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Abstract

The focus of this thesis is on systems that employ both flash and magnetic disks as

storage media. Considering the widely disparate I/O costs of flash disks currently on

the market, our approach is a cost-aware one: we explore techniques that exploit the

I/O costs of the underlying storage devices to improve I/O performance. We also study

the asymmetric I/O properties of magnetic and flash disks and propose algorithms that

take advantage of this asymmetry. Our work is geared towards database systems; how-

ever, most of the ideas presented in this thesis can be generalised to any data-intensive

application.

For the case of low-end, inexpensive flash devices with large capacities, we propose

using them at the same level of the memory hierarchy as magnetic disks. In such

setups, we study the problem of data placement, that is, on which type of storage

medium each data page should be stored. We present a family of online algorithms that

can be used to dynamically decide the optimal placement of each page. Our algorithms

adapt to changing workloads for maximum I/O efficiency. We found that substantial

performance benefits can be gained with such a design, especially for queries touching

large sets of pages with read-intensive workloads.

Moving one level higher in the storage hierarchy, we study the problem of buffer

allocation in databases that store data across multiple storage devices. We present our

novel approach to per-device memory allocation, under which both the I/O costs of the

storage devices and the cache behaviour of the data stored on each medium determine

the size of the main memory buffers that will be allocated to each device. Towards

informed decisions, we found that the ability to predict the cache behaviour of devices

under various cache sizes is of paramount importance. In light of this, we study the

problem of efficiently tracking the hit ratio curve for each device and introduce a low-

overhead technique that provides high accuracy.

The price and performance characteristics of high-end flash disks make them per-

fectly suitable for use as caches between the main memory and the magnetic disk(s)

of a storage system. In this context, we primarily focus on the problem of deciding

which data should be placed in the flash cache of a system: how the data flows from

one level of the memory hierarchy to the others is crucial for the performance of such a

system. Considering such decisions, we found that the I/O costs of the flash cache play

a major role. We also study several implementation issues such as the optimal size of

flash pages and the properties of the page directory of a flash cache.
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Finally, we explore sorting in external memory using external merge-sort, as the

latter employs access patterns that can take full advantage of the I/O characteristics of

flash memory. We study the problem of sorting hierarchical data, as such is necessary

for a wide variety of applications including archiving scientific data and dealing with

large XML datasets. The proposed algorithm efficiently exploits the hierarchical struc-

ture in order to minimize the number of disk accesses and optimise the utilization of

available memory. Our proposals are not specific to sorting over flash memory: the

presented techniques are highly efficient over magnetic disks as well.
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Chapter 1

Introduction

In this thesis we explore the design of systems equipped with both magnetic and flash

disks. In particular, we study how a database system, or any other data-intensive appli-

cation can take advantage of the properties of flash disks in a hybrid setup to increase

I/O performance.

Flash memory has emerged as a high-performing and viable alternative to mag-

netic disks for data-intensive applications. In the near future, commodity hardware

is expected to incorporate both flash and magnetic disks as storage media. In light

of this development, fundamental principles of data storage and management need to

be revisited, as all existing database systems and algorithms have been designed with

disks consisting of rotating platters in mind: as such, they aim to avoid random ac-

cess patterns at all cost. This is no longer a requirement if the systems are to operate

over flash memory or over both magnetic and flash disks. What is more, traditional

algorithms do not account for the update in-place inefficiency of flash memory and as-

sume symmetric read and write costs: this is not at all the case for flash memory. The

work presented in this thesis is geared towards hybrid storage systems, i.e., systems

equipped with both flash and magnetic disks. In particular:

• We explore how a flash disk can be used at the same level of the memory hier-

archy as a magnetic disk in a hybrid setup and propose algorithms to adaptively

decide placement of data in the most efficient medium, according to the work-

load of data.

• We study the problem of main memory buffer allocation in systems that store

data across multiple storage devices to minimize the I/O cost by taking into ac-

count both the cache behaviour of the workload of the system and the I/O costs

1



2 Chapter 1. Introduction

of the storage devices.

• We present an analytical study about how a system can utilize a flash disk as a

cache layer between the main memory buffer pool and the magnetic disk(s).

• We study the problem of sorting hierarchical data in external memory using

a generalisation of external merge-sort, as the latter results in access patterns

that can take full advantage of the merits of flash memory. Our techniques are

not specific to flash-equipped systems, but generally applicable to sorting tree-

structured databases.

1.1 Flash Memory

Flash chips. Flash memory is a type of electronic memory that stores information in

arrays of memory cells, called flash cells. Flash memory cells are made of floating-

gate transistors; each transistor has two gates, a control gate and a float gate. A flash

memory cell is shown in Figure 1.1. The float gate is insulated all around by an oxide

layer and is placed between the control gate and the MOSFET channel. The control gate

is on top of it. The oxide layer serves to electronically isolate the float gate and thus

the gate can trap any electrons placed on it for a very long time, ten or more years

depending on the environmental conditions. With the float gate charged, the electric

field from the control gate is partially cancelled and the threshold voltage of the cell

changes. In order to read the stored bit, a voltage between the possible threshold values

is applied to the control gate. Then, the charge on the float gate determines whether the

MOSFET channel will become conducting or remain insulating. As a result, by sensing

the flow through the channel one can reproduce the stored value.

The type of flash cells that can only sense the presence or absence of current flow

through the channel are referred to as Single Level Cells and devices that use them

are therefore called SLC devices. Each single level cell can thus store one bit of in-

formation. Flash cells that can sense the amount of current flow through the channel

are called Multi Level Cells and the devices that use them are called MLC devices. By

sensing the amount of current flow, the cell is able to precisely determine the level of

charge on the float gate; therefore such cells typically utilize four levels of voltage. As

a result, each one of these cells can store two bits of information, which leads to MLC

devices that are much more dense than SLC ones. However, both reading and writing to

a multi level cell takes longer than a single level one, as there are more voltage levels
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P

Source 
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Word Line 
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P-Type Silicon Substrate

Figure 1.1: The structure of a flash memory cell.

to be dealt with. For these reasons, SLC devices are mainly used for high performance

purposes, while MLC ones typically apply where large capacity is required.

Flash memory is divided into NOR flash and NAND flash, depending on how flash

cells are connected to form arrays. Since only NAND flash is suitable for storage de-

vices, however, for the rest of this work we refer to NAND flash simply as “flash” and

only focus on that type of flash memory. Groups of cells are organized into pages, with

the size of a page being typically 2kB or 4kB in most modern devices. A flash page is

the smallest structure that is either readable or writable on a flash disk. An empty page

has all its bits set. Writing the page implies resetting some of its bits (turning them

to 0). The opposite, i.e., setting some of the bits in the page, is not possible; rather,

the whole page has to be reset before it can be re-written to. Resetting all the bits of
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Operation SLC NAND flash (µs) MLC NAND flash (µs)

Read page 25 50

Erase block 2000 2000

Write erased page 250 900

Table 1.1: Operation costs for typical flash chips [AnandTech, 2009].

a page is referred to as erasing, but as explained below, cannot be done on a per-page

basis. Flash pages are grouped together into blocks, with a block typically consisting

of 128 pages (although 64 or 256 pages per block are quite common as well). A flash

block is the smallest structure of flash memory that can be erased. Consequently, after

a block has been erased, each one of its pages can be written to only once. In order

to overwrite a page, the whole block needs to be erased first. The typical read, write

and erase costs for a bare chip are shown in Table 1.1, both for SLC and MLC flash.

The electrical properties of flash cells result in read operations being much faster than

write operations: when the value of a NAND cell is changed, it takes some time before

it reaches a stable state. Erasing takes two orders of magnitude more time than reading

and one order of magnitude more than writing. Therefore, the need to erase incurs a

severe penalty on flash chip performance; details are discussed later on in this work.

Wearing. An important limitation of flash memory is that each flash block is only

capable of a finite number of erase cycles. After that, the block becomes unerasable

and therefore unusable, as it can never be re-written to. This limitation is referred to

as memory wearing. SLC chips have better write endurance than MLC ones; a typical

value for an SLC chip is 100k erase cycles, while of an MLC one it is about 10k erase

cycles. Lately, devices that use SLC flash chips capable of 1M erase operations have

been announced [Micron Technology Inc., 2008].

Prices. The price of flash memory has been rapidly declining over the last few years,

at an annual rate of 30%-40% or more [StorageSearch.com, 2006]. Market analysts

predict that this price drop will continue for the coming years, although it will not be

as dramatic [Denali, 2009]. The per-gigabyte price of bare MLC flash memory chips

is shown in Figure 1.2 for the last few years; projected prices are also shown for the

near future [StorageSearch.com, 2008], [Denali, 2009]. From more than 1000 $/GB,

the price of MLC flash memory has now dropped to less than 2 $/GB and is expected to

reach 0.5 $/GB by the end of 2013. Projections for SLC prices follow a similar trend,

being about twice as expensive as for MLC chips. The cost of flash memory is thus
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Figure 1.2: Flash memory price trend.

approaching that of magnetic disks, thereby making SSDs a cost effective alternative to

traditional storage media.

1.2 Flash Disks

Flash disks, also known as Solid State Drives, or SSDs, are storage devices that package

multiple flash memory chips into a single enclosure. Apart from the bare chips, such

devices also include a controller, supported by several DRAM buffers. The controller

translates system read and write requests to actual read, erase and write operations on

the flash chips. In addition, the disk controller employs sophisticated algorithms and

techniques (discussed later on) to hide the complexities of flash memory from the user

and improve I/O performance. A sample flash disk, in the form factor of 3.5 inches in

diameter, is shown in Figure 1.3 (as shown in [Wikipedia, 2009]).

The most important characteristics of flash disks can be summarised as follows:

• I/O interface. At the operating system level, SSDs behave identically to magnetic

disks, as they are accessed through the same I/O interface. The on-disk controller

provides a standard I/O interface, usually either an IDE or a SATA one, and trans-

lates system commands to flash memory operations. Typically, the unit of I/O

operations on a flash disk is a sector of 512 bytes, which is equal to the size of a

magnetic disk sector (for most magnetic disks).

• No mechanical latency. Flash disks are purely electronic devices and have no

mechanical moving parts. The time needed to access a data item on a flash disk

is independent of its position on the physical medium, i.e., access latency does
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Figure 1.3: A sample flash disk.

not depend on the access pattern. Additionally, access latency is orders of mag-

nitude less than the random access latency for mechanical disks. Both properties

present great opportunities for performance gains over magnetic disks.

• I/O asymmetry. Due to the electrical properties of flash chips, reading is much

faster than writing, even when writing to clean pages (i.e., ones that have been

already erased), as becomes evident from Table 1.1. For most flash disks the

read speed is two to four times as much as their write speed.

• Erase-before-write limitation. The most important limitation of flash disks

is due to the erase-before-write limitation of flash pages: a sector cannot be

overwritten. Rather, the whole flash block to which it belongs has to be erased

first. Before erasing, all sectors of the flash block, even the ones that have not

been updated, need to be read and stored in-memory. After the erase operation

these sectors and the updated one(s) need to be rewritten. Considering that an

erase operation is at least an order of magnitude more expensive than a read or a

write, updating a disk sector becomes quite costly.

• Wear levelling. The disk controller employs wear-levelling techniques to allevi-

ate the effect of flash chip wearing on the lifetime of the device. Such techniques

spread writes evenly across all flash chips in the device and across all flash blocks

in the same chip, thereby preventing some blocks from wearing out too early, and
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prolonging the overall lifetime of the disk. Assuming an 128GB flash disk, ca-

pable at writing at 80MB/s and a write endurance of 100k times, it would take 5

years of continuous writing before the flash chips wear out using wear-levelling.

Considering that constantly writing to the disk for 5 years is not likely to occur in

practice, the actual lifetime of the device would be much longer. Nevertheless, 5

years is already longer than most magnetic disks are used for, as they usually get

replaced sooner than that for reasons that have to do with capacity, performance

and energy efficiency. Thus, flash chip wearing does not limit the suitability of

flash disk as a replacement for magnetic disks.

• Energy efficiency. Being purely electronic devices, solid state disks have low

power consumption and generate little heat when in use. These features make

SSDs ideal for mobile devices such as mobile phones, laptops, MP3 players and

sensors. Energy efficiency is also desirable in enterprise environments; electric-

ity costs amount up to 70% of the operational and cooling costs of a modern data

center [HP Labs, 2006]. Recently, a great deal of research focuses on using SSDs

in servers, as they have been shown to consume almost an order of magnitude

less power than enterprise-class magnetic disks [Narayanan et al., 2009], while

at the same time reduce the need for cooling.

• Physical properties. The lack of mechanical moving parts gives flash disks

some additional advantages over traditional magnetic disks. Since no spin-up is

required, they incur faster start-up times than magnetic disks. Also, flash mem-

ory is able to endure extreme shock, vibration, temperature and high altitude,

making flash disks resistant to extreme environmental conditions. The operation

of flash disks is completely silent and they are smaller and lighter than magnetic

disks. In addition to their low power consumption, these properties make SSDs

perfectly suitable for the requirements of mobile devices.

Performance and prices. Manufacturers are striving to produce high-performance

flash disks at low prices; a wide range of devices have appeared on the market, with

various price and performance characteristics. Each device incorporates many dice

of flash chips to reach a capacity of tens or hundreds of gigabytes, as the capacity

of each die is usually in the order of 8-16 gigabytes. The flash chips used in all SSDs

have the same performance characteristics, as the latter are determined by the electrical

properties of flash cells, i.e., all bare SLC chips have almost identical performance as
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do all MLC chips, too. The performance of SSDs therefore only depends on the number

of flash chips they use, the disk controller and the size of on-disk DRAM.

The peak performance of each individual chip ranges between 5 - 40 MB/s. In or-

der to achieve higher performance, suitable for data intensive applications, flash disks

employ parallelism: they read and write in parallel to many flash chips. The controller

spreads data to many flash chips in parallel, or even to the whole drive. Then, for reads

and writes in large enough chunks, the performance boost is proportional to the de-

gree of parallelism. Controllers that support 4-8 channels can be found in commodity

disks today, while enterprise products can have 10 channels or even more. The disk

controller employs sophisticated techniques to avoid as many block erasures as possi-

ble. Some controllers use the on-disk DRAM to cache user data for faster access, while

others choose to only store page mapping tables in DRAM, i.e., the logical-to-physical

page mapping. Larger DRAM buffers allow for a finer-grained mapping, thus giving the

controller more opportunities for optimisations when writing data. Most disks also use

redundant flash chips, i.e., the total capacity of the flash chips in the drive is more than

the capacity the user sees. The redundant flash chips are used for overwriting dirty

blocks: the controller will place incoming data to a spare erased block without having

to stall until the dirty block has been erased; dirty blocks are erased in the background.

Random writes. Performing small random writes on a flash disk is the most inefficient

way of writing data. Assume a flash disk in which each block is 512kB and there is one

512kB DRAM buffer for the disk controller to use. When performing large sequential

writes, i.e., ones larger than 512kB, for a block write request of 512kB the controller

needs to erase at most one block, if there are no clean blocks left on the device or the

logical-to-physical address mapping is one of block granularity. On the other hand,

when writing 512kB in packets of 4kB scattered all over the logical address space,

there will be 128 write requests. If the controller logical-to-physical mapping is one

of block granularity and all 4kB requests target different logical blocks, 128 block

erase operations have to be performed; before each such operation, existing data on

the block need to be read and merged with the new data and after the erase operation,

the whole block has to be re-written. Thus, writing 512kB randomly in chunks of

4kB results in 128 block reads, erasures and writes. The situation can be alleviated if

the logical-to-physical address mapping is a finer one, that is of page granularity; the

controller waits until it has received 128 chunks of 4kB each, and then writes on the

same physical block with at most one erase operation and at the same time keeps track

of which logical block each 4kB chunk belongs to. This technique however is not very



1.2. Flash Disks 9

Device Seq. Read Seq. Write Random Read Random Write Price
(MB/s) (MB/s) (MB/s) (MB/s) $/GB

FusionIO ioDrive 564 440 408 404 30

Intel X25-E 240.1 191.7 56.5 31.7 20

Intel X25-M 230.2 71 54.2 23.1 8.1

OCZ Vertex 250.1 93.4 32 2.41 4.5

OCZ Summit 208.6 195.2 29.1 0.77 2.8

JMicron JMF602B 134.7 87.1 16.2 0.02 2.69

Samsung 101.4 83.5 21.4 0.53 2.7

WD VelociRaptor 118 118.9 0.55 1.63 0.76

Seagate Momentus 77.9 76.6 0.28 0.81 0.15

Table 1.2: Sample SSD performance and cost characteristics (4KB I/O operations).

practical, as this mapping requires 128 times more DRAM memory buffers to maintain

the mapping. It may also slow down reads, as in order to read a logical block, many

physical ones will have to be read. In general, accelerating flash writes is a very hard

problem and many tradeoffs are involved. Techniques towards that goal are discussed

in more detail in Chapter 2.

In Table 1.2 we show the price and performance characteristics for seven SSDs and

for two magnetic disks currently in the market ([AnandTech, 2009], [FusionIO, 2008]).

The top seven disks on the table are SSDs, while the bottom two are magnetic ones. All

operations are carried out in chunks of 4kB: random reads were performed across the

whole disk, while random write tests span 8GB on each disk (except for the FusionIO

disk, for which both tests span the whole disk). For sequential access patterns, the

performance of all flash disks varies by less than an order of magnitude. The disparity

in random read performance across flash disks is wider, but no more than two orders of

magnitude. For random writes, on the other hand, performance ranges from 0.02MB/s

to 404MB/s, that is, within more than four orders of magnitude. The per-gigabyte price

of the SSDs also varies within a little more than an order of magnitude. The FusionIO

SSD is an enterprise-class device; it supports an impressive random write throughput at

a rather high price. The remaining six flash disks are consumer-class, although some

of them are suitable for commodity servers as well. The WD VelociRaptor is an enter-

prise class 10000 RPM magnetic disk, while the Seagate Momentus is a commodity

magnetic disk, spinning at 5400 RPM.

Clearly, there are many different classes of flash disk, especially with respect to
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their random write performance and price. Some of those outperform magnetic disks

at randomly writing data by several orders of magnitude. Others, on the other hand, are

almost two orders of magnitude slower at random writes than magnetic disks. There

are SSDs that are faster at both sequentially reading and writing than magnetic ones;

some SSDs are faster at sequentially reading but not at writing; others are worse than

magnetic disks at both reading and writing sequentially. As a result, the term “flash

disk” incorporates many different classes of device with respect to performance and

price. Therefore, one cannot make specific assumptions about the efficiency of flash

disks in general on a given access pattern. What is more, one can find many flash disks

in the market that are outperformed by magnetic ones under various workloads. It is

only random read workloads that all flash disks outperform magnetic ones.

1.3 Hybrid Systems

In this work we explore and evaluate how the designer of a database system can take

advantage of this merit of flash disks to boost the I/O performance in a hybrid setup,

i.e., when both magnetic and flash disks are present. Deciding the role of a flash disk

in the memory hierarchy of a hybrid system is not straightforward. The performance

of RAM memory both in terms of access latency and transfer throughput is better than

the performance of flash memory. The same holds for its spatial density, power con-

sumption and cooling costs [Graefe, 2007]. Not surprisingly, its price is also higher.

On the other hand, magnetic disks are much cheaper than flash disks; of course, their

performance and operational characteristics are much worse. Nevertheless, there are

notable exceptions to this, as shown in Table 1.2, in which magnetic disks outperform

SSDs in random writes.

The design process for such a hybrid system is not a simple one. Should the de-

signer consider the SSD as a part of main memory, i.e., as an extended buffer, or as

persistent storage? Given a specific budget, is one better off investing in DRAM only?

Should one buy a small but very fast solid state disk or a larger (but slower) one? Such

questions are crucial for the performance of the system, but cannot be given univer-

sally optimal answers. For instance, if one can buy enough DRAM to fit the working

set of all the workloads that are likely to run on the system, then obviously one should

go only with DRAM. Barring that, if the workloads are write-intensive it makes sense

to invest in a high-performance flash disk to use as a cache, instead of an inexpensive

one. In the general case it is neither easy nor safe to make decisions based on intuition;
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even more so as both price and performance characteristics of flash disks are constantly

changing.

1.3.1 Data Placement

In the first part of this work, we focus on hybrid systems that incorporate low-end

flash disks with high capacities, i.e., ones that outperform magnetic disks at random

reads, but fall behind when writing randomly. We propose using the flash disk and the

magnetic disk at the same level of the memory hierarchy, i.e., the flash disk is not used

as a cache for the magnetic disk. We show that important performance benefits can be

gained with such a design, especially for queries touching large sets of pages with read-

intensive workloads. We study the problem of optimal placement of each data page

(i.e., whether it should reside on the flash or on the magnetic disk) both from a practical

and a theoretical perspective. We present a family of online algorithms that can be

used to dynamically decide the optimal placement of each data page. Our algorithms

adapt to changing workloads for maximum I/O efficiency. We have implemented all

proposed algorithms and conducted an extensive experimental study. The results show

that our algorithms can significantly improve I/O performance over both magnetic-disk-

only and flash-disk-only setups, and for database workloads that frequently occur in

practice.

1.3.2 Buffer Allocation

Next, we study the problem of buffer allocation in databases that store data across

multiple storage devices. In such systems, devices share the same main memory

for caching. The in-memory pages are managed independently for each device. We

present our novel approach to per-device memory allocation. We introduce the metric

of device caching utility for the data of each device. It is determined by the hit ratio

for that data and the I/O costs of the host device. We propose a technique for mea-

suring hit distances in the cache, which enables fast and accurate tracking of the hit

ratio curve for each device. Our technique is applicable to all systems that can bene-

fit from hit ratio curve tracking. As a first step, we present a static, parameter driven

algorithm for partitioning the cache among devices. Then, we generalize this to a dy-

namic, on-line algorithm for near-optimal buffer allocation to devices, which takes into

account device I/O characteristics. The dynamic algorithm adapts to changing work-

loads and is self-tuning: no parameters need to be set externally. Our experimental
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evaluation in a variety of configurations shows that utility-aware memory buffer allo-

cation yields substantial -in some cases dramatic- improvement in both synthetic and

real-world workloads. Equally important is that our techniques are able to effectively

offset wrong data placement decisions.

1.3.3 Caching on flash memory

Next, we explore how a flash disk can efficiently act as a page cache between the main

memory and the magnetic disk. We study the problem of deciding which data should

be placed in the flash cache of a system. We identify and propose three invariants

for the sets of pages cached either in main memory or on flash. For each invariant, the

flow of pages between levels of the memory hierarchy is different. We present the page

flow scheme of each invariant and an I/O-based cost model for the scheme. We discuss

several implementation issues that arise when using a flash disk as a cache: (a) the

page directory for the cache, (b) the size of flash pages, and (c) caching only pages

that satisfy specific predicates; we show the correlation between each alternative and

the properties of the flash disk. We have implemented our proposals and conducted

an extensive experimental study. Our results show that most questions regarding flash-

resident caches cannot be given universally optimal answers; rather, our cost model

should be used to answer such questions for each individual case with confidence.

1.3.4 Sorting hierarchical data in external memory

We also study the problem of sorting in external memory using external merge-sort,

as the latter employs access patterns that can take full advantage of the I/O character-

istics of flash memory. We generalise the problem of sorting to hierarchical data, as

such is necessary for a wide variety of applications including archiving scientific data

and dealing with large XML datasets. We do not specifically focus on sorting using

flash memory; our work is applicable to traditional systems as well. An algorithm that

generalises the most widely-used techniques for sorting flat data in external memory

is presented. The algorithm efficiently exploits the hierarchical structure in order to

minimize the number of disk accesses and optimise the utilization of available mem-

ory. We extract and verify the theoretical bounds of the algorithm with respect to the

structure of the hierarchical dataset. We implemented the algorithm and conducted

a detailed experimental study of its performance for both archiving and stand-alone

sorting; we include a comparison to the state-of-the-art approaches. Our results show
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that our algorithm outperforms the competition by a large margin and its performance

is the one expected from its theoretical analysis. Though motivated by sorting scien-

tific datasets for archiving purposes, the algorithm is general and efficient enough to

be applicable in a variety of problems where the need for sorting arbitrary hierarchical

datasets arises.

1.4 Organisation

The rest of this thesis is organised as follows. Related work in the area of data storage

and management on flash memory is presented in Chapter 2. In Chapter 3 we present

our work on efficient data placement in hybrid systems and in Chapter 4 we introduce

our techniques for main memory buffer allocation in systems that use many storage

devices. Our analytical study for the case of using a flash disk as a cache to the under-

lying magnetic storage is presented in Chapter 5. Our approach to sorting hierarchical

data in external memory is presented in Chapter 6. We conclude and discuss future

work in Chapter 7.





Chapter 2

Related Work

In this chapter we present previous research work on flash disks with respect to flash

disk internals, storage over flash disks in general and database specific operations, such

as indexing and query evaluation.

2.1 Flash Disk Performance Evaluation

In [Bouganim et al., 2009], the authors systematically study the performance char-

acteristics of flash disks to identify the most favourable I/O patterns with respect to

database workloads. They propose a benchmarking methodology for flash devices,

provide an I/O benchmark that takes into account the particular characteristics of de-

vices, and use it to evaluate a multitude of SSDs. A small number of performance

indicators have been found adequate to accurately capture the performance charac-

teristics of SSDs; in concert with our remarks of Chapter 1, the authors have found

the performance discrepancy between high-end SSDs and low-end ones very signifi-

cant in a multitude of workloads. The latency incurred by flash disks was found to be

non-negligible, even for read operations; especially when writing, applications should

opt for large I/Os. Applying the five minute rule [Graefe, 2007], the authors conclude

that I/O should be done in blocks of 32KB; what is more, by aligning these blocks

to flash memory pages, a significant performance improvement can be realised. Ran-

dom writes were found to have a detrimental effect on performance; however, when

restricted within a logical address range of 4-16MB, random writes performed nearly

as well as sequential ones. On the other hand, concurrent sequential writes to more

than 4-8 partitions caused severe performance degradation; thus, concurrent sequential

writes should be limited to few partitions.

15
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The performance of flash disks and its impact on algorithms is discussed exten-

sively in [Ajwani et al., 2008]. The authors found flash disks to yield a better random

read performance than magnetic disks, but a much worse random write one. Also, the

algorithms designed for both main memory and magnetic disks were found to perform

sub-optimally over flash memory, as they do not exploit the full potential of the novel

medium. In accordance with the findings of [Bouganim et al., 2009], aligning write

requests to block boundaries was experimentally verified to substantially improve ran-

dom write performance; block alignment, however, did not help at random and se-

quential reads and random writes. In the authors’ view, modelling the I/O cost of an

algorithm on flash memory could use the standard external memory model as a base

and distinguish between read and write operations. By applying a penalty for write

accesses or different transfer block sizes the model could account for the special prop-

erties of flash memory. With a similar goal, the author of [Ross, 2008] proposes the

“Erase-Once-Write-Many” model for analysing algorithms operating over flash disks.

The analysis utilises the incremental 1-to-0 in-place updates that flash memory cells

are capable of: an on-disk counter can be implemented, for instance, in a unary form

by the number of zero bits indicating the count. In that case updating the value of

the counter does not require re-writing the page. Departing from this simple idea, the

author develops more efficient schemes for representing counters and more complex

data structures such as linked lists, bloom filters and B-trees.

2.2 Accelerating Random Writes

A great deal of research has focused on increasing the throughput of flash disks when

writing small chunks in a random fashion across a large portion of the address space.

As discussed in Chapter 1, the erase-before-write limitation makes random writes in-

efficient. Flash disk controllers try to minimise the effect of this limitation on random

writes; to that end, they employ a software layer called the Flash Translation Layer

(FTL). Its main purpose is to provide logical-to-physical address mapping, power-

off recovery, and wear-levelling. In [Agrawal et al., 2008] the authors conducted a

simulation-based evaluation of flash disks using traces extracted from real hardware:

they found that the hardware and software components of flash disks can equally af-

fect the overall performance. In the authors’ view, appropriately-designed flash disks

can be used to support OLTP workloads, such as TPC-C. Thus, it is conceivable that the

appliances used today for such purposes, which typically employ hundreds of spinning
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disks, will be replaced by high-performance flash disks.

Different FTL algorithms are studied in [Chung et al., 2006]; with regard to their

logical-to-physical address mapping they are categorised into three categories: sector

mapping algorithms, block mapping algorithms and hybrid mapping algorithms. In

the sector mapping case, the disk controller maintains a mapping from each logical

sector to the physical flash sector to which it has been written. The controller is free

to place a logical sector anywhere on the disk, as long as it keeps track of its location;

thus, by choosing to erase a flash block only when a block’s worth of logical data has

been received, the disk can improve its random write performance significantly. As

discussed in Chapter 1, however, sector mapping is not very practical, especially for

embedded devices, as it requires a very large DRAM memory space for the mapping to

be maintained. With block mapping, on the other hand, the logical sector offset in a

logical block is identical to the physical sector offset within the physical block. In this

case, a mapping only at block granularity is required and therefore few DRAM buffer

suffice. The downside is, of course, that if the system issues many writes to the same

logical sectors, too many erase operations are required and write performance degrades

heavily. The above give rise to a hybrid mapping scheme: the physical block to which

a logical sector belongs is first located using a block mapping table and then a sector

mapping technique to locate the sector in that physical block. The sector mapping is

not maintained in main memory for each block; rather it is stored persistently on the

block itself.

A hybrid mapping scheme is also presented in [Kim et al., 2002]. The authors pro-

pose maintaining a small number of log blocks as temporary storage for overwrites,

with each logical sector being mapped only to a certain log block (block level asso-

ciativity); a logical sector can be placed anywhere within the physical log block. The

experimental results presented show this technique to yield a substantial random write

performance improvement over block-level mapping as well as insensitivity to work-

load characteristics. In [Lee et al., 2007], the authors identify patterns under which the

aforementioned approach would result in very low space utilisation of the log buffers,

leading to log block thrashing and, consequently, many erase operations. The block-

level associativity is identified as the root cause for this weakness, and therefore the

authors of [Lee et al., 2007] propose a scheme for fully associative translation between

logical sectors and log blocks; under such a mapping the space utilisation of log blocks

is increased. The improved log block utilisation guarantees a reasonable performance

even with a small number of log blocks. In addition, the fully associative design en-
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ables the controller to avoid some block merging operations. Experiments show that

write performance can be improved by as much as 50%. In [Birrell et al., 2007], it

is argued that increasing the amount of volatile RAM on flash disks is the only way

to achieve acceptable random access write performance and present a design for flash

disks with large volatile buffers.

Write Performance vs Wear Levelling. To allow for low-latency write operations,

a flash disk requires some block to be clean upon the write request. The more clean

blocks are available, the more write requests can be served without waiting for an

erasure. Therefore, the flash disk controller tries to continuously reclaim invalidated

(or, obsolete) sectors, i.e., sectors that have been updated, with their up-to-date version

having been written in a different block. This procedure is referred to as garbage

collection or block reclamation. For instance, if 10 blocks, having 640 sectors in total,

only contain 150 valid sectors, the controller will gather the 150 valid sectors into its

main memory and erase all 10 blocks. The 150 sectors will then be packed into 3 of

the newly erased blocks and the remaining 7 blocks will remain clean for the controller

to use in future writes.

Interestingly, as pointed out in [Gal and Toledo, 2005], the goals of write perfor-

mance and wear levelling are often contradictory with respect to garbage collection.

Assuming a block that contains data that remain relatively unchanged over time, i.e.,

the block does not get overwritten, it is in the interest of the garbage collection algo-

rithm not to touch that block: since its sectors are valid, that is, up-to-date, no space

can be reclaimed from that block. Hence, reading, erasing and rewriting the sectors

of the block incurs cost that will never be amortised. The more static the data of the

block, the less frequently the garbage collection mechanism should touch it. In the

interest of wear levelling, on the other hand, by reclaiming the static block, its data can

be moved to another erase unit that has been heavily erased in the past, thereby reduc-

ing the future wear for the other unit over time. Hence, garbage collection and wear

levelling essentially have contradicting goals. The additional write operations incurred

due to garbage collection and wear levelling are referred to as write amplification.

In [Hu et al., 2009] the authors present a probabilistic analysis of write amplification.

Their simulation results show that write amplification heavily affects both the random

write performance and the aging of the SSD. Distinguishing static from dynamic data

and storing it in separate flash blocks was found to significantly reduce amplification;

more so, as the portion of static data grew. In addition, the authors study the effect of

over-provisioning, i.e., equipping the flash disk with more capacity than is visible to
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the user: the extra flash blocks can be used as log blocks to speed up writes. According

to their simulation results, providing the disk with 20% extra flash blocks can reduce

write amplification by more than 50% when random writes are uniformly distributed

in the logical address space.

In [Lee et al., 2009], the authors describe the major architectural characteristics of

three classes of flash disk manufactured by Samsung Electronics. The low-end class

of SSDs, targeted at personal and mobile computing platforms, aims to match the se-

quential read/write performance of commodity magnetic disks. As such, it employs

4-channel parallelism, a limited DRAM buffer (less than 1MB in size) and thin provi-

sioning for extra flash blocks. The authors experimented with a device of this class

in their previous work [Lee et al., 2008] and found this class of devices capable of im-

proving the performance for the transaction log of a database, the rollback segment and

for temporary data. However, due to the lack of write buffers and over-provisioning,

random write performance was much worse than the random write performance of

magnetic disks. In our work, we propose techniques to take advantage of this class of

devices in a hybrid setup; we are not concerned with speeding up I/O operations on the

device-level.

The second class of consumer-grade SSDs described in [Lee et al., 2009] aims at

improving the random write performance for file systems, in which random writes

occur in a very limited address space. Such disks are equipped with larger DRAM

buffers (in the order of 32MB) and fat provisioning of flash storage. With the large

write buffer the number of physical writes can be reduced; using a large number of

extra blocks the number of erase operations per write is reduced as well. With these

changes, devices of this class achieve an order of magnitude increase in random write

throughput, when random writes are restricted within a one-gigabyte address space.

Moving on to the high-end class of flash disks, targeted at enterprise database systems

with a large number of concurrent I/O operations, the size of the on-disk DRAM is

further increased to about 128MB, while the number of channels is increased from 4 to

8. More importantly, the 8 channels are now allowed to process different I/O requests

in parallel; in this way, read operations do not need to wait for write operations to finish

before they can be processed. Furthermore, the high-end class of disks supports native

command queuing, i.e., an internal queue of at most 32 requests is maintained: the

controller may dynamically reschedule and reorder these requests to make the physical

access pattern more flash friendly. Devices of this class outperform magnetic disks by

several orders of magnitude.
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2.3 Databases over Flash Memory

2.3.1 Database Storage

FTL algorithms, primarily designed with file systems in mind, are not well-suited for

database workloads. As discussed in [Lee and Moon, 2007], random write operations

in file systems are mostly required for metadata. When executing typical database

workloads, however, DBMSs perform random write operations that are scattered over

the whole disk address space. To improve write efficiency for flash-based databases,

an in-page logging (IPL) scheme is proposed in [Lee and Moon, 2007]: changes made

to a data page are not written directly to disk, but to log records associated with the

page. Changes are logged on a per-page basis, while each data page and its log records

are located in the same physical block of the disk i.e., in the same erase unit. Each

erase unit is divided into a number of data pages and a number of log sectors for the

log records of the pages. In-memory representation of a page includes an in-memory

log sector (of the same size as the flash log sector). When a page is dirtied in memory,

its contents need not be written back to disk; only the log records for the page need to

be appended to the log sector for the page on disk. When the erase unit is out of free

log sectors, the logged changes are applied to the corresponding data pages in the unit.

Then, the data pages are written to a new erase unit (that has its log sectors erased).

That way, page updates only involve writing already erased log sectors. Block erasure

is required only when the log sectors of a block become full. Simulation results of the

IPL scheme show that it improves the random write efficiency of flash disks by an order

of magnitude for typical database workloads. The authors also propose an IPL-based

recovery mechanism for transactions that minimizes the cost of system recovery. Such

logging schemes are orthogonal to our proposals; they can be used complementary and

will most likely result in further I/O efficiency.

To avoid reading unnecessary attributes during scan selections and projections,

the authors of [Tsirogiannis et al., 2009] advocate storing relations using a column-

based layout. Specifically, they propose using PAX [Ailamaki et al., 2002], according

to which each data page of an n-attribute relation is divided into n minipages; each

minipage stores the values of a column contiguously. Thus, values that belong to dif-

ferent columns are physically separated and database operators can selectively access

only the attribute values that are required for a query. Seeking from minipage to mini-

page incurs random I/O, but when operating over flash memory the cost of the random

seeks is negligible. A scanning operator, termed FlashScan, is introduced, that reads
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projected attributes of a selection and produces tuples in row format. Although the

techniques proposed are not novel and their efficiency has been thoroughly studied in

the literature, their experimental results verify the applicability of these techniques in

flash-based deployments. Substantial performance improvement over a row store was

observed, more so as the selectivity and projectivity of queries were lower.

2.3.2 Indexing

In [Nath and Gibbons, 2008] the authors emphasise design principles for flash memory

storage access methods. In addition to avoiding in-place updates and random writes,

the designers of access methods should avoid sub-block deletions as well: when delet-

ing a portion of a block any undeleted data in the same block need to be first copied to

a new block. Hence, sub-block deletions can be two orders of magnitude more time-

and energy-consuming than block deletions. Instead, access methods should employ

semi-random writes, according to which individual pages within a block are written se-

quentially from the start of the block; the write pattern can select blocks in any order.

The experimental evaluation of this principle was found to yield performance similar

to the one of sequential writes.

Research has also been conducted in the area of flash-aware tree indexing. In their

work presented in [Wu et al., 2007], the authors propose storing B+-tree nodes as a se-

quence of log records spread over multiple disk blocks. To update a page, one appends

log records to this sequence, thereby not having to erase the entire block for each page

update. The evaluation of the approach shows that it improves performance both in

terms of time and energy efficiency. In a similar fashion, the authors of [Li et al., 2009]

propose the FD-tree, a flash-friendly B+-tree variant hierarchical index structure. This

structure consists of a small B+-tree on the top and a few levels of sorted runs at the

bottom. Operations on the tree aim to reduce the number of random writes on the

disk. Updates are applied to the top tree which, due to its small size, is likely to fit in

main memory; subsequently the changes are merged to the lower level sorted runs in

batches. Pointers between the sorted runs of different levels are utilised to speed up

searches. The experimental evaluation of this technique shows that it outperforms all

other B+-tree variants at both search- and update-intensive workloads. The techniques

presented in this thesis are applicable to the block layer of a storage system and, as

such, are oblivious to the file structures used. Thus, any such index structure can be

used on top of the techniques presented in this thesis.
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On the same topic, authors in [Nath and Kansal, 2007] propose a self-tuning B+-

tree that provides indexing functionality to the storage manager of a flash-based database

system. The index dynamically adapts its storage structure according to the database

workload and the underlying storage device. Specifically, nodes of the B+-tree are

stored either in log mode or in disk mode. In disk mode, the entire node is written in

consecutive disk pages, while nodes in log mode are stored as log entries, that may

be spread over multiple disk pages. Pages in log mode are written very efficiently (as

updates do not incur overwriting physical blocks), while read operations require all log

entries for the page to be gathered, so that the page can be reconstructed. On the con-

trary, pages in disk-mode can be read efficiently (by just reading a page from disk), but

writing a disk mode page requires erasing the physical block first. Switching between

modes incurs a specific cost, therefore authors propose an on-line algorithm to decide

the optimal mode of a page.

In [Li et al., 2008] the authors propose a hash index for flash-resident data that

avoids deleting records in place. Rather, modifications are logged in the hash buckets.

Two variations of a linear hashing index are presented; one is similar to the standard

linear hash index and is geared towards search-intensive workloads. In the second

variation, buckets are split lazily, i.e., bucket splits are processed in batches, so as

to reduce the cost of writes at the expense, of course, of some additional cost when

searching the index; thus, the second variation is more suitable for update-intensive

workloads. Geared towards wireless sensor devices that use flash storage, a hash index,

termed MicroHash, is proposed by the authors of [Zeinalipour-Yazti et al., 2005]. The

goal of the design is to provide efficient equality and temporal queries in a computing

environment with severely constrained processing capabilities; therefore, it is not very

relevant to this thesis. Also in the context of sensor networks, although with wider

applicability, the authors of [Nath and Gibbons, 2008] study the problem of efficiently

maintaining a large random sample (in the order of hundreds of megabytes) of a data

stream. Techniques are provided for maintaining both guaranteed uniform random

samples and biased ones, such as weighted and age-decaying samples.

2.3.3 Query Execution

The use of indexes during query execution is discussed in [Myers, 2007], where the

author studies how the selectivity of a query should be taken into account by the op-

timiser to select the access method. Both magnetic and flash disks are considered.
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Depending on the selectivity of the query and the I/O costs of each storage device, it

may be optimal to do an index scan or a full table scan either from the magnetic disk

or the flash disk. The author also evaluated the standard join algorithms over magnetic

and flash disks. Of particular interest is the case in which the flash disk has worse

sequential read bandwidth than the magnetic disk. In that case the flash disk has better

performance at low selectivity joins in the presence of indexes: the full potential of the

fast random I/O of the flash disk can be exploited. However, at high selectivities a full

scan of the relation on the magnetic disk performs better due to its superior sequential

read performance. Nevertheless, it is clear from the results of [Myers, 2007] that the

I/O costs of the flash disk used in each particular case need to be taken into account in

order to reach informed decisions regarding access methods.

Query execution over flash memory is also studied in [Tsirogiannis et al., 2009].

The authors propose a join operator, termed FlashJoin, that aims (a) to reduce the I/O

cost incurred by join evaluations by minimising the number of passes over the par-

ticipating tables and (b) to minimise the I/O required to fetch attributes for the query

result. Towards the first goal, the operator only accesses join attributes; other projected

attributes are fetched only for rows that participate in the result. The operator processes

join indexes instead of all projected attributes from each relation and therefore has a

small memory footprint. Thus, a join can be computed in one-pass using much less

main memory than with a standard hybrid-hash join kernel. Towards the second goal,

a late materialisation strategy is employed: retrieving projected attributes is postponed

for as far down-stream the query plan as possible. Each join produces only the nec-

essary attributes required by the remaining operators and therefore, even if multiple

passes are required, the partitioning cost for the extra passes is reduced.

The most common ad hoc join algorithms are revisited in [Do and Patel, 2009]

with respect to execution over flash memory. The authors show how previous results

for magnetic disks continue to hold for flash drives. The buffer allocation strategy is

found to have a critical impact for both types of storage media when executing ad hoc

join algorithms. The authors conclude that using blocked I/O can significantly improve

performance of joins on SSDs as it reduces the number of erase operations and the

overhead incurred by the FTL software. Also, the authors point out that with flash

disks, the CPU time can be the dominating factor for the overall cost of a join algorithm

and, thus, both I/O costs and CPU times should be optimised for in a system that uses

flash memory for storage.

