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Abstract

Recent advances in statistical machine translation (SMT) have used dynamic program-

ming (DP) based beam search methods for approximate inference within probabilistic

translation models. Despite their success, these methods compromise the probabilistic

interpretation of the underlying model thus limiting the application of probabilistically

defined decision rules during training and decoding.

As an alternative, in this thesis, we propose a novel Monte Carlo sampling approach

for theoretically sound approximate probabilistic inference within these models. The

distribution we are interested in is the conditional distribution of a log-linear translation

model; however, often, there is no tractable way of computing the normalisation term

of the model. Instead, a Gibbs sampling approach for phrase-based machine translation

models is developed which obviates the need of computing this term yet produces

samples from the required distribution.

We establish that the sampler effectively explores the distribution defined by a

phrase-based models by showing that it converges in a reasonable amount of time to

the desired distribution, irrespective of initialisation. Empirical evidence is provided to

confirm that the sampler can provide accurate estimates of expectations of functions of

interest. The mix of high probability and low probability derivations obtained through

sampling is shown to provide a more accurate estimate of expectations than merely

using the n-most highly probable derivations.

Subsequently, we show that the sampler provides a tractable solution for finding the

maximum probability translation in the model. We also present a unified approach to

approximating two additional intractable problems: minimum risk training and min-

imum Bayes risk decoding. Key to our approach is the use of the sampler which

allows us to explore the entire probability distribution and maintain a strict proba-

bilistic formulation through the translation pipeline. For these tasks, sampling allies

the simplicity of n-best list approaches with the extended view of the distribution that

lattice-based approaches benefit from, while avoiding the biases associated with beam

search. Our approach is theoretically well-motivated and can give better and more

stable results than current state of the art methods.
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Chapter 1

Introduction

1.1 Overview

Statistical Machine Translation (SMT; Brown et al. (1990); Och and Ney (2002)) is a

data-driven approach which treats translation as a machine learning problem. Given a

source sentence as input, a function which maps each possible output target language

sentence to a real valued score is developed. The score is based on predefined features

which identify characteristics of the input/output pairs that are indicative of whether the

output is good or not. Each feature is weighted by a corresponding parameter. During

a training phrase, the parameters are adjusted so that the function assigns high scores

to good outputs and low scores to bad outputs. The translation of an input sentence

is the output with the highest score. Since there are usually many possible outputs,

finding the highest scoring one requires a search component. The search process is

also known as decoding.

A model describes the scoring function, the set of features, the set of corresponding

parameters and the set of rules used to transform an input sentence into a output

sentence. A sequence of rule application which translates the entire input sentence is

commonly referred to as a derivation. Multiple derivations can map to the same output

string or translation. An SMT model is probabilistic if it assigns a non-negative score

to each derivation and if the scores of all the derivations sum up to 1.

Probabilistic models have many advantages. In the training phase, we can tune the

model parameters by using well-motivated algorithms such as conditional likelihood

training (Lafferty et al., 2001) or minimum risk training (Smith and Eisner, 2006).

These training algorithms involve an optimisation problem which can be solved effi-

ciently using powerful numerical methods which scale to a large number of features.

1
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Maximum a posteriori (MAP) decoding finds the most probable output string.

While strictly speaking MAP decoding does not require that the base model be proba-

bilistic, a probabilistic model allows for alternate decoding techniques. An example is

minimum Bayes risk (MBR; Kumar and Byrne (2004)) decoding, a technique which

uses the notion of risk for making optimal decisions, often outperforming MAP decod-

ing (Tromble et al., 2008; Kumar et al., 2009).

Finally, probabilistic models can be used to obtain confidence measures which

might be needed for downstream processing tasks. They can also be combined together

in a product-of-experts or can be easily chained e.g. we can build a speech to speech

translation system by concatenating a probabilistic speech recogniser and a probabilis-

tic speech synthesiser at each end of a probabilistic SMT model.

An SMT model which produces a finite number of derivations when translating

an input sentence can be converted into a probabilistic one by first exponentiating

the score of every derivation (this ensures that every score is non-negative) and then

normalising the resulting score by the sum of the exponentiated scores of each deriva-

tion. The latter ensures that all scores sum up to 1 and that therefore the model is

a probability distribution over outputs given an input. A probabilistic model which

uses exponentiated weighted features to model the conditional probability of outputs

given an input is often referred to as a log-linear model. SMT models define a con-

ditional distribution over derivations given an input. By summing up the probabilities

of derivations yielding the same translation, a conditional model over translations is

obtained.

There is a vast number of possible translations allowed by the model for any input

sentence. In most models, computing the normalisation term for all but short inputs

is too expensive to be practical, i.e. the computation is intractable. As a result,

current state of the art SMT systems have eschewed the calculation of the denominator

in the log-linear model and have instead used an unnormalised linear model (Och

and Ney, 2002). Making exact decisions in such models remains intractable and

efficient bespoke approximate algorithms have been designed for inference tasks such

as decoding and training. For instance, approximate polynomial-time algorithms for

MAP decoding have been developed by placing restrictions on the feature space and

by substituting the search for the most probable translation with a search for the most

probable derivation. The most commonly used algorithm is beam search (Koehn,

2004a) which performs tractable decoding by heuristically pruning the search space.

At training time, the most commonly used algorithm tunes the parameters such that
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the derivation considered the “best” by a given error function is also the most probable

derivation given the current parameters. The optimisation of this algorithm is made

efficient by exploiting characteristics of the search and feature spaces (Och, 2003).

SMT systems have gained a lot in terms of efficiency by jettisoning the probabilistic

interpretation of the model. This increased efficiency has meant that SMT systems

have been able to scale to massive datasets with a resulting increase in translation

quality.

Probabilistic inference techniques offer the promise of training better models. For

example, while minimum error rate training (Och (2003), MERT), the most prevalent

training algorithm, is efficient, it is unstable (Foster and Kuhn, 2009) and can only

be applied to a handful of features (Och et al., 2004). This limitation of MERT has

hindered the exploration of potentially informative features. In fact, success in scaling

linear models of SMT to a large number of features (Watanabe et al., 2007; Chiang

et al., 2008b, 2009) has only recently been achieved. Even then, the number of features

used in these models is only of the order of thousands. On the other hand, the ready

availability of general purpose probabilistic optimisation algorithms has enabled the

few existing normalised conditional probability models of translation (Ittycheriah and

Roukos, 2007; Blunsom et al., 2008) to successfully scale to millions of rich features.

Probabilistic models also allow for risk minimisation techniques which have shown

to improve translation performance when applied during training (Li and Eisner, 2009)

and during decoding (Tromble et al., 2008; Kumar et al., 2009).

The latter methods have performed probabilistic inference by approximating the

space of all derivations with a subset of high scoring derivations. In fact, due to the

intractability of computing the normalisation term of the log-linear model, any attempt

at probabilistic inference in SMT models will have to resort to approximations: the

success of any approach is likely to hinge on the quality of the approximations used.

Existing methods have approximated the exponential space of all derivations by first

running beam search and then mining a compact polynomial space representation of

the resulting pruned search space; the early methods of (Kumar and Byrne, 2004;

Smith and Eisner, 2006) used the n most probable derivations drawn from this space

as proxy to the entire space, whereas more recent work has seen the development of

specialised polynomial time algorithms (Tromble et al., 2008; Li and Eisner, 2009) to

exploit the entirety of the unpruned space leading to performance improvements.

Both minimum risk training and decoding involve the calculation of expectations.

The use of beam pruning to approximate the required expectations however introduces
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the concern that the resulting approximations might be arbitrarily biased (Bouchard-

Côté et al., 2009). This is because the approximation is likely to be too concentrated

around the mode of the distribution (Blunsom and Osborne, 2008). In the case of

minimum risk training, the expectation required is that of the values of the features

of the model. While the bias resulting from beam pruning might not be noticeable

in current SMT models which only use a few features that are all active on every

derivation, it is likely to matter more as future models scale to using a large number

of features where only a minimal subset might be active on any given derivation: a

feature with low expectation may be completely skipped if its supporting derivation is

pruned.

In this thesis we introduce a novel Markov Chain Monte Carlo (MCMC) sampling

framework for theoretically sound approximate inference in SMT models. The general

idea behind MCMC methods is to draw samples from the distribution of interest after

which the generated samples can be used for a number of inference tasks such as

the calculation of expectations of values of interest. In this thesis, the distribution

we are interested in is the conditional distribution of a log-linear translation model;

however, recall that often there is no tractable way of computing the normalisation

term of the model. Instead, we use a Gibbs sampling (Geman and Geman, 1984)

approach which obviates the need of computing this term yet produces samples from

the required distribution. Theoretically, the Gibbs sampling technique we present is

general purpose in that it can be applied to a variety of SMT models such as phrase-

based (Koehn et al., 2003) or syntax-based (Chiang, 2005) translation models. In this

thesis, we develop a Gibbs sampler for phrase-based models since they remain the state

of the art approach for modeling translation for many language pairs.

After showing that the Gibbs sampler is able to closely approximate the true distri-

bution, we apply this framework as a tractable solution for a variety of inference tasks.

For example, it can be employed for performing unbiased minimum risk training.

Since the model is probabilistic, general purpose optimisation algorithms which scale

to a large number of features can be used. The probabilistic interpretation of the model

restored, the sampler facilitates MBR decoding. It also enables searching for the most

probable translation.

We perform extensive experimentation to compare the performance on standard

decoding tasks of a sampling-based pipeline with a beam search one. We find that

the sampler may obtain results as good, or better, than beam search and that these

results are often more stable. However, sampling is slower than current training and
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decoding algorithms. As an alternative, we suggest using sampling for training and

the MBR techniques of (Tromble et al., 2008; Kumar et al., 2009) for decoding, a

compromise solution which maintains, and sometimes improves, the accuracy of the

sampling pipeline while reducing decoding time.

1.2 Thesis Contributions

The major contributions of this thesis are as follows:

• We introduce a novel Gibbs sampling based approach for probabilistic inference

in phrase-based translation models.

• We show that sampling provides a tractable solution for finding the maximum

probability translation in the model.

• We perform unbiased minimum risk training and decoding using the sampler and

find that this unified probabilistic risk minimisation approach can improve upon

state of the art SMT models.

1.3 Structure of the Thesis

Chapter 2 provides a detailed survey of contemporary machine learning based approaches

to SMT. We focus our review on probabilistic-based techniques for parameter estima-

tion and decoding which motivate the work presented in this thesis.

Chapter 3 introduces sampling methods in general and Markov Chain Monte Carlo

techniques in particular as theoretically well-motivated approaches for approximating

expectations of functions of interest in distributions which preclude exact inference.

In addition to the theoretical properties of these techniques, we also consider the

practical aspects of designing and running a sampler including choices of proposal

distributions, ways to improve mixing of the sampler, convergence diagnostics and

variance reduction methods. Finally, we review prior sampling-based approaches to

problems in natural language processing (NLP) and statistical machine translation.

Chapter 4 describes our experimental setup. We give details about our baseline

model and on the corpora used for our experiments.

Chapter 5 presents a novel Gibbs sampler for phrase-based machine translation. We

describe the block sampling based approach used for efficient sampling and provide a
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rigorous formal description of the sampler as well as proofs for its correctness. We

draw attention to cases in which the proofs of the correctness do not hold and describe

methods to address this flaw in the sampler’s design. We also discuss the algorithmic

complexity of the sampling procedure and explain how the sampler is run in practice.

Finally, we provide empirical evidence of the sampler’s ability to effectively explore

the probability space of a phrase-based translation model.

Chapter 6 discusses how the sampler described in the previous chapter can be used

for two intractable decoding tasks, namely MAP and MBR decoding. We run extensive

decoding experiments examining a number of factors which affect decoding quality

including the scaling of the model parameters, the number of samples collected and

the method with which the sampler is initialised. Results show the sampler performs

best as an MBR decoder.

Chapter 7 shows how the sampler can be used to tune the model parameters

using minimum risk training. A key quantity required for this training algorithm

is the expected value of the features in the model. We experimentally compare a

sampling-based approach for computation of this expectation with two beam search

based approaches. We then propose two variants of minimum risk training. The first

variant, sentence sampling, optimises an objective defined at the sentence level. In our

experiments, we use a sentence level approximation to BLEU for risk computation. The

second variant is corpus sampling which optimises a corpus-based objective and allows

the direct use of BLEU in the calculation of the objective function. We also present

ways to improve the optimisation of the non-convex minimum risk training objective

function. We end the chapter by presenting results which compare translation per-

formance using minimum risk trained weights with the alternate MERT optimisation

technique.

Finally, in Chapter 8 we conclude the thesis by highlighting the major findings, and

suggesting future research directions.

1.4 Published Work

This thesis is based on three publications. Chapter 5 extends the material presented

in Arun et al. (2009) and Arun et al. (2010a) by providing a more thorough description

of the sampler and by presenting experiments analysing the sampler’s convergence.

Chapter 6 expands selected sections from both Arun et al. (2009) and Arun et al.

(2010a) by giving more details about decoding experiments.
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Finally, Chapter 7 elaborates on Arun et al. (2010b). It provides more analysis on

approximating feature expectations, contains additional information on the methods

used for parameter estimation, and details many more experiments.





Chapter 2

Statistical Machine Translation

Machine Translation (MT) is the task of using computers to automatically translate

one natural language into another. The field of MT dates from the late 1940s when the

success of computers to crack ciphers during World War II led to the hope that they

could also be used for automatic translation. Statistical machine translation (SMT) is

a data-driven paradigm which applies statistical learning methods to a parallel corpus

or bitext consisting of sentences in a source language and their translation in the target

language after which it can be used to translate seen or unseen sentences in the source

language into sentences in the target language. SMT was first introduced by Brown

et al. (1993) and rapidly became the dominant MT research methodology. In addition,

the last few years have seen high-profile commercial MT systems such as Google

Translate and Microsoft Translator switching from rule-based systems to SMT.

In the SMT framework, given a source (Foreign) sentence f, the translation problem

is to generate a target (English) sentence e that maximises a scoring function s which

is dependent on f and the generated e. The transformation of the source string into a

string in the target language is governed by a translation equivalence model (Lopez,

2008), which describes a series of steps that perform this transformation.1 Translation

is often ambiguous, for example there may be multiple ways of translating the same

word, so during the course of the transformation the model needs to have a mechanism

to resolve ambiguity. This mechanism is provided by the parameterisation of the

translation equivalence model. The parameterisation defines a number of knowledge

sources also known as parameters or features which are then used to assign scores to

each decision made during the translation process. The parameterisation also defines

1The translation equivalence model is also simply called the translation model. However, since
the latter term is often also employed to describe a specific parameter in the SMT model, we use the
expression translation equivalence model to refer to the general translation model.

9



10 Chapter 2. Statistical Machine Translation

how the features are estimated and how they are combined together to produce scores.

We group together the translation equivalence model and its parameterisation under

the heading model which we describe in detail in Section 2.1.

A good model is one in which good translations are scored higher than bad transla-

tions. But how can we assess whether a given target language string is a good or a bad

translation of the source sentence? In a system development setup, human evaluation

is impractical because it is too slow and too costly. As an alternative, a number of

automatic evaluation metrics have been proposed. The development of metrics that

correlate well with human judgements remains a very active field of research. We

review some of the existing metrics in Section 2.2.

Once we have an adequate automatic evaluation method, we can use machine

learning algorithms that automatically tune or refine our model such that it assigns

higher scores to good translations than to bad ones. This tuning step is also referred to

as parameter estimation and is discussed in Section 2.5.

Given a suitably tuned model, we are now ready to translate the new sentence

f. Decoding consists of finding the most likely target sentence from the space of all

translations allowed by the model. The concept of most likely sentence is quantified by

a decision rule (see Section 2.3). The number of possible target language translations

that can be generated by the model is usually exponential in the length of f. To

efficiently explore this search space for the most likely translation, we require a search

algorithm. In Section 2.4, we review a number of such algorithms.

2.1 Model

2.1.1 Models of Translation Equivalence

The first component of an SMT model is a translation equivalence model which is

essentially the set of rules that map a source sentence into a target sentence. The rules

are typically induced directly from a parallel corpus of the relevant languages, in which

case the corpus can be referred to as a training corpus.

Translation equivalence models can range from being coarse-grained to being fine-

grained. An extreme example of a coarse-grained model is one with rules that simply

encode how whole sentences translate. These types of rule can translate previously

seen sentences perfectly but do not generalise to unseen sentences. An example of

a fine-grained model is a word-based model where the rules describe how individual
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source language words translate. Assuming all the words in an unseen source sentence

have been seen in the training corpus, the model will be able to translate the sentence.

The seminal IBM models for SMT developed by Brown et al. (1990, 1993) are word-

based models. The most simple IBM model, called Model 1, makes the simplifying

assumption that each source word independently generates a target word. Of course,

Model 1 is an inadequate representation of the true translation process. In reality, a

source word can translate to 0 or many target words and conversely a target word can

be generated by 0 or many source words. Additionally, there is no guarantee that

words in appear in the same order in the target as in the source, that is, words can be

reordered. Any model of translation needs to address the issue of reordering.

Brown et al. (1993) present systems of increasing complexity to better model word-

based translation. Model 2 addresses reordering by introducing an absolute alignment

(or distortion) model based on the positions of source and target words. The fertility

model in Model 3 models how many target words are generated by a given source

word. Model 4 and 5 improve reordering by replacing the absolute alignment model

with a relative alignment one.

Even the most sophisticated IBM word-based models fail to correctly model the

case of many words in the source translating as a unit into many words in the target.

This many-to-many phenomenon is most clearly evident in the case of translations

of idiomatic or similar multi word expressions. Phrase-based models (Och et al.,

1999; Marcu and Wong, 2002; Koehn et al., 2003) address this problem and advanced

the state of the art by moving from using words as the basic unit of translation to

using phrases. Phrases in this context are simply consecutive sequence of words.

They allow the translation models to learn local reordering and idioms, and account

naturally for the insertion and deletion of words in a local context, something that

word-based models have to model using notions of fertility and distortion. An example

of a translation produced by a phrase-based model is shown in Figure 2.1. Notice that

the first 3 words of the input French sentence are translated as one phrase and that the

position of the source word “contenu” is reordered in the target translation. Phrase-

based models address the issue of local reordering; however, they offer no principled

way of dealing with long-distance reordering except for the relatively weak methods

proposed in the higher order IBM models.

The need for a mechanism to adequately handle long distance reordering motivates

the development of syntax-based models (Chiang, 2005, 2007; Quirk et al., 2005;
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Les expressions de la parite ont un contenu profondement culturel .

Expressions of parity have a profoundly cultural content .

Figure 2.1: An example translation using a phrase-based model.

Marcu et al., 2006; Galley et al., 2006). A detailed exposition of these models is

beyond the scope of this thesis; interested readers are referred to Lopez (2008).

2.1.2 Model Parameterisation

The second component of an SMT model is its parameterisation which allows the

model to assign a score to every pair of source and target sentence. In SMT, this

parameterisation is in terms of a joint probability distribution p(e, f) over source sen-

tences f and target sentences e. At translation time, we are interested in the probability

of an output string e given a fixed input string f given by the conditional distribution

p(e|f).
In reality, the use of translation equivalence models to guide the production of

output e given f as input also introduces in the parameterisation a derivation variable d,

which is a mapping from f to e indicating the rules used by the translation equivalence

model.

For the phrase-based translation example in Figure 2.1, f denotes the source sen-

tence in French, e refers to the produced English translation and d corresponds to

the sequence of translation rules, illustrated as arrows from French phrases to English

phrases, used to produce the translation.

At this point, it is necessary to introduce some terminology which we will use

during the course of this document. Let D(f) denote the set of derivations that can

be generated given the translation equivalence model and input sentence f. Each

derivation d ∈ D(f) can be mapped to a string e in the target language using a yield

function Y : e = Y (d). The set of all derivations yielding target string e given source

string f is denoted by D(e, f) = {d ∈ D(f) such that Y (d) = e}. Given input string

f, the set of output strings that can be generated by the model is given by T (f) =

{Y (d) such that d ∈D(f)}. For most models, and this is certainly the case for the ones

we look at in this thesis, both |D(f)| and |T (f)| are exponential in |f|.
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The model parameterisation therefore assigns a probability p(e,d|f) to each deriva-

tion. Obtaining the term of interest, namely the probability p(e|f) assigned to a string,

necessitates summing over (this is also called marginalising) all derivations that yield

e:

p(e|f) = ∑
d∈D(e,f)

p(e,d|f) (2.1)

In most translation equivalence models, this sum involves an expensive sum over an

exponential number of derivations. Therefore, most parameterisations simply model

p(e,d|f), the distribution over derivations.

The noisy-channel model uses Bayes’ rule to decompose the conditional distribu-

tion:

p(e,d|f) =
p(e,d, f)

p(f)
(2.2)

=
p(f,d|e) · p(e)

p(f)
(2.3)

∝ p(f,d|e) · p(e) (2.4)

Since the source sentence f remains fixed, the denominator can be ignored as in

(2.4). The noisy channel formulation of translation is proposed by Brown et al. (1990).

It decomposes the conditional distribution p(e,d|f) allowing for an independent mod-

eling of the language model p(e) and the translation model p(f,d|e) - the language

model being a measure of how well formed the target sentence is and the translation

model measures the likelihood of the source sentence being a translation of the target

sentence. Note that while we are interested in going from source f to target e, in the

noisy channel the reverse translation direction is modeled.

The language model is learned from large amounts of text in the target language

and is usually based on n-gram frequencies and sophisticated smoothing methods

which deal with data sparseness issues. The translation model is learned from parallel

corpora.2 We discuss these models in more detail in Chapter 4.

Och and Ney (2002) argue that the noisy-channel model is optimal for translation

only if the true probability distributions p(e) and p(f,d|e) are used. Since the used

models and training methods provide only approximations of the true probability dis-

tributions, it is possible that a different combination of language model and translation

2Note that here translation model refers to the parameter in the SMT model.
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model might yield better results. Another limitation of the noisy-channel model is that

it does not offer a way to extend the baseline statistical MT model to include additional

dependencies.

Instead, they suggest modelling the posterior distribution p(e,d|f) directly with

a log-linear model. This allows the use of an arbitrary set of M feature functions

hm(e,d, f) defined over the input f, the output e and the alignment d between them.

The features are combined using weights λm which determine the contribution of each

feature towards the total score.

p(e,d|f) =
exp [s(e,d, f)]

Z(f)
(2.5)

where s(e,d, f) is an unnormalised score computed as a dot product between the

features of the derivation and the model weights:

s(e,d, f) = λ ·h(e,d, f) =

[
M

∑
m=1

λm ·hm(e,d, f)

]

and Z(f), the denominator in (2.5), is required to make the function a probability

distribution. In log-linear models, the denominator is usually referred as the normali-

sation constant or the partition function or simply as Z. We use all three terms inter-

changeably in this document. Z(f) is calculated by summing over all the derivations in

the model:

Z(f) = ∑
d′∈D(f)

exp
[
s(Y(d′),d′, f)

]
(2.6)

Note that this framework contains as special case the noisy-channel model if

the following two feature functions are used, h1(e,d, f) = log p(e) and h2(e,d, f) =

log p(f,d|e) and if λ1 = λ2 =1.

The log-linear formulation for SMT allows tremendous flexibility for integrating

diverse knowledge sources in form of features. For example, Och and Ney report

a substantial improvement in translation performance when switching from a noisy-

channel model to a log-linear model to which they add additional features. Most

current SMT systems use the log-linear model for parametrising the translation process

due its power and simplicity. However while a vast number of arbitrary features can

be added to the log-linear model, most SMT systems only use it to combine a small

number of features.
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2.2 Evaluation Metrics

As we saw in the previous section, a log-linear SMT model consists of knowledge

sources called features and weights associated with these features. Assuming we have

a means to quickly and reliably evaluate the quality of the translation output by our

model, the log-linear parameterisation provides us with a way to build an SMT system

iteratively. For instance, we can produce some translations with the current version

of our system, evaluate its performance, alter the features and/or the weights of the

log-linear model, run the modified system, and keep doing so until the performance

can no longer be improved.

An obvious way to assess the quality of a translation is to judge by hand whether

it is correct or not. This is called manual evaluation. However manual evaluation is an

expensive process both in terms of time and money, making it unsuitable in a system

development set-up. Many automatic evaluation metrics have instead been proposed

in the literature. Automatic metrics work by evaluating the system output against a

set of one or many human-produced reference translations. The use of the human

translations as reference is motivated by the idea that a good MT output is one that

closely resembles human translations of the same input sentence. A good automatic

metric is one that correlates well with human judgments.

Automatic evaluation metrics are used to evaluate the final output of an SMT

system or to compare outputs of different systems which, for example, might be taking

part in a competition. They are also an important component of discriminative training.

The latter refers to the phase in the SMT pipeline in which the parameters of the

model are tuned using a machine learning algorithm so as to give good translation

performance on a held-out set. Since the discriminative training algorithm is usually

purely automated, one requires an evaluation metric that a) correlates well with human

judgement and b) can be computed efficiently.

One of the first metrics to be applied to SMT was Word Error Rate (WER) (Och

et al., 1999) which is based around the Levensthein distance, the minimum number

of edit steps - insertion, deletions and substitutions - needed to match two sequences.

WER was borrowed from Automatic Speech Recognition (ASR) evaluation but while

it is suitable for that task, it is less so for SMT. This is because WER ignores word

reorderings. This is not an issue in ASR where there are no reorderings, but in the case

of MT where reordering is common, WER would penalise a word that is translated

correctly but placed in the wrong location. A refinement of WER that does take into
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account word reorderings is position-independent word error rate (PER), which was

proposed by Och et al. (1999).

