1 − x)ε

[
1 + (1 − x)2

x
− εx

]
,

Pgq(x, ε) = TR
1

(1 − x)ε

[
1 − 2x

1 − x

1 − ε

]
,

Pgg(x, ε) = 2CA
1

(1 − x)ε

[
x

1 − x
+

1 − x

x
+ x(1 − x)

]
+ agg(x, ε)δ(1 − x) .

(6.31)

The end–point contribution aqq (agg) can be extracted from any process with collinear

radiation from incoming quarks, such as Drell-Yan [78], or gluons, such as Higgs

production from gluon-gluon fusion [91]: the O(αs) coefficient of the δ(1− x) provides

a determination of the end–point term in the splitting function after factoring a simple

ε pole and the Born cross section (and a factor of two when there are two incoming

partons). One obtains:

aqq(ε) = CF

[
2

ε
+

3

2
+ ε

(
4 − π2

3

)]
+O(ε2) ,

agg(ε) =
2CA

ε
+

11CA − 4nfTR

6
− επ2 +O(ε2) . (6.32)

The simple ε pole cancels against the one coming from the expansion of (1−x)−(1+ε) =
1
εδ(1− x) + . . . in the splitting functions Pqq and Pgg, thereby providing a check of the

result.

The coefficients of the expansion in powers of N of the relevant contributions to the

analytic continuation of the LO anomalous dimension in d-dimensions are

γ̇0(N) =
ġ0,−2

N2
+
ġ0,−1

N
+ ġ0,0 +O(N) ,

γ̈0(N) =
g̈0,−1

N
+O(N0) , (6.33)

with

ġ0,−2 = 0 , ġ0,−1 = 0 ,

ġ0,0 = − 67

12π
− 7

81

nf

π
, g̈0,−1 = −π

2

12
. (6.34)

The only missing quantity in eq. (6.9) is γ̇1; the next-to-leading order d-dimensional

splitting function is not available, though in principle it could be extracted from

d–dimensional splitting amplitudes [109]. The relevant terms in this discussion are
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given by the Laurent expansion about N = 0

γ̇1 =
ġ1,−3

N3
+
ġ1,−2

N2
+
ġ1,−1

N
+O(N0) . (6.35)

On the other hand, some of the remaining coefficients can be computed, remem-

bering that the R scheme change has been originally determined as a NLLx [46] or

NNLLx [106] scheme change:

γMS
s = γs ,

γMS
ss = γss + β0γ̇s ,

γMS
sss = γsss + β0β1γ̇s + β2

0 γ̈s + β0γ̇ss , (6.36)

where in this framework the dotted γsn are determined through duality from the

d-dimensional BFKL kernel:

χ(M,αs, ε) = χ(M,αs) + εχ̇(M,αs) + ε2χ̈(M,αs) + . . . (6.37)

The explicit expressions are

γ̇s = − χ̇0

χ′
0

∣∣∣∣∣
M=γs

,

γ̈s = − χ̈0

χ′
0

+
χ̇0χ̇

′
0

(χ′
0)

2 − 1

2

(χ̇0)
2χ′′

0

(χ′
0)

3

∣∣∣∣∣
M=γs

,

γ̇ss = − χ̇1

χ′
0

− χ1χ̇0χ̇
′′
0

(χ′
0)

3 +
(χ̇0)χ

′
1 + χ1χ̇

′
0

(χ′
0)

2

∣∣∣∣∣
M=γs

. (6.38)

Eq. (6.36) shows that γs is left unaffected by the scheme change, as one would expect

because the LLx singularities are not scheme dependent. It follows that the coefficients

of the
(

αs

N

)k
contributions are the same in the two schemes. This confirms that ġ0,−2 = 0

and sets ġ1,−3 = 0. Moreover the NLLx scheme change starts at O
(
αs

(
αs

N

)3)

γ̇s

(αs

N

)
= 2ζ(3)

(αs

N

)3
+O

((αs

N

)4
)
. (6.39)

Again this confirms the result ġ0,−1 = 0 and sets ġ1,−2 = 0. The sub–subleading

coefficient ġ1,−1 remains undetermined: it would require knowledge of the O(ε)

correction to the NLO kernel χ̇1.

Collecting these results together one can write the MS
∗

anomalous dimension in

terms of the coefficients of the expansion of the MS anomalous dimension and of the
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scheme change coefficients:

γMS
∗

0 =
g0,−1

N
+ g00 + g0,1N +O(N2) ,

γMS
∗

1 =
g1,−1

N
+ ḡ1,0 +O(N) ,

γMS
∗

2 =
g2,−2

N2
+
ḡ2,−1

N
+O(N0) , (6.40)

where

ḡ1,0 = g1,0 − β0ġ0,0 ,

ḡ2,−1 = g2,−1 − β0ġ1,−1 − β2
0 g̈0,−1 . (6.41)

6.2.2 Symmetrisation and results

Once that an expression for the anomalous dimension in MS
∗

has been determined, it is

straightforward to compute, through fixed-coupling duality, the first three coefficients

of the Laurent expansion about M = 0 of the BFKL in the Q0 scheme

χQ0
0 (M) =

g0,−1

M
+ O

(
M2
)

χQ0
1 (M) =

g0,−1g0,0

M2
+
g1,−1

M
+
g2,−2

g0−1
+ O (M)

χQ0
2 (M) =

(g0,−1)
2g0,1 + g0,−1(g0,0)

2

M3
+
ḡ1,0g0,−1 + g0,0g1,−1

M2
+
ḡ2,−1

M
+ O

(
M0
)
.

(6.42)

Note that the dependence on the factorisation scheme is not strong; the LO and NLO

kernels in Q0 are the same as in eq. (6.25). The scheme-dependent coefficients eq. (6.41)

affect only χ2.

So far the information from the DGLAP anomalous dimension has been used to

determine the first few terms in the expansion of the BFKL kernel about M = 0.

Exploiting the underlying symmetry of the BFKL kernel M ↔ 1 −M , it is possible

to determine the corresponding terms of the expansion about M = 1. However, it has

already been noticed that this symmetry is realised only if one chooses a symmetric

definition of the dimensionless variable x, as in eq. (3.43). Moreover, an asymmetric

choice for the argument of the running coupling breaks the symmetry of the kernel,

as shown in eq. (2.110) and eq. (2.113). The relation between the BFKL kernel in

symmetric and asymmetric variables was given in eq. (3.45). Indicating with the indices

σ and Σ, the kernel in symmetric and asymmetric variables respectively, the implicit

relation becomes

χσ(M, α̂s) = χΣ(M + 1
2χ

σ(M, α̂s), α̂s) , (6.43)
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where αs → α̂s because at O(α̂3
s) the running of the coupling can no longer be neglected.