During query execution, a portion of the incurred I/O cost is due to maintaining the
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transaction log, the rollback data and operations over temporary storage spaces. The

authors of [Lee et al., 2008] experimentally evaluated the overhead of such database

operations and found it to be substantial. Therefore, they suggest that towards improv-

ing the performance of transaction processing systems, one should not optimise only

for tables and indexes, but for the rest of the storage spaces as well. In their evalu-

ation they use a commercial database system and study the access patterns involved

in the transaction log, in the rollback segments used by the multi-version concurrency

control mechanism of the DBMS and in the temporary storage spaces used for external

sorting and partitioning. They identified that in these storage spaces sequential writes

and random reads are the dominant access patterns, i.e., these spaces are well-suited

for use with flash memory. Replacing the magnetic disk with a commodity flash disk

for these storage spaces, they observed an order of magnitude improvement in transac-

tion throughput for the transaction log and the concurrency control rollback segment

and more than a factor of two improvement in response time for external sorting. What

is more, since it is common practice for database systems to have physically separate

storage spaces for the tables, the indexes, the transaction log and the temporary data,

the proposals of [Lee et al., 2008] are immediately applicable in most deployments.

Transactional logging using flash memory is also studied in [Chen, 2009]. However,

instead of an internal flash disk, the author proposes a solution that utilises multiple

USB flash drives. Compared to an internal flash disk, the multiple USB drives are found

to have comparable performance at a much lower price. The performance during an

OLTP workload was dramatically increased using the proposed solution instead of a

magnetic disk. Using parallel device scans on the flash drives also resulted in a more

efficient recovery process.

2.3.4 Main Memory Buffering

Previous research has considered buffer management over flash disks, i.e., for the case

that the flash disk is used for persistent storage and a subset of the pages stored on the

flash disk are cached in main memory. In [Kim and Ahn, 2008] the authors propose

BPLRU, a scheme for the on-disk buffer cache of flash disks. This scheme treats the

buffer as a write cache and groups RAM buffers in blocks that are equal in size to

the flash erase-unit; page replacement is performed with erase-unit granularity (using

LRU). If not all sectors of a dirty victim page are present in-memory, the absent ones are

read from disk so that the whole block can be written to a new flash location without
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the need for an in-place update. Additionally, a block that was written sequentially is

moved to the tail of the LRU list and becomes the next victim. Experimental evaluation

shows this technique to be very promising. Similarly, the authors of [Park et al., 2006]

propose that the buffer cache choose for replacement a clean page over a dirty one and

therefore trade the number of writes with the number of reads. In our work, we have

generalised this concept for a system in which the same buffer pool holds pages from

both the flash and the magnetic disks. In that case, not only the dirtyness of the page,

but also the read/write costs of the storage medium and the access history of the page

are considered when choosing a page to replace.

In [Ou et al., 2009] the authors extend the ideas presented in [Park et al., 2006]:

they not only aim to minimise the number of writes to the flash disk, but also they

aim to exploit the spatial locality of victim pages. Dirty pages whose page num-

bers are close to each other, and therefore are likely to be physically stored near one

another, are clustered together in page clusters. The algorithm maintains a priority

queue of all page clusters in the system and evicts the one that has been referenced

least recently. Thus, write operations become more flash-friendly, although this tech-

nique bears a higher complexity due to the system having to maintain a priority queue

of length proportional to the number of clusters. In a similar fashion, the authors

of [Stoica et al., 2009] present a technique for transforming random writes of dirty

pages into sequential ones. They have created a shim layer within the storage man-

ager of a DBMS that writes dirty pages, evicted by the buffer manager, sequentially in

multiples of the erase block size. Hence, the physical medium is utilised in an append-

only manner. Naturally, this introduces the need for erase block reclamation at the

storage manager level and also introduces some overhead when reading. An analytical

model is presented for this storage layout and the potential benefit of the technique is

demonstrated experimentally for a high-end SSD. The specific device allows the user to

manually erase blocks [Jonathan Corbet, 2009]. Note, however, that this technique is

not generally applicable to all devices, as in most flash disks on the market the user has

no control on block reclamation and physical data placement. Our work is oblivious

to the techniques employed by the device firmware and controller structure; therefore

they can be used with any device, provided that its average read and write costs are

known.
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2.3.5 Caching on Flash Memory

In [Narayanan et al., 2009] the authors discuss how flash disks can be incorporated in

the enterprise storage hierarchy in terms of performance, capacity, power consumption

and reliability. They describe an automated tool that can decide what storage hard-

ware configuration is optimal for a specific workload, using multiple metrics. The

tool operates in an offline fashion and makes decisions based on specific workloads.

Among other things, the authors consider the use of the flash disk as a read cache, al-

though specific properties of such a cache are not studied. The use of the flash disk as

write-ahead log is also considered. The authors conclude that while SSDs are suitable

as read caches and for write-ahead logging, their price/performance characteristics do

not make them preferable to magnetic disk as an alternative for persistent storage.

Thus, they conclude that the price-per-gigabyte cost of flash memory will have to drop

before SSDs can replace magnetic disks in a cost-effective way. Interestingly enough,

the authors of [Lee et al., 2009] found a flash disk to outperform a level-0 RAID with

8 enterprise-class 15k-RPM magnetic disks on the TPC-C benchmark with respect to

transaction throughput, cost effectiveness and energy consumption. In this thesis we

explore how an SSD can be used as cache irrespectively of cost, power consumption

and reliability; we are mostly concerned with identifying which data should be cached

on the SSD for maximum performance.

Another piece of work relevant to caching on flash memory – which, however, is

not geared towards database workloads – is outlined in [Leventhal, 2008] and imple-

mented in the ZFS filesystem [Sun Microsystems., 2008]. The flash disk is used as a

cache for the magnetic disk with the goal of improving the performance of random

read workloads. In that setup there is no eviction from main memory to the flash disk;

rather, the flash cache stores main memory pages before they are evicted. Filling the

flash cache with pages is performed asynchronously, thereby avoiding write latencies

on main memory evictions. By employing large sequential writes to predictively push

data to the flash cache, the system avoids paying the cost of random writes and in-

creases the flash write bandwidth. Also, the flash cache never stores dirty pages and

therefore no write-back to disk is required for flash pages. Our work is an analyti-

cal study of the behaviour of flash caches; the techniques engineered in ZFS are thus

complementary to our work and can provide a suitable implementation basis.
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Data Placement

3.1 Preliminaries

In this chapter we study the problem of data placement in a commodity hybrid sys-

tem, i.e., one that is equipped with both a magnetic and a flash disk. Our design is

not geared towards high-end flash disks that completely outperform magnetic disks.

Rather, we consider low-end flash disks that use MLC flash memory; such disks have

greater capacity at a fraction of the cost of SLC ones, but quite worse write perfor-

mance. Given the higher storage capacity (comparable to that of magnetic disks) and

lower cost of MLC flash disks, commodity hardware is expected to incorporate that

type of disk, which clearly cannot outperform magnetic disks with respect to random

write performance. In this chapter we consider such flash disks and explore how data

placement can take advantage of their merits in a hybrid setup.

One idea is to use the flash disk as a cache for the magnetic disk, i.e., as an extended

buffer. While this design might be reasonable for a file system, it can prove suboptimal

for database workloads as it disregards the writing inefficiency of the flash disk. The

reading efficiency of the flash disk, on the other hand, is an argument for using it for

persistent storage [Graefe, 2007]. Given this discrepancy, and considering the growing

capacity of flash disks, we propose to use both types of disk at the same level of the

memory hierarchy, i.e., a database page can reside either on the flash disk or on the

magnetic disk, but not on both. We present algorithms for optimally placing a page

according to its workload. Pages with a read-intensive workload are placed on the

flash disk, while pages with a write-intensive workload are placed on the magnetic

disk. We propose ways of accurately predicting the workload of a page in an adaptive

fashion.

27
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The types of system that can benefit from our proposal include (but are not lim-

ited to): (a) (parts of) database systems with well-defined workloads, especially when

a portion of the data is very frequently accessed but only scarcely updated e.g., the

database catalog, typical access paths, etc.; (b) archiving systems, where a percent-

age of data appearing only in the latest versions are frequently accessed, whereas a

larger percentage of the archive (also referred to as the deep archive) is infrequently

used; (c) file systems, where both kinds of disk are transparently handled by the op-

erating system, but user data is organized according to its I/O workload for maximum

efficiency; (d) hybrid hard disks, i.e., magnetic disks that are equipped with flash mem-

ory, which they use as non-volatile cache [Wikipedia, 2008]. Our algorithms can be

employed by the controllers of such disks to boost performance.

The high-level architecture of our system is shown in Figure 5.1. A magnetic disk

and a NAND flash disk operate at the same level of the memory hierarchy. Each data

page exists only on the flash, or on the magnetic disk at any given time. The storage

manager decides the optimal placement for each page according to the workload of the

page. Pages with a read-intensive workload are placed on the flash disk, while pages

with a write- or update-intensive workload are placed on the magnetic disk. Thus,

reads are faster than a magnetic-disk-only system, and writes are faster than a flash-

disk-only system. In this manner the total I/O cost is reduced.

The main challenge in this approach is how one can predict the future workload of

a page based on past accesses to the page. Also of paramount importance is the ability

to self-tune, i.e., adapt the placement choice for each page when its workload changes

from read-intensive to write-intensive and vice-versa. Considering that moving a page

from one disk to another incurs significant I/O cost, the prediction of a page’s future

workload has to be as accurate as possible. Failure to achieve an acceptable level of

accuracy means that the I/O cost will be heavily penalised, as the page will migrate

from disk to disk before the migration cost has been expensed.

We present a family of algorithms to decide the optimal placement of data pages.

We employ a typical buffer pool: pages are fetched on demand from disk to main

memory. Read and write operations that are served in main memory are referred to as

logical hereafter, while ones that reach the disk are referred to as physical. Whenever

the buffer pool is out of space, a page is selected to be replaced according to the buffer

manager’s replacement policy. At that point the system needs to decide the placement

of the page, i.e., whether the page will be stored on the flash or on the magnetic disk.

The decision is made dynamically and on a per-page basis, it depends only on the
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Figure 3.1: An overview of our system

history of the page, and is independent of all other pages. Our system keeps track of

the location of each page (so that it knows which disk to read it from) and statistics

about its workload.

The decision algorithm is an on-line one. We model the decision process for each

page as a two-state task system [Borodin et al., 1992], depicted in Figure 3.2. The two

states of the system are f and m, representing that a page is on the flash disk or on the

magnetic disk, respectively. The cost for reading a random page from the magnetic

disk is rm, while the cost for writing a page to a random position is wm; r f and w f are

the respective costs for the flash disk. The transition cost from one state to the other is

equal to the cost of writing a page to the other disk (when a transition occurs, the page

has already been read). The tasks in our task system are I/O operations. The cost of

processing a read request is r f when the system is in state f and rm when it is in state

m (resp. w f and wm for write/update operations).

The algorithm we propose for page placement is also an on-line one. The problem

we are solving is an instance of the page migration problem: deciding the optimal node

of a network to store a data page, so as to minimise the total cost of serving requests
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Figure 3.2: Abstraction as a two-state task system

for the page from other nodes of the network. In [Black and Sleator, 1989], the au-

thors thoroughly study this problem and present competitive algorithms for different

network topologies. In [Borodin et al., 1992], the authors study metrical task systems

similar to the one we use to model our system and provide a (2n−1)-competitive on-

line algorithm (n is the number of states of the task system). However, our task system

is not metrical, due to the write cost discrepancy in the two types of storage media: we

have used an algorithm similar to the one proposed in [Borodin et al., 1992] and shown

that it is (2n−1)-competitive in our non-metrical task system as well. Page migration

in graphs with arbitrary edge distances is studied in [Westbrook, 1992] where the au-

thors propose a randomised algorithm that approaches 2.62-competitiveness against an

oblivious adversary.

The decision problem we study in this chapter resembles the page migration prob-

lem on an arbitrary tree [Black and Sleator, 1989]. The key difference is that in our

case the page migration cost depends on the direction of the migration. Our pro-

posed solution resembles the algorithm given in [Nath and Kansal, 2007] as the mode-

deciding algorithm. However, one cannot simply adapt that approach if one wants

to realistically model the problem we solve. The reason is that one needs to make

the crucial distinction between logical and physical I/O operations. The interaction

between physical and logical operations is not clear, unless buffer pool and storage

management parameters are taken into account. This is due to the actual I/O cost being

decided by physical operations, while application-level I/O requests are merely logical.

This salient distinction is elegantly captured in our model. As we shall see in Sec-

tion 3.3, our results prove this non-trivial extension necessary in an implementation

with real-world workloads (and not in a simulation).
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Algorithm conservative (Page pg)

1. if (pg is a new page)

2. pg.state← m, pg.C← 0

3. After each physical read of the page:

4. pg.C← pg.C +(r− r′)

5. Upon eviction of the page:

6. if (pg.dirtybit = 1)

7. pg.C← pg.C +(w−w′)

8. if (pg.C > w f +wm)

9. pg.state← other state

10. pg.C← 0

11. pg.dirtybit← 1

Figure 3.3: The conservative algorithm

3.2 Page Placement

We present a family of on-line algorithms that have the same structure, but use different

cost metrics.

3.2.1 Conservative Algorithm

The first algorithm, which we refer to as conservative, is given in Figure 3.3. For

each page in the system, the algorithm maintains a counter C that is updated after each

physical operation. The cost of reading the page from the current disk is r, while the

cost of reading the page from the other disk is r′ (resp. w and w′ for writing). When

a page is physically read, C is incremented by the cost difference r− r′ (line 3), that

represents the cost units that would have been saved, had the page been read from the

other disk (if r− r′ < 0 the page was read from the read-efficient disk). The same

happens when a dirty page is to be evicted from the buffer pool: the cost counter is

incremented by w−w′. Upon eviction, C is examined (line 8) and if it is greater than

the cost of two migrations (w f +wm), the page migrates to the other disk (by changing

its state value and setting its dirty bit to 1 – lines 9 to 11).

The conservativity of the algorithm lies in two points: (a) The algorithm initiates

a migration only after the accumulated cost for a page has surpassed w f +wm. This is
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the earliest point in time that the algorithm can be certain that the page is not on the

optimal storage medium. For the time period during which the counter accumulated

the w f +wm cost units, the cost would have been less if the page was stored on the other

disk. This is because the cost of migrating to the other disk and back has been already

reached during the last physical operations and those physical operations would have

been served more efficiently by the other disk. Note that at this point the algorithm

can also be certain that in the worst case (that the workload of the page immediately

changes in favour of the previous disk) the maximum extra cost incurred by the wrong

decision is at most 2(w f + wm). (b) The algorithm takes into account only physical

operations on pages, not logical ones. The physical cost is the actual cost paid by the

system and therefore the conservative algorithm does not try to induce the physical

access pattern from the logical one. Rather, it waits until the logical access pattern has

been translated into physical accesses. Note that due to the lack of any access history

for new pages, they are always written to the magnetic disk for the first time, since the

magnetic drive is more write-efficient (line 1 in Figure 3.3).

An off-line algorithm that knows the exact workload for each page beforehand can

decide the optimal placement of the page i.e., it incurs the minimum I/O cost for the

workload. We refer to such an algorithm as the optimal offline algorithm and to the

cost incurred by it as OPT . For any on-line algorithm A with cost CA, we say that A is

c-competitive with respect to the optimal offline algorithm if the cost incurred by A is

at most c times the cost of the optimal algorithm, i.e., CA < c ·OPT + c0, where c0 is a

constant. We now prove that the cost incurred by the an algorithm like conservative is

at most three times the cost incurred by the optimal offline algorithm, i.e., conservative

is 3-competitive:

Theorem 2.1: The conservative algorithm is 3-competitive with respect to the optimal

off-line adversary. 2

Proof. We will show that conservative is 3-competitive w.r.t. the optimal off-line ad-

versary, i.e., at any time t, CONS(t) < 3OPT (t)+C0, where CONS(t) is the total cost

incurred by conservative up to that time, OPT (t) is the total cost incurred by the op-

timal on-line algorithm, and C0 is a constant. First we will show that conservative is

3-competitive in a metric space i.e., when the migration cost is the same for both di-

rections and equal to K = w f +wm
2 . A migration happens when C = w f + wm = 2K (to

comply with this our algorithm could trivially set C = 2K when C > 2K; this would

yield the same decisions). The accumulated cost of the page we are running the algo-
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rithm for is C; at time t suppose that conservative is in state s1, while optimal is in state

s2. We define a potential function φ(t) as follows:

φ(t) =

{
2C if s1 = s2

3K−C otherwise

Observe that φ(t)≥ 0 and φ(0) = 0. Also CONS(0) = OPT (0) = 0. For each possible

event at a time t, we will show that ∆CONS + ∆φ ≤ 3∆OPT , in which ∆X indicates the

change in the value of X as a result of the event. By summing over all events we obtain

the desired inequality (since φ ≥ 0). Possible events are:

1. Transition of conservative. Then ∆CONS = K and ∆OPT = 0. Before the transition

C = 2K holds, and after the transition C = 0 holds. Also:

∆φ = φ(t +1)−φ(t) = (3K-0)−2 ·2K = −K, if s1 = s2

and

∆φ = φ(t +1)−φ(t) = 0− (3K−2K) = −K, if s1 6= s2.

In both cases ∆CONS +∆φ = K−K = 0≤ 3∆OPT = 0.

2. Transition of the optimal off-line algorithm. Then, ∆CONS = 0 and ∆OPT = K.

Also:

∆φ = (3K−C)−2C = 3K−3C ≤ 3K, if s1 = s2

and

∆φ = 2C− (3K−C) = 3C−3K ≤ 6K−3K = 3K, if s1 6= s2.

Hence ∆CONS +∆φ = 0+3K = 3K = 3∆OPT .

3. The last event is serving a read/write request. Let c1 be the cost of serving the

request in state s1 and c2 in state s2. Then ∆CONS = c1 and ∆C = c1− c2. If

s1 = s2, then ∆OPT = c1 and ∆φ = 2 ·∆C ≤ 2c1 hold, since ∆C = c1− c2 ≤ c1.

Thus:

∆CONS +∆φ ≤ c1 +2c1 = 3c1 = 3∆OPT

If s1 6= s2, then ∆OPT = c2 and ∆φ =−∆C = c2− c1. Therefore:

∆CONS +∆φ ≤ c1 + c2− c1 = c2 ≤ 3c2 = 3∆OPT
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Thus conservative is 3-competitive for the symmetric graph H with transition costs

equal to K for both states. We will show that conservative is also 3-competitive for

our asymmetric graph G that has a transition cost of w f when moving to f and wm

when moving to m. Since the algorithm is the same (and starts from the same state),

it will perform the same transitions in G as it would in H, in which case it would be

3-competitive. However, two consecutive transitions on H would cost the same as they

cost on G (because the cost of a cycle is w f +wm in both graphs). Thus, the algorithm

has the same cost in both graphs if it performs an even number of transitions, and an

extra cost of w f −
w f−wm

2 for G and an odd number of transitions. This extra cost is

constant, so conservative is 3-competitive in G as well.

2

Our evaluation shows, however, that the cost of conservative remains more than 1.5

times less than the cost of the optimal algorithm for realistic workloads.

3.2.2 Optimistic Algorithm

Though physical operations capture the actual cost paid by the system, their sequence

is dictated by logical operations and the replacement policy of the buffer pool. More-

over, while the page remains in the buffer pool (i.e., between two physical operations

on the page) many logical operations may occur. The conservative algorithm, will

only record two (or one) physical operations on the page, and thus, if the workload

changes, it will take many physical operations before conservative adapts. This gives

rise to an “optimistic” version of the algorithm that works only on logical page oper-

ations and adapts to new workloads as quickly as possible; the algorithm is presented

in Figure 3.4.

For each page pg the optimistic algorithm maintains a read counter (pg.reads) and

a write counter (pg.writes). Each counter is incremented when a logical read or write

operation occurs, respectively. These counters hold the total logical read and write

operations on the page since its last migration. Upon eviction, the algorithm computes

the total cost the system would pay if these operations were physical, for each of the

two disks (c f for the flash disk, cm for the magnetic one – lines 10 and 11 in Figure 3.4).

The page migrates to the disk with the least total cost, if it is not already there, and its

read and write counters are reset (lines 11 to 14). When a new page is created, the

algorithm does not account for logical operations until the page has been physically

written for the first time (line 3). This is because most newly created pages will be
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Algorithm optimistic (Page pg)

1. if (pg is a new page)

2. pg.state← m, pg.reads← 0, pg.writes← 0

3. No accounting until after the first physical write

4. After each logical read of the page:

5. pg.reads← pg.reads+1

6. After each logical write of the page:

7. pg.writes← pg.writes+1

8. Upon eviction of the page:

9. c f ← pg.reads · r f + pg.writes ·w f

10. cm← pg.reads · rm + pg.writes ·wm

11. if ((c f > cm and pg.state = f ) or (cm > c f and pg.state = m))

12. pg.state← other state

13. pg.reads← 0, pg.writes← 0

14. pg.dirtybit← 1

Figure 3.4: The optimistic algorithm

logically written to many times when they are created (e.g. after a B+-tree node split).

These logical writes do not reflect the normal workload for the page and are therefore

not logged.

The optimistic algorithm is not conservative in the number of migrations. It as-

sumes that when the workload of a page changes from read-intensive to write-intensive

(or vice-versa), the migration cost will be amortised, i.e., changes to the workload of

the page are not frequent. Thus, optimistic adapts quickly to changing workloads but

when changes do not last long enough for the migration cost to be expended, the overall

cost paid by the system increases. Our experimental results verify these observations.

Another caveat is that optimistic tries to minimise the cost of future physical oper-

ations on the page based on its history of logical operations. Consider a page p having

been brought into the buffer pool at time t1 and evicted at time t2, after having been log-

ically read a large number of times: its workload upon eviction is found to be strongly

read-intensive and the page will be written to the flash disk. Then, the workload of

the page changes to write-intensive and optimistic needs to see some k logical writes

on p before deciding it is now write-intensive. If the page is frequently replaced by
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the buffer manager until the k logical writes have been served, these k logical writes

will have been realised as physical ones (since the page is frequently evicted). Reasons

for these frequent evictions include the buffer manager deciding to assign fewer pages

to the file p belongs to, or some other file becoming hot, or the time between writes

on p being much longer than the time between reads, (i.e., the page becomes cold).

In this scenario, not only is the benefit from the migration never realised (since read

operations are very scarce after the initial eviction), but also the system pays a very

high penalty by writing the page to the flash disk, before the write-intensive workload

has been identified.

3.2.3 Hybrid Algorithm

To minimise the total cost of physical operations, one needs both physical and logical

operations on data pages to be taken into account. We introduce a hybrid algorithm that

combines the strong points of conservative and optimistic, at the same time avoiding

their weak points. The basic idea is that a physical operation on a page has more impact

on the decision of the algorithm than a logical one. This is because physical operations

on a page are typically fewer than logical ones, but at the same time they are the ones

to affect the actual cost.

The probability that a logical operation will not be realised as a physical one is

proportional to the size of the buffer pool. Let n be the number of pages in a file and b

the number of pages the buffer manager has dedicated to the file: the probability that

a logical operation on a page will be served in-memory is b/n. The probability that a

logical operation on a page will affect the total I/O cost is equal to the probability of the

logical operation resulting in a physical one. Thus, the probability that a logical oper-

ation will have an impact on the I/O cost is equal to (1−b/n). We use this probability

to scale the impact of a logical operation.

The hybrid algorithm, shown in Figure 3.5, maintains four counters per page: lr

and lw count logical reads and writes since the last migration, respectively; pr and pw

count physical reads and writes since the last migration, respectively. Newly created

pages are written to the magnetic disk and counters are not modified until the page has

been written for the first time (lines 1-4). For each logical or physical operation on

the page, the corresponding counter is incremented (lines 5-10). Upon eviction, the

algorithm computes the total cost physical and logical operations would incur for each

disk (lines 16-17). As mentioned, the cost of logical operations is scaled by 1− b/n.
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Algorithm hybrid (Page pg)

1. if (pg is a new page)

2. pg.state← m

3. pg.lr← 0, pg.lw← 0, pg.pr← 0, pg.pw← 0

4. No accounting until after the first physical write

5. After each logical read of the page:

6. pg.lr← pg.lr +1

7. After each physical read of the page:

8. pg.pr← pg.pr +1

9. After each logical write of the page:

10. pg.lw← pg.lw+1

11. Upon eviction of the page:

12. if (pg.dirtybit = 1)

13. pg.pw← pg.pw+1

14. q← 1−b/n

15. c f ← (pg.lr ·q+ pg.pr) · r f +(pg.lw ·q+ pg.pw) ·w f

16. cm← (pg.lr ·q+ pg.pr) · rm +(pg.lw ·q+ pg.pw) ·wm

17. if ((c f − cm > w f +wm and pg.state = f ) or
(cm− c f > w f +wm and pg.state = m))

18. pg.state← other state

19. pg.lr← 0, pg.lw← 0, pg.pr← 0, pg.pw← 0

20. pg.dirtybit← 1

Figure 3.5: The hybrid algorithm

A page migrates to the other disk if the accumulated cost for the current disk surpasses

the cost for the other disk by w f +wm cost units (line 18).

Accounting for logical operations when deciding the placement of a page allows

hybrid to recognise changes in the workload of the page very early, as does optimistic.

However, hybrid is not as eager as optimistic to trigger page migration. It decides that

a page should migrate only after it is certain that the page is on the wrong disk (i.e.,

the cost of migrating to the other disk and back has been already paid). In that sense,

hybrid resembles conservative. By taking into account physical costs (i.e., actual costs)

the system has a realistic view of the effect of the buffer pool on logical operations.
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Note that we have not studied the competitiveness ratio of optimistic and hybrid: our

experiments, presented below, show both algorithms to be more competitive than con-

servative in most cases.

3.3 Experimental study

3.3.1 Experimental Setup

We implemented our algorithms to evaluate their performance under various work-

loads. Our system consists of a storage manager and a buffer manager and uses B+-

trees for storing data. Though we have implemented other file structures as well (i.e.,

heap files and linear hash files), we only present results with B+-trees since they are

the most commonly used database structures and make our presentation more succinct.

Moreover, B+-trees have the extra property of exhibiting both random access patterns

(e.g., when descending the levels of the tree) and sequential ones (e.g., when scanning

the leaves). The system was implemented in C++ and was running on an Intel Pentium

4 box clocked at 2.26GHz with 1.5GB of physical memory. The operating system

was Debian GNU/Linux with the 2.6.21 kernel. The system has two magnetic disks

and a flash disk. Our system and the operating system ran from one of the magnetic

disks. The other magnetic disk (referred to simply as the magnetic disk hereafter) and

the flash disk were used to store data pages. The magnetic disk was a 300GB Maxtor

DiamondMax 6L300R0 with 16MB of cache memory. The flash disk was a Samsung

MCAQE32G5APP, an MLC NAND flash disk with a capacity of 32GB. Both disks were

connected to the system using the IDE interface. To reduce the effects of operating

system caching we used both storage media as raw devices. Therefore, the operating

system did not cache data pages, pages were never double buffered and our system had

absolute control of physical I/O operations.

Metadata. As discussed in Section 3.2, the storage manager keeps accounting infor-

mation for each page. For the conservative algorithm this information is nine bytes

per page, of which one byte represents the state of the page and the rest hold a 64-bit

integer that represents the accumulated cost for the page. The optimistic algorithm

needs one byte for the state of the page and eight bytes for two integers counting log-

ical reads and writes, for a total of nine bytes. The hybrid algorithm requires one byte

for the state and sixteen bytes for four 32-bit integers counting logical and physical

reads and writes. For a data file of size n bytes, the metadata is d n
4096e · 9 bytes for
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conservative and optimistic and d n
4096e · 17 bytes for hybrid, if 4096-byte pages are

used. To reduce this amount, one can increase the page size. However the size of extra

data is negligible for most practical purposes, as it is three orders of magnitude less

than the size of the data. For instance, for the hybrid algorithm (which has the largest

requirements), the metadata for a 10GB table are only 44MB. All accounting informa-

tion is stored on the hard disk with the operating system (i.e., file pages contain only

raw data).

We assume the capacity of either disk is enough to hold all data placed on it. The

address for a page is the same for both disks (i.e., we only used the first 32GB of the

magnetic disk) and no explicit mapping is necessary. In a real deployment, metadata

for files, pages, page mappings, and free space on each of the disks would be main-

tained. This is necessary even for systems using just one disk, so standard file system

techniques could be used for that purpose without any additional overhead. To keep

the experimental study as simple as possible we chose not to implement these struc-

tures, since they would not affect our measurements. Given the current capacities of

flash drives, it is conceivable that the flash disk is not large enough to accommodate

all read-intensive pages. For such cases, ranking algorithms are required to capture the

utility of each read-intensive page being kept on the flash disk.

Raw performance of disks. We measured the read costs for each disk by computing

the average of 106 read requests of 4096 bytes each at random offsets on the disk. Re-

quested page offsets span the whole disk address space; this is particularly important

for the magnetic disk, as measured costs need to reflect the average rotational latency

of a read. We similarly measured the average time for random writes for each disk.

The results are shown in Table 3.1. The second column is the measured average times,

while the third column is the costs normalized by the read time of the flash disk. The

flash disk was 23 times faster than the magnetic disk at reading random pages; the

magnetic disk was 10 times faster than the flash disk at writing to random locations.

It is clear from the relative cost differences that when pages are placed on the cor-

rect medium (according to their workload), I/O cost will significantly drop – almost

regardless of the access pattern.

Datasets and workloads. We tested the efficiency of our system under a multitude

of workloads. The record layout consisted of a key that was sixteen bytes long and a

payload of eighty bytes. The B+-tree contained one million records and had a size of

140MB. To minimize the effect of on-disk caches, the pages of the tree were not stored

consecutively on disk, but separated by nine-page intervals (i.e., the pages of the B+-
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Operation Time (CPU cycles ×103) Cost units

Flash read 915 1

Flash write 108987 118

Magnetic read 21470 23

Magnetic write 10983 12

Table 3.1: I/O costs

tree spanned 1.4GB). We experimented with trees and buffer pools of various sizes.

Across all configurations the results were consistent. To avoid repetition we present

the results for the aforementioned B+-tree size and a buffer pool of 20MB. We choose

to show the results for this setup as it is more in line with the discrepancy between disk

and main memory capacities; one can expect a difference of three orders of magnitude

between the two in current configurations. The workloads on the B+-tree consisted of

reads, i.e., lookups and range queries, and writes, i.e., insertions and updates. Each

insertion or update to the B+-tree results in the destination leaf being both read and

written, and internal nodes on the path from the root of the tree to the leaf being at

least read and potentially written (i.e., in the case of a split). We focus on these simple

operations as we aim to show that the placement of the page on the right medium (in

addition to our buffer pool replacement policy) is what primarily makes a difference.

Our algorithms prove this point true for such basic workloads; we conjecture that it

will continue to hold for any complex workload that will use all these primitives.

3.3.2 Impact of using both disks

In the first set of experiments we measure the performance improvement gained by

using both types of disk over using only one. We ran the same set of queries in three

different setups: (a) using only the flash disk, (b) using only the magnetic disk, and

(c) using both disks. In all cases the conservative algorithm decided the placement of

pages. Since the workload of a page does not change, the conservative algorithm gives

the least performance improvement among all three algorithms. Additionally, we used

LRU as the buffer pool replacement policy as it is applicable in all three setups. In the

first experiment, we executed a set of 50,000 read queries (80% of which were lookups

and 20% range queries) that targeted all leaf nodes of the B+-tree. We executed this

set of queries 15 times (emptying the buffer pool after each execution) and measured

the wall clock time of each run. Results are shown in Figure 3.6 (a) with the query set
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run shown on the x-axis and total execution time shown on the y-axis (the raw data are

given in Figure 8.1). Our system is shown as “M/F”; the system using only the flash

disk is shown as “F”; and the system using only the magnetic disk is shown as “M”.

As expected, F is much faster than M for reads. The performance of our system

is initially equal to that of M, since all pages are first on the magnetic disk. A large

number of frequently accessed pages (e.g., the internal nodes of the B+-tree and some

hot leaf pages) migrate to the flash disk during the 4th execution of the query set, while

the remaining read-intensive leaf node pages migrate to the flash disk during the 7th

execution. Since we are using the conservative algorithm the point in time at which

pages migrate depends only on the number of physical accesses to the page. Next, we

executed a set of 50,000 insert/update queries (30% insertions, 70% updates) using

the same buffer pool size. Results are shown in Figure 3.6 (b) (the raw data are given

in Figure 8.2). In this case, F is one order of magnitude slower than M, as expected.

Our system has initially the same performance with M. At the 4th execution the pages

storing the internal nodes of the B+-tree migrate to the flash disk and performance

improves slightly (due to the number of insertions being relatively small, internal nodes

have mostly a read workload). Had the size of the buffer pool been too small to fit all

internal node pages, the performance boost would have been much greater.

Next, we generated mixed query sets including both read and write queries. In the

first set, 40% of pages are read-only, 40% are write-only and the remaining 20% have

a 50% probability of being read and a 50% probability of being updated. Results are

shown in Figure 3.7 (a) (the raw data are given in Figure 8.3). Then, we altered the

query set, so that 70% of the pages are read-only and 30% are update-only. The results

are shown in Figure 3.7 (b) (the raw data are given in Figure 8.4). As the ratio of pages

with a read workload grows, the performance of both F and M/F improves, while the

performance of M remains almost constant. Clearly, using both a magnetic and a flash

disk is more I/O efficient than using only one type of disk, provided that pages are

placed on the disk that best suits their workload.

3.3.3 Comparison of page placement algorithms

We then moved on to study how well the page placement algorithms adapt to chang-

ing workloads. We created a set of 100,000 read queries and a set of 100,000 update

queries. Using these two query sets, we created two different B+-tree query sequences

and executed them using the conservative, optimistic and hybrid algorithms. Addition-
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ally, each query sequence was executed using the optimal placement for each page,

which we computed off-line. The difference between the two query sequences is the

frequency with which the page workload changes. In the first sequence, the set of read

queries is executed 10 times, followed by 10 executions of the update query set; then,

the read query set is executed again 20 times. In the second sequence, 3 executions of

the read query set are followed by 3 executions of the update query set and vice-versa

for a total of 18 query set runs. The buffer pool was emptied after each execution. Nei-

ther sequence is very likely to occur in real-world workloads; however, they highlight

the difference between the three algorithms and their relationship to the optimal one in

terms of their adaptability to changing workloads. The results of the two execution se-

quences are shown in Figure 3.8 and in Figure 3.9 respectively. The raw data are given

in Figure 8.5 and Figure 8.6 for the top and bottom graphs of Figure 3.8. For Figure 3.9

the raw are given in Figure 8.7 and Figure 8.8, respectively. On the x-axis, r’s stand

for read query set executions and u’s stand for executions of the update query set. In

addition to showing the total execution time on the y-axis, we also show an alternative

plot with the y-axis denoting the number of pages being placed on the flash disk by the

different placement algorithms, as this gives a more succinct picture of their decisions.

The first sequence shows that optimistic performs nearly optimally, while conser-

vative is the slowest algorithm to adapt to workload changes. The performance of hy-

brid lies between the performance of optimistic and conservative, i.e., hybrid adapts to

workload changes more gracefully than optimistic, but more eagerly than conservative.

Updates have a higher impact than reads on the decisions of the algorithms. This is

due to update costs for the two disks differing by 107 cost units, while read costs differ

by 22 cost units. This is why all algorithms adapt very quickly to the update workload.

Also, observe that conservative and hybrid adapt very quickly to the initial read work-

load, but they adapt much more slowly after the execution of the ten update query sets.

This is due to the cost threshold of w f +wm having to be surpassed before a migration

is triggered. When the workload changes from read- to update-intensive, some pages

are read from the flash disk and written to the magnetic disk, which is the best case in

terms of I/O efficiency. This explains why the first execution of the update query set,

after the 10 executions of the read query set, is executed faster than the following 9

update query executions. Note that the total time for conservative was 9,784 seconds,

for optimistic it was 7,003 seconds, for hybrid it was 8,338 seconds, while executing

the queries according to the optimal off-line algorithm took 6,366 seconds. The time

for executing this sequence only on the magnetic disk was 13,920 seconds and 12,760
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Figure 3.8: Infrequently changing workloads

for executing it only on the flash drive, amounting to a substantial improvement in all

cases.

In the second sequence of runs, the workload changes every three executions. Since

the cost of a page migration from the magnetic disk to the flash disk is not expensed

by the three successive read query set executions, the optimal placement for pages is

on the magnetic disk (except for the internal nodes of the B+-tree). For this reason, the

optimal algorithm only places internal node pages on the flash disk. The conservative

algorithm places only a small number of pages on the flash disk during the third read

query set execution, but places them back on the magnetic disk after the first set of

update queries. The optimistic algorithm eagerly places pages on the flash disk, which

incurs a great cost when the workload changes. Of course, not all read pages are

placed on the flash disk by optimistic, but only the ones that are logically read many

times by the read query set. For hybrid, some pages migrate to the flash disk during

the second and third query set executions. However, after the first three update query

sets, all pages migrate back to the magnetic disk (except for the internal node pages

of the B+-tree). The total times were 3,932 seconds for conservative, 4,560 seconds

for optimistic, and 4,060 seconds for hybrid, while executing the queries according to
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the optimal algorithm took 3,920 seconds. The total time for executing this sequence

using only the magnetic disk was 4,150 seconds and 6,552 seconds when using only

the flash disk.

Of all on-line algorithms, optimistic gives the greatest performance improvement

when it makes the right decisions. However, when workload changes do not last long

enough for the migration cost to be paid off, optimistic introduces extra I/O cost due to

wrong migration decisions. On the contrary, conservative decides migrations only after

workload changes persist for a number of future accesses. Thus, conservative is less

likely to make the wrong decision and does not migrate pages with frequently changing

workloads. For this reason, however, it improves performance less than optimistic.

The hybrid algorithm, by taking into account the decision criteria of both optimistic

and conservative, manages to balance its adaptivity between the aggressive behavior of

optimistic and the defensive behavior of conservative. Thus, hybrid is more I/O-efficient

than conservative, without taking the risks of optimistic that could lead to very poor

performance. Therefore, we believe that hybrid is the most appropriate algorithm to

decide on page migration and we focus on that algorithm for the remaining sections.
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3.3.4 Mixed workloads

For the next set of experiments we created query sets that have mixed-type queries.

We picked a range of record key values (which we refer to as the interesting set) and

performed B+-tree operations on these key values with a predetermined probability.

All other records had equal 50% read and update probabilities. All records (both the

ones in the interesting set and all remaining) had the same probability of appearing

in the query set. No set of pages was made artificially hot and the only thing that

changed was the ratio between reads and updates among the pages in the interesting

set. We varied the read and update probabilities, as well as the range of key values

for records in the interesting set. We executed 1,000,000 queries using the hybrid

algorithm using a 20MB buffer pool and measured the total execution time. Results

are shown in Figure 3.10, while the raw data for the graph are given in Figure 8.9.

Performance improves when the workload of the interesting set pages becomes

more read-intensive. For a given number of records in the interesting set, the num-

ber of pages that migrate to the flash disk is constant across workloads with different

read/update probabilities. However, as the update probability grows, pages of the inter-

esting set (most of which are on the flash disk) become more frequently updated, thus
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decreasing the performance gain of having them on the flash disk. When the workload

is more than than 70% read-intensive, one can see that performance improves as the

size of the interesting set increases. This is because more pages migrate to the flash

disk where read operations are more efficient. One can also see that when records in

the interesting set are updated more than 30% of the time, performance does not im-

prove as the size of the interesting set grows. This is due to leaf nodes that store records

of the interesting set not migrating to the flash disk. In this case only internal nodes

are placed on the flash disk and thus performance is slightly improved over a system

employing only a magnetic disk. When using the magnetic disk only, execution time

is comparable to that of the “60% read - 40% write” workload for all workloads and

interesting set sizes (with only slight deviations). When using only the flash drive, ex-

ecution time is much higher due to the pages not belonging to the interesting set being

updated 50% of the time (except when the entire dataset is interesting).

3.4 Discussion

Deferred page migrations. The solid state disk we used in our experiments is equipped

with a DRAM buffer. The buffer is partitioned into a number of segments (a typical size

for each segment is 512kB to 1MB). Its purpose is to temporarily hold the contents

of updated blocks (erase units) in order to avoid some erase operations, i.e., to act as

a write cache. Each DRAM segment can store a number of contiguous blocks. Thus,

when writes to sectors are sequential, page sectors that belong to the same block are

buffered in a DRAM segment. When the segment becomes full, all updates to the sec-

tors of the block are performed with a single erase operation. Our benchmarks show

that writing pages sequentially to the flash disk is over 10 times faster than writing

them in a random fashion.

Our system can take advantage of this to further reduce the I/O cost and improve

response time. During normal operation, the system can only mark pages that should

migrate to the flash disk and perform all write operations on the magnetic disk. Then,

migrations can be executed sequentially and in the background e.g., when the system

load is lower, or when execution of the query that marked them for migration has

finished. Such a strategy is sensible for pages that are scarcely updated, or else the

benefit of using the flash disk is cancelled.

Accelerating flash writes. As shown in Section 3.3.4, the I/O cost improvement of

our system shrinks as the frequency of updates to the flash disk pages grows. To
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minimize this effect one can employ logging techniques such as the ones presented

in [Lee and Moon, 2007] and [Nath and Kansal, 2007], which are complementary to

ours. We conjecture that the combination of both techniques will lead to increased I/O

efficiency.

Sequential access patterns. A typical access pattern of a database system is a se-

quential scan. The magnetic disk is more efficient at both reading and writing se-

quential data. It is conceivable to have the query engine supply hints to the buffer

and storage managers whenever such patterns are encountered. As in [Graefe, 1993,

Stonebraker, 1981], the buffer manager can use sequential access hints not only for

page replacement but also for page placement. In particular, it can employ sequen-

tial access costs in the page placement algorithm as opposed to random access ones,

thereby favoring the magnetic disk and ensuring that sequentially accessed pages do

not migrate to the flash disk. Such hints can be used by the buffer manager as well,

since most of times a file is scanned sequentially, pages need not remain in memory

after they are accessed, as discussed in [Stonebraker, 1981], [Graefe, 1993].



Chapter 4

Buffer Allocation

4.1 Introduction

Databases and data-intensive applications generally use more than one physical de-

vices to store their data. These devices may have similar I/O cost characteristics or

not. In such setups, the solid state drive may be used either as persistent storage

([Koltsidas and Viglas, 2008], [Lee and Moon, 2007]) or as a caching layer between

the hard disk and the main memory ([Narayanan et al., 2009]). Even in a flash-only

system, the I/O costs of the flash disks vary widely as discussed in Chapter 1. Tak-

ing into account the disparate I/O cost characteristics of devices in such setups is of

paramount importance if informed decisions with respect to performance are to be

made. To a lesser extent, the same holds for homogeneous systems as well, e.g., those

using only magnetic disks. At any given time, the I/O efficiency of a disk is heavily

affected by (a) the access pattern, (b) how many concurrent operations access its data

(i.e., how long the request queue for the disk is) and (c) what portion of the address

space of the device is accessed by these requests. Consequently, even identical disks

may exhibit very different I/O throughput during some time periods. What is more, the

throughput of a faulty disk or a disk under RAID reconstruction is seriously degraded.

The motivating impetus for our work is the observation that storage devices in

a multi-device setup compete for main memory buffer space. The system needs to

drive this competition based on informed decisions that carefully exploit the I/O cost

discrepancy between devices. Our goal is to improve the performance of such a system

by allocating the optimal number of main memory buffers to each device. This requires

taking into account not only the I/O characteristics of devices, but also the behaviour of

the data cached from any device, across different cache sizes. We therefore introduce

49
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the notion of device caching utility that captures the cost savings realised by allocating

page frames to a device. This utility metric is subsequently used to decide how many

page frames (that is, what portion of the buffer pool) will be dedicated to the data of

each device.