2.2.1 BLEU

Currently, the most popular automatic evaluation metric in the community is BLEU

(Papineni et al., 2002), which has been shown to have a high correlation with human

judgements. BLEU measures n-gram matches between the system output and a refer-

ence translation. It is a precision-based metric where short n-grams assess the ade-

quacy of the translation in conveying the information content of the source sentence

and longer n-grams measure the fluency of the translation in the target language.

Since BLEU uses n-gram matches to compute the goodness of a translation, it can

be harsh to variability in lexical choices. An innovation of the BLEU metric is the use

of multiple reference translations. The more reference translations there are, the higher

the chance that an acceptable translation of an ambiguous part of the source shows up

in one of the references. Indeed, the high correlation of the BLEU score with human

judgements occurs when multiple references are used. The correlation is reduced or

even disappears when only a single reference is used.

We now formally define the BLEU metric. For each n-gram g in a candidate trans-

lation c, let #(g) be the count of the number of times g appears in c and #clip(g) be

the maximum number of times g appears in any of the corresponding reference trans-

lations. The n-gram precision pn, aggregated over the corpus of candidate translations

C, is as follows:

pn =
∑c∈C ∑g∈n-grams(c) #clip(g)

∑c∈C ∑g∈n-grams(c) #(g)
(2.7)

The n-gram precisions at each order n are combined together in a weighted geo-

metric average. The lack of an implicit recall measure in the metric is addressed by the

inclusion of a brevity penalty. The brevity penalty is applied if h, the overall length of

the candidate translations aggregated over the corpus C of all candidate translations, is

shorter than the effective reference length, r, aggregated over the corpus of reference

translations.

In the single-reference case, we obtain r by simply summing up the length of each

reference making up the reference corpus. In the multiple-reference case, there are

several different ways for computing r:
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• In the so called IBM BLEU, based on the original definition of Papineni et al.

(2002), for each sentence we use the reference length which is closest in length

to the hypothesised translation.

• In the NIST definition of BLEU, the length of the shortest reference sentence is

used.

• A third variant uses the average length of the reference sentences.

Putting everything together, the brevity penalty, BP is given by:

BP =

1 if h > r

e1−r/h otherwise
(2.8)

and BLEU is given by:

BLEU = BP · exp

(
n

∑
i

λi log pi

)
(2.9)

Typically, the maximum order n for n-grams to be matched is set to 4 and the

weights λi are set to 1.

Note that the BLEU score is undefined if any of the n-gram precisions is 0, meaning

that no n-grams of a particular order are matched anywhere in the output. Since such a

thing can happen at the sentence level, BLEU is usually computed on a document level.

It is often desirable to have a sentence-level metric that incorporates the properties

of the BLEU metric. For example, the task of extracting an oracle translation, i.e.

given a list of generated translations, finding the translation that is most similar to the

reference translation, is much simplified if a metric defined on the sentence level exists.

A smoothed-BLEU implementation has been proposed in Lin and Och (2004) to

compute BLEU at the sentence level. In this implementation, for n-gram orders higher

than 1, add one smoothing is done to the n-gram match (numerator) and total n-gram

counts (denominator). Sentences with no n-gram matches for high n-gram orders but

with matches for lower n-gram orders can therefore still receive a non-zero score. The

score of the sentence will be 0 only if there is no match even at the unigram level.

Criticisms

Although it is the most widely used automatic metric in MT, a number of criticisms

have been voiced against BLEU. Callison-Burch et al. (2006) found a lack of corre-

lation between BLEU scores and human judgements when comparing the outputs of a
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SMT system with MT outputs produced using a rule-based MT system or a human

post-edited system. They concluded that the use of BLEU scores is best suited to

comparing related systems or in a system development setup where different versions

of the same system need to be compared.

Further criticism of the metric is presented in Chiang et al. (2008a), drawing

attention to counterintuitive results that can be obtained when using BLEU. Chiang et al.

attribute these inconsistencies to the fact that BLEU is not decomposable at the sentence

level: improving the translation of a sentence in the corpus is not guaranteed to improve

the overall corpus score and conversely degrading the translation of a sentence in the

corpus is not guaranteed to decrease the overall corpus score.

Why is BLEU not decomposable? Chiang et al. trace it to the way the brevity

penalty is computed. Recall that the brevity penalty is a ratio of the sum of reference

lengths across the corpus and the sum of the hypothesised lengths across the corpus.

This means that if a system generates a too long translation for one sentence, then as

long as the sum of the lengths of the two translations is not shorter than the sum of the

reference lengths, the system can produce a short translation for another sentence with-

out incurring a penalty. Whereas were the metric to be computed as a weighted average

of sentence-level scores, the longer translation would not be able to compensate for the

shorter translation and consequently the latter would have to face a penalty.

Going back to the oracle extraction problem mentioned previously, one conse-

quence of BLEU’s non-decomposability is that the set of oracle translations extracted

on a sentence-by-sentence basis using a sentence-level approximation of BLEU is not

guaranteed to be the optimal with respect to corpus-level BLEU.

2.2.2 Other Metrics

Automatic evaluation is a an active research field with many metrics proposed as

alternatives to BLEU. An example alternative metric is METEOR (Banerjee and Lavie,

2005) which addresses some of the limitations of BLEU by rewarding near-matches and

synonyms. This is done by first matching the proposed translation with the reference

at the surface level and then backing off to stems and finally semantic classes (using

WordNet synsets). Other metrics include translation edit rate (TER) (Snover et al.,

2006) which measures the edit distance between the system output a human-corrected

version of this output and GTM (Melamed et al., 2003) which is based around notions

of precision and recall tailored for MT.
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2.3 Decision Rule

At test time, the SMT system is presented with a source sentence for which it has to

find the most likely target sentence from the space of all target sentences that can be

produced by the model. This process is referred to as decoding. Decoding consists of

two parts:

• a decision rule which defines the concept of most likely target sentence.

• a search algorithm which finds the most likely target sentence as defined by

the decision rule. The choice of the search algorithm therefore depends on the

chosen decision rule.

We will look at search algorithms in more detail in Section 2.4 but for now focus on

decision rules. For the discussion in the rest of the chapter, we assume that the model

under consideration is a probabilistic log-linear model.

2.3.1 Maximum A Posteriori Decoding

The first decision rule we consider is Maximum A Posteriori (MAP) decoding which

corresponds to finding e∗MAP, the mode of the posterior distribution p(e|f):

e∗MAP = argmax
e∈T (f)

p(e|f) (2.10)

In reality, however, the posterior distribution at hand is of the form p(e,d|f): a

distribution over derivations. Therefore, MAP decoding requires marginalising over

the derivations of e.

e∗MAP = argmax
e∈T (f)

∑
d∈D(e,f)

p(e,d|f) (2.11)

Since both |D(e, f)| and |T (f)|may be exponential in the size of the input string, this

maximisation turns out to be NP-complete as shown by Knight (1999). The decision

rule in Equation 2.11 is also referred as max translation decoding. An often used

approximation to max translation decoding is max derivation decoding:
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e∗MAP = argmax
e∈T (f)

p(e|f)

= argmax
e∈T (f)

∑
d∈D(e,f)

p(e,d|f)

≈ argmax
e∈T (f)

max
d∈D(e,f)

p(e,d|f) (2.12)

= Y

(
argmax

d∈D(f)
p(e,d|f)

)
(2.13)

The expensive sum operation in (2.11) has been replaced by a simpler max operation

in (2.12) which can be found using (2.13). The decision rule in (2.13) therefore corre-

sponds to finding the mode of the posterior distribution over derivations. While in most

cases computing the max derivation solution exactly remains intractable, by which we

mean that the computation is too expensive to be practical, efficient approximate search

algorithms do exist. Therefore, the max derivation decision rule is employed by most

SMT systems (Koehn et al., 2003; Chiang, 2007).

The max derivation approximation and solution are often also referred to as the

Viterbi approximation and solution respectively (Li et al., 2009b). However, it is

worth pointing out that the term Viterbi solution implies an exact solution found

using dynamic programming techniques whereas the max derivation solution cannot

be computed exactly for all but the most trivial of translation models. In this thesis, so

as to avert any misconception as to the exactness of the solution, we prefer the use of

the term max derivation.

2.3.2 Minimum Bayes Risk Decoding

An alternate decision rule comes from statistical decision theory. This states that given

the true probability distribution p(e|f), the optimal decision rule for any statistical

model is the solution that minimises its risk or expected loss. This decision rule is

often referred to as the minimum Bayes risk (MBR) rule (Kumar and Byrne, 2004) :

e∗MBR = argmin
e∈T (f)

Rf(e)

= argmin
e∈T (f)

∑
e′∈T (f)

`(e,e′)p(e′|f) (2.14)

where Rf(e) represents the risk when translating f of choosing e and `(e,e′) is the

loss incurred when choosing solution e if the true solution is e′.
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The MBR decision rule therefore chooses a high-probability translation that on

average is most similar to any possible reference translation. This notion of similarity

is captured using a loss function. When the loss function is an exact match criterion,

also called as a 0/1 loss function, then the MBR decision rule is equivalent to the MAP

rule.

However, as we saw in Section 2.2, SMT systems are typically evaluated using

metrics (or loss functions) such as BLEU that reward partial matches. In such cases, it

is preferable to use the MBR decision rule.

2.3.3 Consensus Decoding

The MBR decision rule is an example of a consensus decision rule - rather than simply

returning the mode of the posterior distribution, it aims to find a solution which is most

similar to other high-probability translations generated by the model. However, using

the MBR decision rule can be expensive since its algorithmic complexity is O(|T (f)|2).
DeNero et al. (2009) propose a fast linear-time consensus decoding alternative to

MBR. Their decision rule is of the form:

e∗Fast-CON = argmin
e∈T (f)

`(e,EP(e′|f)[φ(e′)]) (2.15)

where φ(e′) maps the string e′ to a feature-based representation. In contrast to

MBR, the fast consensus decision rule moves the expectation term inside the loss

function, thus reducing the complexity of the algorithm to linear while maintaining

a consensus-like objective similar to MBR’s.

2.4 Search Algorithms

Having established the different flavours of decision rules that exist, we now look at

search algorithms which aim to find the solution of the chosen decision rule. The

search algorithm to be used is not only dependent on the decision rule but also on the

structure of the underlying probabilistic model. By structure, we broadly mean the

features of the model. If the features of the model are local or near-local, then efficient

dynamic programming based algorithms can be used. Otherwise, we need to resort to

more computationally expensive algorithms.

In the rest of this section, we again assume that the model under consideration is in

the form of a probabilistic log-linear model. We will illustrate the algorithms using a



22 Chapter 2. Statistical Machine Translation

phrase-based model but will highlight those cases where an alternate representation of

the translation equivalence model (e.g a syntax-based model) necessitates a substantial

change in the search algorithm.

2.4.1 Max Derivation Decoding

The search problem in max derivation decoding consists of finding the most proba-

ble derivation (Equation 2.13). While max derivation decoding is simpler than max

translation decoding, its complexity is exponential in the length of the input so exact

inference remains intractable.

Why is that so? Recall that in phrase-based decoding, the source sentence can

be segmented in multiple ways. There are usually multiple ways of translating each

segment. Also, source-side reordering is allowed. If unlimited reordering is allowed,

the complexity of search for an input sentence of length I is O(I22I) (Lopez, 2009), a

complexity which is exponential. Most systems limit the extent to which reordering is

allowed. This can reduce the search space drastically. For example, the Moses (Koehn

et al., 2007) phrase-based decoder requires that first word of the current source phrase

being considered for translation be within a window of Λ words from the last word

of the most recently translated phrase. Also, the last word of the currently translated

source phrase should be within Λ words of the leftmost untranslated source word. As a

result, the complexity of the search space is reduced to O(Λ22ΛI), which is exponential

in Λ but linear in the size of the input (Lopez, 2009). Since Λ is usually set to a small

value, the complexity of this restricted search algorithm is more tractable.

2.4.1.1 Beam Decoding

For phrase-based models, the most popular search algorithm for max derivation decod-

ing is stack decoding with beam search, also referred to as simply beam decoding

(Koehn, 2004a). Search proceeds as follows. First, the source sentence is segmented

into phrases. All segmentations are equiprobable. For every source phrase, all possible

translation options are collected from the phrase table. Starting with an initial empty

hypothesis, the hypothesis is expanded by picking a source phrase to be translated

and choosing a target phrase for that source. While the target is generated from left to

right, source side reordering is allowed as long as reordering limits are respected. Each

time a hypothesis is expanded, it keeps a backpointer to the hypothesis from which it

expands and is assigned a score based on its partial model costs. Hypotheses are stored
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in stacks based on the number of foreign words translated. Each hypothesis keeps track

of the target phrase it generates. It is also annotated with a signature which consists of

the source words that have been translated so far as well. Additionally, if one of the

features of the model is a score from a language model of order n, then the last n-1

target words generated by the hypothesis are added to the signature too. A hypothesis

is considered complete if all the source words have been covered. The best scoring

complete hypothesis from the final stack is the max derivation solution.

The search procedure described above exhaustively expands all hypotheses, a pro-

cess which is very inefficient. Decoding is speeded up in two ways. Firstly, we can use

a dynamic programming algorithm: if two hypotheses have the same signature, then

the two can be safely recombined and only the one with highest score retained for fur-

ther expansion. This is a risk-free strategy because both hypotheses are certain to have

identical expansions; therefore the highest scoring partial hypothesis is guaranteed to

have a higher final score than its competitor.

The recombination strategy speeds up decoding but not to a large enough extent.

Therefore, in addition, a pruning-based risk prone strategy is used. In histogram

pruning, each stack only retains the n highest scoring partial hypotheses while in

threshold pruning hypotheses with probabilities more than k times lower than the top

scoring hypothesis in that stack are discarded. Pruning can lead to search errors i.e.

the stack decoding algorithm can fail to find the true solution to the search problem.

This can happen if at some point during search, the highest scoring complete solution

has a lower partial score than other hypotheses in the same stack. To diminish the

risks of search errors, the pruning criterion is altered to not only take into account

the partial score of a hypothesis but also to consider an estimate of its future cost -

the cost of translating the currently untranslated parts of the input. Calculating the

future cost exactly is too inefficient (and is equivalent to running the search algorithm

to completion) so a heuristic estimate is used instead. By including the future cost

estimate, search errors are reduced dramatically.

Beam decoding is a very efficient algorithm for max derivation decoding. By

carefully tuning the pruning parameters, a good balance between search accuracy and

speed can be obtained. However, since the algorithm relies on dynamic programming

for efficient search, the features of the model are restricted to be local or near-local

precluding feature functions that look at long distance interactions on the target side.
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2.4.1.2 Greedy Decoding

An alternative decoding algorithm is greedy decoding (Germann et al., 2001; Marcu

and Wong, 2002; Langlais et al., 2007). First, a rough initial solution is generated.

This solution is then iteratively improved using a greedy hill-climbing algorithm. The

algorithm successively proposes small local changes to the solution, e.g it might

propose to change the translation of a source word or swap the order of translation

of two source words. If the new configuration has a higher probability than the

existing one, then the new configuration is greedily accepted, otherwise the existing

configuration is retained. The algorithm stops when none of the small local operations

lead to a more probable translation.

Greedy decoding has several nice characteristics. Since the local operations are

usually simple to compute, greedy decoding can quickly converge to a translation of

high quality. Additionally, given that a full translation is available at all times, feature

functions that operate over the whole translation (also known as global features) can be

used. On the other hand, greedy decoding explores a smaller search space than beam

decoding and may converge to a local optima rather than the global optimum. This

may happen when a move to the global optimum requires first traversing through areas

of low probability.

2.4.1.3 Optimal Decoding

Both greedy decoding and beam decoding run the risk of search errors. Algorithms that

do not make any search errors are called optimal decoding algorithms. Germann et al.

(2001) note the similarities between decoding and the Traveling Salesman problem

and are able to recast decoding as a integer linear programming (ILP) problem which

they then solve exactly using standard ILP solvers. For efficiency reasons, they limit

their experiments to word-based models (IBM Model 4) on sentences of length up to

8 words using a bigram language model. Further work by Riedel and Clarke (2009) is

able to scale Germann et al. (2001)’s approach to sentence lengths of up to 30 words

by employing more sophisticated approaches to ILP solving.

Optimal decoding is also possible by using A* search instead of beam search in the

stack decoding algorithm presented earlier. A* search allows risk-free pruning by the

use of admissible heuristics, i.e. the estimate of the future cost of a partial hypothesis

can never overestimate the true cost to completion. Note that the future cost estimate



2.4. Search Algorithms 25

used in beam search methods like (Koehn, 2004a) is not an admissible heuristic since

it can under or over estimate the true completion cost.

Och et al. (2001) present an A* decoding algorithm for IBM Model 4. While A*

search guarantees optimal decoding, it is usually much less efficient than beam search.

A further reason why A* search is not prevalent is because coming up with admissible

heuristics for decoding is hard.

2.4.1.4 Search Hypergraphs and N-best Lists

During decoding we are interested in finding the 1-best solution to the decision rule.

Recall that stack decoding relies on hypothesis recombination for efficient search. If all

we are interested in is finding the overall best solution, whenever two or more hypothe-

ses are recombined, we can safely expand just the winning one, discarding traces of

the “losing ones”. However, we can also choose to keep track of the recombinations.

If we do so, we end up with a data structure called a search or translation lattice which

compactly represents the entire space explored during decoding. The search lattice

is in the form of a weighted finite state machine (WFSM) consisting of states and

transitions between them. Figure 2.2 shows an example of a translation lattice, where

edge is annotated with its score and the target phrase is produces.

 

<s> hehe , p=-5.11265

<s> it
it , p=-5.11265

<s> are

are, p=-6.30858

he goesgoes, p=-2.34965

does not

does not, p=-2.34965

does not, p=-2.34965

it goesgoes , p=-2.34965

goes not

not , p=-0.13767

not gogo, p=-0.17267

not to

to, p=-1.02401

not, p=-1.51301

Figure 2.2: An example translation lattice. A trigram language model was used during

search.

A similar compact representation of the search space arises as a by-product of

grammar-based decoding. This representation is often called a translation forest, which

formally is a weighted acyclic hypergraph. A hypergraph is a generalisation of a graph

where an edge can connect any number of vertices. Formally, a hypergraph is a pair



26 Chapter 2. Statistical Machine Translation

H = 〈V ,E〉 where V is a vertex set and E is a set of hyperedges, E ∈ V ∗×V .

Each hyperedge, e ∈ E connects a head vertex h(e) with a sequence of tail vertices

T (e) = {v1, · · · ,vn}. The arity of a hyperedge is the number of its tail vertices while

the arity of a hypergraph is the maximum arity of its hyperedges. A hyperedge of arity

1 is a regular edge and a hypergraph of arity 1 is a regular graph or a lattice.

Since any finite-state automaton can also be encoded as a hypergraph, going

forward we will refer to algorithms defined over lattices and forests as hypergraph-

based algorithms. Hypergraphs encode the exponential number of derivations in the

search space in polynomial space. Therefore, hypergraph-based algorithms can run

in polynomial time (or equivalently in linear-time in the size of the hyperedges in the

hypergraph).

A common application of MT hypergraphs is the extraction of n-best lists which

are ranked lists of the n most probable derivations in the hypergraph. N-best extraction

from a finite state machine or a hypergraph is a well studied problem for which efficient

algorithms exist. N-best lists have many practical uses:

• They can be used during the parameter estimation step of the SMT pipeline.

• They can be used in a reranking step where features that are too expensive to

compute during search can be applied (Shen et al., 2004).

• They can be used for applying decision rules that do not factorise over the search

space (Kumar and Byrne, 2004).

• They can be used for model debugging purposes.

The last few years has seen an explosion of research interest in using hypergraphs

instead of n-best lists in algorithms where n-best lists have hitherto proven to be useful.

This is because by using the search hypergraph, it is possible get a more accurate view

of the search space than with an n-best list.

2.4.2 Max Translation Decoding

All recently proposed SMT models exhibit derivational ambiguity i.e. there are mul-

tiple ways of yielding the same output string given an input string. In phrase-based

models the ambiguity arises from the fact that different source-side segmentations can

lead to the same translation string while in syntax-based models, different derivation
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Les expressions de la parite ont un contenu profondement culturel .

Expressions of parity have a profoundly cultural content .

Les expressions de la parite ont contenu profondement culturel .

Expressions of parity have profoundly cultural content .

un

a

Figure 2.3: Derivational ambiguity: both derivations produce the same target string but

using different segmentations of the source.

trees can produce the same string. An example of derivational ambiguity in phrase-

based models is shown in Figure 2.3.

How bad is the derivational ambiguity problem? When decoding the Chinese-

English NIST MT04 and MT05 test sets using Hiero, an implementation of a syntax-

based model (Chiang, 2007), Li et al. (2009b) find that there are on average 115

derivations for each translation string in their model. On the other hand, for a sim-

ilar hierarchical phrase-based system, Blunsom et al. (2008) find that the number of

derivations yielding the same string is exponential in the length of the input.

We now review three algorithms proposed for approximate max translation decod-

ing.

2.4.2.1 N-best Crunching

One simple algorithm for max translation decoding is n-best crunching (May and

Knight, 2006) which works as follows. First the input sentence is decoded using a

beam decoder. Then an n-best list of derivations is extracted with n set to a sufficiently

large number (1,000 or 10,000). The n-best list is then crunched, i.e. the scores of

derivations yielding the same translation string are summed together and the translation

string with the greatest score is output as the max translation solution.

While simple to implement, n-best crunching is a very rough approximation to

max translation decoding. This is because n-best lists only capture a small subset of
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the space of all derivations in the search graph. The latter is exponential in the length

of the input whereas typically, due to efficiency considerations, n-best list extraction is

limited to around n = 100,000.

2.4.2.2 Beam Search

Blunsom et al. (2008) present a beam search approach to max translation decoding.

They apply their method for decoding in a Hiero-like system but the approach can

just as well be applied to phrase-based models. Their method modifies the dynamic

program used for hypothesis recombination by using the entire partial target string

generated rather than just the context needed for language model scoring. As a result,

two hypotheses that recombine have to have generated the same output string. At

each recombination step, instead of storing the score of the most probable hypothesis

as is done during max derivation decoding, the scores are summed together. At the

end of decoding, each hypothesis in the final stack contains the sum of the scores of

all derivations yielding the same translation string. As a result of the more involved

dynamic program, fewer recombinations take place. This leads to an explosion in the

number of hypotheses to be expanded, both slowing down decoding and increasing the

memory footprint dramatically. Therefore, Blunsom et al. are forced to resort to very

aggressive pruning and restrict their experiments to sentences less than 10 word long.

2.4.2.3 Variational decoding

Li et al. (2009b) propose a novel algorithm for max translation decoding called varia-

tional decoding which, unlike the approach of Blunsom et al. (2008), is able to scale to

large tasks. Variational decoding is an instantiation of a general class of approximate

inference algorithms known as variational inference in which the original intractable

distribution of interest p is approximated by a simpler distribution q which supports

exact inference. The key therefore in variational inference is to come up with an

approximation which is similar enough to the original distribution. This notion of sim-

ilarity between the distributions is measured using the information theoretic measure

of Kullback-Leibler divergence, KL (p||q).

The variational decoding decision rule used by Li et al. (2009b) is :

e∗ = argmax
e

(
∑
n

θn · logqn(e)
)

+θv · log p̃(e|f) (2.16)

where:
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• qn(e) is an n-gram based variational approximation of the true distribution

p(e|f),

• θn weights the variational approximation qn(e) and

• θv is a parameter which weights log p̃(e|f), the max derivation score of string e

Each qn(e) is a distribution over the n-grams in the search hypergraph obtained

when translating the source string f as target string e. As n gets larger, the approxima-

tion q approaches p but on the other hand decoding with q becomes more complex. Li

et al. explain that by setting n ≤ m where m is the order of the language model used

for decoding, efficient variational inference can be performed.

Each qn(e) is of the form:

qn(e) = ∏
w∈Wn

q(r(w)|h(w))cw(e) (2.17)

where:

• Wn is the set of n-grams of order n in the translation hypergraph of f,

• w is an n-gram occurring cw(e) times in e,

• h(w) are the first n−1 words in w and

• r(w) is the last word in w.

The parameters of the model are the conditional probability distributions, q(r(w)|h(w)),

of the n-grams w in the translation hypergraph. These parameters are estimated by

computing the ratio of the expected count of every n-gram w and its history h(w) in

the translation hypergraph under the true distribution p:

q(r(w)|h(w)) =
∑d∈D(f) cw(e)p(e,d|f)

∑d∈D(f) ch(w)(e)p(e,d|f)
(2.18)

where e = Y (d).

Computing the terms in Equation 2.18 requires a sum over an exponential number

of derivations. However, the hypergraph represents the exponential space of deriva-

tions in polynomial space by collapsing together common subderivations. Li et al.

take advantage of this fact to present an algorithm for computing Equation 2.18 in

time linear in size to the number of hyperedges in the hypergraph.
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Decoding with the decision rule in Equation 2.16 for n≤m consists of first decod-

ing the input f with a max derivation decoder using a language model of order m

then rescoring the edges of the resulting lattice or hypergraph with weights as per the

decision rule. The yield of the rescored best scoring derivation is the max translation

solution.

In experiments on a large scale Chinese to English translation task, Li et al. report

significant improvements using variational decoding over max-derivation, MBR and

n-best crunching (n=10000) decoding.

