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Abstract

The fifth generation (and beyond) wireless communication systems require in-

creased capacity, high data rates, improved coverage and reduced energy con-

sumption. This can be potentially provided by unused available spectrum such

as the Millimeter Wave (MmWave) frequency spectrum above 30 GHz. The high

bandwidths for mmWave communication compared to sub-6 GHz microwave fre-

quency bands must be traded off against increased path loss, which can be com-

pensated using large-scale antenna arrays such as the Multiple-Input Multiple-

Output (MIMO) systems. The analog/digital Hybrid Beamforming (HBF) archi-

tectures for mmWave MIMO systems reduce the hardware complexity and power

consumption using fewer Radio Frequency (RF) chains and support multi-stream

communication with high Spectral Efficiency (SE). Such systems can also be

optimized to achieve high Energy Efficiency (EE) gains with low complexity but

this has not been widely studied in the literature. This PhD project focussed on

designing energy efficient and low complexity communication techniques for next

generation mmWave hybrid MIMO systems.

Firstly, a novel architecture with a framework that dynamically activates the

optimal number of RF chains was designed. Fractional programming was used

to solve an EE maximization problem and the Dinkelbach Method (DM) based

framework was exploited to optimize the number of active RF chains and the data

streams. The DM is an iterative and parametric algorithm where a sequence of
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easier problems converge to the global solution. The HBF matrices were designed

using a codebook-based fast approximation solution called gradient pursuit which

was introduced as a cost-effective and fast approximation algorithm. This work

maximizes EE by exploiting the structure of RF chains with full resolution

sampling unlike existing baseline approaches that use fixed RF chains and aim

only for high SE.

Secondly, an efficient sparse mmWave channel estimation algorithm was de-

veloped with low resolution Analog-to-Digital Converters (ADCs) at the receiver.

The sparsity of the mmWave channel was exploited and the estimation problem

was tackled using compressed sensing through the Stein’s unbiased risk estimate

based parametric denoiser. The Expectation-maximization density estimation

was used to avoid the need to specify the channel statistics. Furthermore, an

energy efficient mmWave hybrid MIMO system was developed with Digital-to-

Analog Converters (DACs) at the transmitter where the best subset of the active

RF chains and the DAC resolution were selected. A novel technique based on the

DM and subset selection optimization was implemented for EE maximization.

This work exploits the low resolution sampling at the converting units and pro-

vides more efficient solutions in terms of EE and channel estimation than existing

baselines in the literature.

Thirdly, the DAC and ADC bit resolutions and the HBF matrices were jointly

optimized for EE maximization. The flexibility in choosing the bit resolution

for each DAC and ADC was considered and they were optimized on a frame-by-

frame basis unlike the existing approaches, based on the fixed resolution sampling.

A novel decomposition of the HBF matrices to three parts was introduced to

represent the analog beamformer matrix, the DAC/ADC bit resolution matrix and

the baseband beamformer matrix. The alternating direction method of multipliers
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was used to solve this matrix factorization problem as it has been successfully

applied to other non-convex matrix factorization problems in the literature. This

work considers EE maximization with low resolution sampling at both the DACs

and the ADCs simultaneously, and jointly optimizes the HBF and DAC/ADC bit

resolution matrices, unlike the existing baselines that use fixed bit resolution or

otherwise optimize either DAC/ADC bit resolution or HBF matrices.



Lay Summary

In this modern digital age of 21st century, mobile users demand better com-

munication technology which should be mainly cost-efficient, with less complex

hardware and high speed. The microwave frequency spectrum that we currently

use for mobile broadband is limited to a very crowded frequency range. There is

an enhanced demand for an unused and available spectrum which can be resolved

by the use of millimeter wave frequency spectrum. The larger bandwidth chan-

nels means higher data rates and we can further benefit by using multiple antenna

systems at millimeter wave. The use of a hybrid architecture, which involves both

digital and analog units used in conventional technologies, reduces the hardware

complexity and power consumption for such systems while still supporting com-

munication with multiple streams. In the existing literature, the millimeter wave

multiple antenna systems are designed for high data rates but designing such sys-

tems for high energy efficiency with low complexity solutions and keeping high

data rates, has not been widely studied. So this thesis focuses on designing energy

efficient and low complexity techniques for the next generation millimeter wave

multiple antenna systems. We provide energy efficient solutions by exploiting the

structure of complex and power hungry components such as the radio frequency

chains and associated conversion units. We also provide an efficient and low com-

plexity solution to estimate the millimeter wave channel and consider the impact

of resolution sampling associated with the conversion unit.

v
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∆RX Diagonal matrix with values depending on the bit resolution of each

ADC
∆TX Diagonal matrix with values depending on the bit resolution of each

DAC
FBB Baseband precoder with dimensions LT ×Ns

Fopt/FDBF Optimal fully digital precoder matrix
FRF Analog precoder with dimensions NT × LT

H MmWave channel matrix
Λ Lagrange multiplier matrix with dimensions NT × LT

Rη Combined noise covariance matrix
ΣH Rectangular matrix of singular values in channel’s SVD with dimen-

sions NR ×NT

UH Left singular matrix of channel’s SVD with dimensions NR ×NR

VH Right singular matrix of channel’s SVD with dimensions NT ×NT

WBB Baseband combiner with dimensions LR ×Ns

Wopt/WDBF Optimal fully digital combiner matrix
WRF Analog combiner with dimensions NR × LR

Z Auxiliary matrix for overall precoder
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Chapter 1

Introduction

T
his thesis addresses efficient communication techniques for the Fifth Gen-

eration (5G) and beyond Millimeter Wave (MmWave) Hybrid Beamform-

ing (HBF) Multiple-Input Multiple-Output (MIMO) systems. Our main objec-

tive is to optimize such systems for Energy Efficiency (EE) maximization with

low complexity by exploiting the Analog/Digital (A/D) HBF architecture and

provide better solutions than existing baselines in the literature. Low complexity

refers to reducing the complexity associated with an algorithm or system design,

i.e., providing a fast solution with acceptable accuracy and the least computation.

In this introductory chapter, Section 1.1 introduces the motivation of the research

work carried out. Section 1.2 summarizes the objectives and key contributions of

the research work conducted for this thesis. Section 1.3 provides an outline of the

remaining chapters of this thesis.

1
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1.1 Motivation

1.1.1 5G Mobile Communication

For future mobile communication systems, there is a wide scope to identify the

technical needs and possible solutions to transform and revolutionize the wireless

connectivity ecosystem for a better inter-connected society. The 5G technology is

set to address the consumer demands and performance enhancements for mobile

communication in 2020 and beyond [1–3]. The emerging advanced consumer

devices and developed communication systems have resulted in ever-increasing

demands on bandwidth and capacity. For instance, Cisco’s annual report suggests

that mobile video traffic is expected to generate 82% of the global mobile data

traffic, and there will be 28.5 billion networked devices and connections by

2022 [4]. Ericsson mobility report [5] forecasts that there will be 8.9 billion

mobile subscriptions by the end of 2024 and more than 40% of the world’s

population is forecast to be covered by 5G in the same year (see Fig. 1.1).

The 5G (and beyond) services are expected to be commercially implemented on a

large scale in the next few years, for example, in North America and North East

Asia significant 5G subscriptions are expected early [5]. The 5G (and beyond)

standards would require high data rates/throughput, improved coverage, lower

latency, high mobility, high reliability and lower infrastructure costs [1, 2].

One of the building blocks for fulfilling the requirements of 5G mobile

communications is the use of MIMO technology and spectrum availability. The

microwave frequency spectrum at sub-6 GHz frequencies, which we currently

make use of for mobile broadband, is limited to a very crowded frequency range

enhancing the demand for unused and available spectrum which can be resolved

by the use of mmWave frequency spectrum [6,7].
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19 Ericsson Mobility Report  |  November 2018Forecasts

World population coverage by technology1

Total population coverage of 3GPP cellular technologies

2017 ~95%

2024 >95%

LTE

2017 >60%

2024 ~90%

5G

2017 0%

2024 >40% 

2019 will be the year that 5G takes off
5G networks are currently being deployed in 
several regions worldwide and commercial 
launches are already taking place. One of 
the first 5G use cases will be fixed wireless 
access, as devices with form factors 
suitable for customer premises equipment 
will be early to the market, and will not 
have the stringent size, weight and power 
consumption requirements that come  
with smartphones. 

As 5G smartphones become available 
during 2019, several service providers 
are expected to commercially launch 5G. 
In North America and North East Asia, 
significant 5G subscription volumes are 
expected early. 

5G population coverage build-out  
is expected to be faster than LTE
In terms of build-out and subscription 
uptake, LTE has been the fastest-deployed 
mobile communication technology to  
date. Initial LTE build-out was led by 
Western Europe, North America, Japan  
and South Korea. With the exception of 
Western Europe, these areas, along with 
China, are expected to also lead the 5G 
population coverage build-out.

5G coverage build-out can be divided into 
three broad categories: radio deployments 
in new bands in the sub-6GHz range, 
deployments in millimeter wave frequency 
bands and deployments in existing LTE 

1 �The figures refer to population coverage of each technology. The ability to utilize  
the technology is subject to factors such as access to devices and subscriptions

bands. Deployments in existing LTE bands 
can be rapidly upgraded to support 5G 
services in many networks by installing new 
software; for example, spectrum sharing 
between LTE and 5G in low to mid-bands. 

More than 40 percent of the world’s 
population is forecast to be covered by  
5G in 2024.

Figure 1.1: World population coverage by technology [5].

Figure 1.2: Frequency spectrum allocation to mmWave band.

1.1.2 MmWave Channel Characteristics

The use of mmWave frequency bands appears to be a promising technology

to meet the needs of the 5G mobile communication systems [8–10]. Mmwave

makes use of spectrum from 30 GHz to 300 GHz whereas most consumer wireless

systems operate at carrier frequencies below 6 GHz. Fig. 1.2 shows the frequency

spectrum allocation to mmWave band. Reference [11] states that the United

States Federal Communications Commission (FCC) has freed approximately 30
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Channel attributes Values
Bandwidth 100 MHz - 2 GHz

Base Station (BS) antennas 64 - 256
Mobile Station (MS) antennas 4 - 16

Channel Sparsity High
Spatial Correlation High

Angular Spread < 50 degrees
Orientation Sensitivity High

Table 1.1: Channel attributes at mmWave.

times more bandwidth at mmWave frequencies than is available at cellphone

bands for commercial use.

The main benefit of a mmWave band is the larger spectral channels, and larger

bandwidth channels means higher data rates. Due to their high data rates, a few

existing applications of the mmWave spectrum are in satellite communications,

wireless backhaul and radio applications. Also, radar systems occupy some of

the mmWave bands, for example, 77 GHz will be used as one band for radar in

driverless cars. However, mmWave faces challenges of severe path loss, blocking

effects, new hardware constraints and unconventional channel characteristics

[11]. Table 1.1 discusses typical mmWave channel characteristics which may be

considered as important attributes when considering mmWave frequency channels

for future 5G (and beyond) standards. For example, an important characteristic

of a mmWave frequency channel is high sparsity, i.e., there are only few non-

zero elements in the channel matrix, in both the angle and delay domains [7,12].

Other important properties are high spatial correlation meaning that some spatial

directions during mmWave communication are statistically stronger than others,

and high sensitivity towards the orientation angle of the user equipment.
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Figure 1.3: Block diagram of a HBF architecture for mmWave MIMO system.

1.1.3 MmWave MIMO: Potentials and Challenges

The high bandwidths for mmWave communication compared to sub-6 GHz

frequency bands must be traded off against increased path loss [13], which can

be compensated using large-scale antenna arrays, i.e., MIMO systems [14, 15].

The large number of antenna elements and the high bandwidth makes it hard

to use a separate Radio Frequency (RF) chain for each antenna due to the large

requirements in power consumption and hardware complexity [15]. Also, using

many Digital-to-Analog Converter (DAC)/Analog-to-Digital Converter (ADC)

units associated with RF chains, which are power hungry components, would

lead to more hardware complexity and high power consumption. Moreover,

DACs/ADCs have a relatively higher sampling rate in high frequency systems

than at microwave frequencies, and employing high speed converters increases

the power consumption and the cost significantly.

These hardware constraints have led to several mmWave-specific MIMO

architectures where a mixture of analog and digital signal processing operations

are made With Respect To (W.R.T.) the number of antennas or resolution of

data converters. The HBF architectures as shown in Fig. 1.3 are one approach
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for providing enhanced benefits of MIMO communication at mmWave frequencies.

This architecture is discussed further in the following chapters. Note that, in such

an architecture, the number of RF chains and associated ADCs/DACs are much

less than the number of antennas, and enables spatial multiplexing and multi-user

communication that enhances the benefits of MIMO. The benefits of using a HBF

architecture over conventional beamforming architectures is discussed in the next

chapter.

1.2 Objectives and Key Contributions

1.2.1 Objectives

In HBF architectures, the hardware complexity and power consumption is reduced

through using fewer RF chains and it can support multi-stream communication

with high Spectral Efficiency (SE) [14–23]. Such systems can also be optimized to

achieve high EE gains with low complexity but this has not been widely studied

in the literature. Thus, the aim of this thesis is to design energy efficient and

low complexity communication techniques for the mmWave HBF MIMO systems

which may be implemented in 5G standards. In particular, the thesis has the

following main objectives:

• Designing energy efficient mmWave hybrid MIMO systems with low com-

plexity by exploiting the structure of complex and power hungry components

such as RF chains and DAC/ADC units.

• Exploiting the sparsity of the mmWave channel, and provide an efficient

and low complexity solution for sparse channel estimation while considering

low resolution sampling.
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1.2.2 Key Contributions

The key contributions of this thesis are summarized as follows:

• EE maximization by optimizing the number of RF chains unlike existing

baseline approaches that use a fixed number of RF chains and aim only

for high SE. Fractional programming is used to solve an EE maximization

problem and the Dinkelbach Method (DM) based framework is exploited to

optimize the number of active RF chains and the data streams. The HBF

matrices are designed using a codebook-based fast approximation solution.

• Sparse channel estimation algorithm is developed with low resolution

sampling at the Receiver (RX) using Compressed Sensing (CS) through

Stein’s Unbiased Risk Estimate (SURE) based parametric denoiser and

Expectation-Maximization (EM) density estimation. An EE maximiza-

tion solution is also developed with low resolution sampling at the Trans-

mitter (TX) where the best subset of the active RF chains and the DAC

resolution were selected based on the DM and subset selection optimization

approach.

• EE maximization by decomposing the HBF matrices into three matrices,

which are the analog beamforming matrix, the bit resolution matrix and

the baseband beamforming matrix at both the TX and the RX. These

matrices are obtained by the solution of an EE maximization problem

where the joint TX/RX problem is decoupled into two sub-problems and

the corresponding problems are solved by Alternating Direction Method

of Multipliers (ADMM). We jointly optimize the HBF and bit resolution

matrices unlike existing approaches that optimize either the bit resolution

or the HBF matrices.
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1.3 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2

This chapter provides the background for this thesis. An overview of mmWave

MIMO is provided. MIMO beamforming and the advantages of the HBF

architecture over conventional architectures are discussed. An overview of

convex optimization and CS techniques for mmWave HBF MIMO systems is also

described.

Chapter 3

This chapter is mainly based on [24] which proposes a novel architecture with

a framework that dynamically activates the optimal number of RF chains.

Fractional programming is used to solve an EE maximization problem and the

HBF matrices are designed using a codebook-based fast approximation solution.

The greedy strategy implemented to compute HBF matrices in this chapter was

introduced for mmWave HBF MIMO systems in our work in [17].

Chapter 4

This chapter is in part based on [25] which proposes an efficient sparse mmWave

channel estimation algorithm with low resolution ADCs at the RX. The sparsity

of the mmWave channel is exploited and the estimation problem is tackled using

CS. Also, this chapter reports on results in [26] where an energy efficient mmWave

hybrid MIMO system is developed with DACs at the TX where the best subset

of the active RF chains and the DAC resolution are selected.
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Chapter 5

In [27], bit allocation and hybrid combining at the RX are discussed, and the

number of ADC bits and hybrid combiner matrices are jointly optimized for EE

maximization. In addition, this chapter is based on [28] which proposes the

joint optimization of the bit allocation and the HBF matrices at both the TX

and the RX for EE maximization unlike the existing approaches that optimize

either the bit resolution or the HBF matrices. The HBF matrix is decomposed

into the analog beamforming matrix, the bit resolution matrix and the baseband

beamforming matrix at both the TX and the RX. These matrices are obtained

through the solution of a joint TX-RX EE maximization problem.

Chapter 6

This chapter concludes this thesis and provides possible future research directions.



Chapter 2

Background

T
his chapter provides a basic technical background for this thesis. This chap-

ter starts by providing an overview of mmWave MIMO systems which in-

cludes applications of the mmWave communications, the basics of Additive White

Gaussian Noise (AWGN) channel capacity, MIMO channel capacity, mmWave

channel models and mmWave channel estimation techniques. Then several MIMO

beamforming architectures and the advantages of implementing the HBF archi-

tectures over the conventional beamforming architectures are described. The

HBF architectures for mmWave MIMO systems reduce the hardware complexity

and power consumption using fewer Radio Frequency (RF) chains while sup-

porting multi-stream communication with high Spectral Efficiency (SE). Then

an overview of convex optimization and Compressed Sensing (CS) techniques for

mmWave HBF MIMO systems is also provided. The study of these signal process-

ing techniques is very important to develop energy efficient and low complexity

solutions for mmWave HBF MIMO systems. Finally, a summary of this chapter

is provided.

10
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2.1 Overview of MmWave MIMO

This section provides the basics of the AWGN channel capacity and MIMO

channel capacity. We then proceed with how the benefits of MIMO systems

can be exploited at mmWave frequencies. MmWave makes use of spectrum from

30 GHz to 300 GHz whereas most consumer wireless systems operate at carrier

frequencies below 6 GHz. The main benefit of mmWave communication is larger

spectral channels and larger bandwidth channels means higher data rates.

However, mmWave faces challenges of severe path loss, blocking effects,

new hardware constraints and unconventional channel characteristics. The high

bandwidths for mmWave communication compared to microwave bands must be

traded off against increased path loss, which can be compensated using large-

scale antenna arrays, i.e., MIMO systems. Next, we discuss the applications

for mmWave communications and how mmWave propagation with large-scale

antenna arrays impacts the hardware complexity and power efficiency.

2.1.1 Applications of the MmWave Communications

As we know, the main benefit of a mmWave band is the larger spectral channels,

and larger bandwidth channels means higher data rates. Due to their high

data rates, a few existing applications of the mmWave spectrum are in satellite

communications, wireless backhaul and radio applications. Also, radar systems

occupy some of the mmWave bands, for example, 77 GHz will be used as one band

for radar in driverless cars. However, mmWave propagation has the limitation of

being affected by blockage effects, for example, from the human body (attenuation

from 20 to 35 dB [29]) and building materials such as brick (attenuation of 40 to

80 dB [30,31]).
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In addition to path loss and blockage effects, mmWave wave communication

shows hardware constraints and unconventional channel characteristics. For in-

stance, the large number of antenna elements and the high bandwidth makes it

hard to use a separate RF chain for each antenna due to the large requirements in

power consumption and hardware complexity. Implementing a very large number

of antennas, i.e., massive MIMO, would achieve high data rate performance but

would increase the hardware complexity and reduce the power efficiency consid-

erably. Also, using many DAC/ADC units associated with RF chains, which are

power hungry components, would lead to more hardware complexity and high

power consumption. Thus, there is a need to exploit enhanced benefits of MIMO

communication at mmWave frequencies through unconventional beamforming ar-

chitectures such as the Hybrid Beamforming (HBF) architecture. Next we pro-

ceed with the basic AWGN channel capacity and MIMO channel capacity, and

the benefits of implementing MIMO at mmWave.

2.1.2 AWGN Channel Capacity

The Shannon capacity provides the maximal rate to achieve reliable communi-

cation over a noisy channel. Communicating at the rates above this channel

capacity fails to provide zero error probability for very large data packet sizes.

The following equation provides the basic AWGN channel model [32]:

y[m] = x[m] + n[m], (2.1)

where x(m) is a complex-valued input, y(m) is the complex-valued output, both

at time m, and n(m) denotes the complex Gaussian-distributed noise corrupting

the Receiver (RX) which is independent over time with 0 mean and variance

σ2. Similar to (2.1), considering a continuous-time AWGN channel with B Hz
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bandwidth, P̄ W transmit power and N0/2 power spectral density at the RX for

the AWGN. For B complex samples per second, the capacity of such a channel

can be expressed as

CAWGN(P̄ , B) = B log

(
1 +

P̄

N0B

)
(bits/s) (2.2)

=⇒ SEAWGN = log(1 + SNR) (bits/s/Hz), (2.3)

where SNR = P̄ /(N0B) denotes the Signal-to-Noise Ratio (SNR) per degree of

freedom. Equation (2.3) represents the maximum achievable SE for the AWGN

channel in terms of SNR.

The dependence of the capacity CAWGN can be observed in two ways: (a) linear

dependency on B for a fixed SNR = P̄ /(N0B), and (b) SNR decreases with the

bandwidth for a given received power P̄ . However, when the bandwidth is large

such that SNR at each frequency is small, we have

B log

(
1 +

P̄

N0B

)
≈ B

(
P̄

N0B

)
log2 e

=
P̄

N0

log2 e, (2.4)

which shows that the capacity is proportional to the total received power and

increasing B does not have a significant impact on capacity. When B tends

to infinity, we reach the limit of Cinf = P̄
N0

log2 e, where there is no bandwidth

dependence and the capacity has a finite value.

Moreover, [32] suggests that a frequency selective AWGN channel can be

converted into a number of independent sub-carriers. The transformed channel

can be treated as a collection of sub-channels, where each sub-channel is an AWGN



CHAPTER 2. Background 14

channel and the total power constraint is across the sub-channels. Some power

is allocated to each sub-channel which add up to the total power constraint

and power allocation can be chosen appropriately to maximize rate [32]. The

optimal power allocation can be computed using the waterfilling power allocation

approach [32]. Transmitter (TX) allocates more power to the sub-carriers which

are stronger where there are better channel conditions and the weaker sub-

carriers are either allocated lesser power or no power at all. The waterfilling

power allocations in MIMO channel capacity are also described in the following

subsection.

2.1.3 MIMO Channel Capacity

A MIMO system is a multi-antenna system as shown in Fig. 2.1 with a channel

matrix H ∈ CNR×NT with NT TX antennas and NR RX antennas, and assume

that the Channel State Information (CSI) is known to both the TX and the RX

perfectly. Using the same time-invariant and narrowband channel, RX antennas

receive both the direct components such as H11, H22 etc., and indirect components

such as H21, H12 etc., which are the entries of the channel matrix. The TX data

is divided into Ns streams where the number of streams Ns is always less than or

equal to the number of antennas. The received signal y ∈ CNR×1 can be written

as

y = Hx + n, (2.5)

where x ∈ CNT×1 is the transmitted signal, and n is the the Gaussian noise with

Independent and Identically Distributed (I.I.D.) entries and complex Gaussian

distribution, i.e., n ∼ CN(0, N0INR
).

The Singular Value Decomposition (SVD) of the channel matrix H can be
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Figure 2.1: Block diagram of a NT ×NR MIMO system.

expressed as follows:

H = UHΣHVH
H , (2.6)

where UH ∈ CNR×NR and VH ∈ CNT×NT are unitary matrices, and ΣH ∈ RNR×NT

is a rectangular matrix of singular values in decreasing order whose diagonal

elements are λ1 ≥ λ1 ≥ ... ≥ λlmin
(where lmin = min(NT, NR)) which are non-

negative real numbers and whose non-diagonal elements are zero. The λ2
i values

represent the eigenvalues of the matrix HHH and also for the matrix HHH, and

we have

HHH = UHΛHΛT
HUH

H , (2.7)

The SVD can be re-written as the sum of rank-one matrices as follows:

H =

lmin∑

i=1

λiuiv
H
i . (2.8)

The rank of the channel matrix H is equal to the number of non zero singular

values. Following the SVD, the MIMO channel capacity can be expressed as
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Figure 2.2: CDF plot for 2× 2 MIMO system with Rayleigh fading channel.

follows [32]:

CMIMO = B

lmin∑

i=1

log

(
1 +

P ∗i λ
2
i

N0

)
(bits/s), (2.9)

=⇒ SEMIMO =

lmin∑

i=1

log

(
1 +

P ∗i λ
2
i

N0

)
(bits/s/Hz), (2.10)

where P ∗i , ..., P
∗
lmin

represent the waterfilling power allocations such as P ∗i =

(µ−N0/λ
2
i )

+
, where µ satisfies the total power constraint

∑
i P
∗
i = P . Note

that each of the non-zero λi entries can support a data stream which allows the

MIMO channel to support spatial multiplexing with multiple streams.

For Rayleigh fading channel which has complex Gaussian distribution

CN(0, 1), Fig. 2.2 shows the variations of Cumulative Distribution Function

(CDF) for a 2 × 2 MIMO system. Note that y-axis represents the cumulative

probability which is an increasing function and varies between 0 to 1 With Re-

spect To (W.R.T.) SE in bits/s/Hz at the x-axis. It can be observed that the
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Figure 2.3: SE w.r.t. SNR for a MIMO channel with different number of NT TX
and NR RX antennas.

average SE is about 5.5 bits/s/Hz and the 10%-ile SE is about 4 bits/s/Hz. Fig.

2.3 shows the variations of MIMO SE w.r.t. SNR for different numbers of NT TX

antennas and NR RX antennas. It can be observed that the SE increases with

increases in SNR and higher number of antennas show higher capacity values for

a given SNR. For example, at 10 dB SNR, the case of NT = 4 and NR = 4 has

5 bits/s/Hz higher SE than the case of NT = 2 and NR = 2. This plot provides

a basic example of the benefits of implementing large-scale antenna arrays, i.e.,

MIMO systems, to achieve higher SE.

Note that, for a MIMO system, the antennas may all be located at one TX/RX

which is called as the single user MIMO system or each antenna may belong to a

different TX/RX which is called as the multi-user MIMO system. Fig. 2.4 shows

the basic block diagram of a downlink multi-user MIMO system where we show
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one base station (BS) at the TX unit and two users (UE) at the RX side. In

the following, we proceed to discuss how MIMO approaches can be implemented

efficiently at mmWave frequencies.

2.1.4 MmWave MIMO Channel Models

Due to high frequency, i.e., small wavelength, mmWave channel characteristics

are different than that of microwave. By Friis’ Law [33], the received power PR is

related to the transmit power PT as follows:

PR = GRGT

(
λ

4πd

)2

PT, (2.11)

where GR and GT are RX and TX antenna gains, respectively, λ is the wavelength

and d is the distance between the TX and the RX. Note that for unit gains, i.e.,

GR = GT = 1, the ratio PT/PR is inversely proportional to the square of the

wavelength. It indicates that when there are no directional antenna gains, for high

frequency propagation such as mmWave, the path loss is expected to be higher

than for lower sub-6 GHz frequencies such as the microwave frequency bands.

This higher path loss associated with mmWave spectrum can be compensated by

directional transmission using large scale antenna arrays such as MIMO systems.
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The mmWave MIMO systems can be modelled using similar channel models

as used for microwave frequency spectrum [32] taking the mmWave-specific

channel characteristics into account. Consider NT TX antennas and NR RX

antennas, aT(φtil) and aR(φril) being the normalized transmit and receive array

response/steering vectors [16], where φtil and φril denote the azimuth angles of

departure and arrival, respectively. For carrier wavelength λ, d inter-element

spacing, and a Uniform Linear Array (ULA) geometry with NZ antenna elements

(NT at the TX and NR at the RX) to compute the array response vector aZ (aT

at the TX and aR at the RX) as follows [34]:

aZ(φ) =
1√
NZ

[1, ej
2π
λ
d sin(φ), ..., ej(NZ−1) 2π

λ
d sin(φ)]

T
. (2.12)

It is useful to represent the channel in the frequency domain, however, as the

channel response is time-varying in general so the channel matrix H ∈ CNR×NT

can be expressed at time t and frequency f [15] as

H(t, f) =

Ncl∑

i=1

Nray∑

l=1

αile
j2π(νilt−τilf)aR(φril)aT(φtil)

H , (2.13)

where Ncl is the number of clusters, Nray is the number of rays in each cluster,

the number of paths can be classified as clustered multipaths, i.e., the product of

NclNray. The parameter αil is the complex gain, τil is delay, and νil is Doppler

shift which is determined by the angle of arrival or departure. The above equation

(2.13) can be approximated as follows, when Doppler shifts associated with all

the paths are small over a signal duration T , i.e., νilT << 1∀ i = 1, .., Ncl; l =

1, .., Nray:

H(f) =

Ncl∑

i=1

Nray∑

l=1

αile
j2πτilfaR(φril)aT(φtil)

H . (2.14)
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Additionally if the bandwidth of the channel B is sufficiently small so that

τilB << 1 ∀ i = 1, .., Ncl; l = 1, .., Nray then we obtain the narrowband spatial

model for the channel matrix as follows:

H =

Ncl∑

i=1

Nray∑

l=1

αilaR(φril)aT(φtil)
H . (2.15)

The antenna elements at the TX and the RX can be modeled as ideal sectored

elements [35] and then antenna element gains can be evaluated over ideal sectors.

In (3.1), the transmit and receive antenna element gains are considered unity over

ideal sectors defined by φtil ∈ [φtmin, φ
t
max] and φril ∈ [φrmin, φ

r
max], respectively.

Note that the fading channel models used in traditional MIMO becomes

inaccurate for mmWave channel modeling due to the high free-space path loss

changes in material reflection coefficients and blockage effects plus the use of

large tightly-packed antenna arrays. The existing literature mostly addresses the

narrowband clustered channel model [36, 37] for mmWave propagation due to

different channel settings such as number of multipaths, amplitudes, etc. such as

in [15], [16].

Furthermore, the large scale antenna arrays and highly directional characteris-

tic of propagation at mmWave leads to beamspace representation of the mmWave

MIMO channels. For LT number of RF chains at the TX and LR number of RF

chains at the RX, the beamspace representation [38,39] of the narrowband channel

can be written as follows:

H = DRHvD
H
T , (2.16)

where Hv ∈ CLR×LT represents a sparse matrix with a few non-zero entries, while

DR ∈ CNR×LR and DT ∈ CNT×LT are the Discrete Fourier transform (DFT)
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Figure 2.5: MmWave MIMO System with Fully Digital Beamforming.

matrices. In the next section, we discuss the beamforming techniques that can

be applied to design the mmWave MIMO systems.

2.2 MIMO Beamforming Architectures for the

MmWave Band

2.2.1 Conventional Beamforming

At 6-sub GHz microwave frequencies, digital or baseband processing plays a vital

role in MIMO communication. However, for MIMO communication at mmWave

frequencies, the large number of antenna elements and the high bandwidth makes

it hard to use a separate RF chain for each antenna due to the large requirements

in power consumption and hardware complexity [15].

A conventional fully digital beamforming architecture used for sub-6 GHz

frequencies is shown in Fig. 2.5, which has a digital/baseband unit and

DAC/ADCs with one RF chain associated per antenna, i.e., there are same

number of RF chains as the number of antennas. As digital beamforming

architecture requires a dedicated RF chain per antenna with the electronic
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Figure 2.6: MmWave MIMO System with Analog Only Beamforming.

components such as DACs and ADCs that enhances the hardware complexity

and power consumption with the increase in antenna size [14,15]. Thus, a digital

beamforming architecture currently seems impractical to be implemented for large

scale antenna arrays in the mmWave band due to high power consumption and

hardware complexity.

As an alternative, an analog beamforming approach could be considered to

solve this problem. The analog beamforming architecture, shown in Fig. 2.6,

has a digital/baseband unit and involves a network of analog phase shifters

with a single RF chain in the system [40, 41], i.e., all the TX/RX antennas are

connected with a single RF chain only. This approach is highly advantageous to

reduce hardware complexity and power consumption. However, the analog only

beamforming approach only supports single-user and single-stream transmission,

i.e., it cannot support multi-stream and multi-user communication which are

typical benefits associated with MIMO. Moreover, the capacity performance is

usually significantly worse than the fully digital beamforming. Thus a more

adaptable beamforming approach is needed for mmWave MIMO systems that

could compensate the limitations associated with the conventional beamforming

architectures.
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Figure 2.7: Block diagram of a mmWave MIMO system with HBF architecture.

2.2.2 Hybrid Beamforming

The performance of the mmWave MIMO systems can be significantly improved

through the use of Analog/Digital (A/D) hybrid beamforming architectures, as

shown in Fig. 2.7. This architecture is discussed in detail with the system

and channel model parameters in the following chapter. From Fig 2.4, we can

notice that in a A/D HBF architecture, the number of RF chains and associated

ADCs/DACs are much less than the number of antennas, i.e., LT (number

of TX RF chains) ≤ NT (number of TX antennas) and LR (number of RX

RF chains) ≤ NR (number of RX antennas) [42, 43]. Unlike the conventional

beamforming architectures, the A/D HBF enables spatial multiplexing and multi-

user communication that enhances the benefits of MIMO. There are several A/D

hybrid transceiver solutions which have been recently proposed to enable mmWave

MIMO systems [16, 17, 44]. Given the CSI, several algorithms can be designed

for HBF approach to provide a capacity efficient system. Generally, beamforming

at the TX can be referred to as precoding and at the RX as combining such as

in [16, 17]. These precoders and combiners decompose into product of analog

and digital matrices with different constraints. We can notice from the existing
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literature that the mmWave HBF MIMO systems can be implemented to provide

satisfying rate performance by avoiding the discussed limitations of a fully digital

solution [16,17,44].

Furthermore, we can reduce the power consumption by implementing low

resolution quantization for both conventional and A/D HBF architectures. To

that end some approaches have been applied for EE maximization such as in [26].

We will show later in Chapter 3 that optimizing the number of RF chains further

leverages the Energy Efficiency (EE) metric and reduces the gap between the SE

of A/D hybrid and fully digital beamforming architectures with high resolution

sampling. Further in Chapters 4 and 5, we will study what happens when

low resolution quantization can be implemented at both the TX and the RX.

Optimizing bit resolution with the precoding and combining design can provide

a highly energy efficient solution.

Fig. 2.8 shows the SE plot w.r.t. SNR for different beamforming approaches

for TX antennas NT = 64, RX antennas NR = 16 and Number of TX/RX chains,

LT = LR = 4. For the channel parameters, there are 10 rays for each cluster and

there are 8 clusters in total, i.e., Nray = 10 and Ncl = 8 in (2.15). The average

power of each cluster is unity, i.e., σα,i = 1. The azimuth and elevation angles of

departure and arrival are computed on the basis of the Laplacian distribution with

uniformly distributed mean angles and angle spread as 7.5◦. The mean angles are

sectored within the range of 60◦ to 120◦ in the azimuth domain, and 80◦ to 100◦

in the elevation domain. The antenna elements are spaced by distance d = λ/2

where λ/2 can be based on a standard frequency value such as 28 GHz. The

system bandwidth is normalized to 1 Hz and the signal to noise ratio (SNR) is

1/σ2
n. It can be observed that the HBF approach performs similar to the fully

digital beamforming and better than the analog only beamforming. For example,
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Figure 2.8: SE w.r.t. SNR for Conventional and Hybrid Beamforming Approaches
for TX antennas NT = 64, RX antennas NR = 16 and Number of TX/RX chains,
LT = LR = 4.

at 0 dB SNR, HBF has SE close to the fully digital beamforming and 5 bits/s/Hz

better than the analog only beamforming. These plots are for high resolution

sampling, however, in the following subsection we discuss about the advantages

of using low resolution sampling in mmWave HBF MIMO systems.

2.2.3 Low Resolution Quantization

The DACs and ADCs associated with RF chains are power hungry components as

well and the large number of antennas in mmWave MIMO systems make it hard

to use many converting units [15]. The converting units with high bit resolution

may achieve highly capacity efficient system but implementing low resolution
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quantization such as 1-bit to 3-bits can improve the EE of mmWave hybrid MIMO

systems. Designing techniques for EE maximization but keeping high SE have

been the main objective of this thesis which we will discuss later in the technical

chapters. In the following we discuss the state of the art in ADCs and factors

affecting the ADC performance.

State of the art in ADCs

Reference [45] discusses the developments in low power ADCs and factors

impacting the ADC power efficiency. The system architecture and its performance

is affected by the efficiency and speed of converting analog to digital digital signals.

A very high conversion rate can be expected from the modern sampling devices

but power dissipation is a key concern in mixed-signal or RF applications. For

instance, the high-speed 6-8-bit ADCs achieve sampling rates in excess 20 GS/s,

at power dissipations of 1.2 W and 10 W, respectively. To avoid draining battery

of a device within a short span of time, designing ADCs and RF chains based

on an available power budget, i.e., optimizing the power consumption associated

with such power consuming devices, would lead to a power efficient consumer

device. There are several surveys on ADC performance in the literature [46–48].

Recent developments in ADCs target mainly low to moderate resolution as the

high resolution designs with signal-to-noise-and-distortion ratio (SNDR) > 85 dB

do not follow the implied 2x increase in power per bit [45]. Besides the power or

energy efficiency of an ADC, the available signal bandwidth also proves to be an

important parameter. Bandwidth versus SNDR for an ADC can be plotted and it

can be observed that for all resolutions, the parts with highest bandwidth achieve

a considerable performance [45]. Taking into account additional nonidealities such

as quantization noise, thermal noise and differential non-linearity also impact
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the ADC performance. There is certainly a performance trade-off between the

power efficiency and bandwidth, e.g. [49] achieves high bandwidth but average

power efficiency and on the other hand, [50] shows high power efficiency with

low bandwidth. Thus, designing ADCs for high speed limits will sacrifice on the

power efficiency and vice-versa. Besides potentially increasing sampling speed by

utilizing sub-circuits, the goal should be to improve the power efficiency with

the use of low to moderate bit resolutions and optimizing the bit resolution

depending upon the current need would maximize the power efficiency of such

a system. In addition to the ADC performance and trends discussed in [45], up-

to-date architectural trends and specifications affecting the ADC performance are

discussed in [51]. Furthermore, [52, 53] provide discussion about RF technology

for millimeter wave in 5G applications which may be useful in order to understand

the power efficiency terms associated with the RF components of a HBF design.

For the case of 1-bit ADCs, there is negligible power consumption in compar-

ison to the other circuit components. The communication fundamentals at 1-bit

ADCs are different than the conventional full bit resolution sampling [54, 55].

From [55], we can notice that the low SNR capacity difference between 1-bit res-

olution sampling and infinite/full-bit resolution sampling is only 1.96 dB. While

at high SNR values, maximum achievable rate is 22NR bits/s/Hz providing the

rank of the channel is at least NR, i.e., the number of RX antennas. There are

several implications of using 1-bit or low resolution sampling and there is a need

of developing different HBF optimization solutions which take into account the

low resolution sampling such as performed in Chapters 4 and 5. In addition esti-

mating mmWave CSI with 1-bit ADCs at the RX is a challenging problem which

has been addressed in part of Chapter 4 of this thesis.
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Next, we discuss the power model for both full resolution and low resolution

sampling cases used in the following chapters in the thesis.

2.2.4 Power Model for the HBF Architecture

Measuring the energy consumed for each hardware entity in the HBF architecture

plays an important role when designing an energy efficient mmWave A/D hybrid

MIMO system. Following [14, 56] total power P for a A/D HBF system with a

fully-connected structure and full resolution sampling as discussed in Chapter 3

later can be described as follows, where we include the power consumed by the

RX components as well:

P = βtr(PTX) + 2PCP +NTPT +NRPR + LT×

(PRF +NTPPS) + LR(PRF +NRPPS) (W), (2.17)

where β represents the reciprocal of amplifier efficiency; the common parameters

at the TX and the RX are PCP, PRF, and PPS which represent the circuit power,

i.e., is the power required by all circuit components at the TX, the power per

RF chain, and the power per phase shifter, respectively. PT and PR represent the

power per antenna element at the TX and the RX, respectively. Other entities

can be noted from the description of Fig. 2.7, such as LT and LR being the

number of RF chains at the TX and the RX, respectively, and NT and NR being

the number of antennas at the TX and the RX, respectively.

For instance, from (2.17), we can observe the variation of P w.r.t. the term

tr(PTX) which represents the transmit power constraint and PTX is a diagonal

matrix of power allocation values with tr(PTX) = Pmax, where Pmax is the

maximum allocated power. Fig. 2.9 shows that variation of P w.r.t. tr(PTX)
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Figure 2.9: Total power consumption P versus transmit power constraint tr(PTX).

which is a linear relationship between these terms, e.g., at Pmax = 1W, the value

of the total power consumption P is 34.5 W. The typical simulation values for

fixed power terms and system parameters are provided in Table 2.1. Note that

we provide further discussion about the terms used in the power model such as

in (2.17) in the following chapters.

In the case of low resolution quantization at both the TX and the RX as

discussed later in Chapter 5, the total power consumption can be expressed as

P , PTX(FRF,∆TX,FBB) + PRX(∆RX) (W), (2.18)

where the matrices ∆TX and ∆RX represent diagonal matrices with values

depending on the bit resolution of each DAC and ADC, respectively. The matrix

FBB denotes the baseband precoder matrix which has dimensions of LT×Ns (Ns

being the number of streams) using its LT transmit chains and FRF denotes the

RF precoder matrix which has dimensions of NT × LT using the phase shifting
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Power Terms Values
Circuit power of the TX PCP = 10 W

Power per RF chain PRF = 100 mW
Power per phase shifter PPS = 10 mW

Power per antenna at the TX/RX PT = PR = 100 mW

(a) Typical values of the power terms.

System Parameters Values
Number of TX antennas NT = 64
Number of RX antennas NR = 16

Number of TX/RX RF chains LT = LR = 4
Reciprocal of amplifier efficiency β = 1/0.4

(b) System parameter values.

Table 2.1: Simulation parameter values to compute power consumption P in (2.17).

network. Specifically, each diagonal entry of ∆TX is given by:

[∆TX]ii =

√

1− π
√

3

2
2−2bti ∈ [m,M ] ∀ i = 1, . . . , LT, (2.19)

and each diagonal entry of ∆RX is given by:

[∆RX]ii =

√

1− π
√

3

2
2−2bri ∈ [m,M ] ∀ i = 1, . . . , LR, (2.20)

where in the following thesis, for simplicity, we assume that the range [m,M ] is

the same for each of the DACs/ADCs. The resolution parameter b is denoted as

bti ∀ i = 1, . . . , LT and bri ∀ i = 1, . . . , LR at the TX and the RX, respectively. The

power consumption at the TX is as follows:

PTX(FRF,∆TX,FBB) =tr(FFH) + PDT(∆TX) +NTPT +NTLTPPT + PCT (W),

(2.21)

where PPT is the power per phase shifter, PT is the power per antenna element,
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PDT(∆TX) is the power associated with the total quantization operation at the

TX, and following (2.19) and [57], we have

PDT(∆TX)=PDAC

LT∑

i=1

2b
t
i =PDAC

LT∑

i=1

(
π
√

3

2(1−[∆TX]2ii)

)1
2

(W), (2.22)

where PDAC is the power consumed per bit in the DAC and PCT is the power

required by all circuit components at the TX. Similarly, the total power con-

sumption at the RX is,

PRX(∆RX)=PDR(∆RX)+NRPR+NRLRPPR+PCR (W), (2.23)

where, at the RX, PPR is the power per phase shifter, PR is the power per antenna

element, PDR is the power associated with the total quantization operation, and

following (2.20) and [57], we have

PDR(∆RX)=PADC

LR∑

i=1

2b
r
i =PADC

LR∑

i=1

(
π
√

3

2(1−[∆RX]2ii)

)1
2

(W), (2.24)

where PADC is the power consumed per bit in the ADC and PCR is the power

required by all RX circuit components. Similar to Fig. 2.9, we can observe

the variation of total power consumption P in (2.18) for the low resolution

quantization case for different parameter settings.

In the next two sections, we discuss the basics of convex optimization and

compressed sensing approaches which are useful in developing efficient algorithms

for mmWave HBF MIMO systems with both full and low resolution sampling.
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(a) Narrowband Channel Model in (2.15). (b) Sparse Channel Model in (2.16).

Figure 2.10: Sparsity Characteristics of a MmWave Channel.

2.3 Overview of Convex Optimization

A general form of optimization problems is given in the following equation:

min f0(x)

subject to fi(x) ≤ ai, i = 1, ...,m, (2.25)

where vector x is the optimization variable, f0 : Rn → R is an objective function

and the functions fi represent constraints on the optimization problem with ai as

the limits/bounds ∀i = 1, ..,m. A solution of the problem in (2.25) is obtained

when an optimal vector x̂ has the smallest objective value among all vectors that

satisfy the constraints, i.e., for any b with f1(b) < a1,...,fm(b) < am we have

f0(b) ≥ f0(x̂). A solution to the optimization problem in (2.25) corresponds

to an optimal choice that has minimum cost or in some cases, maximum utility

among all the choices that meet the constraint requirements.

Signal processing algorithms play a vital role in solving the optimization

problems such as in (2.25). The effectiveness of these algorithms depends on

the objective, constraint functions, number of variables and constraints and

sparsity. A sparse problem is one where each constraint function depends on
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only a small number of the variables [58]. In terms of mmWave channel in (2.15),

the number of clusters and rays is small, thus the beamspace representation of

narrowband channel in (2.16) includes a sparse matrix Hv which has few non-zero

entries. The sparse nature of the MIMO channel at mmWave is represented by

the sparse nature of the beamspace channel matrix Hv. The DFT matrices in

(2.16) correspond to the array response vectors with virtual angle of arrivals and

angle of departures corresponding to the uniformly spaced normalized angles. Fig.

2.10 shows the sparsity characteristics of mmWave channel where communication

with a narrowband channel model such as in (2.15) is shown in Fig. 2.10 (a),

and Fig. 2.10 (b) shows the sparsity through a few non-zero entries of the sparse

matrix Hv ∈ CLR×LT in (2.16). In addition to the sparse mmWave channel,

we mainly focus on mathematical convex optimization problems in the following

chapters. Reference [58] suggests that we can easily solve optimization problems

with many variables and constraints and by exploiting the problem’s structure,

such as sparsity in the case of a mmWave channel, we can solve far larger problems

with many more variables and constraints.

A convex optimization problem can be written as follows:

min f0(x)

subject to fi(x) ≤ ai, i = 1, ...,m, (2.26)

where constraint functions fi ∀ i = 1, ...,m, are convex which satisfy

fi(αx + βy) ≤ αfi(x) + βfi(y)∀α, β ∈ R, (2.27)

with α + β = 1, α ≥ 0 and β ≥ 0. This expression in (2.26) is a general

convex optimization problem, and least squares and linear programming problems
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are special cases of this problem [58]. There are several reliable approaches to

solve convex optimization problems such as interior point methods [58], however,

solving non-linear convex optimization problems need to be solved more carefully

due to the non-linear nature of such problems.

In order to address non-linear optimization, we consider local optimization and

global optimization methods. In local optimization, we aim to seek a point which

is locally optimal which means that it minimizes the objective function among all

feasible points nearby, but is not guaranteed to have a lower objective value than

all other feasible points. The main drawback of finding local optima is requiring

an accurate initial guess for the optimization variable and the choice of algorithm

and its parameters also effect the solution of such a problem. While in global

optimization, we seek to find the true global solution of the optimization problem

such as for (2.25), but the cost is computation time which can be prohibitively

large even for small number of parameters.

Convex optimization plays a vital role even when the problem is non-convex.

Firstly, we can combine a local optimization method with convex optimization.

To begin with a non convex problem can be converted into an approximate convex

problem which can be solved exactly without an initial guess. This point can be

used as the starting point for a local optimization method that is applied to the

original non convex problem. Furthermore, we can consider convex optimization

for a sparse problem such as when x is a sparse vector with few non-zero entries in

(2.26) that satisfies some constraints. Global optimization methods require a less

computationally complex lower bound on the optimal value of the non convex

problem. We can use relaxation where each non convex constraint is replaced

with a less strict convex constraint, or Lagrangian relaxation where the problem,
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i.e., Lagrangian dual problem [58], is convex and provides a lower bound on the

optimal value of the non convex problem.

It is also worth noting that we can express the maximization optimization

problem as follows:

max f0(x)

subject to fi(x) ≤ 0, i = 1, ...,m,

hi(x) = 0, i = 1, ..., n, (2.28)

which can be solved by minimizing the function −f0 subject to the given

constraints. For example, the optimal value of (2.28) can be expressed as

x̂ = sup{f0(x) | fi(x) ≤ 0, i = 1, ...,m; hi(x) = 0, i = 1, ..., n}, (2.29)

where sup (or supremum) refers to the largest value and a feasible point x is

ε-suboptimal (where a ε-suboptimal set refers to the set of feasible points with

objective value within ε of optimal) if f0(x) ≥ x̂ − ε. We make use of the

maximization optimization problems in the following chapters where the EE ratio,

EE = R (bits/s/Hz)/P (W), is required to be maximized based on given hardware

constraints on rate R and total power consumption P . The expressions of rate and

power contain the matrices related to the system hardware which are constrained

and the EE optimization problems containing these expressions can be maximized

or minimized using concepts of convex optimization in order to achieve maximum

EE. In the next section, we proceed with the basics of CS methods which we use

in the following chapters to solve optimization problems.
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2.4 Overview of Compressed Sensing

The fundamental idea behind CS is that instead of compressing the sampling

data that is sampled at a high rate, there is a need to directly sense the data in

a compressed form at a lower sampling rate. Thus CS has large implications in

signal processing fields such as medical imaging, sensor networks and sub-Nyquist

sampling systems [59]. Moreover, CS techniques also have applications in mobile

communication systems.

A basic mathematical equation for CS can be expressed as follows:

Ax = y, (2.30)

where the observed data y ∈ Cm is connected to the signal x ∈ CN and A ∈ Cm×N

models the linear measurement process. By solving the linear system in (2.30),

we try to recover the vector x. Note that the number of measurements m ≥

signal length N , otherwise the linear system in (2.30) is under-determined and

there exist infinitely many solutions, i.e., without additional information it is

impossible to recover x from y in this case. However, under certain assumptions,

it is possible to reconstruct signals using efficient algorithms when m < N , such

as in the case of sparsity [60]. If a signal is sparse in nature, it means that there

are less unknowns and CS algorithms can be implemented to reconstruct such a

signal. For example, in terms of mmWave channel estimation (discussed in detail

in Chapter 4), we would need fewer number of training symbols to obtain the

channel as at mmWave, MIMO channel is sparse in nature. The main problem

exists in the determining the locations of the non-zero entries of the vector x

which are not known a priori. The essential points to be discussed for applying
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CS for (2.30) is to define/design matrix A and reconstructing x efficiently. Note

that matrix A should ideally be designed for all signal samples x simultaneously.

The algorithmic approach l0-minimization is the most basic CS approach,

where we can reconstruct x as a solution of the following optimization problem:

min ‖z‖0 subject to Az = y, (2.31)

where we search for the sparsest vector consistent with the measured data y = Ax.

A more popular approach is called as l1-minimization or basis pursuit, where we

aim to find the minimizer of the following problem:

min ‖z‖1 subject to Az = y, (2.32)

where l1 norm, i.e. ‖.‖, is a convex function which can be solved by efficient

methods from convex optimization, discussed in the previous section. This basis

pursuit technique can be interpreted as convex relaxation of l0-minimization

method. Furthermore, there are iterative hard thresholding method and greedy

startegies such as Orthogonal Matching Pursuit (OMP) and Gradient Pursuit

(GP) [61–63] to recover sparse vectors, which we discuss in more detail in the

following chapters.

Specifically in terms of sparse approximation, let us form the matrix A ∈

Cm×N with columns a1, ..., aN , then solving (2.31) provides the sparsest repre-

sentation of y. Further tolerating a representation error, say η, the optimization

problem in (2.31) can be written as

min ‖z‖0 subject to ‖Az− y‖ ≤ η. (2.33)
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The equation (2.33) is NP-hard in general, i.e., non-deterministic polynomial-

time hardness, and all the standard CS algorithms, including l1-minimization can

be applied in this context as well. Moreover, the conditions on A remain valid

which ensures that the sparsest vector x is recovered exactly or approximately.

However, a note worthy difference between CS and sparse approximation is that

we are interested in computing the error ‖x− x̂‖ (where x̂ is reconstructed vector)

in CS, whereas in sparse approximation, we are interested in computing ‖y − ŷ‖

and aim to approximate given y with a sparse expansion ŷ =
∑

j x̂jaj.

While computing sparse representations, convex optimization techniques play

a key role, however, greedy strategies can also be used to solve such problems. As

mentioned above, OMP and GP are the standard examples of greedy methods.

Other approaches such as matching pursuit, conjugate gradient pursuit and

order recursive matching pursuit [59, 63] can also be implemented while dealing

with sparse approximation problems in mmWave hybrid MIMO systems. These

algorithms rely on iterative approximation of signal coefficients and support,

either by iteratively identifying the support of that signal until its convergence or

by iteratively obtaining an improved estimate of the sparse signal.

Some greedy methods can have similar performance as that of the convex

optimization algorithms. The state of the art OMP algorithm, used to compute

precoders and combiners in mmWave hybrid MIMO systems, begins by finding

the column of matrix most correlated with the measurements. It then repeats this

step by correlating the columns with the signal residual obtained by subtracting

the contribution of a partial estimate of the signal from the original measurement

vector. The stopping criterion for this algorithm can be a limit on the number

of iterations, for example, number of RF chains in HBF MIMO systems. For

exactly k-sparse x with noise-free measurements y = Ax, OMP will recover x
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exactly in k iterations [59]. A good alternative to OMP is GP which is described in

detail in [59,63] and we implement it in Chapter 3 in the context of mmWave HBF

MIMO systems as a faster approximation solution and with lower complexity than

the state of the art OMP algorithm. In Chapters 4 and 5, we also take into account

low resolution sampling in the optimization problems and solve them efficiently

with suitable convex optimization and CS approaches. We provide step-by-step

details on these approaches in these chapters. As a starting point, [64] can be

studied to understand 1-bit CS and related reconstruction algorithms.

2.5 Summary

In this chapter, firstly we discussed AWGN channel capacity and its relation to

SNR per degree of freedom. We then proceeded with the derivation of MIMO

channel capacity equation and waterfilling power allocation. The benefits of

MIMO communication are discussed with plot of capacity versus SNR where more

TX/RX antennas resulted into higher capacity. Then the advantages of MIMO

with high frequency mmWave technology, mmWave channel and beamspace

representation of mmWave channel were discussed.