The result obtained from duality eq. (6.42) is clearly in asymmetric variables; it can be

converted into symmetric ones by expanding out eq. (6.43)

χσ(M, α̂s) = α̂sχ0

(
M + 1

2 α̂sχ
σ
0 (M) + 1

2 α̂
2
sχ

σ
1 (M)

)

+α̂2
sχ1

(
M + 1

2 α̂sχ
σ
0 (M)

)
+ α̂3

sχ2(M) +O(α̂4
s)

= α̂sχ0

(
M + 1

2 α̂sχ
σ
0 (M)

)
+ α̂3

sχ
′
0

(
M + 1

2 α̂sχ
σ
0 (M)

)
1
2χ

σ
1 (M)

+α̂2
sχ1(M) + α̂3

sχ
′
1(M)1

2χ
σ
0 (M) + α̂3

sχ2(M) +O(α̂4
s) , (6.44)

where on the right-hand side the Σ index has been dropped for simplicity. The first

term in the previous equation must be computed by carefully keeping operator ordering

into account. This can be done by using the operator technique previously described

χ0(M + 1
2 α̂sχ

σ
0 (M)) = e

1
2 α̂sχσ

0 (M) d
dλ

+
1
2

h
M,

1
2 α̂sχσ

0 (M)
i

d2

dλ2 +...
χ0(M + λ)|λ=0

= χ0(M) + 1
2 α̂sχ

σ
0 (M)χ′

0(M) + 1
4 [M, α̂sχ

σ
0 (M)]χ′′

0(M) + 1
8 α̂

2
sχ

σ
0
2(M)χ′′

0(M) +O(α̂3
s)

= χ0(M) + 1
2 α̂sχ

σ
0 (M)χ′

0(M) − 1
4β0α̂

2
sχ

σ
0 (M)χ′′

0(M) + 1
8 α̂

2
sχ

σ
0
2(M)χ′′

0(M) +O(α̂3
s) .

(6.45)

The contributions to the kernel in symmetric variables are

χσ
0 (M) = χ0(M) ,

χσ
1 (M) = χ1(M) + 1

2χ
′
0(M)χ0(M) ,

χσ
2 (M) = χ2(M) + 1

2χ
′
1(M)χ0(M) + 1

2χ
′
0(M)χ1(M) ,

+1
2χ

′
0(M)

2
χ0(M) + 1

8χ
′′
0(M)χ0

2(M) − 1
4β0χ

′′
0(M)χ0(M) .

(6.46)

In order to determine the constant term of χ1 and the simple pole of χ2 in symmetric

variables, one has to substitute the expansion of χ0 up to O(M2). In principle the

linear term of χ1 is needed too, but its dependence cancels out in the expression for

χ2. Using the expressions eq. (6.42) for the unintegrated Q0 scheme kernels χQ0
i one
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6.2. The collinear approximation

finally obtains

χσ
0 (M) =

g0,−1

M
+O(M2) ,

χσ
1 (M) = −(g0,−1)

2

2M3
+
g0,0g0,−1

M2
+
g1,−1

M
+
g2,−2

g0,−1
+ g2

0,−1ζ(3) +O(M) ,

χσ
2 (M) =

(g0,−1)
3

2M5
− 3g0,0(g0,−1)

2 + β0(g0,−1)
2

2M4
+

(g0,0)
2g0,−1 + g0,1(g0,−1)

2 − g0,−1g1,−1

M3

+
−1

2g2,−2 + g0,0g1,−1 + g0,−1ḡ1,0

M2
+
ḡ2,−1 − 2β0(g0,−1)

2ζ(3)

M
+O(M0) .

(6.47)

The previous equation explicitly shows that the BFKL kernel in symmetric variables

has collinear poles of higher order, than one would expect from duality. The NLO

kernel behaves as χσ
1 ∼ −1/M3, and the NNLO one as χσ

2 ∼ 1/M5. Clearly this is the

main source of instability of the perturbative expansion: the order of the leading pole

increases with alternating sign. This feature also ensures that the NNLO has the same

qualitative behaviour of the LO.

The symmetry of the kernel implies that χ(M, α̂s) must admit an expansion of the

form

χ(M, α̂s) = α̂sχ
σ
0 (M) + α̂2

sχ
σ
1 (M) + α̂3

sχ
σ
2 (M) +O(α̂3

s)

= χsym
0 (M, α̂s) + χsym

1 (M, α̂s) + χsym
2 (M, α̂s) +O(α̂3

s) , (6.48)

where χsym
i (M, α̂s) are symmetrised functions, obtained exploiting the M ↔ 1 −M ,

with a symmetric choice for the running coupling:

χsym
0 (M, α̂s) = c0,−1

[
α̂s

1

M
+

1

1 −M
α̂s

]
+ α̂sc0,0 + c0,1 [α̂sM + (1 −M)α̂s]

+c0,2

[
α̂sM

2 + (1 −M)2α̂s

]
+O(M3) ,

χsym
1 (M, α̂s) = c1,−3

[
α̂2

s

1

M3
+

1

(1 −M)3
α̂2

s

]
+ c1,−2

[
α̂2

s

1

M2
+

1

(1 −M)2
α̂2

s

]

+c1,−1

[
α̂2

s

1

M
+

1

1 −M
α̂2

s

]
+ α̂sc1,0 + c1,1

[
α̂2

sM + (1 −M)α̂2
s

]

+O(M2) ,

χsym
2 (M, α̂s) =

∑

j=1,5

c2,−j

[
α̂3

s

1

M j
+

1

(1 −M)j
α̂3

s

]
+O(M0) . (6.49)

It is then possible to determine the symmetrised kernel with the running coupling

operator canonically ordered on the left, which corresponds to the choice αs = αs(Q
2).

This choice modifies the residues of the anticollinear poles, thereby breaking the
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6.2. The collinear approximation

symmetry, as already observed in eq. (2.113) for the NLO kernel. One obtains

α̂sχ̄
sym
0 (M) = χsym

0 (M, α̂s) ,

α̂2
sχ̄

sym
1 (M) = χsym

1 (M, α̂s) − α̂2
sβ0

c0,−1

(1 −M)2
+ β0α̂

2
s(c0,1 + 2c0,2) +O(M) ,

α̂3
sχ̄

sym
2 (M) = χsym

2 (M, α̂s) − α̂3
sβ0β1

c0,−1

(1 −M)2
+ 2α̂3

sβ
2
0

c0,−1

(1 −M)3

− 2α̂3
sβ0

c1,−1

(1 −M)2
− 4α̂3

sβ0
c1−2

(1 −M)3
− 8α̂3

sβ0
c1−3

(1 −M)4
+O(M0) .

(6.50)

In order to compute the coefficients cij in eq. (6.49) one can equate the Laurent

series about M = 0 of the symmetrised kernel eq. (6.50) to the expansion of the

unsymmetrised kernels χσ
i eq. (6.47), which is accurate to the stated power of M .

