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Abstract

Automatic speech recognition is increasingly applied to new domains. A key challenge is

to robustly learn, update and maintain representations to cope with transient acoustic

conditions. A typical example is broadcast media, for which speakers and environments

may change rapidly, and available supervision may be poor. The concern of this

thesis is to build and investigate methods for acoustic modelling that are robust to the

characteristics and transient conditions as embodied by such media.

The first contribution of the thesis is a technique to make use of inaccurate tran-

scriptions as supervision for acoustic model training. There is an abundance of audio

with approximate labels, but training methods can be sensitive to label errors, and their

use is therefore not trivial. State-of-the-art semi-supervised training makes effective

use of a lattice of supervision, inherently encoding uncertainty in the labels to avoid

overfitting to poor supervision, but does not make use of the transcriptions. Existing

approaches that do aim to make use of the transcriptions typically employ an algorithm

to filter or combine the transcriptions with the recognition output from a seed model,

but the final result does not encode uncertainty. We propose a method to combine the

lattice output from a biased recognition pass with the transcripts, crucially preserving

uncertainty in the lattice where appropriate. This substantially reduces the word error

rate on a broadcast task.

The second contribution is a method to factorise representations for speakers and

environments so that they may be combined in novel combinations. In realistic scenarios,

the speaker or environment transform at test time might be unknown, or there may be

insufficient data to learn a joint transform. We show that in such cases, factorised, or

independent, representations are required to avoid deteriorating performance. Using

i-vectors, we factorise speaker or environment information using multi-condition training

with neural networks. Specifically, we extract bottleneck features from networks trained

to classify either speakers or environments. The resulting factorised representations

prove beneficial when one factor is missing at test time, or when all factors are seen,

but not in the desired combination.

The third contribution is an investigation of model adaptation in a longitudinal

setting. In this scenario, we repeatedly adapt a model to new data, with the constraint

that previous data becomes unavailable. We first demonstrate the effect of such a

constraint, and show that using a cyclical learning rate may help. We then observe

that these successive models lend themselves well to ensembling. Finally, we show

that the impact of this constraint in an active learning setting may be detrimental to

performance, and suggest to combine active learning with semi-supervised training to
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avoid biasing the model.

The fourth contribution is a method to adapt low-level features in a parameter-

efficient and interpretable manner. We propose to adapt the filters in a neural feature

extractor, known as SincNet. In contrast to traditional techniques that warp the

filterbank frequencies in standard feature extraction, adapting SincNet parameters is

more flexible and more readily optimised, whilst maintaining interpretability. On a task

adapting from adult to child speech, we show that this layer is well suited for adaptation

and is very effective with respect to the small number of adapted parameters.



Lay Summary

Automatic speech recognition is enjoying increasingly widespread use. Smart assistants

have placed this technology in the hands of millions of users. There are still particular

situations for which the performance leaves something to be desired. Some examples

of challenging data includes child speech and broadcast data. What makes this data

challenging is the variation in acoustics over time, speakers speaking over each other,

background noise, and much more. Additionally, to build a speech recognition system,

we need large amounts of speech data with all the speech transcribed. Inaccurate

transcription is another source of noise to the system. This thesis concerns the learning

of the inner representations for a model in a robust fashion such that they are robust to

the variations and inaccuracies present in such data, to ultimately improve the accuracy

of the system.

In the thesis we first look at how we may handle inaccurate transcriptions. We

usually can not train a system directly on such transcriptions: this may deteriorate

the system because the transcriptions do not always match the audio and the model

would learn the wrong words for certain speech. However, some of the words in the

transcription are likely to be correct, and since procuring new transcriptions is expensive,

we would like to make the most of the data that we have available. If we have an

existing system trained on good data, we can use that model in combination with the

transcriptions that we know to be inaccurate, to create new training data. This new

data includes information of where we should expect the transcriptions to be incorrect,

and where we should expect them to be correct. With such information, we can train

a new system robustly, because it will pay more attention to the part of the data

that we consider correct, and less attention to the rest. Using this technique we show

considerable improvements in accuracy on broadcast data, training on subtitles.

Another source of mismatch is when a system is used on a new speaker or environment

that the model did not see in its training data. In this thesis we consider especially the

interaction of speakers and environments. For example, it may be that we have seen a

speaker and an environment previously, but, crucially, never in a particular combination.

That is, if we have learned something about a speaker in a different environment than

what we observe at test time, we may see reduced performance because there is a

mismatch in the environments. We propose a method to separate speakers from their

environments, and environments from their speakers, also known as factorisation. In

this way speakers and environments can occur together in any combination at test time,

without a loss of performance. We show that our method can improve the accuracy of a

system in some challenging scenarios.
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In some cases data may not be available all at once. In particular, if we consider

TV series, we may expect a system to improve for every episode that is broadcast.

Traditionally, we would build a new system using all the broadcast episodes thus far.

However, if those previous episodes are unavailable, e. g. for copyright reasons, then

we are limited to updating the current model to individual episodes one at a time.

We call this scenario longitudinal learning. This scenario has implications for how we

may update a model and the resulting performance. We study several aspects of this

situation, and look both at how we may improve models by combining multiple models

over time, and how we may incorporate a small amount of carefully transcribed data

for each episode to further improve the performance.

Lastly, we study a new way to update a system to new speakers or new domains. We

identify the case of child speech, for which we usually do not have much data, but for

which the acoustic properties are much different from adult speech. Traditionally, this

mismatch has been corrected for by using physiologically motivated preprocessing of the

data that is fed to the learning algorithm. There is, however, an increasing interest in

avoiding separate processing steps, and rather have the model as a whole learn how to

best make use of the data. We study a model that takes raw audio directly as input in

an efficient manner, and we find that we can obtain large improvements in accuracies on

child speech data, having started from a model trained on adult speech. This model is

further designed in such a way that we can interpret what it learns, and we observe that

it seems to control for the key acoustic differences between child and adult speakers,

namely vocal tract length.
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Chapter 1

Introduction

Automatic Speech Recognition (ASR) systems have in the last few years obtained

impressive accuracies in many real-world tasks. Improvements to acoustic and language

modelling, hardware-acceleration of neural networks, and the ability to leverage increas-

ingly larger amounts of data, have enabled companies to provide end-user ASR systems

that enjoy widespread use. Examples include personal assistants such as Apple’s Siri,

Google Assistant, and Amazon Alexa which are becoming ubiquitous within mobile

phones and other smart devices. Many of these applications provide constrained envi-

ronments in which one or more factors are predictable. Smart devices are typically used

by few speakers, sometimes also in a fixed environment (consider home products), and

there are a few extremely common voice requests that can help language modelling and

downstream natural-language understanding tasks1. This contributes to their success in

using ASR.

There are many remaining challenges in large-vocabulary speech recognition that

surface in less constrained conditions and with more diverse data. Mismatch between

training and test time conditions can have detrimental effects on recognition performance,

such as changing speaker characteristics, environments or background noise (Barker

et al., 2013; Vincent et al., 2013). Adding distance or reverberation to the captured

audio exacerbates those existing challenges (Barker et al., 2018; Carletta, 2007; Vincent

et al., 2017). For certain domains we may have access to only a limited amount of data,

yet the inherent diversity of the domain usually requires more data in comparison to

more homogeneous domains. Consider for example the acoustic and linguistic properties

of child speech, with varying vocal tract lengths and pronunciation mistakes (Lee,

Potamianos, and Narayanan, 1999; Shivakumar et al., 2014).

A medium that inherently embodies many of these challenges is broadcast data,

which is very diverse and often highly unpredictable. The data may contain overlapping

speech from multiple speakers of all ages and accents, across many genres and domains.

Each domain may exhibit its own idiosyncrasies, such as news media, where topics

may change fast, along with changing background noise between a studio and reporting

from the field. In drama or children’s shows, the vocal characteristics of the speakers

may vary dramatically. The Multi-Genre Broadcast (MGB) challenge (Bell et al., 2015)

1On iOS 13.1, Apple’s Siri will – in my own limited testing – provide the weather forecast for any
three-word utterance, as long as the word “weather” is correctly transcribed.

1



1.1. Motivation and research questions 2

reflects the difficulty of this diverse data, with the best submitted system obtaining

a Word Error Rate (WER) of 21.8% after considerable engineering efforts, and the

combination of multiple systems (Woodland et al., 2015).

There are many growing strands of research attempting to tackle the challenges

associated with such diverse data and to ultimately provide better ASR performance.

Robust techniques are required to improve error rates for these situations, in spite of

the difficulties they present. Fast and robust adaptation methods (Karanasou et al.,

2014; Saz and Hain, 2017; Sim et al., 2018) counter rapidly changing acoustics. New

approaches to data selection (Doulaty, Saz, and Hain, 2015; Lanchantin et al., 2016) can

help select appropriate training data for the task at hand. Lightly- and semi-supervised

techniques (Drugman, Pylkkönen, and Kneser, 2016; Lamel, Gauvain, and Adda, 2002;

Manohar et al., 2018; Zavaliagkos et al., 1998) enable better usage of much real-world

data.

The aim of this thesis is to build and study methods that robustly learn acoustic

representations from diverse speech data. By robust learning we mean techniques that

can yield representations that improve error rates in situations that normally would be

detrimental to a speech recognition system. Specifically, how may we robustly obtain

representations despite acoustic mismatch, whether that be due to incorrect supervision

or a change of speaker and environment acoustics? In other words, we require both

methods to improve or incorporate mismatched or inaccurate training data as well as

suitable methods to update a model to such diverse and changing contexts. As we will

see, training directly on inaccurate transcriptions, or using mismatched representations

at test time may considerably increase error rates. Many of the characteristics and

transient conditions embodied by broadcast media are applicable to this subject, and

we will ground much of the discussion in broadcast media. The challenges of diverse

data, however, occur more broadly, and throughout the thesis we may choose corpora

that highlight a particular characteristic. The corresponding challenges we have chosen

to address are motivated next.

1.1. Motivation and research questions

One of the key applications of ASR in the broadcast domain is to supply subtitles.

Subtitling provides an additional information stream and an additional modality. It is

used for public information where sound would otherwise be drowned out by noise, it is

of crucial importance to the hard-of-hearing, and it enables search and categorisation.

It may also help reading proficiency and content understanding (McCall and Craig,

2009; Perego et al., 2010). Studies have shown that, in the UK, a significant amount

of viewership use subtitles – a large fraction of whom did not report having a hearing

impairment (Ofcom, 2006; RNID, 2008). Advertising agencies report that up to 85% of

videos on Facebook are watched without sound (Patel, 2016). In the US, a range of civil

rights laws require subtitles in certain domains to ensure equal access to information.
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Given the rapidly expanding amount of broadcast media, subtitling is an important

application of ASR. It is infeasible to manually write transcriptions for all new content.

However, as alluded to above, constructing a suitably high-performing model is not

trivial. Broadcast media is highly varied, both in acoustic and linguistic content. One

may first ask, how is training data obtained? It seems reasonable to be able to use

existing subtitles from previously transcribed media. Yet, subtitles are not verbatim

transcriptions of the speech, and label mismatch may negatively affect the resulting

model. This leads to the first research question:

1. Light supervision. How may inaccurate transcripts be used effectively during

training?

By effective we specifically mean that their use does not deteriorate model perfor-

mance and that their inclusion improves error rates, exceeding semi-supervised methods

which do not make use of the transcriptions. In other words, our method should be

robust to inaccurate transcriptions, and improve error rates over the direct use of such

transcriptions and over semi-supervised techniques. We develop a method to combine

the transcriptions from subtitles with hypotheses from a seed model. In effect, the

result is confidence weighted supervision given agreeing words from the two sources of

supervision.

However, even if we had perfect supervision, we may still need to consider the context

in which the data occurs. For example, much data will have a mixture of speakers and

their environments. TV series may have a protagonist appearing in many changing

environments, environments in which other characters may have been seen previously.

Adaptation of an ASR model to a joint scenario, a speaker and an environment, can

have dramatic effects on performance. However, the delay from adaptation may prove

disruptive, and re-using representations extracted in mismatched conditions may increase

error rates. It would be convenient to be able to combine existing knowledge across

speakers and environments. This requires that speaker and environment representations

are independent, or factorised :

2. Factorised adaptation. How can feature representations be factorised, such

that they can be combined in novel combinations at test time?

There are existing approaches that obtain factorised representations using constrained

optimisation. We instead make use of the ability of neural networks to learn latent

representations that implicitly factor out irrelevant information to the task at hand.

This yields a flexible approach which may factorise (in effect) any feature representation.

Carefully constructed test-scenarios show that these new representations are robust to

unseen speaker and environment combinations, improving error rates.

Changing contexts in the data is particularly evident when the data is time-limited,

or ephemeral, which may be the case with growing privacy and copyright concerns (see

e. g. Zimmeck et al., 2016). By this we mean that data from a domain that was available
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for training today, may be unavailable tomorrow, replaced by new data. Models are often

still expected to improve day by day, particularly in relatively constrained domains such

as a running TV series or parliamentary hearings. We call this longitudinal learning :

3. Longitudinal learning. When data is ephemeral, how well does a model improve

with continuous training, and what are the implications for active learning?

We first look at the difference longitudinal training makes, compared to the case of

retraining on all data. We then study active learning in the longitudinal context, which

is a special case of active learning in which it is not possible to pool newly obtained data

with previous data. This has ramifications for how data is chosen for active learning. We

demonstrate that a naive application of active learning leads to poor results, and instead

present a robust, suitable methodology for enabling active learning in this setting.

When updating acoustic models to account for changing contexts, we may need

to seek compact representations for practical and modelling reasons. For example,

the acoustic variety in broadcast media is particularly pronounced with adult and

child speech, requiring adaptation of the acoustic model. Additionally, child speech

has particular privacy concerns: it may be necessary to adapt a background model

repeatedly, with small amounts of data. For a large number of speakers, or on-device

applications, this would need to be parameter-efficient. For unsupervised adaptation,

it would need to be robust to errors in the supervision, specifically with such a large

difference in acoustic traits between the speakers. We identify the following problem:

4. Adaptation. What is a parameter-efficient, robust way to adapt a model to new

speaker acoustics, such as child speech?

We experiment with adapting a particular parameterisation of a neural feature

extractor. This results in a highly parameter efficient adaptation method that nearly

matches the performance of adapting several times more parameters in the supervised

case, and which enables robust adaptation to first-pass targets. A side-effect is improved

interpretability as the method acts on well-defined parameters.

1.2. Thesis outline

Chapter 2: Acoustic modelling. The main topics and techniques for acoustic

modelling that will be used throughout the thesis are presented, starting with a concise

review of hybrid acoustic models. Sequence-discriminative training is discussed. We

then look at some common adaptation and normalisation techniques.

Chapter 3: Lattices for decoding and supervision. Lattices, encoded as

Weighted Finite State Transducers (WFSTs), are core to modern ASR systems.

Chapter 5 will manipulate lattices using techniques reviewed here. We discuss how

lattices can be applied for supervision in systems trained with sequence-discriminative
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criteria.

Chapter 4: Data. A variety of data is used throughout the thesis. Each

corpus is presented, along with typical error rates from the literature. The

notion of filtering with Matching Error Rates (MERs) is introduced for corpora

where the majority of labels stem from subtitles, or are otherwise known to be inaccurate.

Chapter 5: Lightly-supervised training. We present an algorithm to handle

inaccurate transcriptions when training acoustic models using sequence-discriminative

criteria. The algorithm combines transcripts and hypothesis lattices to create improved

lattice supervision. An extension using an external paraphrase database is further

proposed. Experiments compare the algorithm with filtering methods using matching

error rates, and all experiments are repeated with biased language models.

Chapter 6: Factorised representations. We propose a method to adapt to

individual acoustic factors independently, enabling the re-combination of factors in any

configuration. Multi-condition networks are used to create bottleneck features from

i-vectors with opposing factors implicitly factored out. Experiments demonstrate the

importance of factorisation in the case of mismatch during i-vector extraction.

Chapter 7: Longitudinal training. We explore how to adapt and train in

a longitudinal fashion, when previous data has to be discarded. We first experiment

with model combination across time, using both posterior ensembling and weight

averaging. We then experiment with the effect of confidence-based selection for active

learning in the longitudinal framework.

Chapter 8: Adaptation with raw waveform acoustic models. We ex-

plore the adaptation of raw-waveform acoustic models, and suggest to adapt a particular

parameterisation of a raw waveform filterbank, known as SincNet (Ravanelli and

Bengio, 2018). The technique is shown to share similarities with traditional techniques

to normalise for vocal tract length, but also with other well-known adaptation

methods. Adaptation experiments from adult to child speech demonstrate interpretable

adaptation transforms that are parameter efficient.

Chapter 9: Conclusions. We conclude the thesis, and present ideas for fu-

ture work.

1.3. Published work

The core idea of Chapter 5 on lattice-based lightly supervised training is based on a

paper presented at Interspeech 2019 (Fainberg et al., 2019b). Chapter 6 on factorised
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adaptation is largely based on work published at Interspeech 2017 (Fainberg, Renals,

and Bell, 2017). Lattice-based adaptation results in Chapter 3 form a small part of an

arXiv publication on unsupervised adaptation (Klejch et al., 2019). The main idea and

results in Chapter 8 on adaptation with raw waveform acoustic models were presented

at ASRU 2019 (Fainberg et al., 2019a).



Chapter 2

Acoustic modelling

The goal of Automatic Speech Recognition (ASR) is to determine the most likely

sequence of words spoken, W∗, given some acoustic observations, O:

W∗ = arg max
W

P (W | O). (2.1)

This posterior can be estimated directly in models known as end-to-end (Chorowski

et al., 2014; Graves and Jaitly, 2014). More traditionally, the problem has been factored

into an Acoustic Model (AM) and a Language Model (LM) using Bayes’ rule:

W∗ = arg max
W

P (W | O) = arg max
W

P (O |W)︸ ︷︷ ︸
AM

P (W)︸ ︷︷ ︸
LM

. (2.2)

The factorisation into two dedicated models is useful from a research perspective,

for which unrelated strands of research can easily be incorporated. The modularity is

also useful from a practical perspective, since the individual models can impose known

structure, such as the pronunciation of words, and the models may be updated and

customised independently of each other. It is, for example, typical to have much more

text data to train a language model, than corresponding audio for the acoustic model.

On the other hand, end-to-end models that estimate the posterior directly may find

useful information that otherwise would not be shared across modules, and they may

be easier to understand and to put on devices. It can also be argued that such models

can learn any required structure from sufficient amounts of data1. While theory and

implementation can differ considerably, the two methodologies can both produce excellent

systems. On the Librispeech corpus (Panayotov et al., 2015), the current Kaldi recipe2

obtains 8.76% on the more difficult test-other test set with a factored Time-Delay

Neural Network (TDNN) model and the LF-MMI criterion (Povey et al., 2018, 2016).

A character level end-to-end architecture (Chan et al., 2016) with attention in recurrent

networks obtains 6.8% (5.8% using a LM) with significant data augmentation (Park

et al., 2019). With a transformer architecture as a hybrid acoustic model and a neural

language model, Wang et al. (2020) obtain 4.85%. On the Switchboard corpus (Godfrey,

1The author of Kaldi, Dan Povey, warns however that “by taking the structure out of the system,
the fairy dust of neural networks will improve the performance, but I think that’s a mirage.” (Kincaid,
2018).

2See Kaldi-Libri in Appendix A for a model description.

7
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qt−1 qt qt+1 qt+2

ot−1 ot ot+1 ot+2

Figure 2.1: Visualisation of HMMs for speech recognition as a graphical model. Grey
nodes indicate observed variables. This representation encodes independence between
the random variables, in contrast to an alternative representation using automata which
shows traversals through individual states. Independence relations can be observed
directly using e. g. the Bayes’ ball algorithm (Schachter, 1998).

Holliman, and McDaniel, 1992), Kaldi’s recipe3 using a TDNN+LSTM model and

4-gram rescoring obtains 8.8% WER on the Switchboard portion of the eval2000 test

set. In comparison, the character level end-to-end architecture with data augmentation

obtains 7.2% (6.8% with an LM).

This thesis concerns how to robustly estimate and adapt acoustic models in the

modular framework, specifically hybrid acoustic models which will be reviewed below.

But the ideas discussed herein can also be applied to end-to-end systems.

2.1. HMM acoustic models

The most dominant model structure for ASR since the late 1980s has been Hidden

Markov Models (HMMs) with either Gaussian Mixture Models (GMMs) or Deep Neural

Networks (DNNs) to model the observation distributions. This model structure uses

HMMs with associated densities as a generative model of speech, p(O | Q), given some

underlying state sequence Q = [q1, . . . , qT ]. The properties of HMMs emerge from

two conditional probability assumptions that in turn provide tractable and efficient

algorithms for training and inference. These relations can be visualised with a graphical

model, shown in Figure 2.1. We use rectangular boxes to distinguish it from the

automata used elsewhere in the thesis. Conditioning on the present state, the future is

independent of the past given the present, and the corresponding output distribution is

independent of all other states and observations.

To parameterise the HMM we require transition probabilities and emission densities.

The transition probabilities from state i to state j are written ai,j = P (qt = j | qt−1 = i).

The emission density (assuming continuous observations) for state j at time t is written

bj(ot) = P (ot | qt = j). See e. g. Poritz (1988) or Bilmes (2006) for more in-depth

treatments of HMMs and the algorithms for training and inference.

The standard HMM topology used in ASR is to model a phone, or similar, by a

three-state HMM that only allows transitions to the next state, as well as self-loops.

This is shown as an automaton in Figure 2.2. The restricted set of transitions implies

3See Kaldi-SWBD in Appendix A.
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Figure 2.2: Typical three-state HMM left-to-right model used to model phones.

q1
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Figure 2.3: Two-state HMM with skip connection used in one-third frame-rate models.

a sparse transition matrix A. The three states model the beginning, middle and end

of the acoustic unit. Co-articulation effects are captured by using context-dependent

phones (triphones).

More unconventional topologies have recently been experimented with as as con-

sequence of using one-third frame-rate modelling to speed up decoding (as used in

Lattice-Free MMI (LF-MMI) discussed below in Section 2.3.1). Features from three

adjacent time-steps are spliced at the input and processed only once (Sak et al., 2015a).

Using standard frame lengths of 10ms, the minimum duration of a three-state HMM is

30ms. Modelling with a one third frame-rate requires being able to traverse the triphone

in a single (effectively 30ms) frame. Hadian et al. (2018c) experimented with a range of

topologies, but converged upon the 2-stage skip model shown in Figure 2.3 which is

also used in the original work on LF-MMI (Povey et al., 2016).

The amount of time spent in a triphone HMM model has been discussed in-depth

previously for HMM-GMM systems. We revisit the discussion here in light of the

new topologies in modern models. A common criticism of HMMs has been that the

probability of the time spent in a single state is geometric in time with respect to

its self-loop probability, aj,j (Gales and Young, 2008)4. In practice, however, a side-

effect of a multiple state model is a more realistic duration distribution, particularly if

states are tied as a consequence of clustering. In this case, the sum of geometrically

distributed variables becomes a negative binomial distribution (Bilmes, 2006), as shown

in Figure 2.4. Interestingly, the skip-connection in the two-state topology results again

in a geometric duration distribution. However, Gales and Young (2008) noted that

duration modelling becomes less important with improved output distributions. Indeed,

Hadian et al. (2018c) saw only relatively minor increases in WER when experimenting

with a topology consisting of just a single state (with a self-loop).

4There has been a history of work in HMM duration modelling dating back to Ferguson (1980) and
Levinson (1986). See also hidden semi-Markov models (Russell and Moore, 1985).
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Figure 2.4: Probability of remaining in a state, at−1
i,i (1−t), with self-transition probability

ai,i (left); Monte Carlo estimate (right) of duration in three and two-state HMMs. The
two-state skip HMM has all transition probabilities set to 0.5 by standard practice,
and those for the three-state model were extracted from the position-dependent phone
AY B. The transition probabilities were extracted from monophone models trained on
AMI as used in Chapter 8. The negative binomial distribution corresponds to three
states each with a self-loop probability 0.75; as is standard for initialisation with Kaldi.
The geometric distributions correspond to the duration of a single HMM state with a
self-loop.

2.1.1. Gaussian Mixture Models

Mixtures of Gaussian distributions may be used as the emission densities, bj(Ot), of

the HMM states, as depicted in Figure 2.5. All models used in later experiments

will use alignments obtained from an HMM-GMM system, and the following review

will highlight standard components in the pipeline of Kaldi (Povey et al., 2011), used

throughout the thesis.

Gaussian mixtures are required because the data is often multi-modal – particularly

lower Mel-Frequency Cepstral Coefficients (MFCCs), shown in Figure 2.6. Diagonal

covariance matrices are used to avoid a dramatic expansion of parameters to estimate.

This in turn requires uncorrelated features, for which the final transform in MFCC

extraction by design is the decorrelating Discrete Cosine Transform (DCT). Linear

Discriminant Analysis (LDA) is normally applied to spliced features (concatenated

frames) to further decorrelate and reduce dimensionality (Batlle, Nadeu, and Fonollosa,

1998; Brown, 1987). Diagonal covariance GMMs are still able to model covariance,

although perhaps ineffectively (Axelrod et al., 2005) and at the expense of their modelling

capacity for multi-modal feature distributions (Gales, 1999). A model-space transform

known as semi-tied covariance modelling, or Maximum Likelihood Linear Transform

(MLLT), is therefore used to share one or more full covariance matrices across all GMM

components (Gales, 1999).

The models are (in Kaldi) trained using Viterbi training as an approximation to full
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Figure 2.5: GMMs can be used to model the distribution of feature vectors aligned to
a particular state j, here represented by the emission density bj(o).
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Figure 2.6: Distribution of the first two MFCCs from the TIMIT (Garofolo et al., 1993)
training data set for frames aligned to the first HMM state representing the phone /dh/.

Baum-Welch (Baum et al., 1970). Later stages use Speaker-Adaptive Training (SAT)

(Anastasakos et al., 1996), which folds in speaker adaptation (in this case Constrained

Maximum Likelihood Linear Regression (CMLLR), see Section 2.4) during training,

allowing the model to focus on modelling phonological variations.

2.1.2. Neural Network Models

Neural networks have predominately replaced GMMs in hybrid acoustic models for ASR.

This is a result of improved neural network architectures, training procedures, and GPU

acceleration that enable suitable models yielding significant improvements to WER.

Additionally, the ability of neural networks to use multiple frames of context (in addition

to delta features) helps compensate for the conditional independence assumption of

HMMs (as well as possibly neural network depth, as discussed by Ravuri and Wegmann,

2016).

Among the most common architectures for hybrid acoustic models are Time-Delay

Neural Networks (TDNNs) (Waibel et al., 1989) which will be discussed further below.

These may be considered functionally equivalent to 1-dimensional Convolutional Neural
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Networks (CNNs) across time. 2-dimensional convolutions may also be used, considering

the time-frequency representation of speech as an image (Abdel-Hamid et al., 2014;

Sainath et al., 2013b). An alternative way to model temporal context is to use Recurrent

Neural Networks (RNNs) (Robinson, 1994; Saon et al., 2014; Vinyals, Ravuri, and

Povey, 2012), particularly Long Short-Term Memory (LSTM) models (Hochreiter and

Schmidhuber, 1997; Sak, Senior, and Beaufays, 2014) to help alleviate the problem

of vanishing gradients over time (Bengio, Simard, and Frasconi, 1994). A recent

development is the use of self-attention to build purely attention-based models, such as

the transformer (Wang et al., 2020). These have the advantage of being able to connect

arbitrary parts of a sequence, and they are easy to parallelise. Most of the above models

use Rectified Linear Units (ReLUs) as activation functions.

Many variations of the above architectures exist: CNNs or TDNNs are often com-

bined with RNN architectures in the higher layers (Xiong et al., 2017). Zhang et al.

(2016) included highway connections in deep LSTM models to control for vanishing

gradients because of depth. Yu et al. (2016) incorporated a layer-wise attention mask

and residual connections (He et al., 2016) into a TDNN architecture known as LACE.

It is difficult to conclude which model architecture that works best. For example,

Xiong et al. (2017) found an LSTM, a CNN with residual connections, and a combined

CNN-LSTM all to perform similarly, with perhaps the LSTM model slightly better.