2.4.3 MBR Decoding

The MBR decision rule given in Equation 2.14 requires computing the expected loss

of each translation string produced by the translation model with respect to every other

translation string, a computation which is intractable to perform exactly due to the

exponential number of translations.

There have been two main algorithms proposed for MBR decoding in SMT sys-

tems, both of which consist in rescoring an initial list of translations produced by a

first-pass max derivation decoder. Since BLEU is the evaluation metric of choice in

SMT, the algorithms use (1 - BLEU) as loss function or equivalently BLEU as gain

function in which case the argmin term is replaced by an argmax.

2.4.3.1 N-best MBR

We begin by considering the first MBR decoding variant, n-best MBR decoding

(Kumar and Byrne, 2004). As we saw in Equation 2.14, computing the MBR solution

is an algorithm quadratic in the size of T (f) with the inner loop of the algorithm

performing the risk computation for each of the translations in the outer loop. The

space of translation candidates over which the risk is computed is usually referred to

as the evidence space of the algorithm and denoted by εE . Similarly, the translation

minimising the risk is chosen from a space of candidates, εH denoted as the hypothesis

space (Tromble et al., 2008).

In n-best MBR, both the hypothesis and evidence spaces of output strings are

restricted to an n-best list of translations extracted from the lattice of the first-pass

decoder. To ensure diversity of the translation strings, an n-best of distinct strings is

usually extracted.
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BLEU is a corpus level metric whereas MBR decoding is performed at a sentence

level. As discussed in Section 2.2.1, BLEU is an inappropriate metric to use at the

sentence level so instead the smoothed-BLEU implementation proposed in Lin and Och

(2004) is used. We denote this variant of BLEU as SBLEU.

Note that the decision rule in (2.14) requires the conditional probability p(e|f)
but most decoders return an unnormalised score s(e,d, f) defined over derivations of

the model. Converting this score to a probability requires exponentiating the score

followed by two subsequent steps:

• marginalising over all the set of derivations D(e, f) for each output string e and

• normalising by Z(f), the partition function of the underlying log-linear model.

Both steps involve an expensive summation over an exponential number of deriva-

tions so in practice they are approximated; the score of each output string e is approx-

imated by the score its most probable derivation (i.e we perform a max derivation

approximation) whereas Z is computed over the derivations in the n-best list.

The resulting n-best MBR decision rule is given by:

e∗MBR = argmin
e∈T (f)

∑
e′∈T (f)

`(e,e′)p(e′|f)

≈ argmax
e∈Y (N(f))

∑
d′∈N(f)

SBLEU(e,e′)
exp [s(e′,d′, f)]

∑d̂∈N(f) exp
[
s(ê, d̂, f)

]
where N(f) represents the set of the n highest scoring derivations in D(f), e′=Y (d′)

and ê = Y (d̂).

Typically, a scaling factor γ is introduced to control the shape of the estimated

distribution. The value of γ is optimised for good MBR decoding performance using a

grid-search on a held-out set.

The decision rule with the scaling factor is given by:

e∗N-MBR = argmax
e∈Y (N(f))

∑
d′∈N(f)

SBLEU(e,e′)
exp [γ · s(e′,d′, f)]

∑d̂∈N(f) exp
[
γ · s(ê, d̂, f)

] (2.19)

N-best MBR decoding has been shown to often give small improvements over max-

derivation decoding and is supported by a large range of open source SMT decoders

(Koehn et al., 2007; Li et al., 2009a).
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2.4.3.2 Lattice and Hypergraph MBR

Tromble et al. (2008) introduce lattice MBR, an alternative to n-best MBR, which

involves an exponential number of derivations in the MBR decision rule. In lattice

MBR, both the evidence space and the hypothesis space can be defined over a transla-

tion lattice. Kumar et al. (2009) extend that work by presenting an MBR algorithm for

the more general case involving a hypergraph.

The hypergraph MBR formulation uses a dynamic programming which requires

that the gain function can be decomposed as a sum of of local gain functions over the

hyperedges of the hypergraph. Such a gain function is introduced by Tromble et al.

where they approximate log(BLEU) as a linear function of n-gram matches and the

length of the candidate translation.

Given reference and the candidate translations e and e′ respectively, the linear

approximation G is as follows:

G(e,e′) = θ0|e′|+∑
w

θ|w|#w(e′)δw(e) (2.20)

where w is an n-gram in either e or e′, #w(e) is the number of times w appears in e,

δw(e) is 1 if w in e and 0 otherwise, θ0 is a weight associated with the candidate length

and θ1···N are weights associated with n-grams of orders up to N.

With a linear function of this form, the MBR decision rule can be reformulated

thus:

e∗MBR = argmax
e′∈ε

(
θ0|e′|+∑

w
θ|w|#w(e′)p(w|ε)

)
(2.21)

where p(w|ε), the posterior probability of the n-gram w in the lattice ε, is given by:

p(w|ε) = ∑
e∈ε

δw(e) ∑
d∈D(e,f)

p(e,d|f) (2.22)

In contrast to the inner loop of the standard MBR decision rule which requires

a summation over an exponential number of translations in the evidence space, the

summation in the inner loop of Equation 2.21 is much more efficient since it is over

the set of the n-grams that occur in the hypergraph, a set which is only linear in size to

the number of hyperedges in the hypergraph.

Efficient hypergraph MBR is made possible by the use of the linear approximation

to corpus BLEU. The parameters of this approximation are the θ terms whose values in

Tromble et al. (2008) are given by the following two equations:
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θ0 = −1 (2.23)

θn =
1

4p · rn−1 (2.24)

where p is the BLEU unigram precision and r is the decay in BLEU n-gram preci-

sion for higher order n-grams, averaged over multiple decoding runs of the baseline

decoder.

Both Tromble et al. (2008) and Kumar et al. (2009) find that hypergraph MBR

significantly outperforms n-best MBR. Their experiments show that the improvement

in performance comes from a more accurate estimation of risk brought about by using

a much larger evidence space. Note though that the hypergraph does not encode

the entire space of possible translations since substantial pruning is required during

decoding. As far as the hypothesis space is concerned, using a 1000-best list is as good

as using the entire hypergraph. This means that the MBR solution is almost always a

highly probable solution as per the base decision rule.

Since the hypergraphs can be very large, efficient hypergraph MBR decoding

requires additional pruning. This is done using Forward-Backward pruning (Sixtus

and Ortmanns, 1999), an algorithm to limit the average number of hyperedges per

word (the hypergraph density) to a configurable parameter optimised based on MBR

performance on a held-out set.

2.4.4 Consensus Decoding

While hypergraph MBR applies the MBR decision rule using a similarity metric which

is an approximation to BLEU, the fast consensus decoding of DeNero et al. (2009)

applies an alternate hypergraph-based decision rule using a similarity metric which is

BLEU itself.

The consensus decoding objective, with BLEU as similarity metric, is given by:

e∗Fast-CON = argmax
e∈Y (N(f))

BLEU(e,EP(e′|f)[φ(e′)]) (2.25)

where φ(e′) maps the string e′ to a feature-based representation. Note that in this

instance, the definition of the BLEU metric is overloaded since the second argument

which is usually a string (the reference sentence) is in this case a feature vector.

Consensus decoding is a fast linear time alternative to MBR. It involves a first pass

in which the expectations of the features of the similarity measure under the model
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distribution, EP(e′|f)[φ(e′)] are computed, followed by the application of the similarity

measure to every candidate translation e extracted from an n-best list of translations.

The features in BLEU-based consensus decoding are n-gram counts for n from 1

up to 4. DeNero et al. present an algorithm to compute the expectation of these

features over a hypergraph in time linear to the number of hyperedges. The feature

expectation algorithm is very similar to that presented in both Kumar et al. (2009) and

Li et al. (2009b) underlying the similarities between all three approaches to decoding.

In hypergraph MBR, expectations are computed for n-gram indicator functions δw(e)
whereas in both consensus decoding and variational decoding expectations for n-gram

counts #w(e) are computed over the hypergraph.

In experiments, DeNero et al. find that consensus decoding is on average 80

times faster than MBR while having the same BLEU performance, when applying

both algorithms on evidence spaces consisting of 1,000-best lists. They also find that

forest-based consensus decoding always outperforms 10,000-best consensus decoding,

a result in line with the findings of Tromble et al. (2008) when comparing lattice to

n-best MBR.

2.4.5 Summary

In this section, we looked at search algorithms focusing on phrase-based models. These

search algorithms attempt to find the solution of the chosen decision rule. Finding

the max derivation solution in phrase-based models is intractable since an exponential

number of derivations need to be considered. The most popular search algorithm for

this task is stack decoding with beam search. Here, the search space is carefully

organised so as to be able to use dynamic programming algorithms. Dynamic pro-

gramming allows the sharing of common partial derivations among many derivations,

rendering search more effective. By pruning partial derivations expected to be low

scoring were they expanded to completion, the search space can be further reduced.

However pruning is a risky strategy as the max derivation solution might be discarded

were it to have a low partial score. This is referred to as a search error. By carefully

designing the pruning mechanism, the risk of search errors can be minimised and a

substantial improvement in translation speed can be gained.

We also looked at phrase-based decoding algorithms that guarantee to be free of

search errors. However, they are usually too slow for decoding long sentences. Another

alternative is greedy decoding which is suitable when dynamic programming methods
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cannot be used. This is the case when the features of the model are global, that is they

take into account characteristics of the entire source and target sentences. However, in

most models of sufficient complexity, greedy decoding is likely to make more search

errors than other decoding algorithms.

We next considered search algorithms for decision rules which take into account

the whole distribution. Examples of these decision rules are max translation decod-

ing, MBR decoding and fast consensus decoding. Blunsom et al. (2008) proposed a

beam search approximation for performing max translation decoding. However, their

method requires aggressive pruning and can only be applied to short sentences. Most

approaches to these problems adopt a 2-pass strategy. First, approximate dynamic

programming based max derivation search is performed. A by-product of this decoding

algorithm is a translation hypergraph which is compact representation of the pruned

search space.

The space of the true distribution can then be approximated using either an n-best

list of translations extracted from the hypergraph or by using the entire hypergraph.

The latter method requires designing clever dynamic programming algorithms that can

exploit the characteristics of the data structure. Recent results have shown that search

algorithms which use a hypergraph for estimating the true distribution outperform

methods using n-best lists for the same purpose.

2.5 Parameter Estimation for Log-linear Models

Following Och and Ney (2002), most SMT models adopt a log-linear formulation

of the translation task. The log-linear model is attractive since it allows tremendous

flexibility for integrating knowledge sources in the model. These knowledge sources

are usually referred to as features. However, the choice of features needs to be balanced

by the need for having efficient decoding algorithms. For example, the most popular

decoding algorithm for phrase-based models is beam decoding which relies on local

or near-local features for efficient search. If the model contains features that take into

account long distance interactions in the source and/or target, also known as global

features, then alternate decoding algorithms are required.

Parameter estimation consists of finding appropriate weights for the features in the

model. It is an optimisation problem in that it tries to find weights that maximise a

given objective function. The parameter estimation phase is often referred as the log-

linear model training step or simply the tuning step in the SMT pipeline. Numerous
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objective functions have been proposed for SMT and in this section, we will go over

some of the more salient ones. The training methods we describe are all examples

of discriminative training algorithms as they are designed to discriminate the right

translation against the incorrect translations. An alternative to discriminative training

is generative training which learns a model of the joint probability of the source and

target sentences in the training set and then uses Bayes rule to make predictions at test

time. Since discriminative training algorithms typically outperform generative training

ones as far as test time performance is concerned, they are the preferred techniques for

parameter estimation in SMT.

As a rule of thumb, in order to get good performance at test time, the objective

function during parameter estimation should match the test time decision rule. For

example, Blunsom et al. (2008) find when performing max translation decoding that

they get better translation performance if their model had been tuned using an objec-

tive function that accounts for derivational ambiguities rather than one which only

considers the most likely derivation.

The most popular tuning algorithm for SMT models is minimum error rate training

(MERT; Och (2003)) which can be used to directly optimise translation quality as

evaluated by a given metric such as WER and BLEU. MERT is especially popular

because it is very efficient at optimising corpus BLEU, the metric by which most SMT

systems are evaluated. The main drawback of MERT however is that its optimisation

algorithm can only be used to tune a dozen or so features. A particularly active research

area currently is devising tuning algorithms that can scale to millions of features.

2.5.1 Maximum Likelihood Training

Och and Ney (2002) train their log-linear model by finding weights which optimise the

likelihood of a given training dataset.

Sentence-level Training

Maximum likelihood (ML) estimation aims to maximise the joint likelihood of the

model parameters and the training data. In the case of log-linear models, the ML

objective function corresponds to the standard objective function for maximum entropy

models given by:
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λml = argmaxλ

{
∑

c=1...C
log p(ec|fc;λ)

}
(2.26)

where the set {ec, fc}C1 denotes a training corpus of C sentence pairs. Equation 2.26

aims to find the optimal weight vector λml which maximises the conditional log-

likelihood of the training data. The objective function in (2.26) has a very desirable

property: it is convex with a single optimum. This optimum can be found using

standard numerical optimisation packages. However, the training algorithm is not so

straightforward in the case of SMT.

As we have seen earlier, computing the conditional probability requires two terms:

a numerator which sums over D(ec, fc) and a denominator which sums over D(fc).

Both summations are expensive so instead the denominator is computed over an n-best

list and a max derivation approximation is used for the numerator. Additionally, the

n-best list might not contain any derivations which yield the reference, necessitating

the use of a surrogate reference derivation.

As surrogate, Och (2003) chooses the derivation in the n-best list that minimises

word error rate with respect to any of the reference translations whereas Zens et al.

(2007) choose the derivation that maximises a sentence-level approximation to BLEU.

Och notes that since the ML training objective function does not directly take

into account the evaluation metric used to measure test time performance, there is no

guarantee that the values learnt for the model weights are optimal with respect to the

metric. Another criticism of the ML objective is that is too harsh a training criterion

since it does not distinguish between translations that are close to the reference and

ones that are far from the reference, penalising all of them equally.

Nevertheless, Och and Ney find that parameters obtained from ML training improve

performance dramatically compared to a baseline where the parameters are set arbi-

trarily. This finding motivates the need for a parameter estimation phase in the SMT

pipeline.

N-gram-level Training

An alternative ML training criterion which addresses some of the limitations of

sentence-level ML training is presented by Zens et al. (2007). Their objective function

is defined over the posterior probabilities of the n-grams appearing in the target side
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of the training set (they make a conditional independence assumption between the n-

grams) where the normalisation term for the probability distribution is still computed

over an n-best list.

This training criterion has two main advantages over the sentence-level variant.

Firstly, it does not require the use of surrogate references since the posterior prob-

abilities of the n-grams in the true reference can be easily computed (smoothing is

required to account for n-grams that might not appear in the n-best list). Secondly, it

is less harsh than the sentence-level ML training as by optimising n-gram posteriors,

it rewards partial matches. Zens et al. find that the n-gram level MLE outperforms

the sentence level variant when performing both max derivation and MBR decoding,

attributing this improvement in performance to the two reasons mentioned.

Another advantage of this objective function, one which Zens et al. omit to men-

tion, is that by summing up over reference translations n-grams in the n-best list, it is

able to account for some derivational ambiguity.

2.5.2 Maximum A Posteriori Training

(Blunsom et al., 2008; Blunsom and Osborne, 2008) argue that an unregularised train-

ing criterion such as the one used in Equation 2.26 leads to parameters that overfit the

training data. To address overfitting, they add a Gaussian prior term to the objective

function. The prior regularises the model by penalising the objective function when the

model parameters deviate too far away from the mean of the Gaussian. This modified

training regime is referred to as Maximum A Posteriori (MAP) training (Gauvain and

Lee, 1994).

MAP training as implemented by (Blunsom et al., 2008; Blunsom and Osborne,

2008) attempts to address some of the other limitations of sentence-level ML training

too. Most notably, Blunsom et al. propose a method that accounts for derivational

ambiguities by marginalising over them. The underlying model used in (Blunsom

et al., 2008; Blunsom and Osborne, 2008) is a syntax-based model; however, no

language model is used. Due to this lack of a language model, for each training

instance, they are able to produce a full unpruned translation forest from which they

can exactly compute the partition function of the log-linear model. They do so using

the inside-outside algorithm, a dynamic programming algorithm for tree-based models.

They run the decoder a second time but this time in constrained mode, i.e. the target
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side is fixed to be the reference translation. The numerator is computed by running the

inside outside algorithm on the resultant forest.

Blunsom et al. (2008)’s parameter estimation step requires that the reference trans-

lation be in the hypothesis space of (or be reachable by) the decoder. Often this is not

the case. In phrase-based models, discounting the case where the reference might have

been pruned away during search, there are two additional circumstances in which this

situation can occur:

• A phrase-pair needed to reach the reference is not in the phrase-table. This is

possible because of heuristics used to extract the phrase table.

• In order to make decoding tractable, phrase-based decoders enforce distortion

limits i.e the start position of the source phrase to be decoded can be at a distance

of most d words from the end position of the previously decoded source phrase.

Typically, d is set to between 4 and 8. If, in order to reach the reference, a

reordering of more than d words is required, the decoder is unable to generate

such a derivation.

In order to have a training corpus of reachable sentences, Blunsom et al. find

that they have to throw away 24% of their overall training set. In contrast to most SMT

models where the parameter estimation step consists of finding weights for a handful of

non-sparse features such as language model score or translation model score, Blunsom

et al. learn weights for a more than a million sparse binary translation model features.

Due to the computational cost of creating unpruned forests during training, the training

set is restricted to only short sentences. Experimental results show that the best test

time performance is obtained when both training and testing account for derivational

ambiguity thus demonstrating the benefits of marginalising the latent variables of the

model.

Blunsom and Osborne (2008) extend their previous work by introducing a language

model in their model. Adding the language model renders the exact computation of Z

intractable so they experiment with two approximations. In the first instance, the input

is decoded with the help of beam pruning and the resulting forest is used to compute

Z. Blunsom and Osborne postulate that such a forest, where low probability derivations

have been pruned away, may provide a biased estimate of the true distribution. They

argue that the presence of low probability derivations during training increases the

discriminating power of the model. Therefore, they propose a new Monte Carlo
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sampling based algorithm which takes as input the full distribution obtained when

decoding without a language model and then draws samples from it. The resulting

forest contains derivations which are mostly high scoring but also some low scoring

ones with respect to the language model enriched distribution. Experiments show

that at test time, performance using the latter approximation outperforms the former

suggesting that having a broad view of the probability space is advantageous.

2.5.3 Minimum Error Rate Training

By far the most popular parameter estimation technique for log-linear models in SMT

is Minimum Error Rate training (MERT) (Och, 2003). The main characteristic of this

algorithm is that rather than maximising the conditional log-likelihood of the data,

it directly optimises the error rate of the model on a held-out set as measured by an

evaluation metric. MERT performs best if the metric used during tuning matches the

one used at test time.

Formally, the MERT objective function seeks to minimise the error rate as follows:

λMERT = argmin
λ

∑
c=1...C

Loss(argmax
e∈T (fc)

p(e|fc;λ),ec) (2.27)

≈ argmin
λ

∑
c=1...C

Loss(argmax
d∈D(fc)

p(e,d|fc;λ),ec) (2.28)

= argmin
λ

∑
c=1...C

Loss(argmax
d∈D(fc)

s(e,d, fc;λ),ec) (2.29)

where Loss(e,ec) quantifies the error in hypothesising translation e when the ref-

erence translation is ec. If a gain function such as BLEU is used instead of a Loss

function, then the argmin is replaced by an argmax and the objective function is often

referred to as the max BLEU objective.

Note that the objective function in Equation 2.27 supposes a loss function defined

at the sentence level. The loss function can be defined at the corpus level too. A case in

point is BLEU. For such a loss function, the MERT objective function can be modified

to apply on statistics collected at the corpus level.

Equation 2.27 involves a search for the MAP solution which as we have seen in

Section 2.3.1 is intractable. It is therefore approximated using the max derivation

approximation (2.28) for which efficient solutions exist contingent on the locality

of the features in the model. Since the objective function is only interested in the

argmax solution and normalising model scores so to obtain a probability distribution
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is an expensive operation, a further approximation can be performed by dropping the

normalisation term. The objective function as given by (2.29) therefore optimises an

unnormalised linear model rather than a normalised log-linear one. As a result of the

training objective of (2.29), MERT finds weights that strongly favour a few derivations

in the merged n-best list, where these derivations are the ones that lead to a reduced

error rate. Consequently, MERT trained weights are best suited for the max derivation

decoding decision rule.

The optimisation problem in (2.29) is hard since the objective function contains

an argmax operation that precludes the use of gradient-based methods. It is also non-

convex with many local optima. Och’s proposed training algorithm works as follows:

• Regard Loss(argmaxd∈D(fc) s(e,d, f;λ)) as a function of the parameter vector λ

being optimised. Use the initial weight setting λ0 to create an n-best list from

which to select argmaxd∈D(fc) s(e,d, f;λ)

• The error surface defined by Loss (as a function of λ) is piecewise linear with

respect to a single parameter λm, hence one can determine precisely where it

would be useful (values that change the result of the argmax) to evaluate λm for

a given sentence using a simple line intersection method.

• Combine the list of useful evaluation points for λm and evaluate the corpus level

Loss = ∑c=1...C Loss(argmaxd∈D(fc) s(e,d, fc;λ),ec) at each one.

• Select the model parameter that represents the lowest corpus level Loss as m

varies, set λm and consider the parameter λ j for the subsequent dimension j.

This training algorithm, referred to as minimum error rate training (MERT) is a

greedy search in each dimension of λ, made efficient by realising that within each

dimension, we can compute the points at which changes in λ actually have an impact

on Loss. It is an iterative algorithm where the weights obtained at the end of the

optimisation procedure are used to generate a new n-best list. This n-best list is merged

with the previous n-best lists and the optimisation algorithm is run over the merged n-

best lists until the n-best list does not change. To avoid being stuck in a low optimum

due to an unfortunate initialisation, the algorithm is run with multiple random starting

points.

Since the error is computed at the corpus level, MERT is particular suited to be

used in conjunction with BLEU. The results obtained using MERT with BLEU as gain
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function significantly outperform the results obtained using the standard maximum

entropy training criteria. As a result, MERT is the standard training algorithm for

SMT systems.

In contrast to Och’s MERT in which the error surface for each feature component

is computed over an n-best list of translation candidates, lattice MERT introduced by

Macherey et al. (2008) leverages the exponential number of translations represented in

a translation lattice for the same purpose, yielding faster convergence.

MERT is the most widely used parameter estimation technique for SMT systems

since it is very good at optimising for BLEU and the outer loop which involves decoding

the held-out set with the current weight sets is trivial to parallelise. It also has a few

drawbacks. The main criticism of MERT is that due to its one dimension at a time

line-search nature, it cannot be used to train models with more than a few (around 15)

feature components. The algorithm either does not converge or converges very early

with not very satisfactory weight settings. Additionally, due to the use of multiple

random initialisation points, MERT in general is quite unstable, giving varying scores

across different training runs.

A further drawback of MERT is that since it optimises an unnormalised linear

model, the probabilistic interpretation of the model is compromised. A probability

distribution can be obtained by normalising the model scores by the sum of scores

of derivations in an n-best list or a lattice, but this distribution is arbitrarily shaped.

Typically, downstream tasks such as MBR decoding scale the distribution until it has a

shape appropriate for the task in question.

2.5.4 Minimum Risk Training

An alternate training objective function is minimum risk training also known as

expected BLEU training when BLEU is the evaluation metric being used. Minimum risk

training was first proposed for SMT by Smith and Eisner (2006) and has subsequently

been used by Zens et al. (2007) and Li et al. (2009b). Formally, the objective function

is:

λmr = argmin
1
C ∑

c=1···C
∑

d∈D(fc)
p(e,d|fc;λ)`(e,ec)

= argmax
1
C ∑

c=1···C
∑

d∈D(fc)
p(e,d|fc;λ)BLEU(e,ec) (2.30)
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where the set {ec, fc}C1 denotes a training corpus of sentence pairs and e = Y (d).

It is an appealing objective because it is continuous and differentiable, making it

amenable to the use of gradient-based optimisation techniques.

However, it is non-convex so gradient-based methods are not guaranteed to con-

verge to the global optimum. Another drawback is that assuming that the test time

decision rule is MAP decoding then the training objective no longer matches to the test

condition. Nevertheless, Och (2003) find that a minimum risk trained model does just

as well as a MERT trained one on max derivation decoding.

Smith and Eisner (2006) use minimum risk training as a drop-in replacement to

the MERT optimisation criterion in the standard MERT iterative training scheme. The

risk, or expected loss, is computed for each sentence over an n-best list of derivations.

Since the optimisation is liable to get trapped in a local optima, they use deterministic

annealing (Rose, 1998), a procedure well suited for non-convex optimisation.

We will look at deterministic annealing in more detail in Chapter 7 but for now only

give a cursory explanation. Deterministic annealing works by adding an entropic prior

to the minimum loss objective. The prior is weighted by a temperature factor which

is set to a high value at the start of the optimisation. At high temperature settings,

the resulting annealed objective function is smooth making optimisation easier. As the

temperature is gradually decreased, the impact of the prior diminishes and that of the

minimum risk criterion increases so that at the end of deterministic annealing, when

the temperature is close to 0, the original minimum risk objective is recovered.

In an attempt to reduce the mismatch between the minimum risk training objective

and the max derivation MAP decision rule at test time, Smith and Eisner also introduce

in the log-linear model a scaling factor γ which alters the shape of the distribution

similarly to what is done during MBR (refer to Equation 2.19).