Because the anticollinear terms with poles at M = 1 are regular in M = 0, the

symmetrised χsym
i have the same M = 0 poles as their unsymmetrised counterparts

and their residues can be read off eq. (6.47). However, the anticollinear terms do

contribute to all regular terms in the expansion of χσ
i about M = 0. This is why higher–

order regular terms must be included in the right-hand side of eq. (6.49): specifically,

symmetric terms up to O(M2) must be included in χsym
0 (M) in order for its expansion

to coincide with that of χσ
0 (M) up to and including O(M); one finds:

c0,0 = −3
2g0,−1, c0,1 = 0, c0,2 = 1

2g0,−1 ; (6.51)

terms up to O(M) must be considered in χsym
1 (M) in order for its expansion to coincide

with that of χσ
1 (M) up to and including O(M0):

c1,0 =
g2,−2

g0,−1
+ (g0,−1)

2ζ(3), c1,1 = 1
2(g0,−1)

2 − g0,−1g0,0 − g1,−1 . (6.52)

No addition is necessary for χ2 because the known coefficients in its expansion about

M = 0 are all singular.

Substituting the explicit values for the coefficients cij into eq. (6.50), one determines

the approximate expression for the BFKL kernel up to NNLO, at the unintegrated level

in the Q0 scheme, in symmetric variables, with αs = αs(Q
2). The LO kernel of course

does not depend on either the scheme, the choice of variables, or the running of the

coupling:

χ0(M) = CA

π

(
1
M + 1

(1−M) − 1 −M(1 −M)
)

; (6.53)
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6.2. The collinear approximation

the NLO kernel corresponds to the widely used form of the kernel as given in [34]:

χ1(M) = − C2
A
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1

M3 + 1
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)
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)
− CA

π β0M ; (6.54)

it has been checked that the Laurent expansions of eq. (6.54) about M = 0 and M = 1

coincides with the expansions of the complete result up to and including O(1) terms.

The NNLO kernel is a new result:
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(6.55)

The BFKL kernel is plotted as a function of M in fig. 6.2. The LO and NLO are

exact while the NNLO contains the approximate expression for χ2 eq. (6.55). Because

of the positive sign of the residue of the dominant singularity both inM = 0 andM = 1,

the NNLO kernel has a minimum for every value of the strong coupling. This minimum

determines the high energy asymptotic behaviour; thus, the NNLO kernel has better

stability properties than the NLO one. The expression of the collinear approximation

of the kernel in asymmetric variables can be computed inverting eq. (6.46); the kernel

at the integrated level is found using eq. (6.23). Explicit results are collected in
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Figure 6.2: The full BFKL kernel at leading, next-to-leading, and next-to-next-
to leading order obtained combining the known expressions for the LO and NLO
contributions and the approximate expression (with ġ1,−1 = 0) for NNLO eq. (6.55),
with α̂s → 0.2, nf = 4. The kernel is in the Q0 scheme, at the unintegrated level with
symmetric variables, and αs = αs(Q

2). The symmetry about M = 1
2 is only broken by

the argument of the running coupling. The LO and NLO kernels are the same as in
fig. 2.6.

Appendix C. In figure 6.3 the Pomeron intercept c(αs) = χ(1
2 , αs) is plotted as a

function of the coupling constant. The inclusion of the NNLO contribution improves

the convergence of the perturbative expansion; however, for values of the coupling

constant relevant for phenomenology (say αs & 0.1) the series has yet to converge.

The Laurent series of the BFKL kernel in M = 0 and M = 1 have radius of

convergence one. Thus one expects the approximate calculations to do well over the

central region 0 ≤ M ≤ 1, but to break down as M → −1, M → 2. In figure 6.4 the

collinear approximations of χ0, eq. (6.53) and χ1, eq. (6.54), are plotted together with

the full LO and NLO results. In both cases the curves are almost indistinguishable

in the all region 0 < M < 1. This analysis can be quantified by plotting the relative

difference between the exact and approximate results ∆ = (exact-approximate)/exact,

as in figure 6.5. The agreement is excellent close to M = 0 and M = 1, and even

in the central region the difference between the collinear approximation and the full

result is at the percent level; the approximation breaks down as M → −1, M → 2.

Hence it is possible to conclude that, at leading twist, the collinear kernel is a very

good approximation to the full LO and NLO ones. For this reason one would expect

the result for χ2 to be a good approximation, within a few per cent, of the complete
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Figure 6.3: The BFKL intercept c(αs) = χ(1
2 , αs) at leading, next-to-leading, and next-

to-next-to-leading order, obtained with χ in symmetric variables and with a symmetric
argument for the running coupling as in eq. (6.49). The LO and NLO results are the
same as in fig. 2.7.

result in the region 0 < M < 1.

Finally, the uncertainty due to the the unknown coefficient ġ1,−1 in the scheme

change R is estimated in figure 6.6. This coefficient affects the simple (sub-subleading)

poles, and has therefore a moderate impact. Noting that all the scheme-change

coefficients are of order one, it is possible to estimate the uncertainty by varying

−5 ≤ ġ1,−1 ≤ 5. It is seen to be similar to the uncertainty of a few percent that

one might expect to affect the approximate form of χ2, on the basis of the LO and

NLO results.
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Figure 6.4: Comparison of the exact (dot-dash) and approximate expressions (solid
red) of the LO and NLO contributions to the BFKL kernels χ0(M) on the left and
χ1(M) on the right.
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Figure 6.5: The relative differences ∆ = (exact-approximate)/exact for the leading
order kernel (∆0, solid black) and the next-to-leading kernel (∆1, dashed red), plotted
as a function of M . The discrepancy in the region 0 < M < 1 is at the percent level in
both cases.
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Figure 6.6: These plots assess the uncertainty on the approximate NNLO kernel in
the Q0 scheme due to the unknown coefficient in the R scheme change. On the top
the NNLO contribution χ2 is plotted as a function of M , varying the coefficient ġ1,−1

between 5 and −5. On the bottom the relative uncertainty with respect to the choice
ġ1,−1 = 0.
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Chapter 7

Conclusions and Outlook

As pointed out several times in this thesis, the search for new physics at hadron

colliders requires precise results in QCD phenomenology. The theoretical uncertainties

in cross sections for hadron-hadron collisions can be reduced by computing higher

order contributions in perturbative QCD, both at fixed order and at the resummed

level. Particularly at high energy colliders such as the LHC, it is important to control

both the collinear and high energy logarithms. In the past years different groups have

intensively studied the evolution of parton distribution functions at high energy. In

this thesis the ABF approach has been discussed in some detail. Thanks to these

results evolution kernels which resum both collinear and high energy logarithms are

now available. However a resummed evolution is not enough to produce resummed

hadronic cross sections because high energy effects on the partonic cross section have

to be considered too. This can be achieved by considering processes in the framework

of kT -factorisation and matching these results to standard fixed order calculations,

obtained in collinear factorisation. Before the work carried out in this thesis, resummed

results existed for deep inelastic scattering [46], heavy quark production [44], [48] and

Higgs production via gluon gluon fusion in the heavy top limit [97]. However, this last

result suffers of a spurious double logarithmic growth at high energy. In this thesis the

partonic coefficient functions for Drell-Yan processes and Higgs boson production with

finite top mass have been computed.