This problem bears some similarity to the problem of partitioning a cache across

competing applications (or processes or queries in a DBMS) that store their data on a

single device. However, there are two crucial distinctions to be made: (a) in our case,

device costs play a major role in the I/O cost resulting from each different memory

allocation, while in the application domain, only the hit ratio of the data cached by

each application affects the I/O cost and (b) in the application domain, the competing

entities (the applications) are solely responsible for their cache behaviour, i.e., they

generate their own workloads. Thus, the workload of each application can be regarded

as relatively static through time with respect to its cache behaviour; as such, specific

assumptions can be made about it per application. The same holds for each query

in a database; it is easy to model the cache behaviour of a query for specific access

methods (as in [Chou and DeWitt, 1985], [Ng et al., 1995]). In the device domain, on

the other hand, the workload the devices see is generated by applications; most impor-

tantly, many applications (or, database queries) may access data from the same device

concurrently. Therefore, the workload seen at the device level will be much different

from the one generated by each application, tending to be more random as more ap-

plications/queries operate on the device. Additionally, changes to the workload seen

by a device will be more frequent and more dramatic, than they are for an application,

as, for instance, new queries enter concurrent execution in a DBMS and old ones ter-

minate (while the cache behaviour of each such query remains almost the same each

time it is executed). The applications’ cache behaviour is determined by the way it

manipulates its data, which is relatively fixed for each application. The devices’ cache

behaviour is determined by the data of the device used at each point in time, which

changes frequently and radically. For these reasons, some of the solutions proposed

for the application domain are unsuitable for the problem we are studying. An impor-

tant contribution of our work, however, is that the techniques we present for tracking

the hit ratio curve in a cache can be used in the application domain as well, to provide

more informed memory partitioning.

Buffer allocation is a problem orthogonal to data placement: placement of pages

across the storage media can be decided by the storage manager using arbitrary criteria.

We assume data processing that requires demand paging: pages are brought into main
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Figure 4.1: Buffering pages from multiple devices

memory before processing, and this happens only on page referencing. When a page is

referenced, it is read from the disk on which it is persistently stored into a main memory

buffer. Main memory buffers are managed by the buffer manager of the system. When

a page needs to be replaced, the buffer manager selects the victim page for replacement,

according to a replacement policy. If the victim page is dirty, i.e., has been written to

since it was brought into the buffer pool, it is written back to the storage medium to

which it belongs. Then, it is removed from main memory. Such a system, in which the

main memory buffer pool contains pages that belong to four different storage devices,

is pictured in Figure 4.1.

Caching data pages in the main memory buffer pool (also referred to as page cache

hereafter) reduces the number of physical I/O operations. A read operation is required

whenever a referenced page is not found in the cache, i.e., a cache miss occurs, while

an additional write operation is required whenever a dirty page is evicted from main

memory. The total I/O cost paid for a specific workload is determined by the number

of read and write operations on the storage media of the system and the cost of each

such operation. If all the underlying media have the same read and write costs, then

the I/O cost paid by the system only depends on the miss ratio of the cache and the rate

at which pages of the system are being dirtied. However, if the underlying media have

varying I/O costs, the total cost paid by the system is determined by the read cost of

the missed pages and the write cost of the dirty victim pages. For instance, consider a

system like the one studied in Chapter 3, in which the flash SSD is orders of magnitude

more read-efficient than the magnetic disk. Consider a clean page p1 that is stored on
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the flash disk and a clean page p2 that is stored on the magnetic disk. These two pages

are both cached in-memory at some point in time and assume that they are the ones

that have the least probability of reference by future requests among all pages in the

buffer pool. If p1 is chosen for eviction, at the next read operation on p1 the system

will pay the cost of reading from the flash disk; if p2 is chosen, the system will pay the

cost of reading from the magnetic disk, which is many times higher. The best choice

for eviction is p1: if p2 has not been evicted by the next access to it, the system will

have avoided paying the high cost of a magnetic disk read.

In this chapter we study the problem of deciding how many data pages should be

cached from each device and on what principle one should replace pages; our goal is to

minimise the total I/O cost paid by the system. We start by introducing a static caching

scheme, appropriate for hybrid setups such as the one of Chapter 3: buffer allocation

and replacement decisions are primarily based on the I/O cost of the storage devices.

Then, we formally define the utility metric of caching for each device and propose

dynamic and adaptive allocation algorithms based on that.

4.2 Static Allocation

Our goal is to improve I/O efficiency by reducing page misses in the cache (i.e., the

total number of I/O operations), while at the same time reducing the I/O cost of each

miss. We achieve the latter by taking into account the I/O cost for each page eviction

when choosing the next page to evict. We propose a static buffer replacement policy,

termed Cost Based Replacement, or CBR, that decides on page replacement based not

only on access recency, but also on the I/O cost that the replacement decision is likely

to incur. CBR is geared towards a hybrid system like the one studied in Chapter 3; in

the following we assume such a setup.

The buffer pool is logically divided into two segments: the time segment and the

cost segment, as shown in Figure 4.2. Pages in the time segment are sorted on their

timestamp (i.e., the time of their last access). Pages in the cost segment are sorted on

their cost of eviction. If the buffer pool is B pages in size, the cost segment size is λB,

λ ≤ 1. Of all pages in the buffer pool, the cost segment contains the λB least recently

used ones, at any given time. According to our replacement policy, the next page to be

evicted is always selected from the cost segment, while new pages fetched from one of

the disks are always inserted in the time segment.

The eviction cost of a page is equal to the I/O cost of evicting a page and re-fetching
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Figure 4.2: Buffer Pool Segments

it on its next reference. Let cr
i , cw

i denote the I/O cost of reading a page from device i

and writing a page to device i, respectively. Then, the eviction cost of a page is cr
f if

the page is stored on the flash disk (cr
f + cw

f if it is dirty) and cr
m if it is stored on the

magnetic disk (cr
m + cw

m if dirty). Pages in the time segment are sorted on their times-

tamp in typical Least-Recently-Used (LRU) fashion. Implementation-wise, a queue

(termed main queue) is maintained with the timestamps of pages and pointers to them.

The front of the queue always refers to the page with the minimum timestamp (i.e.,

the least recently used page). When a page is accessed (and therefore has the greatest

timestamp), it is put in the back of the queue.

The cost segment consists of four queues, one for each eviction cost class, as shown

in Figure 4.2: (a) the flash read queue (FRQ) holds pointers to non-dirty pages that are

stored on the flash disk, (b) the flash write queue (FWQ) holds pointers to dirty pages

on the flash disk; (c) the magnetic read queue (MRQ) and (d) the magnetic write queue

(MWQ) hold clean and dirty pages stored on the magnetic disk, respectively. Each
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queue holds its elements sorted on their timestamp, just like the main queue.

The buffer manager maintains a hash index on pages by their page identifier. If

a page is in the buffer pool, a lookup in this index returns the queue element that

represents the page (which can be an element of any one of the five queues). On access,

a page is inserted into the buffer pool as in algorithm fetchPage-static of Figure 4.3. A

hash index lookup is performed to check if the page is in the buffer pool (line 1). If it

is in the pool and in the main queue (i.e., in the time segment), it is given the current

timestamp and moved to the back of the queue (lines 2-4). If it is in a queue of the

cost segment, it is removed from that queue, given the current timestamp and inserted

to the back of the main queue (lines 5-8). Then, the least recently used page of the

time segment (i.e., the front of the main queue) is removed from the main queue and

inserted to the back of the cost segment queue that holds pages with the same eviction

cost (lines 9-10).

If the page is not in the buffer pool it is read from the disk on which it resides. If the

pool is full, a page is evicted using algorithm evictPage-static of Figure 4.4 (line 13).

The requested page is read from disk, given the current timestamp, and added to the

back of the main queue (i.e., in the time segment). If the size of the time segment is

less than (1−λ )B, it means there is room in the time segment so the page is inserted

there. Otherwise, all new pages will be inserted into the cost segment, until the pool is

full. Thus, when the pool becomes full, the size of the time segment is (1−λ )B and

the size of the cost segment is λB. After page eviction, the size of the time segment is

less than (1−λ )B (i.e., (1−λ )B−1) while the size of the cost segment remains λB.

Page evictions are decided by algorithm evictPage-static shown in Figure 4.4. The

page to be evicted is the front element from the non-empty queue that holds pages with

the least eviction cost (lines 2-5). If the page is dirty (i.e., it comes from either MWQ

or FWQ), it is written to disk (line 6). Then, it is removed from the queue in which it

resided and deleted from main memory (lines 7-8). Finally, the least recently used page

of the time segment is removed and placed into the cost segment, by being appended

to the back of the appropriate queue (lines 9-10). The cost segment maintains the same

size and a free page is created, so the page to be read after the eviction can be inserted

in the time segment.

Observe that for each page access or page eviction the complexity of our algorithm

is constant in the size of the buffer pool. All operations on queues are O(1) and both

fetchPage-static and evictPage-static incur a constant number of operations on queues

(one at least, two at most). Additionally, each hash index lookup is also O(1). Conse-



4.2. Static Allocation 55

Algorithm fetchPage-static (PageId pid)

1. pg← hash lookup(pid)

2. if (pg found in main queue)

3. give pg a new timestamp

4. move pg to the back of main queue

5. else if (pg found in cost segment queue q)

6. remove pg from q

7. give pg a new timestamp

8. add pg to the back of main queue

9. pg′← the front element of the main queue

10. insert pg′ to the back of cost segment queue q′

that holds pages with cost evict cost(pg′)

11. else
12. if (buffer pool is full)

13. evictPage-static ()

14. read pid from disk into pg

15. give pg a new timestamp

16. if (size of main queue < (1−λ )B)

17. add pg to the back of main queue

18. else
19. insert pg to the back of cost segment queue

that holds pages with cost evict cost(pg)

Figure 4.3: Algorithm fetchPage-static

quently, the complexity of our algorithm is only greater than the complexity of LRU by

some constant c.

4.2.1 The effect of λ

The value of λ affects the efficiency of the algorithm. For simplicity, consider that

pages in the buffer pool are clean. As λ grows, the number of magnetic disk pages in

the buffer pool grows, while the number of flash disk pages in the buffer pool shrinks

(because FRQ pages are evicted first, they will typically be found only in the main
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Algorithm evictPage-static ()

1. Page pg;

2. if (FRQ is not empty) pg← front of FRQ

3. else if (MRQ is not empty) pg← front of MRQ

4. else if (MWQ is not empty) pg← front of MWQ

5. else pg← front of FWQ

6. if (pg is dirty) write pg to disk

7. remove pg from the queue it belongs to

8. delete pg

9. pg′← front of main queue

10. insert pg′ to the back of cost segment queue q′

that holds pages with cost evict cost(pg′)

Figure 4.4: Algorithm evictPage-static

queue which decreases in size with increasing λ ), i.e., the hit probability of a magnetic

disk page increases, but so does the miss probability of a flash disk page.

Using the experimental setup of Chapter 3, we run a set of micro-benchmarks on a

B+-tree to measure the impact of CBR and the effect of λ on the I/O cost. We experi-

mented with two different query sets, using different values for λ . In the first query set

(query set A), 50% of B+-tree leaf nodes have a read workload and the remaining 50%

of leaf nodes are read and updated with equal probability. Therefore half of the leaf

pages are placed on the flash disk and the remaining are placed on the magnetic disk

(of course, internal pages are placed on the flash disk, since no insertions occur). All

measurements are taken after pages have been placed on the appropriate disk. All leaf

nodes have an equal probability of being referenced by a query. Query set A consists of

100,000 queries. We measured the total execution time as we varied λ and plotted the

results in the top part of Figure 4.5. When λ = 0, the replacement policy degenerates

to simple LRU, while when λ = 1 the whole buffer pool is used as a cost segment, with

page replacement decided only by the eviction cost of a page.

One can see that performance improves as the value of λ increases, for values of λ

up to 0.9. This is because pages on the flash disk and pages on the magnetic disk are

accessed with the same probability. When pages corresponding to internal nodes of the

tree (stored on the flash disk) do not fit in the time segment, i.e., for λ > 0.9, they are
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Figure 4.5: Replacement policy for different λ

evicted in favour of pages on the magnetic disk. Then, each leaf page access requires

3 physical flash read operations (the depth of the tree was 4), and thus performance

degrades. Performance with λ = 1 remaining better than with simple LRU has to do

with flash pages not being particularly hot. The performance benefit of our replacement

policy reaches 21% in this case.

In the second set of queries (query set B), 10% of the B+-tree leaf nodes have a read

workload, while the rest are read and updated with equal probability. The set consists

of 150,000 queries. However, only 15,000 queries access leaf pages on the magnetic

disk, while the remaining 135,000 access leaf pages that are on the flash disk (i.e., 10%

of all leaf pages); thus, 10% of the B+-tree leaf pages are hot. The results, as we varied

λ , are shown in the bottom part of Figure 4.5. The best performance is for λ = 0.5:

15% better than the performance of LRU. As λ grows greater than 0.5 performance

degrades. More than half of the buffer pool fills up with magnetic disk pages that are

scarcely accessed, while for most accesses to flash disk pages (which amount to 90%

of all accesses) a miss occurs. When internal node pages do not fit in the time segment

(for some λ > 0.9), performance again degrades and becomes even worse than the

performance of LRU.
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The problem with CBR is that its performance depends heavily on a wise choice for

the value of λ for a particular workload. For instance, if the low eviction cost pages

(e.g., clean flash pages) are particularly hot in a workload, while the pages stored on the

magnetic disk are cold, then a very small value for λ serves best in terms of efficiency.

On the other hand, the hotter the high-eviction-cost pages are, the greater the value of

λ should be to force more pages of the high-cost classes to remain in main memory.

Moreover, λ determines the portion of the buffer pool that will be managed based on

cost, but does not determine the number of pages cached from each device on a per-

device basis; thus, even if the workload of devices were known CBR could not enforce

that a specific number of pages from the cost segment be given to a device that sees

high heat.

4.3 Dynamic Allocation

We now turn to dynamic allocation algorithms. Our goal is to overcome the weak-

nesses of CBR, most importantly that (a) the wise choice for λ is crucial to the perfor-

mance of the system under a specific workload and (b) CBR does not adapt λ when the

workload changes. To that end, the system needs to keep track of specific character-

istics of the workload of each device. Before introducing our algorithms for dynamic

allocation, we present an overview of existing techniques for tracking the behaviour of

caches.

4.3.1 Theoretical Background

To allocate the optimal number of buffers to a specific device, being able to predict

the hit ratio for the data of the devices under various caches sizes is of paramount

importance, if informed decisions are to be made. In [Mattson et al., 1970] Matt-

son et al. propose an algorithm that tracks the hit ratio for a workload for caches

of all sizes up to S in a single pass, by running it using a cache of size S. The

only constraint for this algorithm is that it requires a stack replacement policy, such

as LRU, while most modern replacement policies have not been shown to be such.

In [Kim et al., 2000] authors argue that Mattson’s algorithm is impractical due to the

overhead of measuring hit distances and propose a method for analytical approxima-

tion of the hit ratio curve, based on Belady’s lifetime function. The same approach

is followed by [Choi et al., 2000]. Their analytical approximation, however, is also
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specific to LRU and based on assumptions on the shape of the hit ratio curve. In this

work, on the contrary, we provide an efficient and accurate technique for measuring hit

distances, with constant time complexity, which is applicable to all stack replacement

algorithms. In this manner we eliminate the overhead preventing the use of Mattson’s

algorithm in [Kim et al., 2000], [Choi et al., 2000]. In [Zhou et al., 2004] the authors

also propose a technique for estimating hit distances efficiently; an experimental com-

parison with our own technique suggests that ours is preferable for use in real-world

deployments (see Section 4.7.1).

A similar problem to ours is the one of allocating memory to different processes

according to their cache hit rates. In that context, the authors of [Stone et al., 1992]

assume that the miss-rate functions of processes are convex and propose a cache par-

titioning algorithm for both fully- and set-associative processor caches. The key idea

is that the optimal partitioning appears at a point where the miss-rate of the competing

processes derivatives are equal, which was proven in [Ghanem, 1975]. They assume

LRU as the replacement policy and approximate the miss ratio curve for each process

analytically. In [Thiébaut et al., 1992] the authors extend that work to disk caches and

study how hit counts and statistics should “age” with time, to provide adaptability. The

problem of allocating buffers to processes is also studied in [Zhou et al., 2004] and au-

thors propose a greedy algorithm for memory partitioning, once the miss ratio curve is

known. In [Soundararajan et al., 2008] the authors study the same problem in the con-

text of database applications running on a storage system. They collect samples of each

application’s latency for different cache partitioning configurations and employ support

vector machine regression to approximate the per-application performance models.

Their goal is to meet the QoS requirements of the applications and further maximise

the revenue for the service provider, if that is possible. In [Soundararajan et al., 2009]

their work is extended to also provide disk bandwidth partitioning among applications.

The main drawback of their approach is that they use statistical tools that require sam-

pling for each application. In their experiments they report that the time to collect the

samples reached 30 minutes, which is not acceptable for the case of per-device cache

partitioning. Also, their main goal is not to improve throughput, but to meet the QoS

requirements for each application. In their work, applications compete for both buffer

space and disk bandwidth, while in our case, the buffer manager has complete control

of the bus.

In the database world, authors of [Ng et al., 1995] propose a method for allocating

buffers to queries, based on the marginal gain that each query will get if more buffers
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are allocated to it. Their methods though, assume specific database access patterns.

The same approach is followed by [Chou and DeWitt, 1985]. However, in our case,

where buffers are allocated per storage device, multiple queries may operate on the

same device at the same time and therefore specific access patterns cannot be assumed.

Thus, hit rates for per-device data cannot be predicted. Of course, such techniques are

applicable one level higher, that is, within the buffer space allocated for each device.

4.4 Problem Formulation

Terminology. Departing from the system studied in Chapter 3 and Section 4.2, we

now turn to a generic system that consists of many storage devices. In the general

case, the storage component of the system consists of n storage devices, while there

are S buffer pool pages available in main memory (page frames). Let cr
i be the cost

of reading a random data page from device i into a main memory buffer and cw
i be

the cost of writing a data page from a main memory buffer to device i. Similarly to

the case of static allocation, we define the eviction cost of a page x, or e(x), to be the

cost of evicting the page from the buffer pool and re-fetching it on its next reference.

Assuming that page x is stored on device i, it follows that e(x) = cr
i if the page is clean

at the time of eviction and e(x) = cw
i + cr

i if the page is dirty. It also follows that all

clean pages (and dirty ones, respectively) that belong to the same device have the same

eviction cost. Additionally, let si be the portion of the cache devoted to device i at some

point in time, i.e., the number of page frames that are occupied by pages that belong to

device i; we refer to si as the cache size for device i.

Page replacement may be done on a per-device basis, that is, the buffer manager

may enforce a different replacement policy for the pages of each device. Let Yi be

the replacement policy based on which the buffer manager replaces pages of device i.

Furthermore, let W be the global workload during a time interval, i.e., the sequence of

page references generated by the system during that time to pages that belong to all

storage devices. Then, we define the workload of device i, or wi, to be the subsequence

of W that references pages stored on device i. We refer to the number of page hits

and misses that occur in the cache for pages stored on device i as device i hits, or hi,

and device i misses, or mi, respectively. The heat of a device is the percentage of total

references that target pages of that device, or |wi|
|W | . Assuming that during the execution

of wi, the device cache size si is fixed, then the number of hits and misses for device i

only depends on the size of the device cache (si), the replacement policy used for that
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particular device (Yi) and the device workload itself (wi). With H(Y,s,w) giving the hit

ratio occurring under replacement policy Y for a cache with size s for the execution of

reference sequence w, we have that hi = H(Yi,si,wi) · |wi|.
I/O cost. For each page hit in the cache, no I/O cost is paid by the system, as the page

access is served in-memory. If a page reference results in a page miss in the cache, and

assuming normal operation (the cache is warmed up), the missed page will be fetched

from the device to which it belongs and a victim page will be removed from the cache

and written back to the device to which it belongs, if it is found to be dirty. With pd
i

denoting the probability that a page of device i is found dirty upon its eviction, the cost

paid for the pages of device i is Ci = (|wi|−hi) ·(cr
i + pd

i ·cw
i ) and the total I/O cost paid

by the system is equal to:

C =
i=n−1

∑
i=0

Ci =
i=n−1

∑
i=0

(1−H(Yi,si,wi))|wi|(cr
i + pd

i · cw
i )

Inversely, the utility of the buffer pool is equal to the number of cost units saved by page

hits. Thus, the cost units saved by caching si pages of device i is C′i = hi · (cr
i + pd

i ·cw
i )

and the total I/O cost saved is equal to:

C′ =
i=n−1

∑
i=0

C′i =
i=n−1

∑
i=0

H(Yi,si,wi)|wi|(cr
i + pd

i · cw
i )

Our goal is to minimise the total cost paid by the system C, under the constraint that

∑
i=n−1
i=0 si = S, or, equivalently, maximise C′. Naturally, the formula for C confirms

the intuition that the total I/O cost drops when the hit ratio for device caches increases

and when the read and write costs of the devices are low. In addition, the more dirty

pages are chosen for eviction, the higher C will be. In what follows we assume that the

replacement policy for each device is fixed, that is, either the “best” replacement policy

has been chosen a priori for the workload of the device or the same replacement policy

is used for the caches of all devices. Thus, the only parameter in the above equation

tunable by the system is si, that is, the portion of the buffer pool that is dedicated to

pages of device i, which effectively determines H and, possibly, pd
i . Choosing the

optimal value for each si is the goal of the rest of this chapter.

4.4.1 Eviction Cost Classes

As introduced above, the eviction cost of an in-memory page x that belongs to device i

is equal to cr
i if the page is clean and equal to cr

i +cw
i if the page is dirty. This classifies

the pages of a device cached in-memory into two classes w.r.t. their eviction cost: the
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Buffer Pool

Figure 4.6: Regions for pages with the same eviction cost.

clean pages class and the dirty pages class. Conceptually, the portion of the buffer

pool devoted to device i can be thought of as consisting of two separate regions: one

that holds the clean pages of the device (the clean region or CRi) and one that holds the

dirty ones (the dirty region or DRi). Observe that CRi can be thought of as the cache of

a read-only device, while DRi can be thought of as the cache of a device, all the pages

of which get dirtied when brought in-memory.

For reasons of simplicity in our analysis, we therefore use the notion of regions oc-

cupied by pages that belong to the same eviction class, i.e., have the same eviction cost

(whereas not all pages belonging to one device have the same eviction cost). In Fig-

ure 4.6 the buffer pool of Figure 4.1 is shown with si = 4 for all i. In this example, the

system has assigned 3 page frames to the clean region of devices 0 and 3 and 1 page

frame to their dirty regions, while 2 frames have been assigned to both the clean and

dirty regions of devices 1 and 2.

Extending our previous definitions to account for an analysis based on regions,

rather than devices, is straightforward. Upon a reference to a page that belongs to

device i, the page is looked-up in both the clean and the dirty region of the device.

Since the clean region only caches clean pages, while the dirty region only caches

dirty pages, the referenced page will either be found in the clean region or the dirty

region or in neither of the two. If it is found in one of the regions, a page hit occurs for

the corresponding region. Otherwise, the page is read from the device and placed in the

clean region (after replacing a page from that region, if it is found full). When a clean

page gets dirtied by the workload, it is moved from the clean region of the device to its
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dirty region (replacing a dirty page if the dirty region is full). Note that each reference

to a page of device i may result in a hit in exactly one of the two regions associated with

the device or a miss in both regions. In other words, the concept of a page reference

only makes sense when referring to a device, not a region, as references do not target

a specific region, as the requested page may or may not be dirty. The same holds for

page misses. For instance, if a referenced page is found neither in the clean region of

the device nor in the dirty one, then one cannot characterise this exclusively as miss to

either of the two.

In a system that uses n storage devices, there will be 2 ·n regions in the buffer pool,

two for each device. In that sense, one can think of the buffer pool as a collection of

2 ·n regions, instead of a collection of n devices. Using similar terminology to the one

used for devices, a region j has size s j and an eviction cost e j equal to cr
i if it holds

clean pages of device i or cr
i +cw

i if it holds dirty pages from that device. The workload

seen by that region is then w j ≡ wi, i.e., the subsequence of W that references pages of

device i and the replacement policy for the region is Yj. Note that the clean region of

device i may replace pages using a different replacement policy than the dirty region

for that device; although there is no apparent reason for using a different policy for

the two regions (since they see the same workload), our model provides the freedom

to the user to do so. Then the hit ratio for a region j is equal to H(Yj,s j,w j) and the

number of occurring hits h j = H(Y j,s j,w j) · |w j|. The cost units saved by a hit on the

region are equal to the eviction cost of the region e j. Thus, the utility of caching s j

pages in region j is measured by the cost units saved by hits on that region, that is,

C′j = H(Yj,s j,w j) · |w j| · e j. In other words, the utility of caching pages of that region

(a) grows with H, the effectiveness of the replacement policy (Yj) for a cache of that

size (s j) and workload (w j), (b) grows with the heat of the device i to which the region

belongs (|w j|= |wi|) and (c) grows with the eviction cost for that region (e j). The cost

units saved by the whole buffer pool are given as follows:

C′ =
j=2n−1

∑
j=0

C′j⇒C′ =
j=2n−1

∑
j=0

H(Yj,s j,w j) · |w j| · e j

Our goal is to maximise the utility of the buffer pool, i.e., maximise the cost units saved

by hits on the 2 · n regions. In other words, we aim to distribute the S page frames to

the 2 ·n regions so as to maximise C′. Note that using a model based on regions instead

of devices, the cost of writing back dirty pages is incorporated in the eviction cost of

the regions, thereby eliminating the parameter pd introduced in the analysis for the

device-based model.



64 Chapter 4. Buffer Allocation

Replacement Policies. In this work we assume that replacement policies for all de-

vices do not exhibit Belady’s anomaly [Belady et al., 1969], i.e., they are not based on

FIFO queues. Therefore the hit ratio for the policy grows with cache size (that is H

grows as s j grows); this holds for virtually all modern page replacement algorithms.

In the general case, however, one cannot know exactly how H changes with s j (the hit

ratio curve), unless very specific characteristics of the workload and the replacement

policy are priorly known, which is infeasible in real-world systems. For stack replace-

ment policies, such as LRU, the hit ratio curve can be efficiently computed for a specific

workload [Mattson et al., 1970]. For such cases, we propose techniques that can take

advantage of the hit ratio curve to make more informed decisions.

4.4.2 Adaptability

In our analysis so far we have only considered static workloads, that retain the same

characteristics over time, with respect to page and device heat. For such a case, there

is an optimal distribution of the S page frames to the 2 · n regions, that maximises C′

throughout the whole workload. However, this is not realistic in real-world workloads,

in which not only the heat of devices, but also the heat of pages varies widely through-

out the workload. For instance, assume a relation A stored on device 0 and relation B

stored on device 1. If A is hotter than B, then increasing the size of CR0 and DR0, and

decreasing CR1 and DR1 by an equal amount of page frames, will most probably yield

a much higher hit ratio for the whole workload. However, if later in the workload B be-

comes hotter than A, keeping region sizes fixed is obviously a wrong decision; rather,

the regions for device 1 should now grow, acquiring pages from the regions of device

0, which is now cold. A similar situation may arise even between the two regions of a

device, when for instance the workload of the device changes from write-intensive to

read-intensive and vice-versa. What is more, one cannot reach optimal decisions based

only on hit ratios; rather, the eviction cost of each region should also be taken into ac-

count when trying to minimise the I/O cost of the system. For instance, if page hits for

a region j are twice as many as the hits for a region j′, but the eviction cost of j′ is ten

times higher than the eviction cost of j, then in order to minimise the total I/O cost, one

should cache more pages of region j′, rather than j. If the read and write costs of the

storage devices change over time, the system needs to adapt to those changes as well.

It should be clear from the above that keeping the sizes of regions fixed throughout

a workload is very unlikely to yield the optimal I/O cost for the system. Rather, the
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system should be adaptive and change region sizes as the characteristics of the work-

load change over time. In the following sections we propose algorithms that can detect

workload changes and adjust region sizes accordingly. The key idea of the algorithms

presented is that they estimate how the utility of each region changes through time and

how it is expected to change when the size of each region changes. Then, regions with

high utility are given more page frames (they grow), while regions with low utility are

downsized (they shrink) giving some of their page frames to the growing ones. The

key difference between the proposed algorithms is the metrics they used to capture the

utility of regions and to predict how the utility of a region will change if the region

either grows or shrinks.

4.5 Algorithms

We now turn to the presentation of our algorithms for maintaining the optimal size for

each region in the system. First we present two algorithms suitable for any replacement

policy and then we turn to algorithms for systems with stack replacement policies, that

take advantage of the hit ratio curve to make more informed resizing decisions.

4.5.1 Baseline Resizing Algorithm

We propose two algorithms that adapt the size of each region using different criteria.

However, the workflow for both algorithms is the same and, therefore, before describ-

ing in detail the two alternative criteria, we present the workflow of the baseline resiz-

ing algorithm. The baseline algorithm for fetching a page into the buffer pool is given

in Figure 4.7. For a device i, we keep track of the number of page references ri the

device has seen and for a region j we keep track of the number of page hits that have

occurred in that region, h j. Initially, we determine the device to which the requested

page belongs and increase the number of references for that device (Lines 1-2). Then,

a lookup is done in the clean region of the device; if the requested page is found there,

the hit counter for that region is incremented, the utility metric for the region is up-

dated by updatePriority and the page is returned (Lines 3-6). Note that updatePriority

is implemented differently for the two proposed algorithms and will be discussed sep-

arately for each. If the page was not found in the clean region, the same is done for the

dirty region of the device (Lines 7-10). If the page is not found there, a page miss has

occurred in the buffer pool.
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Algorithm fetchPage (Page pg)

1. i := device(pg)

2. ri := ri +1

3. if pg found in CRi

4. hCRi := hCRi +1

5. updatePriority (CRi)

6. return pg

7. if pg found in DRi

8. hDRi := hDRi +1

9. updatePriority (DRi)

10. return pg

11. j′ := PickEvictionRegion()

12. Evict a page from j′ according to its replacement

policy, writing it back to the device it belongs to,

if it is dirty, that is, if j′ is a dirty region

13. s j′ := s j′ −1

14. sCRi := sCRi +1

15. updatePriority ( j′)

16. updatePriority (CRi)

17. Read pg from device i

18. Insert pg into CRi

19. return pg

Figure 4.7: Baseline algorithm for fetching a page

Assuming normal operation, i.e., the buffer pool is full, at that point a page will

need to be evicted, to make room for the new page pg. The region from which the

page will be evicted will shrink by 1 page frame, while the region into which the new

page will be inserted will grow by 1 page frame. Therefore, at that point the algorithm

decides which region should shrink; the one to grow will always be the clean region

of the hit device. The region that will shrink is chosen by pickEvictionRegion based on

the cost utility of each region; at this point the two proposed algorithms also differ and

therefore pickEvictionRegion will be discussed separately for each. This procedure will

return the region with the least cost utility among all regions. Note that the returned

region may be the hit one, if it is found to be the least cost effective. After the eviction

region is picked, the victim page is chosen by the replacement policy for that region.

If the eviction region is a dirty one, then the victim page will be dirty and will need

to be written back to the device which it belongs to (Lines 11-12). Now the free page
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Algorithm touchPage (Page pg)

1. i := device(pg)

2. if pg found in DRi

3. return
4. else /∗ pg is in CRi ∗/
5. Remove pg from CRi

6. sCRi := sCRi −1

7. sDRi := sDRi +1

8. updatePriority (CRi)

9. updatePriority (DRi)

10. Insert pg into DRi

Figure 4.8: Baseline algorithm for dirtying a page

frame of the eviction region is given to the hit region, i.e., the clean region of the hit

device (Lines 13-14). The utilities for regions j′ and CRi have now potentially changed

and are therefore updated by updatePriority (Lines 15-16). Next, the referenced page

can be read from device i into the free page frame that was given to CRi and can be

returned to the user (Lines 17-19).

The algorithm for making a page dirty is shown in Figure 4.8. Note that when

touchPage is called the page will already have been fetched into the buffer pool and

will therefore reside either in the clean region or the dirty region of the device the

page-to-be-dirtied belongs to. Dirtying a page means moving it to the dirty region of

the device it belongs to. Initially, that device is identified and a lookup is done to its

dirty region; if it is found there, nothing more needs to be done (Lines 1-3). Otherwise,

the page is in the clean region of the device. It is thus removed from it and inserted

into the dirty region of the device. As a result, the clean region shrinks by one page

frame, while the dirty region grows by one (Lines 4-7). Then the utilities for the two

resized regions are updated by updatePriority, as they may have changed (Lines 8-9).

Note that if decreasing the size of the clean region by one is a “wrong” decision from

a cost utility point of view, at the next call of pickEvictionRegion on a reference to a

page of that region, this will be identified and the clean region will grow again. Last,

the dirtied page is inserted in the dirty region for the device (Line 10).

Capturing Utility. Following the analysis of Section 4.4, the most straightforward

thing to do is to capture the cost utility of each region by calculating C′j = H(Yj,s j,w j) ·
|w j| ·e j at each call to updatePriority. Using the terminology of the algorithms, at each
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call to updatePriority one would need to compute h j · e j in order to rank the regions

by their cost utility . Then, the region with the minimum cost utility would be selected

by pickEvictionRegion and returned to fetchPage, as it would be the one that should

shrink. On the other hand, the hit region would grow, since it would be more (or,

equally) cost effective as the one returned by pickEvictionRegion.

We experimented with this criterion for cost utility, but found it not to be adaptive

in most cases. The reason is that it takes into account the number of hits a region has

seen when deciding its utility. Although this is not fundamentally flawed, imagine the

following situation: a region becomes cold at some point and sees no references (and

thus hits) and therefore shrinks to a very small size, or even to 0. Then, suppose that

this region subsequently becomes hot again. Since its size is very small, very few hits

will occur, or even none at all, regardless of the heat of the region and the effectiveness

of the replacement policy. Therefore, this region will always be found to be the least

cost effective and will never get a chance to grow, although it has become a very hot

one that could potentially give a very large number of hits. To avoid this situation, we

provide two alternative criteria for estimating the cost utility of a region: (a) one that

does away with page hits in the first place and (b) one that uses ghost caching to allow

growing of regions that have reached a very small size.

4.5.2 Reference-based Utility Criterion (RUC)

The first, and simplest, of the algorithms, termed RUC, makes the following assumption

regarding H(Yj,s j,w j):

Assumption 5.0: The hit ratio function H(Y,s,w) depends only on s, i.e., H(Y,s,w) =

H(s) and is the same for all regions. 2

In other words, the effect of Yj and w j is the same on H for all regions and thus the

hit ratio of two regions j, j′ is expected to be the same when s j = s j′; the number of hits

a region sees, thus, only depends on the size of the region and the heat of the device it

belongs to. This assumption is valid when all regions use the same replacement policy

and have similar workloads. Of course, it is not very accurate for many real-world

workloads. Our experiments of Section 4.7, however, verify that, even for real-world

workloads, RUC performs very well, even under this simplifying assumption.

As discussed in Section 4.5.1 determining the utility of a region by the number of

hits it has seen is very prone to leading to a non-adaptive behaviour. Under RUC, the

utility of region j is decided by the heat of the region (which under our assumption
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determines the number of hits for a specific size of that region), that is, the number

of references it has seen, and its eviction cost. Furthermore, RUC adopts the concept

of per-page utility, i.e., the cost utility that each page contributes to the utility of the

region. The intuition behind this is that if two regions have the same utility, then the

one that has less per-page utility (more pages) should shrink, as it utilises its page

frames less efficiently. Therefore, the measure of cost utility used by RUC for region j

is computed as URUC( j) = r j·e j
s j

.

The pseudocode for updatePriority and pickEvictionRegion for RUC is given in Fig-

ure 4.9. We use a Red-Black tree to hold the utilities of regions, with each element of

the tree holding the utility of region j and a pointer to the region itself. In updatePrior-

ity, the utility for the region passed as parameter is computed and its entry is updated

in the Red-Black tree rbt. Then, in pickEvictionRegion the element with the minimum

value is extracted from rbt and the region to which it belongs is returned to the caller.

Our choice to use a Red-Black tree to hold the utilities of regions is due to our al-

gorithm requiring efficient updates to the values for regions’ utilities and efficiently

finding the minimum of those. At both these operations the Red-Black tree is most

efficient: both updating an element and extracting the minimum is logarithmic to the

size of the tree. Since there are 2 · n regions in the system, both updatePriority and

pickEvictionRegion are O(log(2n)). Note that all operations of fetchPage and touch-

Page are of constant complexity, apart from updatePriority, pickEvictionRegion and

the replacement policy. For virtually all modern policies, the complexity is constant-

time as well; thus, the complexity for RUC is O(log(2n)) for n devices. If replacement

policies with complexity greater than O(log(2n)) are used for some regions, then the

complexity of RUC is equal to those.

4.5.3 Hit-based Utility Criterion (HUC)

The design goal for HUC is to drop the assumption that RUC makes about the hit ratio

function across regions; rather, for HUC, the hit ratio function for each region is arbi-

trary. What is more, HUC takes into account the hit ratio when deciding the utility of a

region. As discussed in Section 4.5.1, however, just using C′j = H(Yj,s j,w j) · |w j| · e j

as a measure of utility leads to a system that adapts very poorly to changing work-

loads. In order to make an informed decision before resizing a region, one needs to

know how many more or less hits the region is expected to yield if it grows or shrinks,

respectively.
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Algorithm RUC

rbt : a red-black tree on regions’ utilities.

Procedure updatePriority (Region j)

1. URUC( j) := r j ·e j
s j

2. Update entry for j in rbt with URUC( j)

Procedure pickEvictionRegion ()

1. j := get element of rbt with minimum URUC

2. return j

Figure 4.9: The RUC algorithm

Since we make no assumption on H, apart from that it grows with s, we cannot

analytically compute how the hit ratio will change beforehand. As an alternative, to

find out what the hit ratio is expected to be after resizing a region, HUC uses ghost

caching (also known as shadow caching), i.e., the cache directory for the region HUC

holds a superset of the pages that are actually buffered. In particular, except for the

directory of the buffered pages, we maintain another two directories that hold ghost

pages, with each simulating the state at which the region would be if it had a different

size. For ghost pages we only maintain their metadata in cache directory – no I/O is

involved with ghost pages. The one of these two directories simulates a cache that is

d page frames smaller than the current size of the region and is therefore termed the

small ghost directory (or simply SGD). The other one simulates a cache that is d page

frames larger than the current size of the region and is termed large ghost directory (or

simply LGD). For both ghost directories we use the same replacement policy as for the

directory of the region itself and both these ghost directories see the same workload

as the region itself. Therefore, the number of hits occurring for each one of the two

ghost directories is equal to the number of hits that would occur for the region, if its

size was the same as the size of either of the ghost caches. The directories maintained

for a region j by HUC are visualised in Figure 4.10.

Apart from the number of hits h j seen by region j, HUC also keeps track of the

number of hits occurring in each one of the two ghost caches, hSGD
j and hLGD

j , respec-

tively. The key idea in HUC is that if the region is resized from s j to s j− d (the size

of the SGD), then the number of hits will drop from h j to hSGD
j . Similarly, if region

j grows from s j to s j + d (the size of the LGD), the number of hits seen will increase
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Figure 4.10: Bookkeeping for a region under HUC

from h j to hLGD
j . We define ∆hs to be the number of hits that the region will miss by

shrinking from s j to s j− d, that is ∆hs = h j− hSGD
j and ∆hg the number of hits the

region will gain by growing from s j to s j +d, that is ∆hg = hSGD
j −h j.

For each region in the system, HUC tracks the projected decrease in the utility of

the region if it shrinks by d page frames, referred to as shrink utility (∆U s
HUC) and

the projected increase in the utility of the region if it grows by d page frames, termed

grow utility (∆Ug
HUC). By our definition, the utility for a region is proportional to the

number of hits it sees (H(Yj,s j,w j) · |w j|) and to the eviction cost for the region (e j).

Following that definition, we have that ∆U s
HUC = ∆hs · e j and ∆Ug

HUC = ∆hg · e j. In

other words, the shrink utility ∆U s
HUC represents the cost units that the region will fail

to save if its size shrinks by d, while the grow utility ∆Ug
HUC represents the extra cost

units that will be saved by region j if it grows by d. The intuition behind HUC is that

the regions with low shrink utility should give some of their page frames to regions

with high grow utility; the former will only fail to save a few cost units, while the latter

will be able to save many more and therefore the overall utility of the system’s buffer

pool will increase.

Before giving the algorithmic details for HUC we should note that the size of the

SGD is always kept equal to s j − d and the size of the LGD is always kept equal to

s j + d. This detail is omitted in the baseline algorithm for simplicity of presentation.

The only modification required to account for that, however, is that whenever the size

of a region is decreased or increased by one page frame, the same happens for both

ghost directories of that region (this occurs in Lines 13, 14 of fetchPage and Lines 6,
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7 of touchPage). Also, when a lookup is done on region j (Lines 3, 7 in fetchPage),

a lookup is done in each one of the ghost directories and the hit counters for these

directories (hSGD
j and hLGD

j , respectively) are incremented if the lookup results in a

hit in the respective directory. Independently of the lookup in the region, a lookup in

the ghost caches may yield a hit or miss. In the event of a miss, the referenced page

identifier is brought into the ghost cache directory, following an eviction of a page if

required; the victim page in that case is chosen by running the replacement policy for

the ghost cache. This is required to ensure that the contents of the ghost caches are the

ones that the region would have, if its size were equal to the size of the ghost caches.

This is also omitted from the fetchPage algorithm to keep the presentation simple.

The updatePriority and pickEvictionRegion procedures for HUC are given in Fig-

ure 4.11. Similarly to RUC, we use a Red-Black tree to hold the shrink utilities of the

regions, as we need to efficiently update the shrink utilities of regions and find their

minimum value. In updatePriority, we compute the shrink utility for a region, using

the hit counter for the region and the hit counter for its small ghost directory. The up-

dated shrink utility for that region is then stored in the rbt. In the pickEvictionRegion

procedure, we first compute the grow utility of the hit region, i.e., the region to which

the referenced page is to be inserted, using the hit counter for that region and the hit

counter for its large ghost directory (Lines 1-3). Then, we use the rbt to extract the

region with the minimum shrink utility among all regions (Line 4). Next, we com-

pare the grow utility of the hit region to that minimum shrink utility. If the former is

found higher than the latter, the hit region should grow and therefore the region with

the minimum shrink utility is returned as the region from which the eviction will take

place. Otherwise, the hit region will retain the same size, that is both the eviction and

the insertion of the referenced page will take place in the hit region (Lines 5-8).

The computational complexity for HUC is the same as the one for RUC, that is

O(log(2n)) for a buffer pool over n devices. The space overhead for HUC, however, is

slightly higher as it uses 3 page directories for any region j, holding metadata for 3 · s j

pages in total, while RUC only maintains metadata for s j pages. One may argue that

HUC is much more expensive in terms of CPU cost than RUC, as it requires 3 lookups

when looking up a page in a region (one for the region itself and another one for each

one of the ghost directories). Also, each time a page reference results in a miss in one

of the ghost directories, the replacement policy needs to be run for that directory to

pick a ghost page for eviction; this adds extra CPU overhead. However, all operations

to the ghost directories may be parallelized with the operations on the regions page
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Algorithm HUC

rbt : a red-black tree on regions’ shrink utilities.