Setting γ to 0 results in a uniform distribution while as γ→ ∞, the distribution

gets peaked toward its mode, the max derivation solution. In their implementation

of minimum risk training, in addition to slowly cooling the annealing temperature,

Smith and Eisner also raise γ according to a quenching schedule. By this process

of quenching, they are able to recover at the end of the optimisation a low-entropy

distribution which is peaked toward its mode and gives good performance when used

for 1-best style decoding.

Another interesting aspect of Smith and Eisner’s minimum risk implementation is

their computation of the risk or expected loss. As discussed in Section 2.2.1, BLEU is a

corpus level metric which does not decompose at a sentence level, in other words BLEU
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is a non-linear metric. The computation of expected loss as per Equation 2.30 on the

other hand involves a sentence-level decomposition. A sentence-level approximation

of BLEU can and is used e.g by Zens et al. (2007) but is not guaranteed to match corpus

BLEU.

To get around this potentially inexact approximation, Smith and Eisner propose to

instead optimise expected − log corpus BLEU, an objective which tends to expected

corpus BLEU as γ→ ∞. This new objective is approximated using a second-order

Taylor series expansion. The resulting approximation is computed using the sentence-

level means and variances of BLEU’s sufficient statistics. The sufficient statistics

correspond to n-gram precisions and hypotheses lengths. Smith and Eisner report

that performance on test data is significantly better using the − log corpus BLEU

approximation compared to sentence-level BLEU approximation. They also report

test-time performance improvements over MERT trained models on three different

datasets.

N-best list minimum risk training is performed by Zens et al. (2007) too. Similar

to their maximum likelihood training methods we encountered in Section 2.5.1, they

define a sentence-level and an n-gram level decomposition of the objective function.

In the former, in contrast to Smith and Eisner, Zens et al. use a sentence-level variant

of BLEU to compute the expected gain. For the n-gram level computation, a condi-

tional independence assumption is made between the brevity penalty and the n-gram

precisions. Zens et al. evaluate the quality of their estimated model parameters both

using max-derivation and n-best MBR decoding. They find that minimum risk training

outperforms both MERT and ML training, with the n-gram level decomposition per-

forming best and that for the minimum risk trained models, MBR decoding is never

worse than max-derivation decoding.

An algorithm for performing minimum risk training on a translation forest, thus

leveraging information from a translation space orders of magnitude greater than that

of an n-best list, is described by Li and Eisner (2009). To compute the risk, their

dynamic programming algorithm requires a loss function which can factor over the

edges of the translation hypergraph so they use the linear approximation to BLEU of

Tromble et al. (2008). They ran experiments on a small scale data set to compare

various parameter estimation algorithms when used in conjunction with max derivation

decoding. They find that n-best based minimum risk training (using approximated

linear BLEU) both with and without deterministic annealing performs just as well as
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n-best MERT. However, hypergraph-based minimum risk training outperforms all the

n-best methods.

In contrast to the MERT optimisation algorithm, minimum risk training can be used

to train a large number of features. Li and Eisner (2009) show further improvements

when they train a model with 20,000 additional sparse features.

2.5.5 Consensus Training

Pauls et al. (2009) present a novel objective function for parameter estimation called

consensus BLEU or CoBLEU. This function aims to maximise expected counts of the n-

grams appearing in the reference translations, the same terms involved in DeNero et al.

(2009)’s consensus decoding decision rule (Section 2.4.4). Additionally, the CoBLEU

objective function precisely matches the consensus decoding decision rule therefore

maintaining a consistent objective through the translation pipeline.

The CoBLEU function is continuous and mostly differentiable, therefore making

it amenable to gradient ascent. Pauls et al. (2009) present a dynamic programming

algorithm similar to that of Li and Eisner (2009) for computing the objective function

and its gradient over a translation forest.

They report mixed results when comparing CoBLEU tuning with MERT tuning on

consensus decoding. When both tuning algorithms are initialised uniformly, CoBLEU

outperforms MERT on one dataset whereas the opposite result is obtained on the sec-

ond dataset. However, by initialising CoBLEU with MERT trained weights, CoBLEU

gives performance improvements on both datasets. They attribute this effect of ini-

tialisation to the fact that since CoBLEU is non-convex, gradient ascent is liable to get

stuck in local optima.

2.5.6 Summary

In this section, we presented a number of parameter estimation techniques proposed for

log-linear SMT models. The ground we covered is by no means exhaustive. Amongst

the most notable tuning techniques we omitted are perceptron-based (Liang et al.,

2006) and margin-based methods (Watanabe et al., 2007; Arun and Koehn, 2007;

Chiang et al., 2008b) which optimise linear models and are particularly suitable for

models with a large number of features.

We began by discussing tuning methods that aim to maximise the likelihood of the

training data. We subsequently noted that better test-time performance can be obtained
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when using tuning objective functions that incorporate the evaluation metric to be used

at test time and highlighted a few of these tuning methods. A recent trend in the SMT

community is to move away from the limited information provided by n-best lists and

move towards translation lattices and forests which are compact representations of

the exponential number of translations processed during decoding. By leveraging this

much larger space of translations, more accurate and stable parameters can be learnt.

Another recent trend is the use of consensus decoding methods at test time. These

methods choose a translation that is informed by the entire model distribution rather

than simply picking the top scoring translation. We reviewed tuning methods that aim

to optimise the terms that are involved in such consensus decoding algorithms.

2.6 Summary

In this chapter, we presented a comprehensive description of an end-to-end statistical

machine translation system, in particular, a system using a phrase-based log-linear

model. We focused our exposition on three parts of the SMT pipeline, namely the

parameter estimation, decision rule and decoding steps. A common characteristic of

these three steps is that while the traditional way they are implemented focuses on the

1-best derivation of the model, recent research has looked at utilising the predictive

power of the entire distribution and has managed, in doing so, to improve translation

performance.

However, significant algorithmic challenges have to be met in order to exploit the

predictive power of the entire distribution. This is as a result of the complexity of the

distribution which arises by the fact that its support, the space over which it is defined,

is exponentially large. We reviewed some of the algorithms that have been proposed to

tackle this challenge. The majority of these algorithms rely on approximate dynamic

programming based methods.

In the next chapter, we discuss sampling methods in particular Markov Chain

Monte Carlo (MCMC) techniques. These techniques have been found very useful

for performing approximate inference in a principled manner in probabilistic models

where the distribution is particularly unwieldy.
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Sampling Methods

In the previous chapter, we saw that the machine translation task can be formulated in a

statistical framework allowing practitioners to exploit the rich and theoretically sound

techniques of statistical learning for correct and efficient modeling of the task. Casting

the translation task in terms of a log-linear model allows the principled integration

of informative features to guide translation and at the same time provides techniques

for estimating the weights of these features. Moreover, we can draw upon elements

of statistical decision theory to help us select the optimal solution from within the

exponential space of possible translations given the input sentence.

As we saw in Chapter 2, the log-linear models used at decoding time are probabilis-

tic models. Given a probabilistic model, probabilistic inference is the act of drawing

conclusions about quantities that are not observed. Examples of inference tasks are:

a) computing the partition function of log-linear models b) computing the expectation

of the features of a log-linear model c) computing the most likely output in the model

given an input (also known as decoding).

For many probabilistic models of interest, exact inference is intractable. This could

be because the space of all possible assignments of the variables in the model is too

large. This is the case for the decoding problem in SMT, where a search over an

exponential number of translations is required. Exact inference can also be intractable

if the distribution of interest has a particularly complicated form.

For tractable inference, one has to resort to approximations. Approximations can

be in the form of heuristics tailored to the task under consideration. For example,

the intractable decoding problem in SMT is usually approximated by substituting the

search for the most likely translation string with a search for the most likely derivation.

47
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Even computing this solution exactly is intractable in most models, so a heuristic-based

search algorithm, like beam search, is usually employed.

Heuristic-based approximations have the advantage that by exploiting problem-

specific knowledge, one can usually come up with an efficient solution. On the other

hand, even ignoring the fact that problem-specific knowledge is not easy to acquire,

heuristic-based approximations often lack theoretical guarantees and do not generalise

to other problems.

As alternatives to heuristic inference, there exist two main classes of general

approximate inference algorithms. One is variational inference which is based on

deterministic approximations. In variational inference, the intractable distribution of

interest is approximated using a simpler distribution for which exact inference is possi-

ble. The downside of variational inference is obvious: finding a suitable close enough

variational approximation might not be easy.

A second class of approximate inference algorithms are based on sampling meth-

ods which have the property that given infinite computational resources, they con-

verge to the exact results. While sampling methods tend to be slower than variational

inference, they are usually easy to implement. Gibbs sampling (Geman and Geman,

1984) is such an example: sampling from the joint distribution over all variables in the

model is achieved by simply successively sampling each variable from its conditional

distribution. Gibbs sampling is an example of a Markov Chain Monte Carlo (MCMC)

algorithm.

This thesis applies sampling methods for solving various intractable inference

problems in SMT. In this chapter we present background information about sampling,

focusing on MCMC algorithms, demonstrating their use for two inference problems:

learning and optimisation. Finally, we highlight previous applications of MCMC

methods in Natural Language Processing (NLP) and in SMT.

3.1 Monte Carlo Sampling

An often essential component of many stochastic scientific problems is the evaluation

of the expectation, Ep(x) [ f (x)] of function f (x) of a multidimensional variable x over

the probability distribution p(x), where the distribution is defined over a space S. If

the distribution is discrete, the expectation is given by:



3.1. Monte Carlo Sampling 49

Ep(x) [ f (x)] = ∑
x∈S

f (x)p(x) (3.1)

For continuous distributions, the sum in Equation 3.1 is replaced by an integral. In

cases where S is a high-dimensional space, calculating Ep(x) [ f (x)] can be intractable.

However, if we can draw independent and identically distributed (i.i.d) random

samples x1,x2, · · · ,xm from the distribution p(x), these samples can be used to approx-

imate Equation 3.1.

Ep(x) [ f (x)] = ∑
x∈S

f (x)p(x)

≈ 1
m

m

∑
j=1

f (x j), x j ∼ p(x) (3.2)

This procedure of approximating expectations by statistical sampling is known as

Monte Carlo sampling (Metropolis and Ulam, 1949; Metropolis et al., 1953). The

Monte Carlo estimate has three key properties:

• It is asymptotically unbiased.

• Its variance is inversely proportional to the size of the sample set.

• Its variance does not depend on the dimensionality of space being sampled.

The latter observation makes Monte Carlo sampling an especially attractive algo-

rithm for high dimensional distributions. However, drawing samples from the desired

distribution p(x) can be hard. There are 2 main reasons for this :

1. The number of possible states in S, the space over which the distribution is

defined, can be very large. As a result, it is often unclear how to explore this

state space efficiently.

2. Often the normalisation factor, Z(x), required so that p(x) is a well-formed

probability distribution, cannot easily be computed. This is common for many

of the log-linear models that are widespread in NLP and as we saw in Chapter 2,

especially for the models used in Statistical Machine Translation.

Two common Monte Carlo sampling techniques for calculating expectations are

importance sampling and rejection sampling. In both these techniques, samples are
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drawn from a simpler proposal distribution instead of the more complicated target

distribution. These samples are then used to calculate expectations of functions of

interest, after an appropriate correction has been made to account for the difference

between the proposal and target distributions. Both these methods are simple to

implement but scale badly with the dimensionality of the problem. Also, for these

methods to work well, the chosen proposal distribution has to be similar to the target

distribution. Usually, finding such a proposal distribution can be hard.

3.2 Markov Chain Monte Carlo Sampling

Markov chain Monte Carlo (MCMC) is a very powerful framework which allows sam-

pling from a large class of distributions, including those for which the normalisation

term Z is unknown, and which is able to handle high-dimensional sample spaces.

MCMC algorithms work by generating samples from a simpler proposal distribution.

The probability of generating each sample is conditioned on the previous sample, form-

ing a Markov chain. Eventually, the chain converges to the desired target distribution

as its equilibrium distribution. Once the chain is at or close to equilibrium, independent

samples can be drawn from it. However, since in practice it is hard to diagnose when

the chain has converged, we can start drawing samples after allowing an initial settling

in period (usually called burn-in). Therefore, in contrast to Monte Carlo sampling,

MCMC samples tend to be correlated to each other.

Before introducing the Metropolis-Hastings and the Gibbs sampling algorithms,

two of the most popular MCMC techniques and methods that we employ in this thesis,

we first give a brief overview of the theory underpinning MCMC methods.

Overview

Let xt denote the value of a multidimensional random variable x at time t and let the

state space refer to the range of the possible values x can take. A Markov chain refers to

a correlated sequence of states (x0, · · · ,xn) generated by a Markov process. A Markov

process is a stochastic process where the probability that the process at state x moves

to state x′ in a single time step is given by a transition kernel K(x′← x) which satisfies

the Markov property: the transition probabilities depend only on the current state x.
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The aim of MCMC methods is to construct a chain such that the desired distribution

p(x) is an invariant distribution of the chain. In other words, given a sample from p(x),

the marginal distribution over the next state in the chain is also the desired distribution:

p(x′) = ∑x K(x′← x)p(x) for all x′ (3.3)

This can be achieved as long as the transition kernel K satisfies the following two

conditions:

1. Irreducibility : There is a positive probability of visiting all other states start-

ing from a given state of the Markov chain, i.e., the transition graph must be

connected.

2. Aperiodicity: The chain should not get trapped in cycles, since otherwise it

might never settle to an invariant distribution.

A chain that satisfies these two properties is called an ergodic chain. MCMC

samplers are ergodic Markov chains that have the target distribution as the invariant

distribution. The transition kernel is also said to leave the target distribution stationary.

Therefore, if such a chain is run long enough (say, after a burn-in period of n steps),

the samples xn+1,xn+2, · · · produced by the chain can be regarded as approximately

following the target distribution. These samples remain, however, correlated to each

other.

The transition kernel K(x′ ← x) is usually constructed by the concatenation of

simpler transition operators O(x′ ← x). These base operators should all have the

desired density as an invariant distribution but they do not individually have to be

ergodic.

Detailed Balanced Equations

A sufficient condition to ensure that p(x) is the desired stationary distribution is the

detailed balance condition:

K(x′← x)p(x) = K(x← x′)p(x′) for all x,x′ (3.4)

This states that if one starts from the stationary distribution, then a transition under

K has the same probability going in one direction (x→ x′) and in the opposite direction

(x′ → x). Proving detailed balance only requires considering each pair of states in
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isolation, there is no sum over all states as in Equation (3.3). Summing over x on both

sides recovers the invariant distribution requirement of Equation (3.3).

We will be using detailed balance to prove the correctness of our sampler in

Chapter 5.

3.3 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm (Hastings, 1970) is the canonical and most popular

MCMC algorithm. While we do not directly make use of the Metropolis-Hastings

algorithm in this thesis, it is an important algorithm and can be viewed as a general-

isation of Gibbs sampling, which we do use. It is also key for the understanding of

the novel algorithms we propose as possible extensions to this thesis (Chapter 8). We

therefore give a brief overview of this algorithm in this section.

The Metropolis-Hastings algorithm simulates a Markov chain with stationary dis-

tribution p(x) by making use of a proposal distribution q which depends on the current

state x. This distribution can be any distribution as long as samples can be drawn from

it. Unlike importance and rejection sampling, the proposal distribution need not be

similar to the target distribution.

The Metropolis-Hastings algorithm has the convenient characteristic that is requires

the target distribution be known only up to a normalisation term. In other words,

assuming p(x) can be rewritten as p̃(x)/Zp(x), the algorithm can be used as long

as p̃(x) can be easily computed for any value of x, without requiring the potentially

expensive calculation of Zp(x).

Algorithm 3.1 presents a pseudo-code of Metropolis-Hastings sampling. At line 3,

a tentative new state x′ is generated from the proposal distribution, conditioned only

on the previous state. To decide whether to accept this new state, an acceptance ratio

a is computed in line 4. Observe that the calculation of this acceptance criterion does

not require knowledge of Zp, the normalisation term of the target distribution. If the

acceptance ratio is greater than 1, the new state is accepted (line 5) otherwise it is

accepted with a probability a (line 9).

The value of x at the end of each iteration is retained as a sample from the target

distribution. If the condition in line 9 is not satisfied, then the previous sample is

retained meaning that adjacent samples are identical. The sequence of samples form

a Markov chain, as the transition probability for going from one state to the other

depends only on the previous state. However, these samples are not independent.
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Algorithm 3.1 Metropolis-Hastings algorithm
1: Input: initial setting x, number of iterations S

2: for s = 1 . . .S do
3: Sample x′ ∼ q(x′← x)

4: Compute a = p̃(x′)q(x←x′)
p̃(x)q(x′←x)

5: if a≥ 1 then
6: x← x′

7: else
8: Sample u∼ Uniform [0,1]

9: if u < a then
10: x← x′

11: else
12: x← x
13: end if
14: end if
15: end for

It is straightforward to prove that the Metropolis-Hastings algorithm satisfies

detailed balance and that therefore the desired distribution p(x) is invariant under the

algorithm. Interested readers should consult Bishop (2007) for details.

3.4 Gibbs Sampling

Gibbs sampling (Geman and Geman, 1984) is an MCMC algorithm suitable for prob-

lems in which a joint distribution can be efficiently decomposed into a sequence of

conditional distributions. Consider the n-dimensional distribution p(x). This dis-

tribution can be rewritten as a joint distribution over its constituent components:

p(x) = p(x1,x2, . . . ,xn). Then Gibbs sampling resamples each component xi of the

multivariate quantity x by a value drawn from its conditional distribution p(xi|x\i)
where x\i denotes all the dimensions x1,x2, . . . ,xn excepting xi. One iteration over all

the components xi of the distribution is referred to a scan of the sampler. A scan can

either be deterministic whereby all the components are visited in a fixed order or it

can be random in which case the next component to be sampled is chosen randomly

according to some distribution.
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Gibbs sampling can be viewed as a special case of the Metropolis-Hastings algo-

rithm where the conditional distributions are the proposal distributions and the accep-

tance ratio is always 1. It is is a popular algorithm due to its ease of implementation

and the fact that it does not have any free parameters requiring tuning. For example,

in cases where the target distribution is discrete and each variable can take a limited

number on values, the conditional distributions can be explicitly computed:

p(xi|x\i) ∝ p(xi,x\i) =
p(xi,x\i)

∑x′i
p(x′i,x\i)

(3.5)

It can be shown that Gibbs sampling draws samples from the target distribution

by noting that the each sampling step leaves the joint distribution of interest invari-

ant (Robert and Casella, 2005). For a given Gibbs sampler, if none of the conditional

distributions are zero anywhere, then the sampler also satisfies the ergodicity require-

ment and is therefore sampling from the correct distribution.

Like the Metropolis-Hastings algorithm, the Gibbs sampler can be used to sample

from distributions known only up to a normalisation constant.

3.5 Practical Considerations of MCMC

In the previous sections, we showed the theory behind the two most popular MCMC

sampling algorithms. In practice, sampling can be quite tricky and getting a good

sampling procedure for one’s problem is akin to an art. A sampler might take too

long to converge to the stationary distribution, or it might get stuck in one part of

the distribution not being able to explore the rest of it. Also, some variables in

the distribution might be strongly correlated, requiring careful design of proposal

distributions. Practitioners also worry about the number of chains of the sampler that

need to be run and ways to reduce the variance of their sampler-based estimates. In

this section, we look at these issues in more detail.

Proposal Distributions The success or failure of the Metropolis-Hastings algorithm

often depends on the choice of the proposal distribution. Typical Metropolis-Hasting

proposal distributions are local in nature, that is they restrict moves to a small neigh-

bourhood around the current state. A reason for choosing local moves is that for most

high-dimensional problems, a large jump from a point in the state space is liable to

end in a region of low-probability and thus be rejected leading to high correlation
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between samples. On the other hand, by restricting the neighbourhood too much,

the convergence of the Markov chain might be too slow. Therefore, a good proposal

distribution is one whose neighbourhood trades off the benefits of high acceptance rate

with those of rapid exploration of the state space.

Proposal distributions in component-wise Gibbs sampling are simple: they are

simply the conditional distribution of that component given all other components.

However, in some cases of Gibbs sampling such as block sampling, introduced next,

the proposal distributions can be more involved.

Block Sampling A valid sampler is one whose Markov chain satisfies the ergodicity

requirement. If all the conditional probability distributions in a Gibbs sampler are

non-zero anywhere, then the sampler is ergodic. However, there could be cases where

certain variables of the distribution are tied together: changing only one at a time

could lead to a zero-probability state and thus, a non-ergodic chain. An appropriate

strategy in such cases is to use a block sampling (Jensen et al., 1993) algorithm in which

each proposal distribution samples a block of variables conditioned on the remaining

variables. This strategy ensures that the sampler is ergodic while still maintaining

detailed balance. In addition to being a way of satisfying ergodicity, block sampling

highly correlated variables can also accelerate convergence of a Markov chain.

Mixing A key consideration in the implementation of an MCMC sampler is the num-

ber of iterations required for the chain to approach the stationary distribution. This is

referred to as the burn-in time of the sampler. As we shall see in Section 3.5, assessing

convergence of a sampler is difficult. Typically, MCMC practitioners initialise their

sampler from a starting point that they deem reasonable and discard a configurable

number of initial samples until they feel that the sampler has converged.

A poor choice of starting point and/or proposal distribution can greatly increase

this burn-in time. A Markov chain’s mixing rate or its mobility denotes how well the

chain is able to explore the target distribution given the initialisation and the proposal

distribution. A poorly mixing chain is one that stays in small regions of the state space

for long periods of time while a well mixing one is able to explore the state space

efficiently.

A chain can mix poorly if the target distribution is multimodal. Depending on the

initialisation point, the chain can find itself stuck in one mode of the distribution and

unable to move the other modes. This can happen if a move to the other mode has to go
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through regions of low probability; such a move is unlikely to be seen in a simulation

run of limited length.

Block sampling is one way to circumvent this problem. Another way is to run

multiple Markov chains initialised with different starting points (Gelman and Rubin,

1992). Yet another way is to use annealing methods, which we discuss in Section 3.6.

Convergence Diagnostics While many graphical and statistical tests exist to assess

convergence, none of these provide entirely satisfactory diagnostics (Andrieu et al.,

2003; Robert and Casella, 2005). An arbitrarily chosen initial state is usually very

improbable under the target distribution. Reaching a mode in high dimensions can

take a long time with sophisticated optimisers, let alone a Markov chain simulation.

Analyzing the chain can identify when the statistics of the sampler settle down, allow-

ing the initial exploratory phase to be discarded. Such diagnostics could be severely

misleading if there are multiple modes.

In general applications there is no way of knowing if a Markov chain has yet to

find the most important regions of a probability distribution. An often employed sanity

check is to run the sampler on a cut-down version of the problem where exact results

are available.

Correlation Samples generated by an MCMC method are likely to be highly cor-

related. This effect is known as autocorrelation, since the correlation is between

successive values in the sample set. The theory of time series analysis states if the

samples are from a stationary distribution, correlated samples still provide an unbiased

picture of the distribution provided the sample size is sufficiently large (Walsh, 2004).

However, a high autocorrelation can inflate the sampling variance.

One straightforward way of reducing autocorrelation is by collecting only every

m-th sample. This procedure is normally known as thinning and the frequency of

collection is referred to as the lag.

Chains Given a finite amount of computing time, it is important to know how best

to run the sampler. Two main strategies exist: one of them is to run one long chain

of the sampler and the other is to run multiple short chains starting off with different

initialisations points.

Both of these strategies have merits. Geyer (1992) shows that theoretically a longer

chain is to be preferred. If the chains have high auto-correlations, then using a number



3.6. Sampling for Optimisation 57

of small chains may result in them not being long enough to be useful. On the other

hand, multiple runs do have some diagnostic value: differing results would reveal a

failure to mix that might not be diagnosed from a single chain. But as Geyer (1992)

argues, agreement between different runs does not provide a guarantee of good mixing.

Variance While the Monte Carlo estimate of any function of interest defined over

the target distribution is unbiased, since it relies on a stochastic method, there is

some variance associated with this estimate. One straightforward way of reducing

this variance is to increase the length of the chain, since as we saw in Section 3.1, the

variance decreases linearly with the size of the sample set. If the autocorrelation of the

sampler is high, then thinning is a simple and effecive way to reduce variance.

3.6 Sampling for Optimisation

In Section 3.1, we motivated the use of sampling methods as a means of comput-

ing expectations on complex probability distributions. Sometimes, an optimisation

problem can also be formulated as a Monte Carlo sampling problem. Let us imagine

that instead of wanting to approximate a distribution p(x), we want to find its global

optimum or mode of the distribution. For example, if p(x) is the posterior distribution

then we often are interested in finding the maximum a posteriori (MAP) solution.

This can be done by simply running a Markov chain with p(x) as its stationary

distribution and then estimate the mode, x̂ using the drawn samples, xi:

x̂ = argmax
i=1...n

p(xi) (3.6)

It should be clear that this is a very inefficient approach. Unless most of the

probability mass is centered in the vicinity of the mode, samples will only rarely be

drawn from around the mode, and the sampler will waste time exploring areas of the

state space of no interest. This problem can sometimes be overcome using simulated

annealing.