These different model architectures, however, typically combine well for ensembling

(Saon et al., 2015, 2017; Woodland et al., 2015; Xiong et al., 2017).

The neural network models are typically trained using alignments from a preceding

HMM-GMM system, although there are approaches to flat-start training with HMM-

DNN models (Hadian et al., 2018b; Senior et al., 2014; Zhang and Woodland, 2014).

The models are normally built upon MFCC or Filterbank (FBANK) features (see

Section 2.2), using several frames of context. It is worth noting, however, that it is

common to use a dimensionality-preserving LDA transform as part of normalisation, so

that more discriminative directions in feature-space have higher variance5. Since LDA is

invariant to linear transforms of the data, and since the only difference between MFCCs

and FBANK features is the DCT, a linear transformation, the choice of MFCCs or

FBANK features becomes arbitrary (unless the features are compressed). There has

also been work suggesting to simplify feature extraction given the number of linear

transformations and model invariance properties (Yu and Waibel, 2000). More recently,

models have been trained on raw-waveforms in the time-domain (e. g. Hoshen, Weiss,

and Wilson, 2015), aspects of which will be explored in Chapter 8.

The neural network outputs are used as estimates of the emission probabilities

bj(ot) = p(ot | qt = j) for the HMM states by dividing the neural network outputs,

p(i | ot), by the class prior, p(i), to create scaled likelihoods p(ot | qt = j)/p(ot). This

is illustrated in Figure 2.7. We are modelling context-dependent phones (triphones).

5Kaldi applies some additional non-linear scaling to further de-emphasise the less discriminative
directions (Povey, Zhang, and Khudanpur, 2014).



2.1. HMM acoustic models 13

q1 q2 q3

i

p(i|o)
p(i) = p(o|q)

p(o)

Figure 2.7: Illustration of an HMM-DNN hybrid model. Neural network outputs replace
GMMs as emission probabilites for the HMM states.

Since we are unlikely to observe data for each possible logical triphone, we cluster

and tie parameters from the individual HMM states, often using decision trees. The

neural network output targets correspond to these tied HMM states. There can be

a large number of physical states to model and consequently the softmax layer often

contains a large fraction of the total number of parameters in a model. Models may be

trained using the cross-entropy objective function, often followed by a pass of sequence-

discriminative training using criteria such as Maximum Mutual Information (MMI),

state-level Minimum Bayes Risk (sMBR) or Minimum Phone Error (MPE) (Veselý et al.,

2013; Wang and Sim, 2011). Alternatively, models may be trained from scratch using

e. g. LF-MMI (Povey et al., 2016). Sequence discriminative training will be discussed in

Section 2.3.

A common architecture used throughout the thesis is TDNNs (Waibel et al., 1989).

As noted above, these are mostly functionally equivalent to 1-dimensional CNNs, but

with different terminology and modelling conventions. In ASR, the models typically use

small kernels with large dilation rates (Peddinti, Povey, and Khudanpur, 2015) and a

large number of feature maps. This corresponds to the number of spliced frames for a

layer, splice context (with sub-sampling), and units in TDNN terminology. Figure 2.8

illustrates a TDNN architecture. Each layer processes a wider temporal context. The

combination of sub-sampling (dilation) with parameter-tying (kernels) makes TDNNs

efficient and small in terms of the total number of parameters.

Povey et al. (2018) introduced Factored Time-Delay Neural Networks (TDNN-Fs)

which are used often in this thesis. The idea is to train from scratch using factored

weight matrices. This builds upon work using weight matrix compression with the

Singular Value Decomposition (SVD), whereby models are compressed by factoring

the weight matrices into parts using the SVD and zeroing out the smallest singular

values. It turns out that it is difficult to train with this factorisation from scratch,

and it is therefore normally applied after an initial training pass, followed by fine-

tuning (Prabhavalkar et al., 2016; Xue, Li, and Gong, 2013). Povey et al. (2018),

however, worked out a way to train such a factorised representation from scratch. The

proposed method was to approximate the properties of the SVD during training by
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Figure 2.8: Illustration of a TDNN with splice-contexts and sub-sampling (dilation),
equivalent to [−2, 0], {−3, 0}, {−3,+3}. Only the gray neurons require evaluation at
time t.
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Figure 2.9: TDNN-F layers are trained from scratch with a matrix factorisation in
which one of the matrices is semi-orthogonal.

enforcing “semi-orthogonality”6 in one of the factors through the objective function. By

adding Tr(QQT ) to the objective function, where Q , WWT −I, the parameter matrix

W is in effect moved towards an orthonormal matrix, such that WWT ≈ I. Rather than

using this technique to compress models, Povey et al. (2018) showed empirically that

this model topology reduces the WER when using a similar total parameter budget to a

normal TDNN model. Figure 2.9 illustrates factored weight matrices with a bottleneck

layer.

2.2. Features

Features for GMM or DNN systems should ideally reduce dimensionality while preserving

phone discrimination. A standard choice are MFCCs (Davis and Mermelstein, 1980)

which provides a low-dimensional encoding of typically 40 dimensions or less. These

are extracted by first computing frequency-domain representations by taking the Fast

Fourier Transform (FFT) of windowed time-domain signals. The resulting spectra are

6“Semi-orthogonality” is used in Povey et al. (2018) to denote orthonormality applied to rectangular
matrices, i. e. WTW = I or WWT = I.
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Figure 2.10: The human ear is not equally sensitive to all frequency bands. The
mel-filterbank uses the mel scale (Stevens, Volkmann, and Newman, 1937) to model
diminishing sensitivity to changes in pitch as frequency increases.

passed through the mel-filterbank (Davis and Mermelstein, 1980), shown in Figure 2.10,

in order to emulate the frequency sensitivity of the human ear, followed by taking the

log of each output value, to emulate human sensitivity to signal level7. At this point we

can extract Mel filterbank coefficients (Abdel-Hamid et al., 2012; Deng et al., 2013),

which has become popular for training neural networks, in particular for CNNs with

2-dimensional kernels, as the spectral energies are still local (Abdel-Hamid et al., 2014,

2012). MFCC extraction additionally obtains a second spectrum of the log-spectra

output of the filterbank, usually using the DCT as mentioned above. The coefficients

of the resulting cepstrum are mostly decorrelated, making them suitable for diagonal

covariance modelling with GMMs, discussed above. The lower coefficients correspond to

features that help discriminate phones, such as vocal tract shape. Traditionally, GMMs

use 12-dimensional features (with 1 energy feature), and more recently neural networks

often use 40 dimensions. Finally, to capture non-stationary features of the speech signal,

we may extract regression coefficients (Furui, 1986) (delta features), from the change

between successive coefficients. These have the additional benefit that they relax the

assumption of conditional independence in HMMs (Gales and Young, 2008).

It can be argued that hand-crafted features like MFCCs may lose relevant information

to word discrimination due to a choice of preprocessing or to their low dimensionality

(Jaitly and Hinton, 2011; Sheikhzadeh and Deng, 1994). Neural network based models,

sufficient data, and increased computational power allows most, if not all, of the feature

processing pipeline to be left to a neural feature extractor. This can then learn task-

dependent features (Sainath et al., 2013a). Promising results have been observed with

CNNs (or TDNNs) on top of raw time-domain input (Hoshen, Weiss, and Wilson, 2015;

Palaz, Collobert, and Doss, 2013; Sainath et al., 2015). Chapter 8 will experiment

with raw time-domain modelling using a particular parameterisation of the CNN filters

known as SincNet (Ravanelli and Bengio, 2018).

7In general, traditional feature pipelines are motivated from psychoacoustic phenomena – Perceptual
Linear Prediction (PLP) coefficients (Hermansky, 1990) similarly pass spectra through the related Bark
scale (Zwicker, 1961), and uses cubic-root amplitude compression to account for level.
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2.3. Sequence-discriminative training

The standard cross-entropy training of the neural networks in the hybrid systems is

discriminative at the frame-level. Speech is, however, inherently a sequence classification

problem. It is possible to train to discriminate across sequences, in which the criterion

is the direct misclassification of the hypotheses with the true reference. Since the

0-1 loss function is not differentiable, a number of other discriminative criteria have

been applied in the literature. Examples include the Minimum Bayes Risk (MBR)

critera that minimise the expected error at some granularity. For instance, the sMBR

criterion (Gibson, 2008; Gibson and Hain, 2006; Povey et al., 2008) is a sum over the

posteriors from hypotheses weighted by the state-level edit-distance. Another criterion

that we will make use of more in this thesis is MMI, which aims to maximise the mutual

information between the reference word sequence, Wref, and the model output given

some observation sequence O (Bahl et al., 1986; Brown, 1987; Kapadia, Valtchev, and

Young, 1993). This turns out to be correlated with the minimum expected sentence error

(Yu and Deng, 2016). Since the language model is fixed, the MMI criterion effectively

becomes the posterior of the correct word sequence:

FMMI(θ) =
1

M

M∑
m=1

logP (Wm
ref | Om; θ) (2.3)

≈ 1

M

M∑
m=1

log
P (Om |Wm

ref; θ)
κP (Wm

ref)∑
W P (Om |W; θ)κP (W)

, (2.4)

where M is the number of utterances, θ indicate the model parameters, and κ is a

weighting term between the acoustic and language models (Povey, 2005; Schluter and

Macherey, 1998). The weighting factor κ is required because maximum likelihood

training with HMMs tend to overstate the posterior probabilities since the HMM

assumptions do not hold. For MMI, applying the factor to the AM or the inverse-factor

to the LM is not equal: with LM scaling one particular hypothesis tends to dominate

(Woodland and Povey, 2002). By instead applying it to the AM hypotheses, we can

smooth the posteriors and make less likely hypotheses more confusable (when κ→ 0).

In Equation 2.4, by increasing the numerator through adjusting the model pa-

rameters, the reference model sequence is made more likely; and by decreasing the

denominator, competing sequences are made less likely. As we will see in Section 3.3,

when differentiating the MMI objective with respect to a neural network output i, the

respective error signal backpropagated to the neural network becomes:

et(i) = κ(γNUM
t (i)− γ̈DEN

t (i)), (2.5)

where γNUM
t (i) and γ̈DEN

t (i) are the posteriors of being in state i at time t for the

numerator and denominator, respectively, γ̈(·) indicates multiple paths, and κ is the
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weighting factor from above. The numerator may consist of only a single reference

hypothesis with state labels Q = [q1, . . . , qT ] obtained through forced alignment. In this

case it is sufficient to compute the indicator function: γNUM
t (i) = κδi;qt . The posterior

from the denominator (and the numerator if it contains multiple hypotheses) can be

obtained using the forward-backward algorithm. The numerator and denominator

are usually represented using lattices (Kingsbury, 2009; Normandin, Lacouture, and

Cardin, 1994) encoded as WFSTs which will be discussed in Chapter 3. In practice, it

is normally infeasible to compute the denominator over all possible sequences. Instead,

the most likely competing paths are computed by recognising the data with an existing

cross-entropy trained model to generate a suitable lattice of hypotheses. A weak LM may

be used to generate more varied hypotheses (Povey, 2005). Alternatively, a phone-based

graph may be used instead, as discussed below.

2.3.1. Lattice-Free MMI

The standard method to train neural networks with sequence-discriminative criteria is

to first train a model with an initial pass of cross-entropy and then to use that model

to generate denominator lattices for further training with e. g. MMI (Veselý et al., 2013;

Wang and Sim, 2011). To avoid this time-consuming first step, Povey et al. (2016)

proposed Lattice-Free MMI (LF-MMI), which bypasses the need for the denominator

lattice altogether by replacing it with an utterance-agnostic language-model graph.

Using LF-MMI, Povey et al. (2016) demonstrated up to an 8% relative improvement in

WER over previous cross-entropy trained systems followed by sequence-discriminative

training with the state-level Minimum Bayes Risk (sMBR) criterion (Gibson and Hain,

2006; Povey et al., 2008). Note that since we can train from scratch using LF-MMI,

the posteriors are well-calibrated, and the optimal value for the weighting factor, κ, in

Equation 2.4 above, is close to 1.

To make such a denominator computationally feasible, Povey et al. (2016) use a

4-gram phone-level, rather than word-level, LM, trained from alignments of a preceding

GMM system. To keep the graph size to a minimum, there is no smoothing, interpolation

or back-off. The forward-backward computation is implemented on GPUs. To further

reduce complexity, the model outputs at one third of the frame rate, with an amended

topology that can be traversed in a single frame (as discussed in Section 2.1). A mixture

of regularisation methods are required to control for overfitting, such as dropout and a

cross-entropy multi-task loss (Povey et al., 2016).

The numerator is now also a phone-level graph representing alternative pronunci-

ations, and is computed using the forward-backward algorithm. In order to extract

suitable fixed-size chunks for training, the graph needs to be acyclic so that it can be

topologically sorted by time. The self-loops can then be expanded within some tolerance,

and the final graph can be sorted and split into chunks for training. Within each chunk

it is possible to re-introduce cycles, which results in smaller (no longer acyclic) graphs
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that are faster to prepare with similar final error rates (Hadian et al., 2018a). Hadian

et al. (2018b) have since proposed an extension to the LF-MMI framework that enables

flat-start training with neural networks, without the need for alignments from a GMM

system.

We noted above that the numerator now can represent alternative pronunciations, or

in other words, multiple hypotheses. This is possible with LF-MMI since we have a sum

over all possible paths in the denominator through the phone-level graph. Consequently,

all numerator paths are counted for in the denominator. In previous implementations

of MMI this was not necessarily the case which could lead to spikes in the objective

function. There are examples of semi-supervised training (Manohar et al., 2018) and

unsupervised adaptation (Klejch et al., 2019) that make effective use of this capability

for multiple hypotheses. We will call this lattice supervision (see Section 3.3), referring

to the word level lattices prior to numerator graph creation. Lattice supervision will

be particularly useful for lightly supervised training, presented in Chapter 5, where we

will demonstrate a technique to combine lattice-based semi-supervised training with

possibly inaccurate transcriptions. In particular, we will show that we obtain WER

improvements by using a lattice compared to using a single path.

2.4. Adaptation and normalisation

Mismatch between training and testing conditions can be detrimental to system perfor-

mance. There is a large amount of research on adaptation and normalisation techniques

to alleviate such mismatch. We will focus on the methods applicable to the thesis.

These methods may be categorised into those acting in the model-space, feature-space,

or through auxiliary features, but many may have analogous transforms in the other

space. A typical example for HMM-GMM models is Maximum Likelihood Linear Regres-

sion (MLLR) (Leggetter and Woodland, 1995) which operates on the GMM means and

variances and its constrained variant, CMLLR (Gales, 1998) which has a corresponding

feature-level transform. This is used for SAT training of HMM-GMM models throughout

the thesis to obtain alignments for downstream neural network models.

For neural network model adaptation, one possibility is to simply fine-tune the entire

model on adaptation data, potentially with cross-validation. If the target labels are

inaccurate, such as may be the case with a first-pass recognition, it is important to

constrain the parameters in some manner, or to reduce the total number of parameters

to adjust. Otherwise it is possible to overfit to incorrect adaptation targets. This

leads to methods that adapt only a subset of the parameters, often by inserting hidden

layers (Gemello et al., 2007; Li and Sim, 2010; Neto et al., 1995), which may be further

constrained to just the diagonal of the layer matrix, as is the case with Learning Hidden

Unit Contributions (LHUC) (Swietojanski and Renals, 2014):

h(l) = s(r(l−1))� h(l−1), (2.6)
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h(l+1)

r(l+1)
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h(l)

Figure 2.11: An LHUC layer consists of scalars (red squares) that are multiplied with
the activations from the previous layer.

where h(l−1) is the output of the previous layer l, r(l−1) is a vector of LHUC scalars and

s is an optional non-linearity or squashing function. This is illustrated in Figure 2.11.

LHUC turns out to be surprisingly robust to both inaccurate targets, number of

parameters and training speed: it can typically be applied robustly to all layers with

a high learning rate (e.g. 0.8) (Swietojanski, Li, and Renals, 2016). A number of

variations upon LHUC exist, such as subspace-LHUC (Samarakoon and Sim, 2016),

which reduces the number of parameters per speaker by a matrix-vector product, and

Bayesian-LHUC (Xie et al., 2019), which obtains a full posterior over LHUC parameters.

We will make comparisons to LHUC in Chapter 8.

When an auxiliary feature for a speaker s, zs, is used it affects the layer through a

bias:

h(l) = σ(W(l)h(l−1) + b(l) + b(l)
s ), (2.7)

where b
(l)
s = U(l)zs, U and W are weight matrices, and b is the standard bias. Such

features may be speaker codes (Abdel-Hamid and Jiang, 2013), bottleneck features (Liu,

Zhang, and Hain, 2014) or i-vectors (Dehak et al., 2010; Saon et al., 2013), the latter

of which will be used in Chapter 6. While normally used as auxiliary features in this

manner, these features can also be used as independently estimated features for subspace-

LHUC (Samarakoon and Sim, 2016), or embedded within a feature transformation

matrix (Samarakoon and Sim, 2015). i-vectors (Dehak et al., 2010) are estimated

using means from GMMs trained on the features. Specifically, an extracted i-vector,

λ, represents coordinates in a (total variability) subspace that models the difference

between speaker-specific GMM means, mSD, and means from a background GMM,

mSI :

mSD = mSI + Tλ, (2.8)

where T is the total variability matrix. Used in neural network models they often

yield up to 1-2% absolute improvements in WER with 100-dimensional vectors (Saon

et al., 2013). They are included by standard in most Kaldi recipes. An advantage

of i-vectors (as well as most bottleneck features and speaker codes) is that they are

estimated without transcriptions. However, they may do worse on unseen speakers
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than a baseline without i-vectors (Liu, Karanasou, and Hain, 2015). Chapter 6 will

demonstrate a technique to factorise i-vectors, producing bottleneck features that are

more robust to speaker or environment mismatch.

In Chapter 8 we will study an analogy to a feature-space technique known as Vocal

Tract Length Normalisation (VTLN) (Lee and Rose, 1996). This technique was proposed

to control for varying vocal tract length in speakers by estimating a, typically piecewise

linear, warping function with a single warping factor parameter that is applied to the

triangular filterbank in MFCC extraction (Figure 2.10). Such warping functions are

illustrated in Figure 2.12. Piecewise linear functions are suitable since vocal tract length

affects the formants in a near linear manner (Pitz and Ney, 2005). The warping factors

may be estimated by a grid-search, whereby the model is iteratively re-trained with the

optimal warp factors until they converge (Lee and Rose, 1996). Apart from being a

time-consuming process, comparing likelihoods with effectively different models given

the warp applied, ideally requires computing a Jacobian compensation term which is

not trivial (for further discussions see Povey et al., 2011; Uebel and Woodland, 1999).

VTLN also has a model-space analogue, a linear transform which may be estimated by

analytical (e. g. Pitz and Ney, 2005) or data-driven (e. g. Kim et al., 2004; Uebel and

Woodland, 1999) means. In this space there are related methods also using a single

tunable parameter, but that forgo any explicit relation to frequency warping, such as

the exponential transform (Povey, Zweig, and Acero, 2011).

In mismatched conditions the application of VTLN at training or test-time can have

great impact on error rates. Giuliani and Gerosa (2003) saw improvements from 39.68%

to 32.35% WER when recognising child speech with an adult speech GMM model with

and without VTLN. VTLN cannot, however, fully bridge the gap to their model trained

on child speech from scratch, which in that case obtained 22.7% WER. Chapter 8 will

investigate a similar idea to VTLN, but with the filterbank embedded within the first

layer of a neural network, and with no constraint on the warping function.

2.5. Summary

We have briefly reviewed hybrid acoustic models, along with common techniques that will

be used throughout the thesis. Specifically, we discussed neural network architectures

(TDNNs), feature extraction, the LF-MMI criterion and the ability to use lattice

supervision, and touched upon techniques for model-based neural adaptation (LHUC),

auxiliary feature-based adaptation (i-vectors) and feature normalisation (VTLN).
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Figure 2.12: Example of two piece-wise linear scaling functions for VTLN with arbitrary
warping parameters for demonstration. Produced using the implementation details from
Kaldi (Povey et al., 2011). α = 1 would equal the mel frequency curve of a traditional
filterbank for MFCC extraction (Figure 2.10).



Chapter 3

Lattices for decoding and

supervision

In the previous chapter we briefly discussed how lattices may be used to represent

the numerator and denominator in sequence-discriminative training. ASR systems in

general make great use of lattices to represent alternative hypotheses. The nodes in a

lattice represent points in time, and the arcs represent (typically word-level) hypotheses.

Acoustic and language model scores may be attributed to each arc. An example word-

level lattice is shown in Figure 3.1. Lattices are used to store the results of decoding

without the redundancy of n-best lists. Further, they enable re-scoring with higher

order language models or other knowledge sources (e. g. Mangu, Brill, and Stolcke,

2000), on-the-fly manipulation without re-running the decoder (e. g. Bell et al., 2017),

lattice supervision for semi-supervised training (e. g. Huang and Hasegawa-Johnson,

2010; Manohar et al., 2018), among many other applications. Encoding these lattices as

Weighted Finite State Transducers (WFSTs) enables a host of well-defined operations

(see Mohri, Pereira, and Riley, 2008). A canonical example of a WFST is the HCLG

decoding graph (Table 3.1), which will be introduced below. Another is the manipulation

of lattice supervision, which will be an important idea in Chapter 5. We first review

concepts of WFSTs that are relevant to this thesis, then briefly discuss the HCLG

decoding graph and the process of generating a hypothesis lattice through lattice

generation. Lastly, we discuss the effect of lattice supervision during training.

0 1 2

3 4

5 6
How/50.3

to/34.1

two/22.7

wreck/43.9
a/63.2 mouse/16.3

nice/36.8

recognise/74.9

beach/33.7

speech/46.2

Figure 3.1: Example of a lattice with combined model scores encoded as a WFST.

3.1. Finite State Transducers

A Weighted Finite State Transducer (WFST) is an automaton that transduces a legal

input string into an output string. Weights on each transition along the path determine

22
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ε:ε/0

s:speech/0

p:ε/0 iy:ε/0 ch:ε/0

ε:ε/0

b:beach/0 iy:ε/0 ch:ε/0

ε:ε/0
k:quiche/0

iy:ε/0 sh:ε/0

ε:ε/0

End statesStart state

Figure 3.2: Example of a WFST, here a toy lexicon. Input and output labels are
separated by colons (:), and weights after slashes (/) (in this case all 0). ε-arcs consume
no inputs or produce no outputs. This example also demonstrates the union between
multiple automata, as well as Kleene closure: the union operation has combined individual
transducers for each word into having a shared start state, with a new ε-arc to avoid
repeatedly incurring any start state cost; the Kleene closure is shown by the arcs from
the end states back to the start.

a total cost of the operation. An example WFST is shown in Figure 3.2. This is a

toy lexicon transducing sequences of phones into words. ε output labels produce no

output, so the input {s, p, iy, ch} will produce the word speech. Such a lexicon can

easily be constructed from a list of words and their pronunciations: We first construct

individual WFSTs for each word, and then we join them using the union and closure

operations which we will describe below. If input and output labels are identical, then

the automaton is instead known as a weighted finite state acceptor (WFSA). A typical

acceptor is a language model, or grammar, as we will see below, that consumes an input

string if there is a match.

Natural operations on a transducer include finding the “best”, or “shortest”, path

between two states. In order to define this we will introduce some standard notation using

general binary operators ⊕ and ⊗: the total cost accrued on a path, π = [a1, . . . , an],

is w(π) = w(a1)⊗ w(a2)⊗ · · · ⊗ w(an), for each arc a in the path. To compare paths,

and compute the best path cost over a finite set of possible paths R, w(R), we write

w(R) = w(π1)⊕ w(π2)⊕ · · · ⊕ w(πm), for all possible paths π ∈ R between two states.

More succinctly, the best path cost may be written (Mohri, 2002):

w(R) = ⊕π∈Rw(π). (3.1)

This notation is very general, so that we can choose appropriate operations given

the problem at hand, but using a common computational framework. To choose the

operations, we choose a semiring, where a semiring defines an algebraic structure with
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certain properties1 (see e. g. Hori and Nakamura, 2013). It is defined by a 5-tuple:

(K,⊕,⊗, 0̄, 1̄), where K is the domain, ⊕ is the additive operator, ⊗ is the multiplicative

operator, 0̄ ∈ K is the additive identity, and 1̄ ∈ K is the multiplicative identity. For

example, we may define a semiring over probabilities: ([0, 1],max,×, 0, 1), with which

we can now write the best path cost as:

w(R) = max
π∈R

w(π), (3.2)

where w(π) = w(a1)×w(a2)×· · ·×w(an). The best path is the path with the maximum

probability, and the probabilities are multiplied.

The one we require in this thesis, and is typically used for ASR applications, is the

tropical semiring: (R∪{+∞},min,+,+∞, 0), where the best path is the minimum cost

path, and the costs are summed along a path:

w(R) = min
π∈R

w(π), (3.3)

where w(π) = w(a1) + w(a2) + · · ·+ w(an).

Next we define some key operations. The inner workings of some depend on the

semiring that the finite state automaton admits. We refer to Hori and Nakamura (2013)

and Mohri, Pereira, and Riley (2008) for more complete treatments, and more precise

mathematical definitions.

Composition combines different levels of representation by cascading multiple trans-

ducers. For example, below we will see the composition of four individual automata

that make up a decoding graph commonly referred to as the HCLG : H ◦C ◦L ◦G
(see Table 3.1). Output labels in one transducer are matched with input labels in

the next. The combined weight is the sum of the matching paths. For acceptors,

composition is equivalent to intersection: since input and output label pairs in

this case are identical, the composition of two acceptors will find the shared paths

between the two.

Determinisation produces a deterministic automaton which has no transitions leaving

a state sharing the same input label. In other words, if there are multiple possible

paths for a given input string, determinisation combines them into a single path,

summing their weights to create an equivalent automaton. The choice of semiring

determines the interpretation of the sum.

Minimisation produces an equivalent transducer with the fewest possible number of

states and transitions.

Kleene closure allows an automaton to match patterns 0 or more times by introducing

ε-arcs from final to input states, and making the initial state also a final state.

1Well known examples are probabilities (semiring) and square matrices (ring).
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Component Input labels Output labels

H Context-dep. HMM states Context-dep. phones

C Context-dep. phones Phones

L Phones Words

G Words Words

Table 3.1: Components in the HCLG and their respective input and output labels.

This is equivalent to the Kleene star operation in regular expressions (Kleene,

1951).

Union combines automata by creating a new initial state that branches out to the

original initial states of each automaton with ε-arcs. Any previous initial state

costs are moved to these arcs.

Concatenation combines automata in series, creating new ε-arcs where one automaton

joins the other.

Inverse switches the input with the output labels on each arc. The structure and the

costs are not changed.

Reverse reverses the states of an automaton. The initial state becomes the new final

state.

Projection creates an acceptor from a transducer by retaining only the input or the

output labels.

Chapter 5 will make use of most of these operations.

3.2. Decoding graph and lattice generation

The various components of a hybrid ASR system, specifically a context-dependent

phone-based HMM system, can be encoded as a single WFST. This is typically denoted

as an HCLG decoding graph (Mohri, Pereira, and Riley, 2008), which is the composition

of the HMM structure (H), the phonetic context dependency (C), the lexicon (L), and a

grammar or LM (G). The first three are transducers, whilst G is an acceptor. Table 3.1

shows the input and output labels for each component. The resulting HCLG has as

inputs context dependent HMM states, and as outputs words.

To demonstrate the use of the HCLG decoding graph, we will consider a particular

utterance u. We would like to use that utterance in combination with the HCLG to find

the most likely corresponding sequence of words. A component that is missing from the

HCLG is the neural network (in a hybrid system). We will therefore build a Weighted

Finite State Acceptor (WFSA) for the utterance, U , which will encode the likelihoods



3.3. Lattices as supervision 26

0 1 2 3 4

1/c1,1

2/c1,2

3/c1,3

1/c2,1
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3/c2,3
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Figure 3.3: WFSA U for a four-frame utterance with corresponding model costs, cn,s,
for frame n and state s. In a real system the number of outgoing arcs per state will
equal the number of tied states in the system.

of the acoustic model for each frame. To build it, we evaluate each frame with the

acoustic model, and record the likelihoods for every state. For neural network acoustic

models, this amounts to performing a forward pass given the current feature frame, and

recording all the output probabilities. These probabilities represent context-dependent

states, and become parallel arcs between (automaton) states in the FST for the current

frame, as illustrated in Figure 3.3. The hypothesis space of that utterance given the

ASR model then becomes

S = U ◦HCLG, (3.4)

where the most likely hypothesis for U corresponds to the best path of S.