We then proceeded with the advantages of using a HBF approach over

conventional beamforming approaches mainly in terms of hardware complexity

and power consumption. A SE versus SNR plot showed that HBF approach shows

higher SE performance than the conventional approaches for given simulation

parameters. We also discussed the use of low-resolution quantization in mmWave

MIMO systems with HBF architecture. We then discussed the overview of

convex optimization while focussing on the basics of such problems, non-linear

optimization methods and sparsity of mmWave channels. A brief overview of

CS approaches was also discussed with the basic mathematical equations, sparse
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approximation and related algorithmic approaches such as greedy strategies, for

example, OMP algorithm.

In the following three contribution chapters, we use these basic concepts and

equations discussed in this chapter. Firstly, we begin with a RF chain selection

problem for EE maximization with full-bit resolution sampling and in the next

two chapters, we introduce low resolution sampling in these systems.



Chapter 3

EE Maximization by Dynamic RF Chain

Selection with Low Complexity Hybrid

Beamforming

3.1 Introduction

T
he performance of mmWave MIMO systems can be significantly improved

through the use of Analog/Digital (A/D) HBF architectures where the

number of RF chains and associated Analog-to-Digital Converter (ADC) and

Digital-to-Analog Converter (DAC) are much less than the number of antennas

[42, 43]. The hardware complexity and power consumption is reduced through

using fewer RF chains and it can still support multi-stream communication with

high performance in terms of the achieved SE [14, 16–23]. Such systems can also

be optimized to achieve high EE gains [24,26,27,44,65,66].

To implement the A/D HBF system which uses RF precoders based on the

phase shifting networks, we can use the most popular structures such as the

fully-connected and the partially-connected configurations. The fully-connected

structure connects all the antennas to each RF chain whereas the partially-

connected structure connects only a subset of the antennas requiring fewer phase

41
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shifters [56]. The use of a partially-connected structure at the transceiver can

further reduce the power consumption [44], for example, [66] uses a partially-

connected structure to evaluate the energy and rate performance where the

partially-connected structure is optimized to achieve high EE. This chapter

mainly uses the fully-connected structure to demonstrate the contributions of

the proposed techniques for a mmWave hybrid MIMO system. However, the

EE performance using the partially-connected structure is also observed via

simulations.

An alternative solution to reduce the power consumption and hardware

complexity is by reducing the bit resolution [15] of the DACs and the ADCs.

Some approaches have been applied in A/D hybrid mmWave MIMO systems for

EE maximization with low resolution sampling [26,27,66]. For EE maximization,

[26] selects the best subset of the active RF chains and the DAC resolution

using Dinkelbach Method (DM) and subset selection optimization approach, [27]

proposes to jointly optimize the ADC bit resolution and A/D hybrid combiner

matrices and [66] implements low resolution DACs with the number of RF chains

optimization.

Reference [67] makes use of switches and phase shifters to execute analog

beamforming for the A/D hybrid model, and then the EE and SE performance

is investigated. Given the distinct system and channel model characteristics at

mmWave compared to microwave, EE and SE performance needs to be analyzed

for the A/D HBF architecture with both high resolution and low resolution

sampling cases. Firstly in this chapter, we proceed with the mmWave channel

and hybrid MIMO system model and then we discuss EE maximization by

optimizing the number of RF chains for a full resolution sampling case. In the

following chapters, we discuss channel estimation and EE maximization for the
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low resolution sampling cases based on this channel and system model. Next, we

describe the model for the mmWave A/D HBF MIMO system, and based on this

a literature review and the main contributions of this chapter are presented.

Let us consider a single user MIMO system with NT antennas at the TX,

sending Ns data streams to a system with NR RX antennas. The fading

channel models used in traditional MIMO become inaccurate for mmWave channel

modeling due to the high free-space path loss and large tightly-packed antenna

arrays. The existing literature mostly addresses the narrowband clustered channel

model [36,37] for mmWave propagation due to different channel settings such as

number of multipaths, amplitudes, etc. such as in [15,16].

For Ncl clusters and Nray propagation paths in each cluster and for a ULA

antenna elements, the mmWave channel matrix is defined as follows:

H =

√
NTNR

NclNray

Ncl∑

i=1

Nray∑

l=1

αilaR(φril)aT(φtil)
H , (3.1)

where αil denotes the gain of l-th ray in i-th cluster and it is assumed that

αil are i.i.d. CN(0, σ2
α,i), where σ2

α,i is average power of the i-th cluster such

that
∑Ncl

i=1 σ
2
α,i = γ, where γ =

√
NTNR

NclNray
, is the normalization factor satisfying

E{‖H‖2
F} = 1/

√
NclNray. Further, aR(φril) and aT(φtil) represent the normalized

receive and transmit array response vectors, where φtil and φril are the azimuth

angles of departure and arrival, respectively. The antenna elements at the TX

and the RX can be modeled as ideal sectored elements [35] and then antenna

element gains can be evaluated over ideal sectors. In (3.1), the transmit and

receive antenna element gains are considered unity over ideal sectors defined by

φtil ∈ [φtmin, φ
t
max] and φril ∈ [φrmin, φ

r
max], respectively. For a NZ-element ULA on Z-

axis, the array response vector can be expressed as [34]: aZ(φ) = 1√
NZ
ejm

2π
λ
d sin(φ)T ,

where 0 ≤ m ≤ (NZ − 1) is a real integer, d is the inter-element spacing in
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Figure 3.1: Block diagram of a mmWave MIMO system with HBF architecture.

wavelengths and λ is the signal wavelength. The array response vectors can

also be computed using other array geometries such as rectangular array and

circular array. Note that, we assume perfect channel knowledge at the TX and

the RX [16,44,65] for the EE maximization work and consider channel estimation

errors in Chapter 4 when proposing an efficient channel estimation algorithm.

The beamspace representation [38, 39] of the narrowband channel can be

written as follows:

H = DRHvD
H
T , (3.2)

where Hv ∈ CLR×LT is a sparse matrix with a few non-zero entries, DR ∈ CNR×LR

and DT ∈ CNT×LT are the Discrete Fourier transform (DFT) matrices.

In large-scale MIMO communication systems, based on the A/D hybrid

precoding scheme, the number of RF chains is larger than or equal to the number

of baseband data streams and smaller than or equal to the number of TX antennas.

LT denotes the number of available RF chains at the TX with the limitation that

Ns ≤ LT ≤ NT and similarly LR is for the RX with the condition Ns ≤ LR ≤ NR.

We consider the number of RF chains at the RX to be same as at the TX,

i.e., LR = LT. Fig. 3.1 shows the block diagram of a mmWave single user
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fully-connected A/D HBF MIMO system with digital baseband precoding and

associated switches, followed by RF chains and associated DACs, and constrained

RF precoding implemented using phase shifters network at the TX, and vice-versa

at the RX. This basic system setup can be considered with upgrades for both full

resolution as shown in this chapter and low resolution cases as shown in the

following two chapters.

The matrix FBB denotes the baseband precoder matrix which has dimensions

of LT×Ns using its LT transmit chains and FRF denotes the RF precoder matrix

which has dimensions of NT × LT using the phase shifting network. Similarly at

the RX, the matrices WBB and WRF denote the LR×Ns baseband combiner and

the NR×LR RF combiner, respectively. The TX symbol vector s ∈ CNs×1 is such

that E{ssH} = 1
Ns

INs . All elements of FRF and WRF are of constant modulus.

The power constraint at the TX is satisfied by ‖FRFFBB‖2
F = Pmax, where Pmax

is the maximum allocated power. We assume a unit magnitude and continuous

phase constraint on the phase shifters [16,44].

Consider a narrowband propagation channel with H as the NR ×NT channel

matrix as shown in (3.1), which is assumed to be known to both the TX and the

RX, then the received signal can be expressed as follows:

y = HFRFFBBs + n, (3.3)

where y is the NR× 1 received vector and n is a NR× 1 noise vector with entries

which are modeled as Independent and Identically Distributed (I.I.D.) CN(0, σ2
n).

After the application of the combining matrices, the received signal can be written

as follows:

ỹ = WH
BBWH

RFy = WH
BBWH

RFHFRFFBBs + WH
BBWH

RFn. (3.4)
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In the following subsection, we discuss the literature review related to the

mmWave A/D HBF MIMO system design and our contributions in this chapter.

3.1.1 Literature Review

Reference [16] proposes a spectrally efficient A/D hybrid precoder design by max-

imizing the desired rate for fully-connected limited RF chain systems. However,

it does not consider the energy consumption. For an energy efficient system, [68]

considers a sub-connected architecture, where each RF chain is connected to only

a subset of the TX antennas requiring fewer phase shifters, but it does not dis-

cuss how to design an energy efficient precoder with a fully-connected architecture.

Reference [56] considers both fully-connected and partially-connected structures

to design a A/D hybrid precoder where the partially-connected structure seems to

outperform fully-connected structure in terms of EE. However, it only considers

the design of the precoder matrices and there is no emphasis on optimizing the

number of RF chains which is a key factor for an energy efficient system.

The RF chains consume a large amount of power in wireless communication

systems and increase the cost for these systems [69]. Reference [65] performs an

energy efficient optimization to design a A/D hybrid precoder where to calculate

the optimal number of RF chains, the full precoding solution is computed for all

possible numbers of RF chains. This is referred to as the Brute Force (BF)

technique throughout in this chapter. References [16] and [65] use OMP to

optimize the precoder matrices. Alternative greedy strategies to OMP can be

exploited to lower the complexity. A mmWave A/D hybrid MIMO system can be

used for 5G mmWave MIMO applications such as cellular backhaul connections

when we jointly optimize the number of RF chains and the A/D hybrid precoder

and combiner matrices leading to a highly energy efficient system.
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3.1.2 Contributions

This chapter proposes an energy efficient A/D HBF framework, where the RF

precoder and baseband precoder matrices, and RF combiner and baseband

combiner matrices are optimized along with the number of active RF chains but

with low complexity. We use power allocation, and the DM is implemented to

optimize the number of RF chains. Fig. 3.2 shows the novel architecture with

proposed framework for a mmWave fully-connected A/D HBF MIMO system

which is an update to the system setup shown in Fig. 3.1. For this architecture, let

FBB = P
1
2
TXF̂BB denotes the baseband precoder matrix which inputs to the DAC-

RF chain block where PTX ∈ RLT×LT is a diagonal matrix of power allocation

values with tr(PTX) = Pmax, F̂BB is the digital precoding matrix before the

switches, and FRF denotes the RF precoder matrix. In this novel architecture, for

a certain number of RF chains implemented in the hardware, the DM block drives

digital switches to activate only those RF chains that we obtain as an optimal

solution from the proposed method. In practice the digital switches would be

a part of the digital processor. If the DM block is replaced by another method

used to optimize the number of RF chains, the number of active RF chains and

associated DACs/ADCs may be different.

To compute the A/D hybrid precoders and combiners, the proposed approach

incorporates a codebook-based approach through one of the greedy strategies,

i.e., GP [63]. Simulations show that the proposed GP-based approach is a

faster and less complex approach to compute the precoder and combiner matrices

than the state of the art OMP. Furthermore, the proposed framework can also

be incorporated with the existing codebook-free solutions such as Alternating

Direction Method of Multipliers (ADMM) [44] and SVD based solution [42].

The objective is to achieve better EE performance for codebook-free approaches
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Figure 3.2: System model for a mmWave A/D hybrid MIMO system with the
proposed DM framework.

over the fixed number of RF chains case. The proposed energy efficient and low

complexity A/D hybrid precoder framework with a fully-connected architecture

can be used in designing 5G mmWave MIMO systems effectively and efficiently,

such as in 5G cellular systems and wireless backhaul networks.

The main contributions of this chapter can be summarized as follows:

1. The chapter proposes a novel algorithmic framework, where the number of

active RF chains is dynamically adapted on a frame-by-frame basis. This

is carried out using a low complexity alternative to the BF optimization

[65] based on the current channel conditions measured in the A/D HBF

architecture.
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2. We develop a reduced complexity DM based solution to find the optimal

number of RF chains and streams for the mmWave MIMO system for the

current channel conditions.

3. A GP-based approach is proposed as a lower complexity approximation

solution to compute the precoder and combiner matrices than the state of

the art OMP solution.

In the following Section 3.3, we discuss the low complexity designs of A/D

HBF matrices, i.e., FRFFBB and WRFWBB. Section 3.4 discusses the proposed

EE maximization approach via dynamic power allocation. Section 3.5 provides

the simulation results. Section 3.6 concludes this chapter.

3.2 Low Complexity A/D HBF Design

The combined problem of designing the precoders and combiners and the number

of RF chains can be partitioned into three sub-problems:

• to optimize the A/D hybrid precoders FRFFBB,

• to optimize the A/D hybrid combiners WRFWBB and

• to optimize the number of RF chains, i.e., obtaining LoptT at the TX and

LoptR at the RX.

Firstly in this section, we focus on designing the A/D hybrid precoder matrices

FRF and FBB as shown in Subsection 3.3.1 and the hybrid combiner matrices

WRF and WBB as shown in Subsection 3.3.2 by assuming that LoptT and LoptR are

computed from the proposed DM based solution in Section 3.4 already. In the

next section, we propose the DM based solution for optimizing the number of RF

chains at the TX and consider that LoptR = LoptT .
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3.2.1 A/D Hybrid Precoding at the TX

It is known that the precoding matrix for the digital beamformer is given based

on the Singular Value Decomposition (SVD) of the channel matrix. We consider

channel’s SVD as H = UHΣHVH
H , where UH ∈ CNR×NR and VH ∈ CNT×NT are

unitary matrices, and ΣH ∈ RNR×NT is a rectangular matrix of singular values

in decreasing order whose diagonal elements are non-negative real numbers and

whose non-diagonal elements are zero. The optimal fully digital precoding matrix

Fopt = VH1P
(1/2)
TX where the matrix VH1 ∈ CNT×Ns consists of the Ns columns

of the right singular matrix VH [16] and PTX is a diagonal matrix where each

diagonal entry represents the power of each transmission stream for the digital

precoding case with ‖Fopt‖2
F = tr(PTX) = Pmax. We discuss about PTX in more

details in the next section. In this section we assume that PTX is known.

In order to design the near-optimal A/D hybrid precoder, it can be assumed

that the decomposition FRFFBB can be made sufficiently close to the optimal

fully digital precoding matrix Fopt [16]. The Euclidean distance problem is a

good approximation, so we can consider the Euclidean distance between the A/D

hybrid precoder FRFFBB and the channel’s optimal fully digital precoder Fopt to

optimize the A/D hybrid precoder matrices. We can define FRF to be a set of

basis vectors aT(φ̃til) in order to find the best low dimensional representation of

the optimal matrix Fopt where φ̃til are the angles from the DFT codebook. The

problem to design the A/D hybrid precoders can be stated as follows [16,17]:

(Fopt
RF,F

opt
BB) = arg min

FRF,FBB

‖Fopt − FRFFBB‖2
F ,

subject to FRF ∈ FRF, ‖FRFFBB‖2
F = Pmax.

(3.5)

We consider two stages in the system model as shown in Fig. 3.2: a) the beam
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training phase, and b) the data communications phase. In stage a), firstly LT

available RF chains are activated and the channel is computed which provides us

the optimal beamformer, i.e., Fopt. Then the SVD of the channel is computed

and the proposed DM is performed to obtain LoptT . In stage b), the optimal analog

and digital precoder matrices Fopt
RF and Fopt

BB, respectively, are obtained using LoptT .

Note that, if we assume that the TX is active for stage a) a small proportion

of time, for example, < 10%, then the overall transmit energy consumption is

dominated by stage b). The previous problem can be cast in the following form,

given by:

F̃opt
BB = arg min

F̃BB

‖Fopt − D̃TF̃BB‖2
F ,

subject to ‖diag(F̃BBF̃H
BB)‖0 =LoptT , ‖D̃TF̃BB‖2

F =Pmax,

(3.6)

where D̃T ∈ CNT×LoptT is the matrix composed by the LoptT columns of the DFT

matrix DT and F̃BB is a LoptT × Ns matrix. The matrices D̃T and F̃BB act as

auxiliary variables from which we obtain Fopt
RF and Fopt

BB, respectively. The sparsity

constraint ‖diag(F̃BBF̃H
BB)‖0 = LoptT suggests that F̃BB can not have more than

LoptT non-zero rows. Thus, only LoptT columns of the DFT matrix DT are effectively

selected which is given by D̃T. Therefore, LoptT non-zero rows of F̃BB will give us

the baseband precoder matrix Fopt
BB and the columns of D̃T will provide the RF

precoder matrix Fopt
RF. The optimal number of RF chains, i.e., LoptT , is obtained

from the proposed optimization solution derived in Section 3.4.

As shown in [16], (3.6) basically reformulates (3.5) into a sparsity constrained

reconstruction problem with one variable. The problem can be now addressed as

a sparse approximation problem [61] and OMP [62] can be used as an algorithmic

solution. To develop fast approximate OMP algorithms that are less complex, [63]

proposes improvements to greedy strategies using directional pursuit methods
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Algorithm 1 Proposed A/D Hybrid Precoder Design by GP

1: Input: Fopt, D̃T, LoptT

2: FRF = 0NT×LoptT
, Γ = ∅

3: Fres = Fopt, FBB = 0LoptT ×Ns

4: for i ≤ LoptT

5: Ψ = D̃H
T Fres

6: k = arg maxl=1,...,LoptT
(ΨΨH)l,l

7: FRF =
[
FRF | D̃(k)

T

]

8: D = FH
RFFres

9: C = FRFD
10: g = tr{FHresC}

‖C‖2F
11: Γ = Γ ∪ k
12: FBB|Γ = FBB|Γ − gD
13: Fres = Fres − gC
14: end for
15: FBB =

√
Pmax

FBB

‖FRFFBB‖2F

and discusses optimization schemes on basis of gradient, conjugate gradient and

approximate conjugate gradient approaches. GP approach is implemented as an

alternative solution to the optimization objective exhibiting similar performance

as OMP, faster processing time and lower complexity. GP avoids matrix inversion

by using only one matrix vector multiplication per iteration.

Algorithm 1 starts by finding that column of D̃T, which is denoted as k as

shown in Step 6, along which the optimal precoder has the maximum projection,

which is denoted as D̃
(k)
T . It then concatenates that selected column vector to

the RF precoder FRF as shown in Step 7. The gradient direction in Step 8 is

computed at each iteration and the step-size is determined explicitly making use

of the gradient direction, as shown in Step 10. The index set Γ is updated at each

iteration as shown in Step 11 which is used to generate the baseband precoder

matrix FBB. The residual precoding matrix is computed at Step 13 and the

algorithm continues until all LoptT RF chains have been used. Finally the RF
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precoder matrix FRF and the baseband precoder matrix FBB are obtained at the

end of the algorithm. The transmit power constraint is satisfied at Step 15.

3.2.2 A/D Hybrid Combining at the RX

The A/D hybrid combiner design has a similar mathematical formulation except

that the transmit power constraint no longer applies. One may note here that

by assuming the A/D hybrid precoders FRFFBB to be fixed, the A/D hybrid

combiners WRFWBB can be designed in order to minimize the Mean Square

Error (MSE) between the transmitted and processed received signals by using

the linear Minimum Mean Square Error (MMSE) RX [16, 17]. The optimization

of the number of RF chains at the RX can be performed similarly as at the TX.

The design problem for combining matrices can be written as follows:

(Wopt
RF,W

opt
BB) = arg min

WRF,WBB

E
[
‖s−WH

BBWH
RFy‖2

2

]
,

s.t. WRF ∈WRF,

(3.7)

where WRF is defined similarly to FRF for TX. Following the steps in [16] and

similar to the precoder optimization, the MMSE estimation problem may be

further written as follows:

W̃opt
BB = arg min

W̃BB

‖E[yyH ]
1
2 Wmmse − E[yyH ]

1
2 D̃RW̃BB‖2

F

subject to ‖diag(W̃BBW̃H
BB)‖0 =LoptR ,

(3.8)

where D̃R is the DFT matrix and W̃BB is a LoptR ×Ns matrix. The exact solution

to (3.8) yields WH
mmse as follows [16]:

WH
mmse =

(
FH

BBFH
RFHHHFRFFBB+σ2

nNsINs

)−1

FH
BBFH

RFHH . (3.9)
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Algorithm 2 Proposed A/D Hybrid Combiner Design by GP

1: Input: Wmmse, D̃R, LoptR

2: WRF = 0NR×LoptR
, Γ = ∅

3: Wres = Wmmse, WBB = 0LoptR ×Ns

4: for i ≤ LoptR

5: Ψ = D̃H
RE[yyH ]Wres

6: k = arg maxl=1,...,LoptR
(ΨΨH)l,l

7: WRF =
[
WRF | D̃(k)

R

]

8: D = WH
RFWres

9: C = WRFD
10: g = tr{WH

resC}
‖C‖2F

11: Γ = Γ ∪ k
12: WBB|Γ = WBB|Γ − gD
13: Wres = Wres − gC
14: end for

Similar to the sparsity reconstruction problem for the TX, LoptR non-zero rows of

W̃BB will give us the baseband combiner matrix Wopt
BB and the corresponding LoptR

columns of DR will provide the RF combiner matrix Wopt
RF. This sparse signal

recovery problem can again be solved by the GP algorithm.

Algorithm 2 provides the pseudo code of the GP solution to find the combiner

matrices. It should be noted that step 15 of Algorithm 1 does not need to be

replicated here as there is no power constraint at the RX unlike at the TX.

Similarly, it starts by finding that column of D̃R, which is denoted as k as shown

in Step 6, along which the optimal combiner has the maximum projection where

the received signal is required as well for computation, which is denoted as D̃
(k)
R .

It then concatenates that selected column vector to the RF combiner WRF as

shown in Step 7. The gradient direction in Step 8 is computed at each iteration

and the step-size is determined explicitly making use of the gradient direction as

shown in Step 10. Similar to the TX case, the index set Γ is updated at each

iteration in Step 11 which is used to generate baseband combiner matrix WBB.

The residual precoding matrix is computed at Step 13. Finally the RF combiner
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matrix WRF and the baseband combiner matrix WBB are obtained at the end of

the algorithm. In the next section we discuss on obtaining the optimal number

of RF chains.

3.3 EE Maximization via Dynamic Power Allo-

cation

In this section we derive the proposed approach which aims at the maximization

of the EE by dynamic power allocation in the baseband domain. In terms of

achievable information rate R and consumed power P , the EE for the A/D hybrid

design can be computed as follows:

EE(PTX) , R(PTX)

P (PTX)
(bits/Hz/J), (3.10)

where R represents the information rate in bits/s/Hz and P is the required power

in Watts (W).

The proposed design, as depicted in Fig. 3.2, describes a A/D hybrid system

for the TX and the RX, with a certain number of RF chains LT implemented

in the hardware. The selection mechanism between the available RF chains is

implemented in the baseband domain, as part of the digital processor. This

procedure is driven by the DM block, which describes the optimal power scheme

for each channel realization.

The power allocation at the TX can be described mathematically by using

a diagonal sparse matrix PTX ∈ DLT×LT where DLT×LT ⊂ RLT×LT denotes the

set of LT × LT diagonal sparse matrices. To represent the baseband selection

mechanism we consider that [PTX]kk ∈ [0, Pmax], for k = 1, . . . , LT, where

Pmax = tr(PTX). The diagonal entries of PTX with a zero value represent an
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open switch in Fig. 3.2. Thus, the non-zero diagonal values of PTX determine the

number of the active RF chains for the TX, i.e., LoptT = ‖PTX‖0. If we increase

the number of RF chains we might achieve a higher information rate but there is

also higher power consumption. Hence, maximizing the EE ratio in (3.10) while

considering different constraints on the precoder design provides us the optimal

number of RF chains.

3.3.1 Problem Formulation

For a point-to-point A/D hybrid MIMO system, as shown in Fig. 3.2, the overall

achievable rate With Respect To (W.R.T.) the active RF chains can be expressed

as follows:

R(PTX,PRX)=log

∣∣∣∣INs+
1

σ2
n

WH
BBP

1
2
RXWH

RFHFRF×

P
1
2
TXF̂BBF̂H

BBP
1
2
TXFH

RFHHWRFP
1
2
RXWBB

∣∣∣∣, (3.11)

where PTX ∈ RLT×LT is the diagonal matrix describing the power allocation

for the TX. For the RX, we use the diagonal matrix PRX ∈ {0, 1}LR×LR which

takes only values from {0, 1}, since it only represents a switching network, hence,

LoptR = ‖PRX‖0.

Based on [16], it is reasonable to assume that F̂BBF̂H
BB ≈ ILT

and WBBWH
BB ≈

ILR
, then

R(PTX,PRX) = log

∣∣∣∣ILR
+

1

σ2
n

P
1
2
RXWH

RFHFRF

PTXFH
RFHHWRFP

1
2
RX

∣∣∣∣. (3.12)

To simplify this problem, we decompose it into two successive sub-problems, one
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for the TX and one for the RX. Specifically, to obtain PTX we assume that the

RX has activated all the switches, i.e., PRX = ILR
. So,

R(PTX)=log

∣∣∣∣ILR
+

1

σ2
n

WH
RFHFRFPTXFH

RFHHWRF

∣∣∣∣. (3.13)

Once we obtain PTX, we can estimate PRX based on the following formulation:

R(PRX)=log

∣∣∣∣ILR
+

1

σ2
n

P
1
2
RXWH

RFHFRF

PTXFH
RFHHWRFP

1
2
RX

∣∣∣∣. (3.14)

Maximizing EE at the RX using (3.14) results into a non-trivial integer program-

ming problem. Therefore in the following we will focus our analysis on the EE

maximization at the TX in order to obtain LoptT . We consider the optimal number

of RF chains at the RX to be same as at the TX, i.e., LoptR = LoptT .

Measuring the energy consumed for each entity in the precoder and the

combiner is important to design an energy efficient mmWave A/D hybrid MIMO

system. In this chapter, we use the power model described in Section 2.2.4 for

the case of full resolution sampling, so that the total power P for an A/D HBF

system can be described as follows, where we include the power consumed by the

RX components as well:

P = βtr(PTX) + 2PCP +NTPT +NRPR + LoptT ×

(PRF +NTPPS) + LoptR (PRF +NRPPS) (W), (3.15)

where β represents the reciprocal of amplifier efficiency; the common parameters

at the TX and the RX are PCP, PRF, and PPS which represent the circuit power,

i.e., is the power required by all circuit components at the TX, the power per
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RF chain, and the power per phase shifter, respectively. PT and PR represent the

power per antenna element at the TX and the RX, respectively.

For simplicity we remove the sub-index term “TX” from PTX. Hence, we

consider the problem (3.10) expressed w.r.t. the power allocation matrix P ∈

RLT×LT as follows:

max
P∈DLT×LT

R(P)

P (P)
s. t. P (P) ≤ P ′max and R(P) ≥ Rmin. (3.16)

The first constraint term in (3.16) sets the upper bound for the total power budget

of the communication system, i.e., P ′max = βPmax + 2PCP +NTPT +NRPR +LT×

(PRF +NTPPS) + LR(PRF +NRPPS).

3.3.2 DM Based Proposed Solution

Fractional programming theory provides us several options to obtain the solution

of (3.16). One computational efficient algorithm is the Dinkelbach’s algorithm

which has been introduced firstly in [70, 71]. Dinkelbach’s algorithm replaces

the fractional cost function of (3.16) with a sequence of easier difference-based

problems. The simulation results in Section 3.5 suggest that this method can

achieve good performance. Specifically, the cost function of (3.16) is replaced by

a sequence of problems:

max
P(m)∈DLT×LT

{
R(P(m))− ν(m)P (P(m))

}
, (3.17)

where ν(m) = R(P(m−1))/P (P(m−1)) ∈ R+, for m = 1, 2, . . . , Imax, where Imax

is the number of maximum iterations. Dinkelbach’s algorithm is an iterative

algorithm, where at each step an update of ν(m) is obtained based on the estimated

rate and power from the previous iteration. To simplify the implementation of
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this algorithm we desire a rate expression that does not require explicit formulas

for the precoder and combiner matrices, thus avoiding re-running Algorithms 1

and 2 for each possible choice of active RF chains.

In order to proceed with the Dinkelbach’s algorithm in our context, let us first

elaborate on the information rate and power expressions. Considering the SVD

of the channel as H = UHΣHVH
H as shown in Section 3.2, (3.13) is expressed as:

R(P) = log

∣∣∣∣INR
+

1

σ2
n

WH
RFUHΣHVH

H FRF×

PFH
RFVHΣH

H UH
H WRF

∣∣∣∣. (3.18)

Following the analysis of [16], it can be proven that VH
H FRF ≈ [ILT

0T(NT−LT)×LT
]T

and UH
H WRF ≈ [ILR

0T(NR−LR)×LR
]T , hence,

R(P) = log

∣∣∣∣INR
+

1

σ2
n

Σ̄2P

∣∣∣∣, (3.19)

where Σ̄ ∈ RLR×LT with [Σ̄]kk = [ΣH]kk for k = 1, . . . , LT, assuming LT = LR,

while its remaining entries are zero. Since the involved matrices in (3.19) are

diagonal, the information rate is decomposed into LT parallel streams, as follows:

R(P) ≈
LT∑

k=1

log

(
1 +

1

σ2
n

[Σ̄2]kk[P]kk

)
(bits/s/Hz). (3.20)

Recall that LT and LR have preset values based on the hardware design and

describe the available RF chains at the TX and the RX, respectively. Considering

only the TX, the consumed power w.r.t. the diagonal power allocation matrix



CHAPTER 3. EE Maximization by Dynamic RF Chain Selection with Low
Complexity Hybrid Beamforming 60

can be written as:

PTX(P) = Pstatic +

LT∑

k=1

(β[P]kk + PRF +NTPPS) (3.21)

= Pstatic +

LT∑

k=1

β′[P]kk (W), (3.22)

where Pstatic , PCP +NTPT is independent of the power allocation matrix P and

β′ , β + PRF+NTPPS

Pmax
. The equivalence between (3.21) and (3.22) is justified since

∑LT

k=1[P]kk = tr(P) = Pmax.

Based on (3.20) and (3.22), the m-th DM step can be expressed as follows:

{P(m), ν(m)} = arg max
P(m)∈DLT×LT

G(P(m), ν(m)), (3.23)

where

G(P(m), ν(m)) ,
LT∑

k=1

log

(
1 +

1

σ2
n

[Σ̄2]kk[P
(m)]kk

)

−ν(m)

LT∑

k=1

β′[P(m)]kk. (3.24)

Note that problem (3.23) is a non-convex one because of the constraint P(m) ∈

DLT×LT . To proceed, first we alleviate this constraint, thus (3.23) can be

efficiently solved by any standard interior-point method (for example, CVX [72]).

Step 3 of Algorithm 3 shows that after alleviating this constraint, (3.23) is solved

via CVX to update P(m). Then we impose the constraint by hard-thresholding

the entries of P(m), i.e., P
(m)
th , as shown in Step 4 of Algorithm 3. The thresholding

sets to zero all entries of P(m) that are lower than a given tolerance value εth.

Algorithm 3 starts by initializing the number of available RF chains LT. We

update P(m) by solving the relaxation of (3.23) via CVX as shown in Step 3.
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Algorithm 3 Proposed DM for RF Chain Selection

1: Initialize: P(0), ν(0) satisfying G(P(0), ν(0)) ≥ 0, LT, tolerance ε
2: m = 0
3: while |G(P(m), ν(m))| > ε do
4: Update P(m) by solving the relaxation of (3.23) via

CVX [72].

5: Thresholding P(m) as P
(m)
th .

6: Counting non-zero values of P
(m)
th provides LoptT .

7: Compute R(P(m)) and PTX(P(m)).
8: Compute G(P(m), ν(m))

where ν(m) = R(P(m−1))/P (P(m−1)) ∈ R+.
9: Update ν(m) with R(P(m))/PTX(P(m)).
10: m = m+ 1
11: end while
12: Obtain LoptT = ‖P(m)

th ‖0

Steps 4-5 show that P(m) is thresholded as P
(m)
th and counting its non-zero values

provides us the optimal number of RF chains which keeps updating within the

loop but obtained as ‖P(m)
th ‖0 after the loop ends as shown in Step 11. R(P(m))

and PTX(P(m)) are computed in Step 6 and G(P(m), ν(m)) is computed based on

(3.24) in Step 7 where ν(m) = R(P(m−1))/P (P(m−1)) ∈ R+. Steps 8 shows the

update in ν(m) with R(P(m))/PTX(P(m)). The loop continues until |G(P(m), ν(m))|

is less than a given tolerance ε. We consider that the optimal number of RF

chains provides the number of data streams as well, i.e., Ns = LoptT .

3.3.3 Full Search (FS) Approach

To show that the loss performance is not much in Dinkelbach optimization we

also consider a Full Search (FS) approach which resolves the non-convexity issue

of (3.23) with convex approximation providing a modified version of the proposed

Dinklbach optimization solution which iterates over all the possible number of RF

chains. The steps are stated in Algorithm 4 where the maximum EE is obtained

and the corresponding number of RF chains are considered to be optimal at the
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Algorithm 4 FS Approach for RF Chain Selection

1: Initialize: LT, tolerance ε, EE(0) = 0
2: for i = 1 : LT

3: while |G(P(m), ν(m))| > ε do
4: Compute P(m) subject to i RF chains

→ obtain LoptT from P
(m)
th .

5: Compute R(P(m)), PTX(P(m)) and G(P(m), ν(m)).
6: Update ν(m) and compute EE(m)

= R(P(m))/PTX(P(m)).
7: m = m+ 1
8: end while
9: Obtain L

(i)
T = LoptT and EE(i) based on EE(m) value.

10: if EE(i) ≥ previous EE(i−1)

11: Update EE(i) and L
(i)
T

12: end if
13: end for

end of the algorithm. In Table 3.4 of Section 3.5, we show that the proposed DM

has similar performance to the FS approach, while the complexity for computing

FS increases significantly.

3.3.4 Brute Force (BF) Approach

The solution to achieve optimal number of RF chains at each realization is also

provided in [65] which we call as the BF approach. To make the A/D HBF system

energy efficient, BF approach, at each realization (current channel condition),

makes a search on all the possible number of RF chains, i.e., LT = {1, 2, 3, ..., NT},

and computes best EE while designing the precoder and combiner matrices, and

chooses the corresponding number of RF chains as the optimal number of RF

chains. We, in our work, mitigate that need of searching for all possible number

of RF chains and then finding an optimal solution, and thus providing equally a

high energy efficient and low complexity solution. The observations made in the

next section support this statement.
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3.4 Simulation Results

This section shows the performance of the proposed DM compared to the existing

state of the art solutions such as the BF approach, digital beamforming, analog

beamforming and modified version of the proposed solution, i.e., FS approach.

For simulations, the proposed DM and the FS approach consider LT = LR =

length
(
eig(HHH)

)
and the BF approach uses the same precoding and combining

matrices as the DM solution. The tolerance values considered in both the DM

solution and the FS approach algorithms are ε = 10−4 and εth = 10−6. The fully

digital beamforming solution uses the same number of RF chains as antennas,

i.e., LT = NT and LR = NR, and precoding and combining matrices are Fopt

and Wmmse, respectively, as shown in Subsections 3.3.1 and 3.3.2. The analog

beamforming solution implements a single RF chain, i.e., LT = LR = 1, and the

precoding and combining matrices are computed as the phases of the first singular

vectors, i.e., F = VH(1 : NT, 1)/abs(VH) and W = UH(1 : NR, 1)/abs(UH),

respectively.

The performance of the codebook-free designs such as ADMM [44] and SVD

based [42] solutions when incorporated with the proposed framework, using LoptT

RF chains, are also observed over the case when fixed number of RF chains are

used to compute the precoder and combiner matrices. The comparison between

GP and OMP algorithms is also observed through observing the variations in run

time w.r.t. the number of RF chains and computational complexities.

3.4.1 System Setup

For the channel parameters, there are 10 rays for each cluster and there are 8

clusters in total, i.e., Nray = 10 and Ncl = 8 in (3.1). The average power of each
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Circuit power of the TX PCP = 10 W
Power per RF chain PRF = 100 mW

Power per phase shifter PPS = 10 mW

(a) Typical values of the power terms [73].

Number of RF chains, LT Maximum consumed power (W)
4 34.50
8 38.50
64 94.50

(b) Maximum consumed power in (3.15) for different values of LT for a 64 × 16 system
with tr(FFH) = 1.

Table 3.1: Simulation parameters for the power expressions of different precoding
solutions.

cluster is unity, i.e., σα,i = 1. The azimuth and elevation angles of departure

and arrival are computed on the basis of the Laplacian distribution [74] with

uniformly distributed mean angles and angle spread as 7.5◦. The mean angles

are sectored within the range of 60◦ to 120◦ in the azimuth domain, and 80◦ to

100◦ in the elevation domain. The 64 antenna elements at the TX, i.e., NT = 64,

and 16 at the RX, i.e., NR = 16, in the ULA, antenna elements are spaced by

distance d = λ/2 where λ/2 can be based on a standard frequency value such as

28 GHz [65]. The system bandwidth is normalized to 1 Hz in the simulations.

The Signal-to-Noise Ratio (SNR) is 1/σ2
n. All the simulation results are averaged

over 1000 random channel realizations. To illustrate the achievable EE of different

precoding solutions, the parameters in the power expressions for each precoder

design are set as shown in Table 3.1.(a). For a typical case, the power per power

amplifier, PPA = 300 mW, and maximum achievable power, Pmax = 1 W. Table

3.1.(b) shows the maximum power which can be consumed as determined in (3.15)

for different number of RF chains in a 64 × 16 fully-connected system. The

amplifier efficiency 1/β is considered as 0.4 and the minimum desired rate in

(3.16), Rmin = 1 bits/s/Hz.
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(a) Beam training and data communications
phases.
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(b) Overall power consumption performance
for 10% beam training and 90% data com-
munications phases.

Figure 3.3: Beam training and data communications phases and associated power
consumption performance for a fully-connected 64× 16 system.

3.4.2 Beam Training and Data Communications Phases

Analysis

Based on the described communication phases in Fig. 3.2.(b), there are LT

active RF chains during the beam training phase. Once the Dinkelbach or FS

optimization is performed then we obtain the optimal number LoptT RF chains for

the data communications phase. Considering that α represents the ratio between

the two phases, the power consumption performance for both the stages is given

by:

Power = α× P (LT) + (1− α)× P (LoptT ) (W), (3.25)

where P (LT) is the power consumption with (3.15) using LT RF chains and

P (LoptT ) is using the optimal number of RF chains, LoptT . For example, as shown

in Fig. 3.3.(a), when we consider that the beam training phase is active for 10%

of the time with LT RF chains, i.e., α = 0.1, and the data communications phase

is active for the remaining 90% time with LoptT RF chains, i.e., 1− α = 0.9. The
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Figure 3.4: Convergence of the proposed DM for different SNR levels for a fully-
connected 64× 16 system.

performance is observed with three SNR cases in Fig. 3.3.(b). It can be observed

that the overall power consumption increases with the increase in the number of

RF chains in the beam training phase and high SNR values have higher power

consumption levels. For example, at LT = 6, the power consumption at SNR =

0 dB is about 0.65 W higher than at SNR = −10 dB.

3.4.3 Convergence of the Proposed DM Solution

Fig. 3.4 shows the convergence of the Dinkelbach optimization solution as

proposed in Algorithm 3 to obtain the optimal number of RF chains. It can

be observed that the EE for different SNR levels increases with the iterations

used to find the optimal number of RF chains. The proposed solution converges

rapidly and needs only 2 iterations to converge and achieve an optimal solution

at each realization.
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(a) Pmax = 1 W.

(b) Pmax = 0.5 W.

(c) Pmax = 0.25 W.

Figure 3.5: PMF plots of the DM and BF solutions at different Pmax values for the
optimal number of RF chains LoptT and their difference ∆LoptT for 64× 16 system and
SNR = 10 dB.
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Figure 3.6: PMF plots of EE difference between DM and BF solutions at different
Pmax values for a 64× 16 system and SNR = 10 dB.

3.4.4 Proposed DM versus BF Approach

The comparison is made to the BF method [65] in detail in terms of the

Probability Mass Function (PMF) for RF chain selection, EE performance and

the computational complexity. The PMF plots indicate the histogram that for

how many realizations (on y-axis) a particular value of the variable defined on

x-axis is achieved. Figs. 3.5 and 3.6 show the PMF of the distribution of the

proposed DM and the BF approach over the optimal number of RF chains, i.e.,

LoptT , their difference, i.e., ∆LoptT = |LoptT BF − L
opt
T DM|, and the EE difference, i.e.,

∆E = |EEBF − EEDM|, at each channel realization.

Fig. 3.5 shows that for how many channel realizations, the beamforming

solutions such as the DM and the BF approach find a particular optimal number

of RF chains for different values of Pmax. It gives us an idea on how close the

proposed DM solution is to the BF technique, in terms of finding the optimal
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Algorithm Complexity Order

DM O
(
LoptT

)

BF O
(
LoptT NT

)

FS O
(
LoptT LT

)

(a) Complexity orders of the DM, the BF and FS approaches.

No. of TX antennas, NT Time (s): DM Time (s): BF
80 0.429 0.613
96 0.438 1.06
112 0.454 1.76
128 0.455 2.69

(b) Run times of the DM and the BF approach w.r.t. NT at SNR = 10 dB and Pmax = 1.

Table 3.2: Computational complexity comparison between the DM, the BF and FS
approaches.

number of RF chains. For example, at Pmax = 1 W, the DM solution chooses

LoptT = 4 for ≈ 750 different channel realizations whereas BF chooses 4 RF

chains for ≈ 300 realizations and the difference (at each realization) between

chosen optimal number of RF chains by both the methods, i.e., ∆LoptT is 0 for

≈ 450 different realizations. Also, for example, the EE difference between the

two methods, ∆E, at Pmax = 1 W is close to 0 bits/Hz/J for ≈ 650 channel

realizations as observed from Fig. 3.6.

Table 3.2.(a) shows the computational complexities used by the solutions of

the DM, the BF and FS approaches w.r.t. the number of the RF chains. We can

observe that complexity for the solution of the DM requires complexity order of

only O(LoptT ) per iteration. Since the number of the required iterations is usually

very small, the overall complexity of the DM is much less than the BF approach

which depends on the product of the number of RF chains and the number of

antennas. Also, it clearly suggests that the complexity for FS approach increases

significantly as the search is made for all possible number of RF chains LT.

For further comparison of the proposed method to the BF approach, we verify
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Algorithm Complexity Order

OMP O
(
(LoptT )4

)
+ O

(
(LoptT )3NT

)

GP O
(
(LoptT )3NT

)

(a) Complexity orders of GP and OMP.

No. of RF chains at the TX Time (µs): OMP Time (µs): GP
8 1.6 1.1
16 5.8 2.8
24 10 5.0
32 16.4 8.0

(b) Run time comparison w.r.t. the number of RF chains for 64 × 16 mmWave system
with Ncl = 8, Nray = 10, and SNR = 10 dB.

Table 3.3: Computational complexity comparison between GP and OMP solutions.

the run time results as shown in Table 3.2.(b). At SNR = 10 dB and Pmax = 1,

the run time is much less for the proposed solution w.r.t. the number of TX

antennas. These results are reported from MATLAB simulation runtime for an

independent channel realization. For example, for a large number of antennas,

i.e., NT = 128, the proposed solution consumes ≈ 6 times less run time than the

BF solution. The observations support the statement that the proposed solution

has low complexity while still optimizing the number of RF chains.

3.4.5 Proposed GP versus OMP

Concerning the complexity for deriving the beamforming matrices, recall that

OMP requires inversion of a matrix with size k × k, at each one of the LoptT

iterations in total, with k = 1, . . . , LoptT . This operation has cubic complexity

order w.r.t. the size of the matrix, i.e., O(k3), in general. So, for LoptT iterations,

the total cost would be:
LoptT∑

k=1

O(k3) = O
(
(LoptT )4

)
. (3.26)
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Figure 3.7: EE and rate performance of different solutions w.r.t. SNR for a fully-
connected 64× 16 system at Pmax = 1 W.

Additionally, a matrix-matrix product is required at each iteration with total

cost O
(
(LoptT )3NT

)
. On the other side, the proposed GP algorithm requires

only matrix-matrix multiplications at each iteration, hence the complexity order

is O
(
(LoptT )3NT

)
. This complexity reduction is justified by the substitution of

the matrix inversion with a gradient step. The derived complexity orders are

summarized in Table 3.3.(a). In Table 3.3.(b) we show the MATLABTM run time

comparison (in µs) between OMP and GP w.r.t. the number of RF chains at

the TX for a 64 × 16 mmWave MIMO system with SNR = 10 dB. As the time

difference between both the algorithmic solutions is considerable with the increase

in the number of RF chains, the obtained values indicate that GP consumes much

less time than OMP leading to a lower complexity system.

3.4.6 EE and SE Performance of Proposed DM

Fig. 3.7 shows the EE and SE performance of the proposed solution, the BF

solution, the full digital solution and the analog beamforming solution w.r.t. SNR

for a 64×16 mmWave MIMO system. It can be clearly observed from Fig. 3.7.(a)

that the proposed solution is as energy efficient as the BF solution, and better
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Figure 3.8: EE performance of different solutions for a 64 × 16 hybrid mmWave
MIMO system at Pmax = 1 W.

than the fully digital and analog beamforming solutions. For example, at 10

dB, the proposed solution has merely a EE difference of ≈ 0.01 bits/Hz/J with

the BF, but shows ≈ 0.35 bits/Hz/J and ≈ 0.25 bits/Hz/J better EE than the

fully digital and analog beamforming solutions, respectively. Also, for example,

in Fig. 3.7.(b) the proposed design at 10 dB shows a ≈ 10 bits/s/Hz less SE than

the fully digital solution, ≈ 10 bits/s/Hz better than analog beamforming and

approximately the same performance as the BF method.

Fig. 3.8.(a) shows the EE comparison among the solutions with partially-

connected structures where each RF chain is connected to NT/L
opt
T antennas

through phase shifters. We can observe similar EE performance characteristics

as in Fig. 3.7.(a); for example, the proposed solution has approximately the

same EE performance as the BF method, ≈ 0.4 bits/Hz/J and ≈ 0.32 bits/Hz/J

better than the fully digital and analog beamforming solutions, respectively, at

SNR = 15 dB. Fig. 3.8.(b) shows the EE performance comparison w.r.t. the

number of TX antennas, NT, for a fully-connected structure. We can observe

that the performance starts decreasing with the increase in the number of antenna
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Figure 3.9: EE performance gains w.r.t. SNR at NT = 64 over the fixed number
of RF chains case.

SNR |EEDM − EEFS|
(dB) (bits/Hz/J)
-10 0.013
-5 0.018
0 0.043
5 0.108
10 0.189

Table 3.4: EE performance difference between the DM and the FS approach.

elements. For example, at NT = 64, the EE for the proposed DM is close to that

of the BF solution which is ≈ 0.35 bits/Hz/J and ≈ 0.25 bits/Hz/J better than

the fully digital beamforming and analog beamforming solutions, respectively. At

NT = 256, the EE performance for the proposed DM solution is decreased to

≈ 0.56 bits/Hz/J and close to the BF solution, and ≈ 0.5 bits/Hz/J and ≈ 0.2

bits/Hz/J better than the fully digital beamforming and analog beamforming

solutions, respectively.

Fig. 3.9 shows the EE gain of the DM based framework when used with

codebook-based GP and OMP techniques, and when incorporated with codebook-
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free ADMM [44] and SVD [42] techniques, over the case of a fixed number of RF

chains, in this case, 8. The codebook-free technique such as ADMM performs

better than the codebook-based techniques such as GP and OMP, while SVD

shows a similar performance. The EE performance of GP and OMP techniques

are same. Table 3.4 shows EE performance comparison between the proposed

DM approach (Algorithm 3), i.e., EEDM, and the FS approach (Algorithm 4), i.e.,

EEFS, where we can observe that the difference between their EE is considerably

low. It states that the FS approach shows very similar performance to the

proposed method. From implementation perspective, we already showed in Table

3.2 (a) that the FS approach has higher computational complexity than the

proposed DM solution.

3.5 Summary

This chapter proposes an energy efficient A/D HBF framework with a novel ar-

chitecture for a mmWave MIMO system, where we optimize the active number of

RF chains through fractional programming. The proposed DM based framework

reduces the complexity significantly and achieves almost the same EE perfor-

mance as the state of the art BF approach. Both approaches achieve higher EE

performance when compared with the fully digital beamforming and the analog

beamforming solutions. In particular, the proposed solution only needs to com-

pute the precoder and combiner matrices once, after the number of active RF

chains are decided through the Dinkelbach optimization solution.

The modified version of the proposed solution, i.e., FS approach, shows very

similar performance to the proposed DM but the complexity increases signifi-

cantly. The codebook-free designs such as ADMM and SVD based solutions, when

incorporated with the proposed framework also achieve better EE performance
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over the fixed number of RF chains case. It is also shown that GP incorporated

with the proposed DM is a faster and less complex approximation solution to

compute the precoder and combiner matrices than OMP.

For this chapter, we focus on maximizing the EE but extending these

techniques to consider both estimated channels and frequency selective channels

can be considered for future work. Also, this chapter optimizes the number of RF

chains and streams to provide an energy efficient solution, however it considers

full resolution sampling. In the following chapter, we discuss channel estimation

and EE maximization solutions for the mmWave hybrid MIMO system with low

resolution sampling.



Chapter 4

Sparse MmWave Channel Estimation and EE

Maximization with Low Resolution DACs/ADCs

4.1 Introduction

IN
previous Chapter 3 we discussed that A/D HBF architectures reduce

the hardware complexity through fewer RF chains and support multi-

stream communication with good capacity performance [14,16,17]. Furthermore,

optimizing the number of RF chains and streams provides an energy efficient

mmWave hybrid MIMO system. However the large number of antenna elements

associated with mmWave MIMO systems makes it hard to use many ADCs, which

is a power hungry component [15]. Moreover, ADCs have much higher sampling

rates for wide bandwidth mmWave systems than at microwave frequencies, and

employing high speed ADCs increases the power consumption and the cost

significantly [46, 75]. Implementing low resolution quantization such as 1-bit

to 3-bit resolution in hybrid MIMO systems further improves the EE of such

systems [15]. For example, the use of 1-bit ADCs in MIMO systems has been

discussed in [76] and [77], and channel estimation is investigated as well. In that

work, the channel is known perfectly to the TX and the RX while in practical

76
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scenarios, the CSI is not known and should be estimated by both the TX and the

RX. In this chapter we discuss the role of low resolution quantization in mmWave

HBF MIMO systems for sparse channel estimation and EE maximization. In

this section, we first proceed with the literature review of the sparse channel

estimation and EE maximization associated with the low resolution quantization

and then we discuss our contributions in this chapter.

4.1.1 Literature Review

In terms of the sparse channel estimation, references [78–80] estimate the sparse

mmWave channel using signal processing tools for high resolution ADCs, but

the use of low resolution ADCs at the RX can significantly reduce the power

consumption without significantly affecting the capacity of the system [81].

Recently, [82] and [83] considered 1-bit ADC quantization systems and the sparsity

in the angle domain is exploited to be able to use CS techniques to recover the

channel parameters. The proposed adaptive technique in [82] fails to provide

good estimation of the channel at low SNR values. Reference [83] proposes

only an Expectation-Maximization (EM) algorithm which has high complexity

since each iteration requires a matrix inverse computation and convergence of the

algorithm requires many iterations. To observe the effect of low resolution ADCs,

an Additive Quantization Noise Model (AQNM) is considered in [57] and [84]. The

effect of AQNM is investigated in [57] for the case of a point-to-point mmWave

MIMO system, while in [84] the desired rate of the uplink was derived for the

case of mmWave fading channels. References [85] and [86] also implement the

EM algorithm for a MIMO channel. Further improvements to the EM algorithm

are proposed using EM-Generalized Approximate Message Passing (GAMP) [87]

and Vector Approximate Message Passing (VAMP) [88]. The use of EM-GAMP
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has been exploited for a broadband mmWave MIMO channel model with low

resolution ADCs at the RX in [89].

In terms of the EE maximization, the existing literature mostly discusses low

resolution DACs/ADCs with a large or full number of RF chains (one RF chain per

antenna) or full or high resolution sampling with a small number of RF chains. As

the power consumption of DACs/ADCs increases exponentially with the number

of bits, to further reduce the power consumption one can consider a combined

analog and digital hybrid structure with small number of RF chains and low

resolution DACs/ADCs as discussed briefly in Chapter 3. To observe the effect

of low resolution ADCs, an AQNM is considered in [57] for the case of a point-to-

point mmWave MIMO system and in [84] for the case of mmWave fading channels.

Reference [67] assumes fully digital precoding at the TX, and baseband and RF

combining with low resolution sampling at the RX. Reference [90] develops the

idea of a mixed-ADC architecture where a better energy-rate trade off is achieved

with the use of a combination of low and high resolution ADCs than using only

full resolution or low resolution systems.

Most of the literature studies the use of low resolution sampling only at the

RX side, assuming fully digital or hybrid TX with high resolution DACs. Given

the use of wide bandwidths in typical mmWave systems at the TX, employing low

resolution DACs at the TX can also help to reduce the power consumption. So

EE approaches that are mainly focused on ADCs at the RX can also be applied

to the DACs at the TX considering the TX specific system model parameters.

Reference [91] uses low resolution DACs which can be implemented to reduce the

power consumption for a hybrid MIMO architecture. Reference [92] employs low

resolution DACs at the base station for a narrowband multi-user MIMO system.
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References [44, 65] consider the EE optimization problem for hybrid transceivers

but with full resolution sampling at the DACs/ADCs.

This chapter exploits the low resolution sampling at the conversion units and

provides more efficient solutions in terms of EE and channel estimation than

existing baselines in the literature. The details of the contributions are discussed

in the following subsection.

4.1.2 Contributions

In section 4.3, we exploit the Stein’s Unbiased Risk Estimate (SURE) based

GAMP solution combined with EM steps called the EM-SURE-GAMP in a

mmWave MIMO system with low resolution sampling at the RX. Reference

[93] describes the advantages of the SURE based parametric denoiser when

incorporated with the Approximate Message Passing (AMP) framework. This

novel solution avoids strong assumptions on the channel statistics where SURE,

depending on the noisy observation, is minimized to adaptively optimize the

denoiser within the parametric class at each iteration. The proposed solution

is compared with the EM-GAMP solution for a narrowband channel model and

improved MSE performance is observed for both low and high SNR regimes. The

unknown channel parameters are modeled by a Bernoulli Gaussian distribution

for both the techniques.

In Section 4.4, we proceed with a A/D hybrid transmit beamformer with low

resolution DACs. The analog and digital parts are connected with a predefined

number of RF chains which can be in active or inactive state. Assuming that

the power consumption of the TX is determined mainly by the DACs of the RF

chains, deactivating specific RF chains in an intelligent manner would increase the

EE of the beamformer. Therefore, in this work, we derive an optimal approach in
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terms of EE maximization, which selects the best subset between the available RF

chains. We implement an iterative method to overcome the non-convexity of the

fractional programming optimization problem. The proposed approach capitalizes

from sparse-based subset selection techniques to provide an efficient solution to

the problem. We also implement an exhaustive search approach (for example,

in [65]) which expresses the upper bound for EE maximization and clearly shows

the performance trade-offs. In the next section, we discuss the mmWave A/D

HBF MIMO system model with low resolution DACs/ADCs.