7.1 Drell-Yan and vector boson production

The leading singularities of the Dqg and Dqq coefficient functions have been computed

to all orders for Drell-Yan cross sections and vector boson production. The production

of a lepton pair via the Drell-Yan mechanism can, in principle, receive significant

contributions from high energy resummation, because the invariant mass of the final

state can be fairly low and hence logarithms of the ratiom2
ll
/s can be large. Furthermore
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7.2. Higgs production

the W± and the Z cross sections are meant to be used as normalisation for the other

cross sections and as a real-time monitor for the luminosity. These tasks require a

precision in the computation at the percent level and high energy corrections play a

relevant role [51]. In order to make these statements quantitative one has to compute

the hadronic cross sections for these quantities, using parton distribution functions with

high energy evolution.

It has been shown that the logarithms in the gluon-gluon channels are formally

subleading because of the extra power of the coupling constant. Nevertheless it would

be important to compute such contributions because the singlet distribution is relatively

suppressed compared to the gluon density in the high energy limit. This implies that

the contributions from Dgg might be effectively as important as the ones which have

been computed in this thesis.

7.2 Higgs production

The leading behaviour at high energy of the partonic coefficient function for Higgs

production via gluon gluon fusion has been computed to all orders in the strong

coupling. It has been shown that the high energy behaviour obtained keeping the top

mass finite is the one expected from kT -factorisation and BFKL arguments. This is in

contrast to the infinite top mass approximation, where the coefficient function exhibits

double high energy logarithms. The result which has been obtained is expressed in

form of an impact factor eq. (5.43), whose Taylor expansion provides the high energy

singularities order by order in perturbation theory. The coefficients can be expressed

in terms of double integrals, which have been numerically evaluated up to N4LO.

An approximation to the exact and as yet unknown NNLO coefficient function has

been constructed by combining the pointlike approximation at large τ with the exact

small τ behaviour. Some care must be taken in the matching procedure and in the

treatment of the subleading contributions. The effect of high energy terms on the total

inclusive hadronic cross section remains moderate, because the latter is dominated by

the region of low partonic centre–of–mass energy, partly due to shape of the gluon

parton distributions, which are peaked in the region where the gluons carry a small

fraction of the incoming nucleon’s energy, and partly because the partonic cross section

is peaked in the threshold τ ∼ 1 region. Even so, one can claim that hard effects on

the inclusive cross section are now under control.

The approximation to the coefficient function presented in this thesis can be used

to study less inclusive objects such as the rapidity distribution, which presently has

been computed only in the mt → ∞ limit [104], [105]. An interesting idea would be to

use resummed results to estimate unknown higher-order contributions. Specifically one

can combine, order by order in perturbation theory, the high energy tail of the partonic
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coefficient function to the τ → 1 behaviour obtained with soft resummation techniques,

constraining the result also for values of τ away from the asymptotic regions.

7.3 Approximate BFKL kernel

The idea of constructing approximate fixed-order results from resummed ones can

be also applied to the evolution kernels. In this thesis an approximate expression

for the NNLO BFKL kernel has been obtained. In principle the DGLAP anomalous

dimension determines, through duality, the collinear singularities of the BFKL kernel

to all orders in perturbation theory. However the calculation is not straightforward

because, beyond leading order, various issues which affect the determination of the

BFKL kernel arise. Specifically it has been necessary to study the relation between

the MS and Q0 factorisation schemes, the running-coupling corrections to duality, the

choice of kinematic variables in the definition of the BFKL kernel, the relation between

the form of the BFKL kernel and the argument of the running coupling and, finally, the

relation between BFKL kernels for integrated and unintegrated parton distributions.

All these issues become rather nontrivial at next-to-next-to leading order. Because

the perturbative expansion of the BFKL kernel in both the collinear and anticollinear

regions is alternating in sign, a knowledge of NNLO corrections is necessary for an

accurate assessment of the uncertainty involved in a fixed–order determination of the

kernel: indeed, whereas the qualitative features of the NLO kernel are completely

different from those of the LO, the NNLO result is qualitatively similar, though it

is quantitatively not so reliable because of the slow convergence of the perturbative

expansion, even in the central region away from the singularities. As a final remark

the approximate form of the LO and NLO kernels given in eq. (6.53) and eq. (6.54) are

extremely accurate while having a very simple analytic form, and they can be easily

used in numerical and phenomenological implementations.

7.4 Outlook

In this thesis the high energy resummation of partonic coefficient functions of processes,

relevant for LHC phenomenology, has been presented. Now one can use use these

expressions, together with resummed parton distributions, to compute hadronic cross

sections. In order to achieve this, it is important to include running coupling effects into

the resummation, with the techniques explained in section 3.3. Finally, high energy

resummation has been discussed in this thesis for inclusive cross sections. It would

be important to extend this formalism to differential quantities, such as, for instance,

rapidity and transverse momentum distributions.
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Appendix A

Kinematics of 2 → 2 processes

A.1 d-dimensional two-body phase space

The d-dimensional two-body phase space for a process like

a(p1) + b(p2) → c(p3) + d(p4)

can be written as

dΦ(2) =
dd−1p3

(2π)d−1 2E3

dd−1p4

(2π)d−1 2E4
(2π)dδ(d)(p1 + p2 − p3 − p4)

= 2−dπ2−dd
d−1p1

E3E4
δ(E1 + E2 − E3 − E4). (A.1)

In the centre-of-mass frame, the delta function can be expressed in the following form:

δ(E − E3 + E4) = δ

(
E −

√
|~p3|2 +m2

3 −
√
|~p4|2 +m2

4

)

=
E3E4

|~p1|E
δ

(
|~p3| −

√
ω

2E

)
, (A.2)

where

E = E1 + E2 , (A.3)

and

ω = E4 +m4
3 +m4

4 − 2E2m2
3 − 2E2m2

4 − 2m2
3m

2
4. (A.4)

Using d-dimensional polar coordinates for ~p3, one obtains

dΦ(2) = 2−dπ2−d |~p3|d−2 d |~p3| dΩd−1

|~p3|E
δ

(
|~p3| −

√
ω

2E

)

= 2−dπ2−d

[√
ω

2E

]d−3
1

E
dΩd−1 . (A.5)
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A.2. Kinematics of off-shell processes

Since the invariant two-body squared amplitude only depends on one scattering angle,

one can integrate over dΩd−2, using the result

Ωp =

∫
dΩp =

2πp/2

Γ(p/2)
. (A.6)

Thus the angular integration in d = 4 − 2ε dimensions can be written as

dΩd−1 → Ωd−2 dϑd−2 sind−3 ϑd−1 =
2π1−ε

Γ(1 − ε)
21−2ε y−ε(1 − y)−ε dy, (A.7)

where the dimensionless variable y has been defined

y =
1 + cosϑd−2

2
; 0 ≤ y ≤ 1 . (A.8)