In toolkits such as Kaldi, S is never constructed explicitly, as it amounts to copying

the HCLG for each frame in U . Instead, Kaldi directly produces a pruned version

of S, PS , by employing a variation of the token-passing algorithm (Young, Russell,

and Thornton, 1989; Young et al., 2002) for Viterbi decoding, with on-the-fly pruning.

Since we ultimately care about the word sequence, and PS has context-dependent

states as inputs and words as outputs, we project on the output words. A modified

determinisation algorithm follows, which is quite involved, and not relevant to the thesis.

The final result is a lattice of hypotheses with no duplicate paths, and where the best

path matches the best path in PS . See Povey et al. (2012) for further details, as well

as Chen et al. (2019) for incremental determinisation, and Chen et al. (2018) for an

extension to GPU-based decoding. The lattice of hypotheses can be further used in

various decoding methods such as Minimum Bayes Risk (MBR) decoding which aims to

minimise risk measures based on WER (see e. g. Xu et al., 2011).

3.3. Lattices as supervision

A method to include a notion of uncertainty about the labels directly into training is to

use a lattice for supervision. Multiple hypotheses in the supervision encode uncertainty

about the accuracy of each hypothesis. This is useful when the supervision is inaccurate,

such as when adapting to first pass targets (Klejch et al., 2019), training in a semi-

supervised manner (Manohar et al., 2018), or when using subtitles as labels (Fainberg

et al., 2019b). This will be demonstrated in Section 5.2. Discriminative criteria such

as MMI are particularly sensitive to inaccurate labels (Mathias, Yegnanarayanan, and
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Fritsch, 2005; Yu et al., 2010).

Lattice supervision is not a new idea. It has previously been used with HMM-GMM

systems for modelling multiple pronunciations (Hain, 2002; Povey, 2005), although

using a single pronunciation variant per word could be more successful (Hain, 2002).

Huang and Hasegawa-Johnson (2010) and Manohar, Povey, and Khudanpur (2015)

used lattice entropy minimisation for semi-supervised training, for GMM and DNN

systems, respectively. Lattice supervision has been beneficial for training with LF-MMI:

Manohar, Povey, and Khudanpur (2017) fused crowd-sourced transcripts into confusion

networks (Mangu, Brill, and Stolcke, 2000), Manohar et al. (2018) used recognition

lattices in a semi-supervised setup, and Klejch et al. (2019) demonstrated the advantage

of lattice supervision in test-time applications.

We will see how including multiple hypotheses for supervision encodes uncertainty in

those hypotheses. It is due to the posterior of an HMM state being affected by multiple

states occurring at the same timestep t. It is instructive to look at how it affects the

error backpropagated to the neural network. Recall the MMI criterion from Section 2.3:

FMMI(θ) = log p(Wm
ref | Om; θ) (3.5)

≈ log
p(Om |Wm

ref; θ)
κ P (Wm

ref)∑
W p(Om |W; θ)κ P (W)

where Wm
ref denotes a reference word sequence for utterance m, Om is the corresponding

sequence of acoustic observations over Tm frames, θ denotes the model parameters,

and κ is a scaling factor (see Section 2.3). To connect the equation more closely with

the HMM state sequence, we will use Qw to denote the sequence of states (over Tm

frames) that corresponds to a particular word sequence W, which allows us to re-express

Equation 3.5 as:

FMMI(θ) = log
p(Om | Qm

ref; θ)
κ P (Wm

ref)∑
W p(Om | Qw; θ)κ P (W)

. (3.6)

The derivative of the numerator of FMMI(θ; O
u,Wu) with respect to the neural network

scaled log likelihoods, log p(omt | i), for neural network output i, provides the following

error signal component from the numerator at time t:

δ

δ log p(omt | i)
log p(Om | Qm

ref; θ)
κP (Wm

ref) = κδi;qmt = γNUM
mt (i). (3.7)

The contribution from the numerator supervision for output i is, in other words:

κδi;qmt =

 κ if qt = i,

0 otherwise.
(3.8)

The magnitude of the error contribution from the supervision is always the same.
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Figure 3.4: With a supervision lattice in which there is only a single path, with state
labels obtained through forced alignment, the error contribution from the numerator
(denominator not shown) is only non-zero for the corresponding output at time t.

Here we have assumed that the state labels are obtained through forced alignment with

the Viterbi algorithm2 as in other work (see e. g. Veselý et al., 2013). We could also

use the forward-backward algorithm to obtain state posteriors for the numerator. The

complete error signal at time t for an output i is

emt (i) = κ(γNUM
mt (i)− γ̈DEN

mt (i)), (3.9)

where γ̈DEN
mt (i) is the contribution from the denominator from multiple hypotheses3.

Using a lattice for supervision means to include a sum over sequences (hypotheses), m′,

in the numerator of Equation 3.5, similar to the denominator. The updated criterion,

where the superscript with two dots indicates lattice supervision, is:

F̈MMI(θ; O
u,Wu) = log p(Wm | Om; θ) (3.10)

= log

∑
m′ p(Om | Qm′

; θ)κ P (Wm′
)∑

W p(Om | Qw; θ)κ P (W)
.

The derivative of the numerator of Equation 3.10 now becomes:

δ

δ log p(omt |i)
log
∑
m′

p(Om | Qm′
; θ)κ P (Wm′

) (3.11)

= κ

∑
m′:qt=i

p(Om | Qm′
; θ)κP (Wm′

)∑
m′ p(Om | Qm′ ; θ)κP (Wm′)

= κγ̈NUM
mt (i), (3.12)

which is the constant κ times the posterior of being in state i at time t. It can be

computed in the same manner as the denominator using the forward-backward algorithm.

As noted in Section 2.3.1, this is the default operation for LF-MMI.

We can visualise the consequence of lattice supervision. First, if the supervision

consists of a single reference, with state labels obtained through forced alignment, then

the error contribution from the numerator at a particular time-step only affects a single

neural network output, shown in Figure 3.4. In contrast, the consequence of lattice

supervision is effectively a smoothing of the errors, distributed across multiple network

outputs that correspond to concurrent states in the lattice, as illustrated in Figure 3.5.

2This was the standard approach for MMI training with Kaldi prior to LF-MMI.
3See Yu and Deng (2016, Chapter 8) for the derivation.
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Figure 3.5: With lattice supervision, multiple numerator error signals (denominator not
shown) contribute from different states in a supervision lattice corresponding to neural
network outputs (bottom row). The supervision lattice may be implemented as a graph
(e. g. LF-MMI).

The practical result is that such a lattice is useful if we know that the data is

inaccurate. Specifically,

1. if there is a correct transcription in the lattice, then including other paths only

reduces the impact of that transcription;

2. if there is an inaccurate transcription in the lattice, then including other hypotheses

reduces the impact of that erroneous data point.

Consequently, this is particularly useful for semi-supervised training where we adapt to

hypotheses generated with a seed model. An example of the effect is shown in Table 3.24

where we perform test-time adaptation using the MGB corpus (Chapter 4). A TDNN-F

model was adapted using LF-MMI to episodes from broadcast media. The first pass

decode supervision was rescored with a 4-gram LM, as well as the final decoded output.

The impact of lattice supervision is most pronounced when adapting all parameters,

which also provided the best result. Using only the best path when adapting all

parameters yields almost no gain (-1%). When only adapting a subset of the parameters

with LHUC (Section 2.4) the results are less dependent upon the type of supervision,

but does not perform as well as adapting all parameters with lattice supervision. We

will see a considerable effect of lattice supervision when dealing with light supervision

in Chapter 5.

3.4. Summary

Lattices are a common construct in ASR systems, used to compactly store decoding

hypotheses, as well as for supervision. They are typically encoded as WFSTs. The use

of lattices for supervision effectively incorporates a notion of uncertainty. Chapter 5

will make use of this by manipulating supervision using WFST operations, on lattices

generated from the decoding hypotheses of a seed model.

4Table 4 in Klejch et al. (2019) was contributed by the author of this thesis.
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Method WER (%)

Baseline 19.9

All parameters – Lattice supervision 19.2

All parameters – Best path 19.7

LHUC – Lattice supervision 19.4

LHUC – Best path 19.5

Table 3.2: Test-time adaptation results adapting to entire episodes in the longitudinal
eval data of the MGB corpus using all the parameters or LHUC (Section 2.4). The
baseline model is from Chapter 4: a TDNN-F model trained with LF-MMI on the MGB
training set with MER=40, using i-vectors. Results from Klejch et al. (2019).



Chapter 4

Data

Exploring the challenges identified in Chapter 1 requires experiments using a

variety of corpora. These have been selected for their individual characteristics

in order to focus on particular problems, such as adaptation to the domain, the

speaker, the available labels, and environmental noise, taking into account the

homogeneity (or lack thereof) of these factors. This chapter aims to provide

context and detail to the data, presenting state-of-the-art error rates from the liter-

ature. We start by recalling the challenges and hence justifying the choice of each corpus.

Light supervision. How may inaccurate transcripts be used effectively dur-

ing training? The MGB corpus (Bell et al., 2015) and data from the Scottish Parliament

(ScotParl; see Section 4.2) both have inaccurate transcriptions, and they represent

realistic, real-world data. We chose to study lightly-supervised adaptation from a seed

model trained on MGB news to a test set from ScotParl.

Factorised adaptation. How can feature representations be factorised, such

that they can be combined in novel combinations at test time? We would like a

well-controlled setup of two factors that we can manipulate independently. We chose

WSJ (Paul and Baker, 1992) which contains clean speech from a wide variety of speakers.

In Chapter 6 we combine it with noise sources from the DEMAND (Thiemann, Ito,

and Vincent, 2013) database. This becomes similar to the data in the Aurora (e. g.

Parihar et al., 2004) and CHiME (e. g. Barker et al., 2015) challenges, but with more

control of the variety in environmental noise through DEMAND.

Longitudinal learning. When data is ephemeral, what is required for a model to

improve in a longitudinal setting? To study longitudinal learning we require data from

the same domain that progresses in some natural manner. The MGB challenge (Bell

et al., 2015) included a development set for exactly this purpose. One of the series in

this set contains 11 episodes from the same broadcast programme, and is a suitable

choice to study adaptation over time.

Domain adaptation. What is a parameter-efficient way to adapt a back-

ground model to new speaker characteristics, such as child speech? We chose to study

31
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Figure 4.1: Amount of training data in the particular subsets of the corpora used in
experiments. Only the ScotParl adaptation set is shown.

this in the case of adapting adult speech models to child speech. These large acoustic

differences are interesting from an acoustic modelling perspective. It is also a highly

practical application. Using the English AMI corpus (Carletta, 2007) as baseline data

provides reasonably difficult adult speech scenarios with good labels. There are not

many English child speech corpora to choose from. We chose PF-STAR (Batliner et al.,

2005) because of access and previous experience with this corpus (Fainberg et al., 2016).

The remainder of this chapter provides an overview of the MGB, ScotParl,

AMI, WSJ and PF-STAR corpora. For each corpus we have included example

transcripts in Appendix B. The amount of training data from each of these corpora

that we later use in experiments is shown in Figure 4.1.

4.1. Multi-Genre Broadcast corpus

The MGB corpus (Bell et al., 2015) contains speech from broadcast TV shows from

the British Broadcasting Corporation (BBC) over the period 1 April 2008 to 19 May

2008. It is used in Chapter 5 as a seed model for lightly supervised experiments; and in

Chapter 7 for longitudinal adaptation.

The corpus has a large variety of series accompanied by metadata identifying each

series’ genre. These are displayed in Figure 4.2 along with the amount of training

data within each genre. It is not clear how best to make use of the genre labels.

From the submitted systems in the MGB challenge (Bell et al., 2015), most trained

without explicitly incorporating genre labels, the average results across episodes from

different genres range from about 16% to 51% WER (Bell et al., 2015). Table 4.1

shows experiments in training and decoding HMM-GMM models across genres. We

have computed the difference between the observed error rate and the expected error
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Figure 4.2: Hours in the MGB corpus by genre, considering all data in a genre or data
subsetted by a word-level MER threshold of 40.

if the two axes, training and decoding genres, were independent (see figure caption

for details). It shows whether a combination does better than the difficulty of that

genre would imply. For example, the table shows that training on drama and testing on

comedy performs surprisingly well, considering the average performance having trained

on drama for other genres. Clearly, some genres seem well matched, e. g. advice and

documentary. Yet, the delineation into genres may not be optimal, as suggested by

work on discovering domains in the data (Doulaty et al., 2015).

The transcriptions in MGB stem from subtitles which were originally created through

a “re-speaking” process. In re-speaking, a trained operator listens to audio while

simultaneously speaking clearly into an ASR engine in order to generate close to

real-time subtitles. As a result, these transcriptions often make simplifications and

paraphrase the true speech (see Section B.1 for examples). Consequently, the data may

require filtering or some selection method due to the varying label quality. A standard

approach for the MGB corpus is to filter by a Matching Error Rate (MER) threshold.

The MER is the standard edit-distance metric computed between the transcriptions

and a lightly-supervised decode and alignment (Bell et al., 2015; Long et al., 2013).

It is computed either at the word or phone-level, and the lightly-supervised decode is

obtained by recognising the data with a first-pass model (or some other seed model)

and an LM biased towards the transcriptions (see Lamel, Gauvain, and Adda, 2002). If

the transcriptions are the true verbatim transcriptions, then the MER computed at the

word level is simply the standard WER. When the transcriptions may have errors with

respect to the true speech, the MER may be considered a proxy for transcription quality

that we can use to filter utterances where the MER exceeds a chosen threshold. Since

the lightly-supervised decode is biased towards the transcriptions, any error between the

decode and the transcriptions is an indication that the seed acoustic model disagrees
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advice -4.4 1.8 1.8 -0.37 -0.022 0.21 1.5 -0.54

childrens 0.95 -5.7 0.36 1.1 0.18 0.57 2.5 -0.043

comedy 3 -1.1 -5.7 1 2 -2.3 -0.48 3.6

competition -1.3 0.54 0.91 -3.4 0.3 1.4 1.9 -0.32

documentary -1.3 1.2 2.1 -0.1 -2.6 2 1.1 -2.4

drama 0.98 1.2 -2 1.2 0.44 -5.8 1.5 2.4

events 2.4 1.6 0.12 1.2 0.3 1.2 -7.8 1

news -0.32 0.43 2.4 -0.66 -0.65 2.8 -0.21 -3.7

Table 4.1: Decoding across genres with MER 30, where the y axis indicates training sets
and the x axis on which set the model was decoded. The table shows absolute differences
from expected values of WER given the assumption that the two axes, training genres
and test genres, are independent. That is, from a table of WERs, we compute the
marginals for each axis and then obtain the expected WERs by normalising the outer
product of the marginals. The final values are the expected WERs subtracted from the
true WERs.

with the transcription, suggesting a true error. Existing MERs are included with the

MGB corpus, computed with a lightly-supervised decode (for details on the setup see

Bell et al., 2015). The effect of filtering using MER is demonstrated below, and will be

discussed further in Chapter 5 on lightly supervised training. In the MGB challenge,

most teams chose to subset data using word MER thresholds set in the range 30% to

50%. This is a reasonable range to obtain a suitable amount of data before the returns

start to diminish. In the thesis we consistently filter MGB utterances that exceed a

word-level MER of 40%.

We use two included development sets from MGB: dev.full contains 47 unique

shows totalling 19.5 hours; eval.long is a set consisting of two series with a total

of 19 episodes and 10 hours, designed for testing longitudinal algorithms. The best

submitted hybrid system to the challenge obtained an error rate on dev.full of 24.9%

with a 4-gram LM, and a model-combination of multiple hybrid and tandem systems

obtained 21.8% (Woodland et al., 2015). The TDNN-F LF-MMI model topology used

throughout the thesis (Kaldi-1 in Appendix A) obtains 26.8% WER with a 4-gram

LM biased towards the training transcriptions (see Section 5.4) and MBR decoding (Xu

et al., 2011, see also Section 3.2), having trained on MER 40 filtered data with speed

perturbation (Ko et al., 2015).

As an example of the effect of filtering, Figure 4.3 shows the error rates and numbers

of hours selected for various choices of MER on the MGB dataset. Models were trained

from scratch on MGB news data, using LF-MMI (Kaldi-1 in Appendix A). The
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Figure 4.3: The effect of the choice of MER on the MGB corpus. Random selection
matches the number of hours for the corresponding selection by MER.

models are evaluated on the news subset of dev.full (5 shows with total speech of

1.76 hours). Also included are randomly selected training subsets with their numbers of

hours matching their corresponding MER-filtered counterpart. Clearly, using MER as

a filtering metric outperforms random selection. A benefit of filtering using MER is in

this case a reduction in training time1 whilst maintaining similar WERs as to using the

majority of the data. Note that there are 30 hours of utterances with MERs greater than

100 in the news training set, and when including these (‘All’), the error rate increases

compared to setting MER to 100. This likely explains why random selection does not

match performance with MER filtering set to 100: selected utterances with very high

MER affect random selection even with larger amounts of data. Table 4.2 further shows

that, for a similar computational budget, it is better to choose an appropriate setting

for MER, than to use all the data. In addition, using a very constrained set of data, yet

of high quality (MER set to 20), does rather well with data augmentation, i. e. using

speed perturbation (Ko et al., 2015).

4.2. Scottish Parliament

The Scottish Parliament Corporate Body publishes videos2 of parliamentary sessions,

including reports, question and answer sessions, and committee hearings. The data is

used in Chapter 5 as adaptation data in a lightly-supervised scenario.

The accompanying subtitles from the official record are typically inaccurate with

1Although it may be possible to train for fewer epochs on more data without a noticeable drop in
performance.

2As of writing there are 6,881 videos: https://www.youtube.com/user/ScottishParl

https://www.youtube.com/user/ScottishParl
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MER Speed perturbation Training Hours WER (%)

20 No 95.9 17.6

20 Yes 95.9× 3 ≈ 288 16.6

100 No 280.41 16.0

100 Yes 280.41× 3 ≈ 841 16.4

All No 309.90 16.8

Table 4.2: A comparison of using all MGB news data compared to a filtered subset with
speed perturbation. Tested on dev.full filtered for news. For similar computational
budgets, using MER set to 20 with speed perturbation is about as effective as using all
the data; yet the best result is obtained with MER set to 100.

Dataset WER (%) Ins Del Sub

ScotParl Test (6.8 hours) 40.63 2.16 28.7 9.7

Table 4.3: WER (%) between aligned and segmented references and corresponding
transcriptions for the test set (6.8 hours) of the Scottish Parliament data.

respect to the true speech, as demonstrated in Table 4.3, where we have computed the

error rate between the subtitles and the verbatim transcriptions on the test set. This

presents a similar problem as with the MGB corpus above with transcription quality.

Empirically, large amounts of paraphrasing can be observed in the data (see Section B.2

for examples).

The data was scraped to produce roughly 289 hours, split by recording into train

and test sets. The training set consists of 282 hours and is used to provide the baseline

here for reference. 5.1 hours is randomly selected from the training set as adaptation

data which will be used in Chapter 5 (with a model trained on different data). This

subset consists of 1300 utterances across 374 speakers. On average the utterances

contain 30 words each. The transcribed test set contains 6.8 hours of audio across 40

speakers. The total unique vocabulary in the true speech in the test data is 4,977 words.

The vocabulary follows a typical Zipfian distribution with the 5 most common words3

being think, Scotland, government, care and people, in that order. A large number

of vocal ticks contribute to the number of deletions in Table 4.3. Apart from work

contained herein4, it is not clear that work using this data has been published elsewhere

at the time of writing.

With the Kaldi-1 model structure (Appendix A), excluding i-vectors and speed

perturbation, we obtain on the test set WERs of 24.6% and 22.8% with 3-gram and

4-gram LMs, respectively. The LMs correspond to the non-biased MGB background

LM from Section 5.4.

3Excluding stop words and vocal tics such as um.
4Including work from Chapter 5 which appears in Fainberg et al. (2019b).
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Paper Features Model WER (%)

Panayotov et al. (2015) MFCC+CMLLR DNN+pnorm 3.92

Amodei et al. (2016) - Humans 5.03

Amodei et al. (2016) Log-spectrograms E2E CNN+RNN 3.10

Chan and Lane (2015) MFCC+CMLLR CNN-DNN-BLSTM 3.50

Hadian et al. (2018b) MFCC (+SP)
TDNN-LSTM E2E LF-
MMI

3.00

Table 4.4: Results on the WSJ eval92 set from the literature. The result from
Amodei et al. (2016) used external training data (∼ 12000 hours). SP stands for speed
perturbation (Ko et al., 2015).

4.3. WSJ

The Wall Street Journal (WSJ) corpus (Paul and Baker, 1992) contains read speech

from the newspaper of the same name, and is well studied in the speech literature

(see Section B.3 for example transcriptions). This data is used in Chapter 6 with

environmental noise from DEMAND as data for experiments factorising speakers and

environments.

The WSJ corpus has served as a benchmark for ASR systems since its introduction:

see Table 4.4 for some recent results on the eval92 test set. It has also been used with

external noise in the Aurora and CHiME challenges (e. g. Barker et al., 2015; Parihar

et al., 2004). The si284 training set contains 282 speakers over a total of ∼81 hours.

There are about 17,000 unique utterances that are repeated twice with different speakers.

The eval92 and dev93 test sets contain about 0.7 and 1 hours across 8 and 10 speakers,

respectively, with mostly unique utterances. With the 6-layer TDNN model (Kaldi-2

in Appendix A) we obtain 6.72% on eval92 and 10.36% on dev93 using a 3-gram LM

trained on the training data.

4.4. AMI

The Augmented Multiparty Interaction (AMI) corpus (Carletta, 2007) consists of 70

hours of training data from fictitious design team meetings (see Section B.4 for example

transcriptions). The data is used in Chapter 8 to build adult speech baseline models.

The speakers in the AMI corpus speak English, although they speak many different

dialects and there are also many non-native English speakers. In the meeting scenarios,

short utterances are common, particularly because of affirmatives (e.g. “yeah”), as

shown in Figure 4.4. There are multiple streams of audio, including far-field microphone

arrays, individual lapel microphones, and Individual Head-Mounted Microphone (IHM).

The latter, IHM, is exclusively used here. Some results from literature are shown in

Table 4.5, with the best performing Kaldi recipe obtaining 18.9% WER on the dev set
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Figure 4.4: Histogram of the number of words per utterance in the training set for AMI.
Note the logarithmic y-axis – many utterances in AMI are affirmatives.

Paper Features Model Params WER (%)

Renals and Swietojanski
(2014)

FBANK+∆+∆∆ DNN ∼ 30M 25.5

Platen, Zhang, and
Woodland (2019)

FBANK DNN+4gm ∼ 2M 28.3

Platen, Zhang, and
Woodland (2019)

RAW×3 CNN×3+4gm ∼ 3M 27.2

Kaldi chain MFCC(+SP) TDNN 21.4

Kaldi chain MFCC(+SP+Reverb) TDNN-LSTM 18.9

Table 4.5: Results on the AMI dev set with IHM data from the literature. Platen,
Zhang, and Woodland (2019) use three inputs across different time-spans of the same
waveform. All models use ReLU activations.

with speed perturbation and reverberated data5. The far-field streams are used often

for research on distant speech recognition, and are far more challenging. Renals and

Swietojanski (2014) obtained 46.0% WER using a multi-channel far-field stream with

beamforming and a large CNN-ReLU model, compared to 24.9% with the same model

topology and the IHM stream. Chapter 8 will explore SincNet raw-waveform models

trained om AMI, which as a baseline obtains the same 28% error rate with either a

standard MFCC-based model, or a SincNet model using a flat initial filter distribution

(see Keras-1 and Keras-2 in Appendix A).

5https://github.com/kaldi-asr/kaldi/blob/master/egs/ami/s5b/RESULTS_ihm

https://github.com/kaldi-asr/kaldi/blob/master/egs/ami/s5b/RESULTS_ihm
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Figure 4.5: The distribution of age and gender of speakers in the PF-STAR training
and test sets.

4.5. PF-STAR

The British English PF-STAR (Batliner et al., 2005) corpus is used in Chapter 8 as

child speech adaptation data. It contains 14 hours of data of read children’s speech, of

which ∼ 7.4 and ∼ 4.7 hours are allotted for training and test sets (no speaker overlap),

with the remaining in miscellaneous development sets, such as an evaluation set for

speaker adaptation where utterances for the same speakers are split into eval/adapt

and eval/test. The corpus contains children aged four to fourteen, but with the

majority of children aged eight and ten, as shown in Figure 4.5.

From 921 unique prompts, 40 are shared between the training and test sets, making

up roughly 11% and 7% of the unique prompts in each of those sets, respectively. The

remaining prompts do not match, but are similar in style and content (see Section B.5

for example transcripts). That includes sequences of numbers and random nouns.

Care should be taken when designing experiments or making claims on state-of-the-art

results. Fainberg et al. (2016) obtained an error rate of 29% on the test set using

the trigram language model from MGB (see Section 5.4). The model consisted of six

1024-dimensional feedforward layers (no convolutions) with sigmoid non-linearities, and

used Restricted Boltzmann Machine (RBM) pre-training (Salakhutdinov and Hinton,

2009). In the work in Chapter 8 we bias the language model on purpose, as we are

only interested in the acoustic model. That model obtains 20.46% on PF-STAR (see

Keras-2 in Appendix A).
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4.6. A note on scoring

For key results we perform significance testing using the matched pairs test from the

NIST Scoring Toolkit (National Institute of Standards and Technology (NIST), 2007).

The matched pairs test compares errors on matching speech segments, or utterances,

from two systems recognising the same test set. The null hypothesis is that the average

difference of errors between the two systems, across all segments, is zero (Gillick and Cox,

1989). Occasionally we may also run the probability of improvement metric proposed

by Bisani and Ney (2004) which is computed as the fraction of bootstrap samples that

improve the error rate.

4.7. Summary

The next chapters will make use of these datasets to explore the challenges identified in

Chapter 1. Specifically, in Chapter 5 we will use the datasets with inaccurate labels,

MGB and ScotParl, to study a lightly supervised technique that can make use of these

labels. The clean WSJ corpus is suitable to combine with environmental noise to

produce data for experiments on factorised adaptation in Chapter 6. The longitudinal

development set in the MGB corpus will be used to study longitudinal training in

Chapter 7. Finally, AMI and PF-STAR will be used to explore adaptation from adult

speech to child speech in raw-waveform models in Chapter 8.



Chapter 5

Lightly-supervised training

While the majority of speech data “in-the-wild” is untranscribed, there are many sources

that naturally include some variety of transcription – although inaccurate with respect to

the true speech. However, many training paradigms assume verbatim transcriptions (and

are sensitive to errors). This chapter addresses the challenge from Chapter 1 on how best

to make use of inaccurate transcriptions, which is commonly termed lightly-supervised

training. This term encompasses situations in which the text data contain errors with

respect to the speech and when text data may be correct but the timings are incorrect.

There are other training paradigms that use no transcriptions, known as semi-supervised

training. However, we believe that there is a benefit to incorporating possibly inaccurate

text and the information that it contains. This chapter reviews lightly-supervised

methods and presents experiments comparing the use of light supervision over a purely

semi-supervised approach. A new method is proposed for lightly-supervised training

using lattice supervision and sequence-discriminative training with the LF-MMI criterion,

which effectively combines the benefit of a lattice-based semi-supervised method with

light supervision from transcriptions.