This chapter proceeds by discussing the system model for a mmWave HBF

MIMO system with low resolution sampling in Section 4.2. Then it proposes an

efficient sparse channel estimation algorithm for a mmWave HBF MIMO system

with low resolution ADCs in Section 4.3, and EE maximization approach for

mmWave HBF MIMO system with low resolution DACs in Section 4.4. Section

4.5 provides the simulation results and Section 4.6 concludes this chapter.

4.2 MmWave HBF MIMO System with Low

Resolution DACs/ADCs

The system setup in Fig. 4.1 shows the updated system model (of Fig. 3.1)

with low resolution DACs and ADCs at the TX and the RX, respectively. We

already know that the number of TX RF chains LT is usually smaller than the

number of the TX antennas NT and similarly for the RX LR ≤ NR for a HBF

system. After the RF/analog precoding, each phase shifter is connected to all the

antenna elements, and similarly at the RX, each phase shifter is connected to all

the antenna elements before the analog combining unit.

At the TX, the low resolution DACs are associated with the RF chains after
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the baseband precoding unit and before the analog precoding unit. At the RX,

the low resolution ADCs are associated with the RF chains after the analog

combining unit and before the baseband combining unit. The analog precoder and

combiner matrices, FRF and WRF, are based on phase shifters, i.e., the elements

of these matrices have unit modulus and continuous phase over 0 − 2π radians.

Thus, FRF ∈ FNT×LT and WRF ∈ WNR×LR where the set F and W represent

the set of possible phase shifts in FRF and WRF, respectively. The sets F and

W for variables a and b, respectively, are defined as F = {a ∈ C | |a| = 1} and

W = {b ∈ C | |b| = 1}.

4.2.1 System with Low Resolution ADCs for Channel

Estimation

We consider the channel model in (3.1) and the beamspace representation of the

channel with ULA setup [38,39] as shown in (3.2) and express it as H = DRZDH
T ,

where Z ∈ CNR×NT represents a sparse channel matrix with a few non-zero

entries assumed to follow Bernoulli-Gaussian distribution, while DR ∈ CNR×NR

and DT ∈ CNT×NT are the DFT matrices at the RX and the TX, respectively.

For NT TX antennas and NR RX antennas, the channel matrix H ∈ CNR×NT can

be further expressed as follows:

H = DRZDH
T =

NR∑

i=1

NT∑

k=1

[Z]ikaR(φi)a
H
T (θk), (4.1)

where aT(θk) = 1√
NT

[1, e−jθk , . . . , e−j(k−1)θk ]T is the steering vector of the TX with

θk = k/NT the normalized uniformly spaced spatial angles. Specifically, each

element of the sparse matrix [Z]ik is assumed to follow the Bernoulli-Gaussian
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Figure 4.1: A mmWave A/D hybrid MIMO system with low resolution DACs/ADCs
at the TX/RX.

distribution [89], i.e.,

p([Z]ik) = (1− η)δ([Z]ik) +
η√

2πσh

e
− |[Z]ik|2

2σ2
h

where δ(·) is the Dirac delta function and η = L
NTNR

denotes the sparsity of the

virtual channel where L is the number of channel paths.

We consider the system setup in Fig. 4.1 with low resolution ADCs at the

RX and assume that the channel is quasi-static, i.e., it remains static during

a period of time, which includes both channel training and data transmission

phases. During the training phase, at each training instance t, the TX generates

the vector s(t) ∈ CNs×1 following E[s(t)s(t)H ] = 1
Ns

INs , which is the input to the

RF precoder, FRF(t) ∈ CLT×NT . This signal is transmitted through the sparsely

modeled channel Ĥ and the received vector is processed by the RF combiner

WRF(t) ∈ CNR×LR . The elements of the RF precoders and combiners have equal

norm as they represent the TX and the RX phase shifters. For the case of

number of streams equal to the number of RF chains, the baseband matrices,

FBB(t) ∈ CLT×Ns at the TX and WBB(t) ∈ CLR×Ns at the RX, are identity
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matrices so we consider only RF/analog processing to formulate the channel

estimation problem. Similar to (3.4) and considering low resolution ADCs at the

RX and full resolution sampling at the TX, the received signal after RF/analog

processing, yc(t) ∈ CLR×1 for t = 1, . . . , T , is expressed as follows:

yc(t) = WH
RF(t)[Ht(t) + n(t)] = WH

RF(t)HFRF(t)s(t) + WH
RF(t)n(t), (4.2)

where t(t) = FRF(t)s(t) is the transmitted signal at time instance t, n(t) is the

noise vector following the complex Gaussian distribution with i.i.d. entries, i.e.,

n(t) ∼ CN(0, σ2INR
). By concatenating all the T training sequences the into the

real-valued equivalent form we have

ȳ =




Re(ȳc)

Im(ȳc)


 = Ψ̄




Re(zc)

Im(zc)


+




Re(n̄c)

Im(n̄c)


 (4.3)

where the concatenated received signal ȳc = [yc(1), · · · ,yc(t)]
T ∈ CTLR×1, the

system matrix Ψ̄ =




Re(Ψ̄c) −Im(Ψ̄c)

Im(Ψ̄c) Re(Ψ̄c)




T

∈ R2TLR×2NRNT , where Ψ̄c =

[Ψc(1), · · · ,Ψc(t)]
T with Ψc(t) = {sT (t)FT

RF(t)DT ⊗WH
RF(t)DR} ∈ CTLR×NRNT ,

zc contains the entries of the sparse channel matrix Z, i.e.,

zc = vec(Z) = vec([Z11,Z12, . . . ,Z21,Z22, . . . ,ZNRNT
]T ), (4.4)

and n̄c = [WH
RFn(1), · · · ,WH

RFn(t)]T ∈ CTLR×1.

Now, let us denote the K-level quantization of ȳ ∈ R2TLR×1 as

q̄ = Q
(
ȳ
)
, (4.5)
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where q̄ = [q1, . . . , q2TLR
]T ∈ R2TLR×1. Each output element takes one of the

K distinct values i.e., q1
i , . . . , q

K
i . with qki = −(M + 1) + k∆ depending on the

quantizer lower and upper thresholds [lki , u
k
i ]. The lower and upper quantizer

boundary values are set to qmin = −κ
√
E{y2

i } and qmax = κ
√

E{y2
i }, ∀i and for

κ ∈ [1, 5], respectively. The quantizer’s step-size is given by ∆ = qmax−qmin

M
, while

the average power E{y2
i } can be obtained via an automatic gain control circuit.

4.2.2 System with Low Resolution DACs for EE Maxi-

mization

We now consider how to extend Section 4.2.1 to study the AQNM to represent

the introduced distortion of the quantization noise at the TX. Given that Q(·)

denotes a uniform scalar quantizer then for the scalar input s we have that,

Q(s) ≈ δs+ ε, (4.6)

where

δ =

√

1− π
√

3

2
2−2b (4.7)

is the multiplicative distortion parameter for bit sampling resolution equal to b

and ε is the additive quantization noise with ε ∼ CN(0, σ2
ε ) , where

σε =

√

1− π
√

3

2
2−2b

√
π
√

3

2
2−2b = δ(1− δ2). (4.8)

Let s ∈ CNs×1 is the normalized data vector, then based on the AQNM the

vector containing the complex output of all the DACs can be expressed as:

Q(FBBs) ≈ δFBBs + ε, (4.9)
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where Q(FBBs) ∈ CLT×1 and FBB ∈ CLT×Ns is the baseband part of transmit

beamformer. The second term of (4.9) expresses the additive quantization noise

for all RF chains with ε ∈ CN(0, σ2
ε ILT

). This leads us to the following expression

for the transmitted signal, as seen at the output of the A/D hybrid TX:

t = FRF (δFBBs + ε) = δFRFFBBs + FRFε, (4.10)

where FRF is the analog precoding matrix at the TX.

Note that, in this context, we consider the low resolution quantization at the

TX and full resolution sampling at the RX. So we can express the RX combining

matrix as W = WRFWBB ∈ CNR×Ns which includes both the RF and digital

processing at the RX. For such a system, the output RX signal is expressed as

follows:

r = WHHt + WHn (4.11)

=⇒ r = δWHHFRFFBB︸ ︷︷ ︸
Heff(LT,δ)

s + WHHFRFε + WHn︸ ︷︷ ︸
η

, (4.12)

where Heff(LT, δ) is the effective channel which is a function of the number of

RF chains LT and the distortion δ, η is the combined effect of the Gaussian and

quantization noise with η ∼ CN(0,Rη), while Rη is the combined noise covariance

matrix with,

Rη(LT, δ) = E[ηηH ] = σ2
εW

HHFRFFH
RFHHW + σ2

nW
HW, (4.13)

which is also a function of the number of RF chains LT and the distortion δ. Note

that unlike what is common in the existing literature, in this work we also take

into account the cross-terms of the noise covariance matrix Rη. We believe this
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is a more realistic scenario since it can also incorporate system impairments such

as phase noise into the problem formulation for the EE maximization case. In

the next section, we first proceed with the proposed sparse channel estimation for

the HBF system with low resolution ADCs at the RX and then discuss the EE

maximization for the HBF system with low resolution DACs at the TX.

4.3 Proposed Sparse Channel Estimation

4.3.1 Problem Formulation

Following the beamspace representation of the sparse mmWave channel in (3.2),

the system model of (4.2) can be rewritten into an equivalent form for the channel

estimation problem, i.e.,

yc(t) =
(
sT (t)FT

RF(t)DT ⊗WH
RF(t)DR︸ ︷︷ ︸

Ψc(t)∈CLR×NRNT

)
zc + WH

RF(t)n(t). (4.14)

Now the sparse estimation techniques can be utilized to recover the sparse vector

zc. Concerning the analog/RF beamforming matrices, these are designed as

random matrices [94] as we require sensing matrix to be random to be able to

apply CS. The TX and the RX share a pseudo-random key so the RX can predict

the precoding matrix. In particular, the angles of precoding/combining matrices

are generated as random variables following a uniform distribution, i.e., φ̃i(t) ∼

U(0, 2π). Then, for each training instance t and ∀ k = 1, . . . , NT, i = 1, . . . , LT,

we use the matrix:

[FRF(t)]ki =
1√
NT

ej(k−1) sin(φ̃i(t)), (4.15)
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Figure 4.2: Dithered beamforming architecture where the random control signals
are represented by red dashed arrows [96].

for the precoder, and accordingly for the combiner at the RX:

[WRF(t)]ki =
1√
NR

ej(k−1) sin(φ̃i(t)). (4.16)

Before proceeding, let us describe in more detail two main issues that render

the channel estimation problem more challenging in the case of channel estimation

at the RX of a hybrid MIMO system and low resolution quantization. The first

issue comes from the channel subspace sampling limitation [95] which prevents the

direct estimation of the CSI due to the beamforming matrices. In the conventional

case, where the beamforming matrices are composed by DFT columns, the

resulting measurement matrix Ψc has a block structure with areas of similar

values [96]. This implies that rank(Ψc) = rank(WH
RF(t)DR) ≤ NTNR. Moreover,

taking into account the quantization of the received signal, the overall system,

given by (4.5), is a non-linear one due to the staircase ADCs, especially for the

low resolution cases, i.e., 1-3 bit.

To overcome the quantization non-linearity effects at the RX, we employ

quantization dithering [97]. Dithering is a commonly used technique where an
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external signal is injected to the input to combat the non-linear quantization

effects, improve the robustness and the asymptotic stability of the system [98,99].

In a design like ours, two external signals are injected at the MIMO RX, one

in the spatial angles and another in the amplitude, as shown in Fig. 4.2 and

discussed in [96]. Therefore, the use of dithering is two-fold: first we improve the

properties of the measurement matrix by introducing randomness into the signal

capturing process. Afterwards, the outputs of the RF combiner are perturbed by

adding random analog memory-less signals to overcome the stair-case effects of

low resolution ADCs. In this work we consider a simple type of dithering termed

as non-subtractive random dithering. The additional dithering term in noise can

be considered as an artificial noise and the concept is similar to the method of

stochastic resonance. The concept of stochastic resonance comes into existence

when there are system nonlinearities and the increases in levels of unpredictable

fluctuations, e.g., random noise, cause an increase in a metric of the quality

of signal transmission or detection performance rather than a decrease. For

instance, [100] suggested that detection performance can be improved by adding

an independent noise to the data under certain conditions. Specifically, we assume

that a Gaussian random signal with zero mean, i.e., d̄ ∼ N(0, σ2
dI) is added to

the input, thus, the overall system is described as:

r̄ = Q
(
Ψ̄zc + n̄ + d̄

)
∈ R2TNR×1, (4.17)

where d̄ ∈ R2TNR×1 is the control signal. The overall noise can be modelled as

n̄ + d̄ ∼ N
(
0, σ2I

)
, where σ2 = σ2

n + σ2
d.
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4.3.2 EM-SURE-GAMP Based Proposed Solution

To solve the non-linear sparse channel estimation problem of (4.14), we obtain

an approximation of the maximum a-posteriori channel estimator via the EM

algorithm [83], for l-th iteration, i.e.,

Eȳ|̄r,zc

{
∂

∂zc

ln p(r̄, ȳ|zc(l))

}
= 0, (4.18)

where the conditional Probability Density Function (PDF) p(r̄, ȳ|zc) involving r̄

and ȳ random variables is computed based on [101]. The EM algorithm which

solves (4.17), is described by the following steps for the (l + 1)-th iteration:

• E-step: In the first step compute a vector bl = [b1(l), . . . , b2TNR (l)] with

entries

bi(l) = − σ√
2π

e−
(li−[Ψ̄zc(l)]i)

2

2σ2 − e−
(ui−[Ψ̄zc(l)]i)

2

2σ2

erf(
−li+[Ψ̄zc(l)]i√

2σ
)− erf(

−ui+[Ψ̄zc(l)]i√
2σ

)
(4.19)

where li, ui are the lower and upper bounds of the quantizer for [Ψ̄zc(l)]i

respectively; erf(·) is the error function.

• M-step: In the second step estimate the sparse channel zc(l+1) ∈ R2NRNT×1

by solving the linear system of equations:

Azc(l+1) = βl, (4.20)

with βl , Ψ̄T Ψ̄zc(l) +bl and A , Ψ̄T Ψ̄+C−1
h where C−1

h is the correlation

matrix based on the channel known statistics.

The performance of the EM algorithm is determined by which solution we use for

the linear system of equations in (4.20). Given that prior PDF of the CSI, i.e.,

p([Z]ik), is known, several sparse solvers can be employed for the estimation of zc,
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Algorithm 5 Proposed EM-SURE-GAMP Algorithm for Channel Estimation

1: Initialization: ẑ1 = 0, ξ0 = 0, c1 = 1
2NRNT

, τz(1) = 1.
// start GAMP iteration [108]
2: for t = 1, . . . , Tmax do
3: γt = Aẑt
4: τp(t) = 1

2NRNT
‖A‖2

F τz(t)

5: pt = γt − τp(t)ξt−1

// Compute EM-steps from (4.20)
6: Update δl using EM-steps.
// start parametric SURE-AMP steps [93]
7: Compute estimate of conditional probability distribution p(γt|pt, τp(t), δl)

as ξt = Ep(γt|pt,τp(t),δl)
[γt|pt, τp(t), δl]

8: Compute τξ(t) = 1
2NRNTτp(t)

[
1−

Varp(γt|pt,τp(t),δl)
[γt|pt,τp(t),δl]

τp(t)

]
using variance of

p(γt|pt, τp(t), δl)

9: 1
τβ(t)

= 1
2NRNT

‖A‖2
F τξ(t)

10: Compute noisy version of signal ẑt as βt = ẑt + τβ(t)A
∗ξt

11: Select θt = Ht(βt, ct) where parameter selection function Ht is designed as
a function of noisy data βt and effective noise covariance ct
12: Compute new signal estimate ẑt+1 = ft(βt, ct|θt) by denoising βl using
parametric denoising function ft(·|θt)
13: τz(t+1) = τβ(t)f

′
t(βt, ct|θt)

14: Estimate effective noise variance ct+1 = 1
2NRNT

‖τβ(t)ξt‖2
2

15: end for

e.g., AMP [102], CoSaMP [103], SGP [104], offering trade-offs between complexity,

performance and prior knowledge. Since the matrix dimensions are expected to be

very large in the massive MIMO case, matrix inversion is prohibitively complex.

The linear channel estimation problem in (4.20) can be considered similar to

the noisy quantized CS problem [105]; among the numerous existing algorithms

for sparse inverse linear problems, the AMP-based solver has been shown to

converge faster, i.e., in few iterations, with predictable dynamics together with

low computational complexity. In its original formulation for l1-minimization

[102], AMP is designed as a variant of a soft-thresholding iterative algorithm;
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in [106,107] extensions of AMP have been used to handle a wide class of random

sensing matrices and for sparse learning applications.

Note that the tendency of a GAMP algorithm [108] is to approach a computa-

tionally difficult problem by a sequence of simple scalar estimation problems with

matrix multipliers. When the matrix A is very large with i.i.d. sub-Gaussian en-

tries, GAMP is characterized by scalar state evolution [108] and when this state

evolution approaches a unique fixed point, GAMP converges to the Minimum

Mean Square Error (MMSE) solution. However, in practice, A may not be very

large with i.i.d. sub-Gaussian entries, even in that case the estimate provided by

the GAMP algorithm after a few iterations are often very close to the MMSE [87].

In our context, since the channel noise model in (4.17) is quantized Gaussian

as it is modeled as the quantization function, we need to adopt the generalized

version of AMP, i.e., GAMP [108], whose computation is detailed in the Algorithm

5 where the expectation is over the posterior probability p(γt|pt, τp(t), δl) which

is dependent on the quantizer function Q through (4.19). In particular, this

algorithm performs a sequence of MMSE estimations on the product Aẑt (which

is denoted as γt) where ẑt refers to the estimate of the vector zc(l+1) for the M-step

in (4.20) and l is the EM iteration index. The vector δl is updated using the EM-

steps as indicated in (4.20). In Algorithm 5, lines 7 and 8 represent the estimate

and variance of conditional probability distribution p(γt|pt, τp(t), δl) denoted as

Ep(γt|pt,τp(t),δl)
[·] (the value results in ξt which is used in following steps) and

Varp(γt|pt,τp(t),δl)
[·], respectively. Regarding the MMSE estimator for ẑt, standard

AMP [102] is based on the assumption that the prior p(ẑt) is precisely defined

and, therefore, it is possible to derive the associated MMSE estimator.

In this case, we utilize a variant, named SURE-GAMP, which derives specific

MMSE estimators tailored for the dithered system model in (4.17) as follows. The
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SURE approach [93] aims to find the denoiser within a class with the least MSE

by optimizing the free parameters θt of some piecewise kernel functions ft(·|θt) in

order to obtain an optimal adaptive non linearity; moreover, the optimization

of the denoiser does not require knowledge of the prior distribution. In the

simulations, SURE-GAMP uses a family of parameterized denoising functions

for the class of Bernoulli Gaussian signals, which can be analyzed through the

Gaussian-mixture distribution as well [89]. At each iteration, the parametric

SURE-GAMP algorithm adaptively chooses the best denoiser, i.e. the one with

the least MSE, by selecting the parameters θt which correspond to the minimum

of the selection function Ht, such as in line 11 of Algorithm 5, dependent on the

noisy data βt and the estimate of the effective noise variance ct which leads to

solving the following optimization problem:

θt = Ht(βt, ct) (4.21)

= arg min
θ

E[f(βt, ct|θ)− βt)
2 + 2ctf

′(βt, ct|θ)]

In [93], the authors have shown that this optimization is equivalent to solving a

linear system of equations whose dimension equals the number of kernel functions

which are the number nker of basis functions representing f(·|θ) (nker = 3, in the

simulations). Therefore, the overall complexity of SURE-GAMP is dominated

by the matrix-vector multiplications in lines 3 and 10 of Algorithm 5, whose

order is O((NRNT)2). The EM steps are combined with the SURE-GAMP

algorithm to avoid the need of specifying a prior probability on zc(l+1). The

algorithm converges after a few iterations when a solution close to minimum

MSE is achieved. In the next section we proceed with the low resolution DACs

case for EE maximization and the simulation results for both the sparse channel

estimation and EE maximization problems are presented in Section 4.5.
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4.4 Proposed EE Maximization Approach

4.4.1 Problem Formulation

Similar to the EE equation in (3.10) where it is a function of the diagonal sparse

matrix PTX, we can again define the EE of a point-to-point MIMO system as the

ratio of the information rate and the total consumed power [109]. Note that, in

this context we consider low resolution DACs at the TX, so the rate and power

quantities depend on the distortion of the DACs, i.e., δ and the number of the

RF chains, i.e., LT, thus the EE can be expressed as

EE(LT, δ) ,
R(LT, δ)

P (LT, δ)
(bits/Joule). (4.22)

Exploiting the linearity property of the quantization model in (4.9), the informa-

tion rate R(LT, δ) is expressed as:

R(LT, δ) = log2 |INs +
1

Ns

R−1
η HeffHH

eff| (bits/s/Hz), (4.23)

where the values of LT and δ will affect the noise covariance matrix Rη(LT, δ)

and the effective channel Heff(LT, δ).

Concerning the power consumption model as described in Section 2.2.4 for the

case of low resolution sampling at the TX and δ being the distortion of the DACs,

we consider that the total power consumption P (LT, δ) is proportional to:

P (LT, δ) ∝ LT


PDAC

(
π
√

3

2(1− δ2)

)1/2

+NTPPS


 (W), (4.24)
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where PDAC and PS depend upon the DAC and phase-shifter power consumption

values, respectively.

Given the expressions (4.23) and (4.24), we can now define the EE maximiza-

tion problem as a fractional programming problem:

arg max
LT,δ

EE(LT, δ) subject to P (LT, δ) ≤ Pmax, (4.25)

where Pmax is the maximum available power budget. Our goal, by solving (4.25),

is to obtain the number of RF chains and bit resolution in an optimal manner.

To obtain a solution to (4.25) we have developed an iterative procedure that

approximates the initial fractional problem with a convex-concave optimization,

using the Dinkelbach approximation [70] and subset selection. The Dinkelbach

approach makes an iterative approximation of the fractional problem with a

sequence of non-fractional but constrained optimization ones. Although simpler,

each one of these problems is still non-convex. However, by decomposing the

contribution of each RF chain to the EE performance of the system, we can

employ subset selection methods which minimize the number of RF chains by

solving an `1 approximation to the non-convex problem.

Before proceeding with the description of the proposed technique, we derive

a technique based on exhaustive search for EE maximization, which will serve as

an upper bound for comparison with the proposed method.

4.4.2 Upper Bound on EE via Exhaustive Search

To obtain an upper bound, we consider the case where LT = NT. This simplifies

the computation of the beamformers at the RX and the RX, by using the SVD of

the channel. However, since we change the number of the RF chains/antennas, the

channel and its SVD, has to be updated at each time. Specifically, an exhaustive
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search approach is needed to obtain the optimum EE over all possible values of

(LT, δ) ∈ {1, . . . , bmax} × {1, . . . , LT}. For each set value (LT, δ), the SVD of the

effective channel has to be obtained, i.e.,

Heff(LT, δ) = δUΣVH , (4.26)

where U ∈ CNR×NR and V ∈ CNT×NT are unitary matrices, and Σ ∈ RNR×NT is a

rectangular matrix of singular values in decreasing order whose diagonal elements

are non-negative real numbers and whose non-diagonal elements are zero. We

assume that the rank of the channel is r.

Hence, the rate expression in (4.23) becomes:

R(LT, δ) = log2 |INs +
δ2

Ns

R−1
η WHHFFHHHW|

= log2 |INs +
δ2

Ns

R−1
η ΣΣH |

=
r∑

i=1

log2

(
1 +

δ2

Ns

[R−1
η ]ii[ΣΣH ]ii

)
, (4.27)

where Rη becomes a diagonal matrix with entries [Rη]ii = σ2
ε [ΣΣH ]ii+σ2

n. Based

on (4.27), the rate expression is decomposed into the singular value domain, thus,

the number of the rank r represents the virtual number of RF chains. So, the goal

here is to reduce the number of virtual RF chains r, alongside with the distortion

δ which depends on the bit resolution b.

Algorithm 6 shows the exhaustive search approach (similar to [65] and the

concept of exhaustive search discussed in Section 3.4.4 of Chapter 3), called

the Brute Force (BF) technique, thus, it provides the solution to achieve the

optimal number of RF chains and the optimal number of associated DAC bits

at each channel realization. It makes a search of all the possible number of RF
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Algorithm 6 Brute Force (BF) Approach for RF Chain and DAC Bit Resolution
Selection
Input: bmax, H
Begin:
1. for b = 1, ..., bmax

2. Compute δ(b) based on (4.7)
3. for lt = 1, ..., NT

4. Compute the SVD of Heff(lt, δ(bi)) based on (4.26)
5. Compute EE(lt, δ(b)) based on (4.23) and (4.24)
6. end
7. end
8. Find the LoptT and bopt such as EE(Lopt

T , δ(bopt)) > EE(lt, δ(b)) ∀(b, lt)
Output: Lopt

T and bopt

chains/antennas, i.e., lt = {1, ..., NT} and over the available bit resolution, i.e.,

b = 1, ..., bmax, where bmax is the highest achievable resolution. It then finds the

best EE out of all possible efficiency values and chooses the corresponding optimal

number of active RF chains LoptT and the optimal resolution sampling bopt for the

TX. This method provides the best possible EE performance assuming that the

SVD of H is perfectly known at the TX.

4.4.3 Proposed Dinkelbach Method (DM) with Subset

Selection Optimization

Let us now consider an optimal design where we seek the sampling resolution for

each DAC and the optimal number of active RF chains LT that will maximize the

EE of the TX. We consider a variable number of RF chains, i.e., by using switches

to activate/deactivate each one independently [66], then the problem becomes:

arg max
S,δ

R(S, δ)

P (S, δ)
subject to P (S, δ) ≤ Pmax, (4.28)

where S ∈ {0, 1}LT×LT is a diagonal binary matrix representing switches which

activate or deactivate the RF chains. Hence, the resulting optimization problem
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of (4.28) has two unknown quantities to be recovered, the matrices S and δ. We

transform the problem into a subset selection based problem considering sparse

optimization and compressive sampling.

We consider the problem to be equivalent to finding only a sparse selection

vector, diag(S) ∈ {0, 1}LT×1, where each unity value represents one active RF

chain with a predefined resolution, while the zero value represents an inactive

RF chain. It is important to note that based on the proposed architecture, the

optimization problem does not consider a predefined number of active/inactive RF

chains, but this quantity is an optimization variable. Incorporating this selection

procedure into our formulation, the received signal r̂ ∈ CNs×1 after the baseband

RX, which is the modified expression of the output RX signal r in (4.12), is

expressed as

r̂ = δWHHFRFSFBBs + η, (4.29)

where S ∈ {0, 1}LT×LT is a diagonal selection matrix composed by zeros and

ones, with [S]kk ∈ {0, 1} and [S]kl = 0 for k 6= l; the term δWHHFRFSFBB is

the effective channel Ĥeff ∈ CNs×Ns in this case, including hybrid TX precoding

and RX combining and quantization distortion. The parameter that we aim

to optimize in (4.29) is now the entries of the diagonal selection matrix S ∈

{0, 1}LT×LT . The effective channel can be decomposed as:

Ĥeff = δWHHFRFSFBB (4.30)

=

LT∑

i=1

[S]ii[δW
HHFRF]i[F

T
BB]Ti

=

LT∑

i=1

[S]iiaib
T
i , (4.31)

where bi , [FT
BB]i ∈ CNs×1, ai , [δR

− 1
2

η WHHFRF]i ∈ CNs×1 and where
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[S]ii ∈ {0, 1} determines the state of the i-th RF chain. Based on (4.31), the

received signal can be equivalently expressed as the following measurement vector:

r̂ =

LT∑

i=1

[S]iiai(b
T
i s) + η̂, (4.32)

where η̂ , Sη whose noise covariance matrix, which is the modified expression

of the noise covariance matrix Rη in (4.13), can be expressed in terms of the

selection matrix as

R̂η = E[η̂η̂H ] = σ2
εW

HHFRFSFBBFH
BBSFH

RFHHW + σ2
nW

HW. (4.33)

The problem becomes equivalent with the estimation of S that maximizes the EE

of the hybrid precoder. It can be shown that the rate and power equations for

such scenario can be expressed as:

R(S, δ) = log2

∣∣∣∣∣INs +
1

Ns

LT∑

i=1

[S]iia
H
i aibib

H
i

∣∣∣∣∣ , (4.34)

and

P (S, δ) ∝
LT∑

i=1

[S]ii


PDAC

(
π
√

3

2(1− δ2)

)1/2

+NTPPS


 (4.35)

= LT


PDAC

(
π
√

3

2(1− δ2)

)1/2

+NTPPS


 (W). (4.36)

The problem of maximizing EE (4.28) is a concave-convex fractional problem

and one solution method is the Dinkelbach approximation [70]. The DM,

as discussed in Chapter 3 already, is an iterative and parametric algorithm,

where a sequence of easier problems converge to the global solution. Let
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Algorithm 7 Proposed Dinkelbach Method (DM) for RF Chain and DAC Bit
Selection
Input: κ(0), H
Begin:
1. for b = 1, ..., bmax

2. Compute Heff(NT, δ(b)) in (4.26).
3. for m = 1, 2, . . . , Imax

4. Obtain S(m) by solving (4.37) given κ(m−1).
5. Calculate R(S(m), δ(m)) in (4.34) and P (S(m), δ(m)) in (4.35).
6. Compute κ(m) = R(S(m), δ(m))/P (S(m), δ(m)).
7. end
8. end
Output: Optimal LT

opt and bopt

κ(m) = R(S(m), δ(m))/P (S(m), δ(m)) ∈ R, for m = 1, 2, . . . , Imax, where Imax is

the maximum number of iterations, then each iteration step of Dinkelbach can be

expressed as:

S(m)(κ(m)) , arg max
S∈S

{
R(S, δ)− κ(m)P (S, δ)

}
, (4.37)

where S is the set of diagonal matrices with the feasible bit allocations which

satisfy P (S, δ) ≤ Pmax. Algorithm 7 summarizes the Dinkelbach algorithm via the

subset selection approach where the optimal number of RF chains and associated

sampling resolution is obtained.

Computational Complexity of the Proposed DM

It can be observed that the DM via subset selection approach requires complexity

order of only bmaxO(L3
T) per iteration and the BF approach requires complexity

order of bmaxO(L2
TNT). Since the number of the required iterations is usually

very small (as shown in Fig. 4.7) as the F and W matrices are required to be

computed in Algorithm 6 and not Algorithm 7, the overall complexity of the DM

via the subset selection approach is much less than the BF approach.
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Figure 4.3: MSE versus SNR performance for the proposed EM-SURE-GAMP
channel estimation.

4.5 Simulation Results

In this section, we evaluate the MSE performance of the proposed EM-SURE-

GAMP technique for sparse channel estimation, and the EE and SE performance

of the proposed DM for EE maximization using computer simulation results. The

computer simulation results have been averaged over 100 and 1000 Monte-Carlo

realizations, for the sparse channel estimation case and the EE maximization case,

respectively. Note that MSE performance results of the proposed EM-SURE-

GAMP algorithm are compared with the EM-GAMP solution. Reference [108]

suggests the computation of the minimum MSE of the estimate; combined with

EM steps we can plot the MSE results of EM-GAMP algorithm to compare with

the proposed EM-SURE-GAMP solution.
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Figure 4.4: MSE versus the number of ADC bits for the proposed EM-SURE-GAMP
channel estimation.

4.5.1 MSE Performance of Proposed EM-SURE-GAMP

System Setup: Following the condition LT ≤ NT and LR ≤ NR for a hybrid

MIMO architecture, we consider a simple case of NT = 8, NR = 8, and

the number of RF chains and streams equal to the number of antennas, i.e.,

LT = LR = Ns = 8. It provides us easier computation for the analog precoder

and combiner matrices. We can also consider fewer RF chains and streams than

the number of antennas [17] to observe the channel estimation performance plots.

The number of multipaths is 5 and due to low overload probability, the value of

κ used in the quantization is 4. We run the proposed algorithm for Tmax = 1 and

100 EM iterations.

Fig. 4.3 shows the MSE variations w.r.t. SNR when comparing the EM-

SURE-GAMP algorithm with EM-GAMP for 1-bit, 2-bit and 3-bit resolution

ADCs. We can observe that the EM-SURE-GAMP algorithm achieves better



CHAPTER 4. Sparse MmWave Channel Estimation and EE Maximization
with Low Resolution DACs/ADCs 102

MIMO 8x8, RF chains 8x8, Channel sparsity=8%

200 400 600 800 1000 1200 1400 1600 1800 2000

Training Length

-30

-25

-20

-15

-10

-5

0
M

S
E

 (
d

B
)

EM-GAMP for 1 bit

EM-GAMP for 2 bits

EM-GAMP for 3 bits

EM-SURE-GAMP for 1 bit

EM-SURE-GAMP for 2 bits

EM-SURE-GAMP for 3 bits

Figure 4.5: MSE versus the training length T for the proposed EM-SURE-GAMP
channel estimation.

MSE performance for both low and high SNR regimes. For example, at SNR =

10 dB, the SURE algorithm variant outperforms EM-GAMP by about 3 dB in

MSE terms for 1-bit quantization. For 2- and 3-bit, the MSE gain is around 2

dB.

Fig. 4.4 again shows that EM-SURE-GAMP performs better than EM-GAMP

when MSE is plotted against the number of quantization bits for different values

of SNR such as −5 dB, 10 dB and 20 dB. The training length for Fig. 4.3 and

Fig. 4.4 is T = 211 and EM-SURE-GAMP shows good performance for a channel

sparsity level of 8%, i.e., the ratio of non-zero entries of the beamspace channel to

the product NR×NT. It can be observed that, for example, with 3-bit resolution,

a significant gain in MSE for the SURE variant of around 6− 7 dB compared to

EM-GAMP is observed for all SNR values.

Fig. 4.5 shows that the EM-SURE-GAMP solution outperforms EM-GAMP

solution w.r.t. the training length for a range of training sequence lengths of 64
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Figure 4.6: Convergence of the proposed DM for different number of TX antennas
at SNR = 30 dB, NR = 32, LT = 32 and Ns = 8.

to 2048 and converges more quickly than EM-GAMP for a channel sparsity level

of 8%, 15 dB SNR, when 1-bit, 2-bit and 3-bit ADC resolutions are considered.

4.5.2 EE and SE Performance of Proposed DM

System Setup: NT = 64, NR = 32, LT = 32 (the number of available RF chains),

Ns = 8, Ncl = 2, Nray = 10, and σ2
α,i = 1. The azimuth angles of departure and

arrival are computed with uniformly distributed mean angles; each cluster follows

a Laplacian distribution with mean angles equal to zero. The antenna elements

in the ULA are spaced by distance d = λ/2. Concerning the quantization model,

since DACs have the same sampling resolution for each RF chain the quantization

distortion parameter is the same for all DACs and the highest bit resolution

bmax = 8. The typical values of power terms for the power model in (4.24) of

Subsection 3.2.2 are PPS = 10 mW, PDAC = 0.1 W and Pmax = 1 W. We solve the

sparse approximation problem for the RF and baseband precoding matrices FRF
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Figure 4.7: EE and SE performance comparison w.r.t. transmit SNR (dB) at
NT = 64, NR = 32, LT = 32 and Ns = 8.

and FBB using Orthogonal Matching Pursuit (OMP) [16, 17], and the combiner

matrix W is the product of 1/
√
Ns and the first Ns columns of the matrix U.

For comparison with the proposed DM via subset selection solution, we have

considered the digital beamforming architecture (LT = NT) with 8-bit DACs,

which represents the optimum from the achievable SE perspective, combined

analog and digital hybrid precoding with LT RF chains for 1-bit and 8-bit DACs,

which represent the lowest and the highest SE cases. We also compare with

the hybrid beamforming for LT RF chains with a random resolution selected for

each DAC from the range [1, 8]-bit, and hybrid beamforming with the optimal

number of active RF chains LoptT and corresponding optimal sampling resolution

bopt obtained from the BF approach.

Fig. 4.6 shows the convergence of the DM based solution as proposed in

Algorithm 7 to obtain the optimal number of active RF chains and corresponding

optimal sampling resolution. It can be observed that the performance curves
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Figure 4.8: EE and SE performance comparison w.r.t. the number of TX antennas
NT at SNR = 5 dB, NR = 32, LT = 32 and Ns = 8.

based on the current EE κ (step 6 of Algorithm 7) for different numbers of

TX antennas increase w.r.t. the number of iterations. The proposed solution

converges rapidly and needs only 2-3 iterations to converge.

It can be clearly observed from Fig. 4.7 that the proposed solution achieves

a similar EE performance w.r.t. SNR as the BF approach and outperforms

the hybrid 1-bit and hybrid 8-bit quantized DACs, plus the hybrid randomly

selected resolution and digital beamforming with full-bit (8-bit) quantization. For

example, at 10 dB SNR, the EE for the proposed DM solution is approximating

the BF solution performance, about 0.3 bits/Joule better than the randomly

selected resolution with hybrid beamforming, about 0.35 bits/Joule better than

the hybrid 1-bit and about 0.38 bits/Joule better than the hybrid 8-bit and digital

beamforming baselines. The proposed solution also achieves SE performance

higher than the randomly selected and 1-bit quantization baselines. Only the

digital beamforming and 8-bit hybrid baselines have better SE performance, but
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Figure 4.9: EE and SE performance comparison w.r.t. the number of RX antennas
at SNR = 5 dB, NT = 64, LT = 32 and Ns = 8.

this is achieved by using higher rate 8-bit quantization DACs. For example, at

0 dB SNR, the proposed solution outperforms randomly selected quantization by

about 7 bits/s/Hz, 1-bit hybrid by about 9 bits/s/Hz. Concerning the lower SE

performance of the proposed technique and the BF approach, this is due to the

fact that BF has no constraint in the overall power consumption.

Fig. 4.8 shows similar performance behavior when plotting EE and SE

w.r.t. the number of TX antennas at 5 dB SNR. For example, for NT = 80,

the proposed solution demonstrates EE performance close to the BF approach,

The DM performs about 0.3 bits/Joule and about 7.5 bits/s/Hz better than the

hybrid randomly selected resolution baseline and about 0.35 bits/Joule and 10

bits/s/Hz better than the 1-bit hybrid baseline. Fig. 4.9 plots the performance

comparison of the proposed solution with the baselines w.r.t. number of RX

antennas at 5 dB SNR. Similar to above plots, it achieves high SE and has almost

the same EE performance as the BF approach. For example, for NR = 16, the
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proposed solution demonstrates EE performance close to the BF approach. The

DM solution performs about 0.25 bits/Joule and 5 bits/s/Hz better than the

randomly selected resolution baseline, and about 0.275 bits/Joule and about 7.5

bits/s/Hz better than the 1-bit hybrid baseline.

4.6 Summary

In this chapter we discussed sparse channel estimation and EE maximization

solutions with low resolution sampling at the ADCs and the DACs, respectively.

Firstly in Section 4.3, we propose an efficient algorithm based on the AMP

framework to estimate the sparse mmWave channel in a hybrid MIMO system

with low resolution ADCs at the RX. The EM-SURE-GAMP algorithm is

proposed and exploited to estimate the channel which provides the flexibility

to avoid strong assumptions on the channel priors where SURE, depending on

the noisy observation, is minimized to adaptively optimize the denoiser within

the parametric class at each iteration. When compared with the state of the art

EM-GAMP solution, the MSE of the proposed solution performs better w.r.t. low

and high SNR regimes, w.r.t. the number of ADC bits, and w.r.t. the training

length.

Secondly, in Section 4.4, we consider a mmWave hybrid MIMO system with

analog and digital parts connected with fewer number of RF chains than the

transmitting antennas, while TX DACs operate with low resolution sampling.

We consider the case where all DACs have the same sampling resolution for each

RF chain and aim to optimize the number of active RF chains and associated

resolution of DACs. The proposed method achieves similar EE performance with

the upper bound of the derived exhaustive search approach, while it exhibits lower

computational complexity and fast convergence.
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In the next chapter, we use the low resolution sampling at both the TX and

the RX simultaneously, and include the joint DAC/ADC bit allocation and HBF

optimization for EE maximization with varying bit resolutions unlike the EE

maximization case in this chapter.



Chapter 5

EE Maximization by Joint Bit Allocation and

Hybrid Beamforming Optimization

5.1 Introduction

T
he A/D HBF MIMO systems reduce the hardware complexity and power

consumption through using fewer RF chains and optimizing the number of

RF chains with full resolution sampling provides an energy efficient system. An

alternative solution to reduce the power consumption and hardware complexity

is by reducing the bit resolution [15] of the DACs and the ADCs. In the previous

chapter, an efficient sparse mmWave channel estimation algorithm is designed for

a HBF MIMO system with low resolution sampling at the ADCs. Furthermore,

the low resolution sampling is implemented at the DACs and bit resolution with

active RF chains selection is optimized to achieve high EE gains. The EE

maximization work in Chapter 4 discusses a low resolution sampling setup but all

DACs choose the same sampling resolution for each RF chain. In this chapter,

we provide the flexibility in choosing the bit resolution for each DAC and ADC,

and a joint optimization problem is formulated involving both the TX and the

RX. We jointly optimize the HBF and DAC/ADC bit resolution matrices, unlike

109
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the existing approaches that optimize either DAC/ADC bit resolution or HBF

matrices. The proposed design provides high flexibility, given that the analog

precoder/combiner is codebook-free, thus there is no restriction on the angular

vectors and different bit resolutions can be assigned to each DAC/ADC. We

proceed with the literature review in the next subsection and then discuss the

contributions of this chapter in detail in the following subsection.

5.1.1 Literature Review

As we know, to observe the effect of ADC resolution and bandwidth on rate,

an AQNM is considered in [57] for a mmWave MIMO system under a RX power

constraint. Reference [84] uses AQNM and shows the significance of low resolution

ADCs on decreasing the rate. Recent work on A/D hybrid MIMO systems with

low resolution sampling dynamically adjusts the ADC resolution [110]. Most

of the literature such as in [25, 57, 84, 90, 110–112] imposes low resolution only

at the RX side, and mostly assumed a fully digital or hybrid TX with high

resolution DACs. However, there is a need to conduct research on optimizing

the bit resolution problem for the TX side as well.

Furthermore, the existing literature mostly develops systems based on high

resolution ADCs with a small number of RF chains or low resolution ADCs with

a large number of RF chains. Either way, only fixed resolution DACs/ADCs are

taken into account. References [44,65] consider EE optimization problems for A/D

hybrid transceivers but with fixed and high resolution at the DACs/ADCs. The

power model in [65]takes into account the power consumed at every RF chain and

a constant power term for site-cooling, baseband processing and synchronization

at the TX and [44] considers the RF hardware losses and some computational

power expenditure.
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Some approaches have been applied in A/D hybrid mmWave MIMO systems

for EE maximization and low complexity with both full and low resolution sam-

pling cases [24,26]. Reference [24] proposes an energy efficient A/D hybrid beam-

forming framework with a novel architecture for a mmWave MIMO system. The

number of active RF chains are optimized dynamically by fractional programming

to maximize EE performance but the DAC/ADC bit resolutions are fixed. Refer-

ence [26] proposes a novel EE maximization technique that selects the best subset

of the active RF chains and DAC resolution which can also be extended to low

resolution ADCs at the RX. Reference [111] suggests implementing fixed and low

resolution ADCs with a small number of RF chains. Reference [90] works on the

idea of a mixed-ADC architecture where a better energy-rate trade off is achieved

by combining low and high resolution ADCs, but still with a fixed resolution for

each ADC and without considering A/D hybrid beamforming. An A/D hybrid

beamforming system with fixed and low resolution ADCs has been analyzed for

channel estimation in [25].

One can implement varying resolution ADCs at the RX [112] which may

provide a better solution than the RX with fixed and low resolution ADCs.

Similarly, exploring low resolution DACs at the TX can also help reduce the

power consumption. Thus, research that is focused on ADCs at the RX can also

be applied to the TX DACs considering the TX specific system model parameters.

Similar to using different ADC resolutions at the RX [112], which could provide

a better solution than fixed low resolution ADCs, one can design a variable DAC

resolution TX. Extra care is needed when deciding the number of bits used as

the total DAC/ADC power consumption can be dominated by only a few high

resolution DACs/ADCs. From [113], we notice that a good trade off between the
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power consumption and the performance may be to consider the range of 1-8 bits

for I- and Q-channels, where 8-bit represents the full-bit resolution DACs/ADCs.

Reference [91] uses low resolution DACs for a single user MIMO system

while [92] employs low resolution DACs at the base station for a narrowband

multi-user MIMO system. Reference [114] also discusses fixed and low resolution

DACs architecture for multi-user MIMO systems. Reference [115] considers a

single user MIMO system with quantized hybrid precoding including the RF

quantized noise term beside the AWGN while evaluating EE and SE performance.

The existing literature still does not consider adjusting the resolution associated

with DACs/ADCs dynamically. It is possible to consider both the TX and the RX

simultaneously where we can design an optimization problem to find the optimal

number of quantized bits to achieve high EE performance. When designing for

high EE, the complexity of the solution also needs to be taken into account while

providing improvements over the existing literature.

5.1.2 Contributions

This chapter designs an optimal EE solution for a mmWave A/D hybrid MIMO

system by introducing a novel TX decomposition of the A/D hybrid precoder

to three parts representing the analog precoder matrix, the DAC bit resolution

matrix and the digital precoder matrix, respectively. A similar decomposition at

the RX represents the analog combiner matrix, the ADC bit resolution matrix

and the digital combiner matrix. Our aim is to minimize the distance between

the decomposition, which is expressed as the product of three matrices, and the

corresponding fully digital precoder or combiner matrix. The joint problem is

decomposed into a series of sub-problems which are solved using the Alternating
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Direction Method of Multipliers (ADMM). We implement an exhaustive search

approach [65] to evaluate the upper bound for EE maximization.

In [27], we addressed bit allocation and hybrid combining at the RX only,

where we jointly optimized the number of ADC bits and hybrid combiner matrices

for EE maximization. A novel decomposition of the hybrid combiner to three parts

was introduced: the analog combiner matrix, the bit resolution matrix and the

baseband combiner matrix, and these matrices were computed using the ADMM

approach in order to solve the matrix factorization problem. In addition to [27],

the main contributions of this chapter can be listed as follows:

• This chapter designs an optimal EE solution for a mmWave A/D hybrid

beamforming MIMO system by introducing the novel matrix decomposition

that is applied to the hybrid beamforming matrices at both the TX

and the RX. This decomposition defines three matrices, which are the

analog beamforming matrix, the bit resolution matrix and the baseband

beamforming matrix at both the TX and the RX. These matrices are

obtained by the solution of an EE maximization problem and the DAC/ADC

bit resolution is adjusted dynamically unlike fixed bit resolution in the

existing literature.

• The joint TX-RX problem is a difficult problem to solve due to non-convex

constraints and non-convex cost functions. Firstly we address the joint

TX-RX problem unlike in the existing literature. Then we decouple it

into two sub-problems dealing with the TX and the RX separately, where

the corresponding problems at the TX and the RX are solved by the

alternating minimization technique such as ADMM [116] to obtain the

unknown precoder/combiner and DAC/ADC bit resolution matrices.

• This work jointly optimizes the hybrid beamforming and DAC/ADC
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bit resolution matrices, unlike the existing approaches that optimize ei-

ther DAC/ADC bit resolution or hybrid beamforming matrices. More-

over, the proposed design has high flexibility, given that the analog pre-

coder/combiner is codebook-free, thus there is no restriction on the angular

vectors and different bit resolutions can be assigned to each DAC/ADC.

The performance of the proposed technique is investigated through extensive

simulation results, achieving increased EE compared to the baseline techniques

with fixed DAC/ADC bit resolutions and number of RF chains, and an exhaustive

search based approach which is an upper bound for EE maximization. In the

next section, we present the channel and system models where the channel model

is based on a mmWave channel setup and the system model defines the low

resolution quantization at both the TX and the RX.

5.2 MmWave HBF MIMO System with Low

Resolution DACs and ADCs

We consider the same channel model as in (3.1) and similar mmWave MIMO HBF

system model as shown in Fig. 4.1. In addition, Fig. 5.1 shows the block diagram

of beam tracking phase and data communications phase in this context. Note

that, unlike the previous chapter where we discuss the low resolution sampling at

the TX for EE maximization and the RX for channel estimation, we consider the

low resolution sampling both at the DACs and the ADCs simultaneously in this

chapter. We follow the same definition of the channel model and system model

parameters as in the previous chapters. We again use ULA antennas for simplicity

and model the antenna elements at the RX as ideal sectored elements [35].

We assume that the CSI is known at both the TX and the RX. The matrices
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Figure 5.1: Block diagram of the beam tracking phase and the data communications
phase.

FRF ∈ FNT×LT and WRF ∈ WNR×LR where the set F and W represent the

set of possible phase shifts in FRF and WRF, respectively. The sets F and W

for variables f and w, respectively, are defined as F = {f ∈ C | |f | = 1} and

W = {w ∈ C | |w| = 1}.

Note that, we optimize the DAC and ADC resolution and the precoder and

combiner matrices at the TX and the RX on a frame-by-frame basis. As shown

in Fig. 5.1, we consider two stages in the system model: i) the beam training

phase, and ii) the data communications phase. In stage i), firstly, the channel H

is computed which provides us the optimal beamforming matrices, i.e., FDBF at

the TX and WDBF at the RX. In stage ii), the optimal precoding and DAC bit

resolution matrices FRF, FBB and ∆TX at the TX, respectively, and the optimal

combining and ADC bit resolution matrices WRF, WBB and ∆RX at the RX are

obtained. These two phases consist of one communication frame where the frame

duration is smaller than the channel coherence time. Furthermore, if we assume

that the TX/RX is active for stage i) a small proportion of time, for example,

< 10%, then the overall transmit energy consumption is dominated by stage ii).

Similar to the previous chapter, we consider the linear AQNM to represent

the distortion of quantization [57]. Given that Q(·) denotes a uniform scalar

quantizer then for the scalar complex input x ∈ C that is applied to both the real
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and imaginary parts, we have, Q(x) ≈ δx+ε, where δ =
√

1− π
√

3
2

2−2b ∈ [m,M ] is

the multiplicative distortion parameter for a bit resolution equal to b [117], where

m and M denote the minimum and maximum value of the range. The resolution

parameter b is denoted as bti ∀ i = 1, . . . , LT and bri ∀ i = 1, . . . , LR at the TX

and the RX, respectively. Note that the introduced error in the above linear

approximation decreases for larger resolutions. However, our proposed solution

focuses on EE maximization and this linear approximation does not impact the

performance significantly as observed from the simulation results in Section 5.5.

The parameter ε is the additive quantization noise with ε ∼ CN(0, σ2
ε ), where

σε =
√

1− π
√

3
2

2−2b

√
π
√

3
2

2−2b. The matrices ∆TX and ∆RX represent diagonal

matrices with values depending on the bit resolution of each DAC and ADC,

respectively. Specifically, each diagonal entry of ∆TX is given by:

[∆TX]ii =

√

1− π
√

3

2
2−2bti ∈ [m,M ] ∀ i = 1, . . . , LT, (5.1)

and each diagonal entry of ∆RX is given by:

[∆RX]ii =

√

1− π
√

3

2
2−2bri ∈ [m,M ] ∀ i = 1, . . . , LR, (5.2)

where, for simplicity, we assume that the range [m,M ] is the same for each of

the DACs/ADCs. The additive quantization noise for the DACs and ADCs are

written as complex Gaussian vectors εTX ∈ CN(0,CεT) and εRX ∈ CN(0,CεR) [26]

where CεT and CεR are the diagonal covariance matrices for DACs and ADCs,

respectively. The covariance matrix entries are as follows:

[CεT]ii=

(
1−π

√
3

2
2−2bti

)(
π
√

3

2
2−2bti

)
∀i=1, .., LT, (5.3)
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and

[CεR]ii=

(
1−π

√
3

2
2−2bri

)(
π
√

3

2
2−2bri

)
∀i=1, .., LR. (5.4)

Note that while optimizing the EE of the TX side, it is considered that the RX

parameters, which includes the analog combiner matrix, the ADC bit resolution

matrix and the baseband combiner matrix is known to the TX and vice-versa.

Let us consider s ∈ CNs×1 as the normalized data vector, then based on

the AQNM, the vector containing the complex output of all the DACs can be

expressed as follows:

Q(FBBs) ≈∆TXFBBs + εTX ∈ CLT×1, (5.5)

This leads us to the following linear approximation for the transmitted signal

t ∈ CNT×1, as seen at the output of the A/D hybrid TX in Fig. 4.1:

t = FRF∆TXFBBs + FRFεTX. (5.6)

After the effect of the wireless mmWave channel H and the Gaussian noise

n with independent and identically distributed entries and complex Gaussian

distribution, i.e., n ∼ CN(0, σ2
nINR

), the received signal y ∈ CNR×1 is expressed

as follows:

y =Ht + n = HFRF∆TXFBBs + HFRFεTX + n. (5.7)

When the analog combiner matrix WRF and ADC quantization based on AQNM

are applied to the received signal y, we obtain the following:

Q(WH
RFy) ≈∆H

RXWH
RFy + εRX ∈ CLR×1. (5.8)
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After the application of the baseband combiner matrix WBB, the output signal

r ∈ CNs×1 at the RX, as shown in Fig. 4.1, can be expressed as follows:

r = WH
BB∆H

RXWH
RFy + WH

BBεRX. (5.9)

Considering the A/D hybrid precoder matrix F=FRF∆TXFBB∈CNT×Ns and the

A/D hybrid combiner matrix W = WRF∆RXWBB∈CNR×Ns , we can express the

RX output signal r in (5.9) as follows:

r = WHHFs + WHHFRFεTX + WH
BBεRX + WHn︸ ︷︷ ︸

η

, (5.10)

where η is the combined effect of the additive white Gaussian RX noise and

quantization noise that has covariance matrix, Rη ∈ CNs×Ns , given by,

Rη=WHHFRFCεTFH
RFHHW+WH

BBCεRWBB+σ2
nW

HW. (5.11)

In the following sections, we discuss the joint optimization solution to compute the

optimal DAC/ADC bit resolution matrices and the optimal precoder/combiner

matrices.

5.3 Joint DAC Bit Allocation and A/D Hybrid

Precoding Optimization

Let us consider a point-to-point MIMO system with a linear quantization model.