Finally the two body phase space takes the form

dΦ(2) =
1

8π

(4π)ε

Γ(1 − ε)

√
ω

E2

[ ω
E2

]−ε
y−ε(1 − y)−ε dy. (A.9)

In the case of one-gluon emission in deep-inelastic scattering, analysed in Chapter 2,

one has m3 = m4 = 0, and therefore

ωDIS = E4; E =

√
Q2(1 − x)

x
. (A.10)

So, in this case, the phase space is given by

dΦ(2) =
1

8π

(4π)ε

Γ(1 − ε)

[
Q2(1 − x)

x

]−ε

y−ε(1 − y)−ε dy. (A.11)

In the case of Drell-Yan at NLO, one has m3 = 0, m2
4 = Q2:

ωDY = s2 +Q4 − 2sQ2 =
Q4(1 − x)2

x2
; E =

√
s =

Q√
x
, (A.12)

which gives

dΦ(2) =
1

8π

(4π)ε

Γ(1 − ε)
(1 − x)

[
Q2(1 − x)2

x

]−ε

y−ε(1 − y)−ε dy. (A.13)

A.2 Kinematics of off-shell processes

For calculations in kT -factorisation one has to consider processes with initial off-shell

gluons

g∗(k1) + g∗(k2) → c(p3) + d(p4) .
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A.2. Kinematics of off-shell processes

It is useful to introduce Sudakov parametrisation of the four-momenta

k1 = x1p1 + k1

k2 = x2p2 + k2

p3 = z1x1p1 + (1 − z2)x2p2 + p

p4 = (1 − z1)x1p1 + z2x2p2 + k1 + k2 − p , (A.14)

where p1 and p2 are lightlike momenta and ki and p are transverse. The centre-of-mass

energy is given by the Mandelstam variable

ŝ = (k1 + k2)
2 = ν − |k1 + k2|2 , (A.15)

where ν = 2x1x2p1 · p2. The phase-space becomes

dΦ(2) =
d4p3

(2π)3
d4p4

(2π)3
δ(p2

3 −m2
3)δ(p

2
4 −m2

4)(2π)4δ(4)(k1 + k2 − p3 − p4) =

=
d4p3

(2π)2
δ(p2

3 −m2
3) δ(p

2
4 −m2

4) =

=
1

4π2

ν

2
dz1dz2d

2p δ((1 − z2)z1ν − |p|2) (A.16)

×δ((1 − z1)z2ν − |k1 + k2 − p|2) ,

where the factor ν/2 is the Jacobian for the transformation from Cartesian to Sudakov

coordinates.
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Appendix B

Form factors for g∗g∗ → H

In this appendix the explicit expressions for the form factors, which appear in the Higgs

production cross section, are collected:

A1(ξ1, ξ2, yt) = C0(ξ1, ξ2, yt)
[4yt

∆3
(1 + ξ1 + ξ2) − 1 − 4ξ1ξ2

∆3

+12
ξ1ξ2
∆2

3

(1 + ξ1 + ξ2)
]

− [B0(−ξ2) −B0(1)]

[
−2ξ2

∆3
+ 12

ξ1ξ2
∆2

3

(1 + ξ1 − ξ2)

]

− [B0(−ξ1) −B0(1)]

[
−2ξ1

∆3
+ 12

ξ1ξ2
∆2

3

(1 − ξ1 + ξ2)

]

+
2

∆3

1

(4π)2
(1 + ξ1 + ξ2) , (B.1)

A2(ξ1, ξ2, yt) = C0(ξ1, ξ2, yt)

[
2yt −

1

2
(1 + ξ1 + ξ2) +

2ξ1ξ2
∆3

]

+ [B0(−ξ2) −B0(1)]

[
ξ2
∆3

(1 − ξ1 + ξ2)

]

+ [B0(−ξ1) −B0(1)]

[
ξ1
∆3

(1 + ξ1 − ξ2)

]
+

1

(4π)2
,

(B.2)

with

∆3 = 1 + ξ21 + ξ22 − 2ξ1ξ2 + 2(ξ1 + ξ2) = (1 + ξ1 + ξ2)
2 − 4ξ1ξ2 . (B.3)
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The scalar integrals B0 and C0 are

B0(ρ) = − 1

8π2

√
4yt − ρ

ρ
tan−1

√
ρ

4yt − ρ
, if 0 < ρ < 4yt ;

B0(ρ) = − 1

16π2

√
ρ− 4yt

ρ
ln

1 +
√

ρ
ρ−4yt

1 −
√

ρ
ρ−4yt

, if ρ < 0 or ρ > 4yt ;

(B.4)

C0(ξ1, ξ2) ≡ 1

16π2

1√
∆3

{
ln(1 − y−) ln

(
1 − y−δ

+
1

1 − y−δ
−
1

)

+ ln(1 − x−) ln

(
1 − x−δ

+
2

1 − x−δ
−
2

)
+ ln(1 − z−) ln

(
1 − z−δ

+
3

1 − z−δ
−
3

)

+Li2(y+δ
+
1 ) + Li2(y−δ

+
1 ) − Li2(y+δ

−
1 ) − Li2(y−δ

−
1 )

+Li2(x+δ
+
2 ) + Li2(x−δ

+
2 ) − Li2(x+δ

−
2 ) − Li2(x−δ

−
2 )

+Li2(z+δ
+
3 ) + Li2(z−δ

+
3 ) − Li2(z+δ

−
3 ) − Li2(z−δ

−
3 )

}
,

(B.5)

where

δ1 ≡ −ξ1 + ξ2 − 1√
∆3

, δ2 ≡ ξ1 − ξ2 − 1√
∆3

, δ3 ≡ ξ1 + ξ2 + 1√
∆3

, (B.6)

δ±i ≡ 1 ± δi
2

, (B.7)

and

x± ≡ − ξ2
2yt

(
1 ±

√
1 +

4yt

ξ2

)
,

y± ≡ − ξ1
2yt

(
1 ±

√
1 +

4yt

ξ1

)
,

z± ≡ 1

2yt

(
1 ± i

√
4yt − 1

)
. (B.8)