5.1. Introduction

ASR systems are ideally trained on accurate transcripts that match the audio, but

obtaining manual transcriptions is expensive. There is, however, a large amount of

available data in some domains that has inaccurate or partial transcripts. Examples

include traditional broadcast data (Bell et al., 2015; Driesen and Renals, 2013; Graff,

2002; Long et al., 2013), YouTube data (Liao, McDermott, and Senior, 2013), medical

data (Mathias, Yegnanarayanan, and Fritsch, 2005), and children’s speech (Nicolao,

Sanders, and Hain, 2018). The MGB corpus and data from the Scottish Parliament,

introduced in Chapter 4, are examples of data with inaccurate transcripts used in this

thesis.

Training directly on possibly inaccurate transcripts may, as we will see, may lead

to suboptimal results. On the other hand, semi-supervised training would discard

the potentially valuable transcripts altogether. There is therefore a growing body of

work on lightly-supervised methods that aim to make best use of partial or inaccurate

transcriptions for training acoustic models. Most of these methods make use of automatic

41
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Figure 5.1: A sequence-net (without dashed connections). With dashed connections it
is a skip-net allowing skips of one word at a time. Factor transducers can be seen as a
general framework encompassing both of these architectures.

transcription hypotheses of the data, generated by decoding with a seed model together

with a Language Model (LM) biased towards the domain of the transcriptions or just

the transcriptions themselves (Braunschweiler, Gales, and Buchholz, 2010; Chan and

Woodland, 2004; Driesen and Renals, 2013; Lamel, Gauvain, and Adda, 2002; Long

et al., 2013). The hypotheses can then be compared to the transcriptions and the

result of the comparison can be used to filter the transcriptions (or occasionally the

hypotheses) at various levels of granularity. Alternatively, the hypotheses can be used

in some combination or error correction algorithm with respect to the transcriptions.

Filtering in this context was first introduced by Lamel, Gauvain, and Adda (2002)

and was based on segment-level matching with biased LMs. This approach was later

applied to discriminative training (Chan and Woodland, 2004). Typically, segments

are filtered given a matching error rate threshold at the word (WMER) or phone

level (PMER) between the transcriptions and the biased decode (Bell et al., 2015;

Braunschweiler, Gales, and Buchholz, 2010; Lanchantin et al., 2016; Long et al.,

2013), as seen in Chapter 4 for the MGB corpus. Methods operating at finer levels

of granularity often include selecting islands of consecutive words with zero string

edit distance (Driesen and Renals, 2013; Liao, McDermott, and Senior, 2013; Mathias,

Yegnanarayanan, and Fritsch, 2005; Nguyen and Xiang, 2004), or to select words based

on binary classifiers that are trained to choose between words in the hypotheses and

words in the transcriptions (Li, Akita, and Kawahara, 2015). Another approach is to

consider the match of two special transducers between the text and the recognised

output: a skip-net which allows word-skips, and a sequence net which does not allow

word-skips, shown in Figure 5.1). Training data can then be selected if the alignments

from each transducer are equal (Driesen and Renals, 2013; Stan, Bell, and King, 2012).

Alternatively, contiguous strings of reliable segments can be found by decoding with

a factor transducer in place of G in the HCLG (Bell and Renals, 2015; Moreno and

Alberti, 2009), as shown in Figure 5.2.
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Figure 5.2: A factor transducer. Word-skip connections may optionally be added (Bell
and Renals, 2015).
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Figure 5.3: Example of a confusion network (sometimes known as a sausage lattice)
(Mangu, Brill, and Stolcke, 2000).

Combination approaches, on the other hand, aim to maintain as much data as

possible through correcting or combining the hypotheses with the transcriptions. Long

et al. (2013) proposed a word-level combination scheme that uses ROVER (Fiscus,

1997) to select a sequence of words from reference transcriptions with the corresponding

hypothesis lattices. Words in the reference that occur in the lattices are given a high

score to force the selection of that word. A similar approach was used by van Dalen

et al. (2015) for hypotheses from crowd sourced data. Manohar, Povey, and Khudanpur

(2017) propose a different approach that combines four transcripts into a confusion

network for training (see Figure 5.3). In Chen, Lamel, and Gauvain (2004) the authors

align the transcription to a sausage lattice version of the hypotheses (i. e. a confusion

network), and select words at each arc depending on the posterior probabilities of the

words and the match with the aligned word. Venkataraman et al. (2004) proposed to

align the data using a robust alignment procedure based on transducers that allow

for words to be skipped, and certain insertions, for which transition probabilities are

estimated empirically on held-out data. The resulting best path is used as training data.

A related approach was taken by Nicolao, Sanders, and Hain (2018), in which they

propose to use a transducer to model variations in children’s speech, implemented as the

grammar in the HCLG for decoding to create improved transcriptions. In Olcoz, Saz,

and Hain (2016) the authors propose to correct for word-boundary errors and insertions

in a lightly supervised alignment. They compare alignments and their confidences from

different acoustic models, and include a model specifically trained to detect insertions.

The benefit of the combination techniques is that they can maintain more data than

through filtering. Filtering may perhaps be most appropriate given large amounts of data,

but false rejects could be an issue because it may bias the selection away from difficult

data. New acoustic models can be trained on the filtered or corrected transcriptions,

and sometimes the process is repeated, yielding increasing model improvements (Nicolao,

Sanders, and Hain, 2018; Stan, Bell, and King, 2012).
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Outside of the ASR literature, there is a wide variety of work on training neural

networks with inaccurate labels (e. g. Dehghani et al., 2018; Goldberger and Ben-Reuven,

2016; Sukhbaatar et al., 2015). Applying these techniques to ASR is not necessarily

straightforward: unmodified they would operate at the frame-level, which does not

necessarily correlate with improvements in WERs; and some techniques use another

dense layer on top of the softmax layer, which for large-vocabulary ASR may prove too

computationally expensive.

In contrast to the lightly supervised approaches above, semi-supervised training

requires no manual transcriptions for new data, but generates hypotheses using a seed

model, the choice of which impacts the quality of the hypotheses. In state-of-the-art

approaches using the sequence-discriminative LF-MMI objective (see Povey et al., 2016,

and Section 2.3.1), the decoding lattices are maintained and used as lattice supervision,

effectively encoding the uncertainty of the hypotheses by the width of the lattice as

we saw in Chapter 3 (see also Klejch et al., 2019; Manohar et al., 2018). As we

mentioned earlier and as also remarked in related literature Manohar et al. (2018), this

is beneficial for sequence-discriminative training which is sensitive to the accuracy of

the supervision (Mathias, Yegnanarayanan, and Fritsch, 2005; Yu et al., 2010).

A new method for lightly supervised training is proposed in Section 5.2. This

will make effective use of lattice supervision discussed in Section 3.3. Preliminary

experiments on a possible extension to this work, making use of paraphrasing phenomena,

are presented in Section 5.3. The contribution of the new method is three-fold:

• First, typical lightly supervised techniques produce linear transcription hypotheses

on which to train. Yet, state-of-the-art semi-supervised, sequence-discriminative

training techniques benefit strongly from lattice supervision which encodes the

uncertainty of the data (Klejch et al., 2019; Manohar et al., 2018). Our experiments

demonstrate that lightly-supervised training where the lattice supervision is

generated with a biased LM can substantially improve WERs.

• Second, Long et al. (2013) showed that, instead of filtering, it is possible to combine

inaccurate transcripts with a biased decode lattice to create an improved best path

transcription on which to train. However, the output is a best path, not a lattice.

Manohar, Povey, and Khudanpur (2017) demonstrated an algorithm that combines

individual transcripts into a confusion network lattice for training, although this

approach does not combine with a hypothesis lattice. Our proposed method

combines the transcriptions and a hypothesis lattice, while, crucially, maintaining

a lattice for supervision. This encodes uncertainty where the transcriptions and

lattices disagree, whilst maintaining a narrow lattice where they do agree. Up to

a 17.5% relative reduction in WER is obtained in experiments with respect to a

semi-supervised baseline, or up to 12.5% with respect to a lightly-supervised best

path baseline.
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• Finally, our experiments suggest that the proposed method compensates for a large

number of deletions in the ASR output. An alternative method is proposed, in

which deletions are reduced by rewarding insertions when generating the supervision

lattices. This reduces WERs by up to 13% relative. The combined improvements

from the above ideas yield up to 20% relative WER reductions on broadcast

data from the Scottish Parliament, adapting from a model trained on BBC news

broadcasts from the MGB corpus (Section 4.1).

5.2. Lattice combination

This section presents a new method to combine lattices with inaccurate transcripts. The

lattices will typically be the output of a decode with a biased LM, and the transcriptions

are, in the following experiments, subtitles from broadcast data. As in Long et al. (2013),

we make the assumption that if a word in the transcription is present in the lattice, then

the word is likely correct; but also that a transcript word not occurring in the lattices

is wrong. Seen from the view of the transcriptions we would like to substitute with

hypotheses from the lattice when this is the case. Viewed from the lattice of hypotheses,

we want to collapse the lattice onto words in the transcription when possible. This

provides a narrow lattice where we believe it should be confident, and wide otherwise.

Consequently, if the transcriptions are not at all present in the lattice, then the lattice

is kept in its entirety. An example output of the algorithm is shown in Figure 5.4.

To perform the combination, we require a linear transducer, R, of a transcription,

and a hypothesis lattice H, for a particular utterance (assuming an existing utterance

segmentation), projected on words. All weights in the hypothesis lattice H are discarded.

By creating an edit transducer, ER,H , that allows for insertions (ε : w), deletions (w : ε),

and substitutions (wi : wj), across all the words in the complete vocabulary of R and

H, the lattices are composed in the following order:

T = R ◦ ER,H ◦H. (5.1)

An edit transducer can trivially be constructed by making a flower automaton, where

each arc represents a specific insertion, deletion or substitution as shown in Figure 5.5.

There are more efficient implementations in terms of complexity, as will be discussed

below, but the results of composition are the same.

As the goal is to maximise the number of correct words in the lattice, not to minimise

the number of edits, the standard costs for E are not used. Instead, every edit cost

is set to 0, apart from matches (wk : wk) which are set to −1. The path with the

most correct words will then have the most negative total cost, i. e. the shortest path.

Recall from Chapter 3 that the shortest path cost can be written as ⊕πw(π), where

w(π) is the cost of path π, and that we have the following relations in the min tropical

semiring: (K,⊕,⊗, 0̄, 1̄) , (R ∪ {+∞},min,+,+∞, 0). We retain only the paths with
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(a) Deletion

(b) Collapse to transcript word

(c) Insertion

0 1 2 3 4
How I recognise speech

Transcription, R

0 1 2

3 4

5 6
How

to

you

wreck
a mice

nice

recognise

beach

speech

Hypothesis, H

0 1 2 3 4
How

to

you
recognise speech

Combined, C

Figure 5.4: Example of the outcome of the combination algorithm. Words in the
transcript not present in the hypotheses are deleted or substituted, while confusions in
the hypotheses are collapsed onto transcript words where they exist.

that minimum cost, or some multiple of it, by pruning the transducer with a threshold

t times the shortest path cost:

t⊗ [⊕πw(π)] , (5.2)

where the sum is over all paths π in R ◦ ER,H ◦ H. The pruning factor t is set to 0

(1̄ in the tropical semiring) in the experiments below, unless noted otherwise. Since

only matches have non-zero costs, sections in the hypothesis lattices without matches

are kept with multiple paths. This is shown in Figure 5.6, given the example above in

Figure 5.4.

To obtain the final combined lattice, the pruned transducer is first projected onto

the output. This retains any substitutions made by the hypothesis lattice, and deletes

words in R that were not present in H. Finally, epsilons are removed, and the result is

determinised, and minimised. The complete set of operations are1:

C = min(det(rmeps(proj(prune(R ◦ ER,H ◦H︸ ︷︷ ︸
T

))))). (5.3)

To use the combined transducer C as supervision, the resulting grammar is used

1Our notation here with C as the combined transducer is overloaded with the transducer for phonetic
context dependency in the HCLG decoding graph (Section 3.2). In this chapter C always refers to the
combined transducer.
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yes:ε/cd

no:ε/cd

ε:yes/ci

ε:no/ci

yes:no/cs

no:yes/cs

yes:yes/cm

no:no/cm

Figure 5.5: An example of an edit transducer for the vocabulary yes, no, with insertion
costs ci, substitution costs cs, deletion costs cd and matching costs cm. Normally, for
e. g. computing error rates, the edit costs are ci = cs = cd = 1 and the match costs
cm = 0. For this algorithm we instead set edits to have costs ci = cs = cd = 0, and
matches cost cm = −1.

0 1

2

3

4 5 6How:How/-1

i:ε

i:to

i:you

ε:you

ε:to

ε:to

ε:you

i:ε

recognise:recognise/-1 speech:speech/-1

Figure 5.6: Combined lattice after pruning, prior to projection on output labels, epsilon
removal and determinisation.

to compile new training graphs which are aligned to the data in order to add acoustic

costs. LM costs may be reintroduced by composing it with G, the standard LM.

The edit transducer ER,H is not particularly efficient in that it needs to store

(|V |+ 1)2− 1 transitions for a vocabulary V , and the resulting search space is quadratic

in the length of the input. This could be mitigated with factored transducers, three-way

compositions or using a rho-matcher (see e. g. OpenFST, 2017). Note, however, that

the computation time spent during lattice combination is negligible compared to the

decode pass required to create H. A high level view of using lattice combination in

practice is shown in Figure 5.7.

Shown in Table 5.1 are the expected WERs over the lattices with respect to the

true transcriptions in the test set. That is, the errors are weighted given multiple

aligned hypotheses to a particular reference word. The table indicates a considerable

improvement with the combined lattices, and demonstrates the inaccuracy of the

transcriptions. This can likely be attributed to a reduction in lattice depth where

the captions are correct. Figure 5.8 shows histograms of lattice-depths per-frame,

demonstrating a clear shift to more narrow lattices when using lattice combination.
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Seed model(Inaccurate) data

LM
Clean data

Hypotheses (lattices)

Lattice combination

H

R

Train (with lattices)

C

Figure 5.7: Lattice combination procedure in practice, with or without a biased LM
when generating supervision.

Supervision Lattice Best path

Transcriptions (R) - 40.63

Decode-bias (H) 35.51 32.74

Lattice combination-bias (C) 26.40 25.21

Table 5.1: Expected WERs (%) over lattices with aligned and segmented references on
the test set of the Scottish Parliament Data. Best path indicates a comparison of the
reference to the most probable path in the lattice, or just the transcriptions themselves.
Compared to the transcriptions, biasing or using the lattice combination method reduces
expected errors considerably.
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Figure 5.8: Histograms of lattice-depths per frame, i. e. on average how many arcs cross
each frame. With lattice-combination, a significant fraction of frames have a lattice
depth of 1, where words in the transcriptions matched words in the hypothesis lattices.
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5.3. Paraphrasing

In much data with inaccurate transcriptions, the inaccuracies stem from paraphrasing.

For example, in data from the Scottish Parliament (see Section 4.2), speakers often

deviate from a formally prepared script, often opting for more casual language. There

are also miscellaneous changes in the written record. In other words, the distinction

between the surface form and semantics of natural language and the meanings they

represent, become particularly evident with lightly supervised data. In broadcast media

in general, the actual words spoken compared to the subtitles convey the same message,

but with different surface forms. In Japanese, the written and spoken forms may differ

substantially (Hori, Willett, and Minami, 2003). In machine translation, paraphrasing

makes evaluation particularly difficult, leading to measures such as BLEU (Papineni

et al., 2002).

The lattice combination algorithm presented thus far works by assuming a subset of

correct words matching between the transcriptions and the ASR output. It improves

upon semi-supervised training by matching sequences in the transcriptions with the

hypotheses, and using the result as supervision. If the substitution errors in the

transcriptions (with respect to the reference) are paraphrases, then incorporating

knowledge of possible paraphrases of the data during lattice combination may help to

further match paths in the hypothesis lattice. As observed in Section 3.3 on lattice

supervision, if the true label is known, a narrow lattice is preferred. In situations

with large amounts of paraphrasing, can we improve the result of the algorithm by

introducing paraphrases into the transcriptions? An extension to the lattice combination

algorithm is proposed below, using lexical paraphrases learned from data or extracted

from an existing database.

Algorithm

We propose to augment the transcriptions with new paths containing possible para-

phrases, and then to use these augmented transcriptions in the lattice combination

algorithm. However, we would like to prioritise matching words between the original

transcription and the hypotheses. Matching with the augmented transcriptions contain-

ing paraphrases should therefore occur after an initial lattice combination composition.

This prioritises words in the transcriptions, and only applies the paraphrases to poten-

tially remaining confusables. Previously unmatched hypothesis paths in the lattices

become targets for potential improvements using the paraphrases. Conversely, if we

were to apply paraphrases to the transcriptions, prior to lattice combination, we may

unnecessarily widen the resulting combined lattice when the ASR errors match the

paraphrases and the lattice should have been entirely collapsed onto the transcription.

We require an edit transducer containing only substitutions of the paraphrases, P ,

the lattice C (a lattice combination of H and R), and the transcriptions R. A second
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to:ε/0

how:ε/0

to:to/-1

how:how/-1

as:like/-1

like:as/-1

these:those/-1

those:these/-1

PER,C

Figure 5.9: Illustration of the union, and subsequent closure, of ER,C and P , where ER,C

is the edit transducer between the reference transcription and the previous result of lattice
combination, and P is the paraphrase transducer that only contains word-substitutions.
Paraphrases and matches have costs −1.

pass of lattice combination is performed using the union of the paraphrases and the

edit transducer between the transcriptions and the already combined transducer, ER,C :

Tp = R ◦ (ER,C ∪ P )∗ ◦ C, (5.4)

where ∗ denotes the Kleene Closure operation (see Section 3.1). Figure 5.9 illustrates

the Finite State Transducer (FST). Here we have used the transcriptions R two times:

once to compute C (Equation 5.3), and then again with the paraphrases. As noted

above, we make sure to complete C first, to prioritise words in the transcriptions.

Tp then undergoes the same steps as above to produce C from T in order to create

Cp for use as supervision:

Cp = min(det(rmeps(proj(prune(Tp))))). (5.5)

The success of this approach hinges upon obtaining appropriate paraphrases for

P , the amount of paraphrasing that occurs between the audio and the captions in the

data, and on the hypotheses. A limitation of this approach is also that it only allows

for unigram, or word-level, paraphrases, i. e. the most limited form of paraphrasing.

There is a significant amount of work in the literature on paraphrase extraction.

Much of this derives from work in Machine Translation (MT), using a second pivot

language on parallel texts (Bannard and Callison-Burch, 2005). Distributional methods

have been used to build paraphrase clusters (Pereira, Tishby, and Lee, 1993) and
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Supervision Lattice Best path

Transcriptions (R) - 40.63

Lattice combination-bias (T ) 26.40 25.21

Lattice combination-bias-pp (Tp) 26.39 25.21

Table 5.2: Expected WERs (%) over lattices with aligned and segmented references on
the test set of the Scottish Parliament Data. Best path indicates a comparison of the
reference to the most probable path in the lattice, or just the transcriptions themselves.
A second pass using paraphrases (pp) from PPDB provides nearly no reductions in
expected WERs.

paraphrastic language models (Liu, Gales, and Woodland, 2014) from single bodies of

text. Barzilay and McKeown (2001) propose to obtain paraphrases between multiple

English translations of the same books.

For the purposes of the experiments below, an existing paraphrase database, PPDB2

(Ganitkevitch, Durme, and Callison-Burch, 2013), is used. Dedicated paraphrase

extraction is suggested as further work, and also relies on having suitable data. Lexical

paraphrases that are annotated as equivalence relations are extracted from the large

English database in PPDB, producing 35,735 paraphrase pairs. These are doubled to

enable paraphrases in both directions. The paraphrases are used to directly create a

flower transducer with cost −1 on each arc, as described above.

Table 5.2 shows experiments on the test set that demonstrate very subtle reductions

in expected WERs over the lattices with respect to the true transcriptions, when using

a second pass lattice combination with paraphrases. It may be that the technique would

prove more promising on different data, with domain-specific paraphrases, and with

changes to the algorithm to allow for phrase-level paraphrases.

5.4. Experimental setup

The baseline model is trained on news data selected from the MGB corpus (Bell et al.,

2015), i. e. data with the metadata genre “news” (see Section 4.1). The news data is

filtered using Word-Matching Error Rate (WMER) 40% with respect to the lightly

supervised decode that is included in the MGB challenge. The resulting data consists of

179 hours across 545 shows, and approximately 15,600 (unlinked) speakers. This data

is in a similar domain to our chosen adaptation data (below), and has fairly accurate

labels (given the low WMER). It provides a realistic seed model for the adaptation

experiments.

We use 5 hours of data from the Scottish Parliament as adaptation data (Section 4.2).

This consists of 1300 utterances across 374 speakers. On average the utterances contain

30 words each. The test set contains 6.8 hours of audio across 40 speakers. The

2http://paraphrase.org

http://paraphrase.org
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accompanying subtitles are inaccurate, as demonstrated in Table 5.1. Empirically one

can observe large amounts of paraphrasing in the data.

Model

The baseline model is trained using Kaldi (Povey et al., 2011), and is based upon an

existing Kaldi recipe for Switchboard3, as also used in Chapter 4 for the MGB results

for reference. This is a TDNN-F model (see Section 2.1.2) with 12 layers, each with 1280

units (apart from the penultimate layer), and bottleneck dimensions of 256. Interleaving

the layers are ReLU activations, batchnorm and dropout layers. We train on alignments

obtained from a standard HMM-GMM system like that described in Section 2.1.1, that

matches the parameters set out in the MGB challenge (Bell et al., 2015). The model

is trained with speed-perturbed (Ko et al., 2015) MGB news data for 8 epochs. The

background trigram LM is trained on 640 million words of BBC subtitle text, and is

restricted to the top 150,000 word types.

Biased n-gram LMs are estimated on the adaptation data, interpolating with the

background MGB LM with a weight of 0.7. All models are evaluated with the background

LM. During semi-supervised training, we train for 3 epochs with an initial learning rate

of 5× 10−5. The lattice combination is implemented4 using Kaldi (Povey et al., 2011)

and OpenFST (Allauzen et al., 2007).

5.5. Results

Baseline results adapting to the raw transcriptions or in a semi-supervised manner

are shown in Section 5.5.1. Results with the lattice combination are presented in Sec-

tion 5.5.2, and with biased LMs in Section 5.5.3. Section 5.5.4 presents experiments with

an alternative method to control for deletions in the supervision. Finally, Section 5.5.5

presents results with the paraphrase transducer.

5.5.1. Baseline model

The baseline model trained on MGB news data achieves 30.0% WER on the Scottish

Parliament test data, as shown in Table 5.3. Adapting using the unfiltered transcriptions

as supervision increases the error rate to 33.2%. This is expected given the high error

rate of the transcriptions with the true reference (Table 5.1). The large proportion of

deletion errors suggests that the transcriptions have failed to account for words present

in the audio.

In contrast, adapting in a semi-supervised manner, having generated supervision

with a decode of the data, improves results. Primarily the number of deletions have

dropped, which indicates that the semi-supervised supervision has filled in deletions

3Kaldi-1 in Section A.3.
4The implementation is available on github.com/jfainberg/lattice_combination.

github.com/jfainberg/lattice_combination
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Method WER (%) Sub Del Ins

Baseline (MGB) 30.0 15.8 11.3 3.0

Transcriptions 33.2 11.0 20.5 1.7

Semisup 28.6 11.7 14.7 2.1

Semisup-best path 28.8 12.9 13.8 2.1

Transcriptions MER 40 27.5 12.1 13.0 2.3

Transcriptions-exp MER 40 27.4 12.6 12.3 2.5

Lattice combination 23.6 10.7 10.7 2.3

Lattice combination-best path 25.2 12.2 10.2 2.7

Table 5.3: Results (%) with lattice combination and standard semi-supervised using the
ScotParl adaptation set and evaluated on the ScotParl test set (Section 4.2). The baseline
was trained on news data from the MGB corpus (Section 4.1). Transcriptions(-exp)
MER refers to a subset of the transcriptions that have been filtered with respect to the
MERs with best-path transcripts from the semi-supervised lattices, or across the lattices
(expected MER).

that were absent in the transcriptions. Training using the best path is worse than using

the entire lattice, which is consistent with the literature (Klejch et al., 2019; Manohar

et al., 2018).

Filtering the transcripts given MERs between a best-path of the semi-supervised

lattices or across the lattices (expected MER) improves upon the semi-supervised results,

while introducing one hyperparameter. A dependence on the MER threshold is shown

in Figure 5.10. In this case, a smaller amount of data, but higher quality, provides

better results than a purely semi-supervised lattice-based approach. Note that the

transcriptions necessarily have a lattice-depth of 1.

5.5.2. Lattice combination

The last rows of Table 5.3 show the results of the lattice combination method compared

with semi-supervised and filtering approaches. The combined approach reduces WERs

up to 17.5% relative to Semisup, and 13.9% relative to the filtered result with MER

40, with in both cases a substantial drop in deletion and some substitution errors. As

discussed above, the key difference between the combined supervision and the semi-

supervised approach is that the decoded lattices typically contain multiple confusable

hypotheses where they match the transcriptions, while the combined lattices will have a

lattice depth of 1 in these cases. This is reflected in the average lattice depth of the

supervision lattices: 21.2 for the combined lattices compared to 78.1 in the original

hypotheses. Additionally, the gap between best path and lattice supervision for the

combined approach is larger, suggesting that it is benefiting from uncertainty encoded

by the wide lattices where it was joined with the original decode. Figure 5.10 further

compares lattice-combination applied after filtering with MER, demonstrating that
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Figure 5.10: ScotParl adaptation results with transcriptions filtered with varying
thresholds with respect to the best path (MER) or the lattice (exp. MER) of a (non-
biased) semi-supervised recognition pass, as well as the lattice combination (LC) result
on top of the filtered transcriptions.
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Method WER (%) Sub Del Ins

Baseline (MGB) 30.0 15.8 11.3 3.0

Transcriptions (no bias) 33.2 11.0 20.5 1.7

Transcriptions-bias-MER 40 27.5 12.6 12.3 2.6

Transcriptions-bias-exp MER 40 26.8 12.0 12.6 2.3

Semisup-bias 26.8 11.7 13.1 2.0

Semisup-bias-best path 26.6 12.0 12.5 2.1

Lattice combination-bias 23.3 10.8 10.2 2.4

Lattice combination-bias-best path 25.0 12.0 10.2 2.8

Table 5.4: Results (%) with an LM biased to the ScotParl adaptation data, evaluated
on the ScotParl test set (Section 4.2). The baseline was trained on news data from the
MGB corpus (Section 4.1).

the use of lattice-combination is robust to poor transcriptions. In contrast, filtering

transcriptions leads to increased WERs with higher MER thresholds.

5.5.3. Biased language model

The results in Table 5.4 demonstrate the benefit of including a biased LM when

generating lattice supervision. For all methods shown, it reduces the WER by up to

10% relative, compared to Table 5.3, benefiting both lattice and best path supervision.

Unsurprisingly, the standard semi-supervised method seems to benefit more from biasing

the LM than the combined method5. Our combined method, however, also continues to

work even with a biased LM. The results with MER filtering now demonstrate that the

standard lightly-supervised filtering approach with an appropriate threshold matches

the performance of the biased semi-supervised result. It no longer improves upon the

semi-supervised result, suggesting that the two approaches obtain similar benefit from

the light supervision in the transcriptions. The sweep of MER for the biased LM case

is shown in Figure 5.11, showing similar trends to the non-biased case of Figure 5.10.

5Technically, having used the biased LM this is no longer strictly semi-supervised, but in effect
lightly-supervised.
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Figure 5.11: ScotParl adaptation results with transcriptions filtered with varying
thresholds with respect to the best path (MER) or the lattice (exp. MER) of a biased
semi-supervised recognition pass, as well as the lattice combination (LC) result on top
of the filtered transcriptions.
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5.5.4. Controlling for deletions

The results shown thus far indicate that the seed model is inclined to delete, which has

affected the generation of supervision lattices. Deletion errors account for more than

half of the errors when using Semisup supervision. In contrast, the Combined method

appears to control for deletions, likely because it has prioritised words over pauses in

the combination. We may consider whether there is another option to compensate for

a tendency to delete. A proposal to achieve this is to penalise deletions (or reward

insertions) in the HCLG decoding graph (see Section 3.1) when generating the lattices.