We define the EE as the ratio of the information rate R, i.e. SE, and the total
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consumed power P [109] as:

EE , R

P
(bits/Hz/J). (5.12)

For the given point-to-point MIMO system, the SE is defined as,

R, log2

∣∣∣∣INs +
R−1
η

Ns

WHHFFHHHW

∣∣∣∣ (bits/s/Hz), (5.13)

where F = FRF∆TXFBB and W = WRF∆RXWBB.

Similar to the power model at the TX in [26] and following Section 2.2.4 for

the case of low resolution quantization and the power consumption at both the

TX and the RX, the total consumed power for the system is expressed as

P , PTX(FRF,∆TX,FBB) + PRX(∆RX) (W), (5.14)

where the power consumption at the TX is as follows:

PTX(FRF,∆TX,FBB) =tr(FFH) + PDT(∆TX) +NTPT +NTLTPPT + PCT (W),

(5.15)

where PPT is the power per phase shifter, PT is the power per antenna element,

PDT(∆TX) is the power associated with the total quantization operation at the

TX, and following (5.1) and [57], we have

PDT(∆TX)=PDAC

LT∑

i=1

2b
t
i =PDAC

LT∑

i=1

(
π
√

3

2(1−[∆TX]2ii)

)1
2

(W), (5.16)

where PDAC is the power consumed per bit in the DAC and PCT is the power

required by all circuit components at the TX. Similarly, the total power con-
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sumption at the RX is,

PRX(∆RX)=PDR(∆RX)+NRPR+NRLRPPR+PCR (W), (5.17)

where, at the RX, PPR is the power per phase shifter, PR is the power per antenna

element, PDR is the power associated with the total quantization operation, and

following (5.2) and [57], we have

PDR(∆RX)=PADC

LR∑

i=1

2b
r
i =PADC

LR∑

i=1

(
π
√

3

2(1−[∆RX]2ii)

)1
2

(W), (5.18)

where PADC is the power consumed per bit in the ADC and PCR is the power

required by all RX circuit components.

The maximization of EE is given by

max
FRF,∆TX,FBB,WRF,∆RX,WBB

R(FRF,∆TX,FBB,WRF,∆RX,WBB)

PTX(FRF,∆TX,FBB) + PRX(∆RX)

subject to FRF ∈ FNT×LT ,∆TX ∈ DLT×LT
TX ,WRF ∈WNR×LR ,∆RX ∈ DLR×LR

RX ,

(5.19)

when the SE R is given by (5.13) and the power P in (5.14). The problem

to be addressed involves a fractional cost function that both the numerator

and the denominator parts are non-convex functions of the optimizing variables.

Furthermore the optimization problem involves non-convex constraint sets. Thus,

it is in general a very difficult problem to be addressed. It is interesting that the

corresponding problem for a fully digital transceiver that admits a much simpler

form is in general intractable due to the coupling of the TX-RX design [118]. To

that end, we start by decoupling the TX-RX design problem.

Let us first express the EE maximization problem in the following relaxed
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form:

min
FRF,∆TX,FBB,WRF,∆RX,WBB

−R(FRF,∆TX,FBB,WRF,∆RX,WBB)

+ γTPTX(FRF,∆TX,FBB) + γRPRX(∆RX)

subject to FRF ∈ FNT×LT ,∆TX ∈ DLT×LT
TX ,

WRF ∈WNR×LR ,∆RX ∈ DLR×LR
RX , (5.20)

where the parameters γT ∈ (0, γmaxT ] ⊂ R+ and γR ∈ (0, γmaxR ] ⊂ R+ are

introducing a trade-off between the achieved rate and the power consumption

at the TX’s and the RX’s side, respectively. Such an approach has been used in

the past to tackle fractional optimization problems [70]. In the concave/convex

case, the equivalence of the relaxed problem with the original fractional one is

theoretically established. Unfortunately, a similar result for the case considered

in the present work is not easy to be derived due to the complexity of the addressed

problem. Thus, in the present work, we rely on line search methods in order to

optimally tune these parameters.

Having simplified the original problem, we may now proceed by temporally

decoupling the designs at the TX’s and the RX’s side. Under the assumption that

the RX can perform optimal nearest-neighbor decoding based on the received

signals, the optimal precoding matrices are designed such that the mutual

information achieved by Gaussian signaling over the wireless channel is maximized

[16]. The mutual information is given by

I, log2

∣∣∣∣∣INs +
Q−1
η′

Ns

HFFHHH

∣∣∣∣∣ (bits/s/Hz), (5.21)

where again F = FRF∆TXFBB and and Qη′ is the covariance matrix of the sum
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of noise and transmit quantization noise variables, i.e. η′ = FRFεTX + n, given by

Qη′=FRFCεTFH
RF+σ2

nINR
. (5.22)

Based on (5.20)-(5.21), the precoding matrices may be derived as the solution

to the following optimization problem:

(P1T) : min
FRF,∆TX,FBB

−I(FRF,∆TX,FBB) + γTPTX(FRF,∆TX,FBB),

subject to FRF ∈ FNT×LT ,∆TX ∈ DLT×LT
TX ,

Now provided that the optimal precoding matrix F? = F?
RF∆?

TXF?
BB is derived

from solving (P1T), we can plug in these resulted precoding matrices in the cost

function of (5.20) resulting in an optimization problem dependent only on the

decoder matrices at the RX’s side, defined as,

(P1R) : min
WRF,∆RX,WBB

− R̃(WRF,∆RX,WBB) + γRPRX(∆RX)

subject to WRF ∈WNR×LR ,∆RX ∈ DLR×LR
RX , (5.23)

where R̃(WRF,∆RX,WBB) = R(F?
RF,∆

?
TX,F

?
BB,WRF,∆RX,WBB).

Thus, the precoding and decoding matrices can be derived as the solutions to

the two decoupled problems (P1T)−(P1R) above. In the following subsections, the

solutions to these problems are developed. We start first with the development of

the solution to TX’s side one (P1T) and then the solution for the RX’s side (P1R)

counterpart follows.
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5.3.1 Problem Formulation at the TX

Focusing on the TX side, we seek the bit resolution matrix ∆TX and the hybrid

precoding matrices FRF, FBB that solve (P1T). The set DTX represents the finite

states of the quantizer and is defined as,

DTX =
{
∆TX ∈ RLT×LT

∣∣m ≤ [∆TX]ii ≤M ∀ i = 1, ..., LT

}
.

Note that PTX(FRF,∆TX,FBB) > 0, as defined in (5.15), since the power required

by all circuit components is always larger than zero, i.e., PCP > 0.

Since dealing with the part of the cost function of (P1T) that involves the

mutual information expression is a difficult task due to the perplexed form of

the latter, we adopt the approach in [16] where the maximization of the mutual

information I can be approximated by finding the minimum Euclidean distance

of the hybrid precoder to the one of the fully digital transceiver for the full-bit

resolution sampling case, denoted by FDBF, i.e., ‖FDBF − FRF∆TXFBB‖2
F [16].

Therefore, motivated by the previous, (P1T) can be approximated to finding the

solution of the following problem:

(P2) : min
FRF,∆TX,FBB

1

2
‖FDBF − FRF∆TXFBB‖2

F + γTPTX(F),

subject to FRF ∈ FNT×LT ,∆TX ∈ DLT×LT
TX .

For a point-to-point MIMO system the optimal FDBF is given by FDBF = V
√

P

where the orthonormal matrix V ∈ CNR×NT is derived via the channel matrix

singular value decomposition (SVD), i.e. H = UΣVH and P is a diagonal

power allocation matrix with real positive diagonal entries derived by the so-

called “water-filling algorithm” [32].
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Problem (P2) is still very difficult to address as it is non-convex due to the

non-convex cost function that involves the product of three matrix variables and

non-convex constraints. In the next section, an efficient algorithmic solution based

on the ADMM is proposed.

5.3.2 Proposed ADMM Solution at the TX

In the following we develop an iterative procedure for solving (P2) based on the

ADMM approach [116]. This method is a variant of the standard augmented

Lagrangian method that uses partial updates (similar to the Gauss-Seidel method

for the solution of linear equations) to solve constrained optimization problems.

While it is mainly known for its good performance for a number of convex

optimization problems, recently it has been successfully applied to non-convex

matrix factorization as well [116, 119, 120]. Motivated by this, in the following

ADMM based solutions are developed that are tailored for the non-convex matrix

factorization problem (P2).

We first transform (P2) into a form that can be addressed via ADMM. By

using the auxiliary variable Z, (P2) can be written as:

(P3) : min
Z,FRF,∆TX,FBB

1

2
‖FDBF−Z‖2

F +1FNT×LT{FRF}+1
D
LT×LT
TX

{∆TX}+γTPTX(F),

subject to Z = FRF∆TXFBB.

Problem (P3) formulates the A/D hybrid precoder matrix design as a matrix

factorization problem. That is, the overall precoder Z is sought so that it

minimizes the Euclidean distance to the optimal, fully digital precoder FDBF

while supporting decomposition into three factors: the analog precoder matrix

FRF, the DAC bit resolution matrix ∆TX and the digital precoder matrix FBB.
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The augmented Lagrangian function of (P3) is given by

L(Z,FRF,∆TX,FBB,Λ) =
1

2
‖FDBF−Z‖2

F +1FNT×LT{FRF}+1
D
LT×LT
TX

{∆TX}

+
α

2
‖Z+Λ/α−FRF∆TXFBB‖2

F +γTPTX(F), (5.24)

where α is a scalar penalty parameter and Λ ∈ CNT×LT is the Lagrange Multiplier

matrix. According to the ADMM approach [116], the solution to (P3) is derived

by the following iterative steps where n denotes the iteration index:

(P3A) : Z(n) = arg min
Z

L(Z,FRF(n−1),∆TX(n−1),FBB(n−1),Λ(n−1)),

(P3B) : FRF(n) = arg min
FRF

L(Z(n),FRF,∆TX(n−1),FBB(n−1),Λ(n−1)),

(P3C) : ∆TX(n) = arg min
∆TX

L(Z(n),FRF(n),∆TX,FBB(n−1),Λ(n−1))+γTPTX(F),

(P3D) : FBB(n) = arg min
FBB

L(Zn,FRF(n),∆TX(n),FBB,Λ(n−1)),

Λ(n) = Λ(n−1) + α
(
Z(n) − FRF(n)∆TX(n)FBB(n)

)
. (5.25)

In order to apply the ADMM iterative procedure, we have to solve the

optimization problems (P3A)-(P3D). We may start from problem (P3A) which

can be written as follows:

(P′3A) : Z(n) =arg min
Z

1

2
‖(1+α)Z−FDBF+Λ(n−1)−αFRF(n−1)∆TX(n−1)FBB(n−1)‖2

F .

Problem (P′3A) can be directly solved by equating the gradient of the augmented

Lagrangian (5.24) w.r.t. Z being set to zero. Therefore, we have

Z(n) =
1

α+1

(
FDBF−Λ(n−1)+αFRF(n−1)∆TX(n−1)FBB(n−1)

)
. (5.26)

We may now proceed to solve (P3B) which can be written in the following
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simplified form by keeping only the terms of the augmented Lagrangian that are

dependent on FRF:

(P′3B) : FRF(n) = arg min
FRF

1FNT×LT{FRF}+
α

2
‖Z(n) + Λ(n−1)/α

− FRF∆TX(n−1)FBB(n−1)‖2
F .

The solution to problem (P′3B) does not admit a closed form and thus, it is

approximated by solving the unconstrained problem and then projecting onto the

set FNT×LT , i.e.,

FRF(n) =ΠF

{(
Λ(n−1) + αZ(n)

)
FH

BB(n−1)∆
H
TX(n−1)

(
α∆TX(n−1)FBB(n−1)F

H
BB(n−1)∆

H
TX(n−1)

)−1
}
, (5.27)

where ΠF projects the solution onto the set F. This is computed by solving the

following optimization problem [121]:

(P
′′
3B) : min

AF

‖AF −A‖2
F , subject to AF ∈ F,

where A is an arbitrary matrix and AF is its projection onto the set F. The

solution to (P
′′
3B) is given by the phase of the complex elements of A. Thus, for

AF = ΠF{A} we have

AF(x, y) =





0, A(x, y) = 0

A(x,y)
|A(x,y)| , A(x, y) 6= 0

, (5.28)

where AF(x, y) and A(x, y) are the elements at the xth row-yth column of matrices
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Algorithm 8 Proposed ADMM Solution for the A/D Hybrid Precoder Design

1: Initialize: Z, FRF, ∆TX, FBB with random values, Λ with zeros, α = 1 and
n = 1

2: while The termination criteria of (5.30) are not met or n ≤ Nmax do
3: Update Z(n) using solution (5.26),

FRF(n) using solution (5.27),
∆TX(n) by solving (P

′′
3C) using CVX [72],

FBB(n) using solution (5.29), and
update Λ(n) using solution (5.25).

4: n← n+ 1
5: end while
6: return F?

RF, ∆?
TX, F?

BB

AF and A, respectively. While, this is an approximate solution, it turns out that it

behaves remarkably well, as verified in the simulation results of Section 5.5. This

is due to the interesting property that ADMM is observed to converge even in

cases where the alternating minimization steps are not carried out exactly [116].

There are theoretical results that support this statement [122, 123], though an

exact analysis for the case considered here is beyond the scope of this chapter.

In a similar manner, (P3C) may be re-written as,

(P′3C) : ∆TX(n) = arg min
∆TX

1
D
LT×LT
TX

{∆TX}+
α

2
‖Z(n) + Λ(n−1)/α

− FRF(n)∆TXFBB(n−1)‖2
F + γTPTX(F).

To solve the above problem, we can write:

(P
′′
3C) : ∆TX(n) =arg min

∆TX

‖yc−ΨTvec(∆TX)‖2
2+γTPTX(F),

subject to ∆TX ∈ DTX,

The minimization problem in (P
′′
3C) consists of yc = vec(Zn + Λn−1/α), ΨT =

FBB(n−1)⊗FRF(n) (⊗ being the Khatri-Rao product) and is solved using CVX [72].
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The solution of problem (P3D) may be written in the following form:

(P′3D) : FBB(n) = arg min
FBB

α

2
‖Z(n) + Λ(n−1)/α− FRF(n)∆TX(n)FBB‖2

F .

It is straightforward to see that the solution for (P′3D) can be obtained by equating

the gradient to zero and solving the resulting equation w.r.t. the matrix variable

FBB, i.e.,

FBB(n) =
(
α∆H

TX(n)F
H
RF(n)FRF(n)∆TX(n)

)−1
∆H

TX(n)F
H
RF(n)

(
Λ(n−1)+αZ(n)

)
. (5.29)

Algorithm 8 provides the complete procedure to obtain the optimal analog

precoder matrix FRF, the optimal bit resolution matrix ∆TX and the optimal

baseband (or digital) precoder matrix FBB. It starts the alternating minimization

procedure by initializing the entries of the matrices Z, FRF, ∆TX, FBB with

random values and the entries of the Lagrange multiplier matrix Λ with zeros. For

iteration index n, Z(n), FRF(n), ∆TX(n) and FBB(n) are updated using Step 3 which

shows the steps to be used to obtain the matrices. A termination criterion related

to either the maximum permitted number of iterations (Nmax) is considered or

the ADMM solution meeting the following criteria is considered:

‖Z(n) − Z(n−1)‖F ≤ εz & ‖Z(n) − FRF(n)∆TX(n)FBB(n)‖F ≤ εp, (5.30)

where εz and εp are the corresponding tolerances. Upon convergence, the number of

bits for each DAC is obtained by using (5.1) and quantizing to the nearest integer

value. The optimal hybrid precoding matrices F?
RF, ∆?

TX, F?
BB are obtained at

the end of this algorithm.



CHAPTER 5. EE Maximization by Joint Bit Allocation and Hybrid
Beamforming Optimization 129

Computational Complexity Analysis of Algorithm 8

When running Algorithm 8, mainly Step 3, while updating ∆TX(n) by solving

(P
′′
3C) using CVX, involves multiplication by ΨT whose dimensions are LTNT ×

NsLT. In general, the solution of (P
′′
3C) can be upper-bounded by O((L2

TNTNs)
3)

which can be improved significantly by exploiting the structure of ΨT.

In the following section, we discuss the joint optimization problem at the

RX and the solution to obtain the analog combiner matrix WRF, the ADC bit

resolution matrix ∆RX and the digital combiner matrix WBB.

5.4 Joint ADC Bit Allocation and A/D Hybrid

Combining Optimization

5.4.1 Problem Formulation at the RX

Let us now move to the derivation of the solution to (P1R). The set DRX represents

the finite states of the ADC quantizer and is defined as,

DRX =
{
∆RX ∈ RLR×LR

∣∣m ≤ [∆RX]ii ≤M ∀ i = 1, ..., LR

}
.

Due to the perplexed form of the function R̃(WRF,∆RX,WBB), we follow the

same arguments the under of which we approximated (P2) by (P1T), in order to

approximate (P1R) by

(P5) : min
WRF,∆RX,WBB

1

2
‖WDBF−WRF∆RXWBB‖2

F +γRPRX(∆RX),

subject to WRF ∈WNR×LR ,∆RX ∈ DLR×LR
RX ,



CHAPTER 5. EE Maximization by Joint Bit Allocation and Hybrid
Beamforming Optimization 130

where WDBF is the optimal solution for the fully digital RX which is given

by WDBF =
√

P̃Ũ, where Ũ ∈ CNR×Ns is the orthonormal singular vector

matrix which can be derived by the SVD of the equivalent channel matrix

H̃ = HF? = ŨΣ̃ṼH , and P̃ is diagonal power allocation matrix. Problem

(P5) is also non-convex due to the non-convex cost function and non-convex set

of constraints, as well, and for its solution an ADMM-based solution similar to

the case of (P2) is derived in the following subsection.

5.4.2 Proposed ADMM Solution at the RX

In the following we develop an iterative procedure for solving (P5) based on

ADMM [116]. We first transform (P5) into an amenable form. By using the

auxiliary variable Z, (P5) can be written as:

(P6) : min
Z,WRF,∆RX,WBB

1

2
‖WDBF − Z‖2

F + 1WNR×LR{WRF}+ 1
D
LR×LR
RX

{∆RX}

+ γRPRX(∆RX),

subject to Z = WRF∆RXWBB.

Problem (P6) formulates the A/D hybrid combiner matrix design as a matrix

factorization problem. That is, the overall combiner Z is sought so that it

minimizes the Euclidean distance to the optimal, fully digital combiner WDBF

while supporting the decomposition into the analog combiner matrix WRF, the

quantization error matrix ∆RX and the digital combiner matrix WBB. The

augmented Lagrangian function of (P6) is given by

L(Z,WRF,∆RX,WBB,Λ) =
1

2
‖WDBF−Z‖2

F +1WNR×LR{WRF}+1
D
LR×LR
RX

{∆RX}

+
α

2
‖Z+Λ/α−WRF∆RXWBB‖2

F +γRPRX(∆RX), (5.31)
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Algorithm 9 Proposed ADMM Solution for the A/D Hybrid Combiner Design

1: Initialize: Z, WRF, ∆RX, WBB with random values, Λ with zeros, α = 1
and n = 1

2: while n ≤ Nmax do
3: Update Z(n) using solution (5.33),

WRF(n) using solution (5.34),
∆RX(n) by solving (P6C) using CVX [72],
WBB(n) using solution (5.35), and
update Λ(n) using solution (5.32).

4: n← n+ 1
5: end while
6: return W?

RF, ∆?
RX, W?

BB

where α is a scalar penalty parameter and Λ ∈ CNR×LR is the Lagrange Multiplier

matrix. According to the ADMM approach [116], the solution to (P6) is derived

by the following iterative steps:

(P6A) : Z(n) = arg min
Z

1

2
‖(1 + α)Z−WDBF + Λ(n−1)

− αWRF(n−1)∆RX(n−1)WBB(n−1)‖2
F ,

(P6B) : WRF(n) = arg min
WRF

1WNR×LR{WRF}+
α

2
× ‖Z(n) + Λ(n−1)/α

−WRF∆RX(n−1)WBB(n−1)‖2
F ,

(P6C) : ∆RX(n) = arg min
∆RX

‖yc −ΨRvec(∆RX)‖2
2 + γRPRX(∆RX)

subject to ∆RX ∈ DRX,

(P6D) : WBB(n) = arg min
WBB

α

2
‖Z(n) + Λ(n−1)/α−WRF(n)∆RX(n)WBB‖2

F ,

Λ(n) = Λ(n−1) + α
(
Z(n) −WRF(n)∆RX(n)WBB(n)

)
, (5.32)

where n denotes the iteration index, yc = vec(Z(n) + Λ(n−1)/α) and ΨR =

WBB(n−1)⊗WRF(n) (⊗ is the Khatri-Rao product).

We solve the optimization problems (P6A)-(P6D) in a similar way to the
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derivations in Section 5.3 for the TX. The solution for Z(n) is:

Z(n) =
1

α + 1

(
WDBF −Λ(n−1) + αWRF(n−1)∆RX(n−1)WBB(n−1)

)
. (5.33)

The equation for WRF(n) is as follows:

WRF(n) = ΠW

{(
Λ(n−1) + αZ(n)

)
WBB

H
(n−1)∆

H
RX(n−1)

{
α∆RX(n−1)WBB(n−1)WBB

H
(n−1)∆

H
RX(n−1)

}−1
}
. (5.34)

The solution to ∆RX(n) is obtained by solving (P6C) using CVX [72]. The matrix

WBB(n) is obtained as follows:

WBB(n) =
{
α∆H

RX(n)WRF
H
(n)WRF(n)∆RX(n)

}−1
∆H

RX(n)WRF
H
(n)

(
Λ(n−1) + αZ(n)

)
.

(5.35)

Algorithm 9 provides the complete procedure to obtain WRF, ∆RX and WBB.

It starts by initializing the entries of the matrices Z, WRF, ∆RX, WBB with

random values and the entries of the Lagrange multiplier matrix Λ with zeros.

For iteration index n, Z(n), WRF(n), ∆RX(n), WBB(n) are updated at each iteration

step by using the solution in (5.33), (5.34), solving (P6C) using CVX, (5.35)

and (5.32), respectively. The operator ΠW projects the solution onto the set W.

This procedure is identical to problem (P
′′
3B) in Section 5.3, except that the set

W replaces F. A termination criterion is defined using a maximum number of

iterations (Nmax) or a fidelity criterion similar to (5.30). Upon convergence, the

number of bits for each ADC is obtained by using (5.2) and quantizing to the

nearest integer value. The optimal hybrid combining matrices W?
RF, ∆?

RX, W?
BB

are obtained at the end of this algorithm.
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Figure 5.2: Convergence of the proposed ADMM solution at the TX for different
NT at γT = 0.001.

Computational Complexity Analysis of Algorithm 9

Similar to Algorithm 8 for the TX, the complexity of the solution of (P6C) can

be upper-bounded by O((L2
RNRNs)

3) which can be improved significantly by

exploiting the structure of ΨR.

Once the optimal DAC and ADC bit resolution matrices, i.e., ∆TX and ∆RX,

and optimal hybrid precoding and combining matrices, i.e., FRF, FBB and WRF,

WBB, are obtained then they can be plugged into (5.13) and (5.14) to obtain the

maximum EE in (5.12). In the next section, we discuss the simulation results

based on the proposed solution at the TX and the RX, and comparison with

existing benchmark techniques.

5.5 Simulation Results

In this section, we evaluate the performance of the proposed ADMM solution

using computer simulation results. All the results have been averaged over 1000
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Figure 5.3: Convergence of the proposed ADMM solution at the RX for different
NR at γR = 0.5.

Monte-Carlo realizations. For comparison with the proposed ADMM solution, we

consider several existing benchmark techniques as follows.

5.5.1 Benchmark Techniques

Digital Beamforming with Full-bit Resolution

We consider the conventional fully digital beamforming architecture, where the

number of RF chains at the TX/RX is equal to the number of TX/RX antennas,

i.e., LT = NT and LR = NR. In terms of the resolution sampling, we consider full-

bit resolution, i.e., M = 8-bit, which represents the best case from the achievable

SE perspective.

A/D HBF with 1-bit and 8-bit Resolutions

We also consider a A/D HBF architecture with LT < NT and LR < NR, for

two cases of DAC/ADC bit resolution: a) 1-bit resolution which usually shows

reasonable EE performance, and b) 8-bit resolution which usually shows high SE

results.
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Figure 5.4: EE and SE performance w.r.t. SNR at γT = 0.001 and γR = 0.5.

BF with A/D HBF

We also implement an exhaustive search approach as an upper bound for EE

maximization called Brute Force (BF), based on [65]. Firstly the EE problem is

split into TX and RX optimization problems similar to those for the proposed

ADMM approach. Then it makes a search over all the possible DAC and ADC

bit resolutions in the range of [m,M ] associated with the each RF chain from 1

to LT and 1 to LR at the TX and the RX, respectively. It then finds the best

EE out of all the possible cases and chooses the corresponding optimal resolution

for each DAC and ADC. This method provides the best possible EE performance

and serves as upper bound for EE maximization by the ADMM approach.

Complexity Comparison with the BF Approach

The proposed ADMM solution has lower complexity than the upper bound

BF approach because the BF technique involves a search over all the possible

DAC/ADC bit resolutions while the proposed ADMM solution directly optimizes

the number of bits at each DAC/ADC. We constrain the number of RF chains
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Figure 5.5: EE and SE performance w.r.t. NT at SNR = 10 dB, γT = 0.001 and
γR = 0.5.

LT = LR = 5 for the BF approach due to the high complexity order which is

O(MLT) and O(MLR) at the TX and the RX, respectively.

5.5.2 System Setup

We set the following parameters, unless specified otherwise, to obtain the desired

results: NT = 32, LT = 5, Ns = LT, LR = LT, NR = 5, Ncl = 2, Nray = 3,

Nmax = 20, m = 1, M = 8, γmaxT = 0.1, γmaxR = 1, α = 1 and σ2
α,i = 1. The

azimuth angles of departure and arrival are computed with uniformly distributed

mean angles, and each cluster follows a Laplacian distribution about the mean

angle. The antenna elements in the ULA are spaced by distance d = λ/2. The

SNR is given by the inverse of the noise variance, i.e., 1/σ2
n. The transmit

vector s is composed of the normalized i.i.d. Gaussian symbols. The values

used for the power terms [73] in the power model equations in (5.15) and (5.17)

are PDAC = PADC = 100 mW, PCT = PCR = 10 W, PT = PR = 100 mW and

PPT =PPR =10 mW.
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Figure 5.6: EE performance w.r.t. NR and LR at SNR = 10 dB, γT = 0.001 and
γR = 0.5.

5.5.3 Convergence of the Proposed ADMM Solution

Figs. 5.2 and 5.3 show the convergence of the ADMM solution at the TX and

the RX as proposed in Algorithm 8 and Algorithm 9, respectively, to obtain the

optimal bit resolution at each DAC/ADC and the corresponding optimal pre-

coder/combiner matrices. It can be observed from Fig. 5.2 that the proposed so-

lution converges rapidly within 16 iterations and the normalized mean square error

(NMSE) at the TX, ‖FDBF − FRF(Nmax)∆TX(Nmax)FBB(Nmax)‖2
F/‖FDBF‖2

F , goes as

low as -15 dB. Similarly, in Fig. 5.3, the proposed solution again converges rapidly

and the NMSE at the RX, ‖WDBF−WRF(Nmax)∆RX(Nmax)WBB(Nmax)‖2
F/‖WDBF‖2

F ,

goes as low as −17 dB. A lower number of TX/RX antennas shows lower NMSE

for a given number of iterations as expected, since fewer parameters are required

to be estimated.
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Figure 5.7: EE and SE performance w.r.t. LT at SNR = 10 dB, γT = 0.001 and
γR = 0.5.

5.5.4 EE and SE performance of Proposed ADMM

Fig. 5.4 shows the performance of the proposed ADMM solution compared with

existing benchmark techniques w.r.t. SNR at γT = 0.001 and γR = 0.5. The

proposed ADMM solution achieves high EE which is computed by (5.12) after

obtaining the optimal DAC and ADC bit resolution matrices, i.e., ∆TX and ∆RX,

and optimal hybrid precoding and combining matrices, i.e., FRF, FBB and WRF,

WBB. The results are plugged into (5.13) and (5.14) to evaluate rate and power

respectively. The EE for the proposed solution has similar performance to the

BF approach and is better than the hybrid 1-bit, the hybrid 8-bit and the digital

full-bit baselines. For example, at SNR = 10 dB, the proposed ADMM solution

outperforms the hybrid 1-bit, the hybrid 8-bit and the digital full-bit baselines by

about 0.03 bits/Hz/J, 0.04 bits/Hz/J and 0.065 bits/Hz/J, respectively.

The proposed solution also exhibits better SE, which is the rate in (5.13)

after obtaining the optimal DAC and ADC bit resolution matrices, and optimal

hybrid precoding and combining matrices, than the hybrid 1-bit and has similar
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Figure 5.8: Average number of bits for proposed ADMM w.r.t. γT and γR at the
TX and the RX, respectively, at SNR = 10 dB.

performance to the BF approach for high and low SNR regions and hybrid 8-bit

baseline for low SNR region. Note that the proposed ADMM solution enables

the selection of different resolutions for different DACs/ADCs and thus, it offers

a better trade-off for EE versus SE than existing approaches which are based on

a fixed DAC/ADC bit resolution.

Fig. 5.5 shows the EE (from (5.12)) and SE (from (5.13)) performance

results w.r.t. the number of TX antennas NT at 10 dB SNR, γT = 0.001 and

γR = 0.5. The proposed ADMM solution again achieves high EE and performs

similar to the BF approach and better than the hybrid 1-bit, the hybrid 8-

bit and the digital full-bit baselines. For example, at NT = 20, the proposed

ADMM solution outperforms hybrid 1-bit, the hybrid 8-bit and the digital full-

bit baselines by about 0.03 bits/Hz/J, 0.045 bits/Hz/J and 0.06 bits/Hz/J,

respectively. The proposed ADMM solution also exhibits SE performance similar

to the BF approach and better than the hybrid 1-bit baseline.
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Figure 5.9: EE and SE performance w.r.t. γT at SNR = 10 dB.

Fig. 5.6 shows the EE performance results w.r.t. the number of RX antennas

NR and the number of RX RF chains LR, respectively, at 10 dB SNR, γT = 0.001

and γR = 0.5. The proposed ADMM solution again achieves high EE which

decreases with increase in the number of RX RF chains,and performs similar to

the BF approach (for versus NR) and better than the hybrid 1-bit, the hybrid

8-bit and the digital full-bit baselines. For example, at NR = 7, the proposed

ADMM solution outperforms hybrid 1-bit, the hybrid 8-bit and the digital

full-bit baselines by about 0.03 bits/Hz/J, 0.06 bits/Hz/J and 0.09 bits/Hz/J,

respectively. Also, for example, at LR = 6, the proposed ADMM solution

outperforms hybrid 1-bit, the hybrid 8-bit and the digital full-bit baselines by

about 0.025 bits/Hz/J, 0.08 bits/Hz/J and 0.115 bits/Hz/J, respectively. Note

that, due to the high complexity of the BF approach, we do not plot results for

this approach w.r.t. LT and LR.

Fig. 5.7 shows the EE and SE performance results w.r.t. the number of TX

RF chains LT at 10 dB SNR, γT = 0.001 and γR = 0.5. The proposed ADMM

solution achieves high EE, though this decreases with increase in the number of
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Figure 5.10: EE and SE performance w.r.t. γR at SNR = 10 dB.

TX RF chains ADMM achieves better EE performance than the hybrid 1-bit,

the hybrid 8-bit and the digital full-bit resolution baselines. Also, the proposed

ADMM solution exhibits SE performance better than the hybrid 1-bit baseline.

Furthermore, we investigate the performance over the trade-off parameters γT

and γR introduced in (P2) and (P5), respectively. Fig. 5.8 shows the bar plot

of the average of the optimal number of bits selected by the proposed ADMM

solution for each DAC versus γT and for each ADC versus γR. It can be observed

that the average optimal number decreases with the increase in γT and γR, for

example, the average number of DAC bits is around 6 for γT = 0.001, 5 for

γT = 0.01 and 4 for γT = 0.1. Similarly, at the RX, the average number of ADC

bits is about 5 for γR = 0.001, 4 for γR = 0.01 and 3 for γR = 0.1. This is because

increasing γT or γR gives more weight to the power consumption.

Figs. 5.9 and 5.10 show the EE and SE plots for several solutions w.r.t. γT

and γR at the TX and the RX, respectively. It can be observed that the proposed

solution achieves higher EE performance than the fixed bit allocation solutions

such as the digital full-bit, the hybrid 1-bit and the hybrid 8-bit baselines and
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Figure 5.11: Power consumption w.r.t. γT and γR at the TX and the RX,
respectively, at SNR = 10 dB.

achieves comparable EE and SE results to the BF approach. These curves also

show that adjusting γT and γR values allow the system to vary the energy-rate

trade-off. Note that the TX also accounts for the extra power term, i.e., tr(FFH)

as shown in (5.15) which means that the selected γT parameter at the TX is

lower than the selected γR parameter at the RX. Fig. 5.11 shows that the power

consumption in the proposed case is low and decreases with the increase in the

trade-off parameter γT and γR values unlike digital 8-bit, fixed bit resolution

hybrid baselines and the BF approach.

5.6 Summary

This chapter proposes an energy efficient mmWave A/D hybrid MIMO sys-

tem which can vary dynamically the DAC and ADC bit resolutions at the TX

and the RX, respectively. This method uses the decomposition of the A/D

hybrid precoder/combiner matrix into three parts representing the analog pre-

coder/combiner matrix, the DAC/ADC bit resolution matrix and the digital pre-
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coder/combiner matrix. These three matrices are optimized by a novel ADMM

solution which outperforms the EE of the digital full-bit, the hybrid 1-bit beam-

forming and the hybrid 8-bit beamforming baselines, for example, by 3%, 4%

and 6.5%, respectively, for a typical value of 10 dB SNR. There is an energy-rate

trade-off with the BF approach which yields the upper bound for EE maximiza-

tion and the proposed ADMM solution exhibits lower computational complexity.

Moreover, the proposed ADMM solution enables the selection of the optimal res-

olution for each DAC/ADC and thus, it offers better trade-off for data rate versus

EE than existing approaches that are based on a fixed DAC/ADC bit resolution.

In the next section, we conclude the PhD research work and provide future

work that will be carried out in relation to the research associated with the

mmWave A/D HBF MIMO systems.



Chapter 6

Conclusions and Future Work

This thesis contributed to the field of energy efficient and low complexity solutions

for mmWave MIMO systems with HBF architectures. Both full resolution and

low resolution sampling cases are considered. In this concluding chapter, we first

summarize the key findings of this thesis in Section 6.1. Then we proceed with

the potential improvements and future work in Section 6.2.

6.1 Conclusions

In this thesis, we optimized mmWave HBF MIMO systems to achieve high EE

gains with low complexity, which has not been widely studied in the literature.

These communication techniques may be implemented in 5G and Beyond 5G

standards. In a nutshell, we successfully designed energy efficient mmWave

HBF MIMO systems with low complexity by exploiting the structure of complex

and power hungry components such as RF chains in Chapter 3 and DAC/ADC

converting units in Chapters 4 and 5. We also exploited the sparsity of the

mmWave channel in part of Chapter 4 and provided an efficient and low

complexity solution for sparse channel estimation while employing low resolution

sampling. In following subsections we summarize the key findings of this thesis.

144
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6.1.1 EE Maximization by Dynamic RF Chain Selection

The research work in Chapter 3 proposes an energy efficient A/D HBF framework

with a novel architecture for a mmWave MIMO system, where we optimize the

active number of RF chains through fractional programming. The proposed DM

based framework reduces the complexity significantly and achieves almost the

same EE performance as the state of the art BF approach. Both approaches

achieve higher EE performance when compared with the fully digital beamforming

and the analog beamforming solutions. In particular, the proposed solution only

needs to compute the precoder and combiner matrices once, after the number of

active RF chains are decided through the Dinkelbach optimization solution.

The modified version of the proposed solution, i.e., FS approach, shows very

similar performance to the proposed DM but the complexity increases signifi-

cantly. The codebook-free designs such as ADMM and SVD based solutions, when

incorporated with the proposed framework also achieve better EE performance

over the fixed number of RF chains case. It is also shown that GP incorporated

with the proposed DM is a faster and less complex approximation solution to

compute the precoder and combiner matrices than OMP.

6.1.2 Channel Estimation and EE Maximization with Low

Resolution Sampling

The research work in Chapter 4 discussed sparse channel estimation and EE

maximization solutions with low resolution sampling at the ADCs and the DACs,

respectively. An algorithm based on EM density estimation, plus the SURE

parametric denoiser with the GAMP framework is proposed for a mmWave hybrid

MIMO system with low resolution sampling at the RX. We exploit this EM-
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SURE-GAMP algorithm to estimate the channel which provides the flexibility to

avoid strong assumptions on the channel priors where SURE, depending on the

noisy observation, is minimized to adaptively optimize the denoiser within the

parametric class at each iteration. When compared with the state of the art EM-

GAMP solution, the MSE of the proposed solution performs better with respect

to low and high SNR regimes, with respect to the number of ADC bits, and with

respect to the training length.

Furthermore in Chapter 4, we consider low resolution sampling at the TX.

We consider the case where all DACs have the same sampling resolution for each

RF chain and aim to optimize the number of active RF chains and associated

resolution of DACs. The proposed method achieves similar EE performance with

the upper bound of the derived exhaustive search approach, i.e., BF approach,

while it exhibits lower computational complexity and fast convergence.

6.1.3 EE Maximization by Joint Bit Allocation and HBF

Optimization

The research work in Chapter 5 proposes an energy efficient mmWave A/D hybrid

MIMO system which can vary dynamically the DAC and ADC bit resolutions

at the TX and the RX, respectively. This method uses the decomposition

of the A/D hybrid precoder/combiner matrix into three parts representing the

analog precoder/combiner matrix, the DAC/ADC bit resolution matrix and the

digital precoder/combiner matrix. These three matrices are optimized by a novel

ADMM solution which outperforms the EE of the digital full-bit, the hybrid 1-bit

beamforming and the hybrid 8-bit beamforming baselines, for example, by 3%,

4% and 6.5%, respectively, for a typical value of 10 dB SNR.

Furthermore, there is an energy-rate trade-off with the BF approach which



CHAPTER 6. Conclusions and Future Work 147

yields the upper bound for EE maximization and the proposed ADMM solution

exhibits lower computational complexity. Moreover, the proposed ADMM solu-

tion enables the selection of the optimal resolution for each DAC/ADC and thus,

it offers better trade-off for data rate versus EE than existing approaches that are

based on a fixed DAC/ADC bit resolution.

6.2 Future Work

In this section, we introduce several potential research problems which can be

studied for future work and as an improvement over the existing techniques.

These research problems may be considered for beyond 5G and Sixth Generation

(6G) communication standards.

6.2.1 EE Maximization with Combined TX-RX Optimiza-

tion for Bit Allocation and RF Chain Selection

For Chapter 3, we focus on maximizing the EE but extending these techniques to

consider both estimated channels and frequency selective channels can be consid-

ered for future work. Furthermore, the research work about EE maximization in

Chapter 4 considers the case where all DACs have the same sampling resolution

for each RF chain and select the best subset of the active RF chains and the

DAC resolution at the TX. This work can be extended for a combined problem

at the TX and the RX. For example, we present bit allocation and hybrid com-

bining optimization solution for the RX in [27] and extend the problem for EE

maximization for the case of joint TX and RX problem in [28].

Similarly, we can implement our technique for EE maximization used at the

TX in [26] for a combined TX-RX problem. An EE maximization problem, with
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rate and power consisting of system and channel model parameters at both the TX

and the RX, can be provided. The joint TX and RX problem can be decoupled

to deal with the TX and the RX separately. The corresponding problems can

be solved by technique based on the DM and subset selection optimization such

as in [26]. We can also implement similar exhaustive search approach as the BF

approach, for example as shown in [28], to serve as an upper bound on the EE

performance and show the performance trade-offs. This future work has been

listed as “under preparation” in Appendix A.1, i.e., A.1.4, at the end of this

thesis.

6.2.2 Channel Estimation with Low Resolution Sampling

for Phase Shifters- and Lens-Based Hybrid MIMO

The research work about channel estimation in Chapter 4 uses the GAMP

framework with EM density estimation and the SURE parameteric denoiser

to estimate the sparse channel with low MSE and with low computational

complexity. This work can be further extended with VAMP framework and

performance trade-offs in terms of MSE and complexity can be observed for a

phase shifters-based hybrid MIMO system. Moreover, the narrowband channel

model can be replaced by wideband channel model and EM-based density

estimation can be improved with more advanced CS approaches to achieve higher

accuracy and lesser complexity.

Furthermore, we know that MIMO systems with beamforming capabilities are

required to compensate for the high path-loss at mmWave frequencies. Recently, a

practical two-stage Rotman lens beamformer has demonstrated increased antenna

gain with reduced implementation complexity, since the conventional beam

selection network was omitted. In a related future work, we can adopt this lens-
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based MIMO system with HBF architecture and investigate its performance in

terms of channel estimation with low resolution sampling at the RX. Although this

design is characterised by low-complexity and low-cost, the analog beamformer

and the ADCs introduce several impairments to the received signal. To mitigate

these effects, we can develop a robust maximum a posteriori (MAP) estimator

based on the EM iterative algorithm. This sparse channel estimation method

for lens-based MIMO system can be compared with the conventional EM and

minimum MSE approaches in the medium to high SNR regimes and for different

bit resolution values.
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Millimeter Wave MIMO Systems
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Abstract—This paper proposes a novel architecture with a
framework that dynamically activates the optimal number of
radio frequency (RF) chains used to implement hybrid beam-
forming in a millimeter wave (mmWave) multiple-input and
multiple-output (MIMO) system. We use fractional programming
to solve an energy efficiency maximization problem and exploit
the Dinkelbach method (DM)-based framework to optimize the
number of active RF chains and data streams. This solution is
updated dynamically based on the current channel conditions,
where the analog/digital (A/D) hybrid precoder and combiner
matrices at the transmitter and the receiver, respectively, are
designed using a codebook-based fast approximation solution
called gradient pursuit (GP). The GP algorithm shows less
run time and complexity while compared to the state-of-the-
art orthogonal matching pursuit (OMP) solution. The energy
and spectral efficiency performance of the proposed frame-
work is compared with the existing state-of-the-art solutions,
such as the brute force (BF), the digital beamformer, and the
analog beamformer. The codebook-free approaches to design
the precoders and combiners, such as alternating direction
method of multipliers (ADMMs) and singular value decompo-
sition (SVD)-based solution are also shown to be incorporated
into the proposed framework to achieve better energy efficiency
performance.

Index Terms—RF chain selection, energy efficiency
optimization, low complexity, hybrid precoding and combining,
millimeter wave MIMO, 5G wireless.

I. INTRODUCTION

THE EMERGING advanced consumer devices and
developed communication systems have resulted in ever-

increasing demands on bandwidth and capacity. For instance,
Cisco’s annual report suggests that mobile video traffic is
expected to generate 74% of the global mobile data traffic
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by 2020 [1]. The microwave frequency spectrum at sub-
6 GHz frequencies, which we currently make use of for
mobile broadband, is limited to a very crowded frequency
range enhancing the demand for an unused available spec-
trum which can be resolved by the use of millimeter wave
(mmWave) frequency spectrum [2], [3]. The use of mmWave
frequency bands appears to be a promising technology to meet
the needs of fifth generation (5G) wireless communication
systems such as increased capacity, high data rates, improved
coverage, lower latency, high mobility, high reliability and
lower infrastructure costs [4]–[6]. A few existing applications
of the mmWave spectrum are in satellite communications,
wireless backhaul, radio applications and radar communica-
tion. However, mmWave faces challenges of severe path loss,
blocking effects, new hardware constraints and unconventional
channel characteristics.

The high bandwidths for mmWave communication com-
pared to sub-6 GHz frequency bands must be traded off
against increased path loss [7], which can be compensated
using large-scale antenna arrays [8], [9]. The large num-
ber of antenna elements and the high bandwidth makes it
hard to use a separate radio frequency (RF) chain for each
antenna due to the large requirements in power consump-
tion and hardware complexity [8]. A conventional fully digital
beamforming architecture used for sub-6 GHz frequencies
requires a dedicated RF chain per antenna with the electronic
components such as digital-to-analog converters (DACs) and
analog-to-digital converters (ADCs) that enhances the hard-
ware complexity and power consumption with the increase in
antenna size [8], [9]. Thus, a digital beamforming architecture
seems currently impractical to be implemented for large scale
antenna arrays in the mmWave band.

As an alternative, an analog beamforming approach could
be considered to solve this problem. The analog beamform-
ing architecture involves a network of analog phase shifters
with a single RF chain in the system [10], [11], which
is highly advantageous to reduce hardware complexity and
power consumption. But analog only beamforming approach
cannot support multi-stream communication and the capac-
ity performance is usually worse than the fully digital one.
Furthermore, the support of multi-user communications is very
difficult.

The performance of the mmWave multiple-input multiple-
output (MIMO) systems can be significantly improved through

2473-2400 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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the use of analog/digital (A/D) hybrid beamforming archi-
tectures where the number of RF chains and associated
ADCs/DACs are much less than the number of anten-
nas [12], [13]. The A/D hybrid beamforming also enables spa-
tial multiplexing and multi-user MIMO communication, and
A/D hybrid transceiver solutions have recently been proposed
to enable mmWave MIMO systems [14]–[16]. The A/D hybrid
beamforming system can be implemented to provide satisfy-
ing rate performance by avoiding the discussed limitations of
a fully digital solution [14]–[16]. One should note that we can
reduce the power consumption by implementing low resolution
quantization for both conventional and A/D hybrid beamform-
ing architectures. To that end some approaches have been
applied for energy efficiency maximization such as in [17].
Optimizing the number of RF chains further leverages the
energy efficiency metric and reduces the gap between the
spectral efficiency of A/D hybrid and fully digital beam-
forming architectures. Reference [18] suggests that the A/D
hybrid beamforming architecture with low resolution DACs
along with optimizing the number of RF chains shows better
energy efficiency performance than the conventional digi-
tal beamforming architecture for 1-bit and 3-bits sampling
resolutions.

To implement the A/D hybrid beamforming system which
uses RF precoders based on the phase shifting networks, we
can use the most popular structures such as the fully-connected
and the partially-connected. The fully-connected structure con-
nects all the antennas to each RF chain whereas the partially-
connected structure connects only a subset of the antennas
requiring less number of phase shifters [19]. The use of
a partially-connected structure at the transceiver can further
reduce the power consumption [16], for instance, our previous
work [18] uses a partially-connected structure to evaluate the
energy and rate performance where the partially-connected
structure is opted to achieve high energy efficiency. This
paper mainly uses the fully-connected structure to demon-
strate the contributions of the proposed framework for a
mmWave MIMO system. However, the energy efficiency
performance using the partially-connected structure is also
observed via simulations. We can observe from recent lit-
erature that there are works considering the energy efficient
design of a A/D hybrid transceiver, however there is lack of
works that optimize the number of RF chains which we discuss
in the following subsection.

A. Literature Review

Reference [15] proposes a spectrally efficient A/D hybrid
precoder design by maximizing the desired rate for fully-
connected limited RF chain systems. However, it does not
consider the energy consumption. For an energy efficient
system, [20] considers a sub-connected architecture, where
each RF chain is connected to only a subset of transmit-
ter (TX) antennas requiring fewer phase shifters, but it does
not discuss how to design an energy efficient precoder with
a fully-connected architecture. Reference [19] considers both
fully-connected and partially-connected structures to design

a A/D hybrid precoder where the partially-connected struc-
ture seems to outperform fully-connected structure in terms
of energy efficiency. However, it only considers the design of
the precoder matrices and there is no emphasis on optimizing
the number of RF chains which is a key factor for an energy
efficient system.

The RF chains consume a large amount of power in wire-
less communication systems and increase the cost for these
systems [21]. Reference [22] performs an energy efficient
optimization to design a A/D hybrid precoder where to cal-
culate the optimal number of RF chains, the full precoding
solution is computed for all possible numbers of RF chains.
This is referred to as the brute force (BF) technique through-
out in this paper. References [15] and [22] use orthogonal
matching pursuit (OMP) to optimize the precoder matrices.
Alternative greedy strategies to OMP can be exploited to lower
the complexity. A mmWave A/D hybrid MIMO system can
be used for 5G mmWave MIMO applications such as cellular
backhaul connections when we jointly optimize the number of
RF chains and the A/D hybrid precoder and combiner matrices
leading to a highly energy efficient system.

B. Contributions

This paper proposes an energy efficient A/D hybrid beam-
forming framework, where the RF precoder and baseband
precoder matrices, and RF combiner and baseband combiner
matrices are optimized along with the number of active RF
chains but with low complexity. We use power allocation,
and Dinkelbach method (DM) is implemented to optimize
the number of RF chains. Fig. 1 shows the novel architec-
ture with proposed framework for a mmWave single user
fully-connected A/D hybrid beamforming MIMO system with
digital baseband precoding and associated switches, followed
by RF chains and associated DACs, and constrained RF
precoding implemented using phase shifters network at the
TX, and vice-versa at the receiver (RX). In this novel archi-
tecture, for a certain number of RF chains implemented in the
hardware, the DM block drives digital switches to activate only
those RF chains that we obtain as an optimal solution from
the proposed method. In practice the digital switches would
be a part of the digital processor. If the DM block is replaced
by another method used to optimize the number of RF chains,
the number of active RF chains and associated DACs/ADCs
may be different.

To compute the A/D hybrid precoders and combiners, the
proposed approach incorporates a codebook-based approach
through one of the greedy strategies, i.e., gradient pursuit
(GP) [23]. Simulations show that the proposed GP-based
approach is a faster and less complex approach to compute the
precoder and combiner matrices than the state of the art OMP.
Furthermore, the proposed framework can also be incorporated
with the existing codebook-free solutions such as alternating
direction method of multipliers (ADMM) [16] and singular
value decomposition (SVD) based solution [12]. The objec-
tive is to achieve better energy efficiency performance for
codebook-free approaches over the fixed number of RF chains
case. The proposed energy efficient and low complexity A/D
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Fig. 1. System model for a mmWave A/D hybrid MIMO system with the proposed framework.

hybrid precoder framework with a fully-connected architec-
ture can be used in designing 5G mmWave MIMO systems
effectively and efficiently, such as in 5G cellular systems and
wireless backhaul networks.

The main contributions of this paper can be summarized as
follows:

1) The paper proposes a novel algorithmic framework,
where the number of active RF chains is dynami-
cally adapted on a frame-by-frame basis. This is car-
ried out using a low complexity alternative to brute
force optimization [22] based on the current channel
conditions measured in the A/D hybrid beamforming
architecture.

2) We develop a reduced complexity DM based solution
to find the optimal number of RF chains and streams
for the mmWave MIMO system for the current channel
conditions.

3) A GP-based approach is proposed as a lower complex-
ity approximation solution to compute the precoder and
combiner matrices than the state of the art OMP solution.

Outline: Section II describes the channel and system model
implemented for the novel architecture. Section III discusses
the low complexity design of the A/D hybrid precoder and
combiner matrices using GP algorithm. Section IV provides
the energy efficiency maximization problem and we solve the
optimization problem via the DM based solution used in the
framework where Section IV-A discusses the energy efficiency
computation, while Section IV-B describes the energy efficient
and low complexity solution to optimize the number of RF

chains and activate that many RF chains in the system (as
shown in Fig. 1). Section V provides the simulation results.
The conclusions are provided in Section VI.

Notations: A, a and a stand for a matrix, a vector and a
scalar, respectively; A(i) represents the i th column of A; trans-
pose, complex conjugate transpose and pseudo inverse of A
are denoted as AT , AH and A†, respectively; ‖A‖F , tr(A) and
|A| represent the Frobenius norm, trace, and determinant of A,
respectively; ‖a‖p is the p-norm of a; [A|B] denotes horizontal
concatenation; x ∪ y denotes the union of x and y union disjoint
sets; A|Γ denotes a matrix consisting of rows of matrix A with
indices from Γ set; diag(A) generates a vector by the diagonal
elements of A; IN and 0X×Y represent N × N identity matrix
and X × Y all-zeros matrix, respectively; CN (a;A) denotes
a vector of complex Gaussian random variables with mean
a and covariance matrix A, and i.i.d. shows that the entries
of a vector of random variables are independent and identi-
cally distributed. X ∈ CA×B and X ∈ RA×B denote A × B
size X matrix with complex and real entries, respectively; the
expectation operator and the real part of a complex variable
are denoted as E{·} and R{·}, respectively.

II. MMWAVE A/D HYBRID MIMO MODEL

A. MmWave Channel Model

Let us consider a single user MIMO system with NT anten-
nas at the TX, sending Ns data streams to a system with NR
RX antennas. The fading channel models used in traditional
MIMO becomes inaccurate for mmWave channel modeling
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due to the high free-space path loss and large tightly-packed
antenna arrays. The existing literature mostly addresses the
narrowband clustered channel model [24], [25] for mmWave
propagation due to different channel settings such as number
of multipaths, amplitudes, etc. such as in [8], [15].

For Ncl clusters and Nray propagation paths in each cluster
and for a uniform linear array (ULA) antenna elements, the
mmWave channel matrix is defined as follows:

H =

√
NTNR

NclNray

Ncl∑

i=1

Nray∑

l=1

αilaR(φr
il )aT

(
φt
il

)H
, (1)

where αil denotes the gain of l-th ray in i-th cluster and
it is assumed that αil are i.i.d. CN (0, σ2

α,i ), where σ2
α,i is

average power of the i-th cluster such that
∑Ncl

i=1 σ2
α,i = γ,

where γ =
√

NTNR
NclNray

, is the normalization factor satisfy-

ing E{‖H‖2
F } = 1/

√
NclNray. Further, aR(φr

il ) and aT(φt
il )

represent the normalized receive and transmit array response
vectors, where φt

il and φr
il are the azimuth angles of departure

and arrival, respectively. The antenna elements at the TX and
the RX can be modeled as ideal sectored elements [26] and
then antenna element gains can be evaluated over ideal sectors.
In (1), the transmit and receive antenna element gains are con-
sidered unity over ideal sectors defined by φt

il ∈ [φt
min, φt

max]
and φr

il ∈ [φr
min, φr

max], respectively. For a NZ-element ULA
on Z-axis, the array response vector can be expressed as [27]:

aZ(φ) = 1√
NZ

ejm 2π
λ

d sin(φ)T , where 0 ≤ m ≤ (NZ − 1) is a
real integer, d is the inter-element spacing in wavelengths and
λ is the signal wavelength. The array response vectors can also
be computed using other array geometries such as rectangular
array and circular array. As mentioned above, we assume per-
fect channel knowledge at the TX and the RX [15], [16], [22].
However, this work can also be extended to consider chan-
nel estimation errors, for example, [28] proposes an efficient
channel estimation algorithm for hybrid architecture mmWave
systems.