In the infinite top mass limit the scalar integrals become

lim
yt→∞

B0(ρ) =
1

16π2

(
−2 +

ρ

6yt

)
+O

(
1

y2
t

)
, (B.9)

lim
yt→∞

C0(ξ1, ξ2) = − 1

32π2yt

(
1 +

1 − ξ1 − ξ2
12yt

)
+O

(
1

y3
t

)
. (B.10)
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In the on-shell limit the scalar integrals are

lim
ξi→0

B0(ξi) = − 1

8π2
,

lim
ξ1→0

C0(ξ1, ξ2, yt) =
1

32π2

1

1 + ξ2

(
ln2 −z−

z+
− ln2 −x−

x+

)
, (B.11)

lim
ξ1,ξ2→0

C0(ξ1, ξ2, yt) =
1

32π2

(
ln2 −z−

z+

)
.
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Appendix C

Explicit results for χ2

The coefficients of the expansion of the leading, next-to-leading and next-to-next-

to-leading DGLAP anomalous dimensions in powers of N are easily determined by

recalling that γ is the larger eigenvalue of the 2×2 anomalous dimension matrix, given

by

γ = 1
2

[
γgg + γqq +

√
(γgg − γqq)2 + 8nfγgqγqg

]
, (C.1)

and by using the expressions of γij given in Refs. [14] and [16]. In the MS scheme one

obtains

g0,−1 = CA

π

g0,0 = −11CA

12π +
(
− 1

6π + CF

3πCA

)
nf

g0,1 = −CAπ
6 + 67CA

36π − 11CF nf

36πCA
+
(
− C2

F

9πC3
A

+ CF

18πC2
A

)
n2

f

g1,−1 =
(

13CF

18π2 − 23CA

36π2

)
nf

g1,0 = −2ζ(3)C2
A

π2 +
1643C2

A

216π2 − 11C2
A

36 +
(

43CA

54π2 + CF

18 − 547CF

216π2 +
C2

F

4π2CA

)
nf

+
(

13CF

108π2CA
− 13C2

F

54π2C2
A

)
n2

f

g2,−2 =
ζ(3)C3

A

2π3 +
11C3

A

72π − 395C3
A

108π3 +
(

C2
A

36π − 71C2
A

108π3 − CF CA

18π + 71CF CA

54π3

)
nf

g2,−1 = −143ζ(3)C3
A

24π3 − 29πC3
A

720 − 389C3
A

432π +
73091C3

A

2592π3 +
(
−11ζ(3)C2

A

12π3 − C2
A

9π

+
301C2

A

81π3 + 8ζ(3)CF CA

3π3 + 35CF CA

108π − 28853CF CA

2592π3 − 2C2
F ζ(3)

3π3 +
11C2

F

12π3

)
nf

+
(

59CA

648π3 − 65CF

324π3

)
n2

f . (C.2)

The explicit numerical expression for the approximate contributions to the kernel

in symmetric variables can be found substituting the values of the Casimirs CA = 3,
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CF = 4
3 in eq. (6.55)–(6.55). One obtains:

χ0(M) = 3
π

(
1
M + 1

1−M − 1 −M(1 −M)
)
, (C.3)

χ1(M) = − 9
2π2

(
1

M3 + 1
(1−M)3

)
−
(

33
4π2 +

nf

18π2

)
1

M2

−
(

33
2π2 − 4nf

9π2

)
1

(1−M)2
− 103nf

108π2

(
1
M + 1

1−M

)

+11
8 +

nf

108 − 143
12π2 +

47nf

162π2 + 27ζ(3)
2π2 +M

(
− 33

4π2 +
nf

2π2

)
, (C.4)

χ2(M) = 27
2π3

(
1

M5 + 1
(1−M)5

)
+
(

99
4π3 +

nf

π3

)
1

M4 +
(

495
4π3 − 5nf

π3

)
1

(1−M)4

+
[

1167
16π3 +

35nf

18π3 +
n2

f

108π3 − 9
2π

]
1

M3 +
[

1893
16π3 +

23nf

9π3 − 7n2
f

36π3 − 9
2π

]
1

(1−M)3

+
[

1653
16π3 +

377nf

432π3 − 5n2
f

648π3 + 99
16π +

5nf

24π − 243ζ(3)
4π3

]
1

M2

+
[

1653
16π3 − 5049

8(33−2nf )π3 +
881nf

144π3 +
933nf

8(33−2nf )π3 − 211n2
f

648π3

− 19n2
f

4(33−2nf )π3 + 99
16π +

5nf

24π − 243ζ(3)
4π3

]
1

(1−M)2

+
[

121
192 − 11nf

144 +
n2

f

432 + 73091
96π3 − 6125nf

648π3 +
11n2

f

1944π3 − 389
16π − 11ġ1−1

4π

+
8nf

27π +
ġ1−1nf

6π − 87π
80 − 1683ζ(3)

8π3 +
457nf ζ(3)

108π3

](
1
M + 1

1−M

)
. (C.5)

The expression of the NNLO kernel in asymmetric variables can be obtained by

inverting eq. (6.46), with the result

χΣ
2 =

(
− 9

2π + 1167
16π3 − 11nf

12π3 +
n2

f

108π3

)
1

M3 +
(

863
16π3 + 33

4π − 54ζ(3)
π3 +

235nf

432π3

+
2nf

9π − 5n2
f

648π3

)
1

M2 +
(

121
192 + 73091

96π3 − 87π
80 − 389

16π − 11ġ1−1

4π − 1287ζ(3)
8π3

−11nf

144 +
8nf

27π − 6125nf

648π3 +
ġ1−1nf

6π +
133nf ζ(3)

108π3 +
n2

f

432 +
11n2

f

1944π3

)
1
M

+ 54
(1−M)5π3 +

(
1683
8π3 − 31nf

4π3

)
1

(1−M)4

+
(
− 9

2π + 1893
16π3 +

65nf

12π3 − 7n2
f

36π3

)
1

(1−M)3

+
(

33
8π + 2137

16π3 − 135ζ(3)
2π3 +

7nf

36π +
3811nf

432π3 − 211n2
f

648π3

)
1

(1−M)2

+
(

121
192 + 73091

96π3 − 389
16π − 87π

80 − 11ġ1−1

4π − 1287ζ(3)
8π3 − 11nf

144 +
8nf

27π

−6125nf

648π3 +
ġ1−1nf

6π +
133nf ζ(3)

108π3 +
11n2

f

1944π3 +
n2

f

432

)
1

1−M . (C.6)

Finally, the NNLO kernel for the evolution of the integrated parton density can be

obtained from the unintegrated one through eq. (6.23). The difference in asymmetric
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variables is given by

χi
2(M) − χu

2(M) =
(
− 55nf

18π3 +
5n2

f

27π3

)
1

M3 +
3(−33+2nf )

2π3
1

(1−M)3

+
12393−4938nf +206n2

f

648π3
1

M2 +
−15147+1182nf−16n2

f

108π3
1

(1−M)2

+ 1
3888π3

[
− 703890 + 37974nf + 284n2

f + 29403π2

−1584nfπ
2 − 12n2

fπ
2 + 96228ζ(3) − 5832nfζ(3)

]
1
M

−24543+705nf−109n2
f

324π3
1

1−M . (C.7)

138



Bibliography

[1] M. E. Peskin, D. V. Schroeder “An Introduction to Quantum Field Theory”, Addison-
Wesley, (1995).

[2] V. R. Barger, R. J. N. Phillips “Collider Physics”, Addison-Wesley, (1987)

[3] R. K. Ellis, W. J. Stirling, B. V. Webber “QCD and Collider Physics”, Cambrige University
Press, (1996)

[4] W. A. Bardeen, A. J. Buras, D. W. Duke and T. Muta, Phys. Rev. D 18 (1978) 3998.