This is implemented by subtracting a constant from every word output label in the

HCLG graph. Note that a deletion penalty on the final decode to tune the ratio of

insertions to deletions is no longer current practice. Indeed, a penalty on the final decode

was not helpful on this data in preliminary experiments. The proposal is instead to

include a penalty for a specific type of training, and crucially only during the generation

of supervision. The final model is decoded in the standard fashion.

The effect of including a deletion penalty is shown in Figure 5.12. All models benefit

from the penalty, with the least effect on those trained with the combined lattices, since

these already controlled for deletions to some extent. The detailed results with the

optimal penalty for our experiment are shown in Table 5.5. By including this penalty

for supervision generation, the WERs after adaptation drop, along with the number of

deletion errors, by up to 13% relative. The combined method now yields 22.8% WER, a

small improvement upon the previous result (Table 5.4). It still improves upon standard

semi-supervised training, but the difference is now less. However, tuning the deletion

penalty hyperparameter is time-consuming, as it requires entire passes of decoding to

generate supervision. The non-penalised combined result is close to the best overall

result.

With a deletion penalty of 3 the lattices grow very large, increasing disk usage

and the time to generate training examples, by several orders of magnitude. This is

reflected in the average lattice depths, which for the semi-supervised lattices is now

418.0 (originally 78.1), compared to 10.7 (originally 21.2) for the combined lattices.

Note that the lattice depth for the combined lattices has actually reduced, since the

transcriptions are likely to match to more words, as more words are present in the

hypothesis lattices.

Figure 5.13 shows that increasing the pruning threshold, t, from Equation 5.2,

yields increasingly worse supervision for each choice of deletion penalty. The additional

maintained paths do not improve upon the strictest criteria of only keeping the minimum

cost path.
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Figure 5.12: Results WER (%) on Scottish Parliament data with respect to the baseline
(30% WER) for increasing deletion penalties when generating supervision lattices. The
overlaying, hashed, bars represent the performance when using the corresponding best
path supervision. The effect of the deletion penalty is more pronounced for the standard
semi-supervised results, while the combination method is more robust to deletions in
the supervision.

Method WER (%) Sub Del Ins

Baseline 30.0 15.8 11.3 3.0

Transcriptions 33.2 11.0 20.5 1.7

Semisup-bias 23.3 11.2 9.4 2.7

Semisup-bias-best path 25.0 12.8 8.4 3.9

Semisup 25.8 12.7 9.6 3.5

Semisup-best path 27.0 13.8 9.1 4.1

Lattice combination-bias 22.8 10.9 9.0 2.9

Lattice combination-bias-best path 24.7 11.9 9.9 2.8

Lattice combination 23.4 12.1 7.8 3.5

Lattice combination-best path 25.3 12.9 9.0 3.4

Table 5.5: Results WER (%) using a deletion penalty of 3 when generating supervision
lattices. Transcriptions are not affected. The difference between using biased lattice
combination compared to biased semi-supervised training is statistically significant with
p < 0.001. The use of a biased supervision lattice compared to a best path is similarly
significant, as well as the use of biasing for lattice combination. See Section 4.6 for
details on significance testing.
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Figure 5.13: Results on Scottish Parliament data using different pruning thresholds, t,
along with deletion penalties when generating supervision as in Figure 5.12. Increasing
the threshold consistently reduces the WER reduction.

5.5.5. Using external paraphrase data

Table 5.6 shows results after a second pass of lattice combination with the paraphrase

transducer from Section 5.3. For a deletion penalty of 0 there is no improvement when

using lattice supervision, but with a penalty of 3 there is a modest improvement in

WER from 22.8 to 22.6, which is the best result obtained in this chapter. This suggests

that the additional hypotheses generated with the high deletion penalty provides more

words for the paraphrase transducer to match with. Note that using a paraphrase

transducer does improve best path supervision with 0 deletion penalty by a small

amount, suggesting that the second combination corrected a few possibly incorrect

paths.

5.6. Conclusions and future work

A method has been proposed for lightly supervised training: to combine inaccurate

transcriptions with the decoded hypothesis lattices of a seed model. We have shown that

this method enables the robust use of inaccurate transcripts during training, exceeding

a semi-supervised method. Specifically, the proposed method produced an improvement

upon a purely semi-supervised approach by up to 17.5% relative. Biasing the background

language model to the data was found to substantially improve both the semi-supervised

training and the lattice combination technique. The use of a deletion penalty during

hypothesis lattice generation was effective when using a seed model that was prone to

delete. The selection of the deletion penalty was selected empirically, balancing the
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Method Penalty WER Sub Del Ins

Baseline - 30.0 15.8 11.3 3.0

Transcriptions - 33.2 11.0 20.5 1.7

Lattice combination-bias 0 23.3 10.8 10.2 2.4

Lattice combination-bias-best path 0 25.0 12.0 10.2 2.8

Lattice combination-bias-pp 0 23.4 10.3 10.8 2.3

Lattice combination-bias-pp-best path 0 24.7 11.7 10.5 2.5

Lattice combination-bias 3 22.8 10.9 9.0 2.9

Lattice combination-bias-best path 3 24.7 11.9 9.9 2.8

Lattice combination-bias-pp 3 22.6 10.5 9.5 2.7

Lattice combination-bias-pp-best path 3 24.7 11.9 9.9 2.9

Table 5.6: Results with lattice combination with paraphrasing (pp) on Scottish Parlia-
ment data. The improvement with paraphrases on top of biased lattice combination
with deletion penalty −3 is statistically significant with p < 0.05 (see Section 4.6).

increased number of hypotheses with rapidly growing lattice sizes. Finally, a two-pass

approach making use of external, lexical paraphrases provided marginal improvements

when combined with a high deletion penalty. The combined use of the above ideas

produced a relative WER reduction of about 21% (from 28.6 to 22.6) with respect to

the semi-supervised result.

Possible improvements to the algorithm include improved efficiency in the FST

operations, particularly in the construction, and composition, of the edit transducer.

Incorporating lexical paraphrases in an effort to extend the above work was not as

successful, yielding only marginal reductions in WERs. It may be that this framework

is more effective in a different scenario where certain paraphrases are well-known. There

is also much scope in dedicated paraphrase extraction when in-domain data is available,

as well as exploring ways to learn to use distributional methods or borrowing from

machine translation literature. Finally, a key limitation is the use of lexical paraphrases,

rather than phrases. Future work could explore a modification to the algorithm that

enables the use of (possibly weighted) paraphrases. Bearing in mind that the number of

possible paraphrases may considerably expand, an important aspect will likely be to

obtain a small set of suitable paraphrases for the task at hand.



Chapter 6

Factorised representations

Adaptation of acoustic models is typically considered in terms of a single factor, usually

a speaker. Learning a joint transform to a group of factors may further reduce the

WER. However, explicitly modelling each factor independently, such as a speaker and an

environment, yields additional practical benefits. This chapter addresses the challenge

from Chapter 1 of how feature representations may be factorised, such that they can

be combined in novel combinations at test time. That is, we may have observed a

particular speaker and environment at training time, but never together. If we can

learn independent representations for this speaker and this environment, then we can

directly make use of these at test time when they occur together. We propose a method

to factorise i-vectors into speaker and environment transforms using neural networks.

Experiments show improvements using the proposed factorisation approach, both when

one of two factors is unknown at test time, and when existing representations were

extracted in mismatched conditions.

6.1. Introduction

Acoustic mismatch between training and test conditions may significantly affect acoustic

models for speech recognition. Adaptation to speakers has proven particularly effective

in reducing WER (Gales, 1998; Neto et al., 1995; Saon et al., 2013; Swietojanski, Li,

and Renals, 2016). There are, however, other acoustic factors that affect the speech

signal in addition to the speaker. Modelling these factors, such as environments, may

reduce acoustic mismatch and can yield additional reductions in WER (Karanasou

et al., 2014; Khokhlov et al., 2019; Saz and Hain, 2017; Seltzer and Acero, 2011;

Swietojanski, Li, and Renals, 2016). Particularly, learning a single transform to a

joint combination of factors, such as a speaker and an environment combination, can

reduce WERs over speaker adaptation alone (Swietojanski, Li, and Renals, 2016). This,

however, requires sufficient adaptation data for each combination of factors. Further, it

does not make efficient use of existing information of, for example, the same speaker

seen in a different environment than the present. When using transforms estimated in

mismatched conditions, performance typically degrades (Karanasou et al., 2014).

A number of studies have investigated methods to adapt to each factor with separate

transforms (e. g. Gales, 2001; Karanasou et al., 2014; Seltzer and Acero, 2011; Seo,

61
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Figure 6.1: If speaker and environment transforms are independent, then a speaker
transform for speaker 2, and an environment transform for environment A, may be
combined to reduce acoustic mismatch in a novel combination at test time (speaker 2
and environment A).

Kang, and Seltzer, 2014; Wang and Gales, 2013, and also Table 6.1). For example,

Swietojanski, Li, and Renals (2016) linearly interpolate transforms obtained using LHUC

(see Section 2.4). Speaker transforms were estimated from clean training data, and

environment transforms from pooling data across speakers for a particular environment,

excluding the speaker in question to avoid a joint transform. The authors found that

transforms estimated jointly to a combination of factors perform best, but a combination

of separate transforms closely follow, and improve upon solely using a speaker transform.

Li, Huang, and Gong (2014) modelled factors as additional inputs to the softmax layer of

a neural network acoustic model, where each input has its own weight matrix dependent

upon a particular factor as input. They use a noise factor which is estimated using

frames from the current utterance. Seltzer and Acero (2011) proposed to cascade speaker

and environment transforms using CMLLR. Each transform is optimised alternately

with suitable data, similar to the approach above. In experiments with HMM-GMM

models, they find that the method enables the use of the same speaker transform in

multiple environments without degradation. This suggests that the speaker transforms

are independent from the environments. More generally, if the adaptation transforms

for each factor are independent, then they can be combined in novel combinations not

seen in the data, and existing transforms may be reused and recombined. An example

scenario is shown in Figure 6.1. If they are, however, not independent, then the nuisance

information from irrelevant speakers or environments may limit improvements, as we

will see below.

Independence may occur implicitly when estimating the adaptation transforms if the

nuisance factor is evenly distributed within the data. This is, however, an assumption not

always found in real data and explicit approaches to obtaining independent transforms

are sometimes required. One explicit approach makes use of the observation that, if

speaker and environment transformations are independent, then their first derivatives

(i. e. differentiating one with respect to the other) should be zero (Karanasou et al., 2014;

Wang and Gales, 2013). This has been shown using constrained optimisation for cluster

adaptive training (Wang and Gales, 2013) and i-vectors (Karanasou et al., 2014). In
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Paper Method

Swietojanski, Li, and Renals (2016) Interpolated LHUC

Karanasou et al. (2014) Factorised i-vectors

Seo, Kang, and Seltzer (2014) Orthogonal subspaces

Wang and Gales (2013) Factorised cluster adapative training

Gales (2001) Product of MLLR transforms

Seltzer and Acero (2011) Cascade of CMLLR transforms

Table 6.1: Related approaches in the literature.

the latter paper 10% relative reductions in WERs are obtained with factorised i-vectors

over normal speaker i-vectors on a perturbed set of the WSJ corpus (Section 4.3). A

somewhat similar approach is taken by Seo, Kang, and Seltzer (2014), where they

obtain independent CMLLR-style transforms by projecting adaptation transforms onto

orthogonal, factor-dependent subspaces. They show a 7.5% WER reduction from an

un-adapted baseline adapting to speakers using environment-independent transforms

on Aurora4 (Parihar et al., 2004), compared to a WER increase of up to 24% relative

when using transforms estimated in mismatched environments.

This chapter investigates the use of neural networks to factorise adaptation trans-

forms. This is achieved by extracting bottleneck features from networks trained to

classify speakers or environments given speaker or environment i-vectors, respectively

(Section 6.2). The overall goal of the chapter is similar to that of i-vector factorisation

(Karanasou et al., 2014). A key difference is that Karanasou et al. (2014) factorise the

i-vectors during extraction by means of optimising under constraints, while this chapter

demonstrates the possibility of factorising i-vectors after extraction. This opens the

possibility of factorising any feature representation, since the process is not tied to the

specifics of i-vector extraction.

Results are shown on the WSJ corpus (Section 4.3) perturbed using the Diverse

Environments Multichannel Acoustic Noise Database (DEMAND) (Thiemann, Ito, and

Vincent, 2013). To avoid implicit factorisation during i-vector extraction at test time, we

explicitly avoid balancing environments across speakers and speakers across environments

(Section 6.3). We first show that environment information in the factorised speaker

representations is significantly reduced, while maintaining speaker information, and

similarly with speaker information in environment representations (Section 6.4.1). We

then show improvements when either speaker or environment information is absent at test

time (Section 6.4.2). Lastly, we experiment with the situation in which we reuse speaker

and environment transforms which have been estimated in mismatched conditions and

where there is no adaptation data in the given combination (Section 6.4.3). For this

experiment, the factorised representations are shown to be particularly important.
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Figure 6.2: Bottleneck feature extractor. When learning to classify speakers the
bottleneck features are not required to maintain possible nuisance information present
in the speaker i-vectors pertaining to the environment.

6.2. Multi-condition neural networks

Recall from Section 2.4 that i-vectors, λf , represent the difference between factor-specific

(typically speaker) GMM means, mf , and means from a background GMM, M, by the

following relationship:

mf = M + Tλf (6.1)

where T is the total variability matrix. We will consider speaker and environment

i-vectors, λs and λe, where in each case the i-vector is estimated from data pooled

across a speaker (regardless of the environment), or across an environment (regardless of

the speaker), respectively. (There will be certain exceptions to this in the experiments

below.) As shown in Section 2.4, auxiliary features in the input to a neural network

affect the next layer through the bias. When including a second i-vector for environment,

there will be a second i-vector dependent bias term:

h = σ(Wx + b + Usλs + Ueλe) (6.2)

where Wx + b is the standard affine function of the input features, x, and Us and Ue

are the weight matrices corresponding to each i-vector.

To factorise the i-vectors we experiment with using feedforward neural networks for

classification. Specifically, the networks have as inputs either speaker or environment

i-vectors and as outputs the corresponding speaker or environment classes, respectively.

This is illustrated in Figure 6.2. This tests the notion that by learning to classify one

factor, other nuisance factors are implicitly normalised out in the hidden representations

since they are not relevant to the classification task. The extracted bottleneck features,
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Figure 6.3: The original speaker i-vectors λs,f , with possible nuisance factor f , are
either concatenated directly with the acoustic features x (right), or first passed through
a network that has been trained to classify speakers (left), represented by the function
fspk(λs,f ) ≈ λs. The resulting bottleneck features are then used in place of the normal
i-vectors (middle).

bn, should mostly embody information only about a particular speaker or a particular

environment. The bottleneck features are concatenated with the acoustic features in

place of the standard i-vectors, and used to train the neural network acoustic model.

At test time, the i-vectors, iv, are factorised by passing them through the existing

networks, generating bottleneck features. Figure 6.3 shows the use of either normal

i-vectors or the bottleneck features.

6.3. Experimental setup

Experiments are performed with the WSJ corpus (Paul and Baker, 1992) containing

282 speakers (Section 4.3). Noise sources are obtained from the Diverse Environments

Multichannel Acoustic Noise Database (DEMAND) (Thiemann, Ito, and Vincent, 2013).

This provides 18 recordings of environments ranging from residential environments to

offices and transportation as shown in Table 6.2. Each noise recording is made with a 16

microphone array at 48kHz. Channel 1 of the array was arbitrarily selected to add noise

to the single channel speech. The Signal-to-Noise Ratio (SNR) for each combination

is set to 0 dB, so that both speakers and environments are treated equally, and the

results are more easily interpretable. Note that no clean examples are included in the

perturbed dataset.

Environments are randomly chosen for each training utterance. For test utterances
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Category Environments

Domestic Kitchen, Living Room, Washing

Nature Field, Park, River

Office Hallway, Meeting, Office

Public Cafeteria, Restaurant, Station

Street Cafe, Public square, Traffic

Transportation Bus, Car, Metro

Table 6.2: Environments in DEMAND.

the environments are applied to utterances in an unbalanced manner. Otherwise there

is a risk of learning implicit orthogonality between the factors, since each speaker will

have seen an even distribution of environments. A correlated set of environments per

speaker is ensured by for each speaker, s, sampling a probability vector ps | α:

ps ∼ Dir(α) (6.3)

where ps ∈ Rn, n is the number of environments and α is the concentration parameter

of a symmetric Dirichlet distribution. Then, for each utterance, u, from speaker s, an

environment k
(s)
u is sampled with respect to a categorical distribution on ps:

k(s)u ∼ Cat(ps) (6.4)

This procedure ensures that speakers and environments are not independent, i. e.

p(s | n) 6= p(s), p(n | s) 6= p(n) ∀s, n (6.5)

such that both speaker and environment i-vectors do not see an even balance of the

other factor.

For values less than 1.0 the distributions will be highly peaked, while α = 1 provides

a flat Dirichlet distribution, effectively a 17-dimensional uniform simplex. In the limit

where α → ∞, the distribution over environments in ps will be uniform. We chose

α = 0.75 as a reasonable compromise, i. e. each speaker is seen in several environments,

but the distributions are distinctly non-uniform. Figure 6.4 shows an example of

sampling a vector from a 2-simplex with α = 0.75.

The i-vectors are obtained as typical in Kaldi (see e. g. Peddinti et al., 2015), with

online and offline extraction for training and test data, respectively. Specifically, to

obtain a suitable variety of i-vectors during training, each speaker (or environment)

is split into “sub-speakers” that each have a maximum of two utterances from the

original speaker. i-vectors are then extracted in an online fashion using only frames

prior to the current frame within a sub-speaker. For our setup this means that the

training time i-vectors will in effect represent joint speaker-environment transforms,
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ps = [0.26, 0.14, 0.59]

Figure 6.4: Sampling a vector ps from a symmetric Dirichlet 2-simplex with concentra-
tion α = 0.75. The dots represent random samples. As α→ 0 they would concentrate
at the edges, conversely, as α→∞ they will move to the centre of the triangle.

due to the short time-span of the features used for extraction. During decoding the

i-vectors are estimated in an offline fashion for higher quality representations. Normally

this is split into subspeakers with 60 seconds minimum per speaker, but for more easily

interpretable results a single i-vector is extracted across all the data for a given speaker

or environment.

For the final experiment (Section 6.4.3) this procedure changes. We address the situ-

ation where speaker and environment i-vectors are extracted in mismatched conditions.

To obtain results that are not biased towards particular environments the test sets now

consist of an even balance of environments. The procedure for i-vector extraction is then

as follows: For each possible speaker and environment combination, i. e. {s ∈ S, n ∈ Ns},
where Ns denotes the environments that have occurred with speaker s, we hold out

each pair (s, n) in turn. The speaker i-vector for the heldout pair is then determined by

extracting an i-vector from the speaker seen in a different environment, e. g. λs,n′ where

n′ is chosen such that n′ ∈ Ns and n′ 6= n. Similarly, for the environment vector, an

i-vector λs′,n is extracted, where s′ is chosen such that s′ ∈ Sn and s′ 6= s. The i-vectors

will now also contain information from mismatched factors s′ and n′. The idea is then

to factorise these vectors by generating bottleneck features using the neural networks,

denoted by f{spk,env}(·), where the desired output is new representations that pertain

only to a speaker or an environment:

fspk(λs,n′) ≈ λs (6.6)

fenv(λs′,n) ≈ λn (6.7)

HMM - GMM acoustic models are trained with the Kaldi toolkit and hybrid neural

network models with the nnet3 package, using the standard WSJ recipe1. Specifically,

monophone and triphone models are first trained on top of 13 MFCCs with delta and

double deltas. Training continues on top of 40-dimensional features from LDA, and

MLLT transformations. The final training stage includes speaker adaptive training

using CMLLR.

The neural networks2 are 6-layer TDNNs (Section 2.1.2) with p-norm activa-

tions (Zhang et al., 2014a) (p = 2), and input and output dimensions set to 2000

1github.com/kaldi-asr/kaldi/tree/master/egs/wsj/s5
2See Kaldi-2 in Appendix A.

github.com/kaldi-asr/kaldi/tree/master/egs/wsj/s5
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Model dev93 eval92 dev93d eval92d

GMM 12.06 7.76 49.25 42.96

NN 10.36 6.72 48.17 41.52

Table 6.3: Baseline results WER (%) with models trained on WSJ and no i-vectors.
Test sets postfixed with D are noisy versions.

Model dev93 eval92 dev93d eval92d

GMM 13.52 9.50 32.77 25.09

NN 11.38 7.81 22.70 15.95

Table 6.4: Baseline results WER (%) with models trained on WSJ+DEMAND and no
i-vectors. Test sets postfixed with D are noisy versions.

and 250, respectively. The splice indexes are {±4}, [0], [±2], [0], [±4], [0]. The networks

are trained for 8 epochs with an initial learning rate set to 0.005, which is reduced

exponentially to a tenth of the original rate. As discussed above we use online i-vectors

(and corresponding bottleneck features) during training that are extracted each tenth

frame.

For the bottleneck networks, independent feedforward networks are trained for

speaker and environment classification, where each network has 282 or 18 output classes,

respectively. The networks have three 500-dimensional layers with the exception of

middle bottleneck layers the size of the original i-vectors. ReLU activations (Nair and

Hinton, 2010) are used throughout except the final softmax layer. They are trained with

RMSProp (Tieleman and Hinton, 2012) using the Keras deep learning toolkit (Chollet

et al., 2015). A random subset of 10% of the data is held out as validation data.

Training uses early stopping on the validation data with a patience of 2 epochs. After

training, the i-vectors are passed through the network to generate bottleneck features

– the factorised representations. Acoustic models are then trained as above using the

bottleneck features in place of the i-vectors.

6.4. Results

Table 6.3 shows baseline results (without i-vectors) training with clean data and testing

on clean and perturbed test sets denoted with the postfix D. Unsurprisingly, when

the training and test conditions are not matched, the WERs are significantly higher.

Training on matched, perturbed data significantly reduces errors on the perturbed test

sets, as shown in Table 6.4. This is particularly evident for the neural network models,

where the WERs on the perturbed sets drop by up to 62% relative, while increasing

WERs on the non-perturbed sets by about 10%, or 1% absolute.
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Features Spk-class Env-class

i-vectors speaker 85.9 97.4

i-vectors environment 69.6 99.2

bottleneck-features speaker 84.3 41.2

bottleneck-features environment 6.4 99.3

Table 6.5: Classification validation accuracy (%) from 100-dimensional vectors to
speaker or environment categories on a held-out evaluation set.

6.4.1. Multi-condition training

To confirm that the respective conditions are indeed factored out, classification exper-

iments are performed on the original i-vectors and the bottleneck features. This is a

similar idea to the probing experiments on speaker embeddings such as x-vectors (Raj

et al., 2019; Wang, Qian, and Yu, 2017). We train networks to classify speakers, or

environments, from the i-vectors, or the bottleneck features. The networks have the

same architectures and training procedures as the speaker/environment classification

networks above, but with 500 units in each hidden layer. Table 6.5 shows classification

accuracies on held-out data. As shown in the first two rows, the original i-vectors

contain a large amount of information about the respective nuisance factors. In contrast,

when training on top of the extracted bottleneck features, we observe large drops in

accuracies of the nuisance class (e. g. 6.4% classifying speakers with environment bottle-

neck features, compared to 69.6% using the i-vectors). The differences in accuracies

between the speaker and environment vectors may be due to the large difference in

the number of speakers and environments (282 and 18, respectively). Crucially, the

factorised representations still classify their respective classes with high accuracies.

Figure 6.5 visualises the effect on the speaker representations using t-SNE (Maaten

and Hinton, 2008). The original speaker i-vectors cluster into environments (colours),

whereas there is no evident clustering with the bottleneck features.

6.4.2. Results with factorised representations

The results for using the factorised representations (bottleneck features) are shown

in Table 6.6. When relying solely on speaker or environment i-vectors, the use of

factorised representations provides about 12% relative reduction in WER on dev93d

with 100-dimensional speaker i-vectors. Similarly, factorising the environment i-vectors

reduces WER on eval92d by roughly 5.5% relative. It is interesting to note that reducing

the speaker i-vector dimension to 30 improves WERs in the non-factorised case. The

smaller dimension may lead to implicit factorisation. Note that the use of standard

speaker or environment i-vectors actually increase the WER compared to the baseline

in Table 6.4.

When concatenating speaker and environment i-vectors the opposite effect occurs:
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Figure 6.5: t-SNE (Maaten and Hinton, 2008) of 1000 sampled 30-dimensional speaker
i-vectors, before (left) and after (right) factorising the i-vectors. The colours indicate
the 18 environments in the data. The loss of evident clustering shows that the factorised
representations have lost information about the environments.

Features Spk Env Spk+Env

i-vectors (100) 23.27 / 16.59 23.21 / 16.27 20.39 / 13.50

i-vectors (30) 22.89 / 15.20 - / - 20.18 / 14.44

Bottleneck (100) 20.34 / 14.46 22.48 / 15.36 20.08 / 14.85

Bottleneck (30) 21.02 / 14.94 - / - 20.85 / 14.71

Table 6.6: WER (%) with i-vectors or bottleneck features (factorised representations),
evaluated on WSJ+DEMAND with perturbed test sets (dev93d / eval92d). The
baseline without i-vectors obtains 22.70% and 15.95% WER, respectively (Table 6.4).
Speaker vector sizes are provided in parentheses. Statistical significance (see Section 4.6)
was measured for i-vector to corresponding bottleneck pairs with p < 0.001 for all speaker
representations except 30-dim for eval92d (p = 0.08); with p < 0.05 and p < 0.01 for
environment representations on dev93d and eval92d, respectively; and with p < 0.01
for joint combinations for 100-dim representations on eval92 only.
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the factorised representations generally yield increases in WER. The non-factorised, 100

dimensional i-vectors provide the lowest WERs, whereas the lower dimensional vectors

or the factorised representations yield higher WERs. This is unsurprising, and is likely

due to the ability of the non-factorised vectors to make use of correlations between

speakers and environments during training, and because each target combination is

present in the data. This is, however, not always the situation. These results suggest

that if the target combination is present in the training data, then the best practice

implication is to use the original i-vectors in a speaker and environment combination.

Below we experiment with the case in which the target combination is not present, and

in that case we will see that it is better to use the factorised vectors.

We investigated the sparsity of the vectors and observed a drop in the average number

of non-zero elements, or L0 “norm” (
∑

i |xi|0, where 00 ≡ 0). The 100-dimensional

factorised speaker representations had an average norm of 32.1 on the development

set, yet only 5 units were consistently turned off. This suggests that the learned

representations are still making use of the majority of the dimensions, but only about a

third at any one time, perhaps improving the match at test time.

6.4.3. Results for unseen combinations

This experiment addresses the situation when joint adaptation data is not available.

Instead, one can reuse transforms estimated in a single, mismatched condition. The

results are shown in Table 6.7. Previously, concatenating speaker and environment

vectors did not produce improvements in WERs with the factorised representations

(Table 6.6). This situation is now reversed, with up to 5% relative improvements. We

believe that this is because there is no longer any implicit averaging across environments

or speakers, and because the true, joint combination is not present. The improvements

when using only speaker or environment representations are also more pronounced, with

up to 21% relative for 100-dimensional speaker representations and 14-17% relative for

the environment representations. There is now no possibility of implicit factorisation

since the i-vectors are estimated in combination with exactly one mismatched condition.

The results clearly demonstrate the requirement for factorisation when each factor has

been estimated in strongly mismatched conditions.