The beamspace representation [29], [30] of the narrowband
channel can be written as follows:

H = DRHvDH
T , (2)

where Hv ∈ CLR×LT represents a sparse matrix with a few
non-zero entries, while DR ∈ CNR×LR and DT ∈ CNT×LT

are the discrete Fourier transform (DFT) matrices.

B. A/D Hybrid MIMO System Model

In large-scale MIMO communication systems, based on the
A/D hybrid precoding scheme, the number of RF chains is
larger than or equal to the number of baseband data streams
and smaller than or equal to the number of TX antennas. LT
denotes the number of available RF chains at the TX with
the limitation that Ns ≤ LT ≤ NT and similarly LR is for
the RX with the condition Ns ≤ LR ≤ NR. We consider the
number of RF chains at the RX to be same as at the TX, i.e.,
LR = LT.

Let FBB = P
1
2
TXF̂BB denote the baseband precoder matrix

which inputs to the DAC-RF chain block where PTX ∈

RLT×LT is a diagonal matrix of power allocation values with
tr(PTX) = Pmax, F̂BB is the digital precoding matrix before
the switches, and FRF denotes the RF precoder matrix. FBB
has dimensions of LT × Ns using its LT transmit chains and
FRF has dimensions of NT × LT using the phase shifting
network. Similarly at the RX, the matrices WBB and WRF
denote the LR ×Ns baseband combiner and the NR ×LR RF
combiner, respectively. The TX symbol vector s ∈ CNs×1 is
such that E{ssH } = 1

Ns
INs

. All elements of FRF and WRF
are of constant modulus. The power constraint at the TX is sat-
isfied by ‖FRFFBB‖2

F = Pmax, where Pmax is the maximum
allocated power. We assume a unit magnitude and continuous
phase constraint on the phase shifters [15].

Consider a narrowband propagation channel with H as the
NR × NT channel matrix, which is assumed to be known
to both the TX and the RX, then the received signal can be
expressed as follows:

y = HFRFFBBs + n, (3)

where y is the NR ×1 received vector and n is a NR ×1 noise
vector with entries which are modeled as i.i.d. CN (0, σ2

n).
After the application of the combining matrices, the received
signal can be written as follows:

ỹ = WH
BBWH

RFy = WH
BBWH

RFHFRFFBBs + WH
BBWH

RFn.

(4)

In the following section, we discuss the low complexity
designs of A/D hybrid precoders, i.e., FRF,FBB, and A/D
hybrid combiners, i.e., WRF,WBB.

III. LOW COMPLEXITY A/D HYBRID PRECODERS

AND COMBINERS DESIGN

The combined problem of designing the precoders and com-
biners and the number of RF chains can be partitioned into
three sub-problems:

• to optimize the A/D hybrid precoders FRFFBB,
• to optimize the A/D hybrid combiners WRFWBB and
• to optimize the number of RF chains, i.e., obtaining L

opt
T

at the TX and L
opt
R at the RX.

Firstly in this section, we focus on designing the A/D hybrid
precoder matrices FRF and FBB as shown in Section III-A
and the hybrid combiner matrices WRF and WBB as shown
in Section III-B by assuming that L

opt
T and L

opt
R are computed

from the proposed DM based solution in Section IV already.
In the next section, we propose the DM based solution for
optimizing the number of RF chains at the TX and consider
that L

opt
R = L

opt
T .

A. A/D Hybrid Precoding at the TX

It is known that the precoding matrix for the digital beam-
former is given based on the singular value decomposition
(SVD) of the channel matrix. We consider channel’s SVD as
H = UHΣHVH

H , where UH ∈ CNR×NR and VH ∈ CNT×NT

are unitary matrices, and ΣH ∈ RNR×NT is a rectangular
matrix of singular values in decreasing order whose diagonal
elements are non-negative real numbers and whose non-
diagonal elements are zero. The optimal fully digital precoding
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matrix Fopt = VH1P
(1/2)
TX where the matrix VH1 ∈ CNT×Ns

consists of the Ns columns of the right singular matrix VH [15]
and PTX is a diagonal matrix where each diagonal entry rep-
resents the power of each transmission stream for the digital
precoding case with

∥∥Fopt
∥∥2
F

= tr(PTX) = Pmax. We dis-
cuss about PTX in more details in the next section. In this
section we assume that PTX is known.

In order to design the near-optimal A/D hybrid precoder,
it can be assumed that the decomposition FRFFBB can be
made sufficiently close to the optimal fully digital precoding
matrix Fopt [15]. The Euclidean distance problem is a good
approximation, so we can consider the Euclidean distance
between the A/D hybrid precoder FRFFBB and the chan-
nel’s optimal fully digital precoder Fopt to optimize the A/D
hybrid precoder matrices. We can define FRF to be a set of
basis vectors aT(φ̃t

il ) in order to find the best low dimensional
representation of the optimal matrix Fopt where φ̃t

il are the
angles from the DFT codebook. The problem to design the
A/D hybrid precoders can be stated as follows [14], [15]:

(
Fopt

RF ,Fopt
BB

)
= argmin

FRF,FBB

∥∥Fopt − FRFFBB

∥∥2
F

,

s.t. FRF ∈ FRF, ‖FRFFBB‖2
F

= Pmax. (5)

We consider two stages in the system model as shown in
Fig. 1: a) the beam training phase, and b) the data communi-
cations phase. In stage a), firstly LT available RF chains are
activated and the channel is computed which provides us the
optimal beamformer, i.e., Fopt. Then the SVD of the channel
is computed and the proposed DM is performed to obtain L

opt
T .

In stage b), the optimal analog and digital precoder matrices
Fopt

RF and Fopt
BB , respectively, are obtained using Lopt

T . Note
that, if we assume that the TX is active for stage a) a small pro-
portion of time, for example, <10%, then the overall transmit
energy consumption is dominated by stage b). The previous
problem can be cast in the following form, given by:

F̃
opt
BB = argmin

F̃BB

∥∥∥Fopt − D̃TF̃BB

∥∥∥
2

F
,

s.t.
∥∥∥diag

(
F̃BBF̃H

BB

)∥∥∥
0

= L
opt
T ,

∥∥∥D̃TF̃BB

∥∥∥
2

F
= Pmax, (6)

where D̃T ∈ CNT×Lopt
T is the matrix composed by the L

opt
T

columns of the DFT matrix DT and F̃BB is a Lopt
T × Ns

matrix. The matrices D̃T and F̃BB act as auxiliary variables
from which we obtain Fopt

RF and Fopt
BB , respectively. The spar-

sity constraint
∥∥∥diag(F̃BBF̃H

BB)
∥∥∥
0

= Lopt
T suggests that F̃BB

can not have more than Lopt
T non-zero rows. Thus, only Lopt

T
columns of the DFT matrix DT are effectively selected which
is given by D̃T. Therefore, Lopt

T non-zero rows of F̃BB will
give us the baseband precoder matrix Fopt

BB and the columns
of D̃T will provide the RF precoder matrix Fopt

RF . The optimal
number of RF chains, i.e., L

opt
T , is obtained from the proposed

optimization solution derived in Section IV.
As shown in [15], (6) basically reformulates (5) into a spar-

sity constrained reconstruction problem with one variable. The

Algorithm 1 A/D Hybrid Precoder Design Through Gradient
Pursuit (GP)

1: Input: Fopt, D̃T, L
opt
T

2: FRF = 0
NT×Lopt

T
, Γ = ∅

3: Fres = Fopt, FBB = 0
Lopt

T ×Ns

4: for i ≤ L
opt
T

5: Ψ = D̃H
T Fres

6: k = argmax
l=1,...,Lopt

T
(ΨΨH )l ,l

7: FRF = [FRF | D̃
(k)
T ]

8: D = FH
RFFres

9: C = FRFD

10: g =
tr{FH

resC}
‖C‖2

F
11: Γ = Γ ∪ k
12: FBB|Γ = FBB|Γ − gD
13: Fres = Fres − gC
14: end for
15: FBB =

√
Pmax

FBB

‖FRFFBB‖2
F

problem can be now addressed as a sparse approximation
problem [31] and OMP [32] can be used as an algorith-
mic solution. To develop fast approximate OMP algorithms
that are less complex, [23] proposes improvements to greedy
strategies using directional pursuit methods and discusses
optimization schemes on basis of gradient, conjugate gradient
and approximate conjugate gradient approaches. GP approach
is implemented as an alternative solution to the optimization
objective exhibiting similar performance as OMP, faster pro-
cessing time and lower complexity. GP avoids matrix inversion
by using only one matrix vector multiplication per iteration.

Algorithm 1 starts by finding the k-th column of D̃T,
denoted as D̃

(k)
T , along which the optimal precoder has the

maximum projection and then concatenates that selected col-
umn vector to the RF precoder FRF as shown in Step 6.
The gradient direction in Step 7 is computed at each iteration
and the step-size is determined explicitly making use of the
gradient direction, as shown in Step 9. The index set Γ is
updated at each iteration as shown in Step 10 which is used
to generate the baseband precoder matrix FBB. The residual
precoding matrix is computed at Step 12 and the algorithm
continues until all L

opt
T RF chains have been used. Finally the

RF precoder matrix FRF and the baseband precoder matrix
FBB are obtained at the end of the algorithm. The transmit
power constraint is satisfied at Step 14.

B. A/D Hybrid Combining at the RX

The A/D hybrid combiner design has a similar mathematical
formulation except that the transmit power constraint no longer
applies. One may note here that by assuming the A/D hybrid
precoders FRFFBB to be fixed, the A/D hybrid combiners
WRFWBB can be designed in order to minimize the mean-
squared-error (MSE) between the transmitted and processed
received signals by using the linear minimum mean-square
error (MMSE) RX [14], [15]. The optimization of the num-
ber of RF chains at the RX can be performed similarly as at
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Algorithm 2 A/D Hybrid Combiner Design Through Gradient
Pursuit (GP)

1: Input: Wmmse, D̃R, L
opt
R

2: WRF = 0
NR×Lopt

R
, Γ = ∅

3: Wres = Wmmse, WBB = 0
Lopt

R ×Ns

4: for i ≤ L
opt
R

5: Ψ = D̃H
R E[yyH ]Wres

6: k = argmax
l=1,...,Lopt

R
(ΨΨH )l ,l

7: WRF = [WRF | D̃
(k)
R ]

8: D = WH
RFWres

9: C = WRFD

10: g =
tr{WH

resC}
‖C‖2

F
11: Γ = Γ ∪ k
12: WBB|Γ = WBB|Γ − gD
13: Wres = Wres − gC
14: end for

the TX. The design problem for combining matrices can be
written as follows:

(
W

opt
RF ,W

opt
BB

)
= argmin

WRF,WBB

E
[∥∥∥s − WH

BBWH
RFy

∥∥∥
2

2

]
,

s.t. WRF ∈ WRF, (7)

where WRF is defined similarly to FRF for TX. Following
the steps in [15] and similar to the precoder optimization, the
MMSE estimation problem may be further written as follows:

W̃
opt
BB = argmin

W̃BB

∥∥∥∥E
[
yyH

] 1
2
Wmmse − E

[
yyH

] 1
2
D̃RW̃BB

∥∥∥∥
2

F

s.t.
∥∥∥diag

(
W̃BBW̃H

BB

)∥∥∥
0

= Lopt
R , (8)

where D̃R is the DFT matrix and W̃BB is a Lopt
R ×Ns matrix.

The exact solution to (8) yields WH
mmse as follows [15]:

WH
mmse =

(
FH

BBFH
RFHHH FRFFBB + σ2

nNsINs

)−1

× FH
BBFH

RFHH . (9)

Similar to the sparsity reconstruction problem for the TX, Lopt
R

non-zero rows of W̃BB will give us the baseband combiner
matrix W

opt
BB and the corresponding L

opt
R columns of DR will

provide the RF combiner matrix W
opt
RF . This sparse signal

recovery problem can again be solved by the GP algorithm.
Algorithm 2 provides the pseudo code of the GP solution to

find the combiner matrices. It should be noted that step 14 of
Algorithm 1 does not need to be replicated here as there is no
power constraint at the RX unlike at the TX. It starts by find-
ing the k-th column of D̃R, denoted as D̃

(k)
R , along which the

optimal combiner has the maximum projection which requires
the received signal as well for computation, and then concate-
nates that selected column vector to the RF combiner WRF as
shown in Step 6. The gradient direction in Step 7 is computed
at each iteration and the step-size is determined explicitly mak-
ing use of the gradient direction as shown in Step 9. Similar
to the TX case, the index set Γ is updated at each iteration in

Step 10 which is used to generate baseband combiner matrix
WBB. The residual precoding matrix is computed at Step 12.
Finally the RF combiner matrix WRF and the baseband com-
biner matrix WBB are obtained at the end of the algorithm. In
the next section we discuss on obtaining the optimal number
of RF chains.

IV. MAXIMIZATION OF THE ENERGY EFFICIENCY VIA

DYNAMIC POWER ALLOCATION

In this section we derive the proposed approach which aims
at the maximization of the energy efficiency (EE) by dynamic
power allocation in the baseband domain. In terms of achiev-
able information rate R and consumed power P, the EE for
the A/D hybrid design can be computed as follows:

EE(PTX) � R(PTX)

P(PTX)
(bits/Hz/J), (10)

where R represents the information rate in bits/s/Hz and P is
the required power in Watts (W).

The proposed design, as depicted in Fig. 1, describes a A/D
hybrid system for the TX and the RX, with a certain number
of RF chains LT implemented in the hardware. The selection
mechanism between the available RF chains is implemented
in the baseband domain, as part of the digital processor. This
procedure is driven by the DM block, which describes the
optimal power scheme for each channel realization.

The power allocation at the TX can be described mathe-
matically by using a diagonal sparse matrix PTX ∈ DLT×LT

where DLT×LT ⊂ RLT×LT denotes the set of LT × LT
diagonal sparse matrices. To represent the baseband selec-
tion mechanism we consider that [PTX]kk ∈ [0,Pmax], for
k = 1, . . . ,LT, where Pmax = tr(PTX). The diagonal
entries of PTX with a zero value represent an open switch
in Fig. 1. Thus, the non-zero diagonal values of PTX deter-
mine the number of the active RF chains for the TX, i.e.,
L

opt
T = ‖PTX‖0. If we increase the number of RF chains we

might achieve a higher information rate but there is also higher
power consumption. Hence, maximizing the EE ratio in (10)
while considering different constraints on the precoder design
provides us the optimal number of RF chains.

A. Problem Formulation

For a point-to-point A/D hybrid MIMO system, as shown
in Fig. 1, the overall achievable rate with respect to the active
RF chains can be expressed as follows:

R(PTX,PRX)

= log |INs
+

1

σ2
n
WH

BBP
1
2
RXWH

RFHFRF

× P
1
2
TXF̂BBF̂H

BBP
1
2
TXFH

RFHH WRFP
1
2
RXWBB|, (11)

where PTX ∈ RLT×LT is the diagonal matrix describing the
power allocation for the TX. For the RX, we use the diagonal
matrix PRX ∈ {0, 1}LR×LR which takes only values from
{0, 1}, since it only represents a switching network, hence,
L

opt
R = ‖PRX‖0.
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Based on [15], it is reasonable to assume that F̂BBF̂H
BB ≈

ILT
and WBBWH

BB ≈ ILR
, then

R(PTX,PRX) = log |ILR
+

1

σ2
n
P

1
2
RXWH

RFHFRF

PTXFH
RFHH WRFP

1
2
RX|. (12)

To simplify this problem, we decompose it into two successive
sub-problems, one for the TX and one for the RX. Specifically,
to obtain PTX we assume that the RX has activated all the
switches, i.e., PRX = ILR

. So,

R(PTX) = log |ILR
+

1

σ2
n
WH

RFHFRFPTXFH
RFHH WRF|.

(13)

Once we obtain PTX, we can estimate PRX based on the
following formulation:

R(PRX) = log

∣∣∣∣ILR
+

1

σ2
n
P

1
2
RXWH

RFHFRF

PTXFH
RFHH WRFP

1
2
RX

∣∣∣∣. (14)

Maximizing EE at the RX using (14) results into a non-trivial
integer programming problem. Therefore in the following we
will focus our analysis on the EE maximization at the TX in
order to obtain Lopt

T . We consider the optimal number of RF
chains at the RX to be same as at the TX, i.e., Lopt

R = Lopt
T .

Measuring the energy consumed for each entity in the
precoder and the combiner is important to design an energy
efficient mmWave A/D hybrid MIMO system. Similarly
to [9], [19], that total power P for an A/D hybrid beamform-
ing system can be described as follows, where we include the
power consumed by the RX components as well:

P = βtr(PTX) + 2PCP + NTPT + NRPR + L
opt
T

× (PRF + NTPPS) + L
opt
R (PRF + NRPPS)(W),

(15)

where β represents the reciprocal of amplifier efficiency; the
common parameters at the TX and the RX are PCP, PRF,
and PPS which represent the common power, the power per
RF chain, and the power per phase shifter, respectively. PT
and PR represent the power per antenna element at the TX
and the RX, respectively.

For simplicity we remove the sub-index term “TX” from
PTX. Hence, we consider the problem (10) expressed with
respect to the power allocation matrix P ∈ RLT×LT as
follows:

max
P∈DLT×LT

R(P)

P(P)
s.t.P(P) ≤ P ′

maxandR(P) ≥ Rmin.

(16)

The first constraint term in (16) sets the upper bound for the
total power budget of the communication system, i.e., P ′

max =
βPmax +2PCP +NTPT +NRPR +LT × (PRF +NTPPS)+
LR(PRF + NRPPS).

B. Dinkelbach Method (DM) Based Proposed Solution

Fractional programming theory provides us several options
to obtain the solution of (16). One computational efficient
algorithm is the Dinkelbach’s algorithm which has been intro-
duced firstly in [33], [34]. Dinkelbach’s algorithm replaces
the fractional cost function of (16) with a sequence of easier
difference-based problems. The simulation results in Section V
suggest that this method can achieve good performance.
Specifically, the cost function of (16) is replaced by a sequence
of problems:

max
P(m)∈DLT×LT

{
R

(
P(m)

)
− ν(m)P

(
P(m)

)}
, (17)

where ν(m) = R(P(m−1))/P(P(m−1)) ∈ R+, for m =
1, 2, . . . , Imax, where Imax is the number of maximum itera-
tions. Dinkelbach’s algorithm is an iterative algorithm, where
at each step an update of ν(m) is obtained based on the
estimated rate and power from the previous iteration. To sim-
plify the implementation of this algorithm we desire a rate
expression that does not require explicit formulas for the
precoder and combiner matrices, thus avoiding re-running
Algorithms 1 and 2 for each possible choice of active RF
chains.

In order to proceed with the Dinkelbach’s algorithm in
our context, let us first elaborate on the information rate
and power expressions. Considering the SVD of the chan-
nel as H = UHΣHVH

H as shown in Section III-A, (13) is
expressed as:

R(P) = log |INR
+

1

σ2
n
WH

RFUHΣHVH
H FRF

× PFH
RFVHΣH

H UH
H WRF|. (18)

Following the analysis of [15], it can be proven that
VH

H FRF ≈ [ILT
0T
(NT−LT)×LT

]T and UH
H WRF ≈

[ILR
0T
(NR−LR)×LR

]T , hence,

R(P) = log |INR
+

1

σ2
n
Σ̄2P|, (19)

where Σ̄ ∈ RLR×LT with [Σ̄]kk = [ΣH]kk for k = 1, . . . ,LT,
assuming LT = LR, while its remaining entries are zero. Since
the involved matrices in (19) are diagonal, the information rate
is decomposed into LT parallel streams, as follows:

R(P) ≈
LT∑

k=1

log

(
1 +

1

σ2
n

[
Σ̄2

]
kk

[P]kk

)
(bits/s/Hz). (20)

Recall that LT and LR have preset values based on the hard-
ware design and describe the available RF chains at the TX
and the RX, respectively. Considering only the TX, the con-
sumed power with respect to the diagonal power allocation
matrix can be written as:

PTX(P) = Pstatic +

LT∑

k=1

(β[P]kk + PRF + NTPPS) (21)

= Pstatic +

LT∑

k=1

β′[P]kk (W), (22)
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Algorithm 3 Dinkelbach Method (DM) Based Solution

1: Initialize: P(0), ν(0) satisfying G(P(0), ν(0)) ≥ 0, LT,
tolerance ε

2: m = 0
3: while |G(P(m), ν(m))| > ε do
4: Update P(m) by solving the relaxation of (23) via

CVX [35].
5: Thresholding P(m) as P

(m)
th .

6: Counting non-zero values of P
(m)
th provides L

opt
T .

7: Compute R(P(m)) and PTX(P(m)).
8: Compute G(P(m), ν(m))

where ν(m) = R(P(m−1))/P(P(m−1)) ∈ R+.
9: Update ν(m) with R(P(m))/PTX(P(m)).

10: m = m+1
11: end while
12: Obtain Lopt

T = ‖P
(m)
th ‖0

where Pstatic � PCP + NTPT is independent of the power
allocation matrix P and β′ � β + PRF+NTPPS

Pmax
. The equiva-

lence between (21) and (22) is justified since
∑LT

k=1 [P]kk =
tr(P) = Pmax.

Based on (20) and (22), the m-th Dinkelbach method (DM)
step can be expressed as follows:

{
P(m), ν(m)

}
= arg max

P(m)∈DLT×LT

G
(
P(m), ν(m)

)
, (23)

where

G
(
P(m), ν(m)

)
�

LT∑

k=1

log

(
1 +

1

σ2
n

[
Σ̄2

]
kk

[
P(m)

]
kk

)

− ν(m)
LT∑

k=1

β′
[
P(m)

]
kk

. (24)

Note that problem (23) is a non-convex one because of the
constraint P(m) ∈ DLT×LT . To proceed, first we alleviate
this constraint, thus (23) can be efficiently solved by any stan-
dard interior-point method (for example, CVX [35]). Step 3 of
Algorithm 3 shows that after alleviating this constraint, (23)
is solved via CVX to update P(m). Then we impose the con-
straint by hard-thresholding the entries of P(m), i.e., P

(m)
th ,

as shown in Step 4 of Algorithm 3. The thresholding sets to
zero all entries of P(m) that are lower than a given tolerance
value εth.

Algorithm 3 starts by initializing the number of available RF
chains LT. We update P(m) by solving the relaxation of (23)
via CVX as shown in Step 3. Steps 4-5 show that P(m) is
thresholded as P

(m)
th and counting its non-zero values provides

us the optimal number of RF chains which keeps updating
within the loop but obtained as ‖P

(m)
th ‖0 after the loop ends as

shown in Step 11. R(P(m)) and PTX(P(m)) are computed in
Step 6 and G(P(m), ν(m)) is computed based on (24) in Step 7
where ν(m) = R(P(m−1))/P(P(m−1)) ∈ R+. Steps 8 shows
the update in ν(m) with R(P(m))/PTX(P(m)). The loop con-
tinues until |G(P(m), ν(m))| is less than a given tolerance ε.

Algorithm 4 Full Search (FS) Approach

1: Initialize: LT, tolerance ε, EE(0) = 0
2: for i = 1 : LT
3: while |G(P(m), ν(m))| > ε do
4: Compute P(m) subject to i RF chains

→ obtain Lopt
T from P

(m)
th .

5: Compute R(P(m)), PTX(P(m)) and G(P(m), ν(m)).
6: Update ν(m) and compute EE(m)

= R(P(m))/PTX(P(m)).
7: m = m+1
8: end while
9: Obtain L

(i)
T = Lopt

T and EE(i) based on EE(m) value.
10: if EE(i) ≥ previous EE(i−1)

11: Update EE(i) and L
(i)
T

12: end if
13: end for

We consider that the optimal number of RF chains provides
the number of data streams as well, i.e., Ns = L

opt
T .

C. Full Search (FS) Approach

To show that the loss performance is not much in
Dinkelbach optimization we also consider a full search (FS)
approach which resolves the non-convexity issue of (23) with
convex approximation providing a modified version of the
proposed Dinklbach optimization solution which iterates over
all the possible number of RF chains. The steps are stated in
Algorithm 4 where the maximum energy efficiency “EE” is
obtained and the corresponding number of RF chains are con-
sidered to be optimal at the end of the algorithm. In Table IV
of Section V, we show that the proposed DM has similar
performance to the FS approach, while the complexity for
computing FS increases significantly.

D. Brute Force (BF) Approach

The solution to achieve optimal number of RF chains at each
realization is also provided in [22] which we call as the brute
force (BF) approach. To make the A/D hybrid beamforming
system energy efficient, BF approach, at each realization (cur-
rent channel condition), makes a search on all the possible
number of RF chains, i.e., LT = {1, 2, 3, . . . ,NT}, and com-
putes best energy efficiency while designing the precoder and
combiner matrices, and chooses the corresponding number of
RF chains as the optimal number of RF chains. We, in our
work, mitigate that need of searching for all possible number
of RF chains and then finding an optimal solution, and thus
providing equally a high energy efficient and low complexity
solution. The observations made in the next section support
this statement.

V. SIMULATION RESULTS

This section shows the performance of the proposed DM
compared to the existing state of the art solutions such as
the BF approach, digital beamforming, analog beamform-
ing and modified version of the proposed solution, i.e., FS
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approach. For simulations, the proposed DM and the FS
approach consider LT = LR = length(eig(HHH )) and the
BF approach uses the same precoding and combining matri-
ces as the DM solution. The tolerance values considered
in both the DM solution and the FS approach algorithms
are ε = 10−4 and εth = 10−6. The fully digital beam-
forming solution uses the same number of RF chains as
antennas, i.e., LT = NT and LR = NR, and precoding
and combining matrices are Fopt and Wmmse, respectively,
as shown in Sections III-A and III-B. The analog beam-
forming solution implements a single RF chain, i.e., LT =
LR = 1, and the precoding and combining matrices are com-
puted as the phases of the first singular vectors, i.e., F =
VH(1 : NT, 1)/abs(VH) and W = UH(1 : NR, 1)/abs(UH),
respectively.

The performance of the codebook-free designs such as
ADMM [16] and SVD based [12] solutions when incorpo-
rated with the proposed framework, using Lopt

T RF chains,
are also observed over the case when fixed number of RF
chains are used to compute the precoder and combiner matri-
ces. The comparison between GP and OMP algorithms is
also observed through observing the variations in run time
with respect to the number of RF chains and computational
complexities.

A. System Setup

For the channel parameters, there are 10 rays for each
cluster and there are 8 clusters in total, i.e., Nray = 10
and Ncl = 8 in (1). The average power of each cluster
is unity, i.e., σα,i = 1. The azimuth and elevation angles
of departure and arrival are computed on the basis of the
Laplacian distribution [36] with uniformly distributed mean
angles and angle spread as 7.5◦. The mean angles are sec-
tored within the range of 60◦ to 120◦ in the azimuth domain,
and 80◦ to 100◦ in the elevation domain. The 64 antenna
elements at the TX, i.e., NT = 64, and 16 at the RX, i.e.,
NR = 16, in the ULA, antenna elements are spaced by dis-
tance d = λ/2 where λ/2 can be based on a standard frequency
value such as 28 GHz [22]. The system bandwidth is nor-
malized to 1 Hz in the simulations. The signal to noise ratio
(SNR) is 1/σ2

n. All the simulation results are averaged over
1000 random channel realizations. To illustrate the achievable
energy efficiency of different precoding solutions, the parame-
ters in the power expressions for each precoder design are set
as shown in Table I(a). For a typical case, the power per power
amplifier, PPA = 300 mW, and maximum achievable power,
Pmax = 1 W. Table I(b) shows the maximum power which
can be consumed as determined in (15) for different number of
RF chains in a 64 × 16 fully-connected system. The amplifier
efficiency 1/β is considered as 0.4 and the minimum desired
rate in (16), Rmin = 1 bits/s/Hz.

B. Beam Training and Data Communications Phases
Analysis

Based on the described communication phases in Fig. 1(b),
there are LT active RF chains during the beam training phase.

TABLE I
SIMULATION PARAMETERS FOR THE POWER EXPRESSIONS OF

DIFFERENT PRECODING SOLUTIONS

Fig. 2. Beam training and data communications phases and associated power
consumption performance for a fully-connected 64 × 16 system.

Once the Dinkelbach or FS optimization is performed then
we obtain the optimal number L

opt
T RF chains for the data

communications phase. Considering that α represents the ratio
between the two phases, the power consumption performance
for both the stages is given by:

Power = α × P(LT) + (1 − α) × P
(
L

opt
T

)
(W), (25)

where P(LT) is the power consumption with (15) using
LT RF chains and P(L

opt
T ) is using the optimal number of

RF chains, L
opt
T . For example, as shown in Fig. 2(a), when
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Fig. 3. Convergence and SER accuracy performance of the proposed DM
solution for a fully-connected 64 × 16 system.

we consider that the beam training phase is active for 10%
of the time with LT RF chains, i.e., α = 0.1, and the data
communications phase is active for the remaining 90% time
with Lopt

T RF chains, i.e., 1 − α = 0.9. The performance is
observed with three SNR cases in Fig. 2(b). It can be observed
that the overall power consumption increases with the increase
in the number of RF chains in the beam training phase and
high SNR values have higher power consumption levels. For
example, at LT = 6, the power consumption at SNR = 0 dB
is about 0.65 W higher than at SNR = −10 dB.

C. Convergence and Accuracy Performance of the DM

Fig. 3(a) shows the convergence of the Dinkelbach
optimization solution as proposed in Algorithm 3 to obtain
the optimal number of RF chains. It can be observed
that the energy efficiency for different SNR levels increases
with the iterations used to find the optimal number of RF
chains. The proposed solution converges rapidly and needs
only 2 iterations to converge and achieve an optimal solution
at each realization. To express the accuracy performance of the
proposed DM, Fig. 3(b) shows the symbol error rate (SER)

TABLE II
COMPUTATIONAL COMPLEXITY COMPARISON

BETWEEN DM AND BF SOLUTIONS

versus SNR plot for quadrature phase shift keying (QPSK)
modulation where SER decreases with the increase in SNR.

D. Proposed DM Versus BF Approach

The comparison is made to the BF method [22] in detail in
terms of the probability mass function (PMF) for RF chain
selection, energy efficiency performance and the computa-
tional complexity. The PMF plots indicate the histogram that
for how many realizations (on y-axis) a particular value of
the variable defined on x-axis is achieved. Figs. 4 and 5 show
the PMF of the distribution of the proposed DM and the BF
approach over the optimal number of RF chains, i.e., L

opt
T ,

their difference, i.e., ΔLopt
T = |Lopt

T BF
− Lopt

T DM
|, and the

energy efficiency difference, i.e., ΔE = |EEBF − EEDM|,
at each channel realization. Fig. 4 shows that for how many
channel realizations, the beamforming solutions such as the
DM and the BF approach find a particular optimal number of
RF chains for different values of Pmax. It gives us an idea on
how close the proposed DM solution is to the BF technique, in
terms of finding the optimal number of RF chains. For exam-
ple, at Pmax = 1 W, the DM solution chooses Lopt

T = 4 for
≈ 750 different channel realizations whereas BF chooses 4 RF
chains for ≈ 300 realizations and the difference (at each real-
ization) between chosen optimal number of RF chains by both
the methods, i.e., ΔLopt

T is 0 for ≈ 450 different realizations.
Also, for example, the energy efficiency difference between
the two methods, Δ E, at Pmax = 1 W is close to 0 bits/Hz/J
for ≈ 650 channel realizations as observed from Fig. 5.

Table II(a) shows the computational complexities used by
the solutions of the BF approach and the DM with respect to
the number of the RF chains. We can observe that complex-
ity for the solution of the DM requires complexity order of
only O(Lopt

T ) per iteration. Since the number of the required
iterations is usually very small, the overall complexity of the
DM is much less than the BF approach which depends on
the product of the number of RF chains and the number
of antennas. This is also verified by the run time results as
shown in Table II(b). At SNR = 10 dB and Pmax = 1, the
run time (in seconds) is much less for the proposed solution
with respect to (w.r.t.) the number of TX antennas. These
results are reported from MATLAB simulation runtime for
10 independent channel realizations. For example, for a large
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Fig. 4. PMF plots of the DM and BF solutions at different Pmax values
for the optimal number of RF chains L

opt
T and their difference ΔL

opt
T for

64 × 16 system and SNR = 10 dB.

number of antennas, i.e., NT = 128, the proposed solution
consumes ≈ 6 times less run time than the BF solution. The
observations support the statement that the proposed solution
has low complexity while still optimizing the number of RF
chains.

E. Proposed GP Versus OMP

Concerning the complexity for deriving the beamforming
matrices, recall that OMP requires inversion of a matrix with
size k × k, at each one of the Lopt

T iterations in total, with
k = 1, . . . ,Lopt

T . This operation has cubic complexity order
with respect to the size of the matrix, i.e., O(k3), in general.
So, for L

opt
T iterations, the total cost would be:

Lopt
T∑

k=1

O
(
k3

)
= O

((
L

opt
T

)4
)

. (26)

Additionally, a matrix-matrix product is required at each
iteration with total cost O((L

opt
T )3NT). On the other side,

TABLE III
COMPUTATIONAL COMPLEXITY COMPARISON

BETWEEN GP AND OMP SOLUTIONS

the proposed GP algorithm requires only matrix-matrix
multiplications at each iteration, hence the complexity order is
O((Lopt

T )3NT). This complexity reduction is justified by the
substitution of the matrix inversion with a gradient step. The
derived complexity orders are summarized in Table III(a). In
Table III(b) we show the MATLAB run time comparison (in
μs) between OMP and GP w.r.t. the number of RF chains at the
TX for a 64 × 16 mmWave MIMO system with SNR = 10 dB.
As the time difference between both the algorithmic solutions
is considerable with the increase in the number of RF chains,
the obtained values indicate that GP consumes much less time
than OMP leading to a lower complexity system.

F. Performance Evaluation

Fig. 6 shows the energy efficiency and spectral efficiency
performance of the proposed solution, the BF solution, the
full digital solution and the analog beamforming solution w.r.t.
SNR for a 64 × 16 mmWave MIMO system. It can be clearly
observed from Fig. 6(a) that the proposed solution is as energy
efficient as the BF solution, and better than the fully digital
and analog beamforming solutions. For example, at 10 dB,
the proposed solution has merely a energy efficiency differ-
ence of ≈ 0.01 bits/Hz/J with the BF, but shows ≈ 0.35
bits/Hz/J and ≈ 0.25 bits/Hz/J better energy efficiency than
the fully digital and analog beamforming solutions, respec-
tively. Also, for example, in Fig. 6(b) the proposed design at
10 dB shows a ≈ 10 bits/s/Hz less spectral efficiency than the
fully digital solution, ≈ 10 bits/s/Hz better than analog beam-
forming and approximately the same performance as the BF
method.

Fig. 7(a) shows the energy efficiency comparison among
the solutions with partially-connected structures where each
RF chain is connected to NT/L

opt
T antennas through phase

shifters. We can observe similar energy efficiency performance
characteristics as in Fig. 6(a); for example, the proposed
solution has approximately the same energy efficiency
performance as the BF method, ≈ 0.4 bits/Hz/J and ≈ 0.32
bits/Hz/J better than the fully digital and analog beamform-
ing solutions, respectively, at SNR = 15 dB. Fig. 7(b) shows
the energy efficiency performance comparison w.r.t. the num-
ber of TX antennas, NT, for a fully-connected structure. We
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Fig. 5. PMF plots of energy efficiency difference between DM and BF solutions at different Pmax values for a 64 × 16 system and SNR = 10 dB.

Fig. 6. Energy efficiency and rate performance of different solutions w.r.t.
SNR for a fully-connected 64 × 16 system at Pmax = 1 W.

can observe that the performance starts decreasing with the
increase in the number of antenna elements. For example, at
NT = 64, the energy efficiency for the proposed DM is close

Fig. 7. Energy efficiency performance of different solutions for a 64 × 16
hybrid mmWave MIMO system at Pmax = 1 W.

to that of the BF solution which is ≈ 0.35 bits/Hz/J and ≈
0.25 bits/Hz/J better than the fully digital beamforming and
analog beamforming solutions, respectively. At NT = 256, the
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Fig. 8. Energy efficiency performance gains w.r.t. SNR at NT = 64 over
the fixed number of RF chains case.

TABLE IV
ENERGY EFFICIENCY AND COMPUTATIONAL COMPLEXITY COMPARISONS

BETWEEN THE PROPOSED DM AND THE FS APPROACH

energy efficiency performance for the proposed DM solution
is decreased to ≈ 0.56 bits/Hz/J and close to the BF solu-
tion, and ≈ 0.5 bits/Hz/J and ≈ 0.2 bits/Hz/J better than the
fully digital beamforming and analog beamforming solutions,
respectively.

Fig. 8 shows the energy efficiency gain of the DM
based framework when used with codebook-based GP and
OMP techniques, and when incorporated with codebook-free
ADMM [16] and SVD [12] techniques, over the case of a
fixed number of RF chains, in this case, 8. The codebook-free
technique such as ADMM performs better than the codebook-
based techniques such as GP and OMP, while SVD shows
a similar performance. The energy efficiency performance of
GP and OMP techniques are same. Table IV(a) shows energy
efficiency performance comparison between the proposed DM
approach (Algorithm 3), i.e., EEDM, and the FS approach
(Algorithm 4), i.e., EEFS, where we can observe that the dif-
ference between their energy efficiency is considerably low.
It states that FS approach shows very similar performance
to the proposed method. From implementation perspective,
Table IV(b) clearly suggests that the complexity for FS

approach increases significantly as the search is made for all
possible number of RF chains LT.

VI. CONCLUSION

This paper proposes an energy efficient A/D hybrid beam-
forming framework with a novel architecture for a mmWave
MIMO system, where we optimize the active number of RF
chains through fractional programming. The proposed DM
based framework reduces the complexity significantly and
achieves almost the same energy efficiency performance as the
state of the art BF approach. Both approaches achieve higher
energy efficiency performance when compared with the fully
digital beamforming and the analog beamforming solutions.
In particular, the proposed solution only needs to compute
the precoder and combiner matrices once, after the num-
ber of active RF chains are decided through the Dinkelbach
optimization solution. The modified version of the proposed
solution, i.e., FS approach, shows very similar performance to
the proposed DM but the complexity increases significantly.
The codebook-free designs such as ADMM and SVD based
solutions, when incorporated with the proposed framework
also achieve better energy efficiency performance over the
fixed number of RF chains case. It is also shown that GP incor-
porated with the proposed DM is a faster and less complex
approximation solution to compute the precoder and combiner
matrices than OMP. For this paper, we focus on maximizing
the energy efficiency but extending these techniques to con-
sider both estimated channels and frequency selective channels
can be considered for future work.
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Abstract

In this paper, we aim to design highly energy efficient end-to-end communication for millimeter

wave multiple-input multiple-output systems. This is done by jointly optimizing the digital-to-analog

converter (DAC)/analog-to-digital converter (ADC) bit resolutions and hybrid beamforming matrices.

The novel decomposition of the hybrid precoder and the hybrid combiner to three parts is introduced

at the transmitter (TX) and the receiver (RX), respectively, representing the analog precoder/combiner

matrix, the DAC/ADC bit resolution matrix and the baseband precoder/combiner matrix. The unknown

matrices are computed as a solution to the matrix factorization problem where the optimal fully digital

precoder or combiner is approximated by the product of these matrices. A novel and efficient solution

based on the alternating direction method of multipliers is proposed to solve these problems at both

the TX and the RX. The simulation results show that the proposed solution, where the DAC/ADC bit

allocation is dynamic during operation, achieves higher energy efficiency when compared with existing

benchmark techniques that use fixed DAC/ADC bit resolutions.
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Joint bit resolution and hybrid beamforming optimization, energy efficiency maximization, millime-

ter wave MIMO, beyond 5G wireless communications.
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I. INTRODUCTION

MILLIMETER WAVE (mmWave) spectrum is an attractive alternative to the densely occupied

microwave spectrum range of 300 MHz to 6 GHz for next generation wireless com-

munication systems. The advantages of using a mmWave frequency band are increased capacity,

lower latency, high mobility and reliability, and lower infrastructure costs [2]–[4]. The higher

path loss associated with mmWave spectrum can be compensated by using large scale antenna

arrays leading to a multiple-input multiple-output (MIMO) system. Implementing fully digital

beamforming in mmWave MIMO systems provides high throughput but has high complexity

and low energy efficiency (EE). A simpler alternative is a fully analog beamforming approach

which was discussed in [5] but cannot implement multi-stream spatial communication due to

the use of a single radio frequency (RF) chain.

Analog/digital (A/D) hybrid beamforming MIMO architectures implement both digital and

analog units to overcome these issues. The hardware complexity and power consumption is

reduced through using fewer RF chains and it can support multi-stream communication with high

spectral efficiency (SE) [6]–[15]. Such systems can be also optimized to achieve high EE gains

[16]–[19]. An alternative solution to reduce the power consumption and hardware complexity is

by decreasing the bit resolution [20] of the digital-to-analog converters (DACs) and the analog-

to-digital converters (ADCs). Given the distinct system and channel model characteristics at

mmWave compared to microwave, the EE and SE performance needs to be analyzed for the

A/D hybrid beamforming architecture with low resolution sampling.

A. Literature Review

To observe the effect of ADC resolution and bandwidth on rate, an additive quantization

noise model (AQNM) is considered in [21] for a mmWave MIMO system under a RX power

constraint. Reference [22] uses AQNM and shows the significance of low resolution ADCs on

decreasing the rate. Recent work on A/D hybrid MIMO systems with low resolution sampling

dynamically adjusts the ADC resolution [23]. Most of the literature such as in [21]–[27] imposes

low resolution only at the RX side, and mostly assumed a fully digital or hybrid TX with high

resolution DACs. However, there is a need to conduct research on optimizing the bit resolution

problem for the TX side as well.

Furthermore, the existing literature mostly develops systems based on high resolution ADCs

with a small number of RF chains or low resolution ADCs with a large number of RF chains.
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Either way, only fixed resolution DACs/ADCs are taken into account. References [16], [17]

consider EE optimization problems for A/D hybrid transceivers but with fixed and high resolution

at the DACs/ADCs. The power model in [16] takes into account the power consumed at every

RF chain and a constant power term for site-cooling, baseband processing and synchronization at

the TX and [17] considers the RF hardware losses and some computational power expenditure.

Some approaches have been applied in A/D hybrid mmWave MIMO systems for EE maxi-

mization and low complexity with both full and low resolution sampling cases [18], [19], [28].

Reference [18] proposes an energy efficient A/D hybrid beamforming framework with a novel

architecture for a mmWave MIMO system. The number of active RF chains are optimized

dynamically by fractional programming to maximize EE performance but the DAC/ADC bit

resolutions are fixed. Reference [28] proposes a novel EE maximization technique that selects

the best subset of the active RF chains and DAC resolution which can also be extended to low

resolution ADCs at the RX. Reference [24] suggests implementing fixed and low resolution ADCs

with a small number of RF chains. Reference [25] works on the idea of a mixed-ADC architecture

where a better energy-rate trade off is achieved by combining low and high resolution ADCs,

but still with a fixed resolution for each ADC and without considering A/D hybrid beamforming.

An A/D hybrid beamforming system with fixed and low resolution ADCs has been analyzed for

channel estimation in [26].

One can implement varying resolution ADCs at the RX [27] which may provide a better

solution than the RX with fixed and low resolution ADCs. Similarly, exploring low resolution

DACs at the TX can also help reduce the power consumption. Thus, research that is focused on

ADCs at the RX can also be applied to the TX DACs considering the TX specific system model

parameters. Similar to using different ADC resolutions at the RX [27], which could provide

a better solution than fixed low resolution ADCs, one can design a variable DAC resolution

TX. Extra care is needed when deciding the number of bits used as the total DAC/ADC power

consumption can be dominated by only a few high resolution DACs/ADCs. From [29], we

notice that a good trade off between the power consumption and the performance may be to

consider the range of 1-8 bits for I- and Q-channels, where 8-bit represents the full-bit resolution

DACs/ADCs.

Reference [30] uses low resolution DACs for a single user MIMO system while [31] employs

low resolution DACs at the base station for a narrowband multi-user MIMO system. Reference

[32] also discusses fixed and low resolution DACs architecture for multi-user MIMO systems.
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Reference [33] considers a single user MIMO system with quantized hybrid precoding including

the RF quantized noise term beside the additive white Gaussian noise (AWGN) while evaluating

EE and SE performance. The existing literature still does not consider adjusting the resolution

associated with DACs/ADCs dynamically. It is possible to consider both the TX and the RX

simultaneously where we can design an optimization problem to find the optimal number of

quantized bits to achieve high EE performance. When designing for high EE, the complexity of

the solution also needs to be taken into account while providing improvements over the existing

literature.

B. Contributions

This paper designs an optimal EE solution for a mmWave A/D hybrid MIMO system by

introducing a novel TX decomposition of the A/D hybrid precoder to three parts representing

the analog precoder matrix, the DAC bit resolution matrix and the digital precoder matrix,

respectively. A similar decomposition at the RX represents the analog combiner matrix, the ADC

bit resolution matrix and the digital combiner matrix. Our aim is to minimize the distance between

the decomposition, which is expressed as the product of three matrices, and the corresponding

fully digital precoder or combiner matrix. The joint problem is decomposed into a series of sub-

problems which are solved using the alternating direction method of multipliers (ADMM). We

implement an exhaustive search approach [16] to evaluate the upper bound for EE maximization.

In [1], we addressed bit allocation and hybrid combining at the RX only, where we jointly

optimized the number of ADC bits and hybrid combiner matrices for EE maximization. A novel

decomposition of the hybrid combiner to three parts was introduced: the analog combiner matrix,

the bit resolution matrix and the baseband combiner matrix, and these matrices were computed

using the ADMM approach in order to solve the matrix factorization problem. In addition to

[1], the main contributions of this paper can be listed as follows:

• This paper designs an optimal EE solution for a mmWave A/D hybrid beamforming MIMO

system by introducing the novel matrix decomposition that is applied to the hybrid beam-

forming matrices at both the TX and the RX. This decomposition defines three matrices,

which are the analog beamforming matrix, the bit resolution matrix and the baseband

beamforming matrix at both the TX and the RX. These matrices are obtained by the solution

of an EE maximization problem and the DAC/ADC bit resolution is adjusted dynamically

unlike fixed bit resolution in the existing literature.
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• The joint TX-RX problem is a difficult problem to solve due to non-convex constraints

and non-convex cost functions. Firstly we address the joint TX-RX problem unlike in the

existing literature. Then we decouple it into two sub-problems dealing with the TX and

the RX separately, where the corresponding problems at the TX and the RX are solved

by the alternating minimization technique such as ADMM [34] to obtain the unknown

precoder/combiner and DAC/ADC bit resolution matrices.

• This work jointly optimizes the hybrid beamforming and DAC/ADC bit resolution matrices,

unlike the existing approaches that optimize either DAC/ADC bit resolution or hybrid

beamforming matrices. Moreover, the proposed design has high flexibility, given that the

analog precoder/combiner is codebook-free, thus there is no restriction on the angular vectors

and different bit resolutions can be assigned to each DAC/ADC.

The performance of the proposed technique is investigated through extensive simulation results,

achieving increased EE compared to the baseline techniques with fixed DAC/ADC bit resolutions

and number of RF chains, and an exhaustive search based approach which is an upper bound

for EE maximization.

C. Notation and Organization

A, a and a stand for a matrix, a vector, and a scalar, respectively. The trace, transpose

and complex conjugate transpose of A are denoted as tr(A), AT and AH , respectively; ‖A‖F
represents the Frobenius norm of A; |a| represents the determinant of a; IN represents N ×N

identity matrix; CN (a;A) denotes a complex Gaussian vector having mean a and covariance

matrix A; C, R and R+ denote the sets of complex numbers, real numbers and positive real

numbers, respectively; X ∈ CA×B and X ∈ RA×B denote A × B size X matrix with complex

and real entries, respectively; [A]k denotes the k-th column of matrix A while [A]kl the matrix

entry at the k-th row and l-th column; the indicator function 1S {A} of a set S that acts over

a matrix A is defined as 0 ∀A ∈ S and ∞ ∀A /∈ S .

Section II presents the channel and system models where the channel model is based on a

mmWave channel setup and the system model defines the low resolution quantization at both the

TX and the RX. Sections III and IV present the problem formulation for the proposed technique

at the TX and the RX, respectively, and the solution to obtain an energy efficient system. Section

V verifies the proposed technique through simulation results and Section VI concludes the paper.
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(a) A mmWave A/D hybrid MIMO system with varying DAC/ADC bit resolutions at the TX/RX.

(b) Block diagram of the beam tracking phase and the data communications phase.

Fig. 1: System model for mmWave hybrid MIMO with varying DAC/ADC bit resolution.

II. MMWAVE A/D HYBRID MIMO SYSTEM

A. MmWave Channel Model

MmWave channels can be modeled by a narrowband clustered channel model due to different

channel settings such as the number of multipaths, amplitudes, etc., with Ncl clusters and Nray

propagation paths in each cluster [6]. Considering a single user mmWave system with NT

antennas at the TX, transmitting Ns data streams to NR antennas at the RX, the mmWave

channel matrix can be written as follows:

H =

√
NTNR

NclNray

Ncl∑

i=1

Nray∑

l=1

αilaR(φ
r
il)aT(φ

t
il)

H , (1)

where αil ∈ CN (0, σ2
α,i) is the gain term with σ2

α,i being the average power of the ith cluster.

Furthermore, aT(φ
t
il) and aR(φ

r
il) represent the normalized transmit and receive array response

vectors [6], where φt
il and φr

il denote the azimuth angles of departure and arrival, respectively.

We use uniform linear array (ULA) antennas for simplicity and model the antenna elements at

the RX as ideal sectored elements [35]. We assume that the channel state information (CSI) is

known at both the TX and the RX.
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B. A/D Hybrid MIMO System Model

Based on the A/D hybrid beamforming scheme in the large scale mmWave MIMO com-

munication systems, the number of TX RF chains LT follows the limitation Ns ≤ LT ≤ NT

and similarly for LR RF chains at the RX, Ns ≤ LR ≤ NR [6], [7]. As shown in Fig. 1

(a), the matrices FRF ∈ CNT×LT and FBB ∈ CLT×Ns denote the analog precoder and baseband

precoder matrices, respectively. Similarly, the matrices WRF ∈ CNR×LR and WBB ∈ CLR×Ns

denote the analog combiner and baseband combiner matrices, respectively. The analog precoder

and combiner matrices, FRF and WRF, are based on phase shifters, i.e., the elements that have

unit modulus and continuous phase. Thus, FRF ∈ FNT×LT and WRF ∈ WNR×LR where the

set F and W represent the set of possible phase shifts in FRF and WRF, respectively. The

sets F and W for variables f and w, respectively, are defined as F = {f ∈ C | |f | = 1} and

W = {w ∈ C | |w| = 1}.
Note that, we optimize the DAC and ADC resolution and the precoder and combiner matrices

at the TX and the RX on a frame-by-frame basis. As shown in Fig. 1 (b), we consider two stages

in the system model: i) the beam training phase, and ii) the data communications phase. In stage

i), firstly, the channel H is computed which provides us the optimal beamforming matrices, i.e.,

FDBF at the TX and WDBF at the RX. In stage ii), the optimal precoding and DAC bit resolution

matrices FRF, FBB and ∆TX at the TX, respectively, and the optimal combining and ADC bit

resolution matrices WRF, WBB and ∆RX at the RX are obtained. These two phases consist of

one communication frame where the frame duration is smaller than the channel coherence time.

Furthermore, if we assume that the TX/RX is active for stage i) a small proportion of time, for

example, < 10%, then the overall transmit energy consumption is dominated by stage ii).

We consider the linear AQNM to represent the distortion of quantization [21]. Given that Q(·)
denotes a uniform scalar quantizer then for the scalar complex input x ∈ C that is applied to

both the real and imaginary parts, we have, Q(x) ≈ δx+ ǫ, where δ =
√

1− π
√

3
2
2−2b ∈ [m,M ]

is the multiplicative distortion parameter for a bit resolution equal to b [38], where m and M

denote the minimum and maximum value of the range. The resolution parameter b is denoted

as bt
i ∀ i = 1, . . . , LT and br

i ∀ i = 1, . . . , LR at the TX and the RX, respectively. Note that the

introduced error in the above linear approximation decreases for larger resolutions. However, our

proposed solution focuses on EE maximization and this linear approximation does not impact the

performance significantly as observed from the simulation results in Section V. The parameter ǫ
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is the additive quantization noise with ǫ ∼ CN (0, σ2
ǫ ), where σǫ =

√
1− π

√
3

2
2−2b

√
π
√

3
2
2−2b. The

matrices ∆TX and ∆RX represent diagonal matrices with values depending on the bit resolution

of each DAC and ADC, respectively. Specifically, each diagonal entry of ∆TX is given by:

[∆TX]ii =

√

1− π
√
3

2
2−2bt

i ∈ [m,M ] ∀ i = 1, . . . , LT, (2)

and each diagonal entry of ∆RX is given by:

[∆RX]ii =

√

1− π
√
3

2
2−2br

i ∈ [m,M ] ∀ i = 1, . . . , LR, (3)

where, for simplicity, we assume that the range [m,M ] is the same for each of the DACs/ADCs.

The additive quantization noise for the DACs and ADCs are written as complex Gaussian vectors

ǫTX ∈ CN (0,CǫT) and ǫRX ∈ CN (0,CǫR) [28] where CǫT and CǫR are the diagonal covariance

matrices for DACs and ADCs, respectively. The covariance matrix entries are as follows:

[CǫT]ii=

(
1−π

√
3

2
2−2bt

i

)(
π
√
3

2
2−2bt

i

)
∀i=1, .., LT, (4)

and

[CǫR]ii=

(
1−π

√
3

2
2−2br

i

)(
π
√
3

2
2−2br

i

)
∀i=1, .., LR. (5)

Note that while optimizing the EE of the TX side, it is considered that the RX parameters, which

includes the analog combiner matrix, the ADC bit resolution matrix and the baseband combiner

matrix is known to the TX and vice-versa.