[5] S. Alekhin et al., arXiv:hep-ph/0601012.

[6] J. R. Forshaw, D. A. Ross “Quantum Chromodynamics and the Pomeron”, Cambrige
University Press, (1996)

[7] R. P. Feynman, Phys. Rev. Lett. 23 (1969) 1415.

[8] J. D. Bjorken and E. A. Paschos, Phys. Rev. 185 (1969) 1975.

[9] H. J. Rothe “Lattice Gauge Theories. An Introduction”, World Scientific.

[10] Y. L. Dokshitzer, Sov. Phys. JETP 46 (1977) 641 [Zh. Eksp. Teor. Fiz. 73 (1977) 1216].

[11] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438 [Yad. Fiz. 15 (1972)
781].

[12] G. Altarelli and G. Parisi, Nucl. Phys. B 126 (1977) 298.

[13] G. Curci, W. Furmanski and R. Petronzio, Nucl. Phys. B 175 (1980) 27.

[14] W. Furmanski and R. Petronzio, Phys. Lett. B 97 (1980) 437.

[15] S. Moch, J. A. M. Vermaseren and A. Vogt, Nucl. Phys. B 688 (2004) 101 [arXiv:hep-
ph/0403192].

[16] A. Vogt, S. Moch and J. A. M. Vermaseren, Nucl. Phys. B 691 (2004) 129 [arXiv:hep-
ph/0404111].

[17] A. Vogt, Comput. Phys. Commun. 170 (2005) 65 [arXiv:hep-ph/0408244].

[18] A. J. Buras, Rev. Mod. Phys. 52 (1980) 199.

[19] J. C. Collins and D. E. Soper, Ann. Rev. Nucl. Part. Sci. 37 (1987) 383.

[20] A. Donnachie and P. V. Landshoff, Phys. Lett. B 296 (1992) 227 [arXiv:hep-ph/9209205].

[21] C. Augier et al. [UA4/2 Collaboration], Phys. Lett. B 316 (1993) 448.

[22] V. S. Fadin, E. A. Kuraev and L. N. Lipatov, Phys. Lett. B 60 (1975) 50.

[23] E. A. Kuraev, L. N. Lipatov and V. S. Fadin, Sov. Phys. JETP 44 (1976) 443 [Zh. Eksp.
Teor. Fiz. 71 (1976) 840].

139



BIBLIOGRAPHY

[24] E. A. Kuraev, L. N. Lipatov and V. S. Fadin, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp.
Teor. Fiz. 72 (1977) 377].

[25] I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978)
1597].

[26] A. H. Mueller, Nucl. Phys. B 415 (1994) 373.

[27] A. H. Mueller and B. Patel, Nucl. Phys. B 425 (1994) 471 [arXiv:hep-ph/9403256].

[28] V. S. Fadin and L. N. Lipatov, JETP Lett. 49 (1989) 352 [Yad. Fiz. 50 (1989
SJNCA,50,712.1989) 1141].

[29] V. S. Fadin, R. Fiore and M. I. Kotsky, Phys. Lett. B 387 (1996) 593 [arXiv:hep-
ph/9605357].

[30] V. S. Fadin, M. I. Kotsky and R. Fiore, Phys. Lett. B 359 (1995) 181.

[31] V. S. Fadin, L. N. Lipatov Nucl. Phys. B 406 (1993) 259.

[32] V. S. Fadin, M. I. Kotsky, L. N. Lipatov Phys. Lett. B 415 (1997) 97.
V. S. Fadin, M. I. Kotsky, L. N. Lipatov Phys. Atom. Nucl. 61 (1998) 641.

[33] V. S. Fadin, R. Fiore, A. Flachi, M. I. Kotsky Phys. Lett. B 422 (1998) 287.
V. S. Fadin, R. Fiore, A. Flachi, M. I. Kotsky Phys. Atom. Nucl. 62 (1999) 999

[34] V. S. Fadin, L. N. Lipatov Phys. Lett. B 429 (1998) 127.

[35] G. Camici and M. Ciafaloni, Phys. Lett. B 412 (1997) 396 [Erratum-ibid. B 417 (1998)
390] [arXiv:hep-ph/9707390].

[36] M. Ciafaloni and G. Camici, Phys. Lett. B 430 (1998) 349 [arXiv:hep-ph/9803389].

[37] V. Del Duca and E. W. N. Glover, JHEP 0110 (2001) 035 [arXiv:hep-ph/0109028].

[38] J. Bartels and C. Bontus, Phys. Rev. D 61 (2000) 034009 [arXiv:hep-ph/9906308].

[39] J. Bartels, L. N. Lipatov and A. S. Vera, arXiv:0802.2065 [hep-th].

[40] V. Del Duca and E. W. N. Glover, arXiv:0802.4445 [hep-th].

[41] S. Marzani, R. D. Ball, P. Falgari and S. Forte, Nucl. Phys. B 783 (2007) 143
[arXiv:0704.2404 [hep-ph]].

[42] M. Ciafaloni, Nucl. Phys. B 296 (1988) 49.

[43] S. Catani, F. Fiorani and G. Marchesini, Nucl. Phys. B 336 (1990) 18.

[44] S. Catani, M. Ciafaloni and F. Hautmann, Nucl. Phys. B 366 (1991) 135.

[45] S. Catani, M. Ciafaloni and F. Hautmann, Published in DESY HERA Workshop 1991:0690-
711

[46] S. Catani, F. Hautmann Nucl. Phys. B 427 (1994) 475.

[47] J. C. Collins and R. K. Ellis, Nucl. Phys. B 360 (1991) 3.

[48] R. D. Ball and R. K. Ellis, JHEP 0105 (2001) 053 [arXiv:hep-ph/0101199].

[49] G. Camici and M. Ciafaloni, Phys. Lett. B 386 (1996) 341 [arXiv:hep-ph/9606427].

[50] G. Camici and M. Ciafaloni, Nucl. Phys. B 496 (1997) 305 [Erratum-ibid. B 607 (2001)
431] [arXiv:hep-ph/9701303].

[51] R. D. Ball, Nucl. Phys. B 796 (2008) 137 [arXiv:0708.1277 [hep-ph]].

[52] T. Jaroszewicz, Phys. Lett. B 116 (1982) 291.

140



BIBLIOGRAPHY

[53] R. D. Ball and S. Forte, Phys. Lett. B 351 (1995) 313 [arXiv:hep-ph/9501231].

[54] R. D. Ball and S. Forte, Phys. Lett. B 359 (1995) 362 [arXiv:hep-ph/9507321].

[55] R. D. Ball and S. Forte, Phys. Lett. B 405 (1997) 317 [arXiv:hep-ph/9703417].

[56] R. D. Ball and S. Forte, Phys. Lett. B 465 (1999) 271 [arXiv:hep-ph/9906222].

[57] G. Altarelli, R. D. Ball, S. Forte Nucl. Phys. B 575 (2000) 313.