Simulated annealing (Kirkpatrick et al., 1983) is a heuristic algorithm for optimis-

ing a function with local optima where standard hill-climbing approaches may trap the

algorithm at a less than optimal peak. Instead of sampling from the true distribution

p(x), simulated annealing, at iteration i, samples from a distribution pi(x) ∝ p1/Ti(x)

where Ti is a cooling schedule. At early iterations, the temperature is set to a high

value which effectively smooths the distribution and allows the Markov chain high
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mobility in the state space. At T = 1, simulated annealing samples from the base

distribution. As the temperature is progressively cooled to approach 0, the probability

mass concentrates around the mode. The probability that the algorithm finds the global

optimum approaches 1 as the annealing schedule is extended (Aarts and Laarhoven,

1987), however there is no guarantee that this optimum will be reached fast enough to

make the algorithm practical. Nevertheless, simulated annealing has proved useful in

many applications.

Annealing can be used with all Markov chain sampling algorithms. To sample at

a temperature T only requires altering the probabilities of all states by raising them to

the power 1/T and then renormalising to ensure the probabilities sum up to one.

3.7 Sampling in Natural Language Processing

The use of sampling techniques in Natural Language Processing (NLP) research has

become prevalent in the recent past, especially with the widespread adoption of non-

parametric Bayesian methods (Teh et al., 2006) as ways of modeling unsupervised

learning tasks. Nonparametric models are probabilistic models in which the number

of parameters is not specified a priori, allowing the number of inferred parameters to

grow with the size of the data. Bayesian methods manage uncertainty in two specific

ways:

• by the use of informative priors which represent beliefs of what the model should

look like. The priors usually are set so as to prefer sparse solutions.

• by taking into account the entire distribution of parameters given observation

data during inference.

Some examples of sampling-based nonparametric Bayesian methods applied to

unsupervised learning in NLP include work on grammar induction (Johnson et al.,

2007b; Cohn et al., 2009), on modeling word segmentation (Goldwater et al., 2006)

and on part-of-speech tagging (Goldwater and Griffiths, 2007).

These models infer a posterior distribution of hidden variables given observed data

by marginalising over parameters of the model. Integrating over all the possible values

of the model parameters is intractable and is therefore approximated using MCMC

methods. While this posterior distribution is often of great interest, e.g. in case of

a pipeline structure where the distribution can be integrated with other probabilistic
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components (Finkel et al., 2006), one can also be interested in finding the mode of

this distribution. i.e., the most probable instantiation of hidden variables given the

observed data. In such cases, Gibbs sampling is used as a stochastic search procedure

in conjunction with simulated annealing for accelerated convergence (Goldwater et al.,

2006; Goldwater and Griffiths, 2007).

Gibbs sampling as a stochastic search procedure was introduced in the NLP com-

munity by Finkel et al. (2005). In this work, non-local features are incorporated in

a conditional random field (CRF) (Lafferty et al., 2001), a state of the art sequence

model. Due to the use of global features in the model, exact inference using dynamic

programming is no longer possible, so simulated annealing is used instead.

3.8 Sampling in Statistical Machine Translation

3.8.1 Word-based Models

The use of sampling techniques in Statistical Machine Translation (SMT) has so far

been restricted to inducing translation models from parallel corpora. The earliest

example of sampling in SMT can be found in the so-called IBM models for machine

translation (Brown et al., 1993) which induce word alignments from a parallel corpora

using the expectation-maximisation (EM) algorithm. In the case of IBM Models 1

and 2, the models are simple enough to allow for exact inference but the addition of a

fertility model (Model 3) and a more sophisticated reordering model (Model 4) makes

exact inference intractable.

Instead, the exponential space of possible alignments is sampled for highly prob-

able alignments which are then used during EM training. Starting off with the most

probable alignment under Model 2 (which can be computed exactly), a greedy hill-

climbing strategy is used to find the most probable alignment under Model 3 or Model

4. This hill-climbing algorithm inspects neighbouring alignments to find a better

alignment than the current best, where the neighbourhood consists of those alignments

that differ from the current best by only a local perturbation. Since the hill-climbing

strategy is a greedy algorithm, it is liable to get stuck in a local optima. Model 3/4

training therefore uses multiple initialisation points. These initialisation points are

obtained by successively fixing one alignment in the sentence-pair and using Model 2

to find the most likely alignment for the remaining unaligned part of the sentence pair

(this procedure is referred to as pegging). For each starting point, the best alignment
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found using the hill-climbing heuristic as well as all its neighbouring alignments are

collected for EM training.

Note that while there do exist a number of similarities between this procedure

and an MCMC algorithm, it is not a Monte Carlo sampling algorithm. In the hill-

climbing procedure, the best possible move as per the proposal distribution (the set of

neighbouring alignments) is always accepted whereas in an MCMC algorithm, it will

be accepted stochastically.

3.8.2 Phrase-based and Syntax-based Models

In the phrase-based model of Koehn et al. (2003), heuristics are used to induce a

many word to many word alignment (also known as phrase alignment) from the word

alignments obtained from training the IBM models. Marcu and Wong (2002) proposed

a joint generative model trained using EM to induce phrasal alignment directly from

parallel corpora without detouring via word alignments. As in the higher order IBM

models, exact inference is intractable so is approximated using a hill-climbing strategy

which finds high probability alignments by a sequence of local moves.

DeNero et al. (2008) revisit the joint phrasal alignment model of Marcu and Wong

(2002). The latter suffers from a deficiency in that the expectations of aligned phrase-

pairs under the current model, required for the E step in EM, as estimated by hill-

climbing are biased. DeNero et al. (2008) propose a Gibbs sampling algorithm that

explores the alignment space and computes unbiased aligned phrase-pair expectations.

Note that, while previous work in NLP has used sampling so as to be able to incorporate

Bayesian priors, DeNero et al. (2008)’s use of sampling is motivated by the fact that

computing expectations for phrase alignments exactly is intractable. Additionally, in

order to avoid degenerate solutions for their model which is likely with EM (Marcu

and Wong, 2002), DeNero et al. (2008) extend their model with the addition of non-

parametric Bayesian priors. Inference in this model which requires marginalising over

the model parameters is done using the Gibbs sampler.

A closely related work is that of Blunsom et al. (2009) which model alignments

using a Synchronous Context Free Grammar formalism. A SCFG (Lewis and Stearns,

1966) generalises context-free grammars to generate strings simultaneously in two (or

more) languages. A string pair is generated by applying a series of paired rewrite rules

of the form, X→〈e, f,a〉where X is a non-terminal, e and f are strings of terminals and

non-terminals and a specfies a one-to-one alignment between non-terminals in e and f.
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By assigning the source and target languages to the respective sides of a probabilistic

SCFG, translation can be described as the process of parsing the source sentence, while

inducing a parallel tree structure and translation in the target language (Chiang, 2007).

Blunsom et al. present a Gibbs sampler to perform inference over the latent

synchronous derivation trees for the training data. Their instantiation of the SCFG

formalism is a restricted one allowing only binary or ternary branching rules and

disallowing rules to mix terminals and nonterminal. By restricting the expressivity

of their formalism, they are able to constrain the space of possible derivation trees to

be polynomial in the input rather than the exponential space of full phrasal alignments

of (Marcu and Wong, 2002; DeNero et al., 2008) and therefore able to scale their

model to longer sentences. The sampled alignments are used to induce a phrase-based

translation model and a hierarchical phrase-based translation model which are then

used for decoding test sentences.

Another Bayesian model for inducing a translation model directly from parallel

corpora is presented by Cohn and Blunsom (2009). In contrast to (DeNero et al., 2008;

Blunsom et al., 2009), Cohn and Blunsom (2009)’s model uses a synchronous tree

substitution grammar formalism (STSG) (Eisner, 2003) for grammar induction.

3.9 Summary

In this chapter, we introduced Monte Carlo sampling as a general class of approximate

inference algorithm. Sampling methods can be used to provide unbiased estimates

of expectations of functions defined over the distributions of interest, even when

exact inference is intractable. We studied one particular class of sampling algorithms,

Markov chain Monte Carlo sampling, and showed how MCMC methods can be used to

efficiently sample from any desired distribution, irrespective of the dimensionality of

the space, even when the distribution is only known up to a normalising constant. We

also showed how unconstrained optimisation can be formulated as a sampling problem,

highlighting the use of annealing type methods in such a case.

MCMC sampling underpins the work presented in this thesis so in addition to its

theoretical aspects, we addressed the practical considerations of sampling, especially

ways of dealing with correlated variables and accelerating convergence of the sampler

to the desired distribution.
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In Chapter 5, we apply the lessons learnt about MCMC sampling to construct

a sampler that can efficiently explore the state-space defined by phrase-based SMT

translation model.



Chapter 4

Experimental Setup

This thesis presents a novel sampling-based framework for Statistical Machine Trans-

lation. To demonstrate the correctness of the proposed framework and to evaluate

its performance in comparison it with alternate methodologies, we run translation

experiments.

Before delving into an exposition of the proposed architecture, in this chapter, we

describe the conditions used for the experiments conducted during the course of this

thesis. By doing so, we aim to make the results presented in this thesis reproducible.

The experiments and the results themselves are covered in more detail in the next three

chapters.

This chapter covers the following:

• The baseline model. (Section 4.1)

• A description of all the corpora used for the experiments in this thesis (Sec-

tion 4.2)

4.1 Baseline Model

The baseline model used in this thesis is a phrase-based log-linear model (Koehn et al.,

2003; Koehn, 2004a). While in recent years, syntax-based models have outperformed

phrase-based models in the translation of Chinese to English where significant long-

distance reordering is prevalent, phrase-based models remain the best performing

models for the three language-pairs we consider in this thesis (Zollmann et al., 2008;

Callison-Burch et al., 2009). Additionally, the phrase-based formalism is a mature and

extensively studied one for which many freely available implementations exist. In this
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thesis, we use the most popular of these: Moses (Koehn et al., 2007), an open source

implementation of an end to end SMT system. Moses implements the whole SMT

pipeline using:

1. Word alignment and phrase extraction tools for extracting and scoring a phrase

table from parallel corpora.

2. Scripts implementing n-best MERT for discriminative training of feature weights.

3. A phrase-based beam decoder which implements the max derivation, n-best

MBR and lattice MBR decision rules.

Features

Moses uses a log-linear formulation of the statistical machine translation model. This

formulation breaks down the modeling of the translation task in terms of a weighted

combination of features of the model. The features in our baseline model are:

• A distortion feature, also known as linear distortion. In the decoding algorithm

proposed in (Koehn, 2004a), the target string is generated from left to right while

source side phrases can be reordered. The distortion feature is a mechanism

to control the amount of reordering performed during decoding. The linear

distortion model is a weak reordering model in that it only looks at the distance

between the phrases being reordered while remaining agnostic about the identity

of the phrases involved.

In a beam decoding algorithm, under a log-linear or a linear model, the dis-

tortion feature decomposes over the derivation. In other words, the distortion

associated with a completed translation is the sum of the distortions computed

at each hypothesis expansion. Each time a hypothesis is expanded, it incurs a

exponential penalty based on the reordering distance, which is the number of

words skipped on the source side between the source phrase being translated

and the preceding one. The penalty is then weighted by the weight associated

with the linear distortion feature.

The distortion feature is an example of a near-local feature. It is not a local

feature since its value cannot be computed based solely on information provided

by the source and the target phrase involved in the hypothesis expansion. As the

additional information required can be obtained by simply keeping track of the
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previously translated source phrase, we call this feature near-local. Non-local

features impose constraints on the search algorithm’s hypothesis recombination

strategy (as described in Section 2.4.1.1). In the case of distortion feature, if two

hypotheses differ with respect to the source position of their previously translated

source phrase, they cannot be recombined.

• A language model feature. As we saw in Section 2.1.2, the language model

provides a measure of how well formed the target sentence e is. An n-gram

language model does so by assigning to each string a probability solely based

on the words comprising it. For a string e = e1e2e3 · · ·en, this probability is

mathematically given by:

p(e) = p(e1e2e3 · · ·en)

= p(e1)p(e2|e1)p(e3|e1e2)p(e4|e1e2e3) · · · p(en|e1e2 · · ·en−1) (4.1)

The formulation in (4.1) casts language modeling as the task of computing the

probability of a word given all the words that precede it in the string. The

predecessor words are also known as the history or the context. The parameters

in an n-gram language model are therefore a pair composed of the context and

the word whose probability is being estimated. In order to have better estimates

of the model parameters, n-gram language models typically make a Markov

assumption that only the last few words of the context affect the next word.

In a language model of order n, the length of the context is reduced to the last

n-1 words.

The probability assigned by a trigram language model is given by:

p(e) = p(e1e2e3 · · ·en)

= p(e1)p(e2|e1)p(e3|e1e2)p(e4|e1e2e3) · · · p(en|e1e2 · · ·en−1)

≈ p(e1)p(e2|e1)p(e3|e1e2)p(e4|e2e3) · · · p(en|en−2en−1)

In order to account for unseen or rarely seen contexts, n-gram language model

parameters are typically smoothed. In our experiments, unless otherwise stated,

we train trigram language models on the target side sentences of our parallel
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corpora with Kneser-Ney smoothing (Kneser and Ney, 1995) using the SRILM

toolkit (Stolcke, 2002).

The language model feature assigns to each target side string a score equal to

the log probability of the string under the language model. The language model

feature is a near-local feature since a history of the last n-1 words generated

words is required to compute its value.

As an aside, we note that as the order of the language model increases, the local-

ity of the feature becomes more global. This has a negative repercussion on the

efficiency of the underlying search algorithm. Recall that a necessary condition

for recombining two hypotheses is that they share the same language model

context. When decoding with high order language models, fewer hypotheses

recombine causing a blow-up in the search space. In order to maintain efficient

decoding, more aggressive pruning is required thus increasing the chances of

search errors.

The max translation decoding algorithm of Blunsom et al. (2008), discussed in

Section 2.4.2.2, stores the entire generated string as context and thus is equiva-

lent to decoding with a language model of order n = ∞.

• A word penalty and a phrase penalty feature. Both features are local count

features indicating the number of target words generated and the number of

phrase-pairs used in the derivation respectively.

A positive word penalty feature weight biases the model to produce shorter

translations while longer translations are produced when the feature weight is

negative. When the phrase penalty feature weight is positive, the model prefers

translations made of a large number of short phrases whereas a small number of

long phrases is preferred if the feature weight is negative.

• Translation model features. Four translation model features are used. All four

features are local to the phrase-pair being considered and consist of:

1. The log-probability score from a probability distribution, p(ē| f̄ ), mapping

source phrases to target phrases. We refer to this distribution as the forward

phrasal translation distribution.

2. The log-probability score from a probability distribution, p( f̄ |ē), mapping

target phrases to source phrases. We refer to this distribution as the reverse

phrasal translation distribution.
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3. The log-probability score from a forward lexical translation probability

distribution plex(ē| f̄ ).

4. The log-probability score from a reverse lexical translation probability

distribution plex( f̄ |ē).

All four distributions rely on phrasal and word alignments and are computed

following the procedure detailed in Koehn et al. (2003). These alignments are

not usually annotated in available parallel corpora, instead, they need to be

automatically induced. The IBM models presented in Section 2.1.1 produce

word alignments between source and target sentences as a by-product of the

modeling task. These word alignments can then be used in conjunction with

heuristics to produce phrasal alignments from which phrasal distributions can be

induced using simple relative frequency estimates.

The phrase extraction heuristics can be inexact and can sometimes align phrases

erroneously. Since the phrase translation probabilities are calculated using max-

imum likelihood estimation, some distributions might be falsely peaked in the

presence of rare events. A common way to smooth the effect of these distri-

butions is to introduce lexical translation distributions (Koehn et al., 2003). In

these distributions, the lexical probability of a phrase will be low if the words

that comprise the source phrase are not good translations of the words in the

target phrase.

The automatic word alignments were created using the GIZA++ toolkit (Och

and Ney, 2003) and phrase-pairs extraction was done using the scripts provided

with Moses.

Phrase Table Pruning

In phrase-based models, the translation model is in the form of a phrase table. A phrase

table consists of a list of source phrases and all the possible target phrases each source

phrase can translate to. A pair of source and target phrase is referred to as a phrase-pair.

We sometimes refer to a phrase-pair in a phrase table as a phrase table entry. Each

phrase-pair is annotated with the translation model feature values associated with it.

Figure 4.1 is an example of a phrase table.
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FOREIGN ENGLISH P(e|f) P(f|e) Plex(e|f) Plex(f|e)

a atteint has  stretched 0.01 1 0.05 0.003

a atteint achieved 0.30 0.10 0.21 0.002

a atteint amounted 0.29 0.15 0.40 0.008

a atteint rose to 0.40 0.30 0.12 0.012

a aussi has also 0.65 0.13 0.11 0.023

a aussi have also 0.10 0.03 0.09 0.015

Figure 4.1: Example of a phrase table. Each row in the table consists of a source

phrase with its associated target phrase and translation model features.

Due to the extraction heuristics used, phrase tables can become very large thus

slowing decoding. We use the following methods to reduce the size of the phrase

table:

• We set the maximum source length of phrase pairs in the phrase table to be 5.

• For a given source phrase f̄ , we only include the top 20 most probable target

phrases ē based on the p(ē| f̄ ) distribution. This is the default setup in Moses.

• The phrase table is pruned using the associated score filtering technique of

Johnson et al. (2007a). The intuition behind this pruning technique is that not

all of the phrase pairs in the phrase table are reliably supported by the data

and that some of them might be included just as an artifact of the extraction

heuristic. Johnson et al. (2007a) present an algorithm to identify and eliminate

such phrase-pairs, leading to a drastic reduction (of almost 90%) of the size of

the phrase table without any deterioration in BLEU.

Reordering Limit

In Section 2.4.1, we discussed that, in order to make stack decoding tractable, the

amount of reordering allowed by the decoder has to be limited. Imposing a reordering

limit reduces the complexity of the search space O(I22I) which is exponential in the

sentence length I to O(Λ22ΛI) which is exponential in the reordering limit Λ but linear

in I.
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In preliminary experiments, we found that a Λ value of 6 gave the best trade-off

between speed and accuracy. Therefore, for the experiments in thesis we set Λ to 6.

4.2 Corpora

The translation experiments in the thesis are performed on the following three language

pairs:

• Arabic to English.

• French to English.

• German to English.

In a SMT experimental setup, we can distinguish between five types of datasets.

These are:

• The parallel training corpus used to train the translation model.

• The monolingual training corpus used to train the target side language model.

• The parallel tuning corpus used for parameter estimation.

• Optionally, a parallel held-out corpus which is used to evaluate the quality of

estimated model parameters.

• One or many test parallel test sets used to evaluate the final translation perfor-

mance of the SMT system.

The parallel training corpora consists of one target sentence for each source sen-

tence. However, the tuning, held-out and test corpora can have multiple target sen-

tences, also known as references, for each source sentence. We indicate the number of

references available for each of the corpora used.

The Arabic-English training corpus is almost a third in size to the corpora used

for the other two language pairs. The use of this smaller corpus is to allow us a rapid

experimental life-cycle and also to ascertain whether the techniques presented in this

thesis work both for small scale, in the case of Arabic-English, and large scale, in the

case of French-English and German-English, data sets.
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Corpus Sentence Source Average Target Source Target

pairs words words vocab size vocab size

Training 288,093 8,478,652 9,280,345 143,397 87,143

Tuning - MT02 1,043 28,553 33,503 6,474 10,443

Held-out - MT03 663 17,815 19,821 4,684 5,478

Test - MT05 1,056 31,375 36,173 6,950 7,081

Table 4.1: Corpus statistics for Arabic to English translation task in terms of number

of sentence pairs, number of source words and the size of the source vocabulary for

each data set. Average Target words is the number of target words averaged over all

references in case of multi-reference data sets. The target vocabulary size is computed

by aggregating all references.

4.2.1 Arabic to English

We present statistics for the corpora used for Arabic to English translation experiments

in this section. We refer to this language pair as AR-EN. The data used in these

experiments are obtained from the Linguistic Data Consortium (LDC)1 and from the

annual machine translation evaluation workshops organised by the National Institute

of Standards and Technology (NIST)2.

The training corpus is a subset of 288,093 sentence-pairs drawn from the train-

ing data made available for the NIST workshop. It consists of the eTIRR cor-

pus (LDC2004E72), the Arabic news corpus (LDC2004T17), the Ummah corpus

(LDC2004T18), and the sentences with confidence c > 0.995 in the ISI3 automatically

extracted web parallel corpus (LDC2006T02).

The tuning corpus is NIST’s MT02 dataset. It consists of 1,043 Arabic sentences

with 10 English reference translations for each source sentence. The 663 sentence long

MT03 dataset is used as held-out for some experiments and as test set for some other

experiments. It includes 4 reference translations per source sentence. The blind test set

comes from the NIST’s MT05 dataset. It is a 4 reference, 1,056 sentence long corpus.

In Table 4.1, we provide statistics for each of the datasets detailing the number of

sentence pairs in each, as well as the number of source words, target words, source

1www.ldc.upenn.edu
2www.itl.nist.gov/iad/mig/tests/mt/
3www.isi.edu
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tokens and target tokens in each corpus. For the target side statistics of the multi-

reference test sets, we present the average number of target words per reference set

(Average Target words) and the number of distinct target words aggregated over all the

references (Target vocab size).

4.2.2 French/German to English

For the French to English (FR-EN) and German to English (DE-EN) translation exper-

iments, we use data made available for the WMT09 shared translation task (Callison-

Burch et al., 2009). This consists of data from the proceedings of the European Par-

liament. These proceedings are commonly known as Europarl. We use the training

corpus from WMT09 to train the translation model and use its target side for training

a trigram language model. Tuning is performed using the DEV2006 set. We use

TEST2007A as test set for some preliminary experiments and use it as held-out set

for further experiments. TEST2008A is used as blind test set for final experiments.

Since in most realistic applications of MT, the test data comes from a domain

different to that of the training data, the WMT09 shared task also provides an additional

test set composed of data drawn from a domain different to parliamentary proceedings.

This out-of-domain test set consists of news stories taken from major news outlets as

the BBC, Der Spiegel, Le Monde, etc. during the time period of November-December

2007. The purpose of this data set is to evaluate the generalisation capacity of the

SMT model when made to translate data from a domain different to that which was

used during training and tuning. We use a subset of the out-of-domain data as an

additional test set. This test set is referred to as NEWSDEV2009B. All the data sets

used only contain one reference translation per source sentence.

We present detailed statistics for FR-EN and DE-EN in Table 4.2. These statistics

also include the percentage of out of vocabulary (OOV) words in each data set. The

OOV rate is computed by dividing the number of word types in a given data set which

are not in the training data by the total number of word types in the data set. We

expect that the OOV rate will be lower for in-domain data sets (indicated as Test-In

in the Table 4.2), since both the training and test sets are drawn from parliamentary

proceedings, and higher for out-of-domain data sets (indicated as Test-Out in the

Table 4.2). This is borne out by the figures in Table 4.2.
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Corpus Sentence Source Target Source Target % OOV

pairs words words vocab size vocab size

Training 1,393,452 41,722,058 37,457,241 123,732 102,418 NA

Tuning 2,000 63,265 58,055 7,289 6,116 1.0

Held-out 1,000 31,981 29,493 4,789 4,019 1.0

Test - In 1,000 33,931 31,124 5,007 4,221 0.8

Test - Out 1,026 27,929 25,049 5,936 5,362 9.3

Corpus Sentence Source Target Source Target % OOV

pairs words words vocab size vocab size

Training 1,388,758 35,755,222 37,742,299 310,753 100,565 NA

Tuning 2,000 55,118 58,761 8,794 6,116 3.1

Held-out 1,000 27,675 29,493 5,226 4,019 2.0

Test - In 1,000 29,059 31,124 5,797 4,221 2.1

Test - Out 1,026 23,931 25,049 6,701 5,362 14.9

Table 4.2: Corpus statistics for French to English (top) and German to English (bottom)

translation task in terms of number of sentence pairs, number of source words, number

of target words, size of the source vocabulary, size of target vocabulary and % OOV

for each data set. For each data set, out of vocabulary statistics are computed as the

ratio of word types in the data set which are not in the training data divided by the total

number of word types in the data set. All data sets are single reference sets.
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A Gibbs Sampler for Phrase-based

Statistical Machine Translation

In Chapter 3, we saw that Markov Chain Monte Carlo sampling (MCMC) sampling

techniques can be used for theoretically sound approximate probabilistic inference in

distributions where exact inference is not practical. For a number of tasks in all but

the most trivial of Statistical Machine Translation (SMT) models, exact inference is

intractable too. Such intractable tasks include MAP and MBR decoding (Section 2.3)

as well as minimum risk training and conditional log-likelihood training (Section 2.5).

Most translation equivalence models define multiple derivations for each transla-

tion. Reasoning over a distribution over translations rather than derivations, as required

by the above mentioned tasks, requires marginalising out these derivations, a procedure

too slow and too memory intensive to be practical. Instead, a common approximation

is to just use the distribution over derivations. The implication of this approximation is

that the probability (or score in case of an unnormalised model) of a string is approx-

imated by the probability (or score) of the most probable derivation that yields the

string.

This so called “max derivation approximation” remains intractable but can be

computed in polynomial time via approximate dynamic programming (DP) methods.

While fast and effective for many problems, it has two serious drawbacks for proba-

bilistic inference. First, in the unnormalised probabilistic models common in SMT, the

error incurred by using the score of the max derivation approximation instead of the

score of the translation, is unbounded. Second, the DP solution requires substantial

pruning and restricts the use of non-local features. The latter problem persists even in

the variational approximations of Li et al. (2009b), who attempt to solve the former.

73
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In this chapter, we propose MCMC sampling as a way of addressing these prob-

lems. In Section 5.3, we describe a novel Gibbs sampling algorithm that draws samples

from the posterior distribution over derivations, p(e,d|f), of a phrase-based transla-

tion model. The generated samples can then be used to provide theoretically sound

solutions for a number of inference tasks. We then present formal (Section 5.4) and

experimental (Section 7.1.1) evidence to confirm that the sampler is able to effectively

explore the exponential state space of the translation model in a reasonable amount of

time. We also draw attention to limitations of the proposed approach.