Let us consider x ∈ CNs×1 as the normalized data vector, then based on the AQNM, the vector

containing the complex output of all the DACs can be expressed as follows:

Q(FBBx) ≈∆TXFBBx+ ǫTX ∈ CLT×1, (6)

This leads us to the following linear approximation for the transmitted signal t ∈ CNT×1, as seen

at the output of the A/D hybrid TX in Fig. 1 (a):

t = FRF∆TXFBBx+ FRFǫTX. (7)

After the effect of the wireless mmWave channel H and the Gaussian noise n with independent

and identically distributed entries and complex Gaussian distribution, i.e., n ∼ CN (0, σ2
nINR),

the received signal y ∈ CNR×1 is expressed as follows:

y =Ht+ n = HFRF∆TXFBBx+HFRFǫTX + n. (8)
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When the analog combiner matrix WRF and ADC quantization based on AQNM are applied to

the received signal y, we obtain the following:

Q(WH
RFy) ≈∆H

RXW
H
RFy + ǫRX ∈ CLR×1. (9)

After the application of the baseband combiner matrix WBB, the output signal r ∈ CNs×1 at

the RX, as shown in Fig. 1 (a), can be expressed as follows:

r = WH
BB∆

H
RXW

H
RFy +WH

BBǫRX. (10)

Considering the A/D hybrid precoder matrix F = FRF∆TXFBB ∈ CNT×Ns and the A/D hybrid

combiner matrix W=WRF∆RXWBB∈CNR×Ns , we can express the RX output signal r in (10)

as follows:

r = WHHFx+WHHFRFǫTX +WH
BBǫRX +WHn︸ ︷︷ ︸

η

, (11)

where η is the combined effect of the additive white Gaussian RX noise and quantization noise

that has covariance matrix, Rη ∈ CNs×Ns , given by,

Rη=WHHFRFCǫTF
H
RFH

HW+WH
BBCǫRWBB+σ2

nW
HW. (12)

In the following sections, we discuss the joint optimization solution to compute the optimal

DAC/ADC bit resolution matrices and the optimal precoder/combiner matrices.

III. JOINT DAC BIT ALLOCATION AND A/D HYBRID PRECODING DESIGN

Let us consider a point-to-point MIMO system with a linear quantization model. We define

the EE as the ratio of the information rate R, i.e. SE, and the total consumed power P [39] as:

EE , R

P
(bits/Hz/J). (13)

For the given point-to-point MIMO system, the SE is defined as,

R, log2

∣∣∣∣INs+
R−1

η

Ns
WHHFFHHHW

∣∣∣∣ (bits/s/Hz), (14)

where F = FRF∆TXFBB and W = WRF∆RXWBB.

Similar to the power model at the TX in [28], the total consumed power for the system is

expressed as:

P , PTX(FRF,∆TX,FBB) + PRX(∆RX) (W), (15)
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where the power consumption at the TX is as follows:

PTX(FRF,∆TX,FBB) =tr(FFH) + PDT(∆TX) +NTPT +NTLTPPT + PCT (W), (16)

where PPT is the power per phase shifter, PT is the power per antenna element, PDT(∆TX) is the

power associated with the total quantization operation at the TX, and following (2) and [21], we

have

PDT(∆TX)=PDAC

LT∑

i=1

2bi =PDAC

LT∑

i=1

(
π
√
3

2(1−[∆TX]2ii)

)1
2

(W), (17)

where PDAC is the power consumed per bit in the DAC and PCT is the power required by all

circuit components at the TX. Similarly, the total power consumption at the RX is,

PRX(∆RX)=PDR(∆RX)+NRPR+NRLRPPR+PCR (W), (18)

where, at the RX, PPR is the power per phase shifter, PR is the power per antenna element, PDR

is the power associated with the total quantization operation, and following (3) and [21], we

have

PDR(∆RX)=PADC

LR∑

i=1

2bi =PADC

LR∑

i=1

(
π
√
3

2(1−[∆RX]2ii)

)1
2

(W), (19)

where PADC is the power consumed per bit in the ADC and PCR is the power required by all

RX circuit components.

The maximization of EE is given by

max
FRF,∆TX,FBB,WRF,∆RX,WBB

R(FRF,∆TX,FBB,WRF,∆RX,WBB)

PTX(FRF,∆TX,FBB) + PRX(∆RX)

subject to FRF ∈ FNT×LT ,∆TX ∈ DLT×LT
TX ,WRF ∈ WNR×LR ,∆RX ∈ DLR×LR

RX , (20)

when the SE R is given by (14) and the power P in (15). The problem to be addressed involves

a fractional cost function that both the numerator and the denominator parts are non-convex

functions of the optimizing variables. Furthermore the optimization problem involves non-convex

constraint sets. Thus, it is in general a very difficult problem to be addressed. It is interesting

that the corresponding problem for a fully digital transceiver that admits a much simpler form

is in general intractable due to the coupling of the TX-RX design [40]. To that end, we start by

decoupling the TX-RX design problem.
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Let us first express the EE maximization problem in the following relaxed form:

min
FRF,∆TX,FBB,WRF,∆RX,WBB

−R(FRF,∆TX,FBB,WRF,∆RX,WBB)

+ γTPTX(FRF,∆TX,FBB) + γRPRX(∆RX)

subject to FRF ∈ FNT×LT ,∆TX ∈ DLT×LT
TX ,WRF ∈ WNR×LR ,∆RX ∈ DLR×LR

RX , (21)

where the parameters γT ∈ (0, γmax
T ] ⊂ R+ and γR ∈ (0, γmax

R ] ⊂ R+ are introducing a trade-off

between the achieved rate and the power consumption at the TX’s and the RX’s side, respectively.

Such an approach has been used in the past to tackle fractional optimization problems [41]. In

the concave/convex case, the equivalence of the relaxed problem with the original fractional one

is theoretically established. Unfortunately, a similar result for the case considered in the present

paper is not easy to be derived due to the complexity of the addressed problem. Thus, in the

present paper, we rely on line search methods in order to optimally tune these parameters.

Having simplified the original problem, we may now proceed by temporally decoupling the

designs at the TX’s and the RX’s side. Under the assumption that the RX can perform optimal

nearest-neighbor decoding based on the received signals, the optimal precoding matrices are

designed such that the mutual information achieved by Gaussian signaling over the wireless

channel is maximized [6]. The mutual information is given by

I, log2

∣∣∣∣∣INs+
Q−1

η′

Ns
HFFHHH

∣∣∣∣∣ (bits/s/Hz), (22)

where again F = FRF∆TXFBB and and Qη′ is the covariance matrix of the sum of noise and

transmit quantization noise variables, i.e. η′ = FRFǫTX + n, given by

Qη′ =FRFCǫTF
H
RF+σ2

nINR . (23)

Based on (21)-(22), the precoding matrices may be derived as the solution to the following

optimization problem:

(P1T) : min
FRF,∆TX,FBB

−I(FRF,∆TX,FBB) + γTPTX(FRF,∆TX,FBB),

subject to FRF ∈ FNT×LT ,∆TX ∈ DLT×LT
TX ,
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Now provided that the optimal precoding matrix F⋆ = F⋆
RF∆

⋆
TXF

⋆
BB is derived from solving

(P1T), we can plug in these resulted precoding matrices in the cost function of (21) resulting in

an optimization problem dependent only on the decoder matrices at the RX’s side, defined as,

(P1R) : min
WRF,∆RX,WBB

− R̃(WRF,∆RX,WBB) + γRPRX(∆RX)

subject to WRF ∈ WNR×LR ,∆RX ∈ DLR×LR
RX , (24)

where R̃(WRF,∆RX,WBB) = R(F⋆
RF,∆

⋆
TX,F

⋆
BB,WRF,∆RX,WBB).

Thus, the precoding and decoding matrices can be derived as the solutions to the two decoupled

problems (P1T)− (P1R) above. In the following subsections, the solutions to these problems are

developed. We start first with the development of the solution to TX’s side one (P1T) and then

the solution for the RX’s side (P1R) counterpart follows.

A. Problem Formulation at the TX

Focusing on the TX side, we seek the bit resolution matrix ∆TX and the hybrid precoding

matrices FRF, FBB that solve (P1T). The set DTX represents the finite states of the quantizer and

is defined as,

DTX=
{
∆TX ∈ RLT×LT

∣∣m ≤ [∆TX]ii ≤M ∀ i = 1, ..., LT
}
.

Note that PTX(FRF,∆TX,FBB) > 0, as defined in (16), since the power required by all circuit

components is always larger than zero, i.e., PCP > 0.

Since dealing with the part of the cost function of (P1T) that involves the mutual information

expression is a difficult task due to the perplexed form of the latter, we adopt the approach in

[6] where the maximization of the mutual information I can be approximated by finding the

minimum Euclidean distance of the hybrid precoder to the one of the fully digital transceiver

for the full-bit resolution sampling case, denoted by FDBF, i.e., ‖FDBF − FRF∆TXFBB‖2F [6].

Therefore, motivated by the previous, (P1T) can be approximated to finding the solution of the

following problem:

(P2) : min
FRF,∆TX,FBB

1

2
‖FDBF − FRF∆TXFBB‖2F + γTPTX(F),

subject to FRF ∈ FNT×LT ,∆TX ∈ DLT×LT
TX .

For a point-to-point MIMO system the optimal FDBF is given by FDBF = V
√
P where the

orthonormal matrix V ∈ CNR×NT is derived via the channel matrix singular value decomposition
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(SVD), i.e. H = UΣVH and P is a diagonal power allocation matrix with real positive diagonal

entries derived by the so-called “water-filling algorithm” [42].

Problem (P2) is still very difficult to address as it is non-convex due to the non-convex cost

function that involves the product of three matrix variables and non-convex constraints. In the

next section, an efficient algorithmic solution based on the ADMM is proposed.

B. Proposed ADMM Solution at the TX

In the following we develop an iterative procedure for solving (P2) based on the ADMM

approach [34]. This method is a variant of the standard augmented Lagrangian method that

uses partial updates (similar to the Gauss-Seidel method for the solution of linear equations)

to solve constrained optimization problems. While it is mainly known for its good performance

for a number of convex optimization problems, recently it has been successfully applied to non-

convex matrix factorization as well [34], [43], [44]. Motivated by this, in the following ADMM

based solutions are developed that are tailored for the non-convex matrix factorization problem

(P2).

We first transform (P2) into a form that can be addressed via ADMM. By using the auxiliary

variable Z, (P2) can be written as:

(P3) : min
Z,FRF,∆TX,FBB

1

2
‖FDBF − Z‖2F + 1FNT×LT{FRF}+ 1DLT×LT

TX
{∆TX}+ γTPTX(F),

subject to Z = FRF∆TXFBB.

Problem (P3) formulates the A/D hybrid precoder matrix design as a matrix factorization

problem. That is, the overall precoder Z is sought so that it minimizes the Euclidean distance to

the optimal, fully digital precoder FDBF while supporting decomposition into three factors: the

analog precoder matrix FRF, the DAC bit resolution matrix ∆TX and the digital precoder matrix

FBB. The augmented Lagrangian function of (P3) is given by

L(Z,FRF,∆TX,FBB,Λ) =
1

2
‖FDBF−Z‖2F +1FNT×LT{FRF}+1DLT×LT

TX
{∆TX}

+
α

2
‖Z+Λ/α−FRF∆TXFBB‖2F +γTPTX(F), (25)

where α is a scalar penalty parameter and Λ ∈ CNT×LT is the Lagrange Multiplier matrix.

According to the ADMM approach [34], the solution to (P3) is derived by the following iterative

steps where n denotes the iteration index:

(P3A) : Z(n) = argmin
Z
L(Z,FRF(n−1),∆TX(n−1),FBB(n−1),Λ(n−1)),
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(P3B) : FRF(n) = argmin
FRF
L(Z(n),FRF,∆TX(n−1),FBB(n−1),Λ(n−1)),

(P3C) : ∆TX(n) = argmin
∆TX
L(Z(n),FRF(n),∆TX,FBB(n−1),Λ(n−1))+γTPTX(F),

(P3D) : FBB(n) = argmin
FBB
L(Zn,FRF(n),∆TX(n),FBB,Λ(n−1)),

Λ(n) = Λ(n−1) + α
(
Z(n) − FRF(n)∆TX(n)FBB(n)

)
. (26)

In order to apply the ADMM iterative procedure, we have to solve the optimization problems

(P3A)-(P3D). We may start from problem (P3A) which can be written as follows:

(P ′
3A) : Z(n) = argmin

Z

1

2
‖(1 + α)Z− FDBF +Λ(n−1) − αFRF(n−1)∆TX(n−1)FBB(n−1)‖2F .

Problem (P ′
3A) can be directly solved by equating the gradient of the augmented Lagrangian

(25) w.r.t. Z being set to zero. Therefore, we have

Z(n)=
1

α+1

(
FDBF−Λ(n−1)+αFRF(n−1)∆TX(n−1)FBB(n−1)

)
. (27)

We may now proceed to solve (P3B) which can be written in the following simplified form

by keeping only the terms of the augmented Lagrangian that are dependent on FRF:

(P ′
3B) : FRF(n) = argmin

FRF
1FNT×LT{FRF}+

α

2
‖Z(n) +Λ(n−1)/α− FRF∆TX(n−1)FBB(n−1)‖2F .

The solution to problem (P ′
3B) does not admit a closed form and thus, it is approximated by

solving the unconstrained problem and then projecting onto the set FNT×LT , i.e.,

FRF(n) = ΠF
{(

Λ(n−1) + αZ(n)

)
FH

BB(n−1)∆
H
TX(n−1)

(
α∆TX(n−1)FBB(n−1)F

H
BB(n−1)∆

H
TX(n−1)

)−1
}
,

(28)

where ΠF projects the solution onto the set F . This is computed by solving the following

optimization problem [45]:

(P ′′
3B) : min

AF
‖AF −A‖2F , subject to AF ∈ F ,

where A is an arbitrary matrix and AF is its projection onto the set F . The solution to (P ′′
3B)

is given by the phase of the complex elements of A. Thus, for AF = ΠF{A} we have

AF(x, y) =




0, A(x, y) = 0

A(x,y)
|A(x,y)| , A(x, y) 6= 0

, (29)
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Algorithm 1 Proposed ADMM Solution for the A/D Hybrid Precoder Design
1: Initialize: Z, FRF, ∆TX, FBB with random values, Λ with zeros, α = 1 and n = 1

2: while The termination criteria of (31) are not met or n ≤ Nmax do

3: Update Z(n) using solution (27),

FRF(n) using solution (28),

∆TX(n) by solving (P ′′
3C) using CVX [48],

FBB(n) using solution (30), and

update Λ(n) using solution (26).

4: n← n+ 1

5: end while

6: return F⋆
RF, ∆⋆

TX, F⋆
BB

where AF(x, y) and A(x, y) are the elements at the xth row-yth column of matrices AF and

A, respectively. While, this is an approximate solution, it turns out that it behaves remarkably

well, as verified in the simulation results of Section V. This is due to the interesting property

that ADMM is observed to converge even in cases where the alternating minimization steps are

not carried out exactly [34]. There are theoretical results that support this statement [46], [47],

though an exact analysis for the case considered here is beyond the scope of this paper.

In a similar manner, (P3C) may be re-written as,

(P ′
3C) : ∆TX(n) =argmin

∆TX
1DLT×LT

TX
{∆TX}+

α

2
‖Z(n) +Λ(n−1)/α− FRF(n)∆TXFBB(n−1)‖2F

+ γTPTX(F).

To solve the above problem, we can write:

(P ′′
3C) : ∆TX(n)=argmin

∆TX
‖yc−ΨTvec(∆TX)‖22+γTPTX(F),

subject to ∆TX ∈ DTX,

The minimization problem in (P ′′
3C) consists of yc = vec(Zn+Λn−1/α), ΨT = FBB(n−1)⊗FRF(n)

(⊗ being the Khatri-Rao product) and is solved using CVX [48].

The solution of problem (P3D) may be written in the following form:

(P ′
3D) : FBB(n) = argmin

FBB

α

2
‖Z(n) +Λ(n−1)/α− FRF(n)∆TX(n)FBB‖2F .
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It is straightforward to see that the solution for (P ′
3D) can be obtained by equating the gradient

to zero and solving the resulting equation w.r.t. the matrix variable FBB, i.e.,

FBB(n) =
(
α∆H

TX(n)F
H
RF(n)FRF(n)∆TX(n)

)−1
∆H

TX(n)F
H
RF(n)

(
Λ(n−1) + αZ(n)

)
. (30)

Algorithm 1 provides the complete procedure to obtain the optimal analog precoder matrix

FRF, the optimal bit resolution matrix ∆TX and the optimal baseband (or digital) precoder matrix

FBB. It starts the alternating minimization procedure by initializing the entries of the matrices

Z, FRF, ∆TX, FBB with random values and the entries of the Lagrange multiplier matrix Λ with

zeros. For iteration index n, Z(n), FRF(n), ∆TX(n) and FBB(n) are updated using Step 3 which

shows the steps to be used to obtain the matrices. A termination criterion related to either the

maximum permitted number of iterations (Nmax) is considered or the ADMM solution meeting

the following criteria is considered:

∥∥Z(n) − Z(n−1)

∥∥
F
≤ ǫz & ‖Z(n) − FRF(n)∆TX(n)FBB(n)‖F ≤ ǫp, (31)

where ǫz and ǫp are the corresponding tolerances. Upon convergence, the number of bits for each

DAC is obtained by using (2) and quantizing to the nearest integer value. The optimal hybrid

precoding matrices F⋆
RF, ∆⋆

TX, F⋆
BB are obtained at the end of this algorithm.

Computational complexity analysis of Algorithm 1: When running Algorithm 1, mainly Step

3, while updating ∆TX(n) by solving (P ′′
3C) using CVX, involves multiplication by ΨT whose

dimensions are LTNT × NsLT. In general, the solution of (P ′′
3C) can be upper-bounded by

O((L2
TNTNs)

3) which can be improved significantly by exploiting the structure of ΨT.

In the following section, we discuss the joint optimization problem at the RX and the solution

to obtain the analog combiner matrix WRF, the ADC bit resolution matrix ∆RX and the digital

combiner matrix WBB.

IV. JOINT ADC BIT ALLOCATION AND A/D HYBRID COMBINING OPTIMIZATION

A. Problem Formulation at the RX

Let us now move to the derivation of the solution to (P1R). The set DRX represents the finite

states of the ADC quantizer and is defined as,

DRX=
{
∆RX ∈ RLR×LR

∣∣m ≤ [∆RX]ii ≤M ∀ i = 1, ..., LR
}
.
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Due to the perplexed form of the function R̃(WRF,∆RX,WBB), we follow the same arguments

the under of which we approximated (P2) by (P1T), in order to approximate (P1R) by

(P5) : min
WRF,∆RX,WBB

1

2
‖WDBF−WRF∆RXWBB‖2F +γRPRX(∆RX),

subject to WRF ∈ WNR×LR ,∆RX ∈ DLR×LR
RX ,

where WDBF is the optimal solution for the fully digital RX which is given by WDBF =
√

P̃Ũ,

where Ũ ∈ CNR×Ns is the orthonormal singular vector matrix which can be derived by the SVD

of the equivalent channel matrix H̃ = HF⋆ = ŨΣ̃ṼH , and P̃ is diagonal power allocation

matrix. Problem (P5) is also non-convex due to the non-convex cost function and non-convex

set of constraints, as well, and for its solution an ADMM-based solution similar to the case of

(P2) is derived in the following subsection.

B. Proposed ADMM Solution at the RX

In the following we develop an iterative procedure for solving (P5) based on ADMM [34].

We first transform (P5) into an amenable form. By using the auxiliary variable Z, (P5) can be

written as:

(P6) : min
Z,WRF,∆RX,WBB

1

2
‖WDBF − Z‖2F + 1WNR×LR{WRF}+ 1DLR×LR

RX
{∆RX}+ γRPRX(∆RX),

subject to Z = WRF∆RXWBB.

Problem (P6) formulates the A/D hybrid combiner matrix design as a matrix factorization

problem. That is, the overall combiner Z is sought so that it minimizes the Euclidean distance

to the optimal, fully digital combiner WDBF while supporting the decomposition into the analog

combiner matrix WRF, the quantization error matrix ∆RX and the digital combiner matrix WBB.

The augmented Lagrangian function of (P6) is given by

L(Z,WRF,∆RX,WBB,Λ) =
1

2
‖WDBF − Z‖2F + 1WNR×LR{WRF}+ 1DLR×LR

RX
{∆RX}

+
α

2
‖Z+Λ/α−WRF∆RXWBB‖2F + γRPRX(∆RX), (32)

where α is a scalar penalty parameter and Λ ∈ CNR×LR is the Lagrange Multiplier matrix.

According to the ADMM approach [34], the solution to (P6) is derived by the following iterative

steps:

(P6A) : Z(n) = argmin
Z

1

2
‖(1 + α)Z−WDBF +Λ(n−1) − αWRF(n−1)∆RX(n−1)WBB(n−1)‖2F ,
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Algorithm 2 Proposed ADMM Solution for the A/D Hybrid Combiner Design
1: Initialize: Z, WRF, ∆RX, WBB with random values, Λ with zeros, α = 1 and n = 1

2: while n ≤ Nmax do

3: Update Z(n) using solution (34),

WRF(n) using solution (35),

∆RX(n) by solving (P6C) using CVX [48],

WBB(n) using solution (36), and

update Λ(n) using solution (33).

4: n← n+ 1

5: end while

6: return W⋆
RF, ∆⋆

RX, W⋆
BB

(P6B) : WRF(n) = argmin
WRF

1WNR×LR{WRF}+
α

2

∥∥Z(n)+Λ(n−1)/α−WRF∆RX(n−1)WBB(n−1)

∥∥2

F
,

(P6C) : ∆RX(n) = argmin
∆RX
‖yc −ΨRvec(∆RX)‖22 + γRPRX(∆RX) subject to ∆RX ∈ DRX,

(P6D) : WBB(n) = argmin
WBB

α

2
‖Z(n) +Λ(n−1)/α−WRF(n)∆RX(n)WBB‖2F ,

Λ(n) = Λ(n−1) + α
(
Z(n) −WRF(n)∆RX(n)WBB(n)

)
, (33)

where n denotes the iteration index, yc=vec(Z(n)+Λ(n−1)/α) and ΨR=WBB(n−1)⊗WRF(n) (⊗
is the Khatri-Rao product).

We solve the optimization problems (P6A)-(P6D) in a similar way to the derivations in Section

III for the TX. The solution for Z(n) is:

Z(n) =
1

α + 1

(
WDBF −Λ(n−1) + αWRF(n−1)∆RX(n−1)WBB(n−1)

)
. (34)

The equation for WRF(n) is as follows:

WRF(n) = ΠW
{(

Λ(n−1) + αZ(n)

)
WBB

H
(n−1)∆

H
RX(n−1)

{
α∆RX(n−1)WBB(n−1)WBB

H
(n−1)∆

H
RX(n−1)

}−1
}
. (35)

The solution to ∆RX(n) is obtained by solving (P6C) using CVX [48]. The matrix WBB(n) is

obtained as follows:

WBB(n) =
{
α∆H

RX(n)WRF
H
(n)WRF(n)∆RX(n)

}−1
∆H

RX(n)WRF
H
(n)

(
Λ(n−1) + αZ(n)

)
. (36)
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Algorithm 2 provides the complete procedure to obtain WRF, ∆RX and WBB. It starts by

initializing the entries of the matrices Z, WRF, ∆RX, WBB with random values and the entries

of the Lagrange multiplier matrix Λ with zeros. For iteration index n, Z(n), WRF(n), ∆RX(n),

WBB(n) are updated at each iteration step by using the solution in (34), (35), solving (P6C)

using CVX, (36) and (33), respectively. The operator ΠW projects the solution onto the set W .

This procedure is identical to problem (P ′′
3B) in Section III, except that the set W replaces F .

A termination criterion is defined using a maximum number of iterations (Nmax) or a fidelity

criterion similar to (31). Upon convergence, the number of bits for each ADC is obtained by

using (3) and quantizing to the nearest integer value. The optimal hybrid combining matrices

W⋆
RF, ∆⋆

RX, W⋆
BB are obtained at the end of this algorithm.

Computational complexity analysis of Algorithm 2: Similar to Algorithm 1 for the TX, the

complexity of the solution of (P6C) can be upper-bounded by O((L2
RNRNs)

3) which can be

improved significantly by exploiting the structure of ΨR.

Once the optimal DAC and ADC bit resolution matrices, i.e., ∆TX and ∆RX, and optimal

hybrid precoding and combining matrices, i.e., FRF, FBB and WRF, WBB, are obtained then

they can be plugged into (14) and (15) to obtain the maximum EE in (13). In the next section,

we discuss the simulation results based on the proposed solution at the TX and the RX, and

comparison with existing benchmark techniques.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed ADMM solution using computer

simulation results. All the results have been averaged over 1000 Monte-Carlo realizations. For

comparison with the proposed ADMM solution, we consider following benchmark techniques:

1) Digital beamforming with 8-bit resolution: We consider the conventional fully digital

beamforming architecture, where the number of RF chains at the TX/RX is equal to the number

of TX/RX antennas, i.e., LT = NT and LR = NR. In terms of the resolution sampling, we

consider full-bit resolution, i.e., M = 8-bit, which represents the best case from the achievable

SE perspective.

2) A/D Hybrid beamforming with 1-bit and 8-bit resolutions: We also consider a A/D hybrid

beamforming architecture with LT < NT and LR < NR, for two cases of DAC/ADC bit resolution:

a) 1-bit resolution which usually shows reasonable EE performance, and b) 8-bit resolution which

usually shows high SE results.
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Power Terms Values

Power per bit in the DAC/ADC PDAC = PADC = 100 mW

Circuit power at the TX/RX PCT = PCR = 10 W

Power per phase shifter at the TX/RX PPT = PPR = 10 mW

Power per antenna at the TX/RX PT = PR = 100 mW

(a) Typical values of the power terms [49] used in (16) and (18).

System Parameters Values

Number of clusters Ncl = 2

Number of rays Nray = 3

Number of TX antennas NT = 32

Number of RX antennas NR = 5

Number of TX/RX RF chains LT = LR = 5

Number of data streams Ns = 5

Bit resolution range [m,M ] = [1, 8]

Maximum number of ADMM iterations Nmax = 20

Maximum TX/RX trade-off parameter γmax
T = 0.1; γmax

R = 1

(b) System parameter values.

TABLE I: Summary of the simulation parameter values.

3) Brute force with A/D hybrid beamforming: We also implement an exhaustive search

approach as an upper bound for EE maximization called brute force (BF), based on [16]. Firstly

the EE problem is split into TX and RX optimization problems similar to those for the proposed

ADMM approach. Then it makes a search over all the possible DAC and ADC bit resolutions

in the range of [m,M ] associated with the each RF chain from 1 to LT and 1 to LR at the TX

and the RX, respectively. It then finds the best EE out of all the possible cases and chooses the

corresponding optimal resolution for each DAC and ADC. This method provides the best possible

EE performance and serves as upper bound for EE maximization by the ADMM approach.

Complexity comparison with the BF approach: The proposed ADMM solution has lower

complexity than the upper bound BF approach because the BF technique involves a search over

all the possible DAC/ADC bit resolutions while the proposed ADMM solution directly optimizes

the number of bits at each DAC/ADC. We constrain the number of RF chains LT = LR = 5 for

the BF approach due to the high complexity order which is O(MLT) and O(MLR) at the TX

and the RX, respectively.
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Fig. 2: Convergence of the proposed ADMM solution at the TX and the RX.

System setup: Table 1 summarizes the simulation values used for the system and power terms,

and in addition, we consider α = 1 and σ2
α,i = 1. The azimuth angles of departure and arrival

are computed with uniformly distributed mean angles, and each cluster follows a Laplacian

distribution about the mean angle. The antenna elements in the ULA are spaced by distance

d = λ/2. The signal-to-noise ratio (SNR) is given by the inverse of the noise variance, i.e.,

1/σ2
n . The transmit vector x is composed of the normalized i.i.d. Gaussian symbols. Under this

assumption the covariance matrix of x is an identity matrix.

Convergence of the proposed ADMM solution: Figs. 2 (a) and 2 (b) show the convergence

of the ADMM solution at the TX and the RX as proposed in Algorithm 1 and Algorithm

2, respectively, to obtain the optimal bit resolution at each DAC/ADC and the corresponding

optimal precoder/combiner matrices. It can be observed from Fig. 2 (a) that the proposed

solution converges rapidly within 16 iterations and the normalized mean square error (NMSE)

at the TX,
∥∥FDBF − FRF(Nmax)∆TX(Nmax)FBB(Nmax)

∥∥2

F
/ ‖FDBF‖2F , goes as low as -15 dB. Simi-

larly, in Fig. 2 (b), the proposed solution again converges rapidly and the NMSE at the RX,
∥∥WDBF −WRF(Nmax)∆RX(Nmax)WBB(Nmax)

∥∥2

F
/ ‖WDBF‖2F , goes as low as −17 dB. A lower number

of TX/RX antennas shows lower NMSE for a given number of iterations as expected, since fewer

parameters are required to be estimated.

Fig. 3 shows the performance of the proposed ADMM solution compared with existing

benchmark techniques w.r.t. SNR at γT = 0.001 and γR = 0.5. The proposed ADMM solution

achieves high EE which is computed by (13) after obtaining the optimal DAC and ADC bit

resolution matrices, i.e., ∆TX and ∆RX, and optimal hybrid precoding and combining matrices,

i.e., FRF, FBB and WRF, WBB. The results are plugged into (14) and (15) to evaluate rate and
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Fig. 3: EE and SE performance w.r.t. SNR at γT = 0.001 and γR = 0.5.
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Fig. 4: EE and SE performance w.r.t. NT at SNR = 10 dB, γT = 0.001 and γR = 0.5.

power respectively. The EE for the proposed solution has similar performance to the BF approach

and is better than the hybrid 1-bit, the hybrid 8-bit and the digital full-bit baselines, e.g., at SNR

= 10 dB, the proposed ADMM solution outperforms the hybrid 1-bit, the hybrid 8-bit and the

digital full-bit baselines by about 0.03 bits/Hz/J, 0.04 bits/Hz/J and 0.065 bits/Hz/J, respectively.

The proposed solution also exhibits better SE, which is the rate in (14) after obtaining the

optimal DAC and ADC bit resolution matrices, and optimal hybrid precoding and combining

matrices, than the hybrid 1-bit and has similar performance to the BF approach for high and
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Fig. 5: EE performance w.r.t. NR and LR at SNR = 10 dB, γT = 0.001 and γR = 0.5.
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Fig. 6: EE and SE performance w.r.t. LT at SNR = 10 dB, γT = 0.001 and γR = 0.5.

low SNR regions and hybrid 8-bit baseline for low SNR region. Note that the proposed ADMM

solution enables the selection of different resolutions for different DACs/ADCs and thus, it

offers a better trade-off for EE versus SE than existing approaches which are based on a fixed

DAC/ADC bit resolution.

Fig. 4 shows the EE (from (13)) and SE (from (14)) performance results w.r.t. the number of

TX antennas NT at 10 dB SNR, γT = 0.001 and γR = 0.5. The proposed ADMM solution again

achieves high EE and performs similar to the BF approach and better than the hybrid 1-bit, the
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Fig. 7: Average number of bits for proposed ADMM w.r.t. γT and γR at the TX and the RX,

respectively, at SNR = 10 dB.
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Fig. 8: EE and SE performance w.r.t. γT at SNR = 10 dB.

hybrid 8-bit and the digital full-bit baselines. For example, at NT = 20, the proposed ADMM

solution outperforms hybrid 1-bit, the hybrid 8-bit and the digital full-bit baselines by about 0.03

bits/Hz/J, 0.045 bits/Hz/J and 0.06 bits/Hz/J, respectively. The proposed ADMM solution also

exhibits SE performance similar to the BF approach and better than the hybrid 1-bit baseline.

Fig. 5 shows the EE performance results w.r.t. the number of RX antennas NR and the number
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Fig. 9: EE and SE performance w.r.t. γR at SNR = 10 dB.
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Fig. 10: Power consumption w.r.t. γT and γR at the TX and RX, respectively, at SNR = 10 dB.

of RX RF chains LR, respectively, at 10 dB SNR, γT = 0.001 and γR = 0.5. The proposed

ADMM solution again achieves high EE which decreases with increase in the number of RX

RF chains, and performs similar to the BF approach (for versus NR) and better than the hybrid

1-bit, the hybrid 8-bit and the digital full-bit baselines. For example, at NR = 7, the proposed

ADMM solution outperforms hybrid 1-bit, the hybrid 8-bit and the digital full-bit baselines by

about 0.03 bits/Hz/J, 0.06 bits/Hz/J and 0.09 bits/Hz/J, respectively. Also, e.g., at LR = 6, the

proposed ADMM solution outperforms hybrid 1-bit, the hybrid 8-bit and the digital full-bit
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baselines by about 0.025 bits/Hz/J, 0.08 bits/Hz/J and 0.115 bits/Hz/J, respectively. Due to the

high complexity of the BF approach, we do not plot results for this approach w.r.t. LT and LR.

Fig. 6 shows the EE and SE performance results w.r.t. the number of TX RF chains LT at 10

dB SNR, γT = 0.001 and γR = 0.5. The proposed ADMM solution achieves high EE, though this

decreases with increase in the number of TX RF chains ADMM achieves better EE performance

than the hybrid 1-bit, the hybrid 8-bit and the digital full-bit resolution baselines. Also, the

proposed ADMM solution exhibits SE performance better than the hybrid 1-bit baseline.

Furthermore, we investigate the performance over the trade-off parameters γT and γR intro-

duced in (P2) and (P5), respectively. Fig. 7 shows the bar plot of the average of the optimal

number of bits selected by the proposed ADMM solution for each DAC versus γT and for each

ADC versus γR. It can be observed that the average optimal number decreases with the increase

in γT and γR, for example, the average number of DAC bits is around 6 for γT = 0.001, 5 for

γT = 0.01 and 4 for γT = 0.1. Similarly, at the RX, the average number of ADC bits is about 5

for γR = 0.001, 4 for γR = 0.01 and 3 for γR = 0.1. This is because increasing γT or γR gives

more weight to the power consumption.

Figs. 8 and 9 show the EE and SE plots for several solutions w.r.t. γT and γR at the TX and the

RX, respectively. It can be observed that the proposed solution achieves higher EE performance

than the fixed bit allocation solutions such as the digital full-bit, the hybrid 1-bit and the hybrid

8-bit baselines and achieves comparable EE and SE results to the BF approach. These curves

also show that adjusting γT and γR values allow the system to vary the energy-rate trade-off.

Note that the TX also accounts for the extra power term, i.e., tr(FFH) as shown in (16) which

means that the selected γT parameter at the TX is lower than the selected γR parameter at the

RX. Fig. 10 shows that the power consumption in the proposed case is low and decreases with

the increase in the trade-off parameter γT and γR values unlike digital 8-bit, fixed bit resolution

hybrid baselines and the BF approach.

VI. CONCLUSION

This paper proposes an energy efficient mmWave A/D hybrid MIMO system which can

vary dynamically the DAC and ADC bit resolutions at the TX and the RX, respectively. This

method uses the decomposition of the A/D hybrid precoder/combiner matrix into three parts

representing the analog precoder/combiner matrix, the DAC/ADC bit resolution matrix and the

digital precoder/combiner matrix. These three matrices are optimized by a novel ADMM solution
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which outperforms the EE of the digital full-bit, the hybrid 1-bit beamforming and the hybrid 8-

bit beamforming baselines, for example, by 3%, 4% and 6.5%, respectively, for a typical value of

10 dB SNR. There is an energy-rate trade-off with the BF approach which yields the upper bound

for EE maximization and the proposed ADMM solution exhibits lower computational complexity.

Moreover, the proposed ADMM solution enables the selection of the optimal resolution for each

DAC/ADC and thus, it offers better trade-off for data rate versus EE than existing approaches

that are based on a fixed DAC/ADC bit resolution.
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Abstract—At millimeter wave (mmWave) frequencies, the
higher cost and power consumption of hardware components
in multiple-input multiple output (MIMO) systems do not allow
beamforming entirely at the baseband with a separate radio
frequency (RF) chain for each antenna. In such scenarios, to
enable spatial multiplexing, hybrid beamforming, which uses
phase shifters to connect a fewer number of RF chains to a
large number of antennas is a cost effective and energy-saving
alternative. This paper describes our research on fully adaptive
transceivers that adapt their behaviour on a frame-by-frame
basis, so that a mmWave hybrid MIMO system always operates
in the most energy efficient manner. Exhaustive search based
brute force approach is computationally intensive, so we study
fractional programming as a low-cost alternative to solve the
problem which maximizes energy efficiency. The performance
results indicate that the resulting mmWave hybrid MIMO
transceiver achieves significantly improved energy efficiency
results compared to the baseline cases involving analogue-only or
digital-only signal processing solutions, and shows performance
trade-offs with the brute force approach.

Index Terms—energy efficiency, hybrid beamforming, MIMO,
millimeter wave, 5G and beyond.

I. INTRODUCTION

Fifth generation (5G) technology is set to address the
consumer demands and performance enhancements for mobile
communication in 2020 and beyond [1]. There will be 28.5
billion networked devices and connections by 2022 [2] and
8.9 billion mobile subscriptions by the end of 2024 [3].
For such large scale use of mobile devices through 5G
and beyond 5G services, the communication systems would
require increased capacity, high data rates, improved coverage
and also reduced energy consumption. We currently use the
microwave frequency spectrum for communication which is
congested with a large number of consumer devices raising the
demand for an unused and available spectrum. This increased
demand on bandwidth and capacity can be resolved by the
use of millimeter wave (mmWave) frequency spectrum which
ranges from 30-300 GHz [4]. This is beneficial as the larger
spectral channels at mmWave would lead to higher data rates.
Moreover, the large scale antenna arrays such as the multiple-
input multiple-output (MIMO) systems can reduce the high
path loss at mmWave frequencies [5], [6]. However, it would
be difficult to use one radio frequency (RF) chain per antenna
leading to a least energy efficient and highly complex system.
Thus, using digital beamforming which needs a dedicated RF

chain per antenna is not very practical from energy efficiency
(EE) and hardware complexity perspectives. To save power
and reduce complexity, analogue beamforming can be used
where a network of analogue phase shifters connects the
antennas to a single RF chain [7], but multi-stream and multi-
user communication can not be supported.

A mmWave MIMO system with hybrid beamforming
(HBF) architecture can save power and reduce hardware
complexity using fewer number of RF chains than the large
number of antennas, and support multi-stream communication
with high spectral efficiency (SE) [8]–[12]. Such systems can
also be optimized to achieve high EE gains [13] but this
has not been widely studied for EE maximization with low
complexity. Low resolution sampling can be implemented to
save power such as in [14] we discuss EE maximization with
low resolution digital-to-analogue converters (DACs) at the
transmitter (TX), in [15] with low resolution analogue-to-
digital converters (ADCs) at the receiver (RX) and in [16]
with low resolution sampling at both the DACs and the ADCs.
However, the existing literature mostly considers fixed number
of RF chains for high SE performance [8]–[12] and RF chains
consume a lot of power which increases the cost of MIMO
systems [17]. Reference [13] provides an exhaustive search
based brute force (BF) approach where a full precoder design
is evaluated for all possible combinations of RF chains, in
order to select the number of RF chains that maximizes EE
but this is a computationally inefficient solution. Moreover,
lower complexity solutions can be implemented to design the
HBF matrices than in [8], [13].

Contribution: This paper describes different approaches to
performing dynamic adaptation of a mmWave hybrid MIMO
system on a frame-by-frame basis. Our idea exploits the
beam training phase in the communication system to learn
the propagation conditions. Based on this, we can choose to
adapt the behaviour of the transceiver in order to optimize
a performance metric of interest, such as EE. Maximizing
EE is challenging mathematically because it is a ratio of two
important parameters, namely data rate (or SE) and power.
In our recent research, we use the Dinkelbach method (DM)
[18] to replace this ratio function by an iterative sequence of
problems based on the difference of the numerator and denom-
inator. In this work, we discuss different ways to optimize the
transceivers, particularly in relation to the number of activated
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Notations Description
a Scalar
a Vector

‖a‖0 l0-norm of a
A Matrix
|A| Determinant of A
AT Transpose of A
AH Complex conjugate transpose of A
A(i) i-th column of A

‖A‖F Frobenius norm of A
CN (a;A) Complex Gaussian vector; mean a, covariance A

CA×B To represent matrix of size A × B with complex entries
E{·} Expectation operator
IN Identity matrix with size N × N
R+ Set of positive real numbers
R{·} Real part
tr(A) Trace of A

X ∈ CA×B Complex-valued matrix X of size A × B
X ∈ RA×B Real-valued matrix X of size A × B

TABLE I: List of notations and their description.

RF chains and the sample rate of the system. As a practical
example, we present a more detailed discussion of how the
Dinkelbach’s approach can be used to optimize the EE and
simultaneously achieve a low complexity alternative to the
exhaustive search based BF approach in [13]. An attractive
feature of our approach is that we only need to compute
the HBF matrices once, after the number of RF chains is
determined by the DM based solution.

Notations and Organization: Table I provides a list of
notations used in this paper along with their description. The
remainder of the paper is structured as follows: Section II
describes the channel model and HBF architecture that is
used in the paper. Section III describes the EE maximization
problem and we describe different approaches that we have
studied to address this problem. In Section IV, we discuss in
more detail how the DM can be applied to select the optimal
number of RF chains. Section V presents simulation results
to show the performance improvements of the DM and finally
Section VI presents conclusions to the paper.

II. MMWAVE MIMO SYSTEM WITH HBF

A. MmWave Channel

We use a narrowband clustered channel model due to
different channel settings at mmWave such as the number of
multipaths, amplitudes, etc. [6]. We consider Ncl clusters with
Nray paths related to each cluster and for a single user system
we have NT TX antennas transmitting Ns data streams to NR
RX antennas. This mmWave channel can be expressed as

H =

Ncl∑

i=1

Nray∑

l=1

αilaR(φr
il)aT(φt

il)
H , (1)

where αil ∈ CN (0, σ2
α,i) is the gain term with σ2

α,i being
the average power of the ith cluster. The vectors aT(φt

il)
and aR(φr

il) denote the normalized array response vectors
at the TX and the RX, respectively [6], with φt

il being the
azimuth angles of departure and φr

il being the azimuth angles
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Fig. 1: A mmWave MIMO system with HBF architecture and
the proposed DM framework.

of arrival. We assume the transmit and receive arrays are
uniform linear arrays (ULAs) of antennas, which are modelled
as ideal sectored elements [19].

B. MIMO System with HBF Architecture

Fig. 1 shows the system model considered in this paper
where LT is the number of available RF chains at the TX and
LR at the RX. Based on MIMO communication with HBF, we
follow the conditions Ns ≤ LT ≤ NT and Ns ≤ LR ≤ NR.
The symbol vector s ∈ CNs×1 at the TX is such that
E{ssH} = 1

Ns
INs . The digital precoder matrix right before

the DAC-RF chain blocks is FBB ∈ CLT×Ns = P
1
2

TXF̂BB

where F̂BB is the digital precoder matrix before the switches
and PTX ∈ RLT×LT is a diagonal matrix with entries of
power allocation values. We have tr(PTX) = Pmax, where
Pmax is the maximum allocated power. The entries of the
analogue precoder matrix FRF ∈ CNT×LT are of constant
modulus and this matrix models the phase shifting network
which is only able to adjust the phase of the incoming signals,
not the amplitude [8]. Note that the power constraint at
the TX is satisfied by ‖FRFFBB‖2

F = Pmax. The matrices
WBB ∈ CLR×Ns and WRF ∈ CNR×LR denote the digital
combiner and the analogue combiner at the RX, respectively.
The analogue combiner matrix is also constant modulus.

We assume the channel state information (CSI) to be known
at both the TX and the RX. Then the signal received at the
RX antennas y ∈ CNR×1 can be written as

y = HFRFFBBs + n, (2)

where n ∈ CNR×1 = CN (0, σ2
n ) represents independent

and identically distributed complex additive noise. After the
analogue combiner and digital combiner units, the RX output
signal can be expressed as

r=WH
BBW

H
RFy=WH

BBW
H
RFHFRFFBBs+WH

BBW
H
RFn. (3)

The mechanism to select only required number of RF chains
Lopt

T out of the available LT RF chains is implemented during
the baseband processing. The proposed DM based solution
drives this selection mechanism, which uses dynamic power
allocation to decide on how many RF chains should be active

APPENDIX B. Attached Publications 215



during each channel realization. In the next section, we derive
a fractional programming problem from the problem which
maximizes EE and implement the Dinkelbach’s approach to
obtain the number of RF chains optimally at the TX/RX.

III. OVERVIEW OF EE MAXIMIZATION

In terms of the SE R (bits/s/Hz) and the power consumption
P (W), the EE can be written as

EE(PTX) , R(PTX)

P (PTX)
(bits/Hz/J). (4)

In (4), PTX ∈ DLT×LT represents a square matrix whose
diagonal entries contain the transmission power of each data
stream at the output of the digitally-computer precoder ma-
trix, while all non-diagonal entries are zero. The notation
DLT×LT ⊂ RLT×LT represents the set of possible choices for
LT × LT matrices, given the existence of a maximum transmit
power constraint.

In order to represent the selection mechanism for RF chains
at the digital precoder, we consider [PTX]kk ∈ [0, Pmax] ∀ k =
1, . . . , LT. The diagonal entries of PTX with a zero value
means an open switch in the selection mechanism shown in
Fig. 1. This means that the non-zero diagonal entries of the
matrix PTX determine the number of the active RF chains
currently selected at the TX side, i.e., Lopt

T = ‖PTX‖0.
We may achieve high SE by increasing the number of RF
chains, however, it increases power consumption as well.
Thus, maximizing EE in (4) given suitable constraints on the
solution provides us with a practical method for selecting the
TX/RX configuration with the best performance trade-off.

The optimization problem in (4) has inspired us to study
several different approaches to optimize the performance of a
mmWave hybrid MIMO transceiver. As shown in Fig. 2, we
deal with two phases in a single communication frame where
we assume that at the start of each data frame, a beam training
phase provides information to both the TX and RX about the
current channel matrix H and there are LT active RF chains.
Based on this knowledge it is possible to adapt the behaviour
of the TX and RX before the main data communication phase,
where in this paper, the DM based solution is applied to
activate only required number of RF chains, i.e., Lopt

T , which
is obtained from the solution of EE maximization problem.
In the process, the HBF matrices can be designed through
an Euclidean distance minimization problem [8] as discussed
in the next section and we also propose a low complexity
alternative to design the HBF matrices. Next, we discuss the
approaches which we implemented to adapt the behaviour of
the TX and RX in order to achieve maximum EE.

1) RF Chain Selection: In Fig. 1, the analogue precoder
and the analogue combiner may connect every RF chain to
every TX/RX antenna, which is termed as a fully-connected
structure. Alternatively, in a structure which is termed as
partially-connected, each RF chain may only be connected
to a subset of all the antennas. In the latter case, we have
explored an optimization technique to select the best set of
RF chains for data transmission in [20]. A key feature of this

Dinkelbach 

Method
Beam Training Phase

Data Communications 

Phase𝐿T active RF chains 

at TX/RX

𝐿T𝑜𝑝𝑡active RF chains 

at TX/RX

Learn 𝐇 Compute 𝐅RF, 𝐅BB, 𝐿T𝑜𝑝𝑡

Fig. 2: Single communication frame with two phases process:
beam training and data communications.

approach is that we use a low signal-to-noise ratio (SNR)
approximation of the data rate to simplify the optimization
approach. A sparse solution for the RF chains is desired
and this is obtained by minimizing the number of non-zero
entries in the matrix PTX. This is achieved practically by
using a technique called convex relaxation which allows the
optimization to be performed efficiently. However, there is
lack of research in literature dealing with the selection of RF
chains. In a hardware setup, whether its fully-connected or
partially-connected, when HBF is implemented on a field-
programmable gate array (FPGA) chip, switching on only
the needed RF chains would save a lot of power leading
to an energy efficient communication system. Following that
approach, in [18] we consider a fully-connected structure
(as shown in Fig. 1) and the Dinkelbach’s approach selects
only that number of RF chains which maximizes EE and the
complexity is kept minimum. More details of this approach
are presented in Section IV below.

2) Sampling Rate Selection: A number of papers recently
have shown that using limited resolution digital-to-analogue
or analogue-to-digital converters in the TX or RX can improve
communications efficiency [21]. The reason for this is that the
power consumed by a sampling device scales in an exponen-
tial manner with the number of quantization bits that are used.
The limitation of using limited resolution sampling is that it
can limit the overall data rate at high SNR values. However,
limited resolution sampling can be particularly attractive for
low or medium SNR values where the SE is lower. Reference
[14] extends the RF chain selection approach of [18] to the
case where the TX uses the fully-connected structure and each
RF chain uses fixed resolution DACs at the TX. In that paper,
a linear model is used to describe the impact of quantization,
through a scaling factor and the addition of a noise term which
represents the quantization noise. Similarly, the partially-
connected case is with limited resolution sampling studied
in [20]. We have recently extended this work to consider the
joint optimization of both the HBF matrices design and the
bit level resolution of each RF chain [15], [16]. This involves
a complex model where the effect of the quantization noise
on the data throughput is explicitly modelled and the bit level
resolution can be adjusted to optimize the resulting EE. We
introduce a novel matrix decomposition that is applied to the
HBF matrices at both the TX and RX, i.e., the joint decompo-
sition of a matrix representing analogue beamforming matrix,
a second matrix modelling the impact of bit resolution on
receiver noise and a third matrix that models digital baseband
beamforming. Moreover, we address the joint TX-RX problem
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unlike in the existing literature and the optimization approach
we follow requires the use of the alternating direction method
of multipliers to find the best solution for both the HBF
matrices and the required bit resolutions at the TX and RX in
order to maximize EE.

Next, we describe the Dinkelbach’s approach for selecting
the number of RF chains optimally and show how this leads
to a low-cost solution to EE maximization.

IV. RF CHAIN SELECTION FOR MAXIMUM EE

A. RF Chain Selection Formulation

For MIMO with HBF and point-to-point communication,
the SE R given the active number of RF chains is

R(PTX,PRX)=log

∣∣∣∣INs +
1

σ2
n
WH

BBP
1
2

RXW
H
RFHFRF×

P
1
2

TXF̂BBF̂
H
BBP

1
2

TXF
H
RFH

HWRFP
1
2

RXWBB

∣∣∣∣, (5)

where the real valued LT × LT matrix PTX is the diagonal
matrix allocating power at the TX side. At the RX, instead
we use the LR × LR real-valued diagonal matrix PRX with
entries from {0, 1}, since this matrix represents the activated
RF chains, thus, Lopt

R = ‖PRX‖0.
Following [8], we assume that F̂BBF̂

H
BB ≈ ILT and

WBBW
H
BB ≈ ILR , then the SE can be written as

R(PTX,PRX) = log

∣∣∣∣ILR +
1

σ2
n
P

1
2

RXW
H
RFHFRF

PTXF
H
RFH

HWRFP
1
2

RX

∣∣∣∣. (6)

The problem in (6) can be simplified by considering the TX
side and the RX side separately. To compute the matrix PTX
it is assumed that the RX has activated all its RF chains, so
that PRX = ILR . In that case, the SE can be expressed as

R(PTX)=log

∣∣∣∣ILR +
1

σ2
n
WH

RFHFRFPTXF
H
RFH

HWRF

∣∣∣∣. (7)

Once the matrix PTX is obtained, the matrix PRX can be
computed via the following SE expression:

R(PRX)=log

∣∣∣∣ILR +
1

σ2
n
P

1
2

RXW
H
RFHFRF

PTXF
H
RFH

HWRFP
1
2

RX

∣∣∣∣. (8)

Next, we focus on how to maximize the EE for the TX in
order to select the optimal number of RF chains Lopt

T . The
alternative of trying to solve (8) to maximize EE at the RX
results leads to a complex integer programming optimization
problem. In this paper, we will assume that the number of TX
and RX spatial streams are the same, so that Lopt

R = Lopt
T .

Following [5], the total consumed power P for a HBF
MIMO communication system can be expressed as

P = βtr(PTX) + 2PCP + NTPT + NRPR + Lopt
T ×

(PRF + NTPPS) + Lopt
R (PRF + NRPPS) (W), (9)

where the power terms PCP, PRF, PPS, PT and PR represent the
power required by the circuit components, the power required
by each RF chain, the power required by each phase shifter,
the consumed power for each antenna at the TX and that
required for each RX antenna, respectively. The parameter β
is the reciprocal of amplifier efficiency.

Let us delete the subscript “TX” from PTX in order to write
simplified expressions. Hence, the EE maximization problem
in (4) can be expressed with respect to P ∈ RLT×LT as

max
P∈DLT×LT

R(P)

P (P)
s. t. P (P)≤P ′

max & R(P)≥Rmin. (10)

Note that the power constraint in (10) provides an upper limit
on the power required for the HBF MIMO communication
system, i.e., P ′

max = βPmax + 2PCP + NTPT + NRPR + LT ×
(PRF+NTPPS)+LR(PRF+NRPPS). Next, we proceed with the
proposed Dinkelbach’s approach to obtain both the number of
RF chains and the data streams optimally.

B. Dinkelbach’s Approach to EE Maximization
In order to obtain a solution to (10) which is a fractional

programming problem, we can implement the DM based
solution. Dinkelbach’s algorithm was first introduced in [22]
and it appears to be an efficient algorithm to solve fractional
problems. This is verified by the simulation results presented
in Section V where we can observe that the Dinkelbach’s
approach achieves good performance. We can replace the EE
ratio in (10) with an iterative sequence of difference-based
optimizations as follows:

max
P(m)∈DLT×LT

{
R(P(m)) − ν(m)P (P(m))

}

s. t. P (P) ≤ P ′
max and R(P) ≥ Rmin. (11)

The DM involves a sequence of iterations where the constant
ν(m) is updated at each iteration based on the SE and
power values estimated during the previous iteration which
is equal to the ratio R(P(m−1))/P (P(m−1)) ∈ R+, for
m = 1, 2, . . . , Imax, where Imax denotes the maximum number
of iterations. In order to reduce complexity compared to the
BF method, we wish to use a SE expression that does not
depend explicitly on the RF and baseband processing matrices.
This avoids the need to compute the HBF matrices each time
the number of selected RF chains is updated.

In order to proceed with the DM based solution, let us
first update the SE and power expressions. For that, we
consider channel’s singular value decomposition (SVD) as
H = UHΣHV

H
H , where UH ∈ CNR×NR and VH ∈ CNT×NT

are unitary matrices, and ΣH ∈ RNR×NT represents a matrix
which is rectangular in nature where the diagonal entries
contain the singular values of the channel matrix and all the
other entries are zero. Considering the SVD of the channel,
(7) is written as

R(P) = log

∣∣∣∣INR +
1

σ2
n
WH

RFUHΣHV
H
H FRF×

PFH
RFVHΣ

H
H UH

H WRF

∣∣∣∣. (12)
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Using the approach given in [8], it can be shown
that VH

H FRF ≈ [ILT 0
T
(NT−LT)×LT

]T and UH
H WRF ≈

[ILR 0
T
(NR−LR)×LR

]T , hence,

R(P) = log

∣∣∣∣INR +
1

σ2
n
Σ̄2P

∣∣∣∣, (13)

where the LR × LT matrix Σ̄ has diagonal entries [Σ̄]kk =
[ΣH]kk for k = 1, . . . , LT, assuming LT = LR. Again, the
remaining entries of this matrix are zero. In (13) all of the
matrices are diagonal, so it is possible to decompose the SE
calculation into LT parallel and orthogonal channels as

R(P) ≈
LT∑

k=1

log

(
1 +

1

σ2
n
[Σ̄2]kk[P]kk

)
(bits/s/Hz). (14)

The number of available RF chains at the TX LT and at the RX
LR are determined by the hardware setup of the transceiver.
For the TX side, the power values in the matrix P can be
written as

PTX(P) = Pstatic +

LT∑

k=1

(β[P]kk + PRF + NTPPS) (15)

=⇒ PTX(P) = Pstatic +

LT∑

k=1

β′[P]kk (W), (16)

where the value of Pstatic , PCP + NTPT does not depend
on the entries of the matrix P and β′ , β + PRF+NTPPS

Pmax
.