Procedure updatePriority (Region j)

1. ∆hs := h j−hSGD
j

2. U s
RUC( j) := ∆hs · e j

3. Update entry for j in rbt with U s
RUC( j)

Procedure pickEvictionRegion ()

1. j′ := the hit region

2. ∆hg := hLGD
j′ −h j′

3. Ug
RUC( j′) := ∆hg · e j

4. j := get element of rbt with minimum U s
RUC( j)

5. if Ug
RUC( j′) > U s

RUC( j)

6. return j

7. else
8. return j′

Figure 4.11: The HUC algorithm

directory, as they operate on different data. What is more, ghost directory updates

may also be overlapped with the I/O operations issued by the region, thereby having

negligible effect in the CPU cost of the algorithm.

4.5.4 Hit Ratio Curve Aware Resizing (HRCA)

In this section we explore how one can compute the hit ratio curve of a replacement

policy for a specific workload and how this curve can be used to reach more informed

resizing decisions. Therefore we assume that the replacement policy is a stack replace-

ment policy, as for this class of replacement policies the hit ratio curve can be tracked

with one pass, for various cache sizes [Mattson et al., 1970]. A replacement algorithm

is a stack algorithm if it exhibits the inclusion property. The latter states that for any

workload the contents of a cache of size s are a subset of the contents of a cache with

size s′ > s [Mattson et al., 1970]. As discussed in [Mattson et al., 1970], any replace-

ment algorithm that induces a total ordering on all previously referenced pages and

uses this ordering to make replacement decisions is a stack algorithm. For instance,

LRU orders accessed pages by their time of last access and always selects the one least

recently accessed one for replacement – therefore it is a stack algorithm. In a similar
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fashion the Least Frequently Used (LFU) algorithm orders accessed pages by their fre-

quency of reference and always evicts the least frequently accessed one. For stack re-

placement algorithms, given a cache memory of size S, one can efficiently compute the

hit ratio for any cache memory of size less than S for a specific workload, using Matt-

son’s algorithm [Mattson et al., 1970]. In the following we assume LRU as the replace-

ment policy, for reasons of simplicity. On the other hand, most modern replacement al-

gorithms (such as ARC [Megiddo and Modha, 2003], CAR [Bansal and Modha, 2004])

use multiple page queues and do not define a total ordering on accessed pages, there-

fore they cannot be classified as stack algorithms. For such cases, more generic algo-

rithms such as RUC and HUC can be used.

4.5.4.1 Mattson’s Algorithm

This algorithm keeps track of the position in the LRU stack at which each hit occurs,

i.e., it records at which stack distance the hit page was, before it is brought to the

front of the LRU queue (as the hit page is now the most recently accessed page). The

algorithm maintains an array of S counters, which we refer to as the distances array or

D[]. Upon a hit to a page at distance i (from the front of the LRU queue), the counter

d[i] is incremented by one. Notice that this hit would never have occurred if the size of

the cache was i−1, or less. Essentially, D[i] represents the number of hits that would

occur in a cache of size i, but not in a cache of size less than i. We refer to D[] as the

hit-distance distribution. Therefore, to compute the total number of hits a cache of size

k < S would see for a specific workload W , one only needs to run the workload for a

cache of size S and then compute h(i) = ∑
k=i
k=1 D[k], for any i of interest. We refer to

h(i) as the hit-size distribution. Of course, the hit ratio for a cache of size k may be

computed as follows:

H(LRU ,k,W ) =
h(i)
|W |

=
∑

k=i
k=1 D[k]
|W |

In implementing the above algorithm for large caches, there are two main chal-

lenges that have to be dealt with. First, the size of the distances array is equal to the

number of pages that fit in the cache and therefore for large caches it occupies (and

thus, wastes) too much memory space. Second, upon each and every hit in the cache

the algorithm needs to find out at what distance the page was in the LRU queue. The

naive way to do that is to linearly search the queue until the referenced page is found;

however, a linear search on every hit is unacceptable from a performance perspective.

To deal with the first problem, we tracked hit distances at a coarser granularity than
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that of a page. Particularly, we divided the cache into c chunks and assumed that all

pages that belong to a chunk have approximately the same distance from the front of

the queue. Therefore, the distances array only needs to keep track of c counters. For

instance, for a cache of 1000 pages we would divide it into 50 chunks of 20 pages each.

Then, for a hit at depth 83 we would increment the counter at 83/20, that is D[5], and

in this way D[i] would represent all hits occurred in depth greater than 20 · (i−1) and

less than 20 · i. Giving up enough accuracy in the recorded distances, one can reduce

the size of D[] as much as one wishes, and vice versa.

4.5.4.2 Measuring Hit Distances

To deal with the second challenge mentioned above, that is, to efficiently measure the

distance of a hit page in the LRU stack, we made the following observation: for LRU,

the distance of a page in the queue is, by definition, proportional to the recency of its

last access. Thus, one can use the recency of a page to estimate its distance in the LRU

stack. To that end, for each page in the cache, we store the timestamp of its last access

(for practically all real systems this timestamp is kept track of anyway, so this scheme

does not impose any additional overhead). When page i (with timestamp of last access

ti) is hit, we estimate its stack distance (di) using the timestamp of the previously most

recently accessed page (tmax) as follows (the snapshot is shown in Figure 4.12(a)):

di = tmax− ti +1

The above is, however, not very accurate for most practical cases. The reason is that

each hit in the cache results in the hit page being moved to the front of the queue

and assigned a new timestamp. Thus, after a hit tmax− tmin + 1 is greater by one than

the actual size of the cache (assuming that tmin is the timestamp of the LRU page),

since tmax has increased, tmin has remained the same and no page has been inserted to

or evicted from the cache). Depending on the distance of the hit page, the quantity

tmax − ti + 1 used to estimate di may also be erroneous after a hit. An example is

shown in Figure 4.12(b), in which no hit has yet occurred and therefore timestamps

are continuous as one traverses the queue. If page with timestamp 4 is hit, however,

then the state of the stack is the one shown in Figure 4.12(c). In that state, if one wants

to find the distance of page i3 with timestamp 3, both tmax−ti3 +1 and tmax−tmin +1 are

off by 1 w.r.t. the actual distances of page i3 and the LRU page, respectively. Had the hit

occurred for the page with timestamp 2 instead, the state of the stack would be the one

shown in Figure 4.12(d). Computing the distance of the page with timestamp 3 in that
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Figure 4.12: Estimating the distance of the hit page

case, would yield the right value for the term tmax− ti3 +1 (the value of tmax− tmin +1

would still be greater than the distance of the MRU and LRU pages).

Since each hit moves the hit page to the front of the stack, each hit introduces a

discontinuity in the timestamps as one traverses the queue. This discontinuity intro-

duces an error of one distance unit in the quantity di = tmax− ti +1, for all pages i that

are deeper in the stack than the hit page. In other words, the error in estimating di by

di is equal to the number of hits that have previously occurred for pages with distance

d′ < di. We refer to this error as ∆di; it follows that di = di−∆di. In the following

we assume that page hits are uniformly distributed in the distances space, i.e., a hit

may occur at any distance with the same probability. Therefore, the number of hits

expected to occur in distances less than di, denoted as h<(i), is proportional to di
S , that

is, h<(i) = ρ
di
S . Each such hit at distance j < di introduces one discontinuity. Thus,

it contributes one error unit to d j′ , for all pages j′ > j. Then, in order to compute the

number of error units in di one needs to sum these discontinuities up to di. Hence:

∆di =
di

∑
k=1

ρ
k
S

=
ρ

S
· di(di +1)

2

To find ρ , we leverage the least recently used page, which we know is at distance
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dmin = S. Thus:

∆dS = dS−dS⇒
ρ

S
· S(S +1)

2
= tmax− tmin +1−S

⇒ ρ = 2 · tmax− tmin +1−S
S +1

Knowing ρ , we can compute di for any i by solving the following equation:

di = di−∆di⇒ di = tmax− ti +1− ρ

S
· di(di +1)

2

The method presented above has constant time complexity and as our experimental

evaluation (presented in Section 4.7.1) shows, it provides very accurate results. Even

under the assumption of uniformly distributed hit distances, our method provided very

accurate results for both randomly generated and real-world workloads. Note that if hit

distances are priorly known not to follow a uniform distribution, but their distribution

is known, it can be used to derive the formula for ∆di as we do above for the case of a

uniform distribution.

4.5.4.3 The HRCA algorithm

In order to decide the optimal size for each region, we need to know the number of hits

each region is expected to achieve for all different region sizes. For the reasons stated

in Section 4.5.4.1, the total memory of S pages is divided in c chunks; each region

may be allocated any number of these chunks. Considering that the optimal size for

each region may vary from 0 to c chunks, we need to know the number of hits any

region would experience for any number of chunks from 0 to c. Therefore, each region

is equipped with a ghost directory of size S, that uses the same stack replacement

algorithm as the region itself. Similarly to HUC, the ghost directory sees the same

operations as the cache itself, the only difference being that when a hit occurs in the

ghost directory, its hit distance is measured using the technique of Section 4.5.4.2.

Using Mattson’s algorithm, we compute for each region i the array Di(si), which gives

the number of extra hits that would have occurred for region i if its size was increased

from si−1 to si chunks, for all 0 < si ≤ S.

Let hi(si) denote the hit-size distribution for region i, i.e., the total number of hits

that would occur in region i if its size was si. Then Di is the derivative of hi. By our

discussion about region utilities of Section 4.4, it follows that the utility of allocating s

chunks to region i can be computed as follows:

C′i(si) = hi(si) · ei



78 Chapter 4. Buffer Allocation

Algorithm setTargetSizes

1. for all 0≤ i≤ 2n−1

2. ts[i] := 0

3. max := 0

4. chunksLe f t := S

5. while (chunksLe f t > 0)

6. for all 0≤ i≤ 2n−1

7. if Di[ts[i]+1] > Dmax[ts[max]+1]

8. max := i

9. ts[max] := ts[max]+1

10. chunksLe f t := chunksLe f t−1

Figure 4.13: Computing the optimal region sizes

Our goal is then to maximise the quantity ∑
i=2n−1
i=0 C′i(si) under the constraint that

∑
i=2n−1
i=0 si = S. In this respect, our problem is a resource allocation problem that has

been shown to be NP-hard [Rajkumar et al., 1997]. Similarly to [Zhou et al., 2004], we

use a greedy algorithm that allocates each memory chunk to the region that is going

to see the greatest increase in its hit ratio from that chunk. The input to the algorithm

is the 2n−1 hi(si) arrays (one for each region) and the total available memory S. The

output is an vector ts[i] that holds the target size of region i. The target size is of course,

the number of chunks that the greedy algorithm has decided is the “optimal” for that

region. The algorithm is given in Figure 4.13. The time is divided in fixed-length

epochs and at the end of each epoch new target sizes for the regions are computed

using setTargetSizes.

The workflow of HRCA is very similar to the baseline algorithm. When a miss

occurs for a region its current size and its target size are considered. If its target size

is less than its current size, then a victim page is selected from that region for eviction

and the referenced page is read in from the device; the size of the region remains the

same in this case. If the current size of the region is less than its target size, then the

region should grow. A page frame of another region is vacated and allocated to the hit

region. When deciding which one of the other regions should shrink (i.e., which one

should evict a page), the only candidate regions are the ones for which the target size

is less than their current size (there will always exist at least one such region, since the

hit one has a target size greater than its current one). For these candidate regions we

take into account: (a) how “far” the candidate region i is from reaching its target size,
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Algorithm HRCA

rbt : a red-black tree on regions’ eviction priority.

Procedure updatePriority (Region j)

1. if s j < ts[ j]

2. Remove entry for j from the rbt

3. else
1. Vj := s j−ts[ j]

e j

2. Update entry for j in rbt with Vj

Procedure pickEvictionRegion ()

1. j′ := the hit region

2. if ts[ j′] < s j′

3. return j′

4. else
5. j := get element of rbt with maximum Vj

6. return j

Figure 4.14: The HRCA algorithm

that is, the difference si− ts[i] and (b) the eviction cost of the region. We compute the

eviction priority Vi for the candidate region as:

Vi =
si− ts[i]

ei

and choose the one with the highest eviction priority. The intuition behind this is

that the greater si− ts[i] is, the less the utility of the region has been found by the

setTargetSizes algorithm and thus the more urgent it is to bring the region down to its

target size. Also, for two candidate regions j, j′ with s ji− ts[ j] = s j′ − ts[ j′], the one

with the least eviction cost has the highest priority, as a miss on that region will result

in less I/O cost paid by the system. Similarly to RUC and HUC, the eviction priorities

are stored in a red-black tree that allows very efficient retrieval of the maximum value.

Then, in pickEvictionRegion the one with the highest eviction priority is returned. The

pseudocode for updatePriority and pickEvictionRegion is given in Figure 4.14.

The computational complexity of HRCA is the same as the one for RUC and HUC on

each page access, that is, O(log(2n)) for a buffer pool of n devices. The only difference

is that at the end of each epoch the setTargetSizes algorithm is run to compute the

new target sizes. Its complexity is O(c), i.e., it is linear to the number of chunks

used. For all practical epoch lengths and chunk numbers we used, the computational



80 Chapter 4. Buffer Allocation

overhead was found to be negligible. In terms of memory overhead, HRCA uses one

page directory of size si for the actual cache and a directory of size S that holds the

metadata for the ghost pages.

4.6 Discussion

HRCA issues. As noted in [Zhou et al., 2004] using a greedy algorithm like setTar-

getSizes to compute the solution in a resource allocation problem yields the optimal

solution when the utility functions are convex. In our case this is equivalent to the hit

ratio curve (or, the hit-size distribution) being convex. Indeed, this is usually the case

for hit ratio curves of real workloads. However, in some cases, hit ratio curves are not

convex in specific intervals. If this is the case for very small hit distances, then the

given algorithm may result in a very inefficient allocation. We stumbled upon such a

case when running a TPC-C workload using two devices in read-only mode; we only

had two regions, one clean region per device (we set eviction costs equal to one for

both devices). In Figure 4.15 we show the hit-size distribution (on the bottom graph)

and its derivative, the hit-distance distribution (on the top graph), for a specific epoch

during the execution (simulation) of the workload (the raw data are given in Figure 8.11

and Figure 8.10, respectively). It is clear that in this case, all memory chunks should

be allocated to Region 1, as it utilises them far better that Region 2. However, observe

that D1[1] < D2[i] for all i. Therefore, the greedy algorithm will never allocate a chunk

to Region 1 and all chunks will be allocated to Region 2. Although this case seems

quite skewed, it did occur for real workloads. The allocation decision of the greedy

algorithm in this case is the worst possible.

To alleviate the situation we adopted the following approach: instead of only taking

into account the value of the derivative function at the next-chunk-to-be-allocated, we

also compute the following quantity:

D′i =
j=ts[i]+chunksLe f t

∑
j=ts[i]

D[ j]

which represents the number of hits the region will see if all remaining chunks are

allocated to it. This computation is performed in the loop starting at Line 6 of setTar-

getSizes. We compute both D′i and D′max and compare f = Di
Dmax

to f ′ = D′max
D′i

. If f ′ > f ,

it means that f is probably skewed and therefore Lines 8-10 are not executed, leaving

max with its current value. Using this conservative technique, our algorithm reached

optimal allocation decisions for such cases.



4.6. Discussion 81

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0  2  4  6  8  10  12  14  16  18  20

N
um

be
r 

of
 h

its

Chunk number

Region 1
Region 2

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0  2  4  6  8  10  12  14  16  18  20

N
um

be
r 

of
 h

its

Region Size (number of chunks)

Region 1
Region 2

Figure 4.15: Hit distances for an epoch of the TPC-C workload

Time considerations. RUC keeps track of the number of references for each device,

while both HUC and HRCA keep track of the number of hits occurred for the ghost

cache(s) of each region. For our algorithms to be adaptive to changing workloads,

they need to make sure that the most recent behaviour outweighs the older behaviour.

For instance, a region may become very hot at some point in time and experience a

large number of hits. All three algorithms will increase the region size, as a result.

However if the region subsequently becomes cold, or if the access pattern changes

to an inefficient one, then its size should shrink to favour other regions. Therefore,

the recorded statistics need to “age” with time – otherwise the algorithms have no

means of telling that the workload has changed. To that end, we follow the approach

of [Thiébaut et al., 1992] and use time windows of length τ . For HRCA an epoch is the

time window we use. For RUC and HUC a window of similar length is adopted. At

the end of each window, that is, every τ page references, the statistics for each region

(reference counts for RUC, hit counts for HUC, HRCA) are divided by a constant Γτ .

Consequently, at any point in time the statistics of the current window contribute to

resizing decisions with a weight of 1, the ones of the previous window with weight 1
Γτ

,

the ones of the window before the previous one with weight 1
Γ2

τ

, etc. The length of the
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window is kept fixed, as we found this approach to work very well in our experiments.

In [Fagin, 1977], the author studies what the window size should be to achieve a spe-

cific hit ratio; however, specific assumptions are made about the reference pattern and

therefore we do not explore this direction further.

Comparison. All three algorithms take into account the read and write costs of the

storage devices in addition to the system workload characteristics to decide the optimal

number of pages to cache from each device. RUC tends to cache more pages from page

classes that see a lot of references, i.e., are hot, and have a high eviction cost. On

the other hand, HUC and HRCA cache more pages from the regions that exhibit a high

hit ratio, in addition to a high eviction cost. Essentially, HUC and HRCA take into

account the effectiveness of the replacement policy for the given workload and cache

size, while RUC assumes that the hottest regions yield the highest hit ratios. Therefore,

we expect the performance of the three algorithms to be roughly the same when this

assumption holds. However, in all other cases HUC and HRCA are expected to perform

better, as they make informed resizing decisions. In particular, we expect HRCA to be

more efficient than HUC, as it knows the hit-size distribution for all possible sizes of

each region and can therefore approach the globally optimal region sizes. On the other

hand, HUC only knows the local values of the hit-ratio distribution, given by the small-

and large ghost directories. The bad news for HRCA is that it can only work for systems

that use stack replacement algorithms, like LRU. In all other cases, generic algorithms

like RUC and HUC are the only option.

I/O costs. In this work we assume that on a page miss the buffer manager fetches a

single page from the disk, while at the time of a dirty eviction it writes a single page

to the disk. Thus, the I/O pattern of interest is randomly reading a page and randomly

writing a page on any one of the storage devices; the cost of randomly reading a page

or randomly writing a page is the cost we use to calculate the eviction cost for any

page. Of course, for various storage media, these costs may vary across time as, for

instance, the cost of random writes on flash disks [Bouganim et al., 2009]. In this

work, however, we are interested in the average read and write costs of devices – no

accuracy is required for specific accesses. Since our goal is to increase the throughput

of the system, the read and write costs of the storage devices represent the number

of random read and write I/O operations, respectively, these devices can serve (IOPS).

The IOPS capability of a disk serving random I/O requests primarily depends on the

address space that these requests span and the I/O queue depth on the device, i.e., the

number of outstanding I/O requests that have been queued at any given time (using a
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given elevator algorithm). Typically, the smaller the address space is, the better the

throughput is, as the on-disk caches can be more effective. The same holds for the I/O

queue depth: the longer it is, the more opportunities arise for the controller to merge

requests, thereby reducing, for instance, the number of arm movements for magnetic

disks and the number of flash block erase operations on flash disks.

In our experiments we have used four different disks, two flash disks and two mag-

netic ones. For these disks we have experimentally measured their IOPS capability for

various sizes of address space that the requests span and various queue depths. We

varied the size of the file being randomly accessed (i.e., the requests address space)

from 128MB to 64GB for the magnetic disks (for sizes greater than that I/O through-

put of devices remains the same) and up to 28GB for the flash disks (both were 32GB

disks). We used fio [Axboe, 2009] to measure the number of IOPS for each configu-

ration and have plotted the results as 3-d surfaces. In all cases, the reported numbers

are for 4KB pages. In Figure 4.16 and Figure 4.17 we have plotted the random read

and random write IOPS, respectively, for the Seagate ST3808110AS magnetic disk. The

corresponding plots for the Maxtor 6L300R0 magnetic disk are shown in Figure 4.18

and Figure 4.19. As expected, for both disks I/O throughput increases as the requests

are restricted to a small portion of the device address space. Both magnetic disks

exhibited better write performance than read performance – our guess is that the on-

disk cache was used more aggressively for writes, buffering successive requests before

they were committed to the medium. The Maxtor disk was equipped with a buffer

cache of 16MB whereas the Seagate disk had an 8MB buffer; this is why the random

write throughput for small address spaces is much better for the Maxtor disk. The I/O

throughput increased slightly with the length of the I/O queue for both magnetic disks;

substantial increases were observed only when the address space was kept very small

(less than 4GB) and primarily for reads.

We took similar measurements for the two flash disks used with our system. The

first one was a high performance Intel X25-E SLC flash disk. The plots for its random

read and write I/O throughput are shown in Figure 4.20 and Figure 4.21, respectively.

The second was a low cost MLC flash disk, the Samsung MCAQE32G5APP; the plots for

its random read and write throughput are shown in Figure 4.22 and Figure 4.23 respec-

tively. The first observation is that the Intel disk is orders of magnitude more I/O effi-

cient for all address space sizes and queue depths; the Intel disk is an enterprise-level

SLC disk selling for about $20 per GB, while the Samsung flash disk is an inexpensive

MLC device. For both disks, the read throughput is orders of magnitude greater than
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Figure 4.16: Read IOPS for Seagate ST3808110AS
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Figure 4.18: Read IOPS for Maxtor 6L300R0
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Figure 4.19: Write IOPS for Maxtor 6L300R0
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Figure 4.20: Read IOPS for Intel X25-E

their write throughput, more than 100 times greater for the Samsung disk and up to 10

times greater for the Intel disk. Of course, this is due to the erase-before-write limita-

tion of the flash chips. We found the random write throughput of both devices to be

substantially higher for very small address spaces; this is consistent with the findings

of [Bouganim et al., 2009]. For the Intel disk, random read efficiency did not depend

on the size of the address space very heavily, an indication that the controller of the

disk uses the underlying flash dice in a massively parallel fashion – which also ex-

plains its high performance overall. For the Samsung disk this was not the case and

throughput dropped significantly for large address spaces, as the on-disk buffers were

no good for such sizes. Increasing the queue depth had absolutely no effect on write

throughput for the Samsung disk and a rather light effect on the read throughput. On

the other hand, the length of the queue depth for the Intel disk had a dramatic effect

on its read throughput, which also implies a high degree of parallelism in reading data

from the flash chips. The effect of queue depth on its write throughput was substantial

only for a very small address space – for larger ones erase times dominated.

Our system uses plots such as the ones given above to calculate the costs for each

storage device. In any case we are not interested in the latency of specific requests, but
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Figure 4.21: Write IOPS for Intel X25-E
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Figure 4.22: Read IOPS for Samsung MCAQE32G5APP
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Figure 4.23: Write IOPS for Samsung MCAQE32G5APP

in the average throughput the system is expected to have for a specific address space

size and a specific queue depth. If more advanced I/O techniques are used, such as

clustering or prefetching, then the average cost per page served in each request should

be the one given to our system. The throughput of the devices may also be sampled

at real time. Large deviations from the predicted values could possibly imply that

the device has failed or is about to fail and therefore its cost should be re-adjusted.

For instance, during RAID reconstruction in a disk array, read and write costs become

greater; if that is detected by the system, it will cache more pages from the faulty

device, thereby reducing the effect of the failure on the throughput of the system.

4.7 Experiments

Setup. We implemented our algorithms to evaluate their performance under various

workloads, both using real storage devices and simulated ones. We used a quad-core

Intel Xeon E5420 box (“System A”) clocking at 2.5GHz with 4GB of physical memory,

equipped with a magnetic and a flash disk dedicated for the data of our system. The

magnetic disk was an 80GB Seagate Baracuda 7200 with 8MB of cache, while the
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flash one was a 32GB Intel X25-E SLC disk. Both disks were connected using the

SATA II interface. We also used an Intel Pentium 4 box (“System B”) clocking at

2.26GHz with 1.5GB of physical memory, also equipped with a flash and a magnetic

disk dedicated solely to our experiments. The magnetic disk was a 300GB Maxtor

DiamondMax 6L300R0 with 16MB of cache memory. The flash disk was a Samsung

MCAQE32G5APP, an MLCNAND flash disk with a capacity of 32GB. Both disks were

connected to the system using the IDE interface. The Operating System was Debian

GNU/Linux with the 2.6.26 kernel. The system was implemented in C++ and compiled

using the GNU GCC compiler. As shown in the graphs of Section 4.6 and for the address

space size of the data we used, for System A the flash disk was about 50 times more

efficient at reading than the magnetic one and about 20 times at writing. For System

B, the flash disk was 23 times faster than the magnetic one when reading, while the

magnetic disk was about 10 times faster when writing. Details for the performance one

the disks we used can be found in Section 4.6.

For the non-simulated experiments, we used the magnetic disk and the flash disk

as the storage devices in the two systems. To eliminate OS caching effects we used

both storage media as raw devices: the OS did not cache data pages, pages were never

double buffered and our system had absolute control of physical I/O. Read and write

costs were estimated as described in Section 4.6. The operating system and our system

itself ran from a third disk, which was not used as a storage device. In the experiments,

we compare the performance of the three proposed algorithms, RUC, HUC and HRCA,

to the performance of a buffer pool that does not distinguish between pages of different

devices, i.e., a single region employing a global replacement strategy is used for the

whole buffer pool (this case is referred to as global buffer pool or GBP).

Workloads. We used two different kinds of workloads. The first category, referred to

as IRP, includes synthetic workloads, in which all pages that belong to the same device

have the same probability of reference (they follow an Independent Reference Pattern).

In some experiments all devices have the same probability of reference, that is, they

see the same heat, while in other experiments some devices are hotter than others. If

we want to increase only the heat of a region and not its hit ratio, we also increase its

address space size by the same portion. When we want to increase the hit ratio for

a specific device, but not its heat, we shrink its address space (while maintaining the

same number of references to the device). We varied the probability of a page being

read or written to and created workloads with varying dirtiness ratios. Details for each

workload are given in the corresponding subsection. For the second workload, referred
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to as TPC-C, we ran the TPC-C benchmark on the PostgreSQL database and collected

a trace of all page references, which we then translated to disk offsets. The results of

this section are the execution of these traces by our system after using different criteria

to place data pages on the storage devices. Details are given in the corresponding

subsections.

4.7.1 Stack Distance Measurement

Initially, we wanted to evaluate the stack distance measurement technique presented

in Section 4.5.4.2, which uses page timestamps to estimate the distance at which a hit

page was found. We refer to this technique as TS in the following. Our goal is to

experimentally evaluate the accuracy of this technique and its overhead and compare

it with existing approaches. We refer to the naive algorithm, that linearly searches

the LRU queue to find the distance of the hit page, as NAIVE; of course, NAIVE is per-

fectly accurate. We also compare our algorithm to the one proposed by the authors

of [Zhou et al., 2004] (see Section 4.3.1). We refer to the latter as GROUPS. We imple-

mented GROUPS as described in the original paper [Zhou et al., 2004]. The LRU queue

is divided in page groups and two pointer arrays track the start and end of each page

group, while each page has a pointer that points to the group it belongs. Pages in the

same group are assumed to have the same stack distance. The time is divided in epochs

and a list of pages (the scan list) keeps track of the pages that have been hit during the

current epoch. At the end of an epoch, the scan list is processed and for each hit page

the hit counter of the group it belongs to is incremented. The group pointer of the page

is set to point to the first group (if it doesn’t already do). For all page groups between

the first one and the group to which the page previously belonged, their last elements

are pushed to the next page group. Also, for each page miss, the last element of each

page group needs to be pushed to the next group. Of course the new page brought to

the cache after a miss is assigned to the first group. Therefore, the running time of the

GROUPS algorithm is linear to the number of page groups used.

In the first experiment we evaluated the accuracy and the running time of the three

algorithms, running an IRP workload using all three algorithms. Experiments did not

involve any I/O, only the LRU queue operations were executed and therefore the running

time reflects the CPU cost for the stack distance measurement. The running time of

GROUPS depends on the epoch length, while neither NAIVE nor TS use epochs. For

GROUPS, we varied the epoch length from 10 to 104 operations. The size of the cache
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Figure 4.24: Effect of epoch length on running time and accuracy.

was 5k pages. For each run of the algorithms, we measured the running time. The

average over five runs is reported in bottom graph of Figure 4.24 (the raw data are

given in Figure 8.13). For GROUPS and TS we also computed the average error on the

measured distance. We report the errors in the top graph of Figure 4.24, as a percentage

of the actual distance (the raw data are given in Figure 8.12). The running time for TS

is negligible, as it only requires O(1) time per page hit. At the same time, TS achieves

good accuracy, with an average error of less than 2%. For NAIVE, the running overhead

is prohibitively high; this is due to a linear search taking place upon a page hit. The

overhead for GROUPS grows as the epoch length shrinks; for very short epochs the

overhead is heavier than the overhead of NAIVE. The accuracy of GROUPS increases

as the epoch length shrinks; on the other hand, for long epochs GROUPS demonstrates

poor accuracy, with the average error climbing up to 12%. For both very short and

very long epochs, either the average error or the running overhead of GROUPS become

unacceptably high; in all other cases TS exhibits both better accuracy and running time.

Next, we evaluated the accuracy of GROUPS and TS under different workloads.

We ran an IRP workload and the TPC-C workload and calculated the average errors

in distance measurements. For GROUPS we used an epoch of 104 operations, as for
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Workload GROUPS TS

IRP (∆) 12.19% 1.2%

TPCC (∆) 41.21% 22.67%

IRP 2.75% 0.01%

TPCC 4.17% 0.1%

Table 4.1: Average Error (%) in distance estimation

shorter epochs the running time of the algorithm was comparable to the one of NAIVE

(and thus using GROUPS would not make any sense anyway). The size of the cache

was 5k pages. The results are shown in Table 4.1. In the top two rows (marked with

a ∆) we report the error in the number of hits measured at each distance, averaged

over all distances, that is the average error in D[i] elements (the derivatives of the hit

ratio curves at all different distances), using the terminology of Section 4.5.4. In the

bottom two rows we report the average error of the total number of hits measured by

the algorithms for different cache sizes, that is the average error of ∑
i
j=0 D[ j] for all

cache sizes j (the hit ratio curve values for different cache sizes). For both workloads

TS achieved remarkably better accuracy than GROUPS, both for the derivative of the

hit ratio curve and the hit ratio curve itself. For IRP workloads the TS was an order

of magnitude more accurate than GROUPS. For TPC-C, TS was not as accurate as it

was for IRP; this was expected due to our assumption that hit distances are uniformly

distributed, which is not valid for TPC-C. As discussed in Section 4.5.4, the accuracy

of TS for such workloads will improve if we compute the distribution of hit distances

for these workloads and use it to estimate the error ∆di. From the table one can also

see that when summing the hit ratio curve derivatives to get the hit ratio curve, most

of the errors are counterbalanced and therefore the average error for the curve is much

less than the one for the derivatives. For both IRP and TPC-C the hit ratio curve error

was less than 0.1% for TS, i.e., it was practically as accurate as NAIVE.

We then moved on to study the effect of the size of the cache on the running time

of the three algorithms. We used an IRP workload and varied the size of the cache from

100 to 40000 pages. We ran all three algorithms five times each; the average running

times are shown on the top chart of Figure 4.25 (notice that both axis are in logarithmic

scale). The raw data are given in Figure 8.14. As expected, the running time of TS is

constant to the size of the cache. The running time of NAIVE is quadratic to the size

of the cache: measuring the hit distance for each hit is linear to the size of the cache
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Figure 4.25: Effect of cache size and number of groups on running time.

and the hit ratio (and, thus, the number of hits) is also linear to the size of the cache

(we used a random workload). For GROUPS, the running time drops as the size of the

cache increases, because the number of page misses drops and therefore it has to do

less processing (pushing the last page of each group to the next upon each miss). We

also experimented with how the number of groups affects the running time of GROUPS,

for a given cache size. Therefore, we kept the cache size fixed at 5k pages and varied

the number of page groups from 5 to 200. The running times of GROUPS are shown in

the bottom chart of Figure 4.25 (the raw data are given in Figure 8.15). As one would

expect, the running time is linear to the number of groups used, since the running time

of GROUPS is dominated by the time required to adjust the group borders.

In total, the accuracy/overhead ratio for TS proved to be far greater than the one for

GROUPS. Of course, using NAIVE is out of the question for real-world caches due to its

prohibitive overhead. Furthermore, TS is easier to implement than GROUPS and requires

less bookkeeping: GROUPS needs every page to keep track of the group it belongs to,

which results in more memory being wasted. On the other hand, TS uses timestamps

which are typically maintained for each page anyway in real-world systems.
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4.7.2 Synthetic Workloads

We then went on to evaluate the proposed region resizing algorithms using synthetic

workloads, simulating a number of different storage device configurations. We created

different scenarios that allowed us to test various properties of our algorithms. In all

cases the page size was 4kB.

4.7.2.1 Effect of device cost discrepancy

In the first experiment, all devices had the same heat and the same address space,

while references to pages of a device followed an independent reference pattern, that

is all devices had the same number of hits. However, the read/write costs varied across

devices. The read and write costs for device i were equal, i.e., devices where symmetric

w.r.t. I/O costs. We used two different setups: (a) the linear setup in which I/O cost of

devices grow linearly with the device id, that is device 2 has twice the cost of device

1, device 3 has three times the cost of device 1, etc and (b) the exponential setup in

which I/O cost of devices grow exponentially with the device id, that is device 2 has

10 times the cost of device 1, device 3 has 100 times the cost of device 1, etc. Of

course, neither of the setups reflects the costs of real-world setup; however, it serves

well to give some insight about how device cost discrepancy affects the behaviour of

our algorithms. We used four devices in both setups. The whole dataset contained 1M

pages, spread evenly among devices, while the workload consisted of 10M references

to these pages. We used 50k pages as a main memory buffer pool.

The results are shown in Figure 4.26, in which all costs are represented as their

percentage improvement over the cost of GBP (the raw data are given in Figure 8.16).

As expected, the greater the discrepancy of I/O costs among the devices, the more I/O

cost units our algorithms save, by allocating more page frames to the regions with

high eviction cost. Since all regions have the same heat and hit ratio, the optimal

strategy in this case is to allocate all memory to the region with the highest eviction

cost. Under RUC, the cache size for devices was proportional to their read/write cost,

as all devices saw the same number of references. Under HUC as many pages of the

highest cost device as possible were cached, as under this strategy it saves the most cost

units, given that the number of hits for all devices is the same. The same applies for

HRCA. The best value for the λ parameter for CBR was λ = 1.0, i.e., the cost segment

spanned the whole buffer pool and cached pages from the high-cost devices. Notice

that for the exponential setup, the performance of RUC matches the one of the rest of
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Figure 4.26: Effect of device cost discrepancy (read-only)

the algorithms; since the cost of the high-cost region was exponentially higher than the

one of the rest of the devices, RUC allocated an equally high portion of the page frames

to that device. All algorithms provided a substantial improvement over a global buffer

pool, even for the case that all regions have the same heat and hit ratio. Of course, for

CBR, the optimal value for λ had to be chosen manually. The latter is not a desirable

property for real-world deployments.

4.7.2.2 Effect of device heat

We then went on to measure how the heat of a single device affects the behaviour of

our algorithms. We experimented with 8 devices and three device cost configurations.

In the first of those, Setup 1, all devices had the same read and write cost. In Setup

2, device 0 had the I/O cost of the Intel flash disk, while the rest 7 devices simulated

magnetic disks. In Setup 3 device 0 simulated a magnetic disk, while the rest 7 devices

simulated flash disks. The whole dataset contained 1M pages while the workload con-

sisted of 10M references to these pages. We used 100k pages as a main memory buffer

pool. Device 0 receives 40% of all references, with the rest 60% of references spread

evenly among the other 7 devices. The workload only consisted of read requests. The

results we collected are shown in Figure 4.27 (the raw data are given in Figure 8.17).

For Setup 1 the cost of CBR was equal to the cost of the global algorithm, as the
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Figure 4.27: Effect of device heat

costs of all devices were the same. RUC detected the high heat of device 1 and allocated

page frames to regions proportional to their heat. Similarly, HUC and HRCA detected

the increased number of hits for device 0 and increased the number of frames allocated

to it (note that the hit ratio for all devices was the same). For Setup 2, device costs

came into play. The I/O cost of the hot device was 50 times less than the one of the

rest of the devices, while the number of hits it exhibited was about 5 times more than

the other devices (it received 40% of the references, while each one of the rest of the

devices received 60%
7 ≈ 8% of the references). Therefore, the optimal behaviour is not

to cache pages from the hot device at all and allocate all page frames to the high-cost

devices instead. The best performance for CBR was for a λ = 1.0, which made the cost

segment span the whole cache. RUC increased the size of the high-cost (albeit, cold)

regions, based on the heat/device costs ratio. HUC and HRCA did the same, but their

decision was based on the number of hits/device costs ratio. In the third Setup, the hot

device was the high-cost one, while the rest were much faster. Obviously, this case

leaves much more room for performance improvement. Based on the same reasons

as the ones given for Setup 2, the algorithms now decided that the whole buffer pool

should be allocated to the region of the hot device, which, of course, is the optimal

decision. Improvement of I/O cost reached 67% in this case. Naturally, the placement

of data in this setup is fundamentally flawed, as the hot pages should have been placed

on the efficient device. Nevertheless, our results show that with utility-aware memory
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Figure 4.28: Effect of hit ratio

buffer allocation, a large portion of the extra I/O cost due to the wrong placement can

be counterbalanced.

4.7.2.3 Effect of device hit ratio

In the next experiment, we studied the behaviour of the algorithms when regions re-

ceive the same heat, but have different hit ratios. The whole dataset contained 1M

pages, while the workload consisted of 10M references to these pages. We used 100k

pages as a main memory buffer pool. We simulated different cost setups for 2 devices.

In the first of those, Setup 1, both devices had the same read and write cost. In Setup

2, device 0 had the I/O cost of the Intel flash disk, while device 1 simulated a magnetic

disk. In Setup 3 device 0 simulated a magnetic disk, while device 1 simulated the In-

tel disk. We also used Setup 4 and 5 that employed arbitrary costs. For Setup 4 the

read/write costs of device 0 were half the ones of device 1, and in Setup 5 the situation

was vice-versa. The address space for device 0 was 5 times less than the one for device

1 (for all setups). As a result, the cache regions for device 0 exhibited 5 times higher

hit ratio than the regions of device 1.

The results for this set of experiments are shown in Figure 4.28 (the raw data are

given in Figure 8.18). For Setup 1, CBR had the same cost as the global buffer pool,

because both devices had the same cost. The same holds for RUC, that was unable to

distinguish between the different workloads of the two devices, as their heat was the

same. Both HUC and HRCA detected the increased hit ratio of device 0 and increased

the size for its regions, achieving a performance improvement of 30% against GBP.
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Under the second Setup, the I/O costs of device 0 were about 50 times less than the

ones for device 0, while the number of hits it exhibited was 5 times more than the

hits for device 1; thus, the optimal allocation was to only cache pages from device 1.

This is what CBR did for a λ = 1.0. RUC measured the same heat for both devices and

therefore allocated 50 times more page frames to device 1 (proportionally to its I/O cost

w.r.t. device 0). Both HUC and HRCA detected the high hit rate of device 0, but based

on the cost discrepancy, correctly allocated all page frames to the regions of device 1.

All algorithms achieved an improvement of 10% over GBP – caching more device 1

pages than GBP did not give a dramatic improvement as the hit ratio for device 1 was

low anyway; however the decisions made by the algorithms were optimal. In Setup

3, similarly to the Setup 3 of Section 4.7.2.2, the placement of data on disks was very

inefficient, as the data that gave the high hit ratio were placed on the slow device. The

latter gave much room for improvement for all algorithms that made their decisions on

the same principles as for Setup 2. By allocating all page frames to the high hit ratio

pages of the slow device, they were able to realise a dramatic improvement of nearly

92%. Note that for both Setup 2 and 3 the optimal strategy is to allocate all memory

to the high-cost device. This is not the case for Setup 4, in which pages of device 0

see 5 times more hits than the pages of device 1, but device 1 is only 2 times slower

than device 0. Thus, as many pages as possible from device 0 should be cached. HUC

and HRCA correctly identify the situation and make the optimal decision. For CBR the

optimal value for λ is 0, i.e., CBR effectively degenerates to GBP. RUC sees the same

heat for both devices and therefore caches twice as many pages from device 1 as it

does from device 0. This is obviously a wrong decision and, not surprisingly, RUC

does worse than GBP. In Setup 5 device 0 has twice the cost of device 1 and therefore

all page frames should be allocated to pages of device 1. The optimal value for CBR is

thus λ = 1.0, using which it matches the performance of HUC and HRCA, that achieve

about 48% improvement. RUC assigns 2/3 of the buffer pool to the regions of device 0

and the rest to device 1. Again, this is only due to the costs of the two devices, not the

properties of their workloads.

4.7.2.4 Effect of read / write ratio

Using the workload of Section 4.7.2.3, we then experimented with how the write inten-

sity of the workload affects performance. As previously, accesses to device 0 gave a hit

ratio 5 times higher than the one for device 1. Device 0 simulated the Samsung flash

disk, while Device 1 simulated a magnetic disk. We run three series of experiments,
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Figure 4.29: Effect of read / write ratio

each time varying the number of write requests. In the first case 20% of the requests

were writes and the rest were reads. In the second case this percentage was 50%, while

in the third case it was 80%. The size of the whole cache was 100k pages. The results

we collected are shown in Figure 4.29 (the raw data are given in Figure 8.19).

For all three cases the optimal strategy was to allocate most of the buffer pool to

the dirty region of device 0, as it had the highest hit ratio (along with the clean region

of device 0) and by far the highest eviction cost. For CBR, the best value for λ was 1.0

in all three cases and the improvement it achieved matched the one of HUC and HRCA.

Of course the value for λ had to be chosen manually. On the other hand, RUC could

not distinguish the different hit ratios for the two devices, since they both saw the same

number of references and therefore allocated page frames to regions proportionally

to their eviction cost. As a result, almost 1/3 of the buffer pool was allocated to the

regions of device 1, that yielded much lower hit ratio. For this reason, irrespectively

of the write ratio, RUC assigned the same portion of the cache to each region in all

three cases. The rest three algorithms were able to increase the improvement over GBP

as we increased the write ratio, by caching more dirty pages of the high-hit-ratio and

high-cost device (0). For the specific setup, the more write-intensive the workload be-

comes, the less data should be placed on the flash disk, if optimising data placement is

of interest (as in Chapter 3, [Koltsidas and Viglas, 2008]). Our cache allocation tech-

niques however can offset some of the I/O cost that would be imposed due to the wrong
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Figure 4.30: Changing Workload

placement by identifying which data are placed in the wrong medium and allocating

more page frames to them in memory.