5.1 Overview

We begin by assuming a phrase-based translation model in which the input sentence f
of length m is segmented into phrases which are sequences of adjacent words. These

phrases are not necessarily linguistically motivated. Each foreign phrase is translated

into the target language to produce an output sentence e and an alignment d represent-

ing the mapping from source to target phrases. Phrases are allowed to be reordered

during translation.

The model is defined in a log-linear form, with a vector of feature functions h and

parametrised by weight vector λ, as described in Koehn et al. (2003).

p(e,d|f;λ) =
exp [s(e,d, f)]

∑〈e′,d′〉 exp [s(e′,d′, f)]
(5.1)

where s(e,d, f) = λ ·h(e,d, f)

The features h of the model are described in Chapter 4. There is a further parameter

Λ, the reordering limit, that limits how many source language words may intervene

between two adjacent target language phrases. As explained in Chapter 4, for the

experiments in this thesis, we use Λ = 6.

For inference in this model, we use Markov chain Monte Carlo (MCMC) sampling.

MCMC probabilistically generates sample derivations from the complete search space.

The probability of generating each sample is conditioned on the previous sample,

forming a Markov chain. Given a suitable initialisation point, eventually this chain

will converge to the desired distribution, p(e,d|f).
The MCMC algorithm we use is Gibbs sampling (Geman and Geman, 1984)

which obtains samples from the joint distribution of a set of random variables X =
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{X1, . . . ,Xn} by sampling each variable at a time from the conditional distribution of

the variable given all other variables.

The Gibbs sampler produces a sequence of N samples of derivations drawn from

the desired distribution p(e,d|f). This sample set S N
1 = (e1,d1, f) . . .(eN ,dN , f) =

{(ei,di, f)}N
i=1, where a derivation is denoted as the triplet (ei,di, f), can then be used

to estimate the expectation of any function g(e,d, f) under the distribution as follows:

Ep(e,d|f)[g]≈ 1
N

N

∑
i=1

g(ei,di, f) (ei,di, f)∼ p(e,d|f) (5.2)

Equation 5.2 is the Monte Carlo estimate which we encountered earlier in Sec-

tion 3.1. It can be used to provide an estimate of p(ê, d̂|f), the probability of a deriva-

tion (ê, d̂, f) by taking g(e,d, f) to be an indicator function of the form:

g(e,d, f) =

1 if e = ê and d = d̂

0 otherwise
(5.3)

Likewise, we can obtain a Monte Carlo estimate of p(ê|f) by using an indicator

function g(e,d, f) which marginalises over all derivations:

g(e,d, f) =

1 if e = ê

0 otherwise
(5.4)

Similarly, if g is an indicator function over a feature in the model, then Equation 5.2

calculates the expectation of the feature under the distribution, a quantity useful for

some discriminative training algorithms.

Discussion

At this point, we would like to pause and draw the reader’s attention to the magic of

Monte Carlo sampling. Equation 5.2 tells us that, provided the samples are drawn from

the distribution of interest, a finite number of samples is enough to give us an unbiased

estimate of p(ê, d̂|f) or p(ê|f) or of any other function which can be written in the form

of an expectation without explicitly computing Z(f).

In contrast, previous methods (Smith and Eisner, 2006; Zens et al., 2007; Li and

Eisner, 2009) run DP with extensive pruning, then compute expectations of functions

of interest by first computing Z over the resulting hypergraph or over an n-best list

of derivations extracted from the hypergraph. Since this hypergraph is pruned, often
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severely so, the expectations computed are not on the true distribution but on one that

is unknown and potentially biased (Blunsom and Osborne, 2008).

This is not to say that sampling is the panacea for all inference ills in SMT. The

Monte Carlo estimate might be unbiased but its variance can be high. As discussed

in Section 3.5, variance can be reduced by using a large sample set containing few

correlated samples. This requires an efficient sampler from which a large number of

samples can be drawn in a reasonable amount of time. Designing such a sampler for

the large structured space of an SMT model presents non-trivial challenges.

5.2 Sampling in Structured Spaces

Before diving in the description of our proposed sampler, we would like to draw

attention to some of the challenges in designing such a sampler. Refer to Lopez (2010)

for a much more thorough discussion on the subject.

Many NLP tasks such as parsing or machine translation are examples of struc-

tured problems. Though there is not a clear cut agreed upon definition of the term,

a structured problem can be seen as one where we are predicting the values of mul-

tiples variables and the output variables in the model are mutually dependent or con-

strained. These dependencies and constraints reflect the structure inherent in the prob-

lem domain. For example, in the case of parsing, a valid assignment of the variables

in the model has to respect, among other constraints, the constraint that the resulting

parse tree be rooted in a non-terminal labelled with an S symbol.

The presence of these dependencies and constraints poses problem to MCMC

algorithms. For example, the usual way of doing Gibbs sampling, which consists of

sampling each variable at a time from its conditional distribution, is inappropriate since

it might change the value of a variable to a new value which breaks the constraints of

the model.

Recent work on applying MCMC sampling to the structured problem of modeling

SMT phrase alignment (DeNero et al., 2008; Blunsom et al., 2009) has done so by

using the following algorithm: assuming a joint distribution P(X ,Y ) over input vari-

ables X ∈ X and output variables Y ∈ Y, draw a new sample Y ′ given current sample

Y from a small set of neighbours N ⊂Y with probability proportional to P(Y ′|X). The

combination of N and P(Y ′|X) is called an operator. The sampler may use several

operators.
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This algorithm bears a stark similarity to the usual implementations of the Metropolis-

Hasting algorithm. The neighbourhood N which consists of samples that are a local

change away from the current sample can be viewed as an example of typical proposal

distributions used during Metropolis-Hastings sampling. There is one major difference

though: in Metropolis-Hastings, the proposal distribution is different from the target

distribution, whereas in the algorithm of (DeNero et al., 2008; Blunsom et al., 2009),

the proposal distribution is the target distribution itself. As such, as long as the con-

ditions of irreducibility and aperiodicity are satisfied, the algorithm of (DeNero et al.,

2008; Blunsom et al., 2009) is a Gibbs sampler.

The term Gibbs operator is introduced by DeNero et al. (2008) but it is very

closely related to the concept of block sampling, which we previously encountered in

Section 3.5. To see this, notice that the set of variables in an operator’s neighbourhood

can be equivalently mapped to a block of variables in a block sampler.

The sampling algorithm for structured spaces therefore comes down to constructing

appropriate neighbourhoods or blocks of variable which allow rapid exploration of the

entire space without breaking the deterministic dependencies and constraints in the

model.

5.3 Sampler Description

Our sampler consists of simple operators which when concatenated together enable it

to efficiently explore the entire distribution of a phrase-based translation model. Each

operator proposes a small change to the existing translation; the likelihood of accepting

the change is proportional to the conditional probability of the change with respect to

the unchanged remainder of the translation. Given an initial sample, an iteration of the

sampler will apply each operator at each possible point in the sentence. A new sample

is then collected.

The sampler consists of three operators. RETRANS varies the translation of a

single source phrase. Segmentation, alignment, and all other target phrases are held

constant. MERGE-SPLIT varies the source segmentation at a single word boundary. If

the boundary is a segmentation point in the current hypothesis, the adjoining phrases

can be merged, provided that the corresponding target phrases are adjacent and the

phrase table contains a translation of the merged phrase. If the boundary is not a

segmentation point, the covering phrase may be split, provided that the phrase table

contains a translation of both new phrases. Remaining segmentation points, phrase
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it is some result remarkable
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Reorder

1

Figure 5.1: Example evolution of an initial hypothesis via application of several opera-

tors. Variables that stay constant during each sampling step are indicated by shading.

alignment and target phrases are held constant. REORDER varies the target phrase

order for a pair of source phrases, provided that the new alignment does not violate

reordering limit Λ. Segmentation, phrase translations, and all other alignments are

held constant. Figure 5.1 illustrates sampling using the operators in our model.

The log-linear model of Equation 5.1 is effectively defined over the features of

the phrase-pairs and alignments involved in the translation. While the RETRANS and

REORDER operators keep the number of phrase-pairs/alignments used in a translation

constant, the MERGE-SPLIT operator can vary this number. However, Gibbs sampling

is suitable only for a distribution over a fixed number of variables. If the dimensionality

is variable, then we must use alternate methods such as reversible-jump Monte Carlo

(Green, 1995). To show that we are actually computing a distribution on a fixed number

of variables, we will use an alternate representation. We must first formally define

some variables and notations.

• Let i and j be inter-word source indices where 0≤ i≤ j ≤m and m is the length

of the source sentence.

• Let [i, j] denote a source span. The left frontier of the span denotes position i

and its right frontier refers to position j.

• A source span is active if [i, j] is a current segmentation in source sentence f and

is inactive otherwise.
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• Let fi j be the source phrase spanning [i, j] in source sentence f.

• Let E represent a target side phrase and E the set of all target side phrases.

• Then, T[i, j,E] is an indicator variable defined as follows.

T[i, j,E] =

{
1 if fi j translates to E as one phrase in the translation f→ (e,d)

0 otherwise

In other words, T[i, j,E] denotes a phrase-pair with fi j as its source and E as its

target.

• Let T consist of all T[i, j,E] variables.

• Let k and l be inter-word source indices where 0 ≤ k, l ≤ m and m is the length

of the source sentence.

• Let S[k,l] be an indicator variable defined as follows.

S[k,l] =


1 if a span with right frontier k is translated immediately before

a span with left frontier l in the translation f→ (e,d)

0 otherwise

• Let S consist of all S[k,l] variables.

The T[i, j,E] variables represent phrase pairs involved in a translation and the S[k,l]

variables capture the alignment sequence of these phrase pairs. We denote an indicator

variable with value equal to 1 as active and inactive otherwise.

We cannot freely assign any set of values to our variables. There are several

constraints. Firstly, there can only be one active phrase-pair variable per active source

span.

∑
E∈E

T[i, j,E] = 1, ∀i, j : [i, j] is an active source span (5.5)

Second, only one alignment variable may be active for the right frontier of a span;

likewise for the left frontier.

∑
l′

S[k,l′] = 1, ∀k : right frontier of an active source span (5.6)

∑
k′

S[k′,l] = 1, ∀l : left frontier of an active source span (5.7)
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T [Ys,Ye, ER]T [Xs,Xe, EL]

E ER
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S [Xe, i] S [j, Ys]
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Figure 5.2: The left hand side diagram shows a monotone translation. Figure on the

right shows a translation with source side reordering. Source phrases are annotated

with their spans. Each translation step is annotated with its associated active phrase-

pair and alignment variables. For example, translating source words spanning [i, j]

to target phrase E is captured by the phrase-pair variable T[i, j,E] and the alignment

variable S[Xe,i], where Xe is the end position of the source span of the target phrase

translated immediately before E.

Given valid configurations of T and S, we can reconstruct the derivation (e,d, f).
Figure 5.2 gives an example of two translation hypotheses annotated with active

phrase-pair and alignment variables.

Features h(e,d,f) in Equation 5.1 can be decomposed into simpler functions depend-

ing on mostly local information. Assume a phrase-based model with 4 such features,

where the features correspond to the ones described in Section 4.1:

1. A translation model feature with weight λT and score hT (E, fi j).

2. A word penalty feature with weight λW and score hW (E).

3. A linear distortion feature with weight λD and score hD( j, i).

4. A language model (LM) feature with weight λL. The LM contribution of phrase-

pair T[i, j,E], given the alignments S in the translation, is represented as the triple

hL(E,e[S,i, j]
− ,e[S,i, j]

+ ) where e[S,i, j]
− encodes the LM pre-context of T[i, j,E] and e[S,i, j]

+

its LM post-context.

Given a language model of order n, the LM pre-context and the LM post-context

of a target phrase are the n-1 target words preceding it and the n-1 target words

following it in the translation string respectively.
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The model in Equation 5.1 can now be factorised as:

p(e,d|f;λ) = p(T,S| f ;λ)

∝ exp [λ ·h(e,d, f)]

= exp λT ∑
T[i, j,E]∈T

[
T[i, j,E]hT (E, fi j)

]
· exp λW ∑

T[i, j,E]∈T

[
T[i, j,E]hW (E)

]
·

exp λD ∑
S[ j,i]∈S

[
S[ j,i]hD( j, i)

]
·

exp λL ∑
T[i, j,E]∈T

[
T[i, j,E]hL(E,e[S,i, j]

− ,e[S,i, j]
+ )

]
(5.8)

Since the model is defined over fixed-length T and S, we can apply Gibbs sam-

pling to it. In basic Gibbs sampling we would deterministically scan the variables

left-to-right, resampling each in turn. However, due to the deterministic constraints

between variables, we use a block sampling strategy whereby mutually constrained

variables are sampled together. To do this we define blocks of variables that allow us

to vary their assignments while respecting the constraints in Equations 5.5, 5.6 and 5.7,

respectively:

1. Let T[i, j] be the set of all phrase-pair variables spanning [i, j].

2. Let S[ j,−] = {S[ j′,i′]| j′ = j} be the set of all alignment variables such that j is the

right frontier of a source phrase translated immediately before another phrase.

3. Let S[−,i] = {S[ j′,i′]|i′ = i} be the set of all alignment variables such that i is the

left frontier of a source phrase translated immediately after another phrase.

We are now in a position to formally describe the operators.

5.3.1 RETRANS

The RETRANS operator changes the translation of a single source phrase. Segmenta-

tion, alignment, and all other target phrases are held constant.

Assume we want to sample a new target phrase for the active span [I,J] and that the

set of phrase table entries translating source phrase fIJ is given by {〈fIJ,E1〉,〈fIJ,E2〉 · · ·
〈fIJ,En〉}. The block T[I,J] therefore consists of the variables {T[I,J,E1],T[I,J,E2] · · ·T[I,J,En]}.

A new phrase-pair T[I,J,Ee] (1≤ e≤ n) is then sampled with probability:

p(T[I,J,Ee] | T[I\,J\],S) =
p(T[I,J,Ee],T[I\,J\],S)

∑
n
i=1 p(T[I,J,Ei],T[I\,J\],S)

=
s(T[I,J,Ee],T[I\,J\],S)

∑
n
i=1 s(T[I,J,Ei],T[I\,J\],S)

(5.9)
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c'est un resultat remarquable

remarkable resultsome
it is

but

T [0,1, E1]

T [0,1, E3]

0 1 2 41 2

Figure 5.3: Example of a RETRANS step for block T[0,1] = {T[0,1,E1],T[0,1,E3]} where E1

= “but” and E3 = “it is”. The variables T[0,1,E1] and T[0,1,E3] correspond to the phrase-pair

〈“c’est”, “but”〉 and 〈“c’est”, “it is”〉 respectively. Source phrases are annotated with their

spans. The shaded box covers all variables that stay constant during the sampling step.

All alignment variables stay fixed.

where T[i\, j\] = {T[i′, j′,E]| i′ 6= i and j′ 6= j} is the set consisting of all phrase-pair

variables that do not span [i, j] and S is the set consisting of all alignment variables.

The denominator normalises the probabilities so that they sum up to one.

Equation 5.9 is the basic Gibbs sampling operation: the generation of a random

value for some variable from its conditional distribution given the current values of

all other variables. Neal (1993) mentions that “the speed of the algorithm depends

crucially on whether this operation can be done quickly.” As defined in (5.9), this oper-

ation requires computing the scores s of entire derivations which is clearly expensive.

Note that we can get away from computing Z since it cancels out in the numerator and

denominator.

However, we can factorise the joint distribution (Equation 5.8) as a product of

variables resampled by RETRANS (T[I,J,Ee]) and constant variables (all other phrase pair

and alignment variables). The constant terms cancel so that Equation 5.9 simplifies to:

p(T[I,J,Ee] | T[I\,J\],S)=
exp
[
λT hT (Ee, fIJ)+λLhL(Ee,e

[S,I,J]
− ,e[S,I,J]

+ )+λW hW (Ee)
]

∑
n
i=1 exp

[
λT hT (Ei, fIJ)+λLhL(Ei,e

[S,I,J]
− ,e[S,I,J]

+ )+λW hW (Ei)
]

(5.10)

We have therefore reduced the basic sampling operation for the RETRANS operator

to that of only computing the scores of the phrases in the block. If all the features
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in the model are local, then the score of a phrase can be computed in advanced,

greatly speeding up sampling. In our model, we have two non-local features: the

linear distortion feature and a language model feature. The former remains constant

during RETRANS so can be ignored. On the other hand, computing the language

model contribution of each phrase is an expensive operation since it cannot be pre-

computed. This is because, given a language model of order n, the computation

requires knowledge of the n-1 words in the target sentence preceding the target phrase

and the n-1 words in the target sentence following the target phrase, words which are

liable to change after each sampling step.

We now illustrate the RETRANS operator with an example.

Example Figure 5.3 shows an example of the RETRANS operator. We want to

sample from T[0,1] = {T[0,1,E1],T[0,1,E3]} where f0,1 = “c’est”,E1 = ‘but” and E3 =

“it is”. Assuming a bigram language model with the start of sentence marker denoted

by 〈s〉 and setting all feature weights to 1.

Then, T[0,1,E1] is chosen with probability:

P(T[0,1,E1] | T[I\,J\],S) =
exp [hT (“but”,“c’est”)+hL(“but”,〈s〉,“some”)+hW (“but”)]

Z′

and T[0,1,E3] is chosen with probability:

P(T[0,1,E3] | T[I\,J\],S) =
exp [hT (“it is”,“c’est”)+hL(“it is”,〈s〉,“some”)+hW (“it is”)]

Z′

where Z′ = exp [hT (“but”,“c’est”)+hL(“but”,〈s〉,“some”)+hW (“but”)]

+ exp [hT (“it is”,“c’est”)+hL(“it is”,〈s〉,“some”)+hW (“it is”)]

5.3.2 REORDER

The REORDER operator varies the target phrase order for a pair of source phrases,

provided that the new alignment does not violate the reordering limit Λ. Segmentation,

phrase translations, and all other alignments are held constant. It takes a pair of source

spans [i, j] and [k, l] and samples new values for the alignment variables from the blocks

S[−,i], S[−,k], S[ j,−] and S[l,−], such that reordering limit constraints are respected.

There are two possible outcomes to each REORDER operation: maintain the current

alignments or swap the alignments.
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ait is
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remarkable result
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S[2,2] S[3,3]

S[2,3] S[4,2]

Figure 5.4: Example of a REORDER step for source spans [2,3] and [3,4]. The operator

considers a monotone alignment (activating S[2,2] and S[3,3]) and a reordered alignment

(activating S[2,3] and S[4,2]). Source phrases are annotated with their spans. Shaded

boxes cover all variables that stay constant during the sampling step. All phrase-pair

variables stay fixed.

Assume current active alignments S[x1,i], S[ j,x2], S[x3,k], and S[l,x4] and proposed

swapped alignments S[x3,i],S[ j,x4],S[x1,k] and S[l,x2]. The required conditional probabili-

ties are:

p(S[x1,i],S[ j,x2],S[x3,k],S[l,x4]|S\,T ) = p(S[x1,i],S[ j,x2],S[x3,k],S[l,x4],S\,T )/Z′

p(S[x3,i],S[ j,x4],S[x1,k],S[l,x2]|S\,T ) = p(S[x3,i],S[ j,x4],S[x1,k],S[l,x2],S\,T )/Z′

where

S\ = {S[ j′,i′]|( j′, i′)�∈{(x1, i),(x3, i),( j,x2),( j,x4),(x3,k),(x1,k),(l,x4),(l,x2)} and

Z′ = P(S[x1,i],S[ j,x2],S[x3,k],S[l,x4],S\,T )+P(S[x3,i],S[ j,x4],S[x1,k],S[l,x2],S\,T )

As with RETRANS, we can factor out constant terms. These are word penalty

and translation model scores for all phrase pairs and distortion and language model

scores for all alignment blocks that are held constant. For each of the two alignment

possibilities, the conditional probabilities reduce to calculating 4 distortion scores and

2 language model scores. Note however that if the alignments are adjacent on both

source and target side and translated monotonically with respect to each other, then

only 3 distortion scores need to be computed.
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Example We illustrate this operator using the example in Figure 5.4 in which the

sampler considers reordering the alignments at source spans [2,3] and [3,4]. There are

2 possible outcomes to each reorder operation : (a) maintain the current alignment or

(b) swap the alignment (since doing so does not violate reordering constraints).

The blocks being sampled from are S[−,2], S[−,3], S[3,−] and S[4,−]. The monotone

alignment is represented by S[2,2], S[3,3] (duplicated as the phrases are adjacent on the

target side) and S[4,〈\s〉] where 〈\s〉 denotes the end of sentence marker . By definition

S4,〈\s〉 has a score of 0 so we eliminate the term from our calculations. Also, we remove

the duplicate alignment variable leaving us with S[2,2] and S[3,3]

The swapped alignment is represented by S[4,2], S[2,3], S[3,〈\s〉] and S[4,2]. Removing

the duplicate variable and the variable involving 〈\s〉 leaves us with S[4,2] and S[2,3].

Assuming:

S\ = {S[ j′,i′]|
[

j′, i′
]
�∈{[2,2] , [2,3] , [3,3] , [4,2]}}

Setting all feature weights to 1, the monotone alignment (S[2,2],S[3,3]) is chosen

with probability:

p(S[2,2],S[3,3]|S\,T ) =
p(S[2,2],S[3,3],S\,T )

p(S[2,2],S[3,3],S\,T )+ p(S[4,2],S[2,3],S\,T )

=
exp [hD(2,2)+hD(3,3)+hL(“result remarkable”,“a”,〈\s〉)]

Z′

and the reordered alignment (S[4,2],S[2,3]) chosen with probability:

p(S[4,2],S[2,3]|S\,T ) =
p(S[4,2],S[2,3],S\,T )

p(S[2,2],S[3,3],S\,T )+ p(S[4,2],S[2,3],S\,T )

=
exp [hD(4,2)+hD(2,3)+hL(“remarkable result”,“a”,〈\s〉)]

Z′
where Z′ = (exp [hD(2,2)+hD(3,3)+hL(“result remarkable”,“a”,〈\s〉)])

+ (exp [hD(4,2)+hD(2,3)+hL(“remarkable result”,“a”,〈\s〉)])

5.3.3 MERGE-SPLIT

The first 2 operators considered so far keep the number of source side segments

and therefore the number of active phrase-pairs/alignments in the model constant.

The MERGE-SPLIT operator, on the other hand, looks to increase this number (by

performing a split operation) or decrease this number (by merging) or keep it constant.
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Figure 5.5: Example of a MERGE involving source spans [0,1], [0,2] and [1,2]. The oper-

ator considers translating the source span [0,2] using one phrase-pair or by maintaining

the current segmentations. Here, E1 = “but”, E2 = “a”, E3 = “it is”, E4 = “some” and E5

= “it is a”. Merging span [0,2] by activating T[0,2,E5] requires setting off the alignment

variable S[1,1]. The shaded box covers variables that stay constant during the sampling

step.

MERGE: Given a position j such that [i, j] and [ j,k] are active spans, the MERGE

operator samples from all the possible ways of translating the span [i,k]. The latter can

be translated either by maintaining the current segmentations or by merging the seg-

mentations in to one span. Reordering is not allowed during this sampling operation.

The operator first considers all the possibilities of translating [i,k] using the vari-

ables in the blocks T[i, j] and T[ j,k]. Additionally, if existing spans [i, j] and [ j,k] are

currently being translated monotonically with respect to each other and if their trans-

lations are adjacent on the target side, i.e. S[ j, j] = 1, then the operator also considers

variables from the block T[i,k]. The operator then samples a new configuration for the

variables.

If the operator chooses to merge the segmentations, it has to:

1. activate the new segmentation [i,k] by activating one variable from the T[i,k]

block.

2. inactivate the segmentations [i, j] and [ j,k] by turning off all variables in T[i, j]

and T[ j,k] and by setting S[ j, j] to 0.
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The case where the operator chooses to maintain the current segmentations is

equivalent to performing the RETRANS operator on each of the blocks T[i, j] and T[ j,k].

Figure 5.5 illustrates the MERGE operator. The span [0,2] can be either translated

by sampling from the block T[0,2] = {T[0,2,E5]} or by maintaining the current segmenta-

tions and sampling from blocks T[0,1] = {T[0,1,E1],T[0,1,E3]} and T[1,2] = {T[1,2,E2],T[1,2,E4]}.
In the latter case, the operator considers the set of variables formed by a cartesian

product over the two blocks. In total, the operator considers 5 possible phrase-pair

variable assignment configurations.

SPLIT: The split operator is the converse of the MERGE operator. Given a position j (

i < j < k) such that the block T[i,k] has an active phrase-pair variable, the split operator

samples from the phrase-pair blocks T[i, j], T[ j,k] and T[i,k]. Reordering is not allowed

during this sampling operation.

If the operator decides to split the current segmentation, then it has to:

1. activate one variable from each of the T[i, j] and T[ j,k] blocks and turn off all

variables in the T[i,k] block.

2. set the value of the alignment variable S[ j, j] to 1.

In case the operator decides against splitting, it samples a new phrase-pair assign-

ment from the block T[i,k] (this is equivalent to a RETRANS operation).

The MERGE-SPLIT operator can therefore be seen as trying to translate a source

span [i,k] either with one phrase-pair or with two source adjacent phrase-pairs while

leaving distortions constant. Conditional probabilities are derived in a manner similar

to those for RETRANS.