Simplifying (15) into the form given in (16) is possible as∑LT
k=1[P]kk = tr(P) = Pmax.
Following (14)-(16), the m-th DM step can be written as

{P(m), ν(m)} = arg max
P(m)∈DLT×LT

G(P(m)ν(m)),

s. t. P (P) ≤ P ′
max and R(P) ≥ Rmin, (17)

where G(P(m), ν(m)) ,
∑LT

k=1 log
(
1 + 1

σ2
n
[Σ̄2]kk[P

(m)]kk

)
−

ν(m)
∑LT

k=1 β′[P(m)]kk. Note that (17) is generally not
convex given the constraint associated with P(m), i.e.,
P(m) ∈ DLT×LT . Indeed, in the case where the set D also
contains the zero value, the problem (17) is a mixed-integer
programming one. To proceed, we alleviate this constraint
on P(m) first, so that (17) can be solved using a standard
interior-point method, e.g., using CVX [23]. A theoretical
analysis of DM convergence is presented in [26].

In order to explain the steps of Algorithm 1, it begins with
the maximum number of RF chains LT. Step 4 shows that
we solve (17) to update P(m) using CVX after alleviating the
constraint as mentioned above. Then we apply the constraint
again as highlighted in Step 5 of Algorithm 1. This is achieved
by setting the values P(m) to zero when they fall below the
tolerance value ǫth (see Table II for ǫth value). Step 6 shows
that counting the non-zero values of P

(m)
th determines the

number of activated RF chains. The DM method keeps updat-
ing these values within the loop and finally computes ‖P(m)

th ‖0

when the loop ends. Step 7 determines the SE R(P(m))
and the power PTX(P(m)), and in Step 8 G(P(m), ν(m)) is

Algorithm 1 Dinkelbach Method (DM)

1: Initialize: P(0), choose tolerance ǫ, LT and set ν(0) with
G(P(0), ν(0)) ≥ 0.

2: Start Iteration Step m = 0.
3: while |G(P(m), ν(m))| > ǫ do
4: Alleviate the constraint on P(m) and solve (17).
5: Threshold the entries of P(m) → obtain P

(m)
th .

6: Count non-zero values of P(m)
th → update Lopt

T .
7: Calculate R(P(m)) and PTX(P(m)) using (14)-(16).
8: Compute G(P(m), ν(m)).
9: Update the value ν(m) as R(P(m))/PTX(P(m)).

10: Update m = m + 1 for next iteration.
11: end while
12: Compute Lopt

T as the value ‖P(m)
th ‖0.

computed based on its given expression above, where ν(m) =
R(P(m−1))/P (P(m−1)) ∈ R+. Step 9 is used to update ν(m)

according to the current value R(P(m))/PTX(P(m)). The loop
terminates when |G(P(m), ν(m))| is lower than the specified
value ǫ, which is determined empirically (see Table II for ǫ
value). The number of spatial streams is then set to be equal
to the optimal number of RF chains, i.e., Ns = Lopt

T .
Once we obtain Lopt

T , Lopt
R (= Lopt

T ) and Ns, we can design
the HBF matrices FRF, FBB, WRF and WBB. We assume that
as in [8], the matrices FRFFBB can be designed to yield a
good approximation of the fully digital precoder FDBF. Note
that the precoder matrix FDBF = VH1P

(1/2)
TX where the matrix

VH1 ∈ CNT×Ns consists of the Ns columns of the matrix
VH which contains the right singular eigenvectors [8] with
‖FDBF‖2

F = tr(PTX) = Pmax. Following [8], the problem to
compute the hybrid precoder decomposition FRFFBB through
Euclidean distance minimization can be transformed to a
sparse approximation problem. To solve that, we use gradient
pursuit (GP) algorithm [24] which is implemented as an
alternative to the most commonly used orthogonal matching
pursuit (OMP) algorithm for HBF design. The GP algorithm
has same performance as the OMP algorithm, but it uses only
one matrix vector multiplication per iteration to avoid matrix
inversion, leading to faster approximation and low complexity
[9]. At the RX, the hybrid combiner can be designed with a
similar mathematical formulation as at the TX except there is
no power constraint. Following the steps in [8], we compute
the fully digital combiner matrix WDBF and the Euclidean
distance minimization problem for the combiner design is
transformed to the sparse approximation problem likewise at
the TX. The sparse approximation problem at the RX can
then be solved by the GP algorithm [9] in order to obtain the
hybrid combiner decomposition WRFWBB.

Computational Complexity: The computation for the DM
based solution requires only O(Lopt

T ) operations per iteration.
The complexity comparison with the BF approach is provided
in Section V. The complexity order in computing beamform-
ing weights for the GP algorithm is O

(
(Lopt

T )3NT
)

and for
the OMP algorithm equals O

(
(Lopt

T )4
)
+O

(
(Lopt

T )3 - the GP
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System Parameter Value
Number of clusters Ncl =2

Number of rays Nray =10
Angular spread 7.5◦

Average power for each cluster σα,i =1
Mean angles (azimuth domain) 60◦ − 120◦

Mean angles (elevation domain) 80◦ − 100◦

Normalized system bandwidth 1 Hz
SNR 1/σ2

n
Amplifier efficiency 1/β=0.4

Minimum desired SE in (10) Rmin =1 bits/s/Hz
Tolerance values ǫ=10−4 and ǫth =10−6

Number of available RF chains LT =LR = length
(
eig(HHH)

)

Spacing between antenna elements d=λ/2 (e.g., λ=1/28 GHz [13])

(a) Values of the system parameters.
Power Term Value

Power required by all circuit components PCP =10 W
Power required by each RF chain PRF =100 mW

Power required by each phase shifter PPS =10 mW
Power per TX/RX antenna element PT =PR =100 mW

Maximum allocated power Pmax =1 W

(b) Values of the power terms in (9) [25].

TABLE II: Values of the system parameters and power terms
used in the simulations.
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Fig. 3: EE versus number of iterations at NT = 32, NR = 8,
Ncl = 2, Nray = 10 and Pmax = 16 W.

method only makes use of matrix multiplies at each step. This
reduction in complexity comes from using a gradient compu-
tation in place of a full matrix inverse calculation. Reference
[9] provides a more detailed complexity comparison. Next, we
present simulation results that verify the good performance of
the proposed Dinkelbach approach.

V. SIMULATION RESULTS

This section evaluates the performance of the proposed
DM based solution and compares it with existing baseline
cases. All results have been averaged over 1,000 Monte-
Carlo realizations. In terms of the system setup, Table II (a)
provides the values of all the system parameters and Table II
(b) provides the values used in the simulations for the power
terms in (9).
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Fig. 4: EE and SE versus SNR at NT = 32, NR = 8, Ncl = 2,
Nray = 10 and Pmax = 1 W.
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Fig. 5: EE and SE versus NT at SNR = 10 dB, NR = 8,
Ncl = 2, Nray = 10 and Pmax = 1 W.

For comparison with the proposed DM based solution,
following baseline cases have been considered in this paper.

1) BF Approach: The exhaustive search based approach in
[13], i.e., the BF approach, at each realization (current channel
realization), computes the EE performance by designing the
beamforming matrices for each possible choice of activated
RF chains, namely LT = {1, 2, ..., NT}, and then chooses
the corresponding number of RF chains corresponding to
the highest EE value. In contrast, the proposed DM based
solution does not need to iterate for all possible number of RF
chains and then find a number of RF chains which is optimal,
which reduces the complexity significantly while providing
high energy efficient solution. The complexity order of the
BF approach is related the number of RF chains multiplied
by the total number of antennas, i.e., O

(
Lopt

T NT
)

which is
larger than that of the DM based solution that only requires
O(Lopt

T ) operations per iteration. In simulation, the BF and
DM approaches uses the same HBF matrix computation.

2) Digital Beamforming: As mentioned above, the full
digital beamforming baseline allocates one active RF chain for
each antenna in all simulations, i.e., LT = NT and LR = NR.
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3) Analogue Beamforming: In this case, analogue beam-
forming only implements one active RF chain , i.e., LT =
LR = 1, and the HBF decomposition matrices are designed
equal to phases of the first singular vectors.

Fig. 3 graphs the EE performance versus the number of
iterations for SNR values of −10, 0 and 10 dB to observe
convergence of the proposed DM based solution at NT = 32,
NR = 8, Ncl = 2, Nray = 10 and Pmax = 16 W. The DM
based solution converges rapidly, requiring typically about
two iterations to achieve an optimal solution at each channel
realization. Also, the achieved EE results increase with the
SNR value, for example, after 2 iterations, the EE value at 10
dB SNR is ≈ 0.55 bits/Hz/J higher than that for −10 dB SNR
and ≈ 0.3 bits/Hz/J higher than the result for 0 dB SNR.

Fig. 4 shows the EE and SE performance of the DM method
along with the BF approach, and both the analogue and digital
baseline cases versus SNR with NT = 32, NR = 8, Ncl = 2,
Nray = 10 and Pmax = 1 W. We can observe that the DM
based solution has similar EE and SE performance to the
BF approach, achieving a much higher EE than the digital
baseline case, and higher EE and SE results compared to
the analogue baseline. At an SNR value of 20 dB, the DM
based solution yield ≈ 0.2 bits/Hz/J higher EE than the digital
baseline case, and ≈ 10 bits/s/Hz higher SE and about 0.3
bits/Hz/J higher EE than the analogue baseline case.

Fig. 5 shows the EE and SE performance versus the number
of TX antennas, NT, plotted for an SNR of 10 dB, NR = 8,
Ncl = 2, Nray = 10 and Pmax = 1 W. It is clear that as the
number of antennas increases, the EE results start to decrease
for both the proposed DM based solution and the existing
baseline cases. For example, at NT = 80, the EE and SE
performance of the DM based solution is similar to that of
the BF method. Also, the DM based solution has ≈ 0.42
bits/Hz/J higher EE than the digital baseline case, and ≈ 7.5
bits/s/Hz higher SE and about 0.2 bits/Hz/J higher EE than
the analogue baseline case.

VI. CONCLUSION

This paper has discussed the concept of adaptive HBF
MIMO systems that adapt their behaviour on a frame-by-
frame basis to optimize EE. In particular, a DM based
solution has been studied to enable fractional programming
to maximize the EE of the candidate transmitter and receiver
architectures in a low-cost manner. The DM method described
in this paper can achieve EE and SE performance similar to
the exhaustive search based BF approach, while reducing the
complexity significantly. Once the number of RF chains is
selected, the proposed technique needs to compute the HBF
matrices only once. Further, the DM solution can also provide
significantly improved EE performance when compared with
the existing baseline cases, e.g., at 10 dB SNR, it performs
≈ 20% better than the digital beamforming baseline and
≈ 15% better than the analogue beamforming case. Finally
it is shown that the GP algorithm, which is used to compute
the HBF matrices, is a faster and less complex algorithm in
comparison to the state-of-the-art OMP algorithm.
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Abstract—Low resolution analog-to-digital converters (ADCs)
can be employed to improve the energy efficiency (EE) of a
wireless receiver since the power consumption of each ADC is
exponentially related to its sampling resolution and the hardware
complexity. In this paper, we aim to jointly optimize the sampling
resolution, i.e., the number of ADC bits, and analog/digital
hybrid combiner matrices which provides highly energy efficient
solutions for millimeter wave multiple-input multiple-output
systems. A novel decomposition of the hybrid combiner to
three parts is introduced: the analog combiner matrix, the
bit resolution matrix and the baseband combiner matrix. The
unknown matrices are computed as the solution to a matrix
factorization problem where the optimal, fully digital combiner
is approximated by the product of these matrices. An efficient
solution based on the alternating direction method of multipliers
is proposed to solve this problem. The simulation results show
that the proposed solution achieves high EE performance when
compared with existing benchmark techniques that use fixed
ADC resolutions.

Index Terms—energy efficient design, optimal bit resolution
and hybrid combining, mmWave MIMO.

I. INTRODUCTION

The analog/digital (A/D) hybrid beamforming architec-
tures for millimeter wave (mmWave) multiple-input multiple-
output (MIMO) systems reduce the hardware complexity and
the power consumption through fewer radio frequency (RF)
chains and support multi-stream communication with good
capacity performance [1]–[3]. Designing such systems for
high energy efficiency (EE) gains would leverage their sig-
nificance [4], [5]. An alternative solution to reduce the power
consumption and hardware complexity is by reducing the
resolution sampling [6]. Some approaches have been applied
in hybrid mmWave MIMO systems for EE maximization and
low complexity with full resolution [7] and low resolution [8].

The existing literature mostly discusses full or high resolu-
tion analog-to-digital converters (ADCs) with a small number
of RF chains or low resolution ADCs with a large number
of RF chains: either way only the fixed resolution ADCs are
taken into account. References [4], [5] consider EE optimiza-
tion problems for A/D hybrid transceivers but with fixed and
high resolution digital-to-analog converters (DACs)/ADCs.
Reference [8] proposes a novel EE maximization transmission
technique with subset selection optimization to find the best
subset of the active RF chains and DAC resolution, which
can be extended to low resolution ADCs at the receiver (RX).
Reference [9] suggests implementing fixed and low resolution

ADCs with few RF chains. Reference [10] studies the idea of a
mixed-ADC architecture where a better energy-rate trade off is
achieved by using mixed resolution ADCs but still with a fixed
resolution for each ADC and it does not consider A/D hybrid
beamforming. A hybrid beamforming system with fixed and
low resolution ADCs has been analyzed for channel estimation
in [11]. Varying resolution ADCs can be implemented at the
RX [12] which may provide a better solution than fixed and
low resolution ADCs. Extra care is needed when deciding
the range of number of ADC bits as the total ADC power
consumption can be dominated by only a few high resolution
ADCs. Thus, a good trade-off between power consumption
and performance is to consider the range of 1-8 bits for the
varying number of ADC bits.

Contributions: This paper designs an optimal EE solution
for a mmWave A/D hybrid receiver MIMO system by intro-
ducing the novel decomposition of the A/D hybrid combiner
to three parts representing the analog combiner matrix, the bit
resolution matrix and baseband combiner matrix. Our aim is
to minimize the distance between this decomposition, which
is expressed as the product of three matrices, and the fully
digital combiner matrix. The joint problem is decomposed
into a series of sub-problems which are solved using an
alternating optimization framework, i.e., alternating direction
method of multipliers (ADMM) is developed to obtain the
unknown matrices. The proposed design has high flexibility,
given that the analog combiner is codebook-free, thus there
is no restriction on the angular vectors and different bit
resolutions can be assigned to each ADC. Our proposed
solution optimizes the resolution on a packet-by-packet basis
for each one of the ADCs unlike existing approaches that are
based on fixed resolution sampling. We also implement an
exhaustive search approach [4] for comparison which provides
the upper bound for EE maximization.

Notation: A, a and a denote a matrix, a vector and a scalar,
respectively. The complex conjugate transpose and transpose
of A are denoted as AH and AT ; |a| represents the determinant
of a; IN represents N × N identity matrix; X ∈ CA×B and
X ∈ RA×B denote A×B size X matrix with complex and real
entries, respectively; CN (a, A) denotes a complex Gaussian
vector having mean a and covariance matrix A; [A]kl is the
matrix entry at the k-th row and l-th column. The indicator
function 1S {A} of a set S that acts over a matrix A is defined
as 0 ∀ A ∈ S and ∞ ∀ A /∈ S .

APPENDIX B. Attached Publications 221



II. A/D HYBRID MMWAVE MIMO SYSTEM

A. MmWave Channel Model

MmWave channels can be modeled by a narrowband clus-
tered channel model due to different channel settings such
as number of multipaths, amplitudes, etc., with Ncl clusters
and Nray propagation paths in each cluster [1]. Considering
a single user mmWave system with NT antennas at the
transmitter (TX), transmitting Ns data streams to NR antennas
at the RX, the mmWave channel matrix can be written as
follows:

H =

√
NTNR

NclNray

Ncl∑

i=1

Nray∑

l=1

αilaR(ϕr
il)aT(ϕt

il)
H , (1)

where αil ∈ CN (0, σ2
α,i) is the gain term with σ2

α,i being the
average power of the ith cluster. Furthermore, aT(ϕt

il) and
aR(ϕr

il) represent the normalized transmit and receive array
response vectors [1], where ϕt

il and ϕr
il denote the azimuth

angles of departure and arrival, respectively. We use uniform
linear array (ULA) antennas for simplicity and model the
antenna elements at the RX as ideal sectored elements [13].
However, the proposed technique is not limited to this setup
and can be easily extended to the case of wideband channels
and uniform planar/circular arrays.

B. A/D Hybrid MIMO System Model

Based on the A/D hybrid beamforming scheme in the large-
scale mmWave MIMO communication systems, the number
of RX RF chains LR follows the limitation Ns ≤ LR ≤ NR
[1], [2]. The matrices WRF ∈ CNR×LR and WBB ∈ CLR×Ns

denote the analog combiner and baseband (or digital) com-
biner matrices, respectively. The analog combiner matrix WRF
is based on phase shifters, i.e., the elements that have unit
modulus and continuous phase. Thus, WRF ∈ WNR×LR where
the set W represents the set of possible phase shifts in WRF
and for a variable a, is defined as, W = {a ∈ C | |a| = 1}.
At the TX, with LT RF chains, the analog precoder matrix is
denoted as FRF ∈ CNT×LT and the baseband precoder matrix
is denoted as FBB ∈ CLT×Ns . The received signal y ∈ CNR×1

can be expressed as:

y = HFRFFBBx + n, (2)

where x ∈ CNs×1 is the transmit symbol vector and n ∈
CNR×1 is a noise vector with independent and identically dis-
tributed entries and follow the complex Gaussian distribution
with zero mean and σ2

n variance, i.e., n ∼ CN (0, σ2
n INR).

As widely used in the existing literature, we consider the
linear additive quantization noise model (AQNM) to represent
the distortion of quantization [14]. Given that Q(·) denotes a
uniform scalar quantizer then for the scalar complex input
x ∈ C that is applied to both the real and imaginary parts, we
have that,

Q(x) ≈ δx + ϵ, (3)

where δ =

√
1− π

√
3

2 2−2b ∈ [m,M ] is the multiplicative
distortion parameter for a bit resolution equal to b [15]

Fig. 1. A mmWave A/D hybrid MIMO system with low resolution ADCs.

where m and M denote the minimum and maximum value
of the range. Note that the introduced error in the linear
approximation in (3) decreases for larger resolutions. How-
ever, our proposed solution focuses on EE maximization and
this linear approximation does not impact the performance
significantly as observed from the simulation results in Section
IV. The parameter ϵ is the additive quantization noise with

ϵ ∼ CN (0, σ2
ϵ ) , where σϵ =

√
1− π

√
3

2 2−2b

√
π
√

3
2 2−2b.

Based on AQNM, the vector containing the complex output
of all the ADCs can be expressed as follows:

Q(WH
RFy) ≈∆HWH

RFy + ϵ, (4)

where Q(WH
RFy) ∈ CLR×1 and ∆ = ∆H ∈ CLR×LR is a

diagonal matrix with values depending on the ADC resolution
bi of each ADC. Specifically, each diagonal entry of ∆ is
given by:

[∆]ii =

√

1− π
√

3

2
2−2bi ∈ [m,M ] ∀ i = 1, . . . , LR, (5)

where, for simplicity, we assume that the range [m,M ] is
the same for each one of the ADCs. The second term of (4)
expresses the additive quantization noise for all RF chains,
with ϵ ∈ CN (0,Cϵ) [8] where Cϵ is a diagonal covariance
matrix with entries as follows:

[Cϵ]ii =

(
1− π

√
3

2
2−2bi

)(
π
√

3

2
2−2bi

)
∀ i = 1, . . . , LR.

(6)
After the effect of the quantization and application of the

baseband combining matrix, the output r ∈ CNs×1 at the RX
can be expressed as:

r = WH
BB∆

HWH
RFy + WH

BBϵ. (7)

Based on the received signal expression in (2), we can express
(7) as follows:

r = WH
BB∆

HWH
RFHFRFFBBx + WH

BB∆
HWH

RFn + WH
BBϵ︸ ︷︷ ︸

η

,

(8)

where η is the combined effect of the Gaussian and the
quantization noise with η ∼ CN (0,Rη). Here Rη ∈ CLR×LR

is the combined noise covariance matrix with,

Rη = σ2
nW

H
BB∆

HWH
RFWRF∆WBB + WH

BBCϵWBB. (9)
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III. BIT ALLOCATION AND HYBRID COMBINER DESIGN

A. Problem Formulation

Let us consider a point-to-point MIMO system with the
linear quantization model. We define the EE as the ratio of
the information rate and the total consumed power as,

EE(WRF,∆,WBB) , R(WRF,∆,WBB)

P (∆)
(bits/Joule),

(10)
where the information rate is defined as,

R(WRF,∆,WBB) , log2 |ILR +
R−1

η

Ns
WH

BB∆
HWH

RFHF×

FHHHWRF∆WBB| (bits/s),
(11)

where the A/D hybrid precoder F = FRFFBB ∈ CNT×Ns .
Similar to the power model at the TX in [8], the total

consumed power at the RX is expressed as:

P (∆) = PD + NRPR + NRLRPPS + PCP (W), (12)

where PPS is the power per phase shifter, PR is the power per
antenna, PD is the power associated with the total quantization
operation, and following (5) and [14], we have

PD =PADC

LR∑

i=1

2bi =PADC

LR∑

i=1

(
π
√

3

2(1− [∆]2ii)

) 1
2

(W), (13)

where PADC is the power consumed per bit in the ADC and
PCP is the power required by all circuit components.

Considering the rate and power model in (11) and (12),
respectively, we can express the following fractional problem:

(P1) : max
WRF,∆,WBB

R(WRF,∆,WBB)

P (∆)

subject to WRF ∈ WNR×LR ,∆ ∈ DLR×LR ,

where the set D represents the finite states of the quantizer
and is defined as,

D =
{
∆ ∈ RLR×LR

∣∣m ≤ [∆]ii ≤M ∀ i = 1, ..., LR
}

.

The channel’s singular value decomposition (SVD) is written
as H = UHΣHV

H
H , where UH ∈ CNR×NR and VH ∈ CNT×NT

are unitary matrices, and ΣH ∈ RNR×NT is a rectangular
matrix of singular values in decreasing order whose di-
agonal elements are non-negative real numbers and whose
non-diagonal elements are zero. The optimal, fully digital
combiner matrix Wopt consists of the Ns columns of the
left singular matrix UH. Our goal, by solving (P1), is to
obtain the combiner matrices and the bit resolution matrix
in an optimal manner. We introduce the novel decomposition
of the A/D hybrid combiner to three parts representing the
analog combiner matrix, the bit resolution matrix and digital
combiner matrix, i.e., WRF∆WBB. So the Euclidean distance
∥Wopt −WRF∆WBB∥2F should be as small as possible for a
maximum throughput combiner design. Note that we optimize
over the bit resolution matrix with varying resolutions and the
choice of combiner matrices at the RX.

Proposition 1. The maximization of the fractional problem
(P1) is equivalent with the solution of the following problem:

(P2) : min
WRF,∆,WBB

1

2
∥Wopt −WRF∆WBB∥2F + γP (∆),

subject to WRF ∈ WNR×LR ,∆ ∈ DLR×LR ,

where the parameter γ ∈ R+ denotes the trade-off between
the rate and the power consumption.

Proof. The main idea to prove the equivalence is first to apply
the Dinkelbach approach to transform the fractional problem
into an affine one [16]. Afterwards, based on [1], [2], the
maximization of the rate R can be expressed as minimization
of the Euclidean distance between the computed A/D hybrid
combiner and the optimal, fully digital combiner Wopt. The
details of this proof are omitted due to space limitations.

Parameter γ also determines how close is the solution of
(P2) to (P1). In this work, γ is selected after an exhaustive
search over all the possible values in the range of [0.001,
0.1] and the value which gives the best result for (P2) is
selected. Problem (P2) is non-convex due to the constraints
on the structure of matrix WRF. Similar non-convex problems
have been recently addressed in the literature via alternating
direction method of multipliers (ADMM) based solutions
[17]–[19].

B. Proposed ADMM Solution

In the following we develop an iterative procedure for solv-
ing (P2) based on the ADMM approach [17]. This method,
is a variant of the standard augmented Lagrangian method
that uses partial updates (similar to the Gauss-Seidel method
for the solution of linear equations) to solve constrained
optimization problems. This method replaces a constrained
minimization problem by a series of unconstrained problems
and add a penalty term to the objective function. This penalty
improves robustness compared to other optimization meth-
ods for constrained problems (for example, the dual ascent
method) and in particular achieves convergence without the
need of specific assumptions for the objective function, i.e.,
strict convexity and finiteness. The interested reader may refer
to [17] for further information.

We first transform (P2) into a form that can be addressed
via ADMM. By using the auxiliary variable Z, (P2) can be
written in the following form:

(P3) : min
Z,WRF,∆,WBB

1

2
∥Wopt − Z∥2F + 1WNR×LR{WRF}

+ 1DLR×LR {∆}+ γP (∆),

subject to Z = WRF∆WBB.

Problem (P3) formulates the A/D hybrid combiner matrix
design as a matrix factorization problem. That is, the overall
combiner Z is sought so that it minimizes the Euclidean
distance to the optimal, fully digital combiner Wopt while sup-
porting decomposition into three factors: the analog combiner
matrix WRF, the matrix ∆ which is related to the resolution
of each ADC and the digital combiner matrix WBB.
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The augmented Lagrangian function of (P3) is given by,

L(Z,WRF,∆,WBB,Λ)=
1

2
∥Wopt−Z∥2F +1WNR×LR {WRF}

+1DLR×LR {∆}+
α

2
∥Z+Λ/α−WRF∆WBB∥2F +γP (∆),

(14)

where α is a scalar penalty parameter and Λ ∈ CNR×LR is the
Lagrange Multiplier matrix. According to ADMM [17], the
solution to (P3) is derived by the following iterative steps:

(P3A) : Z(n) = arg min
Z

1

2
∥(1 + α)Z−Wopt + Λ(n−1)

− αWRF(n−1)∆(n−1)WBB(n−1)∥2F ,

(P3B) : WRF(n) = arg min
WRF

1WNR×LR{WRF}+
α

2
×

∥∥Z(n) + Λ(n−1)/α−WRF∆(n−1)WBB(n−1)

∥∥2

F
,

(P3C) : ∆(n) = arg min
∆
∥yc −Ψvec(∆)∥22 + γP (∆),

subject to ∆ ∈ D,

(P3D) : WBB(n) = arg min
WBB

α

2
∥Z(n) + Λ(n−1)/α

−WRF(n)∆(n)WBB∥2F ,

Λ(n) = Λ(n−1) + α
(
Z(n) −WRF(n)∆(n)WBB(n)

)
, (15)

where n denotes the iteration index, yc =vec(Z(n)+Λ(n−1)/α)
and Ψ=WBB(n−1)⊗WRF(n) (⊗ is the Khatri-Rao product).

We solve the optimization problems (P3A)-(P3D) and the
solutions are provided in Algorithm 1. The algorithm provides
the complete procedure to obtain the optimal analog combiner
matrix WRF, the optimal bit resolution matrix ∆ and the
optimal baseband (or digital) combiner matrix WBB. It starts
by initializing the entries of the matrices Z, WRF, ∆, WBB
with random values and the entries of the Lagrange multiplier
matrix Λ with zeros. For iteration index n, Z(n), WRF(n),
∆(n) and WBB(n) are updated at each iteration step using the
solutions provided in Steps 4, 7, 8, 10 and 11 of Algorithm
1. In Step 7, ΠW is the operator that projects the solution
onto the set W . This is computed by solving the following
optimization problem [20]:

(P4) : min
AW
∥AW −A∥2F , subject to AW ∈ W,

where A is an arbitrary matrix and AW is its projection onto
the set W . The solution to (P4) is given by the phase of the
complex elements of A. Thus, for AW = ΠW{A} we have

AW(x, y) =

{
0, A(x, y) = 0
A(x,y)
|A(x,y)| , A(x, y) ̸= 0

, (16)

where AW(x, y) and A(x, y) are the elements at the xth row-
yth column of matrices AW and A, respectively. Furthermore,
as shown in Step 8, the minimization problem in (P3C) is
solved by implementing CVX [21]. A termination criterion
related to the maximum permitted number of iterations of the
ADMM sequence (Nmax) is considered. Upon convergence,
the number of bits for each ADC is obtained by using (5) and
quantized to the nearest integer value.

Algorithm 1 Proposed ADMM Solution for the A/D Hybrid
Combiner Design

1: Initialize: Z, WRF, ∆, WBB with random values, Λ with
zeros, α = 1 and n = 1

2: while n ≤ Nmax do
3: A = αWRF(n−1)∆(n−1)WBB(n−1).
4: Z(n) = 1

α+1

(
Wopt −Λ(n−1) + A

)
.

5: B = Λ(n−1) + αZ(n).
6: C = α∆(n−1)WBB(n−1)WBB

H
(n−1)∆

H
(n−1).

7: WRF(n) = ΠW{BWBB
H
(n−1)∆

H
(n−1)C

−1}.
8: Update ∆(n) by solving (P3C) using CVX [21].
9: D = α∆H

(n)WRF
H
(n)WRF(n)∆(n).

10: WBB(n) = D−1∆H
(n)WRF

H
(n)B.

11: Λ(n) = Λ(n−1) + α
(
Z(n) −WRF(n)∆(n)WBB(n)

)
.

12: n← n + 1
13: end while
14: return WRF(Nmax), ∆(Nmax), WBB(Nmax)

Computational complexity analysis of Algorithm 1: In
Algorithm 1, mainly Step 8 involves multiplication by Ψ
whose dimensions are LRNR×NsLR. In general, the solution
of (P3C) can be upper-bounded by O((L2

RNRNs)
3) which can

be improved significantly by exploiting the structure of Ψ.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
ADMM technique using computer simulation results. The re-
sults have been averaged over 1,000 Monte-Carlo realizations.

System setup: We set the following parameters, unless
specified otherwise, to obtain the desired results: NT = 32,
NR = 16, LR = 4, Ns = 4, Ncl = 2, Nray = 4, Nmax = 40,
m = 1, M = 8, α = 1 and σ2

α,i = 1. The azimuth angles of
departure and arrival are computed with uniformly distributed
mean angles; each cluster follows a Laplacian distribution
about the mean angle. The antenna elements in the ULA
are spaced by distance d = λ/2. The signal-to-noise ratio
(SNR) is given by the inverse of the noise variance, i.e.,
1/σ2

n . The transmit vector x is composed of the normalized
i.i.d. Gaussian symbols. The values used for the terms in the
power model in (12) of Section III are PADC = 100 mW,
PCP = 10 W, PR = 100 mW and PPS = 10 mW. Note that to
measure the spectral efficiency (SE) performance, we compute
the ratio R/B bits/s/Hz where B represents the bandwidth,
and for the simulations we set B = 1 Hz. For simulations,
the precoder matrix F is considered equal to the optimal fully
digital precoder matrix [1], [2], i.e., the product of 1/

√
Ns and

first Ns columns of the right singular matrix VH.
Convergence of the proposed ADMM solution: Fig. 2 shows

the convergence of the ADMM solution as proposed in Algo-
rithm 1 to obtain the optimal bit resolution at each ADC and
corresponding optimal combiner matrices. The proposed solu-
tion converges rapidly at around 20 iterations and mean square
error (MSE),

∥∥Wopt −WRF(Nmax)∆(Nmax)WBB(Nmax)

∥∥2

F
, goes

as low as -20 dB. A lower number of RX antennas shows
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Fig. 2. Convergence of the ADMM solution for different NR at γ = 0.01.
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Fig. 3. EE and SE performance w.r.t. SNR at NR = 16 and γ = 0.01.

lower MSE as expected, since fewer parameters are required
to be estimated.

Benchmark techniques:
1) Digital combining with full-bit resolution: We consider

the conventional fully digital beamforming architecture, where
the number of RF chains at the RX is equal to the number
of RX antennas, i.e., LR = NR. The fully digital combining
solution may be provided by SVD and waterfilling [22].
In terms of the resolution sampling, we consider full-bit
resolution, i.e., M = 8-bit, which represents the optimum
from the achievable SE perspective.

2) A/D Hybrid combining with 1-bit and 8-bit resolutions:
We also consider a A/D hybrid combining architecture with
LR < NR, for two cases of bit resolution: a) 1-bit resolution
which usually shows reasonable EE performance, and b) 8-bit
resolution which usually shows high SE results.

3) Brute force with A/D hybrid combining: We also im-
plement an exhaustive search approach as an upper bound for
EE maximization called brute force (BF), based on [4], which
clearly shows the energy-rate performance trade-offs in the
simulations. It makes a search over the number of RF chains
LR and all the available bit resolutions, i.e., b = 1, ..., M .
It then finds the best EE out of all the possible cases and
chooses the corresponding optimal resolution for each ADC.
This method provides the best possible EE performance, but
it is computationally intractable for LR > 4.

Fig. 3 shows the performance of the proposed ADMM
solution compared with existing benchmark techniques with
respect to (w.r.t.) SNR at NR = 16. The proposed ADMM
solution achieves high EE which has performance close to
the BF approach and better than the 8-bit hybrid, 1-bit
hybrid and full-bit digital baselines. For example, at SNR
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Fig. 4. EE and SE performance w.r.t. NR at SNR = 30 dB and γ = 0.01.
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Fig. 5. EE and SE performance w.r.t. NT at SNR = 30 dB and γ = 0.01.

= 20 dB, the proposed ADMM solution outperforms 1-bit
hybrid, 8-bit hybrid and full-bit digital baselines by about 0.45
bits/Joule, 1.375 bits/Joule and 1.44 bits/Joule, respectively.
It also exhibits better SE than 1-bit hybrid and has similar
performance to the 8-bit hybrid baseline.

There is an energy-rate trade-off between the proposed
solution and the BF approach as we can achieve better
rate with lower EE and vice-versa. Moreover, the proposed
solution has lower complexity than the BF approach because
the BF involves a search over all the possible bit resolutions
while the proposed solution directly optimizes the number
of bits to obtain an optimal number of bits at each ADC.
We constrain the number of RF chains LR = 4 for the BF
approach due to the high complexity order which is O(MLR).
Also note that the proposed approach enables the selection of
different resolutions for different ADCs and thus, it offers a
better trade-off for EE versus SE than existing approaches
which are based on a fixed ADC resolution.

Figs. 4 and 5 show the performance results w.r.t. the number
of RX and TX antennas at 30 dB SNR. The proposed ADMM
solution again achieves high EE and performs close to the
BF approach and better than the 8-bit hybrid, 1-bit hybrid
and full-bit digital baselines. For example, at NR = 20,
the proposed ADMM solution outperforms 1-bit hybrid, 8-bit
hybrid and full-bit digital baselines by about 0.85 bits/Joule,
1.75 bits/Joule and 1.875 bits/Joule, respectively. Also, for
NT = 20, the proposed solution outperforms 1-bit hybrid, 8-
bit hybrid and full-bit digital baselines by about 1.0 bits/Joule,
1.5 bits/Joule and 1.625 bits/Joule, respectively. The proposed
solution also exhibits better SE than 1-bit hybrid and has
similar performance to the 8-bit hybrid baseline. Both the
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Fig. 6. Average number of bits for proposed ADMM and power consumption
w.r.t. γ at SNR = 30 dB.
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Fig. 7. EE and SE performance w.r.t. γ at SNR = 30 dB.

figures follow the energy-rate trade-off with the BF approach.
Furthermore, we investigate the performance over the trade-

off parameter γ introduced in (P2). Fig. 6 shows the bar plot of
average of the optimal number of bits selected by the proposed
solution for each ADC versus γ. The average optimal number
decreases with the increase in γ, for example, it is 4 for γ =
0.001, 3 for γ = 0.01 and 2 for γ = 0.1. Fig. 6 also shows that
the power consumption in the proposed case is considerably
low and decreases with the increase in the trade-off parameter
γ unlike digital 8-bit, several fixed bit hybrid baselines and
the BF approach. Fig. 7 shows the EE and SE plots for several
solutions w.r.t. γ. It can be observed that the proposed solution
achieves higher EE than the fixed bit allocation solutions and
achieves comparable EE and SE results to the BF approach.
These curves also show that adjusting γ allows the system to
vary the energy-rate trade-off.

V. CONCLUSION

This paper proposes an energy efficient mmWave A/D
hybrid MIMO system which can vary the ADC bit resolution
at the RX. This method uses the decomposition of the A/D
hybrid combiner matrix into three parts representing the ana-
log combiner matrix, the bit resolution matrix and the digital
combiner matrix. These three matrices are optimized by the
novel ADMM solution which outperforms the EE of the full-
bit digital, 1-bit hybrid combining and 8-bit hybrid combining
baselines. There is an energy-rate trade-off with the BF
approach which yields the upper bound for EE maximization.

The proposed approach enables the selection of the optimal
resolution for each ADC and thus, it offers better trade-off
for data rate versus EE than existing approaches based on
fixed ADC resolution. In future work, we will jointly optimize
the DAC and ADC bit resolution and hybrid precoder and
combiner matrices at the TX and the RX.
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Abstract—This paper proposes an energy efficient millimeter
wave (mmWave) hybrid multiple-input multiple-output (MIMO)
beamformer with low resolution digital to analog converters
(DACs) at the transmitter. We consider the case where all DACs
have the same sampling resolution for each radio frequency (RF)
chain and select the best subset of the active RF chains and
the DAC resolution. A novel technique based on the Dinkelbach
method and subset selection optimization is proposed to maximize
the energy efficiency (EE) given a predefined power budget for
transmission. We also implement an exhaustive search approach
to serve as an upper bound on the EE performance and show
the performance trade-offs. The simulation results verify that
the proposed technique exhibits EE performance similar to
the optimal exhaustive search technique while requiring lower
computational complexity.

Index Terms—energy efficiency maximization, low resolution
DACs, mmWave MIMO, hybrid beamforming.

I. INTRODUCTION

Millimeter Wave (mmWave) technology can meet the needs
of the fifth generation (5G) wireless communication systems
and provide improved rate and capacity [1], [2]. The higher
path loss associated with moving up in frequency from widely
used cellular microwave bands can be compensated using
large-scale antennas. The use of both antenna arrays and wide
bandwidth frequencies at mmWave multiple-input multiple-
output (MIMO) systems make it hard to implement one radio
frequency (RF) chain and associated digital-to-analog/analog-
to-digital converter (DAC/ADC) components per antenna [3].
The analog/digital hybrid beamforming architectures reduce
the hardware complexity through fewer RF chains and support
multi-stream communication with good capacity performance
[4]–[6]. Moreover, implementing low resolution quantization
in hybrid MIMO systems further improves the energy effi-
ciency (EE) of such systems [3].

The existing literature mostly discusses low resolution
DACs/ADCs with a large or full number of RF chains or
full or high resolution sampling with a small number of RF
chains. As the power consumption of DACs/ADCs increases
exponentially with the number of bits, to further reduce the
power consumption one can consider a combined analog and
digital hybrid structure with small number of RF chains and
low resolution DACs/ADCs. A hybrid beamforming system
with low resolution sampling has been analyzed for channel
estimation in [7]. To observe the effect of low resolution
ADCs, an additive quantization model (AQNM) is considered
in [8] for the case of a point-to-point mmWave MIMO system

and [9] for the case of mmWave fading channels. Reference
[10] assumes fully digital precoding at the transmitter, and
baseband and RF combining with low resolution sampling at
the receiver. Reference [11] works on the idea of a mixed-ADC
architecture where a better energy-rate trade off is achieved
with the use of a combination of low and high resolution ADCs
than using only full resolution or low resolution systems. Most
of the literature studies the use of low resolution sampling
only at the receiver side, assuming fully digital or hybrid
transmitters with high resolution DACs. Given the use of wide
bandwidths in typical mmWave systems at the transmitter,
employing low resolution DACs at transmitters can help to
reduce the power consumption. So EE approaches that are
mainly focused on ADCs at receiver can also be applied to the
DACs at transmitter considering the transmitter specific system
model parameters. Reference [12] uses low resolution DACs
which can be implemented to reduce the power consumption
for a hybrid MIMO architecture. Reference [13] employs low
resolution DACs at the base station for a narrowband multi-
user MIMO system. References [14], [15] consider the EE
optimization problem for hybrid transceivers but with full
resolution sampling at the DACs/ADCs.

Contributions: We consider a analog/digital hybrid transmit
beamformer with low resolution DACs. The analog and digital
parts are connected with a predefined number of RF chains
which can be in active or inactive state. Assuming that the
power consumption of the transmitter is determined mainly
by the DACs of the RF chains, deactivating specific RF
chains in an intelligent manner would increase the EE of the
beamformer. Therefore, in this paper, we derive an optimal
approach in terms of EE maximization, which selects the
best subset between the available RF chains. We implement
an iterative method to overcome the non-convexity of the
fractional programming optimization problem. The proposed
approach capitalizes from sparse-based subset selection tech-
niques to provide an efficient solution to the problem. We
also implement an exhaustive search approach (for example,
in [14]) which expresses the upper bound for EE maximization
and clearly shows the performance trade-offs.

Notation: A, a, and a denote a matrix, a vector, and a scalar,
respectively. The complex conjugate transpose, and transpose
of A are denoted as AH and AT ; tr(A) and |A| represent
the trace and determinant of A, respectively; IN represents
N×N identity matrix; X ∈ CA×B and X ∈ RA×B denote A×
B size X matrix with complex and real entries, respectively;
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CN (a, A) denotes a complex Gaussian vector having mean a
and covariance matrix A; [A]k denotes the k-th column of
matrix A and [A]kl is the matrix entry at the k-th row and
l-th column.

II. HYBRID MMWAVE MIMO

A. MmWave channel and system model

MmWave channels can be modeled by a narrowband clus-
tered channel model due to different channel settings such as
number of multipaths, amplitudes, etc., with Ncl clusters and
Nray propagation paths in each cluster [3], [4]. Considering a
single-user mmWave system with NT antennas at the transmit-
ter, transmitting Ns data streams to NR antennas at receiver,
the mmWave channel matrix can be written as follows:

H =

Ncl∑

i=1

Nray∑

l=1

αilaR(φr
il)aT(φt

il)
H , (1)

where αil ∈ CN (0, σ2
α,i) is the gain term with σ2

α,i being
the average power of the ith cluster. Furthermore, aT(φt

il) and
aR(φr

il) represent the normalized transmit and receive array
response vectors [3], where φt

il and φr
il denote the azimuth

angles of departure and arrival, respectively. We use uniform
linear array (ULA) antennas for simplicity and model the
antenna elements at the transmitter as ideal sectored elements
[16]. However, the proposed technique is not limited to this
setup and can be easily extended to the case of wideband
channels and uniform planar arrays.

B. Quantization Model

We consider the linear model approximation (AQNM) to
represent the introduced distortion of the quantization noise
[18]. Given that Q(·) denotes a uniform scalar quantizer then
for the scalar input s we have that,

Q(s) ≈ δx + ǫ, (2)

where

δ =

√

1 − π
√

3

2
2−2b (3)

is the multiplicative distortion parameter for bit sampling
resolution equal to b and ǫ is the additive quantization noise
with ǫ ∼ CN (0, σ2

ǫ ) , where

σǫ =

√

1 − π
√

3

2
2−2b

√
π
√

3

2
2−2b = δ(1 − δ2). (4)

C. System Model

In the analog and digital hybrid beamforming architecture,
the number of transmitter RF chains LT is usually smaller than
the number of the transmitting antennas NT, LT ≤ NT, and
similarly for the receiver, the number of RF chains LR ≤ NR
(the number of receiving antennas). After the RF or analog
precoding, each phase shifter is connected to all the antenna
elements. Fig. 1 shows the system setup.
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Fig. 1. A mmWave hybrid MIMO system with low resolution DACs.

Let x ∈ CNs×1 is the normalized data vector, then based
on the AQNM the vector containing the complex output of all
the DACs can be expressed as:

Q(FBBx) ≈ δFBBx + ǫ, (5)

where Q(FBBx) ∈ CLT×1 and FBB ∈ CLT×Ns is the baseband
part of transmit beamformer. The second term of (5) expresses
the additive quantization noise for all RF chains with ǫ ∈
CN (0, σ2

ǫ ILT). This leads us to the following expression for
the transmitted signal, as seen at the output of the analog and
digital hybrid transmitter:

t = FRF (δFBBx + ǫ) = δFRFFBBx + FRFǫ, (6)

where FRF is the analog precoding matrix at the transmitter.
After the effect of the mmWave channel and the RF pro-

cessing at the receiver, the received signal is expressed as:

y = WHHt + WHn (7)

= δWHHFRFFBB︸ ︷︷ ︸
Heff(LT,δ)

x + WHHFRFǫ + WHn︸ ︷︷ ︸
η

, (8)

where Heff(LT, δ) is the effective channel which is a function
of the number of the RF chains LT and the distortion δ,
W ∈ CNR×Ns is the receiver combining matrix, η is the
combined effect of the Gaussian and quantization noise with
η ∼ CN (0,Rη), while Rη is the combined noise covariance
matrix with,

Rη(LT, δ) = σ2
ǫW

HHFRFF
H
RFH

HW + σ2
nW

HW, (9)

which is also a function of the number of the RF chains LT

and the distortion δ. Note that unlike what is common in the
existing literature, in this work we also take into account the
cross-terms of the noise covariance matrix Rη . We believe this
is a more realistic scenario since it can also incorporate system
impairments such as phase noise into the problem formulation.

III. ENERGY EFFICIENCY MAXIMIZATION

The EE of a point-to-point MIMO system is defined as the
ratio of the information rate and the total consumed power
[22]. Since these quantities depend on the distortion of the
DACs δ and the number of the RF chains LT, EE is expressed
as

EE(LT, δ) , R(LT, δ)

P (LT, δ)
(bits/Joule). (10)
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Exploiting the linearity property of the quantization model in
(5), the information rate R(LT, δ) is expressed as:

R(LT, δ) = log2 |INs +
1

Ns
R−1

η HeffHeff| (bits/s/Hz), (11)

where the values of LT and δ will affect the noise covariance
matrix Rη(LT, δ) and the effective channel Heff(LT, δ).

Concerning the power consumption model, we consider that
the total power consumption P (LT, δ) is proportional to:

P (LT, δ) ∝ LT


PDAC

(
π
√

3

2(1 − δ2)

)1/2

+NTPPS


 (W )

(12)

where PDAC and PS depend upon the DAC and phase-shifter
power consumption values, respectively.

Given the expressions (11) and (12), we can now define
the EE maximization problem as a fractional programming
problem:

arg max
LT,δ

EE(LT, δ) subject to P (LT, δ) ≤ Pmax, (13)

where Pmax is the maximum available power budget. Our goal,
by solving (13), is to obtain the number of RF chains and bit
resolution in an optimal manner. To obtain a solution to (13)
we have developed an iterative procedure that approximates
the initial fractional problem with a convex-concave optimiza-
tion, using Dinkelbach approximation [20] and subset selec-
tion. Dinkelbach approach makes an iterative approximation of
the fractional problem with a sequence of non-fractional but
constrained optimization ones. Although simpler, each one of
these problems is still non-convex. However, by decomposing
the contribution of each RF chain to the EE performance of
the system, we can employ subset selection methods which
minimize the number of the RF chains by solving an ℓ1
approximation to the non-convex problem.

Before proceeding with the description of the proposed
technique, we derive a technique based on exhaustive search
for EE maximization, which will serve as an upper bound for
comparison with the proposed method.

A. Upper Bound on EE via Exhaustive Search

To obtain an upper bound, we consider the case where
LT = NT. This simplifies the computation of the beamformers
at the receiver and the receiver, by using the singular value de-
composition of the channel (SVD). However, since we change
the number of the RF chains/antennas, the channel and its
SVD, has to be updated at each time. Specifically, an exhaus-
tive search approach is needed to obtain the optimum EE over
all possible values of (LT, δ) ∈ {1, . . . , bmax}×{1, . . . , LT}.
For each set value (LT, δ), the singular value decomposition
(SVD) of the effective channel has to be obtained, i.e.,

Heff(LT, δ) = δUΣVH , (14)

where U ∈ CNR×NR and V ∈ CNT×NT are unitary matrices,
and Σ ∈ RNR×NT is a rectangular matrix of singular values
in decreasing order whose diagonal elements are non-negative

Algorithm 1: Brute-force approach
Input: bmax, H
Begin:
1. for b = 1, ..., bmax
2. Compute δ(b) based on (3)
3. for lt = 1, ..., NT
4. Compute the SVD of Heff(lt, δ(bi)) based on (14)
5. Compute EE(lt, δ(b)) based on (11) and (12)
6. end
7. end
8. Find the Lopt

T and bopt such as
EE(Lopt

T , δ(bopt)) > EE(lt, δ(b)) ∀(b, lt)
Output: Lopt

T and bopt

real numbers and whose non-diagonal elements are zero. We
assume that the rank of the channel is r.

Hence, the rate expression in (11) becomes:

R(LT, δ) = log2 |INs +
δ2

Ns
R−1

η WHHFFHHHW|

= log2 |INs +
δ2

Ns
R−1

η ΣΣH |

=

r∑

i=1

log2(1 +
δ2

Ns
[R−1

η ]ii[ΣΣH ]ii), (15)

where Rη becomes a diagonal matrix with entries [Rη]ii =
σ2
ǫ [ΣΣH ]ii + σ2

n. Based on (15), the rate expression is de-
composed into the singular values domain, thus, the number
of the rank r represents the virtual number of RF chains. So,
the goal here is to reduce the number of virtual RF chains
r, alongside with the distortion δ which depends on the bit
resolution b.

Algorithm 1 shows the exhaustive search approach (similar
to [14]), called the Brute-force technique, thus, it provides
the solution to achieve the optimal number of RF chains and
the optimal number of associated DAC bits at each channel
realization. It makes a search of all the possible number of RF
chains/antennas, i.e., lt = {1, ..., NT} and over the available
bit resolution, i.e., b = 1, ..., bmax, where bmax is the highest
achievable resolution. It then finds the best EE out of all the
efficiencies and chooses the corresponding optimal number of
active RF chains Lopt

T and optimal resolution sampling bopt

for the transmitter. This method provides the best possible
energy efficiency performance assuming that the SVD of H
is perfectly known at the transmitter.

B. Proposed Method
Let us now consider an optimal design where we seek the

sampling resolution for each DACs and the optimal number of
active RF chains LT that will maximize the EE of the trans-
mitter. We consider a variable number of RF chains, i.e., by
using switches to activate/deactivate each one independently
[19], then the problem becomes:

arg max
S,δ

R(S, δ)

P (S, δ)
subject to P (S, δ) ≤ Pmax, (16)
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where S ∈ {0, 1}LT×LT is a diagonal binary matrix represent-
ing switches which activate or deactivate the RF chains. Hence,
the resulting optimization problem of (16) has two unknown
quantities to be recovered, the matrices S and δ. We transform
the problem into a subset selection based problem considering
sparse optimization and compressive sampling.

We consider the problem to be equivalent to finding only
a sparse selection vector, diag(S) ∈ {0, 1}LT×1, where each
unity value represents one active RF chain with a predefined
resolution, while the zero value represents an inactive RF
chain. It is important to note that based on the proposed
architecture, the optimization problem does not consider a
predefined number of active/inactive RF chains, but this quan-
tity is an optimization variable. Incorporating this selection
procedure into our formulation, the received signal ŷ ∈ CNs×1

at the baseband receiver is expressed as:

ŷ = δWHHFRFSFBBx + η, (17)

where S ∈ {0, 1}LT×LT is a diagonal selection matrix com-
posed by zeros and ones, with [S]kk ∈ {0, 1} and [S]kl =
0 for k 6= l; δWHHFRFSFBB is the effective channel
Ĥeff ∈ CNs×Ns in this case, including hybrid transmitter
precoding and receiver combining and quantization distortion.
The parameter that we aim to optimize in (17) is now the
entries of the diagonal selection matrix S ∈ {0, 1}LT×LT . The
effective channel can be decomposed as:

Ĥeff = δWHHFRFSFBB (18)

=

LT∑

i=1

[S]ii[δW
HHFRF]i[F

T
BB]Ti

=

LT∑

i=1

[S]iiaib
T
i , (19)

where bi , [FT
BB]i ∈ CNs×1, ai , [δR

− 1
2

η WHHFRF]i ∈
CNs×1 and where [S]ii ∈ {0, 1} determines the state of the
i-th RF chain. Based on (19), the received signal can be
equivalently expressed as the following measurement vector:

ŷ =

LT∑

i=1

[S]iiai(b
T
i x) + η̂, (20)

where η̂ , Sη whose noise covariance matrix can be ex-
pressed with respect to the selection matrix, i.e.,

R̂η = σ2
ǫW

HHFRFSFBBF
H
BBSF

H
RFH

HW + σ2
nW

HW.
(21)

The problem becomes equivalent with the estimation of S that
maximizes the EE of the hybrid precoder. It can be shown
that the rate and power equations for such scenario can be
expressed as:

R(S, δ) = log2

∣∣∣∣∣INs +
1

Ns

LT∑

i=1

[S]iia
H
i aibib

H
i

∣∣∣∣∣ , (22)

Algorithm 2: Proposed technique

Input: κ(0), H
Begin:
1. for b = 1, ..., bmax
2. Compute Heff(NT, δ(b))
3. for m = 1, 2, . . . , Imax
4. Obtain S(m) by solving (25) given κ(m−1).
5. Calculate R(S(m), δ(m)) and P (S(m), δ(m)).
6. Compute κ(m) = R(S(m), δ(m))/P (S(m), δ(m)).
7. end
8. end
Output: Optimal LT

opt and bopt

and

P (S, δ) ∝
LT∑

i=1

[S]ii


PDAC

(
π
√

3

2(1 − δ2)

)1/2

+ NTPPS




(23)

= LT


PDAC

(
π
√

3

2(1 − δ2)

)1/2

+NTPPS


 . (W )

(24)

The problem of maximizing EE (16) is a concave-convex
fractional problem and one solution method is the Dinkel-
bach approximation [20]. The Dinkelbach method is an it-
erative and parametric algorithm, where a sequence of eas-
ier problems converge to the global solution. Let κ(m) =
R(S(m), δ(m))/P (S(m), δ(m)) ∈ R, for m = 1, 2, . . . , Imax,
where Imax is the number of maximum iterations, then each
iteration step of Dinkelbach can be expressed as:

S(m)(κ(m)) , arg max
S∈S

{
R(S, δ) − κ(m)P (S, δ)

}
, (25)

where S is the set of diagonal matrices with the feasible
bit allocations which satisfy P (S, δ) ≤ Pmax. Algorithm 2
summarizes the Dinkelbach algorithm via the subset selection
approach where the optimal number of RF chains and associ-
ated sampling resolution is obtained.