6.5. Conclusions

In this chapter we have proposed a method that enables the factorisation of feature

representations, such that they may be combined in novel combinations at test time

in a robust manner, without worsening WERs. Specifically, we have demonstrated

that we can successfully generate factorised representations from i-vectors using neural

networks with a bottleneck layer. For speaker i-vectors we have shown up to roughly

12% relative improvements when the target environment is unknown and 5% when the
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Features Spk Env Spk+Env

i-vectors (100) 25.21 / 17.26 25.47 / 19.03 21.12 / 14.48

i-vectors (30) 24.71 / 17.19 - / - 21.29 / 15.33

Bottleneck (100) 19.88 / 14.44 21.71 / 15.68 20.06 / 14.32

Bottleneck (30) 19.71 / 14.80 - / - 19.57 / 14.19

Table 6.7: Heldout experiments. i-vector and bottleneck feature WER (%) results on
WSJ+DEMAND with perturbed test sets (dev93d / eval92d) with an equal distribution
of environments for each speaker. Speaker vector sizes are given in parentheses. Statistical
significance (see Section 4.6) was measured for i-vector to corresponding bottleneck
pairs with p < 0.001 for all speaker and all environment representations; and for joint
combinations with p < 0.05 and p < 0.001 for 100- and 30-dim on dev93d, and not
significant and p < 0.05 for 100-dim and 30-dim on eval92d.

target speaker is unknown, in cases where the use of standard i-vectors (either speaker

or environment vectors) may in fact increase the WER. This situation is even more

pronounced when the i-vectors are extracted in directly mismatched conditions. In this

case the use of factorised speaker or environment representations yield up to a 21%

relative WER reduction compared to the corresponding i-vector.

A disadvantage with the presented approach is that we lose correlations between

known speaker and environment combinations at training time, yielding lower frame

accuracy. This is reflected in the WERs when using both speaker and environment

i-vectors that were extracted across many combinations (Spk+Env). In future work we

would like to investigate the speaker adaptive i-vector approach presented by Miao,

Zhang, and Metze (2014) which uses an i-vector specific sub-network that could possibly

learn correlations between factors and thus might help mitigate this effect.

An advantage of the proposed approach is that it is technically independent of

the feature representation. There is consequently much scope to explore the use of

other representations, such as LHUC (Swietojanski, Li, and Renals, 2016) or speaker

codes (Abdel-Hamid and Jiang, 2013). With neural methods to obtain representations,

with architectures similar to x-vector extraction (Snyder et al., 2017), we can envision

possibly combining the classification networks with the acoustic neural network model

and training both objectives jointly. A limitation of the current method is that there is

no explicit drive towards removing a factor from the bottleneck features: we are relying

on this implicitly in the speaker/environment classification networks. Other architectures

could embody this explicitly through for example adversarial learning (Shinohara, 2016).

Finally, a disadvantage of the experiments shown in this chapter is the use of an artificial

corpus. Future work should aim to experiment with more realistic data such as the

MGB corpus (Bell et al., 2015, see also Section 4.1). The technique proposed in this

chapter is not directly applicable to these corpora, since we do not have labels for the

individual factors, nor is it clear what those factors should be. One approach may be to

discover or disentangle such factors using unsupervised methods. We will discuss future
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work further in Chapter 9.



Chapter 7

Longitudinal training

There are growing privacy and copyright concerns with the use of data, both in personal

devices and in the broadcast domain (see e. g. Zimmeck et al., 2016). Data may therefore

be time-limited, meaning that we can only use it to train a model for a limited amount

of time before we subsequently lose access. Consider for example speech from a user of

a smart phone application for which it may be necessary to erase the recorded speech at

regular intervals. If we repeatedly obtain data from a particular domain in this manner,

we would expect a model to continuously improve in that domain, in a scenario we

called longitudinal learning. This chapter addresses the question from Chapter 1 on

how well models improve in a longitudinal setting, and what implications this setting

has on active learning. We first conduct experiments to observe the impact of training

in a longitudinal manner. The experiments suggest that we can improve the WER

by averaging successive models obtained with an effectively cyclical learning rate. We

then discuss the impact of the longitudinal setting on active learning, and propose to

combine active learning with semi-supervised training, showing that this improves upon

either technique on its own.

7.1. Introduction

Incremental training of models in machine learning is an expanding field with a large

variety of problems and solutions. One area of research is lifelong learning, which may

be defined as the ability to learn to perform new tasks (e. g. the number of classification

targets are not fixed), without forgetting previously learned tasks (Parisi et al., 2019).

This may be alleviated by, for example, memory-based replay mechanisms (Robins,

1993), dynamic architectures (Rusu et al., 2016; Yoon et al., 2018) or regularisation (Li

and Hoiem, 2017).

In ASR, life-long learning has a different connotation, as the classification targets

would normally stay fixed (within a language). Model adaptation (Section 2.4) to a new

domain can be effective, although maintaining performance on the seed data is usually

not a concern. Ghorbani, Khorram, and Hansen (2019) identified the scenario in which

we prefer to maintain a single model that can adapt to a new domain and still perform

well in the previous domain, which they labelled domain expansion. The techniques

they explored are similar to those used for life-long learning above.

74
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Figure 7.1: Illustration of the longitudinal learning problem with ephemeral data.
Circles represent models, and boxes represent data. Dt+1 represents data at test time,
and data in dashed boxes are unavailable for training purposes at time t.

Our use of longitudinal learning is somewhat different, in that we consider improving a

model incrementally within the same domain, and do not expect catastrophic forgetting

to be a major problem. Consider for example the Masterchef TV series used in

experiments in this chapter, where many of the recording situations will be largely the

same throughout, with recurring characters. This is in contrast to models adapting

between domains, such as adult speech to child speech, or between broadcast television

genres.

Specifically, we want to obtain a model at time t, mt, from one or more previous

models m1,...,t−1, to improve the WER on future data Dt+1, using only present data

Dt, where we assume past, present and future data are drawn from the same domain.

This is illustrated in Figure 7.1. Note that we do not adapt to the test-data, but always

to the data just preceding it, in order to measure the improvement in the domain as

we observe more data. The key constraint is the lack of access to previous data: if

this data was available, a reasonable strategy would be to retrain on all the pooled

data thus far. The intuition is that, as we see more data from a particular domain, we

expect a model to perform better on new data from that domain, even when we no

longer have access to past data. This particular scenario has real-world examples. We

may, for example, envisage a child speech model being repeatedly updated with new

data, but due to privacy concerns we cannot store that data for any length of time.

User-data from smart-devices may similarly be time-constrained. In the experiments of

this chapter, we will consider a TV series for which an out-of-domain model is expected

to increasingly improve on episodes from that series, as new episodes air.

We will approach this study from two aspects. First, the key difference to the

batch case where we may pool all previous data, is that we cannot shuffle data across

time. We may consider each successive model as specialising on the last episode for

which it had data. We therefore look at the effects of combining successive models to

compensate. Ensembling model posteriors from individually trained models is a common

tool to building competitive ASR systems for challenges (e. g. Woodland et al., 2015).

A different approach is to combine the weights of individual models, which is performed

with success in Kaldi when training models in parallel (Povey, Zhang, and Khudanpur,

2014). An interesting aspect of longitudinal training is that, depending on the learning
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rate schedule for each model, it may resemble the use of cyclical learning rates (Loshchilov

and Hutter, 2017; Smith, 2017) where each cycle is considered one longitudinal time-step.

These schedules have been shown to suit posterior ensembling or model averaging of the

same model, with model instances obtained throughout training in techniques known as

snapshot ensembling (Huang et al., 2017), Fast Geometric Ensembling (FGE) (Garipov

et al., 2018) and Stochastic Weight Averaging (SWA) (Izmailov et al., 2018). In other

words, these works suggest that with a natural longitudinal learning schedule, both

posterior ensembling as in FGE and model averaging as in SWA should be beneficial

to performance. We propose to make use of this observation, and explore posterior

ensembling and model averaging of models extracted at every longitudinal time-step.

Second, it may be that we have the budget to annotate a small portion of the data.

A significant amount of annotation is wasteful since we are unable to keep the audio.

However, even with small amounts, it is interesting to observe the effect on training. In

ASR there has been demonstrated success in using active learning in a variety of tasks,

the majority of these using confidence measures given a seed model (e. g. Drugman,

Pylkkönen, and Kneser, 2016; Long et al., 2018; Nallasamy, Metze, and Schultz, 2012).

As above, we consider active learning on data from the current time-step, while testing

on the next. The typical form of active learning requires including the original data

in each training pass with the newly acquired data, to control for the fact that the

data selected for active learning is not i.i.d. (Sugiyama and Kawanabe, 2012). Since

we are unable to include previous data in the longitudinal setting, we must find an

alternative method to maintain a suitable distribution of data points. We propose to

include the remaining data from an episode as semi-supervised training data. This is

an idea that has previously been applied to various classifiers within problems such

as emotion recognition (Zhang et al., 2014b), spoken language understanding (Tur,

Hakkani-Tür, and Schapire, 2005), image classification (Li, Wang, and Tang, 2013) and

text classification (McCallumzy and Nigamy, 1998).

In the rest of this chapter, we first discuss posterior ensembling and model averaging

in Section 7.2. In Section 7.3 we formalise active learning, and discuss how we include any

remaining data as semi-supervised training data. Section 7.4 presents the experimental

setup, and Section 7.5 the results.

7.2. Posterior ensembling and model averaging

As noted above, if we reset the learning rate for each training episode in a longitudinal

learning setup, this setup resembles the use of cyclical learning rates in work on FGE

(Garipov et al., 2018) and SWA (Izmailov et al., 2018). The success in these works

motivates the use of posterior ensembling and weight averaging, which we describe next.

If we denote the softmax output of model m given test input x as hm(x), then the
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posterior ensemble of N models is the average of the softmax outputs from each model:

hens(x) =
1

N

t∑
m=t−N

hm(x), (7.1)

where t is the current time-step, and N is the total number of previous models to

ensemble. Given that we are interested in using this approach in a longitudinal setting,

we average models starting from the current model at time t, and include N models

backwards in time until model m = t − N . The resulting averaged output of the

ensemble is passed to the decoder in the normal fashion. We can consider averaging the

posteriors as averaging in output space.

Weight averaging is similar, but averaging takes place in weight space:

wavg =
1

N

t∑
m=t−N

wm, (7.2)

where wm represents the entire set of weights for model m. Rather than computing

the average repeatedly each time we train a new model and N grows by one, we can

compute the cumulative average:

w(t+1)
avg =

wt+1 + tw
(t)
avg

t+ 1
. (7.3)

An advantage of weight averaging is that we are not required to perform N forward

passes of the data, compared to posterior ensembling.

Huang et al. (2017) argue that the best models with which to perform posterior

ensembling are those that sit within disjoint, isolated minima, because they make

significantly different predictions of the same data. In a method they call snapshot

ensembling, the models are obtained by training using cyclical learning rates with cycles

over a long time-span (20-40 epochs). A model “snapshot” is extracted each time the

learning rate reaches a minimum, corresponding to a new minimum, before the next

cycle begins. Similarly, for typical practice in ASR, we see effective ensembles when

using entirely different, independently trained models (e. g. Woodland et al., 2015).

For a single architecture, the implication is that we should expect increased errors

in the interpolation in weight space between two models to be ensembled. This is

perhaps sufficient, but not necessary, for a reasonable ensemble. For example, with

FGE (Garipov et al., 2018), models are constructed from a single architecture in a

similar fashion to snapshot ensembles, but using cyclical learning rates over a much

shorter time-span (2-4 epochs) in order to find minima that are connected by paths of

low-error. The resulting models, however, produce less diverse predictions than snapshot

ensembling, but larger ensembles can be built with the same computational budget.

This scenario is the most similar to longitudinal learning, if each cycle corresponds to a

time-step (i. e. an episode), and we adapt for a few epochs each time. Figure 7.2 shows
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Figure 7.2: Example of convex combination of two models along a line in weight space,
evaluated on longitudinal data from MGB corresponding to Dt+1 for models successively
adapted to Dt−1 and Dt. In this case both models produce the same error on the test
data, but the interpolation between them shows that their average would provide a lower
WER.

the interpolation of two successive models obtained in the longitudinal experiments

below.

Model averaging in weight space is different to posterior ensembling, in that it requires

the interpolation between models to yield reduced error rates. It is standard procedure

in Kaldi when combining models trained in parallel using multiple GPUs (Povey, Zhang,

and Khudanpur, 2014). Through empirical experiments on image recognition tasks,

Izmailov et al. (2018) demonstrate that the use of cyclical learning rates (over short spans

like in FGE), produce intermediate models at various points of the learning trajectory

that move in high-performance regions close to an optimal model. The optimal model

can be approximated by averaging individual models along the trajectory. They show

this by producing an error surface from affine combinations of models extracted from

each cycle. We will conduct a similar experiment in the longitudinal setting below (see

Figure 7.6). The authors further observe that when a sequence of models are close

together in weight space, posterior ensembling and parameter averaging should have

similar properties and yield similar results. In other words we should expect models

obtained with FGE to be more suitable for averaging than those obtained using snapshot

ensembling.

7.3. Active learning

The goal of active learning is to select data from an unlabeled sample set to be transcribed

in the most efficient manner possible. By efficient we mean with the least cost and

manual effort – typically given some constraining budget – that produces the most

informative subset for the training of a model. Consequently, a successful algorithm

will select the most informative samples given the task or model at hand, and with the

least redundancy. Specifically, we are looking for a set function f : 2S → R that returns
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Algorithm 7.1: Active learning with semi-supervised training

Require: T , k,Vi for episodes i ∈ {1 . . . N}
1: Train seed model M0 using transcribed set T
2: for i ∈ {1 . . . N} do
3: S = ∅
4: while |S| ≤ k do
5: s∗ = arg maxs∈Vi f(s |Mi−1)
6: S = S ∪ {s∗}
7: end while
8: Transcribe S
9: Produce hypotheses for untranscribed set U = {u ∈ Vi \ S}

10: Adapt model Mi−1 using S ∪ U to produce Mi

11: end for

a score, or overall uncertainty, for a subset S. Given a pool of data, V, we can then

extract the subset S∗ under a cardinality constraint k:

S∗ = arg max{f(S | M) : |S| ≤ k, S ⊂ V}. (7.4)

Often, f(S | M) is defined as the uncertainty (e. g. 1-confidence) that a seed model

M places on new samples. The seed model may be produced by training on already

transcribed seed data, T . The overall goal is then to optimise performance on the

combined set S ∪ T . For adaptation in the longitudinal setting, we may not have access

to previous data or the seed data. Hence, we may be required to update the model

on S only. We will see in the experiments below that this is a poor strategy because

it tends to bias the model to the selected data, since the samples in S are not i.i.d.

(Sugiyama and Kawanabe, 2012). Instead, we propose to include the remaining data

from that episode by using that data in a semi-supervised manner. This is shown in

Algorithm 7.1.

Adapting to first-pass targets in a semi-supervised manner works well, even when

some targets are inaccurate (e. g. adapting with LHUC or lattice-supervision; Section 2.4).

Hence, when selecting samples to label, it is most useful to select those that would

produce the least reduction in errors, or that would possible increase the errors, with

unsupervised techniques. We would therefore like to find the samples that not only

produce the largest changes to a model, but also which are most likely labelled wrong.

A standard measure is to compute confidence scores from lattices (Kemp and Schaaf,

1997; Wessel, Macherey, and Schluter, 1998). In this work, as typical in Kaldi (Povey

et al., 2011), we compute posterior probabilities from lattices obtained through MBR

decoding (Xu et al., 2011, see also Section 3.2). We experiment with generating

confidences using both unigram and trigram language models.
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7.4. Experimental setup

The baseline model matches that used in Chapter 5. Specifically, it is trained on news

data selected from the MGB corpus (Bell et al., 2015) with MER set to 40% (Section 4.1).

As adaptation data we use the longest sequence of episodes in the eval.long set of

MGB, which corresponds to 11 chronological episodes from the TV show MasterChef,

with roughly 30 minutes per episode. When selecting utterances for active learning we

select the corresponding words from the oracle data with word-level timings obtained

through forced alignment.

Model

The acoustic1 and language models also match those used in Chapter 5. Briefly, the

acoustic model is a 12-layer TDNN-F model using ReLU activations. We adapt each

model for three epochs using the learning rate schedules below. The language model is

an unbiased MGB trigram model trained on 640 million words of BBC subtitle text.

For confidence score generation we also compute a unigram model from the same data.

Learning rates

We experiment with various learning rate schedules illustrated in Figure 7.3. Each is

based on the same exponentially decaying schedule:

li exp

(
i

I
log(

lf
li

)

)
, (7.5)

where li is the initial learning rate, lf is the final learning rate, and I is the total number

of iterations. We use this in the following schedules:

• Decay: this matches the batch learning rate schedule across episodes, i. e. we

consider one exponentially decaying schedule across all episodes, and the final

learning rate for each episode matches the initial learning rate for the next.

• Warm: in this case the exponential schedule is reset to the initial learning rate at

the beginning of each episode. This is similar to cyclical learning rates.

• Warm+Decay: this is a combination of both of the above, where the initial

learning rate for each episode resets to the corresponding decay learning rate for

that episode, but the final learning rate is the same across each episode.

For each schedule we use an initial learning rate of 0.00005, which is the final learning

rate of the seed model. As the final learning rate we use 0.00001 in all experiments. We

will also experiment with a three times higher initial learning rate of 0.00015.

1Kaldi-1 in Section A.3
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Figure 7.3: Learning rate schedules: decaying to match batch training (top), with warm
restarts (middle), with warm restarts and decay (bottom).

7.5. Results

We first demonstrate potential improvements in the longitudinal setup using oracle data

and different learning rate schedules in Section 7.5.1. We then look at the possible

gains by ensembling or averaging models over time in Section 7.5.2 and Section 7.5.3,

respectively. Next, in Section 7.5.4, we experiment with longitudinal adaptation with

unsupervised data and observe that the deletion penalty proposed in Chapter 5 is

important. In Section 7.5.5 we look at the possible benefits of including small amounts

of transcribed data using active learning in the longitudinal setting, when previous

data is not available. Finally, in Section 7.5.6 we show that the combination of active

learning and semi-supervised training is mutually beneficial.

7.5.1. Learning rate schedules with oracle data

Figure 7.4 shows the results with different learning rate schedules, given the number of

episodes adapted to so far (x-axis). Figure 7.5 shows the same results averaged over

time. Batch represents the case when we can pool previous data.

The choice of learning rate schedules does impact performance to a subtle degree,

but both “warm” schedules perform better than the “decay” schedule that mimics

batch learning. Note that the decaying schedules require knowing a priori the number

of future episodes2. The warm schedules are natural in the longitudinal setting, but

resemble cyclical learning rates used in other work (Garipov et al., 2018; Huang et al.,

2017; Izmailov et al., 2018; Loshchilov and Hutter, 2017). As noted above, Izmailov

2Alternatively we could choose to decay given the performance on a held-out validation set, or for
every fixed number of training steps.
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Figure 7.4: WERs when adapting to a given number of episodes chronologically in
batch or longitudinal mode. The episodes are of different difficulty, and the differences
between the methods are relatively small (see Figure 7.5). Evaluated on MasterChef
episodes from eval.long of MGB.
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Figure 7.5: Average relative WER reduction per episode compared to unadapted
(29.33%) for longitudinal setting with oracle supervision. Evaluated on MasterChef
episodes from eval.long of MGB.
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Figure 7.6: Test error surfaces (WER %) of affine combinations (weight averaging) of
models trained on the three previous episodes (P1, P2 and P3) and tested on the following
episode. That is, what is shown is the test error computed over the affine hull of the
three models: each point represents the weight-space combination α1P1 + α2P2 + α3P3,
where α3 = 1− α1 + α2 since the coefficients must sum to 1. M is the model created
by averaging with equal contributions (α1 = α2 = α3 = 1/3). Left: Decay schedule,
Middle: “Warm” schedule with the initial learning rate 0.00005, Right: “Warm” with
a high initial learning rate of 0.00015. In this case the previous and current model
perform similarly on the test set for the next episode, but their slight differences mean
that they obtain better performance when combined.

et al. (2018) and Garipov et al. (2018) argue that models stemming from such schedules

are well-suited for parameter averaging or ensembling.

In Figure 7.6 we plot test error surfaces for a selection of models by taking affine

combinations between three models in weight space and computing the error on the

following test set. The plots suggest that these succeeding models between episodes

may explore the periphery of a central point of an optimum with respect to the next

episode. This is similar to the observation made by Izmailov et al. (2018) in a similar

experiment, who also noted that this suggests that both posterior ensembling and

averaging should work well. We note that these surfaces represent one instance of one

slice of a high-dimensional space, and we should therefore not draw any bold conclusions.

Even with a high learning rate in the warm schedule we do not observe increasing error

between the models. In this particular case the warm schedules seem to place their

average in a more optimal position, despite the latest model with the decay schedule

obtaining a better WER on its own (29.0% against 29.5%).

7.5.2. Posterior ensembling

We experiment with ensembling by averaging the posteriors from the models produced

during longitudinal training. Table 7.1 and Table 7.2 show ensembles obtained using

the warm learning rate schedule, with the normal and high initial learning rates. If

we choose the best cumulative combination of models for each episode, then we obtain

on average 21.64% and 21.6% WER, respectively. This compares to 22.13% (normal)

and 23.3% (high) without ensembling. Hence, on average the possible gain with oracle
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Seed 1 2 3 4 5 6 7 8 9

26.2 21.2

27.7 20.6 21.0

25.0 16.3 16.9 17.3

31.0 23.8 23.8 23.3 23.3

30.3 22.8 22.6 22.8 22.9 22.8

28.8 21.2 21.3 21.1 21.2 21.4 21.2

34.9 26.7 26.1 26.4 26.3 26.4 26.0 26.1

35.6 29.5 28.4 28.3 28.5 28.3 28.3 28.4 28.2

24.5 17.1 16.3 16.4 15.9 15.6 15.5 15.7 15.6 15.6

Table 7.1: Posterior ensembling with the warm learning rate schedule (initial learning
rate 0.00005). Each row represents a different test episode, and each column represents
the cumulative number of models combined. For example, in the first row we have only
seen a single episode, so there is only one possible model (no combination); in the second
row we are able to combine with the most recent model to produce a combination of two
models; and by the last row we have adapted nine times, and can combine nine models in
total. The seed model was trained on news data from MGB, and the remaining training
and all evaluation was made using MasterChef episodes from eval.long from MGB.
The average error without ensembling is 22.1% (second column), the best possible is
21.6%, and ensembling all previous models is 21.9% (diagonal).

model selection is small (2-3% relative). The high initial learning rate models obtain

poorer initial performance (23.3), but produce similar results after combination, and

nearly always with combining all possible models. This is in line with the observation by

Huang et al. (2017) that in some cases the cyclical learning rate schedule leads to worse

performance when using a model on its own, but that the diversity of the ensembles

makes up for the difference. On average, the difference between the best results of the

ensembles with different initial learning rates is small. One strategy could be to use a

higher initial learning rate, and then combine all possible models at every time step.

This corresponds to the diagonal in the tables, and would produce an average error

of 21.62%. The caveat is that each added model is another expensive computation to

obtain posteriors.
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Seed 1 2 3 4 5 6 7 8 9

26.2 21.4

27.7 21.6 20.8

25.0 17.1 16.7 16.8

31.0 24.9 24.1 23.2 22.6

30.3 23.9 23.2 23.3 22.9 22.6

28.8 22.1 20.9 20.4 20.6 20.2 20.0

34.9 29.3 28.2 27.3 26.4 26.4 26.3 26.1

35.6 31.3 29.7 29.7 29.6 29.0 28.9 28.7 28.4

24.5 18.3 17.5 17.0 16.2 15.8 15.8 15.9 15.8 15.9

Table 7.2: Posterior ensembling with the warm learning rate schedule (initial learning
rate 0.00015). Each row represents a different test episode, and each column represents
the cumulative number of models combined. For example, in the first row we have only
seen a single episode, so there is only one possible model (no combination); in the second
row we are able to combine with the most recent model to produce a combination of two
models; and by the last row we have adapted nine times, and can combine nine models in
total. The seed model was trained on news data from MGB, and the remaining training
and all evaluation was made using MasterChef episodes from eval.long from MGB.
The average error without ensembling is 23.3% (second column), the best possible is
21.6%, and ensembling all previous models is 21.6% (diagonal)

7.5.3. Weight averaging

The posterior ensembling results above, along with the analysis in Section 7.5.1, suggest

that these models should be well suited for weight averaging. As noted, Izmailov

et al. (2018) argue that when a sequence of models are close together in weight space,

posterior ensembling and parameter averaging should have similar properties and yield

similar results. Table 7.3 and Table 7.4 indeed show similar results to the above, and

in some cases (shaded blue) we see the best results having combined the same models

as with posterior ensembling (Table 7.1). Again, the learning rate schedule with the

more aggressive initial learning rate (0.00015) obtains worse errors to begin with, but

produces similar results when averaged, with a more predictable pattern: we can choose

to always average every possible model (diagonal), and obtain an average WER of 21.7%

compared to 23.3% without averaging for the models in Table 7.4. This is nearly the

same error as with posterior ensembling above, but as noted without the computational

overhead.



7.5. Results 86

Seed 1 2 3 4 5 6 7 8 9

26.2 21.2

27.7 20.6 21.1

25.0 16.1 16.9 17.5

31.0 23.8 23.7 23.4 23.2

30.3 22.8 23.0 22.8 22.9 23.0

28.8 21.2 21.3 21.1 21.3 21.4 21.7

34.9 26.7 26.1 26.8 26.4 26.5 26.4 26.6

35.6 29.5 28.6 28.8 28.8 28.6 28.7 28.5 28.4

24.5 17.1 16.4 16.4 16.1 15.6 15.2 15.5 15.5 15.7

Table 7.3: Weight averaging with the warm learning rate schedule (0.00005). Each
row represents a test episode, and each column represents the cumulative number of
models that have been averaged. Blue cells match the best cells for posterior ensembling
in Table 7.1. The average error without model averaging (first column) is 22.1%, the
best possible is 21.63%, and averaging all previous models (diagonal) is 22.04%. The
seed model was trained on news data from MGB, and the remaining training and all
evaluation was made using MasterChef episodes from eval.long from MGB.

Seed 1 2 3 4 5 6 7 8 9

26.2 21.4

27.7 21.6 20.7

25.0 17.1 16.9 16.6

31.0 24.9 24.2 23.0 22.7

30.3 23.9 23.5 23.6 23.1 22.9

28.8 22.1 20.8 20.6 20.7 20.5 20.5

34.9 29.3 28.2 27.2 26.5 26.4 26.1 26.3

35.6 31.3 29.9 29.4 29.1 28.7 28.6 28.2 28.2

24.5 18.3 17.7 16.9 16.7 16.4 15.9 16.0 16.0 16.0

Table 7.4: Weight averaging with the warm learning rate schedule (0.00015). Each
row represents a test episode, and each column represents the cumulative number of
models that have been averaged. Blue cells match the best cells for posterior ensembling
in Table 7.2. The average error without model averaging (first column) is 23.3%, the
best possible is 21.67%, and averaging all previous models (diagonal) is 21.7%. The
seed model was trained on news data from MGB, and the remaining training and all
evaluation was made using MasterChef episodes from eval.long from MGB.



7.5. Results 87

7.5.4. Semi-supervised training

The experiments so far has used oracle targets. We next show how much more difficult

it is to adapt to the first pass targets. We find it critical to include a deletion penalty in

the HCLG (as in Chapter 5) when generating supervision lattices. Table 7.5 shows the

effect of the deletion penalty. A penalty of -2 obtains the lowest WER and we use this

value for the remaining experiments. In Figure 7.7 we compare batch and longitudinal

semi-supervised training to the oracle case (oracle numbers from Figure 7.4), as well

as the result when adapting from the seed model to each individual episode (“single”).

Longitudinal trails batch similarly for both the oracle and unsupervised case. With

semi-supervised training, the gap between batch and longitudinal diminishes, and both

significantly outperform adapting anew to each episode.
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Figure 7.7: Average relative WERs across episodes compared to the unadapted baseline
(29.33%) when adapting in batch, longitudinal, or single mode, for either semi-supervised
(penalty -2, lattices generated with baseline model) or oracle data. The improvements
from single to long and from long to batch are statistically significant (see Section 4.6)
with p < 0.001 for both oracle and semi-supervised, with the exception of long to batch
for the oracle experiment (p = 0.070).