4.7.2.5 Changing workload

Next we experimented with a workload changing over time. We used 8 devices. In the

first quarter of the workload, device 0 receives 40% of all references, with the rest of

the references distributed equally to the rest of the devices. In the second quarter, all

devices receive the same heat, but pages of device 3 give 5 times higher hit ratio than

the one of the rest of the devices. The same occurs for device 4 in the third quarter of

the workload. In the last quarter, device 0 becomes hot again, as in the first quarter.

We used two different setups. In Setup 1 the hot device (device 0) and the high hit-

ratio devices (3 & 5) simulated Intel flash disks and the rest of the devices simulated

magnetic disks. In the second setup devices 0, 2, 4 and 6 were Intel flash disks, while

the rest were magnetic disks. The total size of the cache was 100K pages. The results

are shown in Figure 4.30 (the raw data are given in Figure 8.20).

In both setups, the allocation decisions of HUC and HRCA are optimal and there-

fore they achieve the highest performance increase over the global algorithm, 10% in

Setup 1 and 13% in Setup 2. In Setup 1, CBR performed best for λ = 1.0, effectively

allocating the whole buffer pool to the magnetic disks and matched the performance

of HUC and RUC. In the second setup, however, the two devices that at some point had
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a high hit ratio in the workload are magnetic disks (two of the total four such disks).

Since CBR allocates page frames according to device cost only, the page frames are

distributed evenly among the magnetic disks and therefore disks 3 and 5 get less than

the optimal in-memory space. This is why in Setup 2 CBR does worse than HUC and

HRCA. RUC, on the other hand, fails to identify the high hit ratio of devices 3 and 5 in

both cases and therefore its performance is worse than HUC and HRCA.

4.7.3 TPC-C Workloads

Next, we evaluated the performance of our algorithms with the TPC-C workload, us-

ing different data placement schemes. In all cases we used two storage devices. We

used two different data placement schemes: (a) in the first one, referred to as P1,

the placement of pages was decided using the data placement algorithms presented

in [Koltsidas and Viglas, 2008] and in Chapter 3 using the costs of the Samsung flash

disk, and (b) in the second, P2, the 15% most frequently accessed pages were stored on

the flash disk, while the rest were stored on the magnetic disk, that is, P2 corresponds

to the case that the flash disk itself is used as a cache.

P1. We ran the TPC-C trace using 10k pages of buffer pool, both with the cost of System

A and System B. The results are shown in Figure 4.31 (the raw data are given in Fig-

ure 8.21). In both cases HRCA achieved the best performance, which outperformed the

global algorithm by about 12% for System A and 17% for System B. Note that the I/O

cost discrepancy for System B was much greater than the one for System A, due to the

read/write asymmetry of the MLC flash disk. This is why the performance improve-

ment is greater for System B. The optimal value for λ did not grant optimal behaviour

to CBR in neither of the cases. RUC and HUC performed similarly for both setups. In

the second case, however, HUC performed much worse than HRCA, an indication that

the local maxima found by HUC in the hit-distance space (using the small and large

caches) were not global ones and therefore its decisions were not optimal.

We also wanted to evaluate how accurate the total I/O costs reported by the simula-

tor were. Therefore we ran this set of experiments on the real hardware (System A and

B) and measured the total running time. Then we calculated the improvement using the

measured time for all algorithms. In Figure 4.32 we have plotted the error between the

projected improvement and the actual improvement measured (the raw data are given

in Figure 8.22). In the vast majority, the error remained 3% or less, which means that

if, for instance the projected improvement is 17%, as in System B of Figure 4.31 for
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Figure 4.31: TPC-C with P1 placement

HRCA, then the real improvement will be between 16.49% and 17.51%. Thus, very

safe conclusions can be drawn using the projected values. For all IRP workloads we

ran in real hardware (not shown here) that error remained less than 1%, as in those all

I/O was purely random, while for TPC-C short sequential access patterns were observed

as well.

P2 Under this placement, the flash disk received 3 times more heat than the magnetic

disk and 3 times higher hit ratio as well. In total it gave 9 times more hits than the

magnetic disk. The results are shown in Figure 4.33 (the raw data are given in Fig-

ure 8.23). For System A, the flash disk is more than 50 times faster than the magnetic

disk and therefore the optimal behaviour was to only cache pages from the magnetic

disk (although better allocations may exist for specific time windows in the workload).

For System B the optimal scheme is to allocate most of the cache to the dirty region of

the flash disk, as it exhibits more heat and hit ratio than both regions of the magnetic

disk, as well as, a much higher eviction cost. All algorithms are close to the optimal

decision.



4.7. Experiments 103real

Page 1

System A System B

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%
CBR (90)

RUC

HUC

HRCA

Device Setup

M
is

p
re

d
ic

ti
o
n

 E
rr

o
r

Figure 4.32: Misprediction Error
tpcc

Page 1

System A System B

0.00%

5.00%

10.00%

15.00%
CBR (90)

RUC

HUC

HRCA

Device Set

%
 I
m

p
ro

v
e
m

e
n

t 
o
v
e

r 
G

B
P

Figure 4.33: TPC-C with P2 placement

4.7.4 Optimal Allocation

Next, we studied how the greedy algorithm employed by HRCA for chunk allocations

compares to the optimal allocation algorithm. The latter, which we refer to as OPT, ex-
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Algorithm Improvement (%) CPU Time (sec)

HRCA - 69

OPT 8.79% 358

OPT TS 8.65% 69

Table 4.2: Using optimal allocation

haustively searches all possible allocations of chunks to regions and can therefore pick

the globally optimal (at an exponential running cost, though). We used OPT along with

the NAIVE distance measurement algorithm so that we get the best possible accuracy.

In addition, we used TS distance measurement to get an idea of how OPT would behave

with that; we refer to that as OPT TS. We run the TPC-C workload with P1 placement for

the System A setup (i.e., there were 4 regions) and the improvement over HRCA and the

running time of each allocation algorithm. We used 20 memory chunks. In Table 4.2

we report the results.

Using the greedy algorithm for the TPC-C workload is, of course, not optimal (while

it is for IRP workloads). The OPT algorithm achieved an 8.79% better performance

than HRCA, while OPT TS reached an 8.65% improvement over HRCA; exhaustively

searching the allocation space can thus give substantial improvement. An important

observation is that the improvement is not due to measuring hit distances accurately

(with NAIVE), as OPT TS realises almost the same improvement using TS for measur-

ing hit distances. Another thing to note is that for 20 memory chunks and 2 devices

(i.e., 4 regions) running the optimal allocation algorithm is feasible with practically no

overhead (there are only 1771 different allocations to be considered at the end of each

epoch). Therefore, for such cases OPT TS should be used instead of HRCA. Of course,

for more devices, or memory chunks, this is not possible. Using 20 chunks and 16

devices, for instance, yields over 32 billion different allocations.

Remarks. For each synthetic workload we used (except for the one used in Sec-

tion 4.7.2.5), its characteristics with respect to device heat and hit ratios remained

fixed throughout the workload; the adaptability of the algorithms was not tested. For

such workloads HUC and HRCA did equally well in all cases. Of course this is due to

the hit-distance distributions for the regions being constant functions and therefore the

locally optimal allocation that HUC decided was globally optimal and thus matched the

performance of HRCA. For most such workloads, CBR can also match the performance

of HUC and HRCA provided that the optimal value for λ is priorly known; this of course
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is not something one can count on in real world deployments and as such one cannot

expect CBR to make optimal decisions in the general case. It is, however, true that in

most cases it did at least as well as GBP (for moderate values of λ ). The performance of

RUC was not as good as the one of HUC and HRCA, but in many cases it was very close.

The worst cases for RUC were when devices saw high hit ratios without being any hot-

ter than the rest of the devices. As expected, the higher the degree of discrepancy of the

device costs, the more our algorithms could improve over the global algorithm. Last

but not least, our experiments showed that with the correct allocation principles, the

high I/O cost due to wrong placement of data on storage devices can be mitigated; our

algorithms demonstrated dramatic improvement over GBP in such cases.





Chapter 5

Caching On Flash Memory

5.1 Introduction

In this chapter we explore the design principles for a system that uses a flash disk as a

cache for the underlying storage, typically one or more magnetic disks. The motivating

impetus of our work is the observation that flash disks exhibit low latency and high

random read efficiency; this makes them ideal for use as read caches. By comparing

the price and performance characteristics of high-end flash disks to those of DRAM and

magnetic disks, it follows that a flash disk is ideal to serve as a cache layer between

the main memory and the magnetic disk. This implies a 3-tier memory hierarchy.

In this chapter we study analytical tools that enable the designer to decide with high

confidence the optimal setup for such a system.

When designing a system with a 3-tier memory hierarchy like the one discussed

here, one of the crucial decisions is determining the sizes of the main memory and the

flash disk caches. As of September 2009, the cost of DRAM is about $16/GB; the cost of

flash disks varies from about $1.6/GB for the low-end ones [TigerDirect.com, 2009],

to about $8/GB for the high-performance consumer flash disks [AnandTech, 2008],

and to about $30/GB for enterprise-level solutions [TGDaily, 2008]. As discussed

in Chapter 1, the performance of flash disks in this price range varies by two orders of

magnitude for reads and four orders of magnitude for random writes (refer to Table 1.2

of Chapter 1 for details). Considering the price/performance trade-off for the two types

of cache, and given a specific budget, the question of what main memory and flash disk

capacities minimise the price/performance ratio is not a straightforward one to answer.

At the next level, the designer is to decide which data will be cached on the flash

disk. In contrast to buffering in main memory, pages do not need to be brought into

107
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the flash cache before they are processed. That is, a page may go directly from the

magnetic disk to the memory and may well never be written to flash. Thus, decid-

ing how data should flow from one level of the memory hierarchy to the others is not

straightforward. A set of rules dictates the flow of data pages from one level to the

others: we term this a page flow scheme. Relevant issues include how the workload

of a page affects the decision about caching the page or not. For instance, in the ZFS

filesystem [Sun Microsystems., 2008] dirty pages are never cached on flash. From an

implementation perspective questions arise about the directory of pages cached on the

flash disk and the optimal page size to use on flash. We show why these questions are

crucial and provide the tools to address them. Our proposals and results are indepen-

dent of the page replacement algorithm used by either cache and we therefore do not

study page replacement at all in this context.

5.2 Problem Statement

Consider a database, or any other data processing system, with three components for

data storage and staging: (a) RAM memory (e.g., DRAM chips), (b) one or more

flash disks, and (c) persistent storage, i.e., a single hard disk, an array of hard disks,

or any other collection of storage media. Data processing requires demand paging:

pages are brought into main memory before processing, and this happens only on page

referencing. The high-level architecture of such a system is shown in Figure 5.1. We

refer to main memory as RAM and to the main memory buffer pool as RAM cache.

We use FLASH to refer to the system’s flash disk(s) used as a page cache (the on-flash

cache is called FLASH cache); HDD refers to the underlying long-term storage.

When designing a page cache, the principal decision is which pages will be cached;

for how long pages are cached for is determined by the replacement policy, which we

do not consider. For a system of only a RAM cache and a hard disk, the former decision

is not hard to make: all referenced pages will be written to the RAM cache, as this is

required to use them. For a system with a FLASH cache in addition to the RAM one,

however, there is no such requirement. As our goal is to reduce I/O operations to and

from the HDD, the most reasonable thing to do under demand paging is to store on the

FLASH cache the “hot” portion of the dataset that cannot fit in RAM. Let PRAM(t) be

the set of pages stored in the RAM cache at some point in time t, and PFLASH(t) be the

set of pages on the FLASH cache (for all practical cases, |PRAM(t)|< |PFLASH(t)|). We

have identified the following three potential invariants:
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Figure 5.1: An overview of our system

1. ∀t PRAM(t)
⋂

PFLASH(t) = PRAM(t)

Whenever a page is in RAM, it is also cached on FLASH. This is analogous to the

case of inclusive cache memory hierarchies of processors.

2. ∀t PRAM(t)
⋂

PFLASH(t) = /0

No page is stored on both RAM and FLASH at any time. A page brought from

FLASH to RAM is removed from FLASH (and vice versa). Specifically, a RAM vic-

tim is stored in the frame of the page hit on FLASH, i.e., a RAM page is swapped

with a FLASH page.

3. ∀t PRAM(t)
⋂

PFLASH(t)⊆ PRAM(t)

A page on RAM may or may not be cached on FLASH, depending on criteria

either set by the user or decided based on the current workload.

Enforcing any one of the above invariants results in a different flow of pages across

the levels of the memory hierarchy; thus, we define three different page flow schemes.

Each scheme incurs a different I/O cost for a given workload. We detail all three
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schemes and model their I/O costs, without assuming any specific replacement pol-

icy for either the RAM or the FLASH cache. Page replacement is orthogonal to deciding

which pages should be cached and where, which is the problem we study here. There-

fore, our schemes may be used with any replacement policy.

5.3 Page Flow Schemes

We describe different page flow schemes to be used in a system employing a flash disk

as a page cache between the main memory buffer pool and the hard disk.

5.3.1 The inclusive scheme

The inclusive scheme enforces the first invariant where the set of pages cached in RAM

is always a subset of the pages cached on FLASH. The algorithm for fetching a page

under this scheme is given in Figure 5.2. On a page reference, we look the page up in

the directory for the main memory cache. If the page is found it is served in-memory.

Else, we need to bring it in main memory and evict a page if memory is full. Given

the invariant, the page must have been cached on flash, so it is written back only if it

is dirty. We look the page up in the FLASH cache directory and, if the page is found,

we read it from FLASH and put it into the RAM cache; else the page is read from HDD,

written to the FLASH cache and then to the RAM cache. If the FLASH cache is full,

a page v f needs to be evicted from FLASH; if dirty, it will be written to HDD. Since

|PRAM(t)| < |PFLASH(t)|, v f will not exist in RAM if both caches use the same page

replacement algorithm; if this is not true the FLASH replacement policy needs to ensure

that it never evicts a page currently in RAM.

Let hr, mr, h f and m f respectively be the total number of RAM hits, RAM misses,

FLASH hits and FLASH misses incurred by the whole workload. Also, let FR, FW , DR,

DW be the average cost of a flash read, a flash write, an HDD read and an HDD write,

respectively. These include the cost of writing the page to RAM or reading the page

from RAM. Furthermore, consider the probability that a page in RAM is dirty before

its eviction and let this probability be pd . Let RRAM be the cost of running the re-

placement algorithm for the RAM cache and RFLASH be the corresponding cost for the

FLASH cache. For the remainder of this chapter, we assume constant time replacement

algorithms, i.e., RRAM and RFLASH are negligible; still, we include them in the cost

formulae for completeness.
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Algorithm inclusive fetchPage (Page pg)

1. if (pg in RAM buffer pool)

2. return pg

3. else
4. Evict a victim page vr from RAM

5. Write vr to FLASH, iff it is dirty

6. if (pg in FLASH cache)

7. Read pg from FLASH

8. return pg

9. else
10. Evict a victim page v f from FLASH

11. Write v f to HDD, iff it is dirty

12. Read pg from HDD

13. Write pg to FLASH

14. return pg

Figure 5.2: The inclusive page flow scheme

For each RAM hit, there is no I/O cost. For each RAM miss either a FLASH hit

or a FLASH miss occurs (i.e., mr = h f + m f ). For each FLASH hit, a page is evicted

from RAM with cost RRAM + pdFW and a page is read from FLASH with cost FR. For

each FLASH miss, a RAM page is evicted with cost RRAM + pdFW ; also, a flash page is

evicted with cost RFLASH + pdDW and the referenced page needs to be read from disk

and written to FLASH, with cost DR +FW . The cost C1 of inclusive is:

C1 = h f (FR +RRAM + pdFW )+m f (RRAM + pdFW +RFLASH + pdDW +DR +FW )

⇒C1 = h f FR +mr(RRAM + pdFW ))+m f (RFLASH + pdDW +DR +FW )

We have not taken into account the operations on the RAM and FLASH page directories.

If the page directory is stored in-memory for both caches, the cost of a lookup or an

update is O(1) – at least for computationally cheap replacement policies like LRU. As

we will discuss later, however, the page directory of the FLASH cache may require a

substantial portion of the main memory. In systems with limited main memory it may

be more efficient to store the FLASH directory on FLASH itself. On this ground, we also

need to take into account the costs of lookups and updates to the FLASH cache directory.

Let L be the cost of a lookup on the FLASH directory and U be the cost of a directory

update. An update is either the insertion or deletion of a page, or a bookkeeping update

(e.g., moving the page to the MRU position, if LRU is used). On a RAM miss, inclusive
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pays the cost of a FLASH directory lookup; on RAM eviction, it pays the update cost if

the victim page is dirty, i.e., pdU (no lookup is required as the RAM victim will also be

on FLASH). For each FLASH hit the bookkeeping of the directory is updated, while for

each FLASH miss two updates are required: one for the victim page and one for the new

page that is fetched. The cost of maintaining the directory Cd
1 for the whole workload

is:

Cd
1 = mr(L+ pdU)+h fU +m f (U +U) = mr(L+U + pdU)+m fU

Hence, the total cost for inclusive is C′1 = C1 +Cd
1 .

5.3.2 The exclusive scheme

The exclusive page flow scheme enforces Invariant 2: the set of pages cached in-

memory and the set of pages cached on FLASH are disjoint. The exclusive algorithm

for fetching a page is given in Figure 5.3. The case for a RAM hit is the same as

for inclusive. When a RAM miss occurs, we look the page up in the FLASH cache di-

rectory; if found, the page is read from FLASH. If the RAM cache is full, a page will

be evicted from RAM. The victim is selected by the replacement policy and written

to FLASH (whether it is dirty or not), while the referenced page is deleted from FLASH

and inserted into RAM. Effectively, we swap the on-flash referenced page with the RAM

victim. For a FLASH miss, the RAM victim is written to FLASH and the referenced page

is read from the HDD into main memory. If the FLASH cache is full we also need to

evict a page from FLASH.

For each RAM hit, no I/O cost is paid. Each RAM miss results in either a FLASH hit

or a FLASH miss. For each FLASH hit the cost of evicting from RAM is RRAM + FW .

The referenced page is read from FLASH with cost FR and the victim page is written

to FLASH with cost FW . For each FLASH miss, FLASH eviction costs RFLASH + pdDW

on top of the RRAM + FW cost of evicting from the RAM cache. Moreover, reading the

referenced page from HDD adds a cost of DR. Thus, the cost of exclusive is:

C2 = h f (RRAM +FR +FW )+m f (RRAM +FW +RFLASH + pdDW +DR)

Let us consider the FLASH cache directory maintenance cost for exclusive. For each

RAM miss, L cost units are paid for a FLASH lookup. For a FLASH hit we pay U cost

units: the hit page is replaced by the RAM victim and the directory bookkeeping is

updated. In the event of a FLASH miss the cost is equal to U +U : a page is evicted
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Algorithm exclusive fetchPage (Page pg)

1. if (pg in RAM buffer pool)

2. return pg

3. else if (pg in FLASH cache)

4. Read pg from FLASH

5. Pick a victim page vr from RAM

6. Replace pg with vr on FLASH

7. return pg

8. else
9. Evict a victim page v f from FLASH

10. Write v f to HDD, iff it is dirty

11. Evict a victim page vr from RAM

12. Write vr to FLASH

13. Read pg from HDD

14. return pg

Figure 5.3: The exclusive page flow scheme

from FLASH to HDD and another is evicted from RAM and written to FLASH. Hence, the

directory maintenance cost is equal to:

Cd
2 = mrL+h fU +m f (U +U) = mr(L+U)+m fU

The total cost for exclusive is equal to C′2 = C2 +Cd
2 .

5.3.3 The lazy scheme

The lazy page flow scheme enforces Invariant 3 by caching an arbitrary set of refer-

enced pages in the FLASH cache. Generally, the system decides if a page will be cached

on FLASH when it evicts the page from main memory, i.e., after the system has an in-

dication for the workload of a page by applying user-specified criteria. In the simple

case, which we will focus on for the moment, no such criterion is used; rather, a RAM

victim is always written to FLASH and stays there until evicted by the FLASH cache

replacement policy. The lazy algorithm for fetching a page is given in Figure 5.4. A

page is served in-memory if found in RAM. Else, we look it up in the FLASH directory.

If a FLASH hit occurs, the page is read from FLASH (and the directory’s bookkeeping is

updated). If the RAM cache is full, a victim is picked by the RAM replacement policy

and then evicted. We must then find out if the victim is also on FLASH. If so, it is writ-
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Algorithm lazy fetchPage (Page pg)

1. if (pg in RAM buffer pool)

2. return pg

3. else if (pg in FLASH cache)

4. Read pg from FLASH

5. Evict a victim page vr from RAM

6. if vr in FLASH cache

7. Write vr back to FLASH, iff it is dirty

8. else
9. Evict a victim page v f from FLASH

10. Write v f to HDD, iff it is dirty

11. Write vr back to FLASH

12. return pg

13. else
14. Evict a victim page vr from RAM

15. if vr in FLASH cache

16. Write vr back to FLASH, iff it is dirty

17. else
18. Evict a victim page v f from FLASH

19. Write v f to HDD, iff it is dirty

20. Write vr back to FLASH

21. Read pg from HDD into RAM

22. return pg

Figure 5.4: The lazy page flow scheme

ten back only if it has been dirtied in RAM. Otherwise, a page is evicted from FLASH

(and written back to HDD) to make room for the RAM victim to be written to FLASH.

For a FLASH miss, a page is evicted from RAM and written to the FLASH cache in the

same fashion as for a FLASH hit. The referenced page is read from HDD and brought

directly into main memory. Note that on Line 9 one can apply any predicate based

on the workload history for that page to decide whether the page should be cached on

FLASH or not. We discuss such alternatives later on.

Consider now the cost of the lazy scheme. A main memory victim may or may not

exist in the FLASH cache. Let the probability of a RAM victim being on FLASH be q.

The cost associated with a RAM victim CV
3 (i.e., the cost of Lines 5-11, 14-20) is equal

to RRAM + pdFW if the page is on FLASH and RRAM +RFLASH + pdDW +FW otherwise.
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Hence:

CV
3 = RRAM +qpdFW +(1−q)(RFLASH + pdDW +FW )

For a FLASH hit the cost is FR +CV
3 and for a a FLASH miss the cost is CV

3 + DR. The

cost of this scheme is therefore:

C3 = h f (CV
3 +FR)+m f (CV

3 +DR) = (h f +m f )CV
3 +h f FR +m f DR

As noted in Section 5.3.1, both h f and m f represent the total hits and misses for pages

referenced in the workload. Thus, lookups in the FLASH index for the RAM victim are

not accounted for by h f and m f . However, the probability of the RAM victim being

on FLASH is expected to be equal to the probability of any referenced page being on

FLASH: it does not depend on whether the looked-up page was in RAM at the time of

the lookup. Therefore, q = h f
h f +m f

and 1−q = m f
h f +m f

, which gives that:

CV
3 = RRAM +

h f

h f +m f
pdFW +

m f

h f +m f
(RFLASH + pdDW +FW )

Then:

C3 = (h f +m f )RRAM +h f pdFW +h f FR +m f (RFLASH + pdDW +FW )+m f DR

⇒C3 = h f (RRAM + pdFW +FR)+m f (RRAM +RFLASH + pdDW +DR +FW )

As for the maintenance cost of the FLASH page directory, lazy pays L cost units

for each RAM miss to look the page up in the FLASH directory. For a FLASH hit, U

cost units are paid to update the entry for the hit page, in addition to the cost CV,d
3 of

updating the directory entry for the RAM victim. If a FLASH miss occurs, only CV,d
3 cost

units are paid for directory maintenance. For CV,d
3 , we have that:

CV,d
3 = L+qpdU +(1−q)(U +U)

Hence, we have that:

Cd
3 = mrL+h f (U +CV,d

3 )+m fC
V,d
3

⇒Cd
3 = mr(L+CV,d

3 )+h fU

⇒Cd
3 = mr(2L+qpdU +2(1−q)U)+h fU

⇒Cd
3 = 2(h f +m f )L+h f pdU +2m fU)+h fU

⇒Cd
3 = h f (2L+(pd +1)U)+2m f (U +L)
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And, for lazy: C′3 = C3 +Cd
3 .

Various criteria can be applied to decide whether a RAM victim page should be

cached on flash. For instance, if the flash disk used is poor in random writes, one

can avoid some random writes by caching only clean pages. We experiment with this

in Section 5.5.6. Alternatively, the access history for each FLASH page can be main-

tained, e.g., by keeping track of the number of hits the page has seen, or the number of

times it has been dirtied. The system could then maintain a set of the f hottest pages,

where f is the number of pages that fit in FLASH. Then, only these f pages will be

cached on flash, thus implementing a frequency-based replacement policy. Similarly,

one may decide to cache the f pages that have the most read-intensive workload as

in Chapter 3. Another alternative is to only cache pages that have been accessed at

least twice while they were cached in RAM; that way, one can avoid polluting the flash

cache when a file scan occurs. The mentioned options can even be combined; how-

ever, we will not study them further here, as they assume or define some aspects of the

replacement policy of the cache.

5.3.4 Comparison

We compare the page flow schemes on the basis of their I/O costs. We assume (for

now) that the FLASH cache directory is stored in main memory and we therefore do

not consider directory maintenance costs. Given the cost formulae for C1, C2, C3, it

is tempting to factor out the common term h f FR +m f (RFLASH +FW +DR)+mrRRAM.

However, this would make the invalid assumption that, for a fixed workload, h f , m f

remain the same for all three page flow schemes. We will now show why this is not

true.

Assume that a workload is executed on the same system three times, once with each

page flow scheme presented. In all cases the RAM and FLASH replacement policies are

the same. What is more, assume a stack replacement algorithm (not a FIFO one), i.e.,

one that does not exhibit Belady’s anomaly [Belady et al., 1969] and therefore the hit

ratio for the policy grows with cache size (that is, with the number of available page

frames); this holds for virtually all modern page replacement algorithms. Let r, f

be the maximum capacity, in pages, of the RAM and FLASH caches, respectively. We

define the effective capacity of a cache at level i to be the number of pages cached at

level i that are guaranteed not to be cached at any level higher than i at the same time.

The effective size of the RAM cache is er = r. For the FLASH cache, its effective size



5.3. Page Flow Schemes 117

e f is equal to the number of pages cached on FLASH that are unique on FLASH (i.e.,

none of them are cached in RAM at the same time). Consequently, the effective size of

the FLASH cache is different for each page flow scheme. For inclusive the effective size

of the FLASH cache is e1
f = f − r, while for exclusive it is e2

f = f . For lazy, the subset

of FLASH pages also cached in RAM varies with the workload; however the following

always holds:

f − r ≤ e3
f ≤ f

Observe that the FLASH cache hit ratio depends on the effective size of the cache, not

on its capacity. Consider, e.g., inclusive: when it looks a page up on FLASH, it is only

likely to find the requested page in f − r pages, for if the requested page was any of

the r pages cached in RAM, no lookup on FLASH would be needed. Therefore, the hit

ratio is a function of the page replacement policy, the effective size of the cache, and

the workload (the reference pattern). For a given replacement policy Y and a workload

W , let the hit ratio be H = H(Y,W,e f ). We have that:

H(Y,W,e1
f )≤ H(Y,W,e3

f )≤ H(Y,W,e2
f )

Taking into account that h f = H · |W |, we have that:

h1
f ≤ h3

f ≤ h2
f ⇒ m1

f ≥ m3
f ≥ m2

f

for the three algorithms, since mr = h f + m f . The effective size of the RAM cache is

the same for all different schemes; the same applies for the RAM hit ratio.

One can only model the hit ratio for a page replacement policy if the characteristics

of the workload are priorly known. Our evaluation shows that for a given policy the

hit ratio varies widely across different workloads. This suggests that in a real deploy-

ment, where the characteristics of the page reference pattern are not known a priori,

one cannot statically determine the optimal page flow scheme. In our system we con-

tinuously monitor the hit ratio with respect to the effective size of the FLASH cache and

accordingly adapt the flow of pages in the memory hierarchy. Specifically, we keep

track of FLASH hits and misses and the rate at which pages are dirtied (pd). Based on

the normalised read and write costs for the flash and the hard disks, which are known

(or measured) in advance, we periodically evaluate the cost formula for each page flow

alternative and adopt the one that minimises the total cost. In Section 5.6, we discuss

some workload characteristics based on which one can decide the optimal scheme stat-

ically and with some confidence.



118 Chapter 5. Caching On Flash Memory

5.4 Implementation Issues

One important decision is the location of the FLASH cache page directory when the

RAM cache is much smaller than the FLASH cache. For r pages cached in RAM, b · r
is the size in bytes of the RAM directory, for b bytes per directory entry. Similarly,

b · f bytes are needed for the FLASH directory. Let B be the size of a page in bytes,

Sr be the size of RAM, and S f be the size of the FLASH disk; we have that f = S f
B . If

the FLASH directory is stored in-memory, Sr− b f bytes are left in main memory for

caching. Hence, m = Sr−b f
B+b pages are cached in RAM.

If the entire main memory is used for the RAM cache it fits Sr
B+b pages. Given a

replacement policy and a workload the following holds:

H
(

Y,W,
Sr

B+b

)
≤ H

(
Y,W,

Sr−b f
B+b

)
Our experiments show the difference between these two hit ratios to be significant,

more so as the discrepancy between the RAM and FLASH sizes grows. Thus, it may be

desirable to reduce the portion of main memory used for the FLASH page directory. To

that end there are two alternatives: (a) use a larger page size for FLASH, or (b) store the

FLASH directory (or a part of it) on FLASH instead of RAM.

5.4.1 Using larger pages for flash

Let Br and B f be the RAM and FLASH page sizes respectively; br bytes are required for

a RAM directory entry and b f bytes for a FLASH directory one. Each directory entry

holds, at the very least and in both cases, the HDD offset of the page (also serving as its

identifier), a pointer to the page in the cache (a main memory pointer for a RAM page,

or a disk offset for the FLASH cache) and a dirty bit. The replacement policy requires

extra bytes for bookkeeping (e.g., a pointer to the next page in an LRU queue) and

for the in-memory hash table required for lookups. For the RAM directory some more

bookkeeping is required for pinning/unpinning, concurrency control, etc.; we will not

further elaborate on br as it is not our focus.

If B f > Br, each FLASH page has B f
Br

RAM pages; we use the term block to refer

to such FLASH pages. All I/O between the flash disk and the HDD is in blocks of B f

bytes, while data movement from and to the RAM cache is in pages of Br bytes. The

RAM cache and all in-memory structures use the HDD offset of a page as its universal

identifier. Thus, the RAM directory uses offset
Br

as the page identifier, while the FLASH

directory uses offset
B f

as the identifier for a block stored at offset on HDD. Therefore
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offset: 987136 

id: 987136/4k = 241

id: 987136/16k = 60

offset in block: 
987136 mod 16k = 4096 bytes

Figure 5.5: Using larger FLASH pages

log2
offset

B f
bits are required to identify a page in the FLASH directory. By knowing the

RAM directory identifier of a page, one can use B f and Br to obtain the identifier of the

FLASH block where the RAM page belongs. Let pr be a RAM page of FLASH block p f .

For each reference to pr, we look it up in the FLASH directory. If p f is there, then pr is

located at offset (prBr mod B f ) within p f , the offset of which is given by (prBr÷B f ).

Otherwise, p f is read from HDD into FLASH and pr is computed the same way. FLASH

evictions take place with B f granularity. The case for Br = 4kB and B f = 16kB is

shown in Figure 5.5.

If pr is evicted from RAM to FLASH but p f is not cached on FLASH at that time (a

case that arises under exclusive and lazy), writing page pr of block p f to FLASH is not

straightforward. One solution is to first fetch p f from HDD into FLASH and overwrite its

pr page incurring one additional HDD read. We refer to this technique as overwriting.

Note that when fetching the whole block from the HDD, some pages of the block may

already be cached in RAM. Therefore, the invariant ∀tPRAM(t)
⋂

PFLASH(t) = /0 of the

exclusive scheme is not strictly enforced with this technique. Under inclusive this never

arises: any page cached in RAM will have its host FLASH block cached on FLASH.

An alternative solution is to assign a block to p f on FLASH, invalidate all its pages

but pr, and overwrite pr. If block p f is later read from HDD, only the invalid pages will

be overwritten on FLASH; if it is written to HDD, only the valid pages will be written.

We term this technique invalidating. Except for a slight implementation complexity

the main drawback of this solution is that a large number of pages in a flash block may
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Flash Page Size overwriting (MBs) invalidating (MBs)

4K 568 N/A

8K 280 284

16K 138 142

32K 68 72

64K 33.5 37.5

128K 16.5 20.5

Table 5.1: FLASH directory size

become invalid, and, thus, waste space. This is especially true if the reference pattern

exhibits poor spatial locality. A solution is for invalid pages not to be stored on FLASH

blocks, but only marked as invalid in the FLASH directory. The following example

shows the impact of each technique on the size of the FLASH directory.

Example. Let Br = 4kB, B f = 64kB and assume a 64-bit offset for HDD and FLASH,

and 32-bit main memory addressing; log2
264

64k = 48 bits are required for the block iden-

tifier. For a 128GB FLASH cache, there are 2M flash blocks. Thus, a FLASH block

requires log2(2M) = 21 bits for flash addressing (i.e., the flash disk offset where the

page is stored). Also needed are: 1 dirtiness bit for each block; 32 bits for the main-

memory pointer in the LRU queue; and 32 bits for the main memory hash index (a

pointer to the directory entry) for simple LRU. In total a FLASH directory entry requires

at least 48 + 21 + 1 + 32 + 32 = 134 bits. Using overwriting the FLASH directory oc-

cupies 2M·134
8·1M = 33.5MB. Using invalidating, one additionally needs 64k

4k = 16 bits per

FLASH block as validity bits (one per block page) These sum up to 150 bits per direc-

tory entry, or 37.5MB. If larger FLASH blocks were not employed at all, i.e., 4kB pages

were used for FLASH, the identifier of a page would require 52 bits and there would be

32M block addresses on flash, the representation of each of which would require 25

bits. Thus, 52 + 1 + 25 + 32 + 32 = 142 bits would be required for each of the 32M

pages, or 568MB in total. 2

Table 5.1 shows the directory size for FLASH blocks of various sizes, for a 128GB

flash disk. Using larger pages on FLASH saves a lot of main memory, which can be

used for caching in RAM to increase the RAM hit ratio. Larger flash pages, however,

reduce the paging (and thus caching) granularity, so the flash hit ratio is expected

to drop, especially for workloads with poor spatial locality. We further explore this

trade-off in Section 5.5.5. Note that, as studied in [Bouganim et al., 2009], writing
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on flash using a large block size (e.g., 32 or 64KB) increases bandwidth and random

write efficiency. Therefore, large flash blocks are not only a way to shrink the FLASH

directory and increase RAM hits, but also a way to speed up random writes to flash.

5.4.2 Storing the page directory on flash

If the amount of main memory is small or the FLASH directory occupies too much

memory, it may be preferable that the whole FLASH directory is stored on the flash disk

(at least for low latency flash disks). Another reason is that, given the non-volatility

of flash, if the FLASH directory is persistent, its contents can be preserved between

crashes, thereby eliminating warm-up time. In this setup, the directory itself is stored

on FLASH and some of its pages are buffered in main memory. Let f ′ be the number of

pages cached on FLASH; hence the size of the directory is b f f ′. Then, f ′ = S f
B f +b f

and

the size of the directory is b f S f
B f +b f

. Assuming that n bytes of the directory are buffered

in main memory, with br ≤ n ≤ b f f ′, the size of main memory available for caching

pages is Sr−n and the number of pages cached is r′ = Sr−n
Br+br

. It is clear that f ′ < f and

r′ > r, where f , and r are for when the FLASH directory is kept in main memory, as in

the previous sections. Therefore, e′f = e f −b f f ′ < e f for all three page flow schemes

if an external FLASH directory is used. Consequently, H(Y,W,e′f ) ≤ H(Y,W,e f ), i.e.,

the hit ratio for the FLASH cache will drop. The size of RAM available for caching is

now greater by b f f ′−n; thus, the RAM hit ratio will rise. Given that Sr� S f , then, for

small values of n, the increase of the RAM hit ratio will be greater than the drop of the

FLASH hit ratio. Additionally, as n shrinks the cost of a directory lookup/update grows,

as fewer pages of the directory are buffered. The hit ratio for directory pages is given

by H(Y,Wd,n), where Wd is the reference pattern for directory operations generated

by workload W . If l directory page accesses are required for a lookup, u directory

page accesses are required for an update, and the probability of a directory page being

dirtied in RAM is pd
d , we have:

L = l((1−H(Y,Wd,n))FR + pd
dFW )

U = u((1−H(Y,Wd,n))FR + pd
dFW )

neglecting the cost of directory page lookups/updates served in-memory. Substituting

these formulae to the corresponding ones of Sections 5.3.1, 5.3.2, and 5.3.3, one can

calculate the expected cost. Of course, the directory page miss ratio 1−H(Y,Wd,n) and

probability of a directory page being dirtied pd
d will have to be monitored or otherwise

estimated.
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5.4.3 How much flash? How much RAM?

For the case that no FLASH cache is used, assume hr RAM hits and mr RAM misses oc-

cur for a workload. Then, the total cost C0 for this case is C0 = mr(DR + pdDW ). Using

a simulator, one can simulate the cache behaviour of a system with varying RAM and

FLASH cache sizes (or, even with no FLASH cache). Specifically, by running the simula-

tor for various cache sizes and for the type of workload the system will process, values

can be collected for hr, mr, h f , m f , and pd . By using the values in the cost formulae,

along with the read/write costs of specific flash and magnetic disks, one can determine

which combination of cache sizes and hardware devices is the most I/O-efficient for

workloads of the given type. Moreover, the price-to-I/O-cost ratio for each case gives

the most cost-efficient solution. Alternatively, the 5-minute rule of [Graefe, 2007] can

be used to determine the optimal memory and flash disk capacities required, assuming

prior workload knowledge. Our cost formulae determine the type of flash disk that

gives the best price/performance ratio for a type of workload. Naturally, the decision

for the size of the main memory and the flash disk is an offline one and optimised for

specific workloads. However, the optimal page flow scheme can be decided on-line,

on a per-workload basis, by periodically evaluating the cost formulae. Our proposals

are also applicable in database systems that employ per-file/relation buffer manage-

ment: by monitoring the workload for each file and calculating the cost of each dif-

ferent scheme, our model may lead to different relations being buffered using different

schemes.

5.5 Experimental Study

Setup. We implemented our algorithms to evaluate their performance under various

workloads. Our system consists of a main memory buffer pool for caching in RAM,

a page cache on a flash disk and a magnetic disk for persistent storage. Each page is

identified by its disk offset on persistent storage. The system was implemented in C++

and we used an Intel Pentium 4 box clocked at 2.26GHz with 1.5GB of physical mem-

ory for our experiments. The Operating System was Debian GNU/Linux with the 2.6.26

kernel. The system had two magnetic disks and one flash disk. Our system and the OS

ran from one of the magnetic disks and the other magnetic disk (referred to as the HDD

hereafter) was used to store the dataset. The HDD was a 300GB Maxtor 6L300R0 with

16MB of cache. The flash disk was a Samsung MCAQE32G5APP, an MLC NAND flash
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Disk Model 4kB Read IOPS 4kB Write IOPS $/GB

Samsung 2500 21 1.6

Intel X25-M 12000 592 8.1

Intel X25-E 35000 3300 20

Fusion ioDrive 102000 101000 30

Table 5.2: Flash disks considered

disk with a capacity of 32GB. Both disks were using the IDE interface. To eliminate OS

caching we used both storage media as raw devices: the OS did not cache data pages,

pages were never double buffered and our system had absolute control of physical I/O.

Read and write costs were estimated using the 3-d surfaces presented in Section 4.6.

Flash Disks. The flash disk we used has a poor write performance and is unsuitable

as a cache. Therefore, we considered other flash disks, more suitable for caching,

by using their read and write costs in the equations of Section 5.3. For the I/O costs

of these disks we used published benchmarks and documents about their efficiency

in IOPS ([TGDaily, 2008, AnandTech, 2008, TigerDirect.com, 2009]). We present the

read/write costs of all flash disks considered in Table 5.2. Observe that random read

performance varies up to two orders of magnitude among disks, while random write

performance varies as much as four orders of magnitude.

Workloads. We used three different workloads. The first, referred to as IRP, follows

an independent reference pattern where all pages in the dataset have the same prob-

ability of reference, i.e., a random reference pattern. We varied the probability of a

page being read or written to and created workloads with varying dirtiness ratios. For

the second workload, referred to as TPC-C, we ran the TPC-C benchmark on the Post-

greSQL database and collected a trace of all page references, which we then translated

into HDD offsets. We did the same for the TPC-H benchmark to obtain the third work-

load. The results of this section are the execution of these traces by our system after

varying its parameters. In all cases, the main memory page size was set to 4kB. For

all experiments we used LRU as the page replacement policy (for both the RAM and the

FLASH caches).

5.5.1 Impact of Cache Size on Hit Ratio

We measured the effect of the size of a page cache on its hit ratio, i.e., how H(Y,W,S)

varies with S, the effective size of the cache, under LRU. We ran the three workloads for
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Figure 5.6: H(Y,W,S) as a function of S.

different page cache sizes; we report the hit ratio in Figure 5.6 (the raw data are given

in Figure 8.24). The x-axis is S shown as a percentage of the size of the whole dataset.

In all cases the hit ratio grows with the size of the cache, as discussed in Section 5.3.4.

The growth rate varies widely with the workload: it is linear for IRP and non-linear

for TPC-C and TPC-H. This is expected since both TPC-C and TPC-H have a working set,

albeit of different size, while IRP does not. But the most important observation is that,

apart from H growing with S, one cannot make assumptions that hold for all workloads.

Not that, for S > 0.025, the curves slope upwards monotonically and therefore the hit

ratio for this interval is not shown here.

5.5.2 Impact of Flash Cache Size on RAM Hit Ratio

In our system, the directory for the FLASH cache is stored in main memory. As dis-

cussed in Section 5.4, as the size of the flash cache grows, the available main memory

for the RAM cache shrinks and therefore the RAM hit ratio is expected to drop. We mea-

sured this effect by growing the size of the FLASH cache (and thus the FLASH directory)

while keeping the size of the RAM cache fixed, and measuring the RAM hit ratio H. In

addition, we ran the same workloads with no FLASH cache (and thus all main memory



5.5. Experimental Study 125

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35

R
A

M
 H

it 
R

at
io

FLASH Size / RAM Size

IRP
TPC-C
TPC-H

Figure 5.7: H
H ′ for different sizes of the FLASH cache.

available for the RAM cache) and measured the RAM hit ratio H ′. In Figure 5.7 we

report H
H ′ for different sizes of FLASH cache (the raw data are given in Figure 8.25). As

evident, there is a drop in the hit ratio for all workloads. This drop is linear for IRP as it

has no working set, and for TPC-H as its working set fits in RAM in all cases. For TPC-C

the working set fits in main memory for small FLASH sizes, but for larger ones it does

not; thus, the hit ratio drops very quickly, giving a curve that is the inverse of the curve

of Figure 5.6 for TPC-C. In all cases, the main memory occupied by the FLASH index

has a big impact on the RAM hit ratio.

5.5.3 Validation of the Cost Formulae

We then went on to empirically verify the validity of the cost formulae of Section 5.3.