Computational Complexity: It can be observed that
the Dinkelbach method via subset selection approach re-
quires complexity order of only bmaxO(L3

T) per iteration
and the Brute-force approach requires complexity order of
bmaxO(L2

TNT). Since the number of the required iterations is
usually very small (as shown in Fig. 2) as F and W matrices
are required to be computed in Algorithm 1 and not Algorithm
2, the overall complexity of the Dinkelbach method via subset
selection approach is much less than the Brute-force approach.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
technique using computer simulation results. The simulations
are performed with MATLABTM and all the results have been
averaged over 1,000 Monte-Carlo realizations.

APPENDIX B. Attached Publications 230



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Number of iterations

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

N
T

=32

N
T

=48

N
T

=64

Fig. 2. Convergence of the proposed Dinkelbach method for different number
of transmitter antennas at SNR = 30 dB, NR = 32, LT = 32 and Ns = 8.
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Fig. 3. Energy efficiency and spectral efficiency performance comparison
w.r.t. transmit SNR (dB) at NT = 64, NR = 32, LT = 32 and Ns = 8.

We set the following baseline parameters for simulation:
NT = 64, NR = 32, LT = 32 (the number of available RF
chains), Ns = 8, Ncl = 2, Nray = 10, and σ2

α,i = 1. The
azimuth angles of departure and arrival are computed with
uniformly distributed mean angles; each cluster follows a
Laplacian distribution with mean angles equal to zero. The
antenna elements in the ULA are spaced by distance d = λ/2.

Concerning the quantization model, since DACs have the
same sampling resolution for each RF chain the quantization
distortion parameter is the same for all DACs and the highest
bit resolution bmax = 8. The typical values of power terms
for the power model in (12) of Section III are PPS = 10
mW, PDAC = 0.1 W and Pmax = 1 W. We solve the sparse
approximation problem for the RF and baseband precoding
matrices FRF and FBB using orthogonal matching pursuit
(OMP) [4], [6], and the combiner matrix W is the product
of 1/

√
Ns and first Ns columns of U matrix.

For comparison with the proposed Dinkelbach method via
subset selection solution, we have considered the digital beam-
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Fig. 4. Energy efficiency and spectral efficiency performance comparison
w.r.t. the number of transmitter antennas at SNR = 5 dB, NR = 32, LT = 32
and Ns = 8.
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Fig. 5. Energy efficiency and spectral efficiency performance comparison
w.r.t. the number of receiver antennas at SNR = 5 dB, NT = 64, LT = 32
and Ns = 8.

forming architecture (LT = NT) with 8-bit DACs, which repre-
sents the optimum from the achievable spectral efficiency (SE)
perspective, combined analog and digital hybrid precoding
with LT RF chains for 1-bit and 8-bit DACs, which represent
the lowest and the highest SE cases. We also compare with
the hybrid beamforming for LT RF chains with a random
resolution selected for each DAC from the range [1, 8]-bit,
and hybrid beamforming with the optimal number of active
RF chains Lopt

T and corresponding optimal sampling resolution
bopt obtained from the Brute-force approach.

Fig. 2 shows the convergence of the Dinkelbach method
based solution as proposed in Algorithm 2 to obtain the
optimal number of active RF chains and corresponding optimal
sampling resolution. It can be observed that the performance
curves based on the current EE κ (step 6 of Algorithm 2) for
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different numbers of transmitter antennas increase with respect
to (w.r.t.) the number of iterations. The proposed solution
converges rapidly and needs only 2-3 iterations to converge,
and achieves an optimal solution at each realization.

It can be clearly observed from Fig. 3 that the proposed
solution achieves a similar EE performance w.r.t. signal-to-
noise ratio (SNR) as the Brute-force approach and outperforms
hybrid 1-bit and hybrid 8-bit quantized DACs, plus the hybrid
randomly selected resolution and digital beamforming with
full-bit (8-bit) quantization. For example, at 10 dB SNR,
EE for the proposed solution is approximating the Brute-
force solution performance, about 0.3 bits/Joule better than the
randomly selected resolution with hybrid beamforming, about
0.35 bits/Joule better than the hybrid 1-bit and about 0.38
bits/Joule better than the hybrid 8-bit and digital beamforming
baselines. The proposed solution also achieves SE perfor-
mance higher than the randomly selected and 1-bit quantiza-
tion baselines. Digital beamforming and 8-bit hybrid baselines
have the highest rate performance by using higher rate 8-
bit quantization. For example, at 0 dB SNR, the proposed
solution outperforms randomly selected quantization by about
7 bits/s/Hz, 1-bit hybrid by about 9 bits/s/Hz. Concerning
the lower SE performance of the proposed technique and the
Brute-Force approach, this is due to the fact that Brute-force
has no constraint in the overall power consumption.

Fig. 4 shows similar performance behavior when plotting
EE and SE w.r.t. the number of transmitter antennas at 5 dB
SNR. For example, for NT = 80, the proposed solution has
performance close to the Brute-force approach, performs about
0.3 bits/Joule and about 7.5 bits/s/Hz better than the hybrid
randomly selected resolution baseline, about 0.35 bits/Joule
and 10 bits/s/Hz better than the 1-bit hybrid baseline. Fig. 5
plots the performance comparison of the proposed solution
with the baselines w.r.t. number of receiver antennas at 5 dB
SNR. Similar to above plots, it achieves high SE and has
almost the same EE performance as the Brute-force approach.

V. CONCLUSION

We consider a mmWave hybrid MIMO system with analog
and digital parts connected with fewer number of RF chains
than the transmitting antennas, while transmitter DACs operate
with low-resolution sampling. We consider the case where
all DACs have the same sampling resolution for each RF
chain and aim to optimize the number of active RF chains
and associated resolution of DACs. The proposed method
achieves similar EE performance with the upper bound of
the derived exhaustive search approach, while it exhibits
lower computational complexity and fast convergence. Future
work will include the optimization of energy efficiency with
different bit resolutions for every RF chain.
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Abstract—This paper proposes an efficient channel estima-
tion algorithm for millimeter wave (mmWave) systems with a
hybrid analog-digital multiple-input multiple-output (MIMO)
architecture and few-bits quantization at the receiver. The
sparsity of the mmWave MIMO channel is exploited for the
problem formulation while limited resolution analog-to-digital
converters (ADCs) are used in the receiver architecture. The
estimation problem can be tackled using compressed sensing
through the Stein’s unbiased risk estimate (SURE) based
parametric denoiser with the generalized approximate message
passing (GAMP) framework. Expectation-maximization (EM)
density estimation is used to avoid the need of specifying channel
statistics resulting the EM-SURE-GAMP algorithm to estimate
the channel. SURE, depending on the noisy observation, is mini-
mized to adaptively optimize the denoiser within the parametric
class at each iteration. The proposed solution is compared with
the expectation-maximization generalized AMP (EM-GAMP)
solution and the mean square error (MSE) performs better with
respect to low and high signal-to-noise ratio (SNR) regimes, the
number of ADC bits, and the training length. The use of the
low resolution ADCs reduces power consumption and leads to
an efficient mmWave MIMO system.

Keywords—channel estimation, low resolution analog-to-
digital converter (ADC), compressed sensing, mmWave MIMO.

I. INTRODUCTION

The large number of antenna elements associated with
millimeter wave (mmWave) multiple input multiple output
(MIMO) systems makes it hard to use many analog-to-digital
converters (ADCs), which is a power hungry component [1].
Moreover, ADCs have much higher sampling rates for wide
bandwidth mmWave systems than at microwave frequencies,
and employing high speed ADCs increases the power con-
sumption and the cost significantly [2], [3]. Implementing
low resolution ADCs such as 1-bit to 3-bits in mmWave
MIMO systems efficiently improves the power metric of the
system [1]. Fig. 1 shows the hardware block diagram of a
mmWave system with a hybrid analog-digital architecture and
low resolution ADCs at the receiver. The use of 1-bit ADCs in
MIMO systems has been discussed in [4] and [5], and channel
estimation is investigated as well. In that work, the channel
is known perfectly to the transmitter and the receiver while
in practical scenarios, the channel state information (CSI) is
not known and should be estimated by both the transmitter
and the receiver.

References [6]-[8] estimate the sparse mmWave channel
using signal processing tools for high resolution analog to
digital converting structures, but the use of low resolution
ADCs at the receiver can significantly reduce the power
consumption without significantly affecting the capacity of

the system [9]. Recently, [10] and [11] considered 1-bit ADC
quantization systems and the sparsity in the angle domain
is exploited to be able to use compressed sensing (CS)
techniques to recover the channel parameters. The proposed
adaptive technique in [10] fails to provide good estimation
of the channel at low SNR values. Reference [11] proposes
only an expectation-maximization (EM) algorithm which has
high complexity since each iteration requires a matrix inverse
computation and convergence of the algorithm requires many
iterations. To observe the effect of low resolution ADCs, an
additive quantization model (AQNM) is considered in [12]
and [13]. The effect of AQNM is investigated in [12] for
the case of a point-to-point mmWave MIMO system, while
in [13] the desired rate of the uplink was derived for the
case of mmWave fading channels. References [14] and [15]
also implement the EM algorithm for a MIMO channel. Fur-
ther improvements to the EM algorithm are proposed using
expectation-maximization generalized approximate message
passing (EM-GAMP) [16] and vector approximate message
passing (VAMP) [17]. The use of EM-GAMP has been
exploited for a broadband mmWave MIMO channel model
with low resolution ADCs at the receiver in [18].

Reference [19] describes the advantages of the Stein’s un-
biased risk estimate (SURE) based parametric denoiser when
incorporated with the approximate message passing (AMP)
framework. This paper exploits the SURE-generalized AMP
solution combined with expectation-maximization (EM) steps
called the EM-SURE-GAMP in a mmWave MIMO system.
This novel solution avoids strong assumptions on the channel
statistics where SURE, depending on the noisy observation,
is minimized to adaptively optimize the denoiser within the
parametric class at each iteration. The proposed solution is
compared with the EM-GAMP solution for a narrowband
channel model and improved mean square error (MSE)
performance is observed for both low and high signal-to-
noise ratio (SNR) regimes. The unknown channel parameters
are modeled by a Bernoulli Gaussian distribution for both the
techniques.

Notations: x, x, and X, represent a scalar, a vector, and
a matrix, respectively; the ith column of X is X(i); the
transpose of X is XT while the conjugate transpose is X∗;
tr(X) and |X|, are the trace and determinant of X, while
||X||F is the Frobenius norm; the p-norm of x is ||x||p;
X⊗Y represents the Kronecker product of X and Y, diag(X)
generates a vector of the diagonal elements of X; vec(X)
is a vector showing all the columns of X, IN represents an
identity matrix of dimension N×N and 0A×B is an all-zeros
matrix of dimension A × B. E[.] represents the expectation
of a complex variable. RA×B and CA×B denote the set of
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Fig. 1: MmWave system with a hybrid analog-digital MIMO
architecture and low resolution ADCs at the receiver.

A× B matrices with real and complex entries, respectively.
A complex Gaussian vector with mean x and covariance
matrix as X is represented as CN (x; X), and i.i.d. indicates
the entries to be independent and identically distributed.

II. MMWAVE HYBRID MIMO MODEL

The high path loss and small number of multi-path com-
ponents in mmWave MIMO systems restrict use of the fading
channels used in the analysis of MIMO systems [1]. Consider
a single-user mmWave MIMO system with Nt antennas at the
transmitter, with Ns transmitted data streams to Nr receiver
antennas. For the number of multipaths computed by the
product of Ncl clusters and Nray rays in every cluster, the
narrowband channel is written as follows:

H =

Ncl∑

i=1

Nray∑

l=1

αilar(φril)at(φtil)
∗, (1)

αil in (1) is the complex gain of lth ray in ith cluster; at(φtil)
and ar(φril) are the normalized transmit and receive array
response vectors, where φtil and φril are the elevation angles of
departure and arrival, respectively. We modeled the antenna
elements as ideal sectored elements at both the transmitter
and the receiver [20]. In (1), the transmit and receive antenna
element gains are considered unity over the sectors defined
by φtil ∈ [φtmin, φ

t
max] and φril ∈ [φrmin, φ

r
max], respectively.

We implement uniform linear array (ULA) geometry. For
λ signal wavelength, d inter-element spacing, and a ULA
geometry with Nz antenna elements, the array response
vector is written as follows [21]:

az(φ) =
1√
Nz

[1, ej
2π
λ d sin(φ), ..., ej(Nz−1)

2π
λ d sin(φ)]

T
, (2)

Equation (2) can be used to compute the array response
vectors at both the transmitter and receiver with the corre-
sponding terms. The beamspace representation [22], [23] of
the narrowband channel in (1) can be written as follows:

H = ÂrZÂ∗t , (3)

where Z ∈ CNr×Nt represents a sparse matrix with a
few non-zero entries assumed to follow Bernoulli-Gaussian
distribution, while Âr ∈ CNr×Nr and Ât ∈ CNt×Nt are
DFT matrices.

Let us consider a MIMO Nt ×Nr system with a hybrid
analog-digital architecture with Nrf

t and Nrf
r chains at the

transmitter and the receiver, respectively. The number of RF
chains is smaller or equal to the number of antennas for both
the transmitter Nrf

t ≤ Nt and the receiver Nrf
r ≤ Nr. We

assume that the channel is quasi-static, i.e., it remains static
during a period of time, which includes both channel training
and data transmission phases. During the training phase, at
each time instance t, the transmitter generates a training
signal vector s(t) ∈ CN

rf
t ×1 following E[s(t)s(t)∗] = 1

Ns
INs ,

which is the input to the analog RF precoder at transmitter,
Frf (t) ∈ CNt×N

rf
t . This signal is transmitted through the

channel H and the received vector is processed by the analog
RF combiner at receiver, Wrf (t) ∈ CNr×Nrfr . The elements
of the RF precoders and combiners have equal norm as they
represent transmitter and receiver phase shifters. For the case
of number of streams equal to the number of RF chains,
the baseband matrices, Fbb(t) ∈ CN

rf
t ×Ns at transmitter and

Wbb(t) ∈ CNrfr ×Ns at receiver, are identity matrices so we
consider only RF/analog processing to formulate the channel
estimation problem. The received signal after RF/analog
processing, yc(t) ∈ CNr×1 for t = 1, . . . , T , is expressed
as:

yc(t) = W∗
rf (t)HFrf (t)s(t) + nc(t), (4)

where nc ∈ CNr×1 noise vector following the complex Gaus-
sian distribution with i.i.d. entries, i.e., nc ∼ CN (0, σ2INr ).
By concatenating all the T training sequences into the real-
valued equivalent form we have:

ȳ =

[
Re(ȳc)
Im(ȳc)

]
= Ψ̄

[
Re(zc)
Im(zc)

]
+

[
Re(n̄c)
Im(n̄c)

]
, (5)

where Ψ̄ =

[
Re(Ψ̄c) −Im(Ψ̄c)
Im(Ψ̄c) Re(Ψ̄c)

]T
∈ R2TNr×2NrNt and

ȳc, n̄c, Ψ̄c are the concatenated quantities for the received
signal, the AWGN and the system matrix, respectively.

Let us denote the K-level quantization of ȳ ∈ R2TNr×1

as the function Q
(
.
)
,

q̄ = Q
(
ȳ
)
, (6)

where q̄ = [q1 . . . q2TNr ]
T ∈ R2TNr×1. Each output element

takes one of K distinct values with,

qki = −lki +
∆

2
+ (k − 1)∆,∀k = 1, ...,K, (7)

depending on the quantizer lower and upper thresholds
[lki , u

k
i ] where lki = −κ

√
E{y2i } and uki = κ

√
E{yi}, ∀i and

κ ∈ [1, 5]. The quantizer’s step-size is given by ∆ =
uki−lki
K ,

while the average power E{yi} can be obtained via an
automatic gain control (AGC) circuit.

III. PROPOSED CHANNEL ESTIMATION SOLUTION

A. Problem Formulation

Following the beamspace representation of the sparse
mmWave channel in (3), the system model of (4) can be
rewritten into an equivalent form for the channel estimation
problem, i.e.,

yc(t) =
(
sT (t)FTrf (t)Ât ⊗W∗

rf (t)Âr

)
︸ ︷︷ ︸

Ψc(t)

vec(Z)︸ ︷︷ ︸
z

+nc(t), (8)
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thus, sparse estimation techniques can be utilized to recover
the sparse vector z.

Concerning the analog RF beamforming matrices, these
are designed as random matrices [24] as we require sensing
matrix to be random to be able to apply compressed sensing.
The transmitter and the receiver share a pseudo-random key
so receiver can predict the precoding matrix. In particular,
the angles of precoding/combiner matrices are generated
as random variables following a uniform distribution, i.e.,
φ̃i(t) ∼ U(0, 2π). Then, for each training instance t and
∀k = 1, . . . , Nt, i = 1, . . . , Nrf

t we use the matrix:

[Frf (t)]ki =
1√
Nt
ej(k−1) sin(φ̃i(t)), (9)

for precoding, and accordingly for the combiner at the
receiver:

[Wrf (t)]ki =
1√
Nt
ej(k−1) sin(φ̃i(t)). (10)

To overcome the quantization non-linearity effects at the
receiver, we employ quantization dithering [25]. In this work
we consider a simple type of dithering termed as non-
subtractive random dithering. Specifically, we assume that a
Gaussian random signal with zero mean, i.e., d̄ ∼ N (0, σ2

dI)
is added to the input, thus, the overall system is described
as:

r̄ = Q
(
Ψ̄z + n̄ + d̄

)
∈ R2TNr×1, (11)

where d̄ ∈ R2TNr×1 is the control signal. The overall noise
can be modelled as n̄+d̄ ∼ N

(
0, σ2I

)
, where σ2 = σ2

n+σ2
d.

B. EM-SURE-GAMP Solution for Channel Estimation

To solve the non-linear sparse channel estimation problem
of (8) we obtain an approximation of the maximum a-
posteriori channel estimator via the EM algorithm [11], for
l-th iteration, i.e.,

Eȳ|̄r,z

{
∂

∂z
ln p(r̄, ȳ|zl)

}
= 0, (12)

where the conditional probability density function (PDF)
involving r̄ and ȳ random variables is given by [26] as
follows:

p(r̄, ȳ|z) = ID(r̄)(ȳ)
1

(2πσ2)2TNr×1/2
e
−‖ȳ−Ψ̄z‖22

2σ2 . (13)

The EM algorithm is defined by the following two steps for
the (l + 1)-th iteration:

• E-step: Compute bl = [bl1, . . . , b
l
2TNr

] with

bli = − σ√
2π

e−
(li−[Ψ̄zl]i)

2

2σ2 − e−
(ui−[Ψ̄zl]i)

2

2σ2

erf(−li+[Ψ̄zl]i√
2σ

)− erf(−ui+[Ψ̄zl]i√
2σ

)
,

(14)
where li, ui are the lower and upper bounds for
the ith quantized sample of the quantizer for [Ψ̄zl]i
respectively; erf(·) is the error function.

• M-step: Estimate the sparse channel zl+1 ∈
R2NrNt×1 via solution of the linear system of equa-
tions:

Azl+1 = δl, (15)

Algorithm 1: EM-SURE-GAMP algorithm

1 Initialization: ẑ1 = 0, ξ0 = 0, c1 = 1
2NrNt

, τ1z = 1.
2 for t = 1, . . . , Tmax do
3 γt = Aẑt

4 τ tp = 1
2NrNt

‖A‖2F τ tz
5 pt = γt − τ tpξt−1
6 Update δl using EM-steps as indicated in (15)
7 ξt = Ep(γt|pt,τtp,δl)[γ

t|pt, τ tp, δl]
8 τ tξ = 1

2NrNtτtp

[
1−

Varp(γt|pt,τtp,δl)
[γt|pt,τtp,δl]

τtp

]

9 1
τtβ

= 1
2NrNt

‖A‖2F τ tξ
10 βt = ẑt + τ tβA∗ξt

11 θt = Ht(β
t, ct)

12 ẑt+1 = ft(β
t, ct|θt)

13 τ t+1
z = τ tβf

′
t(β

t, ct|θt)
14 ct+1 = 1

2NrNt
||τ tβξt||22

15 end for

with δl , Ψ̄T Ψ̄zl + bl and A , Ψ̄T Ψ̄ + C−1h ,
where C−1h is the correlation matrix based on the
channel known statistics.

The linear channel estimation problem in (15) can be
considered similar to the noisy quantized CS problem [27];
among the numerous existing algorithms for sparse inverse
linear problems, AMP-based solver has been shown to con-
verge faster, i.e. in few iterations, with predictable dynamics
together with low computational complexity. In its original
formulation for l1-minimization [28], AMP is a designed as a
variant of a soft-thresholding iterative algorithm; in [29], [30]
extensions of AMP have been used to handle wide class of
random sensing matrices and for sparse learning applications.
Generally AMP family of algorithms has been proven to
converge for the class of right orthogonal random matrices;
to reduce the convergence problems with general structured
random matrices, damping is often used. However, for our
system model we do not need to perform damping on the
update of the messages.

In particular, AMP-based algorithms perform a sequence
of MMSE estimations of the estimated measurement vector
γt = Ψ̄ẑt, such as in line 3 of Algorithm 1, where ẑt

refers to the estimate of the vector zl+1 for the M-step in
(15) and l is the EM iteration index. Regarding the MMSE
estimator for γt, since the channel noise model in (11)
is quantized Gaussian as it is modeled as the quantization
function, we need to adopt the generalized version of AMP
(GAMP) [31] whose computation is detailed in the Algorithm
1 where the expectation is over the posterior probability
p(γt|pt, τ tp, δl) which is dependent on the quantizer function
Q through (14). δl represents the vector of measurements
updated using the EM-steps as indicated in (15). In line 8
of Algorithm 1, Varp(γt|pt,τtp,δl)[·] represents the Variance
of the conditional probability distribution p(γt|pt, τ tp, δl).
Regarding the MMSE estimator for ẑt, standard AMP [28]
is based on the assumption that the prior p(ẑt) is precisely
defined and, therefore, it is possible to derive the associated
MMSE estimator.

In this work, we utilize a variant, named SURE-GAMP,
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which derives specific MMSE estimators tailored for the
dithered system model in (11) as follows. The SURE ap-
proach [19] aims to find the denoiser within a class with the
least MSE by optimizing the free parameters θt of some
piecewise kernel functions ft(·|θt) in order to obtain an
optimal adaptive non linearity; moreover, the optimization
of the denoiser does not require knowledge of the prior
distribution. In the simulations, SURE-GAMP uses a fam-
ily of parameterized denoising functions for the class of
Bernoulli Gaussian signals, which can be analyzed through
Gaussian-mixture distribution as well [18]. At each iteration,
the parametric SURE-GAMP algorithm adaptively chooses
the best denoiser, i.e. the one with the least MSE, by selecting
the parameters θt which correspond to the minimum of
the selection function Ht, such as in line 11 of Algorithm
1, dependent on the noisy data βt and the estimate of
the effective noise variance ct which leads to solving the
following optimization problem:

θt = Ht(β
t, ct) (16)

= arg min
θ

E[f(βt, ct|θ)− βt)2 + 2ctf ′(βt, ct|θ)]

In [19], authors have shown that this optimization is equiva-
lent to solving a linear system of equations whose dimension
equals the number of kernel functions which are the number
nker of basis functions representing f(·|θ) (nker = 3, in
the simulations). Therefore, the overall complexity of SURE-
GAMP is dominated by the matrix-vector multiplications in
lines 3 and 10 of Algorithm 1, whose order is O((NrNt)

2).
The EM steps as shown in (14) and (15) are combined with
the SURE-GAMP algorithm to avoid the need of specifying
a prior probability on zl+1. The algorithm converges after a
few iterations when the solution close to minimum MSE is
achieved.

IV. SIMULATION RESULTS

This section shows the performance results obtained for
the proposed EM-SURE-GAMP algorithm and the com-
parison is made with the EM-GAMP solution. Reference
[31] suggests the computation of the minimum MSE of
the estimate; combined with EM steps we can plot the
MSE results of EM-GAMP algorithm to compare with the
proposed solution. Following the condition Nrf

t ≤ Nt and
Nrf
r ≤ Nr for a hybrid analog-digital MIMO architecture, we

consider a simple case of Nt = 8, Nr = 8, and the number of
RF chains and streams equal to the number of antennas, i.e.,
Nrf
t = Nrf

r = Ns = 8. It provides us easier computation
for the analog precoder and combiner matrices. We can also
consider fewer RF chains and streams than the number of
antennas [32] to observe the channel estimation performance
plots. The number of multipaths is 5 and due to low overload
probability, the value of κ used in the quantization (see
Section II) is 4. We run the proposed algorithm for Tmax = 1
and 100 EM iterations. The performance results are obtained
for 100 Monte-Carlo realizations each.

Fig. 2 shows the mean square error (MSE) variations with
respect to (w.r.t.) the SNR when comparing the proposed EM-
SURE-GAMP algorithm with EM-GAMP for 1-bit, 2-bits,
and 3-bits resolution ADCs. We can observe that the proposed
algorithm achieves better MSE performance for both low and
high SNR regimes. For example at an SNR of 10 dB, the
SURE algorithm variant outperforms EM-GAMP by about 3

Fig. 2: MSE versus SNR.

Fig. 3: MSE versus the number of ADC bits.

dB in MSE terms for 1-bit quantization. For 2- and 3-bits,
the MSE gain is around 2 dB.

Fig. 3 again shows that EM-SURE-GAMP performs bet-
ter than EM-GAMP when MSE is plotted against the number
of quantization bits for different values of SNR such as -5 dB,
10 dB, and 20 dB. The training length for Fig. 2 and Fig. 3 is
T = 211, and EM-SURE-GAMP exhibits good performance
for a channel sparsity level, i.e., ratio of non-zero entries of
the beamspace channel and Nr ×Nt, of 8%. It can be seen
for example that with 3 bits resolution, a significant gain in
MSE for the SURE variant of around 6-7 dB compared to
EM-GAMP is observed for all SNR values.

Fig. 4 exhibits that the EM-SURE-GAMP solution out-
performs EM-GAMP solution w.r.t. the training length for a
range of training sequence lengths of 64 to 2048 and con-
verges more quickly than EM-GAMP for a channel sparsity
level of 8%, 15 dB SNR, when 1-bit, 2-bits, and 3-bits ADC
resolutions are considered.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1828

APPENDIX B. Attached Publications 236



Fig. 4: MSE versus the training length T .

V. CONCLUSION

This paper proposes an efficient algorithm based on the
approximate message passing (AMP) framework to estimate
the channel in a mmWave MIMO system with a hybrid
analog-digital architecture and low-resolution ADCs at the
receiver. EM-SURE-GAMP is exploited to estimate the chan-
nel which provides the flexibility to avoid strong assumptions
on the channel priors where SURE, depending on the noisy
observation, is minimized to adaptively optimize the denoiser
within the parametric class at each iteration. When compared
with the expectation-maximization generalized AMP (EM-
GAMP) solution, the mean square error (MSE) performs
better with respect to low and high SNR regimes, the number
of ADC bits, and the training length.
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Abstract
Millimeter wave (mmWave) communication allows us to

exploit a new spectrum band between 30 GHz to 300 GHz
to meet the growing demands of capacity for fifth gener-
ation (5G) wireless communication systems. Multiple-input
multiple-output (MIMO) antennas can be used to tackle higher
path loss and attenuation at mmWave frequencies compared
to microwave bands. Beamforming, called precoding at the
transmitter, is performed digitally in conventional microwave
frequency MIMO systems, but at mmWave frequencies the
higher cost and power consumption of system components
means that the system cannot implement one radio frequency
(RF) chain per antenna. To enable spatial multiplexing, hybrid
precoders using fewer RF chains than antennas emerge as
cost-effective and power saving alternative for the transceiver
architecture of mmWave MIMO systems. This paper demon-
strates the hybrid precoder design with its spectral efficiency
and energy efficiency characteristics, and we compare the
performance with that of optimal digital precoding (with one
RF chain per antenna) and simplified beam steering systems.
It also includes two different algorithmic solutions to meet
the optimization objective. The orthogonal matching pursuit
(OMP) algorithm appears to provide high performance solution
to the problem, whereas the gradient pursuit (GP) algorithm
is proposed as a cost-effective and fast approximation solution
that can still provide equally high performance.

I. Introduction
To advance the state of present wireless communication

systems, researchers are primarily concerned about the evolu-
tion of fifth generation (5G) networks and even beyond. It is
suggested that initial 5G standards may be introduced by 2020
[1]. Such advanced systems systems demand lower latency,
lower infrastructure costs, ultra-high reliability, higher mobil-
ity, improved range, much higher throughput, and increased
capacity of networks [2,3]. The main differences of 5G systems
compared to fourth generation (4G) systems will be the use of
much greater spectrum allocations, higher aggregate capacity,
much higher bit rates, longer battery life, and higher reliability
to support many simultaneous users in both licensed and
unlicensed RF bands [4]. The emerging advanced consumer
devices and developed communication systems have resulted

in ever-increasing demands on bandwidth and capacity [5].
The current carrier frequency spectrum has been limited to the
very crowded range between 700 MHz and 2.6 GHz leading
to the worldwide need for more spectrum and higher capacity.
In such scenario, millimeter Wave (mmWave) appears to be
a promising technology for future wireless communication
systems [4,5]. Utilizing the unused wireless spectrum at much
higher frequencies makes mmWave technology different from
existing wireless solutions. MmWave offers larger bandwidth
channels resulting in much higher data rates, thus supporting
much better internet-based access and higher connectivity
[4]. MmWave spectrum is currently used for various appli-
cations such as satellite communication, radio applications,
and backhaul networks. MmWave technology is already a
very significant technology for wireless backhaul [6] along
with the possibility of self-backhaul in cellular systems. How-
ever, mmWave cellular systems do hold certain challenges
such as supporting directional communication, susceptibility
to shadowing, intermittent connectivity, and processing power
consumption by data converters [7].

Fig. 1. Hardware block diagram of mmWave single-user fully-connected
hybrid beamforming system.

MmWave technology fits very well with multiple-input
multiple-output (MIMO) systems as the size of antenna arrays
and associated electronics will reduce due to the shorter
wavelengths [8]. MIMO technology has already been applied
to commercial wireless local area networks and cellular sys-
tems at sub-6GHz frequencies. MIMO techniques at mmWave
frequencies will be applied differently than at microwave
frequencies due to changes in RF propagation and additional
hardware constraints. Signal processing for mmWave MIMO
systems is of critical importance. At lower frequencies, the
signal processing actions are carried out at baseband leading
to entirely digital signal processing solutions. While at higher
frequencies, there are various hardware constraints making it
difficult to have a separate radio frequency (RF) chain dedi-
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cated to each antenna. Moreover, the practical implementations
of system entities such as RF chains, power amplifiers, low
noise amplifiers, and baseband connections are more difficult
to construct at mmWave [9], and power consumption is a
major issue as these entities become power hungry devices
[10]. MmWave frequency systems will exploit polarization
and spatial processing techniques such as very directional
adaptive beamforming to improve the performance of the
system. Deploying a large number of antennas results in high
beamforming gain, forming directional beam patterns between
transmitter and receiver, which further can assist in overcoming
the higher path loss experienced at mmWave frequencies. One
of the objectives of this paper is to focus on the sparse nature of
the mmWave channel which allows us to use signal processing
to enhance performance of mmWave systems towards ultimate
performance limits.

One of the simplest approaches to apply MIMO in
mmWave systems is analog beamforming which can be imple-
mented at both transmitter and receiver. This approach often
connects antenna elements via phase shifters to a single RF
chain which supports single stream communication only and
does not provide spatial multiplexing gains. Hybrid beamform-
ing can be implemented instead to enable spatial multiplexing
and multi-user MIMO communication. Fig. 1 shows the basic
structure of a mmWave single-user fully-connected hybrid
beamforming system [11] with digital baseband precoding
followed by constrained RF precoding implemented using
RF phase shifters. The same number of phase shifters as
antennas are connected to each RF chain which leads to
a fully-connected architecture. Precoding generally refers to
beamforming at the transmitter, which may be generalized to
support multi-stream (or multi-layer) transmission. At the re-
ceiver end, signal combining techniques can be used. One may
find the unique advantage associated with hybrid precoding is
that, to approach the performance of unconstrained solutions,
the digital precoder can correct analog limitations such as
cancelling residual multi-stream interference. Although hybrid
precoding currently makes compromise on power consumption
and hardware complexity yet there is much scope to exploit
energy and capacity efficient designs.

Reference [11] proposes a fully-connected hybrid precoder
design which leads to a capacity efficient mmWave MIMO
system. For an energy efficient design, [12] considers sub-
connected architecture, where each RF chain is connected to
only a subset of transmitter antennas requiring fewer phase
shifters in comparison to the fully-connected architecture. This
energy efficient hybrid precoding design is based on successive
interference cancellation (SIC) providing near-optimal perfor-
mance and proposing a low complexity algorithmic solution.
Reference [13] considers both fully-connected and partially-
connected structures to design a hybrid precoder. The fully-
connected structure seems to outperform partially-connected
structure in terms of capacity whereas the latter shows higher
energy efficiency. In [14] an energy efficient optimization to
design the hybrid precoder through the use of optimal number
of RF chains is proposed. More generally [15] provides a
overview on the relationship between energy efficiency and
spectral efficiency for different configurations of a hybrid
beamforming system.

This paper mainly exhibits spectral efficiency and energy

efficiency characteristics of a hybrid precoder which are help-
ful in analyzing the throughput and energy variations with
respect to the system parameters and the channel parameters.
The simulation results are plotted with respect to signal-to-
noise ratio (SNR) and the number of RF chains. The solution
to the optimization problem implements orthogonal matching
pursuit (OMP) at the transmitter and the receiver which appears
to be a low complexity solution. Gradient Pursuit (GP) method
is introduced as a novel solution to the optimization objective
which has the same performance as OMP yet it is a cost-
effective and fast approximation solution. The performance and
run time comparisons between both the algorithmic solutions
are performed and GP is implemented to plot the spectral
efficiency and energy efficiency characteristics.

The following notations have been used throughout the
paper: A, a, and a stand for a matrix, a vector, and a scalar,
respectively; A(i) represents the ith column of A; transpose
and conjugate transpose of A are denoted as AT and A∗,
respectively; ||A||F , tr(A), and det (A) represent the Frobenius
norm, trace, and determinant of A, respectively; ||a||p is the
p-norm of a; [A|B] denotes horizontal concatenation; diag(A)
generates a vector by the diagonal elements of A; IN and
0X×Y represent N × N identity matrix and X × Y all-zeros
matrix, respectively; CN (a; A) denotes a complex Gaussian
vector having mean a and covariance matrix A, and i.i.d. shows
that the entries of that vector are independent and identically
distributed. The expectation and real part of a complex variable
are denoted as E [.] and �{.}, respectively.

II. System and Channel Models
This section presents the mmWave system model and

channel model used in this paper.

A. System Model

Considering a single-user mmWave system with Nt an-
tennas at the transmitter end, sending Ns data streams to Nr

receiver antennas. Nrf
t and Nrf

r denote the number of RF
chains at the transmitter with the limitation Ns ≤ Nrf

t ≤ Nt

and at the receiver with the limitation Ns ≤ Nrf
r ≤ Nr,

respectively. In other words, in massive MIMO communication
systems, based on the function of the RF chains and the hybrid
precoding scheme, the number of RF chains is larger than or
equal to the number of baseband data streams and smaller than
or equal to number of the transmitter antennas. The matrices
Fbb and Frf denote the Nrf

t × Ns baseband precoder and the
Nt × Nrf

t RF precoder, respectively. Similarly at the receiver
end, the matrices Wbb and Wrf denote the Nrf

r ×Ns baseband
combiner and the Nr ×Nrf

r RF combiner, respectively. Fig. 1
shows the system setup. The signal, x = FrfFbbs, is transmitted
where s is the Ns×1 symbol vector such that E [ss∗] = 1

Ns
INs .

All elements of Frf and Wrf are constrained to have equal
norm. The power constraint at the transmitter end is satisfied
by ||FrfFbb||2F = Ns. Considering a narrowband block-fading
propagation channel with H as Nr×Nt channel matrix, which
is assumed to be known to both the transmitter and the receiver,
a discrete-time model for the received signal is

y =
√

ρHFrfFbbs + n, (1)
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where y is the Nr × 1 received vector, ρ is the average
received power, and n is a noise vector with entries which are
i.i.d. CN (0, σ2

n). After combining processing, the processed
received signal can be written as follows:

ỹ =
√

ρW∗
bbW∗

rfHFrfFbbs + W∗
bbW∗

rfn, (2)

For transmitted symbols following a Gaussian distribution, the
achievable spectral efficiency can be expressed as follows:

R = log2 det{INs
+

ρ

Ns
R−1

n W∗
bbW∗

rfHFrfFbbF∗
bbF∗

rfH∗WrfWbb}, (3)

where Rn = σ2
nW∗

bbW∗
rfWrfWbb represents the noise covari-

ance matrix after the combining processing.

B. Channel Model

The fading channel models used in traditional MIMO
becomes inaccurate for mmWave channel modeling due to
the high free-space path loss and large tightly-packed antenna
arrays. So the mmWave propagation environment can be
characterized by a narrowband clustered channel model, such
as the Saleh-Valenzuela model [10]. For Ncl clusters and Nray

propagation paths each cluster, mmWave channel matrix can
be depicted as follows:

H =

√
NtNr

NclNray

Ncl∑

i=1

Nray∑

l=1

αilar(φr
il, θ

r
il)at(φ

t
il, θ

t
il)

∗, (4)

where αil denotes the gain of lth ray in ith cluster and
it is assumed that αil are i.i.d. CN (0, σ2

α,i), where σ2
α,i

is average power of the ith cluster such that
∑Ncl

i=1 σ2
α,i =

γ, γ being the normalization factor satisfying E [||H||2F ] =
NtNr, and γ =

√
NtNr

NclNray
. Further, ar(φr

il, θ
r
il) and at(φt

il, θ
t
il)

represent the normalized receive and transmit array response
vectors, where φt

il and θtil are azimuth and elevation angles
of departure, respectively, and φr

il and θril are azimuth and
elevation angles of arrival, respectively. The antenna elements
at the transmitter and the receiver can be modeled as ideal
sectored elements [16] and then antenna element gains can
be evaluated over the ideal sectors. In (4), the transmit and
receive antenna element gains are considered unity over ideal
sectors defined by φt

il ∈ [φt
min, φt

max] and θtil ∈ [θtmin, θtmax];
φr
il ∈ [φr

min, φr
max] and θril ∈ [θrmin, θrmax], respectively, and

the gains are zero otherwise. This paper considers uniform
linear array (ULA) antenna elements for simulations, where
for a Nz-element ULA on z-axis, the array response vector
can be expressed as follows [17]:

az(φ) =
1√
Nz

[ejm
2π
λ d(sin(φ))]

T
, (5)

where 0 ≤ m ≤ (Nz − 1) is a real integer counting
through antennas, d is inter-element spacing, and λ is the
signal wavelength. The array response vectors could also be
computed considering a uniform planar array (UPA) of antenna
elements in a two-dimensional plane [17].

III. Hybrid Precoder Design

It is usually difficult to find a global optimization solution
for the joint optimization problem over transmitter and receiver
precoders [18]. So, the design can be split into two sub-
optimization problems, i.e, one focusing on designing FrfFbb

for the precoder and the other on designing WrfWbb for the
combiner. The mutual information obtained through Gaussian
signaling over the channel is computed for the hybrid precoder
FrfFbb, measuring the mutual dependence between the two
matrices, as follows [11]:

I(Frf , Fbb) = log2 det(I +
ρ

Nsσ2
n

HFrfFbbF∗
bbF∗

rfH∗) , (6)

While designing hybrid precoders and combiners for mmWave
MIMO systems, we are very much concerned about hardware
complexity, spectral efficiency, and energy consumption for
baseband processing and analog processing entities such as
analog-to-digital converters (ADCs), digital-to-analog convert-
ers (DACs), RF chains, phase shifters, and power amplifiers.
Sparing use of these entities can lead the system to operate in a
very energy efficient manner. For instance, as the number of RF
chains increase, more energy would get consumed leading to a
decrease in energy efficiency. Measuring the energy efficiency
characteristics with respect to the number of RF chains, as
shown in Section IV, is quite helpful to design a energy
efficient hybrid beamforming system. Meanwhile, the hybrid
precoder optimization problem can be formulated as follows:

(Fopt
rf , Fopt

bb ) = max
Frf ,Fbb

I(Frf , Fbb),

s.t. Frf ∈ Frf ,

||FrfFbb||2F = Ns,

(7)

where Frf denotes the set of Nt × Nrf
t matrices having

elements of constant magnitude. For such a non-convex con-
straint, it is difficult to yield general solutions to the problem.
So in order to design the near-optimal hybrid precoder, certain
assumptions and approximations can be exploited as in [11] to
simplify the above problem. Equation (7) can be transformed in
terms of the Euclidean distance between FrfFbb and the chan-
nel’s optimal fully digital precoder Fopt. The hybrid precoder
FrfFbb can be located in a constrained space to be as close
as possible to the optimal matrix Fopt in the unconstrained
space. So the Euclidean distance ||Fopt − FrfFbb||F should be
as small as possible for maximum throughput. We compute
the channel’s singular value decomposition (SVD) as H =
UHΛHV∗

H, where UH ∈ CNr×Nr and VH ∈ CNt×Nt are unitary
matrices, and ΛH ∈ �Nr×Nt is a rectangular matrix of singular
values in decreasing order whose diagonal elements are non-
negative real numbers and whose non-diagonal elements are
zero. The optimal matrix Fopt is comprised of the first Ns

columns of VH. As the array response vectors at(φt
il, θ

t
il) are

constant-magnitude phase-only vectors and Frf denotes the set
of Nt ×Nrf

t matrices having elements of constant magnitude,
we can restrict Frf to be a set of basis vectors at(φ

t
il, θ

t
il)

in order to find the best low dimensional representation of
the optimal matrix Fopt. So the hybrid precoder optimization
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problem can further be stated as follows:

(Fopt
rf , Fopt

bb ) = min
Frf ,Fbb

||Fopt − FrfFbb||F ,

s.t. F(i)
rf ∈ {at(φ

t
il, θ

t
il), ∀i, l},

||FrfFbb||2F = Ns,

(8)

One may note here that the constraint on F(i)
rf may be added

into the optimization given (8) to obtain the problem as
follows:

F̃
opt

bb = min
F̃bb

||Fopt − AtF̃bb||F ,

s.t. ||diag(F̃bbF̃
∗
bb)||0 = Nrf

t ,

||AtF̃bb||2F = Ns,

(9)

where At is an Nt × NclNray matrix consisting of array
response vectors and F̃bb is an NclNray × Ns matrix. The
matrices At and F̃bb help to obtain Fopt

rf and Fopt
bb as the Nrf

t

non-zero rows of F̃bb will give us the baseband precoder matrix
Fopt
bb and the corresponding Nrf

t columns of At will provide
the RF precoder matrix Fopt

rf . Equation (9) basically reformu-
lates (8) into a sparsity constrained reconstruction problem
with one variable. The problem can now be addressed as a
sparse approximation problem [19], and orthogonal matching
pursuit (OMP) [20] can be used as an algorithmic solution to
this problem. The receiver side follows a problem definition,
optimization objective, and the same algorithmic solution can
be used with minimal changes. As the hybrid combiner design
has a similar mathematical formulation except for the extra
transmitter power constraint at the transmitter, this paper
mainly focuses on hybrid precoder design and the hybrid
combiner design has been omitted. One may note here that by
assuming the hybrid precoders FrfFbb to be fixed, the hybrid
combiners WrfWbb can be designed in order to minimize
the mean-squared-error (MSE) between the transmitted and
processed received signals by using the linear minimum mean-
square error (MMSE) receiver.

Algorithm 1: Hybrid Precoder Design through Orthog-
onal Matching Pursuit (OMP) [20]

Require: Fopt

1: Frf = ∅
2: Fres = Fopt

3: for i ≤ Nrf
t

4: Ψ = A∗
t Fres

5: k = arg maxl=1,...,NclNray (ΨΨ∗)l,l
6: Frf =

[
Frf | A(k)

t

]

7: Fbb = (F∗
rfFrf )−1F∗

rfFopt

8: Fres =
Fopt−Frf Fbb

||Fopt−Frf Fbb||F
9: end for
10: Fbb =

√
Ns

Fbb

||Frf Fbb||F
11: return Frf , Fbb

Algorithm 1 starts by finding the array response vector
at(φ

t
il, θ

t
il) along which the optimal precoder has the maximum

projection, and then concatenates that selected column vector
into the RF precoder Frf as shown in step 6. It then continues
to find least squares solution to the baseband precoder Fbb,

and then the residual precoding matrix Fres is computed in
order to remove the contribution of the selected vector. Then
the algorithm continues to find the column along which Fres

has the largest projection until all RF chains have been used.
The transmit power constraint is satisfied at step 10, which is
applicable for a general case of Ns ≥ 1.

To develop fast approximate OMP algorithms that require
less storage, [21] proposes improvements to greedy strategies
using directional pursuit methods, and discusses optimization
schemes on the basis of gradient, conjugate gradient, and
approximate conjugate gradient approaches. The gradient pur-
suit (GP) method is introduced as a novel solution to the
optimization objective exhibiting the same performance as
OMP, cheaper cost consumption, and faster processing time.
Unlike OMP where optimum signal approximation is achieved
on all the selected atoms, GP makes use of a single gradient
direction for the approximation avoiding the need to consider
all the atoms and hence leading to reduced computation time.
The computation time is considerably less for large MIMO
configurations when implementing GP, as shown in section
IV. Algorithm 2 starts in the same way as Algorithm 1. There
is a index set which is updated at each iteration as shown in
step 6 which is used to generate baseband precoder matrix Fbb.
The gradient direction, as mentioned in step 8, is computed at
each iteration and the step-size is determined explicitly making
use of the gradient direction, as shown in step 10. Finally the
RF precoder matrix Frf and the baseband precoder matrix Fbb

are obtained at the end of the algorithm. The transmit power
constraint is satisfied at step 14.

Algorithm 2: Hybrid Precoder Design through Gradient
Pursuit (GP) [21]

Require: Fopt

1: Frf = ∅, Γ = ∅
2: Fres = Fopt, Fbb = 0

3: for i ≤ Nrf
t

4: Ψ = A∗
t Fres

5: k = arg maxl=1,...,NclNray (ΨΨ∗)l,l
6: Γ = Γ ∪ k
7: Frf =

[
Frf | A(k)

t

]

8: D = F∗
rfFres

9: C = FrfD
10: g =

tr{F∗
resC}

||C||2F
11: Fbb|Γ = Fbb|Γ − gD
12: Fres = Fres − gC
13: end for
14: Fbb =

√
Ns

Fbb

||Frf Fbb||F
15: return Frf , Fbb

For the fully connected hybrid precoder design, it is quite
interesting to observe the energy performance. Reference [15]
suggests that energy efficiency ε can be defined as the ratio
between spectral efficiency R and total power consumption
Ptot as shown in (10). The total power consumption is the sum
of power consumed for transmission, and baseband processing
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and analog processing entities.

ε =
R

Ptot

=
R

Pcp + Nrf
t Prf + Nps(Pps + Ppa)

bits/Hz/J, (10)

where Nps, Pcp, Prf , Pps, and Ppa represent the number of
phase shifters, the common power of transmitter, the power
per RF chain, the power per phase shifter, and the power per
power amplifier. The energy consumed by the RF chains is a
major concern leading to high value of Prf with substantial
increase in each RF chain. In a fully-connected hybrid precoder
structure, one can consider that Nps is equal to Nrf

t Nt [12,13].

IV. Simulation Results
This section demonstrates the spectral efficiency and en-

ergy efficiency characteristics of the hybrid precoder design.
For observation, there are 10 rays for each cluster and there
are 8 clusters in total, i.e., Nray = 10 and Ncl = 8. The average
power of each cluster is unity, i.e., σα,i = 1. The azimuth and
elevation angles of departure and arrival are computed on the
basis of a Laplacian distribution with uniformly distributed
mean angles within the range of 60◦ to 120◦ in the azimuth
domain, and 80◦ to 100◦ in the elevation domain. The angle
spread which is the standard deviation of the Laplacian distri-
bution of the angles is set to be 7.5◦. The antenna elements in
the ULA are spaced by half wavelength distance. The symbol
vector s is generated using quadrature amplitude modulation
(QAM) scheme. The signal-to-noise ratio (SNR) is determined
as ρ

σ2
n

for the plots. All the simulation results are averaged over
5000 random channel realizations.
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Fig. 2. Spectral efficiency for several precoding solutions for 64 × 16 fully-
connected mmWave system with Ns = 1, Ncl = 8, and Nray = 10.

Fig. 2 shows the spectral efficiency versus SNR plot for
several precoding solutions. For a single-user 64×16 mmWave
system with a single stream being transmitted and received,
the parameters are set in such a way that the hybrid precoder
FrfFbb can be made sufficiently close to the optimal precoder
Fopt. The optimal digital precoder uses Nt RF chains at the
transmitter and Nr RF chains at the receiver, while beam
steering [22] uses only a single RF chain both at the transmitter

and at the receiver ends. Hybrid precoding implements 4 RF
chains both at the transmitter and the receiver, i.e., Nrf

t =
Nrf

r = 4. Both OMP and GP algorithmic solutions have been
implemented for the hybrid precoder design. It can be observed
that hybrid precoding performs slightly worse than optimal
digital precoding but it is clearly better than beam steering.
Moreover, the hybrid precoder using GP shows the same
performance characteristics as that for OMP. GP provides a fast
approximation solution as it requires less run time than OMP,
which provides us a novel cost-effective solution to design the
hybrid precoders.
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Fig. 3. Time evaluation with respect to number of RF chains for OMP and
GP for 512 × 512 mmWave system with Ncl=12, Nray = 20, Ns = 8 and
SNR = −25 dB
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Fig. 4. Spectral efficiency for several fully-connected precoder designs while
SNR = −25 dB.

The run time for GP is less than that of OMP for both
small and large MIMO configurations. Fig. 3 shows the run
time characteristics with respect to the number of RF chains
for both GP and OMP for a large 512 × 512 mmWave system
with Ncl = 12, Nray = 20, Ns = 8, and SNR = −25dB.
The time difference between both the algorithmic solutions is
considerable which shows that GP is a better practical solution
and more efficient than OMP to design a hybrid precoder. As
GP has the same performance but less run time, the rest of
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Common power of transmitter Pcp = 10 W

Power per RF chain Prf = 100 mW

Power per phase shifter Pps = 10 mW

Power per power amplifier Ppa = 300 mW

TABLE I. SIMULATION PARAMETERS FOR THE POWER MODEL [10].

the plots in this paper make use of GP as the algorithmic
solution to find the optimum precoder. Fig. 4 plots the spectral
efficiency characteristics of the hybrid precoder, the optimal
digital precoder, and beam steering system with respect to the
number of RF chains at a SNR of −25 dB. It can be observed
from Fig. 4 that the spectral efficiency of the hybrid precoder
increases gradually and starts approximating the performance
of the optimal digital precoder. It also clearly outperforms the
beam steering approach in terms of spectral efficiency with
increase in number of RF chains for a certain SNR (such as
−25 dB).
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Fig. 5. Energy efficiency for several precoding solutions for 64 × 16 fully-
connected mmWave system with Ns= 1, Ncl = 8, and Nray = 10.

Fig. 5 shows the energy efficiency versus SNR plot for
several precoding solutions. To illustrate the achievable energy
efficiency of different precoding solutions, the parameters in
(10) are set as as shown in Table I and the other required
parameters are same as used to obtain Fig. 2. The energy
efficiency performance of the hybrid precoder clearly appears
to outperform the optimal digital precoder as the SNR in-
creases. However, the beam steering approach performs better
in terms of energy efficiency as only one RF chain is being
used in that system which reduces the energy consumption
considerably. As Nps is scaled linearly with Nrf

t and Nt, the
energy consumption will significantly increase with respect to
Nrf

t . For the same reason, beam steering outperforms hybrid
precoding and optimal digital precoding as number of RF
chains increases for a certain SNR (such as −25 dB) as shown
in Fig. 6. The hybrid precoding performs exactly the same
as beam steering in terms of energy efficiency with use of a
single RF chain. One should note that, in order to achieve a
significant spectral efficiency gain while accepting an increase
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Fig. 6. Energy efficiency for several fully-connected precoder designs while
SNR = −25 dB.

in the energy consumption, the hybrid precoder solution might
be a better approach to follow. For instance, to obtain a gain
of 1 bits/s/Hz over the beam steering approach, the hybrid
precoder will exhibit 0.11 bits/Hz/J less energy efficiency than
beam steering at SNR = −10 dB as observed from Fig. 2 and
Fig. 5.

V. Conclusion

This paper is focused on evaluating the spectral efficiency
and energy efficiency characteristics of a hybrid precoder
which help in designing capacity and energy efficient hybrid
mmWave communication systems. The spectral efficiency and
energy efficiency characteristics of a hybrid precoder are
compared with that of optimal digital precoding (with one
RF chain per antenna) and simplified beam steering systems.
It can be observed that the hybrid precoder design provides
near-optimal spectral efficiency, and outperforms the optimal
digital precoder significantly in terms of energy efficiency.
While compared to the conventional beam steering approach,
the hybrid precoder shows notable performance gain in terms
of spectral efficiency. However, beam steering outperforms
hybrid precoding in terms of energy efficiency with respect
to SNR and number of RF chains. The gradient pursuit
(GP) method is introduced as a novel algorithmic solution to
the optimization objective. The orthogonal matching pursuit
(OMP) algorithm appears to provide high performance solution
to the problem, whereas the GP algorithm is proposed as a
cost-effective and fast approximation solution. GP shows the
same performance as OMP but it requires less run time for both
small and large MIMO configurations. This research work will
be extended to design an energy efficient hybrid precoder with
a fully-connected architecture through optimizing the baseband
precoder and RF precoder matrices along with optimizing the
number of RF chains, and compare the energy performance
of the fully optimized hybrid precoder to the hybrid precoder
before optimization, the optimal digital precoder, and the
simplified beam steering system.
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