Penalty WER (%) ins sub del

0 29.4 2.0 15.2 12.1

-1 27.4 2.1 14.2 11.1

-2 26.4 2.4 14.5 9.5

-3 28.3 3.4 15.0 9.9

Table 7.5: Effect of deletion penalty in HCLG when creating supervision lattices for
adaptation, having trained in a longitudinal, semi-supervised manner. Decoded with
non-penalised HCLG on MasterChef episodes from long.eval of the MGB corpus.
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7.5.5. Active learning

We discussed above the implications of selecting data for active learning when we are

unable to pool that data with the original training data. In this experiment we look at

the effect of using either confidence selection or random selection of the data for active

learning. We can gradually move between a random and lowest confidence setting, by

using the following selection procedure: Sample a set of k elements from all the data in

episode Vi and select the least confident sample, s∗, from the set, repeat by sampling k

elements from Vi \ {s∗} until the cardinality constraint is met. Setting k = 1 will then

equal random sampling, while k ≥ |Vi| equals lowest confidence selection.

Figure 7.8 shows the relative change in WER compared to the unadapted model,

for varying choices of k. The results show that as we move from a sampling strategy

based on random selection to confidence selection, the results deteriorate. This may be

attributed to the random selection choosing data points independently from the data,

while confidence selection biases the selection.

As a further analysis Figure 7.9 shows the fraction of the most common speakers in

test episode 10 when adapting to episode 9 using a random or lowest confidence strategy.

Since confidence selection does not sample evenly from the adaptation data distribution,

it rarely samples from the most common speaker in the data which has high confidence.
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Figure 7.8: Effect of varying k, where k = 1 equals random selection and k = |Vi|
equals confidence selection. Each circle represents an individual episode, with some
perturbation along the x-axis to aid visibility. The episodes are of varying difficulty,
hence the spread across the y-axis for each choice of k. Evaluated on MasterChef episodes
from long.eval of the MGB corpus.
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Figure 7.9: Relative improvements by speaker for confidence and random selection
between two MasterChef episodes from long.eval of the MGB corpus. The positive
y-axis represents the fraction of that speaker in data selected by confidence, by random,
or the total amount of that speaker in the adaptation set and in the test set. The
negative y-values represent the relative WER improvement having used confidence or
random selection. For example, for speaker IF, confidence selection selects a very small
amount of data, but the test set feature that speaker quite considerably. The random
selection selects about the same amount of that speaker in the adaptation set. The
result is a much improved relative performance compared to confidence selection for
that speaker.
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Figure 7.10: Comparison of average relative WERs improvement (w.r.t. 29.33%)
for different sampling strategies to select 10% of data for active learning (AL).
The last two items are the results using only active learning (no semi-supervised
(SST) data) for comparison. Evaluated on MasterChef episodes from long.eval

of the MGB corpus. Statistical significance (see Section 4.6) was measured
with p < 0.001 for the following pairs: AL-only(Conf)→AL-only(Rnd)/SST-only,
AL-only(Rnd)/SST-only→AL+SST(Rnd)/AL+SST(Conf); and with p < 0.01 for
AL+SST(Rnd)→AL+SST(Conf); for both batch and longitudinal experiments.

7.5.6. Active learning with semi-supervised training

We now include semi-supervised training on the remaining data after filtering for active

data (random and lowest confidence). Figure 7.10 compares the combined use of active

learning of 10% data with semi-supervised training (SST) on the remaining data, for

different sampling strategies. It also includes semi-supervised training on all data, and

active learning without semi-supervised training. The figure shows that active learning

combined with semi-supervised training improve significantly over both semi-supervised

and active learning on their own. Additionally, we now see that confidence selection

improves upon random selection, as expected. In addition to standard confidence

selection, the figure also shows the results when using a combination of confidences

extracted using a unigram and a trigram LM: the first sorts utterances based on the

average of both confidences, and the second sorts based on the max of each confidence.

Neither strategy has any significant effect on the results.
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7.6. Conclusions

In this chapter we have explored some traits of longitudinal learning: we have seen that

continuous training is feasible and we have shown how to perform active learning in this

setting. Specifically, we first saw that when using an effectively cyclical learning rate

schedule, the difference between longitudinal training and the batch case diminishes:

with a decay schedule mimicking that of the batch case, longitudinal improved 24.4%

WER relative over the baseline, compared to a 26.4% relative improvement with batch.

With a warm restart for each episode (cyclical), the relative improvement across episodes

was 25%, or 25.7% with the warm and decay schedules combined. Posterior ensembling

provided improvements, and one strategy would be to train with a high initial learning

rate and combine all models produced at a given time. This yielded similar improvements

to that observed with snapshot or FGE ensembling with image recognition (e. g. Garipov

et al., 2018), with reductions in the range of 2− 7% relative compared to no ensembling,

depending on the learning rate used to restart each cycle. With weight averaging we

observed similar improvements to posterior ensembling, without the computational

overhead, as also observed by Izmailov et al. (2018). We then discussed the use of active

learning in the longitudinal setting, where we observed that it is important to include

data points from semi-supervised training to avoid biasing the model. Specifically, while

semi-supervised training of all the data in the longitudinal setting improved 11.9%

WER relative upon the baseline, active learning of 10% of the data chosen by confidence

selection only reduced errors by 3.5% relative. Instead, a random selection strategy

of 10% data produced similar improvements to semi-supervised training with all of

the data. However, the combination of active learning using confidence selection, and

semi-supervised training on the remaining data yielded the best results with 16.3%

relative over the baseline.



Chapter 8

Adaptation with raw waveform

models

As we discussed briefly in Section 2.2, ASR models have long benefited from physiolog-

ically motivated feature extraction, such as MFCCs. There has been recent research

efforts into learning feature representations from raw waveforms, typically using addi-

tional neural network layers. This presents new possibilities for model-based adaptation

to acoustic factors at the feature level. The last question from Chapter 1 was to find a

parameter efficient and robust method to adapt a model to new speaker acoustics. This

chapter explores the possibilities of adaptation using an efficient parameterisation of a

neural feature extractor.

8.1. Introduction

A key component to improving ASR performance is to reduce mismatch between the

acoustic model and test data, by explicit adaptation or normalisation of acoustic factors

(see Section 2.4). Methods such as Vocal Tract Length Normalisation (VTLN) (Lee and

Rose, 1996), which aims to mitigate large variations in individual speakers’ acoustics,

scales the filterbank in standard feature extraction. There has, however, been a growing

interest in reducing the amount of hand-crafted feature extraction that is required

for acoustic modelling of speech (Palaz, Collobert, and Doss, 2013; Ravanelli and

Bengio, 2018; Sainath et al., 2015; Takeda, Nakadai, and Komatani, 2018; Tüske et al.,

2014). The motivations to learn part, or all, of the feature extractor range from aiding

interpretability (Ravanelli and Bengio, 2018; Tüske et al., 2014), to obtaining more

optimal representations for the task at hand (Sainath et al., 2013a). Jaitly and Hinton

(2011), for example, argued that low-dimensional, hand-crafted features, such as MFCCs,

may lose relevant information that is otherwise present in the original signals (e. g. phase

if only the magnitude spectrum is used).

From raw time-domain waveforms, Convolutional Neural Networks (CNNs) have

shown promising results (Hoshen, Weiss, and Wilson, 2015; Palaz, Magimai-Doss, and

Collobert, 2015; Sainath et al., 2015). It has even been demonstrated that it is possible

to learn band-pass beamformers from multi-channel raw waveforms (Hoshen, Weiss, and

Wilson, 2015), and a feature extractor learned from raw frequency representations of

92
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speech has been shown to outperform conventional methods (Ghahremani et al., 2018).

The interpretability of the learned representations, however, is sometimes limited, and

it is not always clear how to apply existing adaptation techniques. In a recent approach

called SincNet, Ravanelli and Bengio (2018) propose to constrain the CNN filters learned

from raw time-domain signals, by requiring each kernel to model a rectangular band-

pass filter (other choices of filters have since been studied, e. g. Loweimi, Bell, and

Renals, 2019). The authors show that using a constrained set of parameters representing

positions and widths of filters yields improved efficiency, and that the filters are more

easily interpretable.

This chapter proposes to make use of these characteristics for the adaptation of raw

waveform acoustic models: we would like efficient, compact representations that are

quick to estimate and cheap to store. We explore whether we can obtain this by adapting

the cut-off frequencies, and the gains of the filters in SincNet. To our knowledge this

filter has not previously been used for the purposes of adapting an existing model.

The SincNet layer may be particularly well suited for speaker adaptation, as the lower

layers closer to the input are known to carry more speaker information than the other

layers (Mohamed, Hinton, and Penn, 2012; Swietojanski and Renals, 2014). Section 8.2.1

will show that adapting this parameterisation of the CNN filters has similarities to,

and crucial differences from, VTLN, feature-space MLLR (CMLLR) (Gales, 1998),

and LHUC (Swietojanski, Li, and Renals, 2016). VTLN, in particular, has been

used to mitigate large variations in vocal tract length for the recognition of children’s

speech (Potamianos and Narayanan, 2003). The following experiments will show that

adapting SincNet from adult to child speech yields VTLN-like scaling functions of the

filter frequencies.

There are related approaches that aim to learn, and update filterbanks on top of

e.g. raw spectra (Sainath et al., 2013a; Sainath et al., 2015; Seki et al., 2018; Seki,

Yamamoto, and Nakagawa, 2017). As argued in those papers, fixed filterbanks may not

be an optimal choice for a particular task. Sailor and Patil (2016) indeed show that

a convolutional RBM model learns different centre frequencies depending on the task

at hand. The work herein is perhaps most closely related to Seki et al. (2018), who

proposed to adapt a filterbank composed of differentiable functions such as Gaussian or

Gammatone filters. They demonstrated more than 7% relative reductions in WER when

adapting to speakers in a spontaneous Japanese speech transcription task. The present

work differs in that it adapts the SincNet layer, which operates on raw waveforms, rather

than power spectra.

We start by reviewing the formulation of SincNet in Section 8.2. Section 8.3 presents

the experimental setup, with a SincNet model and an MFCC based model for comparison.

In Section 8.4 we present the results, adapting adult speech models to child speech,

either as domain adaptation or by speaker. We find that adapting the SincNet layer

considerably improves performance of the previously mismatched model. Section 8.5

concludes the chapter.
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Figure 8.2: The Fourier transform of a rectangular function is a sinc-function.

8.2. SincNet

The idea of SincNet (Ravanelli and Bengio, 2018) is to parameterise the CNN filters

using rectangular band-pass filters in place of standard CNN filters for raw-waveform

acoustic models. A rectangular band-pass filter is constructed by subtracting two

rectangular low-pass filters from each other, as illustrated in Figure 8.1, where the ideal

rectangular filter is:

Π(s) = rect(s) =

 0, if |s| ≥ 1
2

1, if |s| < 1
2 .

(8.1)

Further, the Fourier transform of a rectangular function is a sinc function,

Π̂(t) = sinc(t) = sin(t)/t, (8.2)

as shown in Figure 8.2.

Hence, a rectangular filter with lower and upper cut-off frequencies fl and fu has

the following time-domain representation, represented as the difference between two

low-pass filters:

g[n, fu, fl] = 2fu sinc(2πfun)− 2fl sinc(2πfln). (8.3)

Consequently, the number of parameters per filter is reduced from having to model

every tap of each filter (i. e. the filter length) to only having to model two: the cut-off
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Figure 8.3: Bandpass filterbank in SincNet.

frequencies of the filters, regardless of the filter length. A set of filters becomes a learnable

filterbank of approximately rectangular filters. Figure 8.3 shows the corresponding time-

and frequency-domain filters of the constructed filterbank.

As in Ravanelli and Bengio (2018), Hamming windows (Oppenheim and Schafer,

1975) are used to smooth discontinuities towards the edges:

w[n] = 0.54− 0.46 cos(
2πn

L
), (8.4)

where L is the filter length. Consequently, the final forward pass for speech input x[n]

with one filter is1:

y[n] = x[n] ? gw[n, fu, fl] = x[n] ? w[n] g[n, fu, fl]. (8.5)

An example of learned filters are shown in Figure 8.4.

A related method by Seki, Yamamoto, and Nakagawa (2017) replaced the standard

Mel-filterbank during feature extraction of MFCCs with differentiable Gaussian filters

on top of power spectra, enabling the learning of centre frequencies, bandwidths and

gain. SincNet also learns a filterbank, but in the time-domain on raw waveform features.

For SincNet, Ravanelli and Bengio (2018) chose not to explicitly model the gain of each

filter, as it can be readily learned by later parts of the neural network. Experiments

later in this chapter will experiment with adapting the filter gains to speakers.

8.2.1. Relationship with VTLN, fMLLR and LHUC

A learnable filterbank has close relationships with other well-known methods, as also

previously highlighted by Seki, Yamamoto, and Nakagawa (2017). In this chapter we

suggest to update the SincNet filterbank for each speaker. This strongly resembles

VTLN (Lee and Rose, 1996), which aims to compensate for varying vocal tract lengths

1? (star) denotes cross-correlation, compared to ∗ (asterisk) for convolution. The difference is a
filter flip which does not affect the learning of the weights. PyTorch (and most toolkits) implement
convolution as cross-correlation:
https://pytorch.org/docs/stable/nn.html#convolution-layers.

https://pytorch.org/docs/stable/nn.html#convolution-layers
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Figure 8.4: Examples of learned bandpass filters in the time-domain.

among speakers (see Section 2.4). It accomplishes this by scaling, or warping, the centre

frequencies of the filters in the Mel-filterbank. Consequently, adapting the parameters

of the SincNet layer resembles VTLN with a few key differences:

1. SincNet operates in the time-domain, and uses corresponding rectangular filters

rather than triangular filters as in the Mel-filterbank;

2. VTLN typically uses a scaling function that is assumed to be piece-wise linear

with a single slope parameter, α (as shown in Figure 2.12), whilst if adapting

SincNet, the effective learned scaling functions are less constrained.

3. The slope parameter α is typically determined with a grid search (although, there

exist more sophisticated methods such as gradient search (Panchapagesan and

Alwan, 2006)). With SincNet we can learn the scaling function using gradient

descent.

In the original SincNet formulation (Ravanelli and Bengio, 2018), the gains of the

filters are held fixed. Downstream layers can learn to scale the contributions of the filters.

However, the filter gains may be suitable targets for adaptation for which we would

like to attribute importance to the output of individual filters with a small number

of parameters. This has similarly been done with learnable filterbanks in traditional

feature extraction pipelines (Seki et al., 2018). We also briefly note that if we were

to scale the gain of each filter, then this would be structurally similar to a version of

feature-space MLLR (CMLLR) (Gales, 1998) with a diagonal matrix and no bias, or
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similarly to LHUC (Swietojanski, Li, and Renals, 2016) which scales the output of each

neuron by a scalar r(i) for filter i:

h(i)[n] = r(i)
L−1∑
l=0

x[l] g(i)w [n− l], (8.6)

where h(i) is the layer output for filter i, x is the raw waveform input, and gw is the

windowed filter function from Equation 8.5. Clearly, we can view the scalars, r(i), as

either scaling the features, the gain of the filters, or the output of the layer.

8.3. Experimental setup

The baseline models are built using the AMI corpus (Carletta, 2007), which contains

about 70 hours of training data from fictitious design team meetings (see Section 4.4

for further details and Section B.4 for example transcripts). HMM-GMM systems are

trained with the Individual Head-Mounted Microphone (IHM) stream using Kaldi (Povey

et al., 2011) following the recipe for AMI2.

Child speech from the British English PF-STAR corpus (Batliner et al., 2005) is used

as adaptation data, which in total consists of roughly 14 hours of data of read children’s

speech (see Section 4.5). The children are aged between 4–14, with the majority being

8–10 years old. The data contains a fair amount of mispronunciation and hesitation,

making recognition challenging (see Section B.5 for example transcripts). It is clearly

mismatched to the AMI data, in terms of what is spoken, the speaking style, and the

acoustics of the speakers (see e. g. Fainberg et al., 2016).

SincNet acoustic model

The neural network acoustic model3 is detailed in Table 8.1. The first layer consists of

40 Sinc filters, each with length 129 as has been used previously in a speech recognition

task (Loweimi, Bell, and Renals, 2019). We experimented with different methods of

initialising the upper and lower frequencies of each filter as follows:

1. Mel-scale as in Ravanelli and Bengio (2018): the lower frequencies of the filters

are linearly interpolated between the corresponding mels of fmin and fmax, with

fu[i] = fl[i− 1];

2. Uniformly at random in the same range: fl ∼ U(fmin, fmax), and fu[i] = fl[i− 1].

When sorted by centre frequency, this scheme in effect becomes linear (e. g.

fu[i] = afu[i− 1] for some constant a);

3. Flat with fl = fmin and fu = fmin + b for each filter (randomness is induced by

the layers above).

2github.com/kaldi-asr/kaldi/tree/master/egs/ami
3Corresponding to Keras-2 in Appendix A.

github.com/kaldi-asr/kaldi/tree/master/egs/ami
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# Type Dim Size Dil Params

1 SincConv 40 129 - 80

- MaxPooling - 3 -

2 BN(ReLU(Conv)) 800 2 1 68,000

- MaxPooling - 3 -

3 BN(ReLU(Conv)) 800 2 3 1,284,000

- MaxPooling - 3 -

4 BN(ReLU(Conv)) 800 2 6 1,284,000

- MaxPooling - 3 -

5 BN(ReLU(Conv)) 800 2 9 1,284,000

- MaxPooling - 2 -

6 BN(ReLU(Conv)) 800 2 6 1,284,000

7 ReLU(Conv) 800 1 1 640,800

8 Softmax(Conv) 3976 1 1 3,184,776

Table 8.1: SincNet model topology. In total there are 9,029,656 parameters (including
BatchNorm).

For each scheme we set fmin = 30 Hz and fmax = sr/2 − (fmin + b), where sr is the

sampling rate (16 kHz in our experiments), and b = 50 is the minimum bandwidth. The

remaining layers consist of six 1-D convolution layers with ReLUs, each with 800 units.

Kernel sizes and dilation rates are shown in Table 8.1. BatchNorm (BN) layers (Ioffe

and Szegedy, 2015) are interspersed throughout. The final softmax layer outputs to

3,976 tied states.

The models are trained using Adam (Kingma and Ba, 2015) with a batch size of

256 and a learning rate of 0.0015, unless noted otherwise. The waveforms are sampled

as in Loweimi, Bell, and Renals (2019) and Ravanelli and Bengio (2018): 200 ms

windows with a shift of 10 ms, i.e. the input size to the network is 16, 000 ∗ 0.200 =

3200. The models are implemented and trained using Keras (Chollet et al., 2015) and

Tensorflow (Abadi et al., 2016). Decoding and scoring is performed using Kaldi (Povey

et al., 2011). The experimental code is publicly available4.

Standard acoustic model

A comparison model5 was built on standard 40-dimensional MFCCs with cepstral

mean normalisation. Excluding the SincNet layer, the topology otherwise matches that

described above and in Table 8.1. Empirically it was important to train this model for

slightly longer – good results were obtained after 9 epochs with early-stopping, instead

of 6. The remaining training schedule and decoding setup was identical. A crucial

difference from the corresponding Kaldi recipe is using cepstral mean normalisation

4https://github.com/jfainberg/sincnet_adapt.
5Corresponding to Keras-1 in Appendix A.

https://github.com/jfainberg/sincnet_adapt
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instead of LDA and no speed perturbation. Cepstral mean normalisation was required

to have comparable unadapted performance on PF-STAR.

To perform VTLN, a standard grid-search evaluation on eval/test from PF-STAR

was used to select a warping factor in the range 0.70 to 1.25 with a step size of 0.01.

Language model

As the acoustic and language models for AMI are greatly mismatched to PF-STAR, we

interpolate the standard AMI language model based on AMI and Fisher (Cieri, Miller,

and Walker, 2004) data, with the training data from PF-STAR. This is similar to other

literature working with PF-STAR (Dubagunta, Kabil, and Doss, 2019). As noted in

Section 4.5, however, there is some overlap in the sentences between training and test

sets for PF-STAR, i.e. training a LM on the training set causes some data leakage.

For this chapter this is not critical, given that the main interest is the acoustic model

mismatch. Without the biased LM, the combined effect of a mismatched LM, and a

mismatched AM, produced WERs greater than 90% in preliminary experiments.

The LM is a 3-gram model with Kneser-Ney discounting, estimated on the PF-STAR

training set using the SRILM toolkit (Stolcke, 2002). This is interpolated with the

AMI model, giving the latter a weight of 0.7. The vocabulary is restricted to the top

150k word types from an interpolated 1-gram model. Finally, the interpolated model is

pruned with a threshold of 10−7.

8.4. Results

The results using models trained on AMI are shown in Table 8.2. The various ini-

tialisation schemes produce quite similar WERs, but, perhaps surprisingly, the Mel-

initialisation performs least well. The differences are, however, less than 2% relative.

Overall, these results are roughly 5% absolute worse than those produced with cross-

entropy systems in the corresponding Kaldi recipe for AMI. A key difference may be

the use of speed perturbation for data augmentation (Ko et al., 2015). The models are

slow to train, and improving training speed is suggested as an area for future work.

Figure 8.5 demonstrates how the initialisation schemes lead to different final responses

in the filters. The flat initialisation is essentially forced to change significantly, otherwise

each filter would extract identical information. After training it begins to approximate

a Mel-like, non-linear curve. This is in line with similar research (Sailor and Patil,

2016; Sainath et al., 2015). It was noted in Section 8.3 that the uniform initialisation

effectively creates a linear initialisation. It remains largely linear after training, with

some shifts in higher frequencies, and changes to bandwidths: it already covers the

relevant frequency range and consequently does not need to change as much as the

uniform initialisation. It is perhaps surprising that it does not move towards a non-linear

relationship between the centre frequencies like most auditory filterbanks. Note also
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Model Eval Dev

SincNet - Mel 30.6 28.0

SincNet - Flat 30.2 28.0

SincNet - Uni 30.3 27.9

SincNet - Mel (fixed) 30.5 27.9

MFCC CMN 31.0 28.0

Table 8.2: Baseline results (%) on AMI having initialised the SincConv layer using
either flat, Mel or uniform initialisation. Differences are subtle, with Mel-initialisation
performing least well. Also shown is a system trained on MFCC features with cepstral
mean normalisation (CMN).

that each response is markedly different, yet the corresponding WERs are similar. Both

of these phenomena may be explained by the ability of the downstream network to

learn to use the extracted features in different ways (Seki et al., 2018). Figure 8.6

demonstrates that using a larger number of filters than 40 (e.g. 128), yields no benefit

to WERs; instead, the filter bandwidths become quite erratic. The model trained from

a flat initialisation are used for the remaining experiments.
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Figure 8.5: Upper and lower learned frequencies per filter with different initialisation
schemes, after six epochs of training on AMI. In contrast to Mel and Uniform, Flat is
forced to change in order to extract different information in each filter.
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Figure 8.6: Cut-off frequencies per filter for filterbanks with 40-filters or 128-filters
after training with a Mel-initialised filterbank, plotted against their respective centre
frequencies.
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Model WER (%)

SincNet-AMI 68.19

SincNet-PF-STAR 20.46

SincNet-AMI Adapt+BatchNorm 29.90

SincNet-AMI Adapt–BatchNorm 31.65

MFCC-AMI CMN 60.20

MFCC-AMI CMN VTLN (α = 0.84) 37.06

Table 8.3: Results WER (%) on the PF-STAR test set, after having adapted the
SincConv layer in the AMI model for a single epoch. A model trained from scratch on
the PF-STAR training set is shown for reference. The models have 40 filters that were
initialised flat.

8.4.1. Domain adaptation to children’s speech

We next investigate supervised domain adaptation of the SincConv layer from AMI to

PF-STAR (from adult speech to child speech). As shown in Table 8.3, the AMI model

is initially highly mismatched with PF-STAR, with a WER of 68.19%, which aligns

with what is expected from the literature (Potamianos and Narayanan, 2003). A model

trained from scratch on PF-STAR is included as reference, which obtains 20.46% WER.

Adapting the SincConv layer of the AMI model for a single epoch to the training set of

PF-STAR reduces the error rate to 31.65%.

Also shown is the effect of updating the statistics of the BatchNorm layers. Freezing

the BatchNorm layers demonstrates that the primary improvement comes from adapting

the 80 parameters in the SincConv layer. The BatchNorm layers are frozen in all

experiments that follow. This experiment shows that it is possible to effectively adapt

a very small number of parameters in the model, improving the out-of-domain model

by over 50% relative, and coming within 12 percentage points of a model trained from

scratch with all 9M parameters. Adapting the SincConv layer amounts to adapting

less than 0.0009% of the total number of parameters in the model (see Table 8.1). We

also compare with the standard MFCC model, which unadapted performs better than

the unadapted SincNet AMI model, with a WER of 60.20% compared to 68.19%. The

VTLN grid search further improves the error rate to 37.06%, but does not match the

adapted SincNet model which produced an error rate of 31.65%.

Figure 8.7 shows that adapting the SincConv layer shifts the upper frequency

distribution of the filters, and their bandwidths. This is reflected in the corresponding

VTLN function, shown in Figure 8.8. This suggests that the model has adjusted to

higher frequency content in the children’s speech data. Figure 8.9 shows average power

spectra from the corresponding log-mel filterbank features of AMI and PF-STAR which

supports this notion.

Note that the VTLN-like function (Figure 8.8) is nearly piecewise-linear; i. e. similar
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Figure 8.7: SincNet filters before and after domain adaptation to PF-STAR.
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Figure 8.8: SincNet centre frequencies after domain adaptation, plotted against the
unadapted frequencies (i. e. VTLN-like function).
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Figure 8.9: Average log-mel filterbank spectra for random subsets of AMI and PF-STAR
data. The shaded region denotes plus-minus one standard deviation.

Params/utterances 0 1 2 3 20

Sinc 68.19 56.67 47.87 40.36 31.06

All–Sinc 68.19 56.70 47.42 35.89 21.34

All+Sinc 68.19 54.55 44.21 32.83 18.92

Table 8.4: Results WER (%) on the PF-STAR test set given the number of adaptation
utterances when adapting from the AMI baseline model. ±Sinc indicates whether the
SincNet layer was included in the trainable parameters. For small amounts of data,
WERs are similar between adapting all parameters and adapting only the SincNet layer.
As the amount of data increases, adapting all parameters yield larger improvements
than adapting only the SincNet layer.

to the assumptions made during typical use of VTLN. However, it was here obtained

through backpropagation instead of a grid-search or other methods.

Table 8.4 demonstrates the effect of the number of adaptation utterances. As the

amount of data increases, adapting all parameters (excluding SincConv) produces lower

error rates, as should be expected. The models begin to diverge at about three utterances

(roughly 1 minute for PF-STAR).

8.4.2. Speaker adaptation

A more realistic, practical scenario, is to adapt to a few utterances obtained per

speaker rather than per domain. In these experiments the AMI model is adapted to

12 individual speakers in PF-STAR’s eval/adapt set, testing on the corresponding

speakers in eval/test. The results are shown in Figure 8.10 which shows the evolution
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Figure 8.10: Speaker adaptation over epochs with various techniques. The unadapted
model obtains 59.06% WER.

with the number of epochs of adaptation. LHUC0 indicates using LHUC on the output

of the SincConv layer (40 parameters; equivalent to the gain of the filters), and LHUC1

is LHUC on the output of the first CNN layer (800 parameters). A learning rate of 0.8

is used for LHUC0 and LHUC1, as LHUC can characteristically use very large learning

rates without overfitting (Klejch, Fainberg, and Bell, 2018; Swietojanski, Li, and Renals,

2016). When using LHUC1 in combination with SincConv, the standard 0.0015 learning

rate is used for SincConv, but a multiplier of 500 for LHUC. However, this was not

found beneficial for Sinc+LHUC0, for which the same learning rate was used for both

sets of parameters.

The un-adapted WER is 59.06% on eval/test. Adapting the 80 parameters of

the SincConv layer yields only slightly worse results than LHUC1 with 10 times fewer

parameters. Interestingly, the two are complementary, as demonstrated by Sinc+LHUC1,

and at best produces WERs similar to adapting all 9M parameters. ALL-Sinc and

ALL+Sinc are more sensitive to overfitting as evident from the figure.

Adapting the gain of the filters (LHUC0) improves substantially over the unadapted

model, but does not provide similar performance to any of the other approaches.