We executed a synthetic IRP workload using the Samsung disk and measured the run-

ning time for each page flow scheme. We also used the cost formulae of Section 5.3

with the I/O cost metrics for the particular flash disk and HDD to calculate the total cost

of each scheme. We plot the ratio of the execution time for each physical run and the

cost projected by the formulae for that scheme in Figure 5.8 (the raw data are given

in Figure 8.26). Observe that the ratio of the real cost over the projected one remains
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Figure 5.8: Validation of the cost formulae.

constant for all FLASH cache sizes. Also, this ratio remains the same across page flow

schemes, indicating the consistency of the cost formulae. The ratio being 6% to 8%

higher than 1 is due to our cost formulae not taking into account the warm-up time for

the caches. Our formulae assume that each RAM miss results in a RAM eviction (and

thus either a FLASH hit or a FLASH miss), which does not hold until after the RAM cache

becomes full. The same applies for the warm-up time of the FLASH cache. Although

one can adapt the formulae to account for this cost, as one can approximate after how

many references each cache becomes full, we chose not to do so in the interest of

simplicity; moreover, this cost is negligible for workloads of interest. Another caveat

arises when using our formulae for very small datasets, in which the on-disk caches of

the FLASH disk and the HDD affect the disk read/write costs. For all real-world work-

loads, however, our formulae were quite accurate in their cost estimation. As argued

in [Bouganim et al., 2009], not all flash writes incur the same cost, just as is the case for

magnetic disk writes. In this work we are interested in the cost of all writes throughout

the workload, i.e., in the average cost of random writes for blocks of specific size. This

cost can be accurately approximated using the techniques of Section 4.6.
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Figure 5.9: Flash hit ratios per scheme.

5.5.4 Comparison of Page Flow Schemes

We compare the three page flow schemes across the different workloads.

5.5.4.1 Flash Hit Ratio

We first measured the FLASH hit ratio for each scheme and workload. We ran the exper-

iments for different RAM and FLASH sizes obtaining similar results; to avoid repetition,

we only report in Figure 5.9 the results for the FLASH cache being 6 times the size of

the RAM cache (the raw data are given in Figure 8.27). All hit ratios for each workload

are normalised by the hit ratio of inclusive. As explained in Section 5.3.4, exclusive has

the highest hit ratio for all workloads, while inclusive has the lowest. The hit ratio for

lazy varies between the two. However, as we will see in the sequence, the highest hit

ratio for exclusive does not always result in a lower I/O cost.

5.5.4.2 Total I/O cost

We ran TPC-H and TPC-C for a varying FLASH size and a fixed RAM size. We plotted the

total I/O cost as calculated using the formulae of Section 5.3 for different flash disks.

In the first experiment, we ran TPC-H with the FLASH cache size varying from 5 to 40

times the size of the RAM cache. The projected I/O cost of the FusionIO ioDrive is

shown in Figure 5.10 (the raw data are given in Figure 8.28). In this case, the exclusive

scheme performs better than the other two for all FLASH cache sizes; the following

experiments will reveal that this is not always the case. Observe also that increasing
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Figure 5.10: Total cost for TPC-H with Fusion ioDrive.

the size of the FLASH cache can benefit performance by a significant factor.

We then ran TPC-C for the same FLASH cache sizes as before and calculated the

total cost based on the cost metrics of the Samsung flash disk; the results are shown

in Figure 5.11(a) (the raw data are given in Figure 8.29). The exclusive algorithm

is totally unsuitable in this case due to the disproportionally high write cost of the

Samsung disk (as for each RAM eviction exclusive pays the cost of a flash write). As

for inclusive and lazy, observe that while their cost is similar for large FLASH sizes,

there is a performance gap for small FLASH sizes (or, big RAM sizes).

We repeated the cost calculations for TPC-C, but used the I/O costs of the Intel X25-

E flash disk; the results are shown in Figure 5.11(b) (the raw data are given in Fig-

ure 8.30). When the FLASH cache is less than 15 times the size of the RAM cache,

exclusive is the most efficient page flow scheme with a total I/O cost that is up to 30%

lower than the I/O cost of inclusive and 14% lower than the I/O cost of lazy. On the

other hand, for a FLASH cache size more than 35 times that of the RAM cache, lazy is

the optimal scheme with an I/O cost that is 16% lower than the I/O cost of exclusive.

Therefore, even for the same FLASH disk and workload the optimal scheme changes

with the ratio of the FLASH cache size over the RAM cache size.

Next, we kept the FLASH and RAM cache sizes fixed and ran the TPC-C workload

under each scheme and calculated the total I/O cost for all four disks. The results are

shown in Figure 5.12 (the raw data are given in Figure 8.31); the optimal algorithm

differs for each disk. Note that lazy is optimal for the two MLC disks (Samsung and

Intel X25-M), while exclusive is optimal for higher-performance SLC devices (Intel

X25-E and FusionIO). The graph confirms our hypothesis that no scheme is universally
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optimal across all workloads and flash disks. It also appears that inclusive is never

the best performer; however, this is not the case if directory maintenance costs are

accounted for as well.
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Figure 5.13: Directory operations for TPC-C

5.5.4.3 Directory Operations

We have so far assumed that the page directory for the FLASH cache resides in main

memory. Hence, in our cost calculations we have not included directory maintenance

costs. In Figure 5.13(a) the total number of directory operations, i.e., lookups and

updates is shown, for each page flow scheme for the TPC-C workload and for different

sizes of FLASH cache (the raw data are given in Figure 8.32). In Figure 5.13(b) we

break down the operations into lookups and updates for the FLASH size being 10 times

the size of RAM (the raw data are given in Figure 8.33); in all other cases the results

were similar and thus not reported here. The exclusive scheme is the most efficient,

as it requires fewer directory operations than both lazy and inclusive. For all schemes,

as the FLASH cache size grows, so does the FLASH hit ratio and, thus, the number

of directory operations required for each scheme drops: a FLASH hit requires fewer

operations than a FLASH miss. As shown in Figure 5.13(b), inclusive and exclusive

incur the same number of lookups, while inclusive incurs one more update for each

FLASH page dirtied in main memory. The lazy scheme requires more lookups, as each

RAM eviction requires a FLASH lookup. If the FLASH directory was kept on the flash

disk, directory maintenance operations would affect the total I/O cost and should be

considered in the cost formulae. The general conclusion is that, similarly to the I/O cost,

the cost of directory maintenance varies widely across different workloads, schemes,

and flash disks; for most cases, the lazy scheme incurs the most directory operations

and is thus the least suitable for the case of a flash-resident directory.
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5.5.5 Impact of Flash Block Size

We then investigated how the size of the FLASH block affects performance. In all

cases the RAM page size was set to 4kB. We first used a flash block size varying from

4kB to 128kB. For each block size we ran the TPC-H workload and measured the hit

ratio for FLASH and the total number of HDD reads, using the overwriting technique

of Section 5.4.1: if a page is evicted from RAM and its corresponding block is not

on FLASH, then the whole block is brought from HDD to FLASH. We ran TPC-H using

the inclusive and lazy schemes. In Figure 5.14 we show for each scheme the FLASH

hit ratio (top graph) and the number of HDD reads (bottom graph). The raw data are

given in Figure 8.34. Under inclusive, before a page is brought into RAM its flash

block is written to the FLASH cache. Subsequent accesses to the pages of that block

will be served from FLASH. Thus, the hit ratio for inclusive increases as the block size

grows and overwriting acts as a prefetching mechanism, greatly affected by locality

of reference. Under lazy, a block is written to flash when any RAM page that belongs

to that block is evicted from RAM for the first time. Even for workloads with a high

degree of locality, pages of the same flash block will have most likely been read into

RAM before one of them is evicted to FLASH. Therefore, locality does not affect lazy as

much (at least for small block sizes). As the block size grows, so does the granularity

at which the replacement policy tracks the reference pattern through access recency

(or frequency). Therefore, the hit ratio drops (for inclusive this effect is cancelled by

the effect of prefetching). As shown in the bottom graph lazy performs about twice as

many HDD reads as inclusive. This is not only due to its lower hit ratio: when a RAM

victim is written to FLASH, the block it belongs to needs to be read from HDD if it is

not cached on FLASH. Conversely, for inclusive, the first invariant guarantees that the

block the page belongs to is on FLASH.

Next, we experimented with both overwriting and invalidating to gauge their per-

formance under both TPC-C and TPC-H as we varied the flash block size from 4kB to

128kB; we used the lazy scheme in all cases. Let hoverwriting and hinvalidating be the hit

ratios for overwriting and invalidating, respectively. In the top graph of Figure 5.15

we report the ratio λ = hoverwriting

hinvalidating
for the two workloads; in the bottom graph we show

the corresponding ratio of HDD reads (the raw data are given in Figure 8.35). For both

workloads, overwriting had a higher hit ratio than invalidating, due to the prefetching

effect described earlier. This effect was more evident in TPC-H as it exhibits a higher

degree of locality than TPC-C. As explained earlier, under the lazy scheme the hit ratio
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Figure 5.14: Impact of block size under overwriting.

for both overwriting and invalidating was less than the hit ratio for more fine grained

replacement (i.e., for 4kB blocks). For HDD operations, overwriting resulted in more

HDD reads than invalidating for both workloads (ranging from twice to 1.3 times as

many HDD reads). For all workloads with locality of reference, overwriting is expected

to give a higher hit ratio than invalidating at the cost of extra HDD read operations. The

optimal choice depends on the read efficiency of the flash disk and the HDD.

5.5.6 Caching Only Clean Pages

We evaluated the effect of caching dirty pages in the FLASH cache. Recall from Sec-

tion 5.3 that, for the lazy scheme, one may apply any criterion to decide if a RAM victim

page will be cached on FLASH or not. Dirty pages cached on FLASH are more likely to

cause updates on the flash disk. Thus, if the flash disk is not efficient at random writes,

it makes sense to restrict FLASH caching to clean pages only. Other criteria may be

used as well, e.g., the frequency of writes on a page. We used IRP workloads with

different dirtiness ratios, i.e., the probability of a page being dirtied on each next refer-

ence. Each workload was executed using the lazy scheme twice: once caching all RAM

victims on FLASH and once caching only the clean ones. We used the Samsung flash
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Figure 5.15: Comparison of overwriting and invalidating.

disk (which is inefficient at random writes) and measured the hit ratio for the FLASH

cache and the total execution time for varying dirtiness ratios. Hit ratios are shown in

the left graph of Figure 5.16 and execution times are shown in the right graph (the raw

data are given in Figure 8.36). The hit ratio drops when only clean pages are cached,

as some of the hot dirty pages are evicted to HDD. For small dirtiness ratios, the drop in

the hit ratio is gradual, as the hottest of the dirty pages fit in RAM. For a dirtiness ratio

greater than 0.7, the hit ratio drops substantially. On the other hand, the execution time

is much less when caching only the clean pages, due to the write inefficiency of the

flash disk we used. Observe that for dirtiness ratios between 0.1 and 0.7 the running

time remains the same when caching only clean pages, i.e., the increased miss ratio is

counterbalanced by the time saved by avoiding flash writes. For greater dirtiness ratios

the hit ratio drop results in about a 10% increase in execution time.

5.6 Discussion

Choosing the optimal scheme. Our evaluation shows that the I/O cost of a workload

depends heavily on: (a) the workload itself, (b) the page flow scheme, and (c) the I/O
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Figure 5.16: Effect of caching only clean pages.

costs of the flash disk. Thus, one cannot decide with confidence the optimal scheme a

priori without evaluating our cost formulae. Given the workload and the flash disk, we

can hypothesise about the optimal scheme. For instance, exclusive performs one flash

write for each RAM miss, whether the victim page is dirty or not; inclusive and lazy do

so only for dirty pages. Hence, for write-intensive workloads, exclusive is likely to be

more expensive, more so if the flash disk is not write-efficient. Then, multiple flash

writes can be avoided if only clean pages are cached on FLASH, (see Section 5.5). If

the RAM cache is not a small percentage of the FLASH cache, exclusive is likely the best

option: no page will be cached on both caches, saving space on FLASH. Using similar

arguments it is sometimes possible to make the optimal choice if the characteristics of

the workload are well-known.

The experimental results also verify our hypothesis that hit ratios alone cannot fully

describe the system’s I/O efficiency. For instance, as shown in Figures 5.9 and 5.12,

although exclusive has the highest hit ratio for TPC-C, it is not the optimal scheme

across all flash disks w.r.t. to the total I/O cost. This holds for all workloads we have

tested. Moreover, as shown in Figure 5.11(b), even for a specific workload and flash

disk, the optimal scheme changes for different FLASH or RAM cache sizes. Note also

that inclusive appears to always be less I/O-efficient than lazy, if the same page size is

used for RAM and FLASH. However, this changes radically for different page sizes, or

directory maintenance costs (i.e., when the FLASH directory is stored on the flash disk).
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Flash writes. We have so far assumed that pages are written to the flash disk in a

random fashion. In [Narayanan et al., 2009], the flash disk is split in a write cache and

a read cache, with the write cache employing a log-structured filesystem to speed up

random writes. Such techniques are complementary to ours, especially for flash disks

with poor random write performance; for high-end ones random writes are as efficient

as sequential ones, i.e., they are converted to sequential ones by the disk controller.

In [Leventhal, 2008], the authors use large asynchronous sequential writes instead of

synchronous random ones. Flash writes can be asynchronous in our case too: pages to

be cached on flash are only marked as such in main memory and moved to flash asyn-

chronously. Such writes can also be performed sequentially in large chunks, as in ZFS;

then, one would need to adjust the write costs. This is analogous to using a larger flash

block, as described in Section 5.4.1. In our case, large flash blocks are fetched from

disk when their first page is accessed (e.g., for inclusive), effectively prefetching all

other pages of the block. ZFS only writes to flash pages from main memory (evictees)

and thus this effect is absent. As shown in Section 5.5.5, prefetching can greatly en-

hance performance – at least for database workloads. For high-performance flash disks

with high random write throughput and low latency, e.g., the FusionIO ioDrive, large

sequential writes will not make much difference: sequential and random writes have

almost the same throughput. Additionally, such devices have comparable read/write

latencies. Thus, flash writes can be synchronous at RAM eviction time, without bog-

ging the system down. Our work focuses on deciding the size and the contents of the

RAM and FLASH caches, while [Leventhal, 2008] mainly focuses on implementation

efficiency. Therefore, we believe that our approach is complementary to the ZFS ap-

proach. That said, we feel that a system should primarily decide on the contents of the

flash cache, and secondarily on implementation principles.

Remarks. Techniques that speed up random writes on flash disks, e.g., In-Page Log-

ging [Lee and Moon, 2007], are complementary to our work and important for caching

efficiency. An interesting question is what on-flash data structure or filesystem serves

caching needs best, especially if the page directory and the replacement algorithm are

external memory ones. The answer depends on how pages are written to flash and how

they are replaced upon eviction; we do not study this further here. As for metadata

persistency, standard techniques (e.g., write-ahead logging) can be employed. Given

the non-volatility of flash memory, one can do the same for the flash page directory.

That way, after a system failure, the flash cache will warm up instantly, speeding up

system recovery.





Chapter 6

Sorting Hierarchical Data In

External Memory

6.1 Introduction

In this chapter we study the problem of external sorting. Sorting has always been im-

portant in data management. Its usefulness is even greater for database systems as

sorting plays a significant role in a number of key query processing algorithms, includ-

ing join evaluation, duplicate elimination, and aggregation, to name a few. Previous

studies, like the one presented in [Lee et al., 2008], have found that algorithms like ex-

ternal mergesort generate access patterns that are dominated by large sequential writes

and random reads. As discussed in Chapter 1 and Chapter 2, such access patterns are

most favourable for flash memory and can exploit the full potential of the new medium.

The vast majority of existing algorithms, however, focuses on flat datasets. Apart from

evaluating the performance of sorting algorithms over flash memory, it is our goal to

explore how existing algorithms can be generalised to operate on hierarchical data.

Our proposals are oblivious to the storage medium, as we aim to give a generic so-

lution to the problem of sorting hierarchical data, such as XML datasets. We evaluate

the proposed techniques over both flash and magnetic disks; we also experimentally

explore data staging in the context of sorting, for a hybrid system equipped with both

types of storage media.

The problem of sorting hierarchical data has, surprisingly enough, received little

attention from the research community. This is due to the relational data model being

inherently flat. The need for sorting hierarchical data has re-emerged in the context of

managing scientific data archives, which tend to be largely hierarchical, complicated in

137
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structure, and quite voluminous. In this chapter we present the Hierarchical ExteRnal

MErgeSort (HERMES) algorithm for sorting hierarchical data in external memory. The

algorithm takes into account the hierarchical structure and by exploiting it, it is able to

efficiently sort large datasets while minimising disk I/O and, at the same time, using a

minimal amount of main memory.

Archiving scientific data. A side-goal of this work is managing scientific data for

archiving purposes. Scientific data sources on the Web play a major role for ongo-

ing research efforts. Annotated protein databases like UniProt [Consortium, 2007], or

sequence databases like EMBL [European Bioinformatics Institute, 2007], are the pri-

mary sources of information in, e.g., selecting targets for conducting biological exper-

iments, or in pharmaceutical research. As is the case in any kind of research, repro-

ducibility of results is of paramount importance. Problems arise due to the dynamic

nature of scientific databases: they continuously change as new results become avail-

able. Pitfalls include the identification of erroneous entries in a database, and therefore

their modification, which results in invalidating scientific results that have used the er-

roneous entries as input. In addition, as research progresses, more accurate results are

generated through improved experimental methods. It is common practice for scien-

tific database providers to overwrite existing database states when changes occur and

publish new releases of the data on the Web on a regular basis. Failure to archive ear-

lier states of the data may lead to loss of scientific evidence, as the basis of findings

may no longer be verifiable.

Scientific data is predominantly kept in well-organised hierarchical data formats.

To support versioning, in [Buneman et al., 2004] the authors propose an archiving

approach that efficiently stores multiple versions of hierarchical data in a compact

archive. Version numbers denote time and become a first-class citizen of the process:

time is added as an extra attribute to the data being archived. To generate a new ver-

sion of the archive the authors propose the nested merge operator: multiple versions

are merged on the time attribute, with the archiver storing each element only once in

the merged hierarchy to reduce storage overhead. An archived element is annotated

with timestamps representing the sequence of version numbers in which the element

appears. By merging elements into a single data structure the archiver is able to retrieve

any version from the archive in a single pass over the data.

In Figure 6.1 we see an archive A1−2 containing two versions of data and an in-

coming version V3. For ease of presentation, we assume that nodes are compared on

their values. Nodes in the archive are annotated with their version number (denoted by
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Figure 6.1: Merging an incoming version into an existing archive.

t in the figure); version numbers act as timestamps representing the points in time that

a node is present in the archive. Nodes without a timestamp are assumed to inherit the

timestamp of their parent. Corresponding elements are connected by dotted edges.

Starting from the root, corresponding nodes in V3 and in A1−2 are merged recur-

sively. When a node y from V3 is merged with a node x from A1−2, the timestamp of x is

augmented with the new version number (e.g., the root of the archive and node A). The

subtrees of nodes x and y are then recursively merged by identifying correspondences

between their children. Nodes in V3 that do not have a corresponding node in A1−2 are

added to A1−3 with the new version number as their timestamp (e.g., node Q). Nodes

in A1−2 that no longer exist in the current version V3 have their timestamp terminated,

i.e., these nodes do not contain the new version number (e.g., node B). The process is

repeated for all levels.

With serialised hierarchical data formats, like XML, one usually traverses the data

depth-first. The problem with nested merge as described in [Buneman et al., 2004] is

that it does not manifest this natural access pattern. To identify correspondences be-

tween children of merged nodes, one must process complete subtrees. Thus, numerous

passes over the data may be required. If, however, the nodes of the datasets are ordered

on their keys the situation greatly improves. Assuming an ascending order, as shown

in Figure 6.1, whenever two nodes x and y are to be merged, one can sequentially scan

the children and compare their key values. The child with the smaller value is output to

the new archive, after having been annotated with the proper timestamp. This ensures

a total ordering among all children of any node. This process ensures that the archive

is always sorted on node keys. More importantly, only the incoming version has to

be sorted before nested merge. As the new version may be comparable in size to the

archive, sorting is a salient operation.

Change detection. Apart from archiving, sorting different versions of hierarchical
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datasets enables efficient change detection. This is useful to systems that support in-

cremental query evaluation and trigger condition evaluation. Existing approaches to

change detection in XML documents (e.g., [Chawathe et al., 1996, Cobena et al., 2002,

Wang et al., 2003]) operate on unsorted documents and only work in main memory.

However, an algorithm similar to nested merge can be employed to efficiently spot

differences. With the input documents sorted, change detection can be supported for

datasets larger than the size of main memory.

Sorting hierarchical data. The complexity of sorting large hierarchical datasets is

shown to be below that of sorting flat data [Silberstein and Yang, 2004]. This is due

to the smaller number of possible sorting outcomes, as in any sorted result the initial

parent-child relationships from the original data have to be retained. For example,

there is no need to compare nodes in different subtrees of the dataset, or located at

different levels of the hierarchy. As with any external memory algorithm, the major

challenge is to reduce the overall number of I/O operations.

The common approach to sorting large datasets is external mergesort and its vari-

ations [Knuth, 1998]. External mergesort splits the dataset into multiple runs that are

sorted in main memory during a single pass over the data. Runs are then merged

to generate the sorted output. Sorting hierarchical data is, however, not straightfor-

ward; the hierarchical structure has to be retained and each sorted run has to repre-

sent a proper hierarchy itself. An obvious approach would be to “flatten” the data by

writing the complete set of root to leaf paths to a file and then sorting the entries in

the file using standard external mergesort. As shown in [Silberstein and Yang, 2004],

this approach does not exploit the hierarchical structure and is inefficient in terms of

memory, storage space and processing power. Bottom-up approaches like the one

of [Silberstein and Yang, 2004] for sorting hierarchical data, on the other hand, op-

erate by splitting the input in complete subtrees that are sortable in main memory.

These subtrees are stored as sorted runs in separate files. Once the children of each

node are sorted, the data is output by reading the sorted subtrees from the run files.

This employs a random access pattern: though each run will be sequentially scanned,

entire runs will be read in a different order than the one they were generated. Such

approaches do not perform well on the high-branching, wide-spread structure of sci-

entific datasets. As an example, the current release of the EMBL Nucleotide Sequence

Database [European Bioinformatics Institute, 2007] (Release 93, December 2007) has

over 100 million entries below a single root node. The average size of each entry is

four kilobytes. Therefore, during output, a large number of small files will have to be
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accessed in random order, which penalises I/O performance if a magnetic disk is used

for storage. In the following we assume a magnetic disk as the storage medium. We

evaluate our sorting algorithm over a flash disk in Section 6.5.5.

6.2 Related Work

Sorting is a fundamental computing problem and as such it has received consider-

able attention. Departing from internal memory implementations, the basis of most

external memory sorting algorithms over flat, record-based datasets is external merge-

sort. Various extensions have been proposed over time, with [Knuth, 1998] presenting

an extensive study of most external sorting techniques, while [Graefe, 1993] presents

the details of implementing external mergesort as part of a relational database engine.

There have been numerous proposals for improving the algorithm’s performance, rang-

ing from increasing its internal sorting efficiency, to enhancing its CPU utilisation, or

to its parallelisation.

In [Zheng and Larson, 1996] the authors propose placing blocks from different

runs in consecutive disk addresses to reduce the seek overhead during the merging

phase (at the expense of additional seek cost during run creation). They also study

reading strategies, like forecasting and double buffering, and propose a read planning

technique. The latter uses heuristics to precompute the order in which records will

be read from disk during merging. It then utilises this order to reduce seek overhead,

based on knowledge of the physical location of the blocks on the medium. These im-

provements can be almost verbatim applied to our algorithm, provided they are adapted

to hierarchical data (see Section 6.4.3 for a discussion on how this can be achieved).

In [Nyberg et al., 1995] the authors present AlphaSort, a cache-sensitive, memory-

intensive external sort algorithm. AlphaSort groups the records as they arrive from disk

and employs quicksort, due to its cache locality, as the main memory sorting algorithm

for the creation of the initial runs. In addition, AlphaSort sorts (key− pre f ix, pointer)

pairs, rather than the records themselves, in order to reduce in-memory data movement

and employs replacement selection for merging runs, which is ideal for memory con-

strained environments and has excellent cache behaviour when the merge tree is small.

Borrowing concepts from AlphaSort is something that can help HERMES achieve better

performance whenever the length of keys (which, in the case of hierarchical data can

become arbitrarily long) exceed the size of a cache lines.

Moving on to strictly hierarchical data models, the most wide-spread one is XML. It
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was used as the serialisation protocol for archiving scientific data and the definition of

the nested merge operation [Buneman et al., 2004], which provided the motivation for

the development of HERMES. Similar concepts were provided in [Tufte and Maier, 2001]

and [Wanxia Wei and Mengchi Liu and Shijun Li, 2004] where the semantics of gen-

eralised XML tree merging were defined (albeit in different ways). Regardless of the ex-

act semantics, efficient merging implementations depend on having their inputs sorted,

and therefore our proposal is immediately applicable. Furthermore, XML query lan-

guages like XPath [Berglund, 2007] and XQuery [Boag, 2007] provide an order by

clause that may be used in conjunction with a DTD to completely sort XML documents.

However, the specification does not mention any particular implementation. We be-

lieve that our algorithm is one such possible implementation to be used by XML query

engines.

The XML Toolkit (XMLTK) provides a tool named XSort for sorting XML doc-

uments [Avila-Campillo et al., 2002]. XSort allows the specification of the context

nodes the subtrees of which should be sorted. For each context node multiple XPath

expressions identify the actual elements to be sorted. Only user-specified elements are

sorted and the subtrees of these elements are not sorted recursively. Sorting proceeds

by generating a global key for each element to be sorted. It then uses a standard exter-

nal mergesort algorithm to sort elements based on the value of this global key. XSort

does not exploit the hierarchical structure of the data. Indeed, it might not be possible

to sort the entire document without making multiple calls to XSort. By collapsing hi-

erarchical data to their flat counterparts, the hierarchy reconstruction step is left to the

user. Our algorithm does not impose such restrictions.

The most relevant piece of work we are aware of, and the state-of-the-art in sorting

XML datasets, is NEXSORT [Silberstein and Yang, 2004]. The NEXSORT algorithm takes

into account the properties of hierarchical datasets and consists of two phases: sorting

and output generation. During the sorting phase, NEXSORT scans the input document

depth-first, detects complete subtrees, and decides, based on a user-given threshold,

whether to sort these subtrees in main memory or not. Only subtrees of size no less

than the specified threshold are sorted and stored on disk as a sorted run. Sorted sub-

trees are replaced in the tree by just their root and a pointer to the sorted run stored

on disk. Conceptually, NEXSORT processes the input document bottom-up, collapsing

subtrees into their roots until only the root of the entire tree remains. In the output

phase, NEXSORT performs a depth-first traversal of the collapsed tree to generate the

final sorted document. Generated sorted runs need to be accessed in a random fashion
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during the merging phase, therefore penalising I/O; even when operating over a flash

disk, the secondary-storage data structures employed by NEXSORT incur a substantial

performance penalty. Furthermore, the choice of threshold is a critical part for the

performance of NEXSORT making performance dependent on the structure of the doc-

ument. For documents like EMBL [European Bioinformatics Institute, 2007], where

only a few subtrees are large, this approach is very inefficient. Our algorithm, by mak-

ing efficient use of compression and carefully laying out runs on external memory, is

able to achieve much better I/O performance, as we shall see in Section 6.5.

6.3 Sorting Hierarchical Data

We now present our algorithm: Hierarchical ExteRnal MErgeSort – HERMES, an adap-

tation of external mergesort for hierarchical data. HERMES runs in two phases: (a) first,

the hierarchical document is “vertically” split into sorted runs on disk; (b) then, the

runs are iteratively merged into greater ones until the final sorted output is generated.

HERMES extensively exploits the fact that one needs to perform key comparisons only

for nodes having the same parent node (i.e., siblings). Nodes belonging to different

subtrees do not need to have their keys compared. This enables us to apply local re-

placement selection for every in-memory node.

6.3.1 Sort Keys

A hierarchical dataset is a tree whose nodes have an identifier (or label), a type, and

an optional value (or payload). To sort hierarchical datasets we have to specify a

sorting criterion for nodes. This criterion may include the node label, its value, a

combination of the two, or a well-defined subset of the subtree rooted under that node.1

We assume a hierarchical sort key specification (key specification for short) similar

to [Buneman et al., 2001, Buneman et al., 2004]. The key specification K is a set of

key definitions k = (Q,S), where Q is an absolute path of node labels and S is a sort

value expression. We assume that path Q of key definition k is unique among all

elements in K. We distinguish between keyed and unkeyed nodes. Keyed nodes have

a path that matches path Q of a k ∈ K. The sort expression S determines the values on

which nodes having path Q are sorted. We refer to these values as sort keys.

1For sorting trees that exceed main memory, we assume that, though arbitrarily long, node keys do
not exceed the size of available memory.
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Figure 6.2: A hierarchical dateset annotated with the local key values for its nodes.
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Figure 6.3: The sorted dataset of Figure 6.2.

For sorting, every node has an additional sort key attribute. Given a key specifica-

tion K, we assign each keyed node its key value in a preprocessing step as described

in [Buneman et al., 2004]. For unkeyed nodes, the sort key is the maximum value of

the sort domain, followed by a placeholder denoting its position in the input. For each

node n, let its local key (or simply key) k(n) be the value of its sort key attribute. The

key is the local ordering criterion by which we decide the rank of a node with respect

to its siblings (of the same type, if different types are present). To sort the entire tree,

one has to recursively sort the children of every non-leaf node, starting from the root.

We assume the local key of a node to be unique among all of its siblings of the same

type (we can always ensure uniqueness by appending the position or the identifier of

the node to the local key). Let the absolute key a(n) of a node be the concatenation

of the local keys of all its ancestors: the concatenation of the local keys for all nodes

from the root of the tree up to n. Therefore, the absolute key for a node is given by

its unique path from the root if we replace each node label in the path with the corre-
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sponding local key value.

Using absolute node keys we can define the total ordering criterion for all nodes in

the tree. Two nodes x and y are equal iff they have the same absolute key. In all other

cases, and for any two nodes x and y, their absolute keys, a(x) and a(y) respectively,

share a proper prefix (at the very least the value of the local key of the root node).

Suppose that the common prefix of a(x) and a(y) is of length c. Then x is less than y iff

ac+1(x) < ac+1(y),2 or a(x) is of length c, where ai denotes the ith local key component

of a(x). Correspondingly, node x is greater than y iff they are not equal and x is not

less than y. Naturally, any node is considered less than any of its children to preserve

hierarchical relationships. The definition of local keys for unkeyed nodes means that

all unkeyed nodes will follow their keyed siblings in input order in the total ordering.

The children of unkeyed nodes may be keyed, in which case we need to recursively

sort them. A tree is sorted if the children of all nodes are sorted on their local keys (if

they are keyed).

Example 3.1: A hierarchical dataset is shown in Figure 6.2. Each node is anno-

tated with its local key. The absolute key for node r is /0/8/12/23; for node t, it

is /0/5/20. In Figure 6.3, the same dataset is shown sorted. 2

Note that the local key value of a node may be a subtree. In such cases we serialise

the subtree into a string and perform string comparison, when comparing keys. Also,

sibling nodes may be of different type and therefore keyed on different sort value ex-

pressions. To address this, we prepend every local key with the type of the node. We

then define a total order on node types to distinguish between multiple types of key

and for grouping siblings of the same type in the output tree. If keys are not unique,

two siblings may have the same key value even though they are different nodes. In

such cases, we append the position of the node to its key. The same applies if we want

to preserve the order of unkeyed nodes: we set their local key to be their position,

prepended by a symbol denoting that the node is unkeyed.

In the case that complex keys are present (i.e., if a node has two or more key paths),

the local key of a node consists of the concatenation of all its key values (possibly

prepended by their path or type) separated by a special character. For instance, if a

node is keyed by the values of attributes firstname and lastname (possibly found

in its payload), its local key can be recorded as firstname:john,lastname:smith.

2Here, “<” denotes an arbitrary ordering of local key values. If the key values are character strings,
this is their lexicographical order; if the key values are numbers, “<” corresponds to arithmetical com-
parison.
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When comparing two such nodes, corresponding components of the complex key can

be identified and be compared. If the key of a node n has q key paths, then the value of

the key value for the i-th key path is denoted as k(n)[i]. For two such nodes n1 and n2,

of the same type, we define n1 to be less than n2, i.e., k(n1) < k(n2), when for some j

with 1≤ j < q, n1[i] = n2[i] for all 1≤ i < j and n1[i+1] < n2[i+1].

6.3.2 The HERMES Algorithm

During the first phase of the algorithm, we create sorted runs using a hierarchy-aware

adaptation of replacement selection. Our goal is to exploit the hierarchical structure.

This can reduce the number of possible sorting outcomes from N! (for a flat file of N

records) to (F!)b(N−1)/Fc ·((N−1) mod F)! for a tree of N nodes and a maximum fan-

out of F [Silberstein and Yang, 2004]. Sorted runs contain the keys in a compressed

form (to eliminate redundancy). During the second phase, sorted runs are merged to

create the sorted output.

6.3.2.1 Standard external mergesort

External mergesort uses replacement selection to create the initial runs. For flat data,

replacement selection reads the input record by record and starts filling a min priority

heap. When the heap is full, the first (and thus smallest) item is removed and written

to the first run. Then, it is replaced in the heap by the next record from the input. The

(new) smallest item in the heap is examined. If it has a key greater than the one just

written, it is written to the current run and replaced in the heap by the next record from

the input. Otherwise, the item cannot be included in the current run and is therefore

marked for the next run. Marking a record implies placing it at the end of the heap and

considering it greater than unmarked ones during heap comparisons. At some point, all

records in the heap will have been marked for the next run. Then, the current run will

be closed and the algorithm will start creating the next run. Repeating this process until

the input has been exhausted yields runs that contain sorted subsets of the input. In the

next phase the runs are merged using a priority heap. The priority heap is initially filled

with the first item of each run and the smallest item is selected and written to the output

run. Subsequently, it is replaced by the next record of the same run and the process

continues. If we use one memory page for each run being read and one for the output

run, it is possible that the amount of available memory is not sufficient for all runs to

be simultaneously processed. In this case multiple merge levels are necessary. At each
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such level l, as many runs of level l as the memory can accommodate are merged into

a single run of level l + 1, until only one run is obtained at some level ln. This run

contains all the records in sorted order.

6.3.2.2 Hierarchy-aware replacement sort

For hierarchical data, one needs to sort the children of the root of the tree on their key

values, and then recursively repeat this process for the root’s children until the whole

tree is sorted. The children of a node can be sorted, however, independently of other

node keys in the tree. Thus, sorting in the traditional sense, i.e., ordering a group of

items on their values, only needs to be performed “locally” at a node. Our algorithm

is based on employing replacement selection using a priority heap locally at a node to

produce a sorted run of its children.

We use a tree serialisation protocol much like XML, i.e., the tree is stored in a depth-

first manner: the start and end of a node are specified with starting and ending tags and

all its children lie within. All node-specific information (i.e., its type, name, local key

annotation (if any), and payload) follow its starting tag. The input tree is thus retrieved

in depth-first fashion and for each node we take appropriate action. The output is a file

that contains the tree in the same serialised format, except that children of all nodes are

ordered by their key values (or by their position in the input tree, if they are not keyed).

The algorithm operates on an in-memory representation of tree nodes, termed

SortNodes. A SortNode holds: (a) the type of the node (and possibly its position

in the document), (b) the key of the node which can be constructed when the node is

first read into memory,3 (c) a pointer to the payload of the node (the payload might be

text associated with the node, an attribute value, etc.), (d) an array of pointers to the

SortNodes corresponding to the children of the node, which is used as a priority heap

and is referred to simply as heap hereafter, and (e) one bit called read state bit. The

read state bit is set to 0 when the start of the node is read and is set to 1 when the end

of the node has been encountered (i.e., when the whole subtree rooted at the node has

been fully read). The payload of a node can be reached using the pointer mentioned

above, but plays no role during sorting. For this reason it is copied elsewhere in mem-

ory; further discussion of payloads is deferred to Section 6.4.2. A typical SortNode is

shown in Figure 6.4.

3If the key of a node is the value of one of its descendants, we assume the node has been annotated
with this value in a previous annotation step, as in [Buneman et al., 2004], so that its key can be found
locally.



148 Chapter 6. Sorting Hierarchical Data In External Memory

type: "employee"
key: "4248521" text: "John Doe"

attributes: 
"duty = programmer",
"hired: '5/4/2004'"

Payload

Heap read state = 0

Figure 6.4: An example of a SortNode

Sorting. The sorting phase of our algorithm for the creation of the initial runs is shown

in Figure 6.5. The input is read tag by tag. Stack inputPath holds the SortNodes of all

ancestors of the last read node (initially it contains the SortNode for the root). Stack

outputPath holds the SortNodes for the ancestors of the last output node. Traversal

of the input starts at the root node. When the start tag of a node is encountered, a

SortNode is created in main memory. If the available memory is full, one or more

nodes need to be written to the current run to make room for the newly read node

(lines 7-11). The nodes to be output are the nodes that form the subtree rooted at a

node that (a) has the least absolute key among all subtrees in the tree, and (b) has been

completely read from the input. The root of this subtree is located by findLeastKey and

output by outputSubtree; both procedures will be explained later on. Nodes are output

to the current run until enough memory has been freed for the new node.

When enough memory becomes available (lines 12-16), we identify the local key

for the node and create a SortNode for it (with its read state bit set to 0). The new

SortNode is inserted as a child to its parent’s SortNode: it is pointed to by an element

of the heap array of its parent’s SortNode. This is performed by procedure insertNode

of Figure 6.5. If the first place in the heap of inputPath.top() is free, then a pointer

to the new SortNode is inserted there; otherwise the pointer is inserted at the end of

the heap. If the first place of the array is free, it means that the array had the heap

property at some point in time, after which its first element was removed (i.e., it was

output to a run). Thus, placing the new SortNode in the first place of the array enables

us to maintain the heap property with a single call to heapify. We use the terminology

of [Cormen et al., 2001] with respect to heap operations: buildHeap constructs a heap

from an array, while heapify (0) maintains the heap property of the array when its first

element is removed and substituted by a new one. Once the SortNode is connected to

its parent, it is pushed to the top of inputPath, so that the top of inputPath always holds

the SortNode for the currently processed node. When the end of a node is encountered,
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the top of inputPath corresponds to its SortNode. The SortNode’s read state bit is set to

1, marking that the subtree rooted at the node has been fully read; the inputPath stack

is then popped (lines 17-20).

The path to the parent node of the most recently output subtree is maintained in

stack outputPath (initially this stack only contains the SortNode for the root of the

tree). For each node in outputPath, the algorithm stores the key value of its last output

child. This enables heapify to identify children nodes that have key values less than that

key value and mark them for the next run by moving them to the end of the heap (i.e.,

by considering them “greater” than their siblings with keys greater than the last output

key). Note that the memory space required for storing this information is equal to the

size of the outputPath stack. When the array of a SortNode has the heap property, the

children of the node that should be written to the next run are all placed at the end of

the array.

Subtree output during sorting. We now turn to procedure findLeastKey (shown

in Figure 6.6), which selects the next node (or subtree) to be output when memory

is full. The algorithm locates the root of the subtree that (a) has the least absolute

key that is greater than the last key output to the current run, and (b) has been fully

read. When findLeastKey is called, the top of outputPath holds the parent of the pre-

viously output node. Using getLeastChild, we obtain the minimum child of the top of

outputPath. Procedure getLeastChild, shown at the bottom of Figure 6.6, operates on

some SortNode p. It initially checks if the first element in p’s heap array is free. This

happens when no new child of p was read since the last time a child of p was output;

then, the last element of the array is brought to the first position. Otherwise, a new

node has been inserted as the first element of p’s heap array. In both cases, heapify is

called to adjust the heap. A more complex case arises when (a) p is the top of both the

inputPath and the outputPath, (b) at least one child of p has been output, and (c) two

or more children of p are read consecutively into p’s heap (which has already been

constructed using buildHeap) before any child is output. In this case, buildHeap would

have to be called again. To avoid this we force a child of p to be output before the

second consecutive child of p is inserted as the first element of p’s heap array. This

case is not shown in insertNode, however, to keep the presentation simple. Procedure

getLeastChild returns the first item of the heap, thus the node with the least key value.

The only exception is the case when all children of p have been marked for the next

run; this marks p for the next run as well.

Returning to findLeastKey, we first dispose of nodes of the outputPath that have
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Algorithm 1: HERMES - Sorting Phase (Tree T )

1. Stack inputPath

2. Stack outputPath

3. while (the input has not been exhausted)

4. Read the next tag from T

5. if (a start tag was encountered)

6. Read the new node n

7. while (not enough memory left for n)

8. SortNode min = findLeastKey ()

9. outputSubtree (min)

10. free(min)

11. end while
12. Extract the local key of n

13. Create a SortNode sn for n

14. sn.readstate = 0

15. insertNode (inputPath.top(), sn)

16. inputPath.push(sn)

17. else /* an end tag was encountered */

18. inputPath.top().readstate = 1

19. inputPath.pop()

20. end if
21. end while

Procedure insertNode (SortNode p, SortNode sn)

22. if (the first place in p.heap is free)

23. insert sn at the first place of p.heap

24. else
25. insert sn at the end of p.heap

26. return

Procedure outputSubtree (SortNode root)

27. Write root to current run

28. sort (root.heap)

29. for each (SortNode cn child of root)

30. outputSubtree (cn)

31. free(root)

32. return

Figure 6.5: The sorting phase of HERMES
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Procedure: findLeastKey ()

1. SortNode sn = getLeastChild (outputPath.top())

2. while (all children of sn have been written)

3. free(sn)

4. sn = getLeastChild (outputPath.top())

5. outputPath.pop()

6. end while
7. while (sn == null)
8. outputPath.pop()

9. sn = getLeastChild (outputPath.top())

10. end while
11. if (outputPath is empty)

12. Start a new run

13. outputPath.push(root of the tree)

14. Write the root of the tree to the new run

15. end if
16. while (the end of sn has not been read)

17. sn.buildHeap()

18. outputPath.push(sn)

19. Write sn to current run

20. sn = the first item of sn.heap

21. end while
22. return sn

Procedure getLeastChild (SortNode p)

23. if (the first place in p.heap is free)

24. move the last element of the heap to the front

25. p.heapify (0)

26. if (all children of p are marked for the next run)

27. mark p for the next run

28. return null
29. else
30. return the first item of the heap

Figure 6.6: Procedures findLeastKey and getLeastChild

been fully output (lines 1-5). A node has been fully output if it has been fully read and

its heap array is empty. Next, while the top of the outputPath stack has all its children

marked for the next run, we ascend the tree by popping the stack to find the greatest

ancestor that does not have all its children marked for the next run (lines 7-10). If no
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Figure 6.7: An example of the sorting phase for the creation of the initial runs

such node has been found after the root of the tree has been popped, the current run

is closed and a new run has to be created (lines 11-15). The root of the tree is output

to the new run and pushed onto the outputPath stack. At this point, we have reached a

node some children of which are eligible to be written to the current run. However, if

the subtree rooted at this node has not been fully read yet we need to descend into the

tree to find such a complete subtree (lines 16-21). While descending, nodes are visited

for the first time since the creation of the current run; therefore, we call buildHeap for

each and push onto the outputPath stack their child with the least key value (without

calling getLeastChild– it will always be the first element of the heap array). As we

traverse a path of the tree we output visited nodes (line 19). The procedure returns the

node closest to the root after the iteration (line 22).