5.3.4 Discussion

The use of Gibbs operators for SMT is first introduced in DeNero et al. (2008) for

the task of directly inducing a phrase-based translation model from parallel corpora

without detouring via word alignments. Their model is discussed in more detail in

Section 3.8.

Our sampler is most similar to the decoders of (Germann et al., 2001; Langlais

et al., 2007) which start with an approximate solution and then incrementally improve

it via operators such as RETRANS and MERGE-SPLIT. It is also similar to the estimator

of Marcu and Wong (2002), who employ the same operators to search the alignment
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space from a heuristic initialisation. Although the operators are similar, the use is

different. These previous efforts employed their operators in a greedy hill-climbing

search. In contrast, our operators are applied probabilistically, making them theoreti-

cally well-founded for a variety of inference problems.

5.4 Sampler Correctness

We now show that the proposed Gibbs sampler for phrase-based translation models

is a valid one, i.e. the sampler converges to the distribution of interest. As we saw

in Section 3.4, Gibbs sampling, by construction, satisfies detailed balance therefore

satisfying the requirement which states that the target distribution has to be invariant

with respect to the Markov chain of the sampler. In this section, we examine the second

requirement: that of the sampler’s ergodicity.

Ergodicity means that the sampler will converge to the desired distribution irre-

spective of its initialisation point. To show that this is the case for our sampler, we will

need to reuse some of the notation encountered in Section 3.2. There, we mentioned

that a sampler is ergodic as long as its transition kernel K satisfies the following two

conditions:

1. Irreducibility: There is a positive probability of visiting all other states start-

ing from a given state of the Markov chain, i.e. the transition graph must be

connected.

2. Aperiodicity: The chain should not get trapped in cycles, since otherwise it

might never settle to an invariant distribution.

We also noted that the transition kernel K is usually constructed by the concatena-

tion of simpler transition operators O and that these base operators do not individually

have to be ergodic.

We therefore begin by defining the transition matrix K of our sampler. In our case,

the base operators O are the Gibbs operators described earlier. It is clear that none of

these base operators are individually ergodic since they each only sample from a subset

of the whole distribution.

The base operators can be combined through successive application, such that

K(x′← x) = ∑
x′′

∑
x′′′

O3(x′← x′′)O2(x′′← x′′′)O1(x′′′← x) (5.11)
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where for clarity of exposition, we denote the sampling operators MERGE-SPLIT,

RETRANS, and REORDER as O1, O2 and O3 respectively and collapse the variables T

and S referring to them collectively as x.

Irreducibility

In our model irreducibility implies that, starting from a given derivation, all other

derivations are reachable in a finite state of steps. To prove that our model is indeed

irreducible, we begin by considering the simpler case where the source-side phrasal

segmentation is fixed. In this case, K is a transition kernel created by applying

the RETRANS operator repeatedly to each source position followed by applying the

REORDER operator repeatedly to each pair of source positions. This means we need

to show that for a given source-side segmentation held fixed, K can explore all the

possible derivations allowed under the model, irrespective of the initial derivation.

It should be clear that this is the case. The RETRANS operator assigns a positive

probability for sampling all phrase-pairs in the phrase table, so given a source phrase,

all the target phrases it can translate to have a probability of being sampled. Similarly,

the REORDER operator assigns a non-zero probability to each of the two reordering

configurations possible (swap and monotone) with the operator being applied to every

pair of source positions which do not violate the hard reordering limit constraint of the

model. Thus, any derivation allowable under the model can be reached from any other

derivation in a finite number of steps.

We now need to show that the MERGE-SPLIT operator is able to explore all source

side segmentations. Let us recall what this operator does: when in split mode, it takes

a phrase as input and segments it into two sub-phrases, provided the sub-phrases each

have at least one entry in the phrase table. Conversely, when in merge mode, it takes

two adjacent phrases and merges them together to form a larger phrase, provided the

larger phrase has at least one entry in the phrase table.

Figure 5.6 and 5.7 depict the space of segmentations for the source sentence “un

resultat remarquable” and “un resultat tres remarquable” under the MERGE-SPLIT

operator respectively. Each word in the sentence is annotated with position indices as

superscripts. The figures show that by applying a series of merge and split operations

at appropriate word indices, the whole space of segmentations can be explored.

So, is the sampler irreducible? It turns out that there are some pathological cases

where the sampler can get stuck. Figure 5.9 illustrates such an example. Here, there are
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0    un   1  resultat 2   2  remarquable 30 un 1 1   resultat  2 remarquable 3

0  un 1 resultat 2 remarquable 3

0 un 1  1resultat 2 2 remarquable 3

split/merge at 
index 1

split/merge at 
index 2

split/merge at 
index 1

split/merge at 
index 2

Figure 5.6: Space of source side segmentations for an example 3-word source phrase.

0 un 1  1 resultat 2 2tres3 3 remarquable 4

0 un 1  1 resultat 2 2 tres 3 remarkable 4

0 un 1  3 remarquable41 resultat 2 tres 3

0 un 1 resultat 2   2  tres  3 3 remarquable 4

1 resultat 2 tres 3 remarquable 40   un   1  

0  un 1 resultat 2 tres 3 remarquable 4

3 remarquable 40  un 1 resultat 2 tres 3

2  tres 3 remarquable 40 un 1 resultat 2   

Figure 5.7: Space of source side segmentations for an example 4-word source phrase.
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0  un 1 resultat 2 remarquable 3

0    un   1  resultat 2   2  remarquable 30     un    1 1   resultat  2 remarquable 3

0 un 1  1 resultat 2 2 remarquable 3

split/merge at 
index 1

split/merge at 
index 2

Figure 5.8: Space of source side segmentations for an example 3-word source phrase.

The phrase indicated by shading does not have any entries in the phrase table.

0  un 1 resultat 2 remarquable 3

0    un   1  resultat 2   2  remarquable 30     un    1 1   resultat  2 remarquable 3

0   un   1  1  resultat  2 2 remarquable  3

Figure 5.9: Space of source side segmentations for an example 3-word source phrase.

The phrases indicated by shading do not have any entries in the phrase table. There is

no sequence of split/merge moves to go from the configuration at the top to that in the

bottom and vice-versa.
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phrase table entries for translating the three-word segment and for translating each of

the one-word segments but no entry for either of the two-word segments indicated

by shading. This means that if the sampler is initially in the three-word segment

configuration, there is no sequence of MERGE-SPLIT moves that will take it to the

one-word segment configuration and vice versa.

The space of phrasal segmentations can be interpreted as a graph. The MERGE-

SPLIT operator gets stuck when this graph gets disconnected. Taking the SPLIT oper-

ator as example (the argument for the merge operator is similar but in the reverse

direction), we observe that for a source phrase of length n (n > 1), there exist n-1

positions where the operator can be applied. These positions are denoted as split points.

Each split operation applied at such a point j produces a pair of substrings - a prefix

substring spanning 0 to j and a suffix substring spanning j to n. A segmentation graph

is connected if at least one out of the n−1 pair of substrings produced is a pair in which

both prefix and suffix substrings have phrase table entries. The graph is disconnected

otherwise.

This is illustrated by the example in Figure 5.8 where the segmentation graph is

connected despite the phrase pair “resultat remarquable” not having a phrase-pair

entry since phrase entries exist for the prefix and suffix phrases created by splitting “un

resultat remarquable” at position 1. On the other hand, Figure 5.9 is a disconnected

graph.

A sufficient condition for ensuring that every phrasal segmentation graph is con-

nected is that the phrase table is well behaved. We define a well-behaved phrase table

as one where for every source phrase of length n (n > 1), all n(n+1)/2−1 substrings

of the source phrase have entries in the phrase table. An ill-behaved phrase table is one

which is not well behaved.

Are there any disconnected sentences, i.e. sentences having disconnected segmen-

tation graphs given the provided phrase table, in practice? A scan of our corpora and

phrase tables shows that such cases exist but that they are very rare. We present the

statistics in Tables 5.1 and 5.2.

Disconnected graphs arise as a result of the heuristics used during the phrase

extraction step where, sometimes, due to noisy alignments, the necessary phrase-pairs

fail to get extracted. They also occur when the significance score filtering technique

used to reduce the size of the phrase table (described in Section 4.1) prunes away some

necessary phrase-pairs.
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Corpus Sentences Total Non-Ergodic Sentences

Tuning - MT02 1,043 75

Held-out - MT03 663 11

Test - MT05 1,056 8

Table 5.1: Number of sentences per corpus for Arabic-English for which the sampler is

non-ergodic.

Corpus Sentences Total Non-Ergodic Sentences

French-English German-English

Tuning - DEV2006 2,000 6 3

Held-out - TEST2007A 1,000 2 5

Test - TEST2008A 1,000 2 2

Test - NEWSDEV2009B 1,026 5 0

Table 5.2: Number of sentences per corpus for French-English and German-English for

which the sampler is non-ergodic.

Since this limitation of the sampler was discovered recently, we did not manage

to address it during the course of the thesis. As we shall see in Chapter 6 and 7,

in spite of this limitation, the sampler’s empirical performance remains competitive

when compared against a dynamic programming based inference algorithm which can

handle this problem. We believe that this is because of the limited number of sentences

affected by the issue.

We now discuss some possible solutions for making the sampler irreducible irre-

spective of the vagaries of the phrase table. One unprincipled solution would be to sim-

ply manually fix the phrase tables by introducing the required phrase-pairs. Another

solution would be to overload the MERGE-SPLIT operator so as to perform 3-way

splits/merges instead of the current pairwise operations. The resulting operator would

be able to handle the scenario in Figure 5.9, albeit at the cost of increased complexity.

However, it is easy to can construct scenarios in which even this 3-way operator would

get stuck. For example, imagine the case of a 4-word source phrase for which the

phrase table additionally contains only its unigrams. The 3-way operator will be unable

to explore the space of segmentations.
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At this point, it is clear that we need a different solution to the problem. A princi-

pled solution is based around the observation that a dynamic programming algorithm

such as stack decoding does not run into the problem just described. Therefore, we

should aim to combine sampling and dynamic programming. One way to do so would

be to use to occasionally apply a Metropolis-Hastings step after applying the MERGE-

SPLIT operator. This Metropolis-Hastings step would propose a new derivation sam-

pled from a stack decoder’s translation lattice. This new derivation is accepted based

on the standard Metropolis Hastings criterion. The appeal of this solution is that by

maintaining an MCMC approach, we retain the theoretical guarantees provided by

Monte Carlo sampling methods.

We conclude this discussion by stating that given a well-behaved phrase table,

the sampler is indeed irreducible. Therefore, another solution would be to ensure

well-behaved phrase tables. This can be done by moving away from heuristics-based

induction of a phrase table to more principled methods.

Aperiodicity

Aperiodicity is fulfilled for any irreducible transition matrix K with p(x,x) > 0 for

some x. This is clearly the case in our sampler, thus the sampler is aperiodic.

Conclusion

We have shown that under certain conditions, the transition matrix, K is ergodic and

that the required distribution P(T,S) is invariant with respect to the Markov chain.

Therefore the samples drawn from the proposed Gibbs sampler are guaranteed to be

generated from the distribution of interest.

5.5 Sampling Algorithm

Starting with an initial derivation, a complete iteration or scan of the sampler consists

of applying each operator at each possible point in the sentence. By collecting a sample

only at the end of a scan, we ensure that the correlation between successive samples is

minimal.

Algorithm 5.2 presents the pseudocode of the Scan function, the function which

performs one scan of the sampler. The function takes in as argument an initial deriva-

tion and a temperature t. When t = 1, the algorithm generates samples from the true
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distribution. By changing the value of t, the shape of the distribution is altered. When

t is set to a high value, the distribution is flattened whereas when t is close to 0, the

distribution is peaked with most of the probability mass concentrated around the mode

of the distribution. The technique of varying the temperature is called annealing and

was presented in Section 3.6.

Algorithm 5.1 Pseudocode of the Scan function which performs a scan of the sampler
1: Input: current sample s, temperature t

2: Global variables: length of source sentence m, reordering limit r.

3: for i = 0 to m−1 do
4: s = MERGE-SPLIT(s, i, t)

5: end for
6: for i = 0 to m−1 do
7: for j = i+1 to m−1 do
8: if j < i+ r then // Reordering limit check

9: s = REORDER(s, i, j, t)

10: end if
11: end for
12: for j = 0 to i−1 do
13: if j + r > i then // Reordering limit check

14: s = REORDER(s, i, j, t)

15: end if
16: end for
17: end for
18: for i = 0 to m−1 do
19: s = RETRANS(s, i, t)

20: end for
21: return s // Return sample

In Section 3.5, we mentioned that getting a sampler to effectively explore the

required distribution, also known as getting the sampler to mix, requires careful choices

in the way the sampler is run. For example, a burn-in period might be required so as

to overcome the effects of the way the sampler is initialised. A further consideration

is the number of chains of the sampler one wishes to run. One can choose to run one

long chain or a few chains of medium length or multiple short chains.
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Algorithm 5.2 presents the sampling algorithm which we employ. The algorithm

is parameterised by :

• C: the number of chains used,

• B: the number of samples to discard during burn-in,

• AnnealA: the annealing function to be used (if any),

• Init: the method to initialise the sampler,

• N: number of samples per chain. We also refer to N as the number of iterations

the sampler needs to be run for.

The sampling procedure is initialised with a derivation returned by Init(). We

then run the sampler for C chains. Each chain begins with a period of burn-in where

generated samples are discarded. By applying annealing during the burn-in phase, we

can speed up the rate at which the sampler “forgets” its initialisation. The annealing

function decreases linearly from a starting temperature t = A to t = 1 at a rate equal to

(A− 1)/B. After the burn-in phase, the sampler stochastically generates new deriva-

tions by sampling from the true distribution. These sampled derivations are added to

the sample set S.

In preliminary experiments, we found that running two chains (C = 2) of medium

sized lengths was the most judicious use of our computing resources. Also, by set-

ting B to 100 and starting the annealing schedule at A = 3, the sampler was able to

rapidly move away from its initialisation point. We use these settings for all further

experiments in this thesis.

The remaining parameters of the algorithm are a) N, the number of samples per

chain and b) the way the sampler is initialised. We considered two possible ways of

initialising the sampler:

1. full. This consists of using the max derivation solution of a phrase-based stack

decoder such as Moses with a model using all features and standard reordering

limit. Initialising the sampler with the full solution means that we start the

sampler from close to the mode, if not the mode, of the distribution.

2. random. In this method, we run a phrase-based stack decoder with all feature

weights set to 0 and choose a random final solution. We chose to use random

initialisation so as to assess whether the sampler can converge to the stationary

distribution irrespective of where in the state space it is started from.
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Algorithm 5.2 Complete sampling algorithm
1: Inputs:

C: number of chains of the sampler,

B: number of burn-in iterations,

AnnealA: an annealing function with initial temperature = A,

N: number of samples per chain,

Init: an initialisation function returning a sample.

2: Output: S, a set containing samples s drawn from the distribution

3: s = Init()

4: for c = 1 to C do
5: for b = 1 to B do
6: t = AnnealA(b,B)

7: s = Scan(s, t) // Do not collect sample during burn-in

8: end for
9: for n = 1 to N do

10: s = Scan(s,1)

11: Add s to S // Collect sample

12: end for
13: end for
14: return S



98 Chapter 5. A Gibbs Sampler for Phrase-based Statistical Machine Translation

We examine the effects of these parameters in Section 7.1.1.

5.6 Sampling Complexity and Speed

Complexity

The REORDER operator iterates over the positions in the input and considers reordering

the target phrase of the current source phrase with the target phrase of all other source

phrases, provided that the reordering limit is not violated. This means that it can only

consider swaps within a fixed-length window where the size of the window is Λ, the

reordering limit. Each application of the operator necessitates scoring of two different

configurations. The total complexity of the operator is O(mΛ) where m is the length

of the input sentence.

In addition to m, the complexity of the RETRANS and MERGE-SPLIT operators

also depends on p, the average number of phrase-table entries per source phrase. As

indicated in Section 4.1, p is capped to a maximum of 20 in the experiments in this

thesis.

The RETRANS operator is applied at each position i in the source sentence. Each

operation involves scoring the p phrase-pairs for the source phrase at position i. The

complexity of this operator is therefore O(mp).

The MERGE-SPLIT operator is similarly applied at each position i in the source

sentence. As shown in the example in Figure 5.5, the operator considers all possible

ways of translating a source segment using one single source phrase and using two

source phrases. In the former case, a maximum of p phrase-pairs need to be scored

while the latter requires scoring p2 different translation configurations. The complexity

of MERGE-SPLIT is thus O(mp2) and therefore dominates the total complexity of a

scan of the sampler.

Speed

We also ran experiments to determine the speed of the sampler. The experiments were

performed for the French to English translation task using a phrase table where p, the

average number of phrase-table entries per source phrase, was equal to 8.68.

We used the sampling algorithm and default parameters detailed in Algorithm 5.2,

initialising the sampler in full mode. We ran the sampler on a randomly selected 36

word long sentence from the TEST2008 dataset several times, each time varying N, the
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Figure 5.10: Sampling time in seconds as a function of total number of samples

collected. The statistics are averaged over two sampler runs.

number of samples per chain. For each value of N, we ran the sampler twice in order to

take into account any variations in the compute load on the machine used for running

the experiments and report the average result. Note that since we run the sampler for

2 chains, the total number of samples is equal to 2N. Experiments are run on an Intel

Xeon CPU with a processor speed of 2.67GHz.

We present the results of our timing experiments in Figure 5.10. We find that the

sampling time is proportional to the number of samples collected. Sampling 10,000

derivations takes approximately 120 seconds.

5.7 Sampler Convergence

In Section 5.4, we proved formally that under certain conditions our sampler will

converge to the desired distribution. We now investigate how the sampler behaves

experimentally. We are interested in verifying that, as the theory indicates, the chain

does indeed converge to the desired distribution in the limit of the sample set size.

Moreover, we are also interested in knowing the rate of convergence of the sampler.
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A slow convergence rate would indicate that the sampler is poorly mixing - it stays

in small regions of the parameter space for long periods of time. Our computational

resources are finite so we would like the sampler to be well mixing, that is, to explore

the entire space. Since Gibbs sampling, apart from the annealing temperature, is a

hyper-parameter free algorithm, the only control we have for optimising the mixing

rate of the chain is via the design of efficient sampling operators. This experiment

therefore also serves to ascertain whether our operators have been sensibly designed

and whether their concatenation produces an appropriate transition matrix.

To monitor the convergence of the sampler when translating a sentence, we would

like to compare the distribution estimated by the sampler with the true distribution.

We are interested in two distributions: the derivation level distribution p(e,d|f) and

the distribution over translations, p(e|f).

Both distributions are estimated using the Monte Carlo estimate given in Equa-

tion 5.2. The estimated derivation level distribution is obtained using the indicator

function in (5.3). We denote this distribution by p̃(e,d|f). The estimated translation

level distribution, p̃(e|f), is obtained using the indicator function in (5.4).

The most commonly used similarity measure for comparing probability distribu-

tions is the Kullback-Leibler (KL) divergence. The KL divergence between two prob-

ability distributions P(x) and Q(x) is:

DKL(P||Q) = ∑
x

P(x) log
P(x)
Q(x)

(5.12)

Typically P represents the true distribution and Q is an approximation of P. It is a

non-negative number where a high value indicates that P and Q are far apart and a low

value indicates that P and Q are close. The KL divergence is equal to 0 only if P = Q.

The KL divergence is a non-symmetric measure (DKL(P||Q) 6= DKL(Q||P)) only

defined when P(x) > 0 and Q(x) > 0 for all x and when P and Q both sum to 1. It also

requires that both distributions have the same support that is they are both defined over

the same elements.

In our case, the support of the estimated distribution consists of all the derivations

or translations in the sample set whereas the support of the true distribution is the space

of all derivations or all translations that can be produced by the model. For all but the

shortest of input sentences, the latter space is orders of magnitude larger than any set

of samples we can reasonably be expected to generate. This means that we cannot use

KL divergence as a similarity measure to assess the sampler’s performance.
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Instead, we propose using a KL-like similarity measure, which we term sampler

divergence. This divergence is given by:

DSampler(Q||P) = ∑
x∈S

Q(x) log
Q(x)
P(x)

(5.13)

This measure is almost similar to DKL(Q||P) except that the summation is per-

formed over items in the sample set S rather than the entire support. Over the sample

set, Q(x) is a well-formed probability distribution summing up to 1 thus satisfying

one requirement of a KL divergence measure. However, the measure is not a KL

divergence because P(x) does not sum up to 1 over the support. Nevertheless, we

found the sampler divergence to be a good and useful measure for monitoring the

sampler’s performance.

By setting P(x) to p(e,d|f) and Q(x) to p̃(e,d|f) and summing over the samples

we can compute the sampler divergence between the two derivation level distributions.

We can do likewise for the translation distributions. Note that we require the true

probability only for those derivations or translations in the sample set S.

How can we compute the true value of p(e,d|f) for a given derivation? Recall that

the whole purpose of using sampling is because this distribution and the corresponding

translation distribution cannot be computed tractably. However, for short enough

sentences, we can use a beam decoder to compute an exhaustive translation lattice, i.e.

one without pruning. We then apply the forward algorithm on the lattice to compute

Z. The latter is used to convert the score s(e,d, f) of a derivation to a probability:

p(e,d|f) =
exp [s(e,d, f)]

Z
(5.14)

To compute the probability of a translation, we intersect each translation in the

sample set S with the lattice and normalise this translation score by Z.

Since we keep the exhaustive translation lattice is memory and the lattice can be

very large, we only apply this algorithm to sentences shorter than 20 words. The

complexity of this algorithm is additionally increased by the very time-consuming

operation of intersecting the lattice with every translation in the sample set.
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Figure 5.10: Sampler divergence between sampler estimated distribution and true

distribution as a function of the number of samples collected for French to English data

set. Lines in red correspond to divergences between derivation level distributions. Lines

in blue correspond to divergences between translation level distributions. We compare

random initialisation and full initialisation running the sampler twice for each condition.
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Experiments

We ran experiments to monitor the sampler divergence between the estimated and the

true distributions as a function of the sample set size. We compared results obtained

using the full initialisation and the random initialisation described in Section 5.5. We

ran these experiments on the French to English translation task using 10 randomly

selected sentences of lengths shorter than 20 words from the TEST2008A data sets.

Since the sampler is stochastic, results vary across runs. To observe and to account

for this variance, we run the sampler twice in each configuration reporting both sets

of results. We use the sampling algorithm presented in Section 5.5 with the burn-in,

number of chains and annealing parameters set to the values described there.

Figure 5.10 presents the results. The lines in red indicate sampler divergences for

distributions over derivations whereas the lines in blue indicate divergences between

estimated and true translation distributions. First of all, we observe that at all sample

set sizes the translation divergences are lower than the derivation ones. This is because

the support of the translation distribution is smaller than that of the derivation distribu-

tion, i.e. there are far fewer distinct translations than there are derivations. Therefore,

it is easier to get a good estimate of the former rather than the latter. Secondly, we note

that in general, as the sampler set size increases, the sampler divergence decreases.

This behaviour is consistent with the theory behind Monte Carlo sampling.

In most cases, a very accurate estimation of the translation distribution can be

obtained from just 2,000 samples. However estimating the derivation distribution to

the same level of accuracy requires more samples, typically, at least 10,000 samples

are required. With a sample set size of 50,000, the divergence for most sentences is

almost zero. This confirms that the Gibbs sampler described in this chapter does in fact

sample from the translation model probability distribution and is thus an appropriate

tool for performing inference tasks in such distributions.

There are a number of other interesting things to note in Figures 5.10. For instance,

we find that the method of initialising the sampler does not have an appreciable effect

on the sampler’s performance except with low number of samples. This lack of

dependency on the starting point indicates that the sampler mixes well: starting at

the mode (full initialisation), the sampler does occasionally make stochastic jumps to

lower probability regions. Whereas when started at a random point in the state space

(random initialisation), the sampler is able to quickly move to the high probability

regions of the distribution.
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We have pointed out before that because the Gibbs sampler stochastically sam-

ples from the conditional distributions of variables in the model, it is very likely that

results across different runs of the sampler give differing results. From Figure 5.10,

we observe that this variance is in most cases quite low, especially when the sample

set is large. For example, for sentences 1, 3, 4, 5, 6, 7 and 8, the results for deriva-

tion divergence across 4 runs (2 types of initialisation x 2 different runs) are almost

indistinguishable from each other; likewise when comparing translation divergences.

Occasionally, however, there are considerable variations in sampler divergences.

We take as example Sentence 2 when run in full initialisation mode for 50,000 samples.

Here, the sampler divergence between the derivation distributions is 0.98 in the first run

and is 2.01 in the second. The increase in divergence in the second run indicates that in

this run the sampler is overestimating the probability of one or more derivations. This

is confirmed when looking at the samples generated. The most probable derivation as

per the sampler has a derivation probability of 0.00162 whereas its true probability is

3.15327e-05. In fact, 9 out of the top 10 most probable derivations as per the sampler

are derivations whose true probability are 2 orders of magnitude lower.

  je  ne  pense pas que     l' on 

i do not think that   we  

pense pas que l' on  je  ne     

i do not think that

Figure 5.11: Examples of two derivations of the same source sentence. The derivation

on the left is a high probability derivation under the model whereas the one on the right

has low probability.