[58] G. Altarelli, R. D. Ball, S. Forte Nucl. Phys. B 599 (2001) 383.

[59] G. Altarelli, R. D. Ball, S. Forte Nucl. Phys. B 621 (2002) 359.

[60] G. Altarelli, R. D. Ball, S. Forte Nucl. Phys. B 674 (2003) 459.

[61] G. Altarelli, R. D. Ball, S. Forte Nucl. Phys. Proc. Suppl. 135 (2004) 163.

[62] R. D. Ball, S. Forte Nucl. Phys. B 742 (2006) 158.

[63] G. Altarelli, R. D. Ball and S. Forte, Nucl. Phys. B 742 (2006) 1 [arXiv:hep-ph/0512237].

[64] G. Altarelli, R. D. Ball and S. Forte, arXiv:0802.0032 [hep-ph].

[65] E. Eriksen, Journal of Math. Phys. Vol.9-5 (1968) 790.

[66] P. Falgari, Laurea Thesis Milan University, April 2005.

[67] S. Marzani, Laurea Thesis Milan University, April 2005.

[68] M. Dittmar et al., arXiv:hep-ph/0511119.

[69] M. Ciafaloni, D. Colferai and G. P. Salam, Phys. Rev. D 60 (1999) 114036 [arXiv:hep-
ph/9905566].

[70] M. Ciafaloni, D. Colferai and G. P. Salam, JHEP 9910 (1999) 017 [arXiv:hep-ph/9907409].
PHRVA,D60,114036;

[71] M. Ciafaloni, D. Colferai, G. P. Salam and A. M. Stasto, Phys. Rev. D 68 (2003) 114003
[arXiv:hep-ph/0307188].

[72] M. Ciafaloni, D. Colferai, G. P. Salam and A. M. Stasto, JHEP 0708 (2007) 046
[arXiv:0707.1453 [hep-ph]].

[73] C. D. White and R. S. Thorne, Phys. Rev. D 75 (2007) 034005 [arXiv:hep-ph/0611204].

[74] G. P. Salam, JHEP 9807 (1998) 019 [arXiv:hep-ph/9806482].

[75] L. N. Lipatov, Sov. Phys. JETP 63 (1986) 904 [Zh. Eksp. Teor. Fiz. 90 (1986) 1536].

[76] J. S. Schwinger, Phys. Rev. 82 (1951) 664.

[77] S. D. Drell and T. M. Yan, Phys. Rev. Lett. 25 (1970) 316 [Erratum-ibid. 25 (1970) 902].

[78] G. Altarelli, R. K. Ellis and G. Martinelli, Nucl. Phys. B 157 (1979) 461.

[79] R. Hamberg, W. L. van Neerven and T. Matsuura, Nucl. Phys. B 359 (1991) 343 [Erratum-
ibid. B 644 (2002) 403].

[80] J. Blumlein and V. Ravindran, Nucl. Phys. B 716 (2005) 128 [arXiv:hep-ph/0501178].

[81] B. Humpert and W. L. van Neerven, Nucl. Phys. B 184 (1981) 225.

[82] W. N. Bailey “Generalised Hypergeometric Series”, Cambridge University Press (1935).

[83] J. Alcaraz et al. [LEP Collaborations and ALEPH Collaboration and DELPHI
Collaboration an], arXiv:0712.0929 [hep-ex].

141



BIBLIOGRAPHY

[84] J. R. Ellis, M. K. Gaillard and D. V. Nanopoulos, Nucl. Phys. B 106 (1976) 292;
M. A. Shifman, A. I. Vainshtein, M. B. Voloshin and V. I. Zakharov, Sov. J. Nucl. Phys.
30 (1979) 711 [Yad. Fiz. 30 (1979) 1368].

[85] D. Graudenz, M. Spira and P. M. Zerwas, Phys. Rev. Lett. 70 (1993) 1372.

[86] M. Spira, A. Djouadi, D. Graudenz and P. M. Zerwas, Nucl. Phys. B 453 (1995) 17.

[87] R. Bonciani, G. Degrassi and A. Vicini, JHEP 0711 (2007) 095.

[88] M. Kramer, E. Laenen and M. Spira, Nucl. Phys. B 511 (1998) 523.

[89] A. Djouadi, M. Spira and P. M. Zerwas, Phys. Lett. B 264 (1991) 440.

[90] K. G. Chetyrkin, B. A. Kniehl and M. Steinhauser, Phys. Rev. Lett. 79 (1997) 2184
[arXiv:hep-ph/9706430]. K. G. Chetyrkin, B. A. Kniehl and M. Steinhauser, Nucl. Phys.
B 510 (1998) 61 [arXiv:hep-ph/9708255].

[91] S. Dawson, Nucl. Phys. B 359 (1991) 283.

[92] C. Anastasiou and K. Melnikov, Nucl. Phys. B 646 (2002) 220;

[93] R. V. Harlander and W. B. Kilgore, Phys. Rev. Lett. 88 (2002) 201801;

[94] V. Ravindran, J. Smith and W. L. van Neerven, Nucl. Phys. B 665 (2003) 325.

[95] S. Moch and A. Vogt, Phys. Lett. B 631 (2005) 48.

[96] S. Catani, D. de Florian, M. Grazzini and P. Nason, JHEP 0307 (2003) 028.

[97] F. Hautmann, Phys. Lett. B 535 (2002) 159.

[98] A. V. Lipatov and N. P. Zotov, Eur. Phys. J. C 44 (2005) 559 [arXiv:hep-ph/0501172].

[99] V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Nucl. Phys. B 616

(2001) 367.

[100] R. S. Pasechnik, O. V. Teryaev and A. Szczurek, Eur. Phys. J. C 47 (2006) 429.

[101] L. Lewin “Polylogarithms and associated functions”, Elsevier North Holland, (1981)

[102] S. Marzani, R. D. Ball, V. Del Duca, S. Forte and A. Vicini, Nucl. Phys. B 800 (2008)
127 [arXiv:0801.2544 [hep-ph]].

[103] A. D. Martin, R. G. Roberts, W. J. Stirling and R. S. Thorne, Eur. Phys. J. C 28 (2003)
455.

[104] C. Anastasiou, L. J. Dixon and K. Melnikov, Nucl. Phys. Proc. Suppl. 116 (2003) 193
[arXiv:hep-ph/0211141].

[105] C. Anastasiou, K. Melnikov and F. Petriello, Phys. Rev. Lett. 93 (2004) 262002
[arXiv:hep-ph/0409088].

[106] M. Ciafaloni, D. Colferai JHEP 0509(2005) 069.

[107] M. Ciafaloni, D. Colferai, G. P. Salam, A. M. Stasto Phys. Lett. B 635(2006) 320.

[108] R. K. Ellis, D. A. Ross and A. E. Terrano, Nucl. Phys. B 178 (1981) 421.

[109] D. A. Kosower and P. Uwer, Nucl. Phys. B 563 (1999) 477 [arXiv:hep-ph/9903515].

142