The fully read node returned by findLeastKey is passed to outputSubtree (shown in

Figure 6.5). The absolute key for the root of the subtree is smaller than all the subtree’s

nodes (as it is their prefix) so it precedes them in the output run. After the root of the

subtree is output, outputSubtree sorts the root’s children (all of which are present –

line 28). It then recurses until the whole subtree has been sorted and written to the

current run (lines 29-30). At the same time, the memory occupied by the subtree is

freed (line 31).

Example 3.2: For the dataset of Figure 6.2 we show a part of the sorting phase in Fig-

ure 6.7, assuming that seven nodes fit in main memory. In Figure 6.7(a), node 3 has

just been read and inputPath.top() points to node 8, the parent of the last read node.

Since memory is full, the tree is traversed from the root towards the leaves, at each

step heapifying and following the pointer to the child with the least key value. In Fig-
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ure 6.7(b), the state of the system when the heap for node 8 has been constructed is

shown. Stack outputPath points to that node, as it is the parent of the node to be output.

In Figure 6.7(c), that node has been output and at the next step (Figure 6.7(d)), node 1

has been read and placed in the first place of its parent’s heap. Node 8 has then been

fully read and inputPath is popped. A node needs to be output again and heapify is

called for the heap of node 8. Since 1 is less than 3, the key of the last written node,

node 1 is placed at the end (shown in Figure 6.7(e)). Node 9 is then output and the

next node is read from the input. Note that at the next output step, the subtree rooted

at node 12 will be output as a whole, while node 1 will be written to the next run. 2

Node serialisation in runs. Keys are written to disk runs in a compressed form, as

all absolute keys in the tree share common prefixes. Had absolute keys been written

uncompressed, the run files would be polluted with redundant information. This would

not only be wasteful in terms of secondary storage, but also would heavily increase the

I/O cost of writing each run to disk and subsequently reading it back in during merging.

We use a typical tree compression scheme. Each time a node is output to the current

run, its type, local key value and payload are serialised to the disk, preceded by the

following special characters:

• A “|” if the node is a sibling of the last written one.

• A “/” if the node is a child of the last written one.

• A “^” for each level in the tree that the node is higher than the last written one.

Merging. During the merging phase, the sorted runs will be merged to produce the

final output. One memory page is used as the input buffer for each input run and one

page as the output buffer of the resulting merged run. As with external mergesort for

flat data, it is possible that the available physical memory does dot suffice for all sorted

runs to be merged in one merging phase. In this case more than one merging levels

are required [Graefe, 1993]. Merging at each level is identical from an algorithmic

perspective, thus we only describe the algorithm for a single merging phase.

The merging algorithm is shown in Figure 6.8. Nodes are read from the sorted runs

into memory. When a node needs to be output a hierarchical priority queue, similar to

the one used during the sorting phase, is used to locate the node with the least absolute

key. This node is output and the next one is read from the run to which the output

node belonged (lines 6-8). Identifying the node to output (line 5) is performed by

findLeastKey, but with some modifications with respect to the sorting phase. The main

difference is that the first element of a SortNode’s heap array is always greater than
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the one previously written from that heap to the current run. This means that if a node

n is visited by findLeastKey, then the subtree rooted at n will be written entirely to

the output run before findLeastKey leaves the node. Thus, findLeastKey only pops a

node from outputPath (line 8 in Figure 6.6) when the subtree rooted at this node has

been written completely. Note that there is no way one can tell if the subtree rooted at

a node has been entirely read or not without reading the next symbol of all runs that

contain children of that node. Therefore, findLeastKey only returns leaf nodes during

the merging phase, and outputs internal nodes as it descends to find the leaf nodes. The

node returned by findLeastKey is written to the output run and the next node from the

run from which the output node came is read. The process ends when all runs have

been exhausted.

Note that each time we read from a run, we read as many nodes as required to reach

a leaf, accomplished through procedure readNextLeaf of Figure 6.8. Always reaching

a leaf ensures that when an internal node has been read, at least one of its children

will have been read as well. For each input run we maintain a stack, termed path,

that holds the ancestors of the last read node from that run. Initially, path contains the

SortNode for the root of the tree (which is the first node written to all runs given the

run serialisation protocol). Note that an internal node may appear in more than one

run (i.e., its descendants may appear in multiple runs). When an internal node is read,

we check if it is already present in the heap of its parent’s SortNode (line 16). If the

node is already there, no new SortNode is created; otherwise, a SortNode is created

and inserted into its parent’s heap (lines 14-17).

6.4 Algorithm Analysis

In this section we study the theoretical properties of HERMES with respect to the size

of the initial sorted runs and the I/O cost of the algorithm. We show that our algorithm

maintains the most important advantages of external mergesort with replacement se-

lection for the creation of initial runs. At the same time it does not repeat redundant

information both in main memory and on disk, and does no redundant comparisons

between nodes. We also present how the core algorithm takes advantages of the hier-

archical structure to boost its performance.
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Algorithm 2: HERMES - Merging Phase (Run [] runs)

1. for each run file r in runs

2. readNextLeaf (r)

3. end for each
4. do
5. SortNode min = findLeastKey ()

6. let r′ = run from which min was read

7. Write min to the output run

8. readNextLeaf (r′)

9. while (not all runs have been exhausted)

10. return

Procedure readNextLeaf (Run r)

11. while (a leaf node has not been reached)

12. Read the next node n from r

13. sn = lookUp (r.path.top(), n)

14. if (sn == null)
15. Create a SortNode sn for n

16. insertNode (r.path.top(), sn)

17. end if
18. inputPath.push(sn)

19. end while
20. return sn

Figure 6.8: The merging phase of HERMES

6.4.1 Run Size

For flat data, the average size of a run produced by replacement selection is twice the

size of the memory used [Knuth, 1998]. Hereafter, we refer to the “size” or “length”

of a run not in terms of bytes, but in terms of the number of nodes that it contains. The

same applies to the size of main memory. For standard external mergesort each run

is expected to contain twice as many records as can fit in a full main memory priority

heap. After the priority heap becomes full, its size remains constant: before a new

record is inserted into the heap, one is first output to the current run (and the heap

shrinks when the input has been exhausted). We now prove that the initial runs created

by HERMES have the same property:
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Theorem 4.1: The average size of a run is twice the size of available main memory for

sorting. 2

Proof. Consider the priority heap hn of a node n in main memory, which holds pointers

to the children of n. The size of hn, which we denote as |hn|, grows as children of n

are read from the input. When the first child of n is to be output to the current run, hn

stops growing and from that point on its size remains constant. This is because from

that point on, as explained in Section 6.3.2, before a new node is to be inserted into

hn, one node from hn is output to the current run. When all children of n have been

read, hn begins to shrink. In other words, HERMES outputs the children of n in the same

order that standard replacement selection would output them if they were records of a

flat file and in the same number of runs. Consequently, for each node n the expected

number of n’s children written to the current run is twice the size of hn, i.e., twice the

size of hn when the first child of n is output.

Let m be the maximum number of nodes that fit into memory and consider the point

in time t0 at which a new run is created. At that point in time the memory is full, i.e., a

node needs to be written to the run (the first node of the run). At t0 the size of the heap

hn of a node n (1 < n < m) is |hn|0. All |hn|0 children of n will be written to the new

run, since each one of them is neither marked for the next run at t0, nor will ever be

marked for the next run (as all of them are present when output to the run starts). When

the first child of node n is to be written to that run at a later time ti (ti > t0), the size

of hn will be either equal to |hn|0 (if no child of n was read in the interval [t0, ti], i.e.,

the node had been fully read at t0) or greater than |hn|0 if more children of n were read

during that interval. In both cases |hn|i ≥ |hn|0 holds. However, the expected number

of children of n that will be written to that run is 2|hn|i, i.e., the total number of nodes

written to that run is:
n=m

∑
n=1

2|hn|i = 2
n=m

∑
n=1
|hn|i ≥ 2

n=m

∑
n=1
|hn|0

At time t0 the memory is full and holds m nodes. Of these nodes, all but the root of

the tree are pointed to by some heap h`, that is ∑
n=m
n=1 |hn|0 = m−1'm for large values

of m. Hence,
n=m

∑
n=1

2|hn|i ≥ 2m

holds. 2

From the description of the algorithm it follows that each node appears only once

in main memory, not only during the creation of the initial runs, but also during the
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merging phase. Also, nodes appear only once in the sorted runs; only the key value

of some internal nodes may be written to more than one runs, at most once in each

run, and only when it is necessary for the reconstruction of the subtree that the run

represents. More importantly, the algorithm only compares local key values of sibling

nodes. Never are absolute keys used to compare two nodes that belong to different

subtrees.

6.4.2 I/O Behavior

Regarding the I/O cost of HERMES, suppose that available memory is M memory pages.

During the merging phase, M− 1 memory pages are used for reading the input and 1

page is used to write to the output run. If the total size of the input tree is T mem-

ory pages then each initial run will have an average size of 2(M− 1). Also, since

M− 1 buffers can be used for merging, there are going to be dlogM−1d T
2(M−1)ee lev-

els of merging. Adding the first pass over the input to create the initial runs, we

have that there will be 1 + dlogM−1d T
2(M−1)ee passes over the input. In each of these

passes, the whole tree is read and written to disk. This makes a total I/O cost of

2T ·
(

1+ dlogM−1d T
2(M−1)ee

)
.

As pointed out in [Graefe, 1993], one of the main concerns with replacement se-

lection is how one can handle the payloads of the nodes that reside in main memory

at any given time, i.e., the payloads of the nodes whose keys are in the heap at that

time. If these nodes are kept in the original buffer pages there is a great waste of space:

only half of the nodes of any given page are expected to be in the priority heap of their

parent node at any given point in time. This would mean that half of the available

memory is not effectively used for sorting keys. Therefore, the benefits from replace-

ment selection are cancelled (and quicksort could be used instead, probably yielding

better results). As also pointed out in [Graefe, 1993], the solution to this problem is

to copy the payloads of those nodes to a temporary space in memory until they are

written to the run, so that no space is wasted. Assuming that nodes of the same type

have similar size, this can be a viable solution. However, large variations in the size

of the nodes of the tree require complex and potentially overhead-inducing in-memory

management primitives.

Double buffering certain pages during the merging process is also a technique that

can improve the performance of our algorithm. For instance, using more than one

memory pages for the output run at each merge level can eliminate the need for the
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CPU to wait for a write I/O call to complete after the output buffer is flushed (as is

the case if a single output buffer is used). Regarding the input buffers, the situation

is somewhat different. Reserving two memory pages (or more) per input run would

reduce the number of runs we can merge by half. What we can do is reserve a number

of k memory pages in order to prefetch the next page from the k input buffers that

contain one of the k smallest maximum keys among all buffers (since we then know

that the next page to be read will be the next from one of those k runs).

6.4.3 Improvements

We now present how the hierarchical structure has been further exploited to improve

the core algorithm.

Processing entire subtrees. A useful optimisation arises when all descendants of a

node n have been read into main memory and the first needs to be output. In that case,

the whole subtree rooted at n is output, with the children of nodes of that subtree being

sorted (see Section 6.3.2). As n will be the first node of the subtree to be written,

one can place a mark on the run file indicating that the whole subtree follows, i.e., all

descendants of n are written to that same run, following n. That way, when n is read

during the merging phase, we know that it is followed by the entire subtree rooted at

n. Therefore, only n needs to be brought to memory and be placed in the heap of its

parent. The rest of the subtree need not be constructed in main memory. When n is to

be output, the subtree of n is copied from the input run to the output run without any

in-memory processing, as it is already sorted. Furthermore, if this subtree spans many

pages, these pages can all be prefetched.

Properties of runs. We now turn to the properties of initial runs.

Lemma 4.1: A group of nodes that co-exist in memory at some point in time will be

written either to the same run, or to two consecutive ones. 2

Proof. During the creation of the initial runs, a node that has been read from the input

will be written either (a) to the current run, if it has a greater key than all its siblings

that had been written to the current run when the node was read, or (b) to the next run

otherwise. Thus, if two nodes n1 and n2 co-exist in memory at some point in time, they

will eventually be written either to the same run or to consecutive ones. That is, if ri

is the current run, n1 and n2 will either both be included in ri, or both in ri+1, or one

of them in ri and the other in ri+1. Following an inductive argument, it is easy to see
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that the same applies for any number of nodes that at some point in time co-exist in

memory. 2

We shall now show that this is the case for all groups of sibling nodes. Recall that

the input tree is read depth-first. For this reason, all nodes with the same parent will

be read as a batch. Let n f be the first node of the batch written to the output and nl the

last one.

Lemma 4.2: Every node of the batch other than n f and nl will at some point in time

co-exist in memory with some other node of the batch, i.e., with one of its siblings. 2

Proof. The statement holds due to depth-first traversal. Assuming it does not hold,

there must be at least one run of length 1. Any other case implies that at least one

node that does not belong to the batch has been read between two nodes of the batch.

The latter is eliminated by the depth-first traversal of the tree. The former is negligible

since it implies that the memory allocated for the heap can only hold one node (i.e., it

has a size of 1); fortunately, we have been able to use larger memory sizes for building

heaps! 2

Thus, all co-existing nodes will eventually be written to consecutive runs, say,

rw . . .rz. The only nodes of the group not accounted for so far are n f and nl . To

show that all groups of sibling nodes will be placed in consecutive runs, it suffices to

prove the following.

Lemma 4.3: Node n f will be written either to rw−1 or to rw and nl will be written

either to rz or to rz+1. 2

Proof. The trivial cases are (a) when n f and nl co-exist with some other node of the

batch in their parent’s heap at some point in time, or (b) they are written to rw and rz

respectively; then the statement holds. If neither case holds, we need to show that n f

will be written to rw−1 and nl will be written to rz+1. Therefore, n f is the only node

of the batch written to rw′ (w′ < w) and nl is the only node of the batch written to rz′

(z′ > z). Then, for n f we have that when it was to be written to a run, it was the only

entry in its parent’s heap (otherwise we fall into the first trivial case mentioned above).

This implies that memory became full just when n f was read. After it was output to

the run, the next node read, say, ng, was a sibling of n f , as input is processed in a

depth-first manner (if n f has no siblings the lemma holds). If the key of ng is greater

than the key of n f , then ng is written to that same run, i.e., w ≡ w′. Otherwise, it is

marked for the next run and outputting continues from a sibling of ng’s parent. The
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parent of ng is visited again by the algorithm when the next run is being produced and

ng is output to that run. In that case, w ≡ w− 1. Similar arguments show that nl will

either be written to rz or rz+1. 2

A different merging scheme. The previous lemmata prove that all children of a node

are written in consecutive runs. During the merging phase, one can utilise this fact

when not all siblings of a node have been read into its parent’s heap and the first sibling

is written to a run. A bit of extra book-keeping is needed to identify the first and last

of these consecutive runs (i.e., runs pertaining to the set of siblings). Assuming these

runs are no more than k, we can prefetch at least one page from each run and in this

way avoid having the CPU wait for I/O to complete while merging the siblings.

We shall now present a different merging scheme that takes advantage of all nodes

in a batch being written to consecutive runs. In the following we assume that all chil-

dren of a node n have been written to k consecutive runs rw, . . . ,rw+k. Such information

can be recorded for n during the replacement selection phase and stored in the SortN-

ode for n, which remains in memory until the last child of n is flushed to a run. During

the merging phase, runs rw, . . . ,rw+k can be merged into a single run rw,w+k. Before we

start merging these runs, we can be certain that rw,w+k contains all children of n in the

proper order. We therefore record this when the first node of the batch is written during

merging. During the next merging level, when n is read, we can identify that this run

contains the whole subtree rooted at n, so that we can output all nodes of the batch con-

secutively, similarly to what we mentioned for the case of merging initial runs. Again,

in this way we avoid the cost of re-constructing the subtree in memory and inserting its

nodes into the priority heaps of their parents. Considering the prefetching techniques

mentioned earlier this can turn into a significant advantage. The only caveat is that

this technique is applicable only if multiple merging levels are needed. In case of a

single merging level, this variation will probably have worse performance since it will

introduce another pass over the records of rw,w+k, if these runs rw . . .rw+k are merged

individually. If multiple merging levels would be used, however, we can use this tech-

nique for disjoint groups of k runs. The larger the fan-out of the tree, the greater the

length of a batch will be and, thus, the more efficiently this technique is expected to

perform.
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6.5 Experimental Results

HERMES has already been deployed as part of the archive management system XARCH,

detailed in [Müller et al., 2008] and [Koltsidas et al., 2008]. XARCH is a stand-alone

Java application that allows one to maintain, populate, and query archives of hierarchi-

cal data with a key specification. XARCH uses HERMES for sorting incoming versions

before applying nested merge. In this section, we evaluate the performance of HERMES

under various workloads as a stand-alone hierarchical data sorting solution. To that end

we re-implemented it in C++. HERMES was compiled using the GNU C++ compiler,

version 4.1.2. All our experiments were run on an Intel Core 2 Duo processor clocking

at 2.33GHz with 2GB of physical memory. The box was running Ubuntu Linux 7.10

with the 2.6.22 kernel. For each experiment we report the average wall clock time of

five runs over cold data.

We implemented the algorithm of Section 6.3 and the improvements of Section 6.4.

To create the input data we used a custom data generator. Each input file was an XML

document, each node of which had a randomly generated character string as its label.

We used the label of a node as its key. Node label lengths, and thus key value lengths,

were variable. The generator allowed us to specify the maximum depth of the tree and

a maximum fan-out for all nodes. The fan-out of each node was uniformly distributed

between 0 and the specified maximum. As a result, the average fan-out was half the

maximum. We compare the performance of HERMES to that of NEXSORT using the

original implementation of NEXSORT in combination with the Transparent Parallel I/O

Environment [D. E. Vengroff, 1994], as in [Silberstein and Yang, 2004]. As suggested

in [Silberstein and Yang, 2004], we set the sorting threshold for NEXSORT to be roughly

twice the block size, which, for our system was 64KB, making the threshold equal to

128KB. All experiments, apart from the ones of Section 6.5.5, we run over a magnetic

disk.

6.5.1 Impact of Input Size

We first measured the impact of input size on the running times of HERMES and NEX-

SORT. We used input trees of a depth of six, which is a typical depth for most real-world

datasets. For each depth, we generated trees of different sizes by varying the average

node fan-out. For both algorithms, the size of available main memory for sorting was

set to 10MB. The sizes of the input trees varied between 30MB (or, 1.2 million nodes)

and 2.2GB (or, 83 million nodes). The average length of a node key was set to ten
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Figure 6.9: Impact of input size

bytes. The results are presented in Figure 6.9 (the raw data are given in Figure 8.37).

We also report under the “HERMES simple” plot the response time for our algorithm if

the improvements of Section 6.4 are not used.

In all cases, HERMES performs 8.5 to 10.8 times faster than NEXSORT. This is due

to the way NEXSORT writes sorted runs. NEXSORT employs a stack over secondary

storage to store the next subtree to be sorted. When a subtree residing in the stack has

been sorted, the sorted subtree is written to disk and a pointer is written back to the

stack. At any point in time there are multiple such secondary storage stacks used for

book-keeping purposes. Pushing nodes onto these stacks and popping them involves

disk accesses. Therefore, during its sorting phase, NEXSORT reads and writes both to

the on-disk stack pages and to the current sorted run at the same time. This introduces

a severe performance penalty. In addition, NEXSORT accesses the disk in a random

pattern when reconstructing the output tree: it follows pointers to sorted runs that have

not been sequentially written to disk (i.e., one run after an other). Hence, a lot of time

is spent with the CPU stalling for I/O.

On the other hand, during replacement selection for the creation of initial runs,

HERMES accesses secondary storage only for the purpose of flushing data to the cur-
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rent run. As additional evidence, during our experiments we observed that NEXSORT’s

reconstruction time amounted to almost 40% of its total running time. On the con-

trary, the merging phase for HERMES took no more than 20% of the total running time

(when a single merging level is required). As one can observe from the results, the im-

provements discussed in Section 6.4, give another 15% to 25% performance boost to

HERMES. Thus, we believe such improvements are a worthwhile addition to the main

algorithm and have used them in all experiments.

6.5.2 Impact of Available Main Memory

In our next experiment, we examined the performance of both algorithms for different

sizes of main memory available for sorting. We generated an 1GB input tree with 41

million nodes. This tree was six levels deep and the average node fan-out was set to 35.

We varied the available memory size to seven different values ranging between 0.5MB

to 200MB and measured the running time for both HERMES and NEXSORT. The results

are presented in Figure 6.10 (the raw data are given in Figure 8.38).

When only 0.5MB of physical memory are used, HERMES requires two merging

levels. We observed that processing each merging level takes about 45 seconds, or,
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about 25% of the total running time. For larger sizes of available main memory only

one merging level is required and thus the total running time is almost constant. When

the amount of available memory grows much larger than the amount needed to achieve

a single merge level, running time drops slightly as available memory increases. This

is because the average size of a sorted run grows much bigger and the number of sorted

runs drops, i.e., merging has a smaller fan-in. When only one merging level is needed

HERMES performs almost ten times faster than NEXSORT, irrespective of the amount

of available memory. When two merging levels are required, HERMES performs about

eight times faster than NEXSORT.

6.5.3 Impact of Tree Depth

We next examined how the depth of the input tree affects the performance of our algo-

rithm. We experimented with trees three, five, seven, and nine levels deep. For each

of these depths we generated trees of different sizes (by varying the average fan-out).

The results are presented in Figure 6.11 (the raw data are given in Figure 8.39). As

shown, the running time of our algorithm is not heavily affected by the depth of the

tree, especially for trees deeper than five levels. One can observe that the deeper a tree

is, the more efficiently it is sorted by HERMES.

To understand why this is the case, consider trees of the same size (i.e., equal

numbers of nodes) but of different depths. To keep the number of nodes fixed, shallow

trees will have a much greater fan-out than deep trees. For instance, the largest tree we

generated for each depth had a size of about 1.6GB. However, the average fan-out for

a tree of depth three is 7,500 nodes, while the average fan-out for trees of depth five,

seven, and nine are 85, 21 and 9 respectively. When sorting using HERMES, the larger

the fan-out of a tree is, the greater the average size of a heap is in main memory. As

a result, each heapify operation takes longer. Moreover, for a fixed memory size, the

probability of a subtree having been fully read during the sorting phase grows are the

fan-out shrinks. Thus, the algorithm processes entire subtrees more frequently, albeit

for smaller subtrees. Thus, the improvements described in Section 6.4.3 are more

frequently applicable. This behaviour verifies our claim that HERMES takes advantage

of the hierarchical structure of a dataset: it performs better for deeper hierarchies.

Also, these results verify the theoretical expectations of [Silberstein and Yang, 2004]:

the possible sorting outcomes for a tree with a fixed number of nodes increases as the

maximum fan-out of the tree grows.
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6.5.4 Impact of Key Length

We then moved on to evaluate the performance of HERMES with respect to different key

lengths. We used our generator to create regular trees with the same number of nodes.

All trees had a depth of five and a constant fan-out of eighty. They only differed in

the average length of node keys. We created trees with the average key length varying

from 5 bytes to 180 bytes. For each such tree, we ran HERMES having set the available

main memory to 10MB. The resulting running times are shown in Figure 6.12 (the raw

data are given in Figure 8.40).

As expected, the running time increases linearly with the length of the key. When

longer keys are used all in-memory operations on keys, such as in-memory copying and

comparisons, take longer to execute. The same applies to secondary storage operations,

since the amount of data to be read/written for each key increases. The increase in

execution time is linear to the length of the keys, which is also expected since all the

aforementioned operations take linear time with respect to key length.



166 Chapter 6. Sorting Hierarchical Data In External Memory

 0

 10

 20

 30

 40

 50

 60

 70

 0  20  40  60  80  100  120  140  160  180

R
un

ni
ng

 T
im

e 
(s

ec
)

Average Key Length (bytes)

HErMeS

Figure 6.12: Impact of key length

6.5.5 Performance over a flash disk

We also experimented with HERMES and NEXSORT over flash disks. We created an

input tree of depth 4; the average node key length was 50 bytes, while the total size

of the tree was 1.75GB. For this set of experiments we used the two systems, System

A and System B, described in Section 4.7; each system is equipped with a flash disk.

For each one of the two systems and for each algorithm, we used three setups: (a) only

the magnetic disk was used for storage, (b) only the flash disk was used for storage

and (c) the magnetic disk was used to store the input and output files, while the flash

disk was used for the intermediate sorted runs. We measured the running time for all

configurations and plotted it on Figure 6.13 (the raw data are given in Figure 8.41).

For System A, the running time of HERMES dropped by about 50% both when using

the flash disk only and when using both disks. The reason for this is that the access

pattern was favourable for the flash disk, as all writes to the flash disk where sequential

and reads were random, i.e., the full potential of the flash disk was exploited. Recall

that the flash disk of System A is a high-end one and as such this result is not surprising.

An interesting thing to note here is that, when running HERMES on System A over the

magnetic disk, the CPU utilisation was at about 55% when creating the sorted runs and
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Figure 6.13: Sorting over flash memory.

34% during the merging phase. On the other hand, when running HERMES over the

flash disk, the CPU utilisation was steadily over 95% for both phases. In other words,

the disk almost saturated one processing core even at random read patterns. Similar

observations hold for NEXSORT: the running time dropped by about 55% when using

the flash disk. Still, the performance of NEXSORT remained more than 4 times worse

than the performance of HERMES in all cases.

Regarding HERMES on System B, as shown in the figure, the drop in the running

time is about 10% when running from the flash disk only and about 30% when the

input and the output are stored on the magnetic disk. The particular flash device was a

low-end one and, thus, the performance increase was not as much as for System A. The

access pattern was favourable for the flash disk; however, at sequential operations the

bandwidth of the magnetic disk was slightly better than that of the flash disk. Reading

the input and writing the output file are both done sequentially; this is why HERMES

performed better when both the input and the output were stored on the magnetic disk.

Also, when only the flash disk was used, the device saw both reads and writes during

both the sorting and the merging phase. Considering the lack of parallelism and native

command queueing of the particular device [Lee et al., 2009], this behaviour was also

a result of reads stalling until erase operations for writes finished. When using both

disks, on the other hand, the flash disk was only written to during sorting and only

read from during merging. For NEXSORT on System B, the performance improvement

due to the flash disk was greater as NEXSORT performs much more random I/O than

HERMES. However, it still remained more than 4 times worse than HERMES. Using

both disks also helped NEXSORT for the same reason as for HERMES: due to the better

sequential bandwidth of the magnetic disk. As a conclusion, we found that flash disks
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can substantially enhance sorting performance. Of course, the better the I/O costs of the

flash disk, the more the performance improvement will be. Nevertheless, even for low-

end devices, the improvement is important when the flash disk is used as temporary

space only.



Chapter 7

Conclusions

With the emergence of flash memory as a viable storage alternative to traditional stor-

age media, several database storage design choices need to be revisited. In this thesis,

we have explored the design of a hybrid storage system, i.e., one that utilizes both mag-

netic and flash disks for data storage. Our starting point was the observation that the

term “flash disk” incorporates many different classes of storage devices, with widely

disparate price and performance characteristics. Devices currently on the market ex-

hibit random read speeds that vary across two orders of magnitude, while their random

write speeds range within four orders of magnitude. As such, it comes as no surprise

that their per-gigabyte prices range within two orders of magnitude as well. What

is more, one can classify flash disks neither as “better” than magnetic ones nor as

“worse”. Flash disks certainly dominate magnetic ones at random reads. When writ-

ing randomly, on the other hand, some flash devices outperform magnetic disks, while

others are orders of magnitude slower. Even for flash disks that totally outperform

magnetic ones, however, the situation becomes quite more complicated when their

price/performance ratio is taken into account.

In our work we have identified the different classes of flash devices and proposed

algorithms and techniques to take advantage of their I/O characteristics with respect to

performance, most notably to exploit their random read efficiency. When dealing with

inexpensive flash disks, which are inherently inefficient at writing but large at their

capacities, we proposed that they be used as persistent storage devices using novel

data placement algorithms. Enterprise-class, high-end flash disks can be used as cache

for the underlying storage very effectively. In both cases, main memory buffer allo-

cation has a significant impact on performance and therefore the I/O costs of devices

need to be taken into account. As such, all techniques presented in this thesis are

169
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cost-aware and adaptive. Our work has studied hybrid system setups in the context

of database workloads. However, since no assumptions are made regarding the data

model or access methods, extending our proposals to generic storage systems is rather

straightforward.

Data Placement. In the first part of this thesis we studied how low-end flash disks can

be efficiently used in a commodity system. Such disks typically use MLC flash memory

and have a capacity comparable to that of magnetic disks. However, although they

outperform magnetic disks at random reads, they are slower when writing randomly. In

such cases, we propose using the two disks at the same level of the memory hierarchy,

with each data page residing in either of the two media, but not on both, i.e., the flash

disk is utilized as persistent storage.

The storage manager decides the optimal placement for each page according to the

workload of the page. Pages with a read-intensive workload are placed on the flash

disk, while pages with an update-intensive workload are placed on the magnetic disk.

Thus, reads are faster than a magnetic-disk-only system, and writes are faster than a

flash-disk-only system. In this manner the total I/O cost is reduced. The main challenge

we dealt with, was how one can predict the future workload of a page based on past

accesses to the page with confidence. Of paramount importance was the ability to self-

tune, i.e., adapt the placement choice for each page when its workload changes from

read-intensive to update-intensive and vice-versa. Considering that moving a page

from one disk to another incurs significant I/O cost, the prediction of a page’s future

workload had to be as accurate as possible. Failure to achieve an acceptable level of

accuracy would result in the I/O cost being heavily penalized.

The system keeps track of the read and write operations a page has seen and decides

the placement of the page as soon as it is evicted from main memory. We modelled

the decision problem for the two placement alternatives as a two-state task system. We

proposed a family of on-line algorithms that take into account both the physical history

of the page, i.e., the physical I/O on the page, and the history of logical operations on

the page (that is, operations served in-memory) to decide the optimal medium on which

the page should be stored. If the page is found to be on the wrong medium, it migrates.

By continuously evaluating the placement decision for pages, the system adapts to

changing workloads. The theoretical study of the proposed algorithms showed our

algorithms to be 3-competitive with respect to the optimal offline adversary.

We have implemented all proposed algorithms in a real system and conducted an

extensive experimental study. The results proved our techniques to significantly im-
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prove I/O performance over magnetic-disk-only and flash-disk-only setups for database

workloads that frequently occur in practice. Our algorithms adapted well to changing

workloads. Clearly, the hybrid system can significantly outperform both magnetic-

only and flash-only systems; more so, as hot pages have read-intensive workloads. Ev-

idently, a system that uses only the low-end flash disk is unsuitable for real-world data-

processing applications. On the other hand, the performance of traditional magnetic-

only systems can be substantially enhanced using a low-end flash disk with efficient

data placement. Therefore, we believe, a hybrid system assisted by techniques like the

ones we presented is essential when pursuing high-performance data processing.

Buffer Allocation. After addressing the problem of data placement, we went on to

study the problem of buffer allocation in databases that store data across multiple

storage devices with varying I/O characteristics. Storage devices in a multi-device

configuration compete for main memory buffer space. The system needs to drive this

competition based on informed decisions that carefully exploit the I/O cost discrepancy

between devices. Thus, our goal was to improve the performance of such a system by

allocating the optimal number of main memory buffers to each device. The techniques

we proposed take into account not only the I/O characteristics of devices, but also the

impact of caching the data of a device across different cache sizes.

We started by experimenting with a static allocation algorithm, that uses only the

I/O costs of devices to decide page replacement. We found the proposed algorithm

to have a lot of potential, as in many cases it reduces the I/O cost paid by the system

substantially. However, we observed that the wise choice of user specified parameters

was critical for the performance of the system. Therefore, we went on to design a

system that decides buffer allocation dynamically and adaptively. Towards informed

decisions and high-performance, we found that the system needs to know the expected

hit ratio for the pages of each device under all possible cache sizes. To that end we

proposed a novel technique for measuring hit distances in the cache utilizing page

timestamps. This technique has practically no overhead and enables fast and accurate

tracking of the hit ratio curve for each device using Mattson’s algorithm. The latter

was otherwise not practically applicable at such fine a granularity; what is more, our

technique is applicable to all systems that can benefit from hit ratio curve tracking,

e.g., allocating memory to different processes. Towards optimal memory allocation,

we introduced the notion of device caching utility, which captures the cost savings

realized by allocating page frames to a device. Essentially, this metric is determined

by the hit ratio for the data of a device and the random I/O costs of the device. The
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caching utility was subsequently used by a low-overhead greedy algorithm to decide

the optimal number of page frames that should be allocated to a device. Allocation

decisions are also fine-grained ones and are constantly re-evaluated by the system,

leading to adaptive behavior under real-world access patterns.

We implemented the proposed algorithms and experimented with both synthetic

and real-world workloads. Our experimental results show that (a) our algorithm for

measuring hit distance is both efficient and accurate, (b) utility-aware cache partition-

ing substantially improves I/O throughput in a variety of workloads and device setups,

and (c) using our techniques, wrong data placement decisions can be effectively re-

versed.

Caching on flash memory. Next, we explored how a system can use a flash disk

as a cache layer between the main memory buffer pool and the underlying magnetic

disk(s). A crucial decision for the designer of such a system is which data will be

cached on the flash disk. In contrast to buffering in main memory, pages do not need

to be brought into the flash cache before they are processed. That is, a page may go

directly from the magnetic disk to the memory and may well never be written to flash.

Thus, deciding how data should flow from one level of the memory hierarchy to the

others is not straightforward.

Let PRAM(t) be the set of pages stored in the RAM cache at some point in time t,

and PFLASH(t) be the set of pages on flash. We identified the following three potential

invariants:

1. ∀t PRAM(t)
⋂

PFLASH(t) = PRAM(t)

Whenever a page is in RAM, it is also cached on flash (inclusive cache hierarchy).

2. ∀t PRAM(t)
⋂

PFLASH(t) = /0

No page is stored in both RAM and flash at any time. A page brought from FLASH

to RAM is removed from FLASH (and vice versa), resulting in an exclusive cache

hierarchy.

3. ∀t PRAM(t)
⋂

PFLASH(t)⊆ PRAM(t)

Decisions are made on a lazy per-page basis. A page in RAM may or may not be

cached on FLASH, depending on criteria either set by the user or decided based

on the current workload, e.g., caching only clean pages.

Enforcing any one of the above invariants results in a different flow of pages

across the levels of the memory hierarchy; thus, we presented three different page

flow schemes. Each scheme incurs a different I/O cost for a given workload and is in-

dependent of the replacement policy for each cache; our system calculates the I/O cost
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for each one of these schemes and adaptively switches to the most efficient. We also

studied several implementation issues that arise when using a flash disk as a cache:

(a) the page directory for the cache, (b) the size of flash pages, and (c) caching only

pages that satisfy specific predicates.

Our experimental results showed that most questions regarding flash-resident caches

cannot be given universally optimal answers; rather, a cost model like the one we pro-

pose should be used to answer such questions for each individual case with confidence.

High-performance flash devices can substantially improve the I/O performance of a sys-

tem using any page flow scheme. On low-end, write-inefficient flash disks, however,

either the dirty pages should not be cached, or a scheme that avoids many writes to the

flash cache should be used. In the general case, analytical tools such as the ones we

provide are necessary to achieve maximum performance.

Sorting hierarchical data. In the last part of our work, we studied the problem of

sorting hierarchical data in external memory. Our purpose was to (a) experiment with

sorting on flash memory, as external sorting algorithms like merge-sort generate access

patterns that can exploit the full potential of flash memory and, (b) generalise the exist-

ing sorting algorithms to hierarchical datasets. Sorting hierarchical data has emerged

as a salient operation for many applications, most notably for archiving scientific data.

We proposed an algorithm that generalizes the most widely-used techniques for

sorting flat data in external memory, namely replacement selection and external merge-

sort. The algorithm efficiently exploits the hierarchical structure in order to minimize

the number of disk accesses and optimize the utilization of available memory. We

extracted and verified the theoretical bounds of the algorithm with respect to the struc-

ture of the hierarchical dataset. The experimental study of our algorithm included a

comparison to the state-of-the-art approaches. Our results showed that our algorithm

outperforms the competition by almost an order of magnitude and its performance is

the one expected from its theoretical analysis. Though motivated by sorting scientific

datasets for archiving purposes, the algorithm is general and efficient enough to be

applicable in a variety of problems where the need for sorting arbitrary hierarchical

datasets arises. Also, it is not geared towards systems equipped with flash disks only,

but also suitable for use in traditional systems with magnetic disks.

To summarize, we consider the most important contributions of this thesis to be the

following:

• We found that low-end flash disks can improve performance in a hybrid setup

substantially and provided on-line algorithms to decide data placement.
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• We introduced per-device memory allocation and the concept of caching utility

and proposed novel techniques towards high-performing allocation.

• We studied caching on flash memory and found it to be a multi-dimensional

problem. Our results showed that there is no optimal design across all work-

loads and flash devices; rather, analytical tools such as the ones we provide are

necessary.

• We designed and presented a novel algorithm for sorting hierarchical data in

external memory, suitable both for flash and magnetic disks. Our proposals were

found to outperform competition by an order of magnitude.

7.1 Future Work

Certain future research directions can be identified. In the context of data placement an

interesting question is on what principle one should decide data placement when the

flash disk does not have enough capacity for all the pages with read-intensive work-

loads to be stored. In such cases, a ranking algorithm should be considered, i.e., one

that captures the utility of each read-intensive page being stored on the flash disk: then

only the subset of pages with the highest utility should be placed on the flash disk. Data

placement becomes an interesting problem when the set of queries will be executed on

a database and their frequency is known a priori. In that case, one can take advantage

of that knowledge to statically predict the probability of a page having a read-intensive

or an update-intensive workload; thus, placement can be decided statically and, possi-

bly, with more confidence.

We have found that the use of a flash disk for external sorting can substantially

improve performance. It would be interesting to explore what other database opera-

tions, such as join evaluation, can be more efficient using flash memory as an extended

memory buffer and the effect of the I/O costs of the particular device(s) used on each

such operations. Query optimizations should also account for the new storage medium.

In [Ramamurthy and DeWitt, 2005], the authors show that query optimisers should not

ignore the contents of the buffer pool when selecting access methods or evaluating ex-

ecution plans; rather, since a significant portion of a table may be cached in-memory

at some point, they suggest that the optimiser takes advantage of it. Similarly, when

using a flash disk as a cache, the query optimiser should use the I/O costs of the flash

disk for the portion of the data that is cached; more so the capacity of the flash cache
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grows.

Lately, manufacturers of flash disks consider offering a richer interface to the users,

most notably by allowing users to explicitly invalidate logical pages, using the so-

called TRIM command. Using this command the user can essentially erase specific

physical blocks at will. Also, in some very recent products, the controller logic and

the FTL algorithm for the disk run at the operating system level, i.e., inside the driver

for the device, using the CPU and main memory of the system. The market trend

is towards giving users more power and moving critical operations outside of the disk

enclosure: in this way such operations can be customised for specific applications. This

is particularly interesting for the database community, as currently all flash devices are

geared towards user filesystems. Therefore, we believe that implementing database-

friendly FTL algorithms and tuning the flash disk internals towards databases will be

critical for the suitability of flash disks for database workloads in the future.





Chapter 8

Experimental Data

In this chapter we present the raw data collected in our experiments in tabular form.
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Sheet1

Page 1

Execution # M/F M F
1 212 212 12
2 212 214 11
3 214 212 11
4 414 212 11
5 130 213 11
6 130 212 12
7 858 212 11
8 11 212 11
9 11 212 11

10 11 212 11
11 11 212 11
12 11 212 11
13 11 212 11
14 11 212 11
15 11 212 11

Execution # M/F M F
1 235 245 770
2 234 243 765
3 234 241 771
4 233 243 770
5 233 243 770
6 233 243 770
7 234 243 770
8 233 243 770
9 232 243 770

10 233 243 770
11 234 243 770
12 235 243 770
13 234 243 770
14 233 243 770
15 234 243 770

Figure 8.1: Raw data for Figure 3.6 (a).

Sheet1

Page 1

Execution # M/F M F
1 212 212 12
2 212 214 11
3 214 212 11
4 414 212 11
5 130 213 11
6 130 212 12
7 858 212 11
8 11 212 11
9 11 212 11

10 11 212 11
11 11 212 11
12 11 212 11
13 11 212 11
14 11 212 11
15 11 212 11

Execution # M/F M F
1 235 245 770
2 234 243 765
3 234 241 771
4 233 243 770
5 233 243 770
6 233 243 770
7 234 243 770
8 233 243 770
9 232 243 770

10 233 243 770
11 234 243 770
12 235 243 770
13 234 243 770
14 233 243 770
15 234 243 770

Figure 8.2: Raw data for Figure 3.6 (b).
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Sheet1

Page 6

Execution # M/F M F
1 917 941 1647
2 938 930 1630
3 875 928 1625
4 876 929 1630
5 674 928 1630
6 673 929 1630
7 885 930 1629
8 617 931 1630
9 614 932 1631

10 614 930 1632
11 614 930 1630
12 614 931 1630
13 614 931 1630
14 614 931 1630
15 614 931 1630

Execution # M/F M F
1 839 835 1071
2 888 825 1058
3 652 824 1060
4 600 824 1057
5 398 825 1055
6 398 826 1054
7 650 825 1058
8 356 824 1058
9 356 825 1058

10 355 825 1058
11 356 825 1059
12 361 825 1058
13 354 825 1057
14 354 826 1058
15 354 826 1058

Figure 8.3: Raw data for Figure 3.7 (a).