One factor may be that the these parameters were fixed during the training of the

baseline model as in Ravanelli and Bengio (2018), hence the rest of the network may

have compensated by other means. It is, however, complementary with adapting the

filterbank frequencies, with Sinc+LHUC0 slightly outperforming Sinc. A summary of

the results after adapting for eight epochs is shown in Table 8.5.
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Method Adapted params WER (%)

Unadapted - 59.06

Sinc 80 20.34

LHUC0 40 32.37

Sinc+LHUC0 120 19.93

LHUC1 800 18.33

Sinc+LHUC1 880 16.52

ALL-Sinc ∼ 9M 14.92

ALL+Sinc ∼ 9M 14.09

Table 8.5: Results WER (%) adapting from the AMI baseline model to individual
speakers in the PF-STAR eval/adapt set for 8 epochs. Tested on corresponding
speakers in eval/test. ±Sinc indicates whether the SincNet layer was included in the
trainable parameters. Adapting the SincNet layer yields large reductions in WERs in a
parameter efficient manner. Adapting the SincNet layer and the LHUC parameters in
the next layer is complementary. All results are statistically significant with p < 0.001
with respect to the unadapted baseline; the pairs LHUC1 / Sinc+LHUC1 and All-Sinc
/ All+Sinc are not statistically significant under the matched pairs test, but have
probabilities of improvement of 99% and 94.5%, respectively (see Section 4.6).

Figure 8.11 shows VTLN-like functions obtained from the adapted SincConv layer to

each speaker. There is a clear difference between each function, which is in line with what

one might expect given the variability of the acoustics of children’s data (Potamianos

and Narayanan, 2003).
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Figure 8.11: Corresponding VTLN scaling functions obtained from adapting the SincNet
layer for individual speakers (colours). The majority of the scaling occurs in the higher
frequencies.

8.4.3. Unsupervised speaker adaptation

Thus far we have demonstrated the utility of adapting the SincNet layer in a supervised

adaptation setting. Next we show results for an identical setup as the speaker adaptation

experiments in the previous section, but replacing the supervised adaptation targets

with targets obtained through a recognition pass with the baseline model. With a high

baseline error rate, and consequently inaccurate adaptation targets, there is a risk of

overfitting to incorrect data. Techniques such as LHUC (see Section 2.4) are more robust

to overfitting by limiting the number of adaptation parameters, or the expressivity of

adaptation. Adapting the SincNet layer admits a different type of expressivity, also

with a small number of parameters.

Figure 8.12 shows the results of adapting to first pass targets, with otherwise

identical setups to the previous section, except that we have reduced the learning rate

for All+Sinc and All-Sinc to 15e-5. With a baseline model with such a high error rate, it

is unsurprising that adapting to such targets does not yield nearly as good performance

as adapting to the oracle targets above. However, in contrast to the oracle results, it is

clear that adapting all parameters is no longer the best option, showing clear signs of

overfitting with an increasing number of epochs, after an initial improvement in the first

epoch. This may be controlled by early-stopping on a held-out validation set. However,

note that adapting the 80 parameters in the SincNet layer yields lower error rates,

without obvious signs of overfitting – demonstrating a similar robustness as that is

known for LHUC (see Swietojanski, Li, and Renals (2016)). Further, perhaps due to the

different expressivity of the different techniques, we observe again that the adaptation
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Figure 8.12: Unsupervised speaker adaptation over epochs with various techniques.
The unadapted model obtains 59.06% WER.

of LHUC and SincNet parameters is complementary. Table 8.6 summarises the results.

8.5. Conclusions

This chapter proposed to adapt a SincNet layer as a parameter-efficient method which

proved robust to large changes in speaker acoustics with first-pass tarets. The ex-

periments have shown that adapting the filterbank frequencies from raw waveforms

with SincNet is extremely parameter efficient, obtaining substantial improvements in

WERs with a fraction of the total model parameters on a children’s speaker adaptation

task. It is also complementary with the standard LHUC technique, producing results

similar to adapting all 9 million model parameters (excluding the filterbank layer). In

unsupervised speaker adaptation experiments, adapting the SincNet layer demonstrates

a robustness to errors from a first pass decode, similar to that known for LHUC. The

parameterisation of SincNet further affords interpretability during adaptation: for

domain adaptation to children’s speech, the layer learns to pay more attention to higher

frequencies. Similarly for speaker adaptation, the change in the filter frequencies in

effect resembles VTLN, producing individual scaling functions for each speaker. Finally,

it was noted that adapting the gain is related to LHUC and CMLLR, and this proved

complementary to adapting the filterbank frequencies.

Future work could explore the use of meta-learning (as in Klejch, Fainberg, and

Bell, 2018) to learn filter-specific learning rates and explore the layer’s response to other
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Method Adapted params WER (%)

Unadapted - 59.06

Sinc 80 52.66

LHUC0 40 56.79

Sinc+LHUC0 120 53.28

LHUC1 800 53.69

Sinc+LHUC1 880 51.11

ALL-Sinc (1 epoch) ∼ 9M 54.36

ALL+Sinc (1 epoch) ∼ 9M 54.26

Table 8.6: Unsupervised adaptation results WER (%) adapting from the AMI baseline
model to individual speakers in the PF-STAR eval/adapt set for 8 epochs, except those
that include all parameters, which were stopped after 1 epoch. Tested on corresponding
speakers in eval/test. ±Sinc indicates whether the SincNet layer was included in the
trainable parameters. All results are statistically significant with p < 0.001 with respect
to the unadapted baseline; the addition of Sinc to LHUC0 and to LHUC1 are both
significant with p < 0.01 (see Section 4.6).

factors such as noise. Finally, if we consider adapting the SincConv layer as a neural

analogue of VTLN, one may envisage extending this to related techniques such as Vocal

Tract Length Perturbation (VTLP) for data augmentation (Jaitly and Hinton, 2013).



Chapter 9

Conclusions

In Chapter 1 we commented on the increasing ubiquity of ASR technology in everyday

applications. We noted that many challenges still remain, such as handling mismatch

between training and test time conditions, or mismatch with transcriptions. In other

words, we required methods of robustly learning acoustic representations when facing

changing acoustic conditions, and inexact supervision. This meant both improving the

use of mismatched or inaccurate training data as well as suitable updating methods.

We identified four key challenges that we explored in the chapters that followed:

1. Light supervision. How may inaccurate transcripts be used effectively during

training?

In Chapter 5 we showed that inaccurate transcripts can yield significant improvements

to WERs in a robust manner, when combined in a particular way with semi-supervised

training. Specifically, the agreement between hypotheses from semi-supervised training

and the transcripts informs the model of the uncertainty in the supervision, and we

were able to implement this core idea with a simple FST algorithm. This technique

proved robust to errors in the transcripts, which otherwise increased WERs if trained

on directly.

2. Factorised adaptation. How can feature representations be factorised, such

that they can be combined in novel combinations at test time?

Even with perfect transcriptions we need to consider changing contexts, such as com-

binations of speakers and their environments. In Chapter 6 we demonstrated that

neural networks trained to classify a particular factor, such as a speaker, implicitly

and effectively factor out nuisance factors, such as an environment, in the internal

representations of the network. The corresponding bottleneck features were shown to

be robust when combined in novel combinations at test time, without performance

degradation.

3. Longitudinal learning. When data is ephemeral, how well does a model improve

with continuous training, and what are the implications for active learning?

With longitudinal training the context from which the data originates is continuously

changing. In Chapter 7 we saw that restarting the learning rate schedules per longitudinal

110
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time-step (or episode) helped bridge the gap in performance with the batch case with

pooled data, and that a model trained in this way obtains performance just shy of the

batch case. The corresponding models further combined well over time, either with

posterior ensembling or weight averaging. To perform active learning in this setting,

it was required to combine the transcribed low-confidence data with the remaining

untranscribed data as in semi-supervised training.

4. Adaptation. What is a parameter-efficient, robust way to adapt a model to new

speaker acoustics, such as child speech?

Updating a model to account for changing contexts may require compact representations.

In Chapter 8 we demonstrated that the parameterisation of the SincNet layer lends

itself well to adaptation from adult speech to child speech, with a transform that can be

interpreted as adjusting for vocal tract length. Adapting this compact set of parameters

proved very effective, and even more so when complemented with LHUC. Finally, its

compact representation proved robust to errors in first-pass adaptation targets, yielding

considerable improvements that still were complementary with LHUC.

9.1. Future work

Next we discuss possible extensions and ideas for further experiments with the methods

introduced in the thesis.

Light supervision

Perhaps the most interesting avenue of future work is the use of light supervision in

end-to-end models. We discuss this below, followed by ideas to improve the lattice

combination algorithm itself.

Light supervision with end-to-end models. Semi-supervised and lightly-

supervised training with end-to-end models is an open research topic. A direct appli-

cation of existing techniques is to train on best path hypotheses obtained with hybrid

systems (Li et al., 2019), for which the language model can be readily biased as in

standard lightly-supervised training. Without involving a hybrid system, one approach

is to filter based on confidence scores obtained using dropout (Dey et al., 2019). To bias

the output with light supervision, one could use various language model fusion methods

(see e. g. Chorowski and Jaitly, 2017; Kannan et al., 2018; Toshniwal et al., 2018). In

general, fusion methods could be used to produce lightly-supervised hypotheses that

could be filtered using MER. However, we should perhaps also consider ideas that do not

have immediate correlates in previous work with hybrid models. For example, maybe

light supervision with end-to-end models means to extract representations that are

robust to alignment and transcription errors. In this vein Karita et al. (2018) propose

to train end-to-end models in a semi-supervised manner on unpaired speech and text
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datasets, by using a shared text-to-speech and text-to-text model. Another possible

direction is to consider teacher-student methods with a confidence weight to dynamically

choose between a teacher’s posteriors and a transcription (Meng et al., 2019).

If we were to consider applying lattice combination directly, the application would

depend on the architecture. Connectionist Temporal Classification (CTC) models can

easily incorporate WFSTs both during training and decoding (Miao, Gowayyed, and

Metze, 2015; Sak et al., 2015b; Soltau, Liao, and Sak, 2016). For example, Sak et al.

(2015b) proposed to compute the forward-backward algorithm for a phone-based CTC

model over a transducer S ◦L◦C, where S encodes the output labels and their posteriors

for each time frame (akin to U in Section 3.2), L is a linear transducer of the target

label sequence, and C allows for repetitions and blank labels within the phone sequences.

This is similarly possible for word-based models (Soltau, Liao, and Sak, 2016). It would

be trivial to replace L with a lattice of supervision.

With encoder-decoder models, WFSTs in general feature less (although they are

often used for contextual, or biased, decoding (Hall et al., 2015; Williams et al., 2018))

and due to the continuous hidden states, the models produce decoding trees, rather than

lattices, with the exception of some particular decoder architectures with discrete hidden

states that enable state recombination (Zapotoczny et al., 2019). If we were to obtain a

hypothesis lattice, either from a hybrid seed-model or from such a decoder architecture,

the question remains how to incorporate that lattice into training. Perhaps a lattice

could be included within methods that attempt to directly minimise the expected

WER (Prabhavalkar et al., 2018) (this also applies to CTC models, e. g. Graves and

Jaitly, 2014); or individual paths could be sampled and used as labels, similar to the

idea of sampling labels from an ensemble (Kahn, Lee, and Hannun, 2020) or using

dropout (Dey et al., 2019), for semi-supervised training of encoder-decoder models.

Lattice combination efficiency. We noted in Chapter 5 that the lattice com-

bination algorithm in its current implementation could become unwieldy with large

vocabularies, specifically that the number of transitions in the edit-transducer grows

with the square of the size of the vocabulary. In most applications this would not pose a

problem, because the vocabulary can be restricted to the union of the transducers that

are combined. We also noted that the time during lattice combination was negligible

compared to generating hypothesis lattices. However, should it be required, it would be

reasonably straightforward to factor the edit-transducer into two components in such a

way that the transitions grow linearly with the vocabulary size.

Improved use of paraphrases. We did not observe any particular improvements

using a 2-pass lattice combination setup with the transcriptions augmented by para-

phrases. This may partly be attributed to a poor match of paraphrases to the data, and

partly to the fact that our implementation only allows paraphrases at the word level.

There are therefore two interesting paths to extend this work. The first is to collect, or

extract, better paraphrases that more closely suit the data at hand. There is a wide

range of existing literature to explore, with different techniques given the available
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data, such as using a pivot language on parallel texts (Bannard and Callison-Burch,

2005), obtaining paraphrases between multiple variations of the same text (Barzilay

and McKeown, 2001), or distributional methods on a single body of text (Liu, Gales,

and Woodland, 2014; Pereira, Tishby, and Lee, 1993). A pitfall to keep in mind is that

introducing new words into the transcription may result in lattice combination choosing

ASR errors in the hypothesis lattice, should the introduced words match. However, this

is arguably unlikely to occur at any scale if the paraphrases are sufficiently different

phonetically to the original transcriptions. The second path of extension is to modify the

algorithm to handle phrases, and not just individual words. Paraphrases at the phrasal

level may prove much more powerful, and are also arguably more common. Theoretically

it would be possible to include these directly into the existing framework, but care

would need to be taken to avoid a dramatic expansion of computational requirements.

A core part of such work may therefore focus on how to obtain a suitable, but compact,

set of paraphrases for the task at hand.

Factorised adaptation

Key directions of research include improving the method of extraction, and to enable

the use in more realistic applications.

Improved factorised representations. A limitation of the proposed method in

Chapter 6 is that it yields orthogonality only implicitly. As we saw in the experiments,

the nuisance factors were not completely factored out of the resulting representations.

However, the results were still promising, and it would be interesting to see whether

further improvements could be obtained. One approach could be to apply an adversarial

objective, using e. g. a Gradient Reversal Layer (GRL) (Ganin and Lempitsky, 2015;

Ganin et al., 2016). Shinohara (2016) used a GRL with a multi-task objective to

encourage invariance to noise conditions in the internal representations of an acoustic

model. Another avenue of interesting research is to look at work done on disentangling

factors of variation using, for example, autoencoders (Cheung et al., 2015; Makhzani

et al., 2016). With autoencoders we could feed environment (or other nuisance factors)

class labels into the decoder. The latent representations produced by the encoder would

then be required to model the remaining variation in the data, and these could possibly

serve as factorised representations that could be used for training acoustic models.

Towards realistic applications. The proposed method requires labels for both

factors of variation (speakers and environments). More realistic datasets will not contain

such labels. Ideally, we would like to adapt using factorised representations on data

such as the MGB corpus. If multi-modal data is available, then one possible idea is to

consider cross-modal disentangling (Nagrani et al., 2020), which makes use of correlations

between video and audio content to learn disentangled embeddings. Alternatively, there

is work on unsupervised disentangling from a single modality, such as InfoGAN (Chen

et al., 2016), which makes use of a Generative Adversarial Network (GAN) (Goodfellow
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et al., 2014) to learn latent representations of the data, but with a modification to the

objective that encourages meaningful representations. An advantage to unsupervised

learning of the factors, is that the delineation into two axes of variation by speakers

and environments is not necessarily optimal from an acoustic modelling perspective. In

this framework it is also trivial to add additional possible factors to the model.

Longitudinal learning

Many aspects of longitudinal learning are still unexplored. Of particular interest

is observing the evolution over longer time-spans. We then propose to break down

longitudinal learning into studying individual factors across time.

Experiments over longer time-spans. We observed in Chapter 7 that the

differences between the batch case, where we could pool previous data, and longitudinal,

were not particularly large. However, the results suggested that these differences grew

with time. In our experiments we had chosen the TV show with the largest number of

episodes from the MGB corpus, yet it would be interesting to go much beyond this. One

possibility would be to use TED talks1 and experiment with longitudinal training over

a long time span. Such data would also provide a useful means of analysis: we expect

the model to improve given that the scenario is fairly static with one host, one speaker

and an audience in the same room from talk to talk. Yet, the identity of the speaker

changes, while the host (usually) does not. In the longer time-span, large differences

may emerge between the batch case and longitudinal training. As we have noted, it is

possible to see the difference as simply due to the ability to shuffle data across time. It

would be interesting to better quantify this difference and to look for principled ways to

correct for it.

Longitudinal learning for individual factors. We experimented with longitu-

dinal adaptation to episodes as a whole. However, it may be interesting to instead learn

representations for individual factors across time. For example, we may observe speakers

come and go, some recurring and some occurring only once. Using unsupervised speaker

diarisation, it may be interesting to incrementally update representations (e. g. LHUC

or i-vectors; Section 2.4) for each factor independently. Moreover, we may use ideas

from Chapter 6 on factorised adaptation: it may be that the same acoustic environment

occurs repeatedly across time, while the speakers change.

Adaptation

Below we present ideas for further experiments and to improve the model in general.

Exploring the relationship to VTLN. We discussed how the SincNet layer is

similar to a neural, unconstrained version of VTLN. Building on this analogue, it

would be interesting to explore even more compact parameterisations, such as the

use of a single warping parameter as in standard VTLN. Another interesting line of

1www.ted.com.

www.ted.com
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work is to consider data augmentation with the SincNet layer, taking inspiration from

VTLP (Jaitly and Hinton, 2013).

Improved training. Perhaps a limitation of SincNet for adaptation is that adap-

tation only occurs on an input layer. Skip-transitions (He et al., 2016) could perhaps

be used to more directly impact higher layers. It would also be interesting to explore

how fast different filters in the filterbank need to adapt. For example, we could apply

meta-learning to learn filter-specific learning rates (Klejch, Fainberg, and Bell, 2018).

This may perhaps also benefit unsupervised adaptation with SincNet. Finally, we could

pretrain the SincNet and surrounding layers to create an improved feature extractor with

a technique similar to wav2vec (Schneider et al., 2019), which trains a raw-waveform

model to distinguish future samples from distractor samples.

Looking ahead

We started this thesis with four research questions, or challenges. In light of the

results and the above discussion, we can propose new questions that build on the work

presented. First, it can be interesting, and of large practical benefit, to consider how

external knowledge may be applied to light supervision, such as meta-data or contextual

information (e. g. Aleksic et al., 2015) that may help inform lightly-supervised training.

Second, as we discussed above, we can consider how we can discover and untangle factors

of variation in data without explicit supervision such as a priori environment classes.

This is a key component to using factorised representations in many real applications.

But perhaps the key challenge is to combine these ideas, along with improved longitudinal

training and efficient raw-waveform modelling. That could culminate into a system that

efficiently and robustly adapts over time, that makes the best use of any supervision

available, and that can make effective use of factors of variations interleaving over time.



Appendix A

Models

Throughout the thesis we may refer to certain models as Kaldi-X or Keras-X, where X

indicates the model ID. The following sections provides a brief overview of each model

and provides the recipe URLs (if any) at the time of writing. The models labelled

Kaldi are trained in Kaldi (Povey et al., 2011), the ones labelled Keras are trained

using Keras (Chollet et al., 2015) and Tensorflow (Abadi et al., 2016).

Optimisers

We did not discuss optimisers in Chapter 2, but below we list the optimisers used in the

experiments. Kaldi uses its own variation of natural gradient (Amari, 1998) which may

convergence faster than standard Stochastic Gradient Descent (SGD) (Povey, Zhang,

and Khudanpur, 2014). Adam (Kingma and Ba, 2015) is an algorithm for adaptive

learning rates based on the first and second moments of the gradients.

A.1. Kaldi-Libri

This is a standard TDNN-F model for Librispeech, mentioned in Chapter 2, shown in

Table A.1. It obtains 8.76% WER on test-other. The recipe is available here:

github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/chain/

tuning/run_tdnn_1d.sh.

Feature Details

Input 40 dim. LDA + 100 dim. i-vectors

Layers 16 x TDNN-F+BN 1536 units w/ 160 bottleneck

Splicing Most layers [−3,+3]

Activations ReLU

Dropout Schedule: 0.5 at 20%, 0 at 50%

Objective LF-MMI + CE

Optimiser Natural gradient

Table A.1: Kaldi-Libri model details. Minor details not shown.
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A.2. Kaldi-SWBD

This is a TDNN-F+LSTM model for Switchboard, mentioned in Chapter 2, shown in

Table A.2. It obtains 8.8% WER on the Switchboard portion of the eval2000 test set,

using 4-gram rescoring. The recipe is available here:

github.com/kaldi-asr/kaldi/blob/master/egs/swbd/s5c/local/chain/tuning/

run_tdnn_lstm_1l.sh.

Feature Details

Input 40 dim. LDA + 100 dim. i-vectors

Layers 7 x TDNN interspersed by 3 x LSTM, 1024 units

Splicing Most layers [−3, 0,+3]

Activations ReLU

Dropout Schedule: 0.5 at 20%, 0 at 50%

Objective LF-MMI + CE

Optimiser Natural gradient

Table A.2: Kaldi-SWBD model details. Minor details not shown.

A.3. Kaldi-1

This is a standard TDNN-F model for Switchboard, used in Chapter 5 for training

using the Scottish Parliament, shown in Table A.4. It uses unconstrained examples (see

Section 2.3.1). It obtains 28.6% WER with a biased 4-gram MGB LM on the MGB

dev.full set, and 22.8% WER with a non-biased 4-gram MGB LM on the Scottish

Parliament test set (see Chapter 4). The recipe is available here:

https://github.com/kaldi-asr/kaldi/blob/master/egs/swbd/s5c/local/

chain/tuning/run_tdnn_7p.sh.

Feature Details

Input 40 dim. LDA + 100 dim. i-vectors

Layers 11 x TDNN-F+BN 1280 units w/ 256 bottleneck

Splicing Layers 1-4 [−1,+1]; 5-11 [−3,+3]

Activations ReLU

Dropout Schedule: 0.5 at 20%, 0 at 50%

Objective LF-MMI + CE

Optimiser Natural gradient

Table A.3: Kaldi-1 model details. Minor details not shown.

github.com/kaldi-asr/kaldi/blob/master/egs/swbd/s5c/local/chain/tuning/run_tdnn_lstm_1l.sh
github.com/kaldi-asr/kaldi/blob/master/egs/swbd/s5c/local/chain/tuning/run_tdnn_lstm_1l.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/swbd/s5c/local/chain/tuning/run_tdnn_7p.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/swbd/s5c/local/chain/tuning/run_tdnn_7p.sh
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A.4. Kaldi-2

This is a standard TDNN model for WSJ, used in Chapter 6, shown in Table A.4. It

obtains 10.36% on dev93 and 6.72% on eval92 with a 3-gram LM trained on WSJ

training data. The recipe corresponds to most default parameters of this script at the

time of writing (see table for exceptions):

https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/nnet3/

train_tdnn.sh.

Feature Details

Input 13 dim. MFCC + 100 dim. i-vectors

Layers 6 x TDNN p-norm, in=2000, out=250

Splicing [4, 4], [0], {−2, 2}, {−4, 4}, [0]

Activations p-norm (p=2)

Dropout None

Objective CE

Optimiser Natural gradient

Table A.4: Kaldi-2 model details. Minor details not shown.

https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/nnet3/train_tdnn.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/nnet3/train_tdnn.sh
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A.5. Keras-1

This is a TDNN topology used for the AMI result in Chapter 4, shown in Table A.5

and illustrated in ??. It is trained using Keras and Tensorflow, but is similar to the

AMI Kaldi recipe:

https://github.com/kaldi-asr/kaldi/blob/master/egs/ami/s5b/local/nnet3/

run_tdnn.sh. The Keras setup is part of the work on domain and speaker adaptation

with SincNet (Ravanelli and Bengio, 2018) in Chapter 8, which is available here:

https://github.com/jfainberg/sincnet_adapt.

Feature Details

Input 40 dim MFCC

Layers 5 x 800 dim TDNN

Kernel sizes 129, 2, 2, 2, 2, 2, 1

Dilations 0, 1, 3, 6, 9, 6, 1

Activations ReLU

Dropout None

Objective CE

Optimiser Adam

Table A.5: Keras-1 model details. Minor details not shown.

A.6. Keras-2

This is a TDNN SincNet (Ravanelli and Bengio, 2018) topology used for PF-STAR in

Chapter 8, shown in Table A.6. It is trained using Keras and Tensorflow, but is similar

to the AMI Kaldi recipe without the SincNet layer:

https://github.com/kaldi-asr/kaldi/blob/master/egs/ami/s5b/local/nnet3/

run_tdnn.sh. The Keras setup is part of the work on domain and speaker adaptation

with SincNet (Ravanelli and Bengio, 2018) in Chapter 8, which is available here:

https://github.com/jfainberg/sincnet_adapt.

https://github.com/kaldi-asr/kaldi/blob/master/egs/ami/s5b/local/nnet3/run_tdnn.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/ami/s5b/local/nnet3/run_tdnn.sh
https://github.com/jfainberg/sincnet_adapt
https://github.com/kaldi-asr/kaldi/blob/master/egs/ami/s5b/local/nnet3/run_tdnn.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/ami/s5b/local/nnet3/run_tdnn.sh
https://github.com/jfainberg/sincnet_adapt
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Feature Details

Input Raw waveform 200ms

Layers SincNet (40) + 5 x 800 dim TDNN+BN+MaxPool

Kernel sizes 129, 2, 2, 2, 2, 2, 1

Dilations 0, 1, 3, 6, 9, 6, 1

Activations ReLU

Dropout None

Objective CE

Optimiser Adam

Table A.6: Keras-2 model details. Minor details not shown.
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Example transcripts

This chapter provides some example transcripts from the test sets of data presented in

Chapter 4.

B.1. Multi-Genre Broadcast corpus

As discussed in Section 4.1, the MGB corpus Bell et al., 2015 contains subtitles as

transcriptions. In the examples below we have provided both the subtitles (top) and

the verbatim transcriptions (bottom).

73.17% MER

I just can ’t believe this this is amazing you look great you

really you look I thought you were in America I thought you ’d

moved to look at you with your suit and I’m in a suit we’re in

a suit.

---

This is amazing , you [inaudible] great you really , you know I

thought you were in America I thought you ’d moved to , look at

you in your suit and I’m in a suit and we ’re in a suit.

45.45% MER

One of the most important things in my life is music.

---

The most important things in my life is music.

21.43% MER

But remember the mountain will try its utmost to shake you from

the beam.

---

But remember the mountain will try its utmost to shake you from

the beam.

121
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B.2. Scottish Parliament

As above with the MGB corpus, and as discussed in Section 4.2, the ScotParl dataset

includes subtitles as transcriptions. In the examples below we have provided both the

subtitles (top) and the verbatim transcriptions (bottom).

First item on our agenda is to decide whether to take in item

four

---

First item on our agenda is the decision whether to take agenda

item four in private

Agree to make no recommendation

---

Is it agreed that we make no recommendations thank you very much

um

Graeme will that by the senior phase is a three year experience

it is not helpful I know that you are telling me things I know

I am asking a specific question [...]

---

Graeme do you wanna come in come in Mr Scott on that I think the

senior phase by design is a three year experience so it ’s not

helpful please I know that you ’re telling me things I know I’m

asking you a specific question [...]

B.3. Wall Street Journal

The WSJ corpus (Paul and Baker, 1992), discussed in Section 4.3, contains read speech

from utterances extracted from the newspaper of the same name. Below are some

examples from the eval92 test set.

As with the rest of the regime however their ideology became

contaminated by the germ of corruption.

The company declined to comment on the results.

Even the ebullience on the floor of the New York Stock exchange

was tempered by a few gloomy thoughts.

B.4. AMI

We have selected utterances that contain more than one or two words (such as yeah,

hmm, and ok). See Section 4.4 for a discussion on the utterance lenghts in the AMI

corpus (Carletta, 2007).
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Wonder how much of the meetings is talking about the stuff at the

meetings.

If our company is if it is easily recognisable that our company

made it.

Is it everybody is going to evaluate or just the market okay.

B.5. PF-STAR

We noted in Section 4.5 that the PF-STAR corpus (Batliner et al., 2005) has somewhat

artificial utterances. Below we include three examples: lists of numbers, lists of three-

word phrases, and list of nouns.

One one six four five three five zero eight zero three three four

seven seven [...]

Confusion of sounds draw a red book I can do anything it’s got

long pink hair my birthday is in july [...]

Kid tree dog water cup car book get man girl sister day time

noise town boat [...]
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