Sheet1

Page 6

Execution # M/F M F
1 917 941 1647
2 938 930 1630
3 875 928 1625
4 876 929 1630
5 674 928 1630
6 673 929 1630
7 885 930 1629
8 617 931 1630
9 614 932 1631

10 614 930 1632
11 614 930 1630
12 614 931 1630
13 614 931 1630
14 614 931 1630
15 614 931 1630

Execution # M/F M F
1 839 835 1071
2 888 825 1058
3 652 824 1060
4 600 824 1057
5 398 825 1055
6 398 826 1054
7 650 825 1058
8 356 824 1058
9 356 825 1058

10 355 825 1058
11 356 825 1059
12 361 825 1058
13 354 825 1057
14 354 826 1058
15 354 826 1058

Figure 8.4: Raw data for Figure 3.7 (b).
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Sheet1

Page 2

Execution Conservative Optimistic Hybrid Optimal
r 320 1213 362 1211
r 342 21 741 21
r 383 21 178 21
r 522 21 499 21
r 104 21 21 21
r 104 21 21 21
r 597 21 21 21
r 21 21 21 21
r 21 21 21 21
r 20 21 21 21
u 1040 508 859 335
u 506 376 446 432
u 351 432 376 432
u 431 432 431 432
u 433 432 432 432
u 432 432 431 432
u 432 432 431 432
u 432 432 432 432
u 431 432 431 432
u 432 432 430 755
r 219 565 232 21
r 217 230 272 21
r 220 108 228 21
r 225 21 244 21
r 264 22 170 21
r 147 21 57 21
r 344 21 172 21
r 65 21 45 21
r 65 21 68 21
r 64 21 35 21
r 66 21 21 21
r 65 21 21 21
r 323 21 21 21
r 21 21 21 21
r 21 21 21 21
r 21 21 21 21
r 20 21 21 21
r 21 21 21 21
r 21 21 21 21
r 21 21 21 21

Figure 8.5: Raw data for the top graph of Figure 3.8.
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Sheet1

Page 3

Execution Conservative Optimistic Hybrid Optimal
r 0 24691 1054 24691
r 807 24691 13017 24691
r 4113 24691 14836 24691
r 12808 24691 24691 24691
r 12808 24691 24691 24691
r 12808 24691 24691 24691
r 24691 24691 24691 24691
r 24691 24691 24691 24691
r 24691 24691 24691 24691
r 24691 24691 24691 24691
u 21586 14072 19099 9734
u 16592 9734 14107 9734
u 9757 9734 9761 9734
u 9757 9734 9761 9734
u 9757 9734 9761 9734
u 9757 9734 9761 9734
u 9757 9734 9761 9734
u 9757 9734 9761 9734
u 9757 9734 9761 9734
u 9757 9734 9761 24968
r 9757 16795 10208 24968
r 9766 21893 12072 24968
r 9837 24661 13924 24968
r 10405 24717 16701 24968
r 12891 24776 18819 24968
r 12915 24839 19945 24968
r 18701 24839 22757 24968
r 18701 24849 22757 24968
r 18701 24916 24000 24968
r 18701 24938 24984 24968
r 18742 24948 24984 24968
r 18742 24963 24984 24968
r 24987 24963 24984 24968
r 24987 24963 24984 24968
r 24987 24963 24984 24968
r 24987 24963 24984 24968
r 24987 24963 24984 24968
r 24987 24963 24984 24968
r 24987 24963 24984 24968
r 24987 24963 24984 24968

Figure 8.6: Raw data for the bottom graph of Figure 3.8.
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Sheet1

Page 4

Execution Conservative Optimistic Hybrid Optimal
r 150 720 157 160
r 155 10 285 146
r 160 9 97 146
u 293 185 323 289
u 253 292 291 289
u 292 291 290 289
r 150 598 28 353
r 148 221 145 145
r 146 75 148 146
u 290 186 288 290
u 291 291 291 291
u 292 291 290 290
r 146 519 147 146
r 145 178 145 144
r 145 93 147 144
u 291 185 290 291
u 292 292 290 290
u 293 291 290 291

Execution Conservative Optimistic Hybrid Optimal
r 0 14946 238 350
r 103 14946 4022 350
r 737 14946 4292 350
u 63 350 350 350
u 63 350 350 350
u 63 350 352 350
r 350 9650 146 146
r 350 12923 354 350
r 164 14946 438 350
u 350 350 350 350
u 350 350 350 350
u 350 350 350 350
r 350 8376 350 350
r 350 11372 350 350
r 364 14946 438 350
u 350 350 350 350
u 350 350 350 350
u 350 350 350 350

Figure 8.7: Raw data for the top graph of Figure 3.9.

Sheet1

Page 4

Execution Conservative Optimistic Hybrid Optimal
r 150 720 157 160
r 155 10 285 146
r 160 9 97 146
u 293 185 323 289
u 253 292 291 289
u 292 291 290 289
r 150 598 28 353
r 148 221 145 145
r 146 75 148 146
u 290 186 288 290
u 291 291 291 291
u 292 291 290 290
r 146 519 147 146
r 145 178 145 144
r 145 93 147 144
u 291 185 290 291
u 292 292 290 290
u 293 291 290 291

Execution Conservative Optimistic Hybrid Optimal
r 0 14946 238 350
r 103 14946 4022 350
r 737 14946 4292 350
u 63 350 350 350
u 63 350 350 350
u 63 350 352 350
r 350 9650 146 146
r 350 12923 354 350
r 164 14946 438 350
u 350 350 350 350
u 350 350 350 350
u 350 350 350 350
r 350 8376 350 350
r 350 11372 350 350
r 364 14946 438 350
u 350 350 350 350
u 350 350 350 350
u 350 350 350 350

Figure 8.8: Raw data for the bottom graph of Figure 3.9.
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Sheet1

Page 5

Set Size 100%-0% 90%-10% 80%-20% 70%-30% 60%-40%
0.1 8804 8928 9129 9332 9509
0.2 8043 8340 8711 9121 9465
0.3 7279 7723 8266 8876 9502
0.4 6528 7125 7852 8646 9365
0.5 5808 6568 7460 8442 9342
0.6 5063 5968 7030 8205 9346
0.7 4378 5397 6602 8001 9350
0.8 3690 4841 6195 7779 9280
0.9 3025 4285 5788 7562 9320
1 2463 3763 5320 7335 9370

Figure 8.9: Raw data for the graph of Figure 3.10.
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Sheet1

Page 1

! Execution Time
0 463

0.1 449
0.2 439
0.3 428
0.4 418
0.5 411
0.6 396
0.7 391
0.8 379
0.9 369
1 383

! Execution Time
0 234

0.1 225
0.2 214
0.3 205
0.4 197
0.5 191
0.6 195
0.7 204
0.8 219
0.9 225
1 269

Chunk Number Region 1 Region 2
1 2515 5372
2 29373 5119
3 171737 5389
4 66297 3958
5 46188 3587
6 36871 3232
7 35392 3823
8 37789 5653
9 27667 3583

10 22900 3227
11 16301 4293
12 16664 5598
13 14218 4705
14 13884 4201
15 11260 3839
16 9770 5150
17 8906 3752
18 8089 3963
19 7971 3615
20 6157 3123

Figure 8.10: Raw data for the top graph of Figure 4.15.
Sheet1

Page 2

Region Size Region 1 Region 2
1 2515 5372
2 31888 10491
3 203625 15880
4 269922 19838
5 316110 22425
6 352981 25657
7 388373 28480
8 426162 34133
9 453829 37716

10 476729 40943
11 493030 45236
12 509694 50834
13 523912 55539
14 537796 59740
15 549056 63579
16 558826 68729
17 567732 72481
18 575821 76444
19 583792 80059
20 589949 83182

Epoch Length NAIVE GROUPS TS
10 0 0.2 1.28
100 0 1.4 1.28

1000 0 4.23 1.28
10000 0 12.19 1.28

Epoch Length NAIVE GROUPS TS
10 25 105 1.3
100 25 21.1 1.3

1000 25 12.9 1.3
10000 25 8.1 1.3

Cache Size NAIVE GROUPS TS
100 1.08 3.5 1.1
200 1.17 3.42 1.12
500 1.44 3.38 1.09

1000 2.21 3.3 1.12
5000 5.94 3.32 1.17

10000 14.6 3.2 1.2
20000 55.1 2.9 1.14
30000 102 2.6 1.17
40000 175 2.4 1.12

Figure 8.11: Raw data for the bottom graph of Figure 4.15.
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Sheet1

Page 2

Region Size Region 1 Region 2
1 2515 5372
2 31888 10491
3 203625 15880
4 269922 19838
5 316110 22425
6 352981 25657
7 388373 28480
8 426162 34133
9 453829 37716

10 476729 40943
11 493030 45236
12 509694 50834
13 523912 55539
14 537796 59740
15 549056 63579
16 558826 68729
17 567732 72481
18 575821 76444
19 583792 80059
20 589949 83182

Epoch Length NAIVE GROUPS TS
10 0 0.2 1.28
100 0 1.4 1.28

1000 0 4.23 1.28
10000 0 12.19 1.28

Epoch Length NAIVE GROUPS TS
10 25 105 1.3
100 25 21.1 1.3

1000 25 12.9 1.3
10000 25 8.1 1.3

Cache Size NAIVE GROUPS TS
100 1.08 3.5 1.1
200 1.17 3.42 1.12
500 1.44 3.38 1.09

1000 2.21 3.3 1.12
5000 5.94 3.32 1.17

10000 14.6 3.2 1.2
20000 55.1 2.9 1.14
30000 102 2.6 1.17
40000 175 2.4 1.12

Figure 8.12: Raw data for the top graph of Figure 4.24.

Sheet1
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Region Size Region 1 Region 2
1 2515 5372
2 31888 10491
3 203625 15880
4 269922 19838
5 316110 22425
6 352981 25657
7 388373 28480
8 426162 34133
9 453829 37716

10 476729 40943
11 493030 45236
12 509694 50834
13 523912 55539
14 537796 59740
15 549056 63579
16 558826 68729
17 567732 72481
18 575821 76444
19 583792 80059
20 589949 83182

Epoch Length NAIVE GROUPS TS
10 0 0.2 1.28
100 0 1.4 1.28

1000 0 4.23 1.28
10000 0 12.19 1.28

Epoch Length NAIVE GROUPS TS
10 25 105 1.3
100 25 21.1 1.3

1000 25 12.9 1.3
10000 25 8.1 1.3

Cache Size NAIVE GROUPS TS
100 1.08 3.5 1.1
200 1.17 3.42 1.12
500 1.44 3.38 1.09

1000 2.21 3.3 1.12
5000 5.94 3.32 1.17

10000 14.6 3.2 1.2
20000 55.1 2.9 1.14
30000 102 2.6 1.17
40000 175 2.4 1.12

Figure 8.13: Raw data for the bottom graph of Figure 4.24.

Sheet1

Page 2

Region Size Region 1 Region 2
1 2515 5372
2 31888 10491
3 203625 15880
4 269922 19838
5 316110 22425
6 352981 25657
7 388373 28480
8 426162 34133
9 453829 37716

10 476729 40943
11 493030 45236
12 509694 50834
13 523912 55539
14 537796 59740
15 549056 63579
16 558826 68729
17 567732 72481
18 575821 76444
19 583792 80059
20 589949 83182

Epoch Length NAIVE GROUPS TS
10 0 0.2 1.28
100 0 1.4 1.28

1000 0 4.23 1.28
10000 0 12.19 1.28

Epoch Length NAIVE GROUPS TS
10 25 105 1.3
100 25 21.1 1.3

1000 25 12.9 1.3
10000 25 8.1 1.3

Cache Size NAIVE GROUPS TS
100 1.08 3.5 1.1
200 1.17 3.42 1.12
500 1.44 3.38 1.09

1000 2.21 3.3 1.12
5000 5.94 3.32 1.17

10000 14.6 3.2 1.2
20000 55.1 2.9 1.14
30000 102 2.6 1.17
40000 175 2.4 1.12

Figure 8.14: Raw data for the top graph of Figure 4.25.Sheet1

Page 3

# of groups GROUPS
5 3.3

10 4.4
20 6.7
50 13.1
100 25.1
200 45.2

Linear Exponential
CBR 20.27% 78.92%
RUC 8.54% 77.05%
HUC 21.10% 79.24%
HRCA 21.04% 78.18%

Setup 1 Setup 2 Setup 3
CBR 0.00% 6.12% 64.30%
RUC 16.70% 7.82% 61.90%
HUC 17.91% 8.11% 67.20%
HRCA 17.56% 7.93% 67.10%

Setup 1 Setup 2 Setup 3 Setup 4 Setup 5
CBR 0.28% 9.25% 90.47% 0.00% 47.50%
RUC 3.82% 8.91% 89.14% -3.51% 20.03%
HUC 29.41% 9.33% 92.51% 14.74% 48.12%
HRCA 29.60% 10.13% 92.87% 13.61% 48.20%

20.00% 50.00% 80.00%
CBR 40.74% 54.52% 58.53%
RUC 27.59% 29.63% 24.34%
HUC 41.25% 55.44% 59.65%
HRCA 41.27% 55.52% 59.58%

Setup 1 Setup 2
CBR 9.75% 8.72%
RUC 7.91% 9.23%
HUC 9.77% 12.82%
HRCA 9.79% 12.85%

Figure 8.15: Raw data for the bottom graph of Figure 4.25.
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# of groups GROUPS
5 3.3

10 4.4
20 6.7
50 13.1
100 25.1
200 45.2

Linear Exponential
CBR 20.27% 78.92%
RUC 8.54% 77.05%
HUC 21.10% 79.24%
HRCA 21.04% 78.18%

Setup 1 Setup 2 Setup 3
CBR 0.00% 6.12% 64.30%
RUC 16.70% 7.82% 61.90%
HUC 17.91% 8.11% 67.20%
HRCA 17.56% 7.93% 67.10%

Setup 1 Setup 2 Setup 3 Setup 4 Setup 5
CBR 0.28% 9.25% 90.47% 0.00% 47.50%
RUC 3.82% 8.91% 89.14% -3.51% 20.03%
HUC 29.41% 9.33% 92.51% 14.74% 48.12%
HRCA 29.60% 10.13% 92.87% 13.61% 48.20%

20.00% 50.00% 80.00%
CBR 40.74% 54.52% 58.53%
RUC 27.59% 29.63% 24.34%
HUC 41.25% 55.44% 59.65%
HRCA 41.27% 55.52% 59.58%

Setup 1 Setup 2
CBR 9.75% 8.72%
RUC 7.91% 9.23%
HUC 9.77% 12.82%
HRCA 9.79% 12.85%

Figure 8.16: Raw data for the graph of Figure 4.26.
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Sheet1

Page 3

# of groups GROUPS
5 3.3

10 4.4
20 6.7
50 13.1
100 25.1
200 45.2

Linear Exponential
CBR 20.27% 78.92%
RUC 8.54% 77.05%
HUC 21.10% 79.24%
HRCA 21.04% 78.18%

Setup 1 Setup 2 Setup 3
CBR 0.00% 6.12% 64.30%
RUC 16.70% 7.82% 61.90%
HUC 17.91% 8.11% 67.20%
HRCA 17.56% 7.93% 67.10%

Setup 1 Setup 2 Setup 3 Setup 4 Setup 5
CBR 0.28% 9.25% 90.47% 0.00% 47.50%
RUC 3.82% 8.91% 89.14% -3.51% 20.03%
HUC 29.41% 9.33% 92.51% 14.74% 48.12%
HRCA 29.60% 10.13% 92.87% 13.61% 48.20%

20.00% 50.00% 80.00%
CBR 40.74% 54.52% 58.53%
RUC 27.59% 29.63% 24.34%
HUC 41.25% 55.44% 59.65%
HRCA 41.27% 55.52% 59.58%

Setup 1 Setup 2
CBR 9.75% 8.72%
RUC 7.91% 9.23%
HUC 9.77% 12.82%
HRCA 9.79% 12.85%

Figure 8.17: Raw data for the graph of Figure 4.27.
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# of groups GROUPS
5 3.3

10 4.4
20 6.7
50 13.1
100 25.1
200 45.2

Linear Exponential
CBR 20.27% 78.92%
RUC 8.54% 77.05%
HUC 21.10% 79.24%
HRCA 21.04% 78.18%

Setup 1 Setup 2 Setup 3
CBR 0.00% 6.12% 64.30%
RUC 16.70% 7.82% 61.90%
HUC 17.91% 8.11% 67.20%
HRCA 17.56% 7.93% 67.10%

Setup 1 Setup 2 Setup 3 Setup 4 Setup 5
CBR 0.28% 9.25% 90.47% 0.00% 47.50%
RUC 3.82% 8.91% 89.14% -3.51% 20.03%
HUC 29.41% 9.33% 92.51% 14.74% 48.12%
HRCA 29.60% 10.13% 92.87% 13.61% 48.20%

20.00% 50.00% 80.00%
CBR 40.74% 54.52% 58.53%
RUC 27.59% 29.63% 24.34%
HUC 41.25% 55.44% 59.65%
HRCA 41.27% 55.52% 59.58%

Setup 1 Setup 2
CBR 9.75% 8.72%
RUC 7.91% 9.23%
HUC 9.77% 12.82%
HRCA 9.79% 12.85%

Figure 8.18: Raw data for the graph of Figure 4.28.
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# of groups GROUPS
5 3.3

10 4.4
20 6.7
50 13.1
100 25.1
200 45.2

Linear Exponential
CBR 20.27% 78.92%
RUC 8.54% 77.05%
HUC 21.10% 79.24%
HRCA 21.04% 78.18%

Setup 1 Setup 2 Setup 3
CBR 0.00% 6.12% 64.30%
RUC 16.70% 7.82% 61.90%
HUC 17.91% 8.11% 67.20%
HRCA 17.56% 7.93% 67.10%

Setup 1 Setup 2 Setup 3 Setup 4 Setup 5
CBR 0.28% 9.25% 90.47% 0.00% 47.50%
RUC 3.82% 8.91% 89.14% -3.51% 20.03%
HUC 29.41% 9.33% 92.51% 14.74% 48.12%
HRCA 29.60% 10.13% 92.87% 13.61% 48.20%

20.00% 50.00% 80.00%
CBR 40.74% 54.52% 58.53%
RUC 27.59% 29.63% 24.34%
HUC 41.25% 55.44% 59.65%
HRCA 41.27% 55.52% 59.58%

Setup 1 Setup 2
CBR 9.75% 8.72%
RUC 7.91% 9.23%
HUC 9.77% 12.82%
HRCA 9.79% 12.85%

Figure 8.19: Raw data for the graph of Figure 4.29.
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# of groups GROUPS
5 3.3

10 4.4
20 6.7
50 13.1
100 25.1
200 45.2

Linear Exponential
CBR 20.27% 78.92%
RUC 8.54% 77.05%
HUC 21.10% 79.24%
HRCA 21.04% 78.18%

Setup 1 Setup 2 Setup 3
CBR 0.00% 6.12% 64.30%
RUC 16.70% 7.82% 61.90%
HUC 17.91% 8.11% 67.20%
HRCA 17.56% 7.93% 67.10%

Setup 1 Setup 2 Setup 3 Setup 4 Setup 5
CBR 0.28% 9.25% 90.47% 0.00% 47.50%
RUC 3.82% 8.91% 89.14% -3.51% 20.03%
HUC 29.41% 9.33% 92.51% 14.74% 48.12%
HRCA 29.60% 10.13% 92.87% 13.61% 48.20%

20.00% 50.00% 80.00%
CBR 40.74% 54.52% 58.53%
RUC 27.59% 29.63% 24.34%
HUC 41.25% 55.44% 59.65%
HRCA 41.27% 55.52% 59.58%

Setup 1 Setup 2
CBR 9.75% 8.72%
RUC 7.91% 9.23%
HUC 9.77% 12.82%
HRCA 9.79% 12.85%

Figure 8.20: Raw data for the graph of Figure 4.30.
Sheet1
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System A System B
CBR 9.32% 14.51%
RUC 7.64% 9.05%
HUC 8.25% 10.85%
HRCA 12.71% 17.06%

System A System B
CBR 7.10% 1.73%
RUC 1.42% 5.72%
HUC 4.03% 3.35%
HRCA 1.42% 3.33%

System A System B
CBR 7.69% 10.53%
RUC 8.74% 10.55%
HUC 9.62% 11.05%
HRCA 9.79% 11.58%

Figure 8.21: Raw data for the graph of Figure 4.31.
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System A System B
CBR 9.32% 14.51%
RUC 7.64% 9.05%
HUC 8.25% 10.85%
HRCA 12.71% 17.06%

System A System B
CBR 7.10% 1.73%
RUC 1.42% 5.72%
HUC 4.03% 3.35%
HRCA 1.42% 3.33%

System A System B
CBR 7.69% 10.53%
RUC 8.74% 10.55%
HUC 9.62% 11.05%
HRCA 9.79% 11.58%

Figure 8.22: Raw data for the graph of Figure 4.32.
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System A System B
CBR 9.32% 14.51%
RUC 7.64% 9.05%
HUC 8.25% 10.85%
HRCA 12.71% 17.06%

System A System B
CBR 7.10% 1.73%
RUC 1.42% 5.72%
HUC 4.03% 3.35%
HRCA 1.42% 3.33%

System A System B
CBR 7.69% 10.53%
RUC 8.74% 10.55%
HUC 9.62% 11.05%
HRCA 9.79% 11.58%

Figure 8.23: Raw data for the graph of Figure 4.33.Sheet1

Page 1

S IRP S TPC-C S TPC-H
0.0002 0.0002 0.0020 0.0030 0.0001 0.1130
0.0003 0.0003 0.0040 0.0070 0.0003 0.1580
0.0008 0.0007 0.0060 0.0420 0.0006 0.1890
0.0018 0.0017 0.0080 0.1790 0.0015 0.2160
0.0033 0.0033 0.0100 0.3120 0.0029 0.2390
0.0068 0.0066 0.0120 0.3630 0.0059 0.3010
0.0133 0.0132 0.0150 0.4010 0.0117 0.3830
0.0200 0.0198 0.0170 0.4330 0.0176 0.4320
0.0267 0.0264 0.0210 0.4750 0.0235 0.4570

FLASH / RAM IRP TPC-C TPC-H
2 0.981 0.888 0.996
4 0.963 0.783 0.991

6.67 0.937 0.654 0.984
10 0.907 0.519 0.976

13.33 0.877 0.415 0.968
33.33 0.707 0.191 0.908

FLASH / RAM IRP TPC-C TPC-H
6 1.069 1.065 1.058

12 1.072 1.068 1.061
20 1.068 1.065 1.056
30 1.072 1.063 1.055
40 1.069 1.063 1.058

Workload Inclusive Exclusive Lazy
IRP 1 1.19 1.14

TPC-C 1 1.3 1.16
TPC-H 1 1.2 1.14

FLASH / RAM Inclusive Exclusive Lazy
6 354 349 351

12 346 341 343
20 338 335 336
30 326 323 324
40 310 307 308

FLASH / RAM Inclusive Exclusive Lazy
6 1166 1385 927

12 851 1352 697
20 565 1334 528
30 435 1324 417
40 357 1317 344

Figure 8.24: Raw data for the graph of Figure 5.6.
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S IRP S TPC-C S TPC-H
0.0002 0.0002 0.0020 0.0030 0.0001 0.1130
0.0003 0.0003 0.0040 0.0070 0.0003 0.1580
0.0008 0.0007 0.0060 0.0420 0.0006 0.1890
0.0018 0.0017 0.0080 0.1790 0.0015 0.2160
0.0033 0.0033 0.0100 0.3120 0.0029 0.2390
0.0068 0.0066 0.0120 0.3630 0.0059 0.3010
0.0133 0.0132 0.0150 0.4010 0.0117 0.3830
0.0200 0.0198 0.0170 0.4330 0.0176 0.4320
0.0267 0.0264 0.0210 0.4750 0.0235 0.4570

FLASH / RAM IRP TPC-C TPC-H
2 0.981 0.888 0.996
4 0.963 0.783 0.991

6.67 0.937 0.654 0.984
10 0.907 0.519 0.976

13.33 0.877 0.415 0.968
33.33 0.707 0.191 0.908

FLASH / RAM IRP TPC-C TPC-H
6 1.069 1.065 1.058

12 1.072 1.068 1.061
20 1.068 1.065 1.056
30 1.072 1.063 1.055
40 1.069 1.063 1.058

Workload Inclusive Exclusive Lazy
IRP 1 1.19 1.14

TPC-C 1 1.3 1.16
TPC-H 1 1.2 1.14

FLASH / RAM Inclusive Exclusive Lazy
6 354 349 351

12 346 341 343
20 338 335 336
30 326 323 324
40 310 307 308

FLASH / RAM Inclusive Exclusive Lazy
6 1166 1385 927

12 851 1352 697
20 565 1334 528
30 435 1324 417
40 357 1317 344

Figure 8.25: Raw data for the graph of Figure 5.7.
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S IRP S TPC-C S TPC-H
0.0002 0.0002 0.0020 0.0030 0.0001 0.1130
0.0003 0.0003 0.0040 0.0070 0.0003 0.1580
0.0008 0.0007 0.0060 0.0420 0.0006 0.1890
0.0018 0.0017 0.0080 0.1790 0.0015 0.2160
0.0033 0.0033 0.0100 0.3120 0.0029 0.2390
0.0068 0.0066 0.0120 0.3630 0.0059 0.3010
0.0133 0.0132 0.0150 0.4010 0.0117 0.3830
0.0200 0.0198 0.0170 0.4330 0.0176 0.4320
0.0267 0.0264 0.0210 0.4750 0.0235 0.4570

FLASH / RAM IRP TPC-C TPC-H
2 0.981 0.888 0.996
4 0.963 0.783 0.991

6.67 0.937 0.654 0.984
10 0.907 0.519 0.976

13.33 0.877 0.415 0.968
33.33 0.707 0.191 0.908

FLASH / RAM IRP TPC-C TPC-H
6 1.069 1.065 1.058

12 1.072 1.068 1.061
20 1.068 1.065 1.056
30 1.072 1.063 1.055
40 1.069 1.063 1.058

Workload Inclusive Exclusive Lazy
IRP 1 1.19 1.14

TPC-C 1 1.3 1.16
TPC-H 1 1.2 1.14

FLASH / RAM Inclusive Exclusive Lazy
6 354 349 351

12 346 341 343
20 338 335 336
30 326 323 324
40 310 307 308

FLASH / RAM Inclusive Exclusive Lazy
6 1166 1385 927

12 851 1352 697
20 565 1334 528
30 435 1324 417
40 357 1317 344

Figure 8.26: Raw data for the graph of Figure 5.8.
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S IRP S TPC-C S TPC-H
0.0002 0.0002 0.0020 0.0030 0.0001 0.1130
0.0003 0.0003 0.0040 0.0070 0.0003 0.1580
0.0008 0.0007 0.0060 0.0420 0.0006 0.1890
0.0018 0.0017 0.0080 0.1790 0.0015 0.2160
0.0033 0.0033 0.0100 0.3120 0.0029 0.2390
0.0068 0.0066 0.0120 0.3630 0.0059 0.3010
0.0133 0.0132 0.0150 0.4010 0.0117 0.3830
0.0200 0.0198 0.0170 0.4330 0.0176 0.4320
0.0267 0.0264 0.0210 0.4750 0.0235 0.4570

FLASH / RAM IRP TPC-C TPC-H
2 0.981 0.888 0.996
4 0.963 0.783 0.991

6.67 0.937 0.654 0.984
10 0.907 0.519 0.976

13.33 0.877 0.415 0.968
33.33 0.707 0.191 0.908

FLASH / RAM IRP TPC-C TPC-H
6 1.069 1.065 1.058

12 1.072 1.068 1.061
20 1.068 1.065 1.056
30 1.072 1.063 1.055
40 1.069 1.063 1.058

Workload Inclusive Exclusive Lazy
IRP 1 1.19 1.14

TPC-C 1 1.3 1.16
TPC-H 1 1.2 1.14

FLASH / RAM Inclusive Exclusive Lazy
6 354 349 351

12 346 341 343
20 338 335 336
30 326 323 324
40 310 307 308

FLASH / RAM Inclusive Exclusive Lazy
6 1166 1385 927

12 851 1352 697
20 565 1334 528
30 435 1324 417
40 357 1317 344

Figure 8.27: Raw data for the graph of Figure 5.9.
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S IRP S TPC-C S TPC-H
0.0002 0.0002 0.0020 0.0030 0.0001 0.1130
0.0003 0.0003 0.0040 0.0070 0.0003 0.1580
0.0008 0.0007 0.0060 0.0420 0.0006 0.1890
0.0018 0.0017 0.0080 0.1790 0.0015 0.2160
0.0033 0.0033 0.0100 0.3120 0.0029 0.2390
0.0068 0.0066 0.0120 0.3630 0.0059 0.3010
0.0133 0.0132 0.0150 0.4010 0.0117 0.3830
0.0200 0.0198 0.0170 0.4330 0.0176 0.4320
0.0267 0.0264 0.0210 0.4750 0.0235 0.4570

FLASH / RAM IRP TPC-C TPC-H
2 0.981 0.888 0.996
4 0.963 0.783 0.991

6.67 0.937 0.654 0.984
10 0.907 0.519 0.976

13.33 0.877 0.415 0.968
33.33 0.707 0.191 0.908

FLASH / RAM IRP TPC-C TPC-H
6 1.069 1.065 1.058

12 1.072 1.068 1.061
20 1.068 1.065 1.056
30 1.072 1.063 1.055
40 1.069 1.063 1.058

Workload Inclusive Exclusive Lazy
IRP 1 1.19 1.14

TPC-C 1 1.3 1.16
TPC-H 1 1.2 1.14

FLASH / RAM Inclusive Exclusive Lazy
6 354 349 351

12 346 341 343
20 338 335 336
30 326 323 324
40 310 307 308

FLASH / RAM Inclusive Exclusive Lazy
6 1166 1385 927

12 851 1352 697
20 565 1334 528
30 435 1324 417
40 357 1317 344

Figure 8.28: Raw data for the graph of Figure 5.10.
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S IRP S TPC-C S TPC-H
0.0002 0.0002 0.0020 0.0030 0.0001 0.1130
0.0003 0.0003 0.0040 0.0070 0.0003 0.1580
0.0008 0.0007 0.0060 0.0420 0.0006 0.1890
0.0018 0.0017 0.0080 0.1790 0.0015 0.2160
0.0033 0.0033 0.0100 0.3120 0.0029 0.2390
0.0068 0.0066 0.0120 0.3630 0.0059 0.3010
0.0133 0.0132 0.0150 0.4010 0.0117 0.3830
0.0200 0.0198 0.0170 0.4330 0.0176 0.4320
0.0267 0.0264 0.0210 0.4750 0.0235 0.4570

FLASH / RAM IRP TPC-C TPC-H
2 0.981 0.888 0.996
4 0.963 0.783 0.991

6.67 0.937 0.654 0.984
10 0.907 0.519 0.976

13.33 0.877 0.415 0.968
33.33 0.707 0.191 0.908

FLASH / RAM IRP TPC-C TPC-H
6 1.069 1.065 1.058

12 1.072 1.068 1.061
20 1.068 1.065 1.056
30 1.072 1.063 1.055
40 1.069 1.063 1.058

Workload Inclusive Exclusive Lazy
IRP 1 1.19 1.14

TPC-C 1 1.3 1.16
TPC-H 1 1.2 1.14

FLASH / RAM Inclusive Exclusive Lazy
6 354 349 351

12 346 341 343
20 338 335 336
30 326 323 324
40 310 307 308

FLASH / RAM Inclusive Exclusive Lazy
6 1166 1385 927

12 851 1352 697
20 565 1334 528
30 435 1324 417
40 357 1317 344

Figure 8.29: Raw data for the graph of Figure 5.11 (a).Sheet1
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FLASH / RAM Inclusive Exclusive Lazy
6 191 146 165

12 138 116 128
20 92 90 90
30 70 72 69
40 56 65 55

SSD Inclusive Exclusive Lazy
Samsung 1 1.8 0.93

Intel X25-M 1 1.06 0.91
Intel X25-E 1 0.84 0.95

FusionIO ioDrive 1 0.87 0.95

FLASH / RAM Inclusive Exclusive Lazy
2 69.23 65.64 92.92
4 64.54 62.02 90.69

6.67 61.45 59.81 86.87
10 59.68 58.33 85.44

13.34 58.57 57.34 84.53
33.34 55.64 54.65 82.04

Scheme Lookups Updates Total
Inclusive 27.62 32.06 59.68
Exclusive 27.56 30.77 58.33

Lazy 52.77 32.67 85.44

Hit Ratio HDD Reads
Block Size Inclusive Lazy Inclusive Lazy

4K 0.28 0.28 23825 23785
8K 0.28 0.21 23566 49146
16K 0.32 0.18 22051 48581
32K 0.42 0.17 19021 45699
64K 0.55 0.17 14771 41515

128K 0.7 0.21 10622 36060

! HDD Reads Ratio
Block Size TPC-C TPC-H TPC-C TPC-H

4K 1.00 1.00 1.00 1.00
8K 1.03 1.13 1.87 1.85
16K 1.09 1.34 1.66 1.71
32K 1.10 1.39 1.59 1.59
64K 1.10 1.32 1.56 1.47

128K 1.12 1.27 1.56 1.33

Figure 8.30: Raw data for the graph of Figure 5.11 (b).

Sheet1

Page 2

FLASH / RAM Inclusive Exclusive Lazy
6 191 146 165

12 138 116 128
20 92 90 90
30 70 72 69
40 56 65 55

SSD Inclusive Exclusive Lazy
Samsung 1 1.8 0.93

Intel X25-M 1 1.06 0.91
Intel X25-E 1 0.84 0.95

FusionIO ioDrive 1 0.87 0.95

FLASH / RAM Inclusive Exclusive Lazy
2 69.23 65.64 92.92
4 64.54 62.02 90.69

6.67 61.45 59.81 86.87
10 59.68 58.33 85.44

13.34 58.57 57.34 84.53
33.34 55.64 54.65 82.04

Scheme Lookups Updates Total
Inclusive 27.62 32.06 59.68
Exclusive 27.56 30.77 58.33

Lazy 52.77 32.67 85.44

Hit Ratio HDD Reads
Block Size Inclusive Lazy Inclusive Lazy

4K 0.28 0.28 23825 23785
8K 0.28 0.21 23566 49146
16K 0.32 0.18 22051 48581
32K 0.42 0.17 19021 45699
64K 0.55 0.17 14771 41515

128K 0.7 0.21 10622 36060

! HDD Reads Ratio
Block Size TPC-C TPC-H TPC-C TPC-H

4K 1.00 1.00 1.00 1.00
8K 1.03 1.13 1.87 1.85
16K 1.09 1.34 1.66 1.71
32K 1.10 1.39 1.59 1.59
64K 1.10 1.32 1.56 1.47

128K 1.12 1.27 1.56 1.33

Figure 8.31: Raw data for the graph of Figure 5.12.
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FLASH / RAM Inclusive Exclusive Lazy
6 191 146 165

12 138 116 128
20 92 90 90
30 70 72 69
40 56 65 55

SSD Inclusive Exclusive Lazy
Samsung 1 1.8 0.93

Intel X25-M 1 1.06 0.91
Intel X25-E 1 0.84 0.95

FusionIO ioDrive 1 0.87 0.95

FLASH / RAM Inclusive Exclusive Lazy
2 69.23 65.64 92.92
4 64.54 62.02 90.69

6.67 61.45 59.81 86.87
10 59.68 58.33 85.44

13.34 58.57 57.34 84.53
33.34 55.64 54.65 82.04

Scheme Lookups Updates Total
Inclusive 27.62 32.06 59.68
Exclusive 27.56 30.77 58.33

Lazy 52.77 32.67 85.44

Hit Ratio HDD Reads
Block Size Inclusive Lazy Inclusive Lazy

4K 0.28 0.28 23825 23785
8K 0.28 0.21 23566 49146
16K 0.32 0.18 22051 48581
32K 0.42 0.17 19021 45699
64K 0.55 0.17 14771 41515

128K 0.7 0.21 10622 36060

! HDD Reads Ratio
Block Size TPC-C TPC-H TPC-C TPC-H

4K 1.00 1.00 1.00 1.00
8K 1.03 1.13 1.87 1.85
16K 1.09 1.34 1.66 1.71
32K 1.10 1.39 1.59 1.59
64K 1.10 1.32 1.56 1.47

128K 1.12 1.27 1.56 1.33

Figure 8.32: Raw data for the graph of Figure 5.13(a).
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FLASH / RAM Inclusive Exclusive Lazy
6 191 146 165

12 138 116 128
20 92 90 90
30 70 72 69
40 56 65 55

SSD Inclusive Exclusive Lazy
Samsung 1 1.8 0.93

Intel X25-M 1 1.06 0.91
Intel X25-E 1 0.84 0.95

FusionIO ioDrive 1 0.87 0.95

FLASH / RAM Inclusive Exclusive Lazy
2 69.23 65.64 92.92
4 64.54 62.02 90.69

6.67 61.45 59.81 86.87
10 59.68 58.33 85.44

13.34 58.57 57.34 84.53
33.34 55.64 54.65 82.04

Scheme Lookups Updates Total
Inclusive 27.62 32.06 59.68
Exclusive 27.56 30.77 58.33

Lazy 52.77 32.67 85.44

Hit Ratio HDD Reads
Block Size Inclusive Lazy Inclusive Lazy

4K 0.28 0.28 23825 23785
8K 0.28 0.21 23566 49146
16K 0.32 0.18 22051 48581
32K 0.42 0.17 19021 45699
64K 0.55 0.17 14771 41515

128K 0.7 0.21 10622 36060

! HDD Reads Ratio
Block Size TPC-C TPC-H TPC-C TPC-H

4K 1.00 1.00 1.00 1.00
8K 1.03 1.13 1.87 1.85
16K 1.09 1.34 1.66 1.71
32K 1.10 1.39 1.59 1.59
64K 1.10 1.32 1.56 1.47

128K 1.12 1.27 1.56 1.33

Figure 8.33: Raw data for the graph of Figure 5.13(b).
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FLASH / RAM Inclusive Exclusive Lazy
6 191 146 165

12 138 116 128
20 92 90 90
30 70 72 69
40 56 65 55

SSD Inclusive Exclusive Lazy
Samsung 1 1.8 0.93

Intel X25-M 1 1.06 0.91
Intel X25-E 1 0.84 0.95

FusionIO ioDrive 1 0.87 0.95

FLASH / RAM Inclusive Exclusive Lazy
2 69.23 65.64 92.92
4 64.54 62.02 90.69

6.67 61.45 59.81 86.87
10 59.68 58.33 85.44

13.34 58.57 57.34 84.53
33.34 55.64 54.65 82.04

Scheme Lookups Updates Total
Inclusive 27.62 32.06 59.68
Exclusive 27.56 30.77 58.33

Lazy 52.77 32.67 85.44

Hit Ratio HDD Reads
Block Size Inclusive Lazy Inclusive Lazy

4K 0.28 0.28 23825 23785
8K 0.28 0.21 23566 49146
16K 0.32 0.18 22051 48581
32K 0.42 0.17 19021 45699
64K 0.55 0.17 14771 41515

128K 0.7 0.21 10622 36060

! HDD Reads Ratio
Block Size TPC-C TPC-H TPC-C TPC-H

4K 1.00 1.00 1.00 1.00
8K 1.03 1.13 1.87 1.85
16K 1.09 1.34 1.66 1.71
32K 1.10 1.39 1.59 1.59
64K 1.10 1.32 1.56 1.47

128K 1.12 1.27 1.56 1.33

Figure 8.34: Raw data for the graph of Figure 5.14.
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FLASH / RAM Inclusive Exclusive Lazy
6 191 146 165

12 138 116 128
20 92 90 90
30 70 72 69
40 56 65 55

SSD Inclusive Exclusive Lazy
Samsung 1 1.8 0.93

Intel X25-M 1 1.06 0.91
Intel X25-E 1 0.84 0.95

FusionIO ioDrive 1 0.87 0.95

FLASH / RAM Inclusive Exclusive Lazy
2 69.23 65.64 92.92
4 64.54 62.02 90.69

6.67 61.45 59.81 86.87
10 59.68 58.33 85.44

13.34 58.57 57.34 84.53
33.34 55.64 54.65 82.04

Scheme Lookups Updates Total
Inclusive 27.62 32.06 59.68
Exclusive 27.56 30.77 58.33

Lazy 52.77 32.67 85.44

Hit Ratio HDD Reads
Block Size Inclusive Lazy Inclusive Lazy

4K 0.28 0.28 23825 23785
8K 0.28 0.21 23566 49146
16K 0.32 0.18 22051 48581
32K 0.42 0.17 19021 45699
64K 0.55 0.17 14771 41515

128K 0.7 0.21 10622 36060

! HDD Reads Ratio
Block Size TPC-C TPC-H TPC-C TPC-H

4K 1.00 1.00 1.00 1.00
8K 1.03 1.13 1.87 1.85
16K 1.09 1.34 1.66 1.71
32K 1.10 1.39 1.59 1.59
64K 1.10 1.32 1.56 1.47

128K 1.12 1.27 1.56 1.33

Figure 8.35: Raw data for the graph of Figure 5.15.



190 Chapter 8. Experimental Data
Sheet1

Page 3

Hit Ratio Time
All Clean Only All Clean Only

0.1 0.19 723 0.19 672
0.4 0.19 855 0.19 684
0.7 0.2 953 0.17 662
0.9 0.19 1011 0.07 725

Dirtyness Ratio

Figure 8.36: Raw data for the graph of Figure 5.16.
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Input Size (MB) HerMeS HerMeS simple NeXSort
1.2 30 4.81 6.14 47
2.5 61 9.9 11.5 93.3

5.06 130 19 24.7 173
10 270 37 46.3 384

17.6 455 63 78 679
28.5 740 110 132 1159
45.2 1175 174 203 1780
60.3 1565 238 296 2430
83 2175 392 505 3480

Main Memory (MB) HerMeS NeXSort
0.5 201 1978
5 150 1983

10 145 1976
20 143 1998
50 141 2017
75 140 2006
100 139 2028
200 137 2036

Key Length (bytes) Time
5 7.0

10 7.7
15 9.1
20 10.0
30 12.5
40 14.9
50 19.5
60 23.2
70 26.9
80 29.0
90 31.6
100 35.1
120 41.1
150 50.8
180 60.7

Input Size (elements x 106)

Figure 8.37: Raw data for the graph of Figure 6.9.
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Input Size (MB) HerMeS HerMeS simple NeXSort
1.2 30 4.81 6.14 47
2.5 61 9.9 11.5 93.3

5.06 130 19 24.7 173
10 270 37 46.3 384

17.6 455 63 78 679
28.5 740 110 132 1159
45.2 1175 174 203 1780
60.3 1565 238 296 2430
83 2175 392 505 3480

Main Memory (MB) HerMeS NeXSort
0.5 201 1978
5 150 1983

10 145 1976
20 143 1998
50 141 2017
75 140 2006
100 139 2028
200 137 2036

Key Length (bytes) Time
5 7.0

10 7.7
15 9.1
20 10.0
30 12.5
40 14.9
50 19.5
60 23.2
70 26.9
80 29.0
90 31.6
100 35.1
120 41.1
150 50.8
180 60.7

Input Size (elements x 106)

Figure 8.38: Raw data for the graph of Figure 6.10.
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Input Size (MB) Depth = 3 Input Size (MB) Depth = 5
58 6.1 73 6.7

131 14.2 178 16.6
274 35.2 345 31.0
526 61.0 608 62.6
948 115.0 1162 125.0

1580 205.5 1659 188.0

Input Size (MB) Depth = 7 Input Size (MB) Depth = 9
59 4.9 66 5.5

158 14.8 221 18.6
370 35.0 629 55.6
776 74.0 1120 108.0
1172 119.0 1588 159.0
1600 168.0

Figure 8.39: Raw data for the graph of Figure 6.11.
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Input Size (MB) HerMeS HerMeS simple NeXSort
1.2 30 4.81 6.14 47
2.5 61 9.9 11.5 93.3

5.06 130 19 24.7 173
10 270 37 46.3 384

17.6 455 63 78 679
28.5 740 110 132 1159
45.2 1175 174 203 1780
60.3 1565 238 296 2430
83 2175 392 505 3480

Main Memory (MB) HerMeS NeXSort
0.5 201 1978
5 150 1983

10 145 1976
20 143 1998
50 141 2017
75 140 2006
100 139 2028
200 137 2036

Key Length (bytes) Time
5 7.0

10 7.7
15 9.1
20 10.0
30 12.5
40 14.9
50 19.5
60 23.2
70 26.9
80 29.0
90 31.6
100 35.1
120 41.1
150 50.8
180 60.7

Input Size (elements x 106)

Figure 8.40: Raw data for the graph of Figure 6.12.

Sheet1

Page 2

Magnetic Flash Both
HErMeS, System A 86 46 46

304 148 147
HErMeS, System B 201 180 140

785 600 550

nexSort, System A

nexSort, System B

Figure 8.41: Raw data for the graph of Figure 6.13.
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