Figure 5.11 illustrates the situation discussed. The derivation on the left of the

figure corresponds to the top ranked derivation in the first run of the sampler, one

where the divergence is low. This derivation translates the source segment by splitting

it in two and subsequently translating the resulting two segments in the order that they

appear in the source. This derivation is therefore monotone. The derivation on the right

depicts the top ranked derivation in the second sampler run, a run where the divergence

is high. Here, the source segment is split in four segments and there is a reordering

performed to translate the target word “not” before the word “think”. To go from

the low probability derivation on the right to the high probability derivation to the left
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using the sampler operators necessitates first reordering the second and third source

phrases after which a series of split/merge operations can be applied. However, the

reordering operation produces the target phrase “think not” which given the contexts

on the left and on the right is an unlikely string with low language model score so that

the monotone translation has low probability.

The derivation on the right is an example of a point in the state space trapped in

a local optima where the only way to move to a region of higher probability is to

go through a region of low probability. Note that since the sampler makes moves

stochastically, it will eventually decide to make this move were we to run it for long

enough. This is the reason why we see in Figure 5.10 that at low sample set sizes, there

tends be high variance between divergences but that these variations reduce when the

sampler is run for longer.

Note also the contrast between the sampler and a greedy search algorithm which is

based on similar sequences of local changes. Since greedy search always makes moves

to configurations which increase the probability for the derivation, once it reaches a

local optima, it can never escape it.

5.8 Summary

In this chapter, we have described a novel alternative to dynamic programming based

approximate inference for phrase-based SMT. Our proposed approach uses Gibbs

sampling to explore the probability distribution of phrase-based models. We formally

showed that under certain conditions on the phrase table the sampler is correct and

therefore guaranteed to converge to the true distribution. We then ascertained this

fact empirically showing that the sampler will converge to the desired distribution

irrespective of where it is initialised from, thus also demonstrating the mobility of

the sampler in the search space.
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Sampling for Decoding

Having ascertained in Chapter 5 that the sampler can be used for exploring the proba-

bility distribution of a standard phrase-based model, we now turn to the task of decod-

ing with the sampler. Decoding amounts to finding the translation e∗ that maximises or

minimises some criterion given a source sentence f as input. This criterion is referred to

as the decision rule. In this chapter, we investigate using the sampler for decoding with

two common decision rules: Maximum A Posteriori (MAP) decoding and minimum

Bayes risk (MBR) decoding.

6.1 Maximum A Posteriori Decoding

The Maximum A Posteriori (MAP) decision rule consists of finding the mode of the

distribution p(e|f). Since in most SMT systems, the probability distribution is defined

over derivations in the model, the MAP decision rule is of the form:

e∗MAP = argmax
e∈T (f)

∑
d∈D(e,f)

p(e,d|f) (6.1)

For every translation string e the model can produce, Equation 6.1 requires sum-

ming the scores of all the derivations that yield e. Since the sizes of both D(e, f), the

set of derivations yielding e, and T (f), the set of translation strings which the model

can produce, may be exponential in the length of the input string, the maximisation in

(6.1) turns out to be NP-hard.

The decision rule in (6.1) is often referred to as max translation decoding. A com-

mon approximation to the latter is max derivation decoding. Here, the sum operation

107
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in (6.1) is replaced by a less expensive max operation, to give the following decision

rule:

e∗MAP = Y

(
argmax

d∈D(f)
p(e,d|f)

)
(6.2)

The max derivation approximation to MAP decoding consists of finding the most

probable derivation rather than the most probable translation: the probability of a string

is approximated by the probability of its most likely derivation. While simpler than the

decision rule in (6.1), computing the max derivation solution remains intractable, thus

requiring approximate inference methods.

As described in Section 5.1, the Gibbs sampler can be used to efficiently generate

sample derivations from p(e,d|f),the probability distribution over derivations. These

samples can then be used to obtain an estimate, p̃(e,d|f), of this distribution. The

maximum of the estimated distribution is the most likely derivation, that is, the max

derivation solution.

Similarly, we can marginalise (sum) over the samples yielding the same translation

string to obtain p̃(e|f), an estimate of the probability distribution over translations. The

maximum of this estimated distribution is the max translation solution.

The Gibbs sampler for phrase-based translation can therefore also be used as a

decoder for both MAP decision rules.

6.1.1 Related Work

6.1.1.1 Max Derivation Decoding

Various methods for computing the max derivation solution have been proposed in the

SMT literature. Some of these methods are discussed in Section 2.4.1. The most pop-

ular method is beam decoding (?Koehn et al., 2003; Chiang, 2005), a heuristic-based

search algorithm which uses dynamic programming methods for efficient decoding.

There are two main differences between using beam search and using sampling

for max derivation decoding. Firstly, the former’s use of dynamic programming to

perform polynomial time decoding restricts the model to the use of local or near-local

features. In our sampling-based method, this restriction is lifted: since we sample

whole derivations, any function of h(e,d, f) may participate in the translation model

subject only to its own computability.
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To explain the second difference, we begin by noting that the decision rule in (6.2)

is equivalent to the following decision rule:

e∗MAP = Y

(
argmax

d∈D(f)
s(e,d, f)

)
(6.3)

where s(e,d, f) = λ · h(e,d, f) is the unnormalised score of a derivation given fea-

tures h(e,d, f) and weights λ. The decision rules in (6.2) and (6.3) are equivalent

because the normalisation term Z(f)) is constant for all derivations in the model and

thus can be dropped from the decision rule formulation.

The beam search algorithm uses the decision rule in (6.3), that is, it finds the

derivation with the highest score s. The sampler, on the other hand, first estimates

a probability distribution p̃(e,d|f) from the generated samples and then picks its mode

as the solution.

Assuming the sampler is drawing samples from the correct distribution and that

the translation model only uses local or near-local features, in the sampling limit, the

solutions of both decoders will be identical (we assume that there are no search errors

in the beam decoder). However, the beam decoder will be much more efficient than the

sampler. This is because unless most of the probability mass is centered in the vicinity

of the mode, samples will only rarely be drawn from around the mode, and the sampler

will waste time exploring areas of the state space of no interest.

A more efficient way of using the sampler for max derivation decoding would be

to use it as a stochastic search procedure. This can be done using annealing. Instead

of sampling from the true distribution p(e,d|f), annealing at iteration i samples from a

distribution pi(e,d|f) ∝ p1/Ti(e,d|f) where Ti is a cooling schedule. At early iterations,

the temperature is set to a high value which effectively smooths the distribution and

allows the Markov chain high mobility in the state space. At T = 1, annealing samples

from the true distribution. As the temperature is progressively cooled to approach

0, the probability mass concentrates around the mode. While annealing gives no

guarantee of finding the global optimum of the distribution, it has proved useful in

many applications (Finkel et al., 2005; Goldwater et al., 2006; Goldwater and Griffiths,

2007).

While we are curious to know how well the sampler does at max derivation decod-

ing, its main purpose in this thesis is to allow us to test the hypothesis that for phrase-

based SMT, decoding algorithms, such as max translation decoding, which model

the translation task as a direct mapping from source string f to target string e by
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marginalising over the space of derivations D(e, f) can lead to improved translation

performance. Since performing max translation decoding with the sampler requires

generating samples drawn from the base distribution p(e,d|f), we eschew the use of

annealing.

6.1.1.2 Max Translation Decoding

Beam decoding is an efficient approximate search algorithm for computing the max

derivation solution; however, there is no comparable tractable dynamic programming

based algorithm for decoding in the marginalised distribution p(e|f).

A beam search algorithm for the task is presented by Blunsom et al. (2008). In their

method, instead of storing just the last n-1 generated target words which are required

for language model score computation, each hypothesis stores the entire target string

generated so far. If two partial hypotheses have translated the same source words and

have produced the same target string, their scores are combined and only one of the

hypotheses is retained for further expansion.

Blunsom et al.’s algorithm is simple and requires only a slight modification of

the standard algorithm used for max derivation decoding. However, it does not scale

well. This is because the dynamic program used for recombination is more involved

resulting in fewer hypothesis recombinations. Consequently, there is an explosion

in the number of hypotheses to be expanded, slowing down decoding dramatically.

Therefore, Blunsom et al. resort to aggressive pruning and only use their algorithm to

decode sentences fewer than 10 words long.

A more efficient algorithm is the variational decoding method proposed by Li et al.

(2009b) which is able to scale to long sentences. Variational decoding is an instan-

tiation of a general class of approximate inference algorithms known as variational

inference in which the original intractable distribution of interest p is approximated by

a simpler distribution q which supports exact inference. The variational distribution

used by Li et al. is a distribution over n-grams given their history.

Variational decoding consists of first decoding the input sentence with a max

derivation beam decoder, then computing the variational distribution over the resulting

search hypergraph. The hyperedges of the hypergraph are finally rescored using the

variational distribution. The yield of the rescored best scoring derivation is the max

translation solution. Variational decoding is fast and is able to exploit information

from the entire pruned search space. Additionally, Li et al. find that variational
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decoding gives significant improvements over max derivation decoding on a large scale

translation task.

The limitations of variational decoding are that the variational distribution used can

be a poor approximation of the true distribution. In fact, Li et al. have to compensate

for such cases by interpolating the variational approximation of distributions over n-

grams with the derivation level distribution p(e,d|f). Further details on existing max

translation decoding algorithms are given in Section 2.4.2.

Like variational decoding, the sampling-based approach proposed here offers a

tractable solution to max translation decoding. The sampling method offers the the-

oretical guarantee that in the limit, the estimated distribution will match the true dis-

tribution. In Section 7.1.1, we provided empirical evidence which suggests that this

is the case even with a finite sample set. Using the sampler for max translation will

therefore help us determine whether this decision rule offers any benefit over the usual

max derivation decision rule.

6.1.2 Decoding Parameters

We have shown that the Gibbs sampler can be used to perform max derivation and

max translation decoding. Gibbs sampling is an MCMC algorithm with the convenient

property that since it samples from a series of exact conditional distributions, it is

largely a parameter-free algorithm1. Yet, from a practical point of view, there are a

number of hyper-parameters that need to be optimised before we can use the sampler

to perform the task we are interested in which, in this chapter, is decoding.

In Section 7.1.1, we investigated the impact of the sampler’s initialisation and of

the number of samples collected on how well sampler estimated distributions match

the true distributions. We found that the initialisation point did not matter and that as

the sample set size grows, the sampler’s estimates become more accurate.

In this section, we investigate whether the same results hold when performing

decoding. Our experiments in this section are conducted on the French to English

and the German to English translation tasks using the experimental setup described in

Chapter 4.

1There is one parameter in Gibbs sampling: the annealing temperature.
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6.1.2.1 Scaling Factor

In order to be run as a decoder, the sampler first needs to be specified weights λ for

the features in the model. For the experiments reported in this section, we used feature

weights trained with minimum error rate training (MERT; Och, 2003).

As discussed in Section 2.5.3, the objective function during MERT training is:

λMERT = argmin
λ

∑
c=1...C

Loss(argmax
d∈D(fc)

s(e,d, fc;λ),ec)

= argmin
λ

∑
c=1...C

Loss(argmax
d∈D(fc)

λ ·h(e,d, fc),ec) (6.4)

where Loss(e,ec) quantifies the error in hypothesising translation e when the ref-

erence translation is ec.

The objective function above minimises the error rate under an unnormalised linear

model, i.e. one which ignores the normalising term Z(fc). Notice that the argmax

inside (6.4) is invariant with respect to the scale of the weight vector λ; scaling the

individual components of λ k times will still return the same argmax solution as when

using λ itself. As a result, the MERT objective function is invariant to the weight vector

scaling; the Moses implementation simply normalises the weight vector it finds by its

`1-norm.

However, when we use these weights in a true probabilistic model, the scaling

factor α affects the behaviour of the model since it determines how peaked or flat the

distribution is, as can be seen from the following equation:

p(e,d|f;λ,α) =
exp [α ·λ ·h(e,d, f)]

∑d′∈D(f) exp [α ·λ ·h(Y (d′),d′, f)]
(6.5)

We optimised the scaling factor for each language pair using the first 200 sentences

of the DEV2006 tuning set. We ran the sampler collecting 10,000 samples and used the

full initialisation. Table 6.1 shows the effects of the scaling factor on the BLEU score

of the sampler running in max derivation (MaxD) and max translation (MaxT) modes

for French-English and German-English.

We find that the scaling factor can bring about substantial differences in perfor-

mance. When α = 1, the BLEU score for French-English and German-English max

derivation is 2 and 3.5 respectively. By increasing the scaling factor, performance goes

up dramatically reaching a peak of 33.3 BLEU on max translation for French-English

when α = 10 and a peak of 26.0 BLEU for German-English max translation when
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Scale/Dataset 1 2 3 4 5 6 8 10 15 20

FR-EN MaxD 2.0 18.5 28.8 31.0 32.6 32.5 33.0 33.0 32.9 32.7

FR-EN MaxT 2.8 21.2 30.3 31.7 32.3 32.5 32.9 33.3 32.9 33.0

DE-EN MaxD 3.5 11.6 20.1 24.3 25.0 25.5 25.0 25.1 24.7 24.8

DE-EN MaxT 3.1 11.9 21.8 24.6 25.4 26.0 25.3 24.9 24.8 24.7

Table 6.1: Effects of scaling factor on the BLEU score of the sampler running in max-

derivation (MaxD) and max-translation (MaxT) modes on 200 sentences of French-

English (FR-EN) and German-English (DE-EN) tuning sets. Translation performance

measured in BLEU. Best performances for each translation condition are highlighted in

bold.

α = 6. We use these values of α for the experiments in this chapter. Increasing α

further leads to a drop in performance.

Why is the performance so poor at low values of α and why is there a drop in

performance at high values of α? This is because when α is too small, the distribution

is too flat and the sampler spends too much time exploring unimportant probability

regions. When it is too large, e.g when α = 20, the distribution is too peaked and the

sampler may concentrate on a very narrow probability region.

We can quantify this argument by computing the average derivational entropy and

the average translation entropy of the sample sets for the French-English dataset as α

is varied. The derivational entropy, Hd(p) of a sample set S is given by:

Hd(p) =−∑
d∈S

p(e,d|f) log p(e,d|f) (6.6)

where e is the yield of d and p(e,d|f) is the sampler estimated probability of

derivation d. The average derivational entropy is computed by averaging Hd(p) over

the data set.

The translation entropy is computed similarly but using p(e|f), the sampler esti-

mated distribution over translations, and summing over the translations in the sample

set S :

He(p) =−∑
e∈S

p(e|f) log p(e|f) (6.7)

Figure 6.1 shows how both entropies vary with the scaling factor. At α = 1, both

estimated distributions are at maximum entropy (indicated by the dotted horizontal line
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Figure 6.1: Entropy of derivation and translation distributions estimated by sampler as

a function of scaling factor. 10,000 derivations are sampled for each of 200 French-

English sentences drawn from the tuning set.

in the graph). Any derivation or translation seen more than once is returned as the mode

of their respective distributions. In the maximum entropy case, no one derivation or

translation is sampled more than once, in which case the sampler arbitrarily breaks the

tie. As the scaling factor is increased, the distributions sharpen. As a result, the likely

derivations in the model get sampled often, so the entropy decreases and translation

performance goes up. At α = 20, the translation entropy is especially low. However,

the translation performance at that scaling is worse than when α = 10, indicating that

the sampler is concentration on a too narrow region of the distribution and missing out

on regions where good translations are to be found.

As we saw in Section 7.1.1, the translation entropy tends be lower than the deriva-

tion entropy. This is because the distribution over translations is the marginal of the

distribution over derivations so therefore the partition inequalities apply.

6.1.2.2 Sampling Initialisations and Iterations

In the next set of experiments, we examine the effects of different initialisation strate-

gies and the sample set size on the max derivation decoding performance of the sampler

using the tuned scaled factors.
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Figure 6.2: Mean maximum model score, as a function of iteration number and starting

point. The starting point can either be the full max derivation solution (full), or a random

derivation (random).

Since the features and weights stay constant during the experiments, we can com-

pare decoding performance by looking at the model scores of the solutions found by

the sampler in each run. We use as baseline the model scores of the max derivation

solutions found by Moses.

We compared the two initialisation strategies from Section 5.5: full and random on

the first 200-sentences portion of the DEV2006 tuning set. We varied the number of

samples from 100 to 50,000 in the case of French-English and 100 to 200,000 in the

case of German-English. We were unable to run the experiments for more sampling

iterations due to computational constraints.

From Figure 6.2 we can see that for French-English, the starting point did not

have an appreciable effect on the model score of the best derivation, except with low

numbers of iterations. For German-English, full initialisation does better than random

until we reach a high number of samples at which point it looks as if their respective

performances are about to converge. This confirms the findings in Section 7.1.1 that

the sampler mixes well.

Comparing the best model scores found by the sampler with those found by the

Moses decoder with its default settings, we found that around 50,000 samples were

required for French-English and 100,000 for German-English for the sampler to give

equivalent model scores to Moses. Running the sampler for 100,000 iterations took

on average 1552 seconds per sentence on German-English, meaning that the sampler
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needs to be run for almost 3 orders of magnitude longer than Moses for obtaining the

same model score.

As discussed in Section 6.1.1.1, this way of computing the max derivation solution

is far too inefficient to be practical. However, it serves as proof of concept to show that

given enough sample derivations, the sampler will find the mode of the distribution.

One interesting fact to note is that the sampler finds solutions with better model scores

than Moses when run for 200,000 iterations in the German-English translation task.

The solutions found by the sampler are derivations which were pruned away during

beam search in Moses.

The performance of the sampler running as a max derivation decoder is properly

measured by comparing the model scores of its solutions with those of the solutions

found by Moses. However, even if the sampler is making search errors, it is possible

that it is finding solutions that are good enough translations of the source sentence. It

will therefore be instructive to see how good these solutions are. In Figure 6.3, we

plot how the BLEU scores of the sampler max derivation and max translation solutions

vary as a function of sampling iterations for models run with full initialisation. We use

the same 200 sentence portion of the German-English and French-English DEV2006

tuning set as in the previous experiment.

For both language pairs, once a large enough number of samples is collected, there

is a steady improvement in max derivation BLEU score as the number of samples

increases. The trend for max translation decoding performance is less clear: increasing

the number of samples does in general lead to increased translation performance but

there are exceptions.

In the case of French-English translation, sampler performance for both decision

rules is still far from Moses performance even with 50,000 samples. Conversely, at

the same point in German-English, both sampler decoding methods have overtaken

Moses max derivation. Generating and storing 50,000 samples, however, is too com-

putationally demanding. For the remaining decoding experiments in this thesis, we use

10,000 samples which gives us a good trade-off between sampling speed and decoding

performance.

6.1.2.3 Max Translation vs Max Derivation

In addition to showing us how scaling the MERT learnt weights affects translation

performance, Table 6.1 also gives an indication as to how max translation decoding

compares to max derivation. For both language pairs, best performance as measured
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Figure 6.3: BLEU score as a function of sample set size.

by BLEU is obtained using max translation decoding thus showing the benefits of this

decision rule. However, max translation decoding does not always outperform max

derivation decoding. For example when the scaling factor is 5, max derivation does

better than max translation decoding on French-English. This erratic behaviour is also

seen in Figure 6.3.

However, we would be too hasty were we to draw conclusions about translation

performances from any one run of the sampler. This is because the use of random

numbers to generate samples introduces non-determinism in any task for which the

sampler is used. When using Gibbs sampling for decoding, different runs of the sam-

pler will give different results. To investigate the variation in translation performance,

we run the sampler for 10,000 iterations on the same set of 200 sentences from the

French-English DEV2006 dataset 10 different times using the tuned scale factor. This

will also allow us to see whether max translation does in fact consistently outperform

max translation decoding.

In Table 6.2, we report the best and the worst max derivation (MaxD) and max

translation (MaxT) BLEU performance across the 10 runs along with the mean and the

standard deviation (Std Dev) BLEU. We compared running the sampler with full and

with random initialisation.

We see that the difference in BLEU between the best and the worst results across

runs for the same decoding condition can be anything between 0.5 and 0.9 BLEU. We

can also observe that the variance between results is slightly less for runs initialised in
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Condition Worst Best Mean Std Dev

full - MaxD 32.4 33.3 32.7 0.25

full - MaxT 32.8 33.3 33.1 0.14

random - MaxD 32.3 33.0 32.7 0.27

random - MaxT 32.5 33.2 32.8 0.17

Table 6.2: Variation in max derivation (MaxD) and max translation (MaxT) BLEU scores

when decoding a 200 sentence subset of the DEV2006 French-English dataset 10

times using full and random initialisation. Worst result is italic and best results are in

bold.

the full mode compared to random initialisation and for max translation decoding runs

compared to max derivation decoding.

When comparing the performance between the two decision rules, we see that

with full initialisation, the mean max translation performance is 0.4 BLEU is better

than mean max decoding result; the improvement when using random initialisation is

a much smaller difference of 0.1 BLEU. Since these results are averaged across 10

different runs, we can say that max translation does in fact perform better that max

derivation, although the improvements are at times marginal.

We also wanted to see how often the max translation solution differed from the

max derivation solution. We find that when the sampler is run with full initialisation,

the 2 solutions differed on average 24% of the time. In Table 6.3, we show 4 randomly

chosen sentences for which the decision rules produced differing translations.

6.1.2.4 Further Analysis

We ran additional experiments on both French-English and German-English to monitor

at what sampling iterations the max derivation and the max translation solutions settle

on their final solutions. We also kept track on how often these solutions change

through the sampling process. We used the same 200 sentences drawn from DEV2006

initialising them with the full Moses solution and running the sampler till 100,000

samples are collected.
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Output

R and i can tell you why ; because these people wanted to be on the right side once and for all ,

i.e. securely anchored in the family of democratic nations .

D i can also give you the right : these once and for all people wanted to be on the right side , which

means be firmly anchored in the family of democratic nations .

T i can also give you the right : these people wanted once and for all be on the right side , which

means be firmly anchored in the family of democratic nations .

R that is also why it opposed those of the amendments tabled by our fellow members in order to

demand planet-wide general disarmament , with the european union to set the example .

D that is why , too , it will oppose those of the amendments tabled by our colleagues in calling for

a general disarmament across the world in which the european union should set an example .

T that is why , too , it will oppose those of the amendments tabled by our colleagues in calling for

a general disarmament throughout the world , which the european union should set an example .

R the provision according to which the notion of professional , essential and crucial requirement

may justify exemptions on the grounds of religion is not , in my view , acceptable .

D the provision under which the concept of professional requirement , which is essential and

decisive , can justify derogations on the grounds of religion is , in my view , unacceptable .

T the provision under which the concept of professional requirement , essential and decisive , can

justify derogations on the grounds of religion is , in my view , unacceptable .

R the civilisation we share asserts its greatness through respect for the rules of an open , tolerant

and liberal society , with its inclusive and multicultural dynamics .

D our common civilisation states its greatness in respect of the rules of the open society , tolerant

and liberal , for its dynamic inclusive and multicultural .

T our common civilisation states its greatness by respect for the rules of the open society , tolerant

and liberal , for its dynamic inclusive and multicultural .

Table 6.3: Comparison of reference translation (R) and max derivation (D) and max

translation (T) outputs on for 5 randomly chosen sentences on French-English transla-

tion task. Differences between max derivation and max derivation solutions are marked

in italics.
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Figures 6.4 and 6.5 shows these statistics for French-English and German-English

respectively. We see that the max derivation solution keeps on changing during sam-

pling whereas the max translation solution settles early. This is consistent with our pre-

vious findings that since there are many more derivations than translations, it requires

many more samples to get a good estimate of the distribution over derivations (and

therefore a good estimate of its mode) than it does to do the same for the distribution

over translations.
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Figure 6.4: Changes in decoding solutions during French-English sampling experi-

ments.
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Figure 6.5: Changes in decoding solutions during German-English sampling experi-

ments.

6.2 MBR Decoding

An alternative decision rule to MAP decoding is minimum Bayes risk (MBR) decod-

ing. The MBR decision rule comes from statistical decision theory which states that

the optimal decision rule for any statistical model is the solution which minimises its

risk or expected loss. As applied to SMT systems, the decision rule is given by:
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e∗MBR = argmin
e∈T (f)

Rf(e)

= argmin
e∈T (f)

∑
e′∈T (f)

`(e,e′)p(e′|f)

= argmin
e∈εH

∑
e′∈εE

`(e,e′)p(e′|f)

= argmax
e∈εH

∑
e′∈εE

BLEU(e,e′)p(e′|f)

where Rf(e) represents the risk when translating f of choosing e and `(e,e′) is the

loss incurred when choosing solution e if the true solution is e′. The argmin operation

can be replaced by an argmax if we use a gain function such as BLEU instead of a loss

function.

The space of translation candidates over which the risk is computed is usually

referred to as the evidence space of the algorithm and denoted by εE . Similarly, the

translation minimising the risk is chosen from a space of candidates, εH denoted as the

hypothesis space.

Both |εE | and |εH | are exponential in the length of the input sentence, so computing

the MBR solution exactly is intractable. However, since the MBR decision rule

involves computing an expectation term for each translation in the hypothesis space,

we can use the described sampler to compute these expectations while benefitting from

the theoretical guarantees provided by Monte Carlo sampling. Once the expectations

are computed, then the MBR solution is simply the translation which has the highest

expected value.

In our implementation of sampler-based MBR decoding, the evidence space is

set to be the set of sampled translations. For each translation e in the sampled set,

we compute the Monte Carlo estimate of its posterior probability p(e|f) using the

technique described in Section 5.1.

Tromble et al. (2008) show that while the MBR risk computation benefits from a

large evidence space, MBR decoding performance is just as good, and the decoding

much faster, if the hypothesis space is limited to the top n most probable translation

candidates. We likewise limit the hypothesis space to the top n most probable transla-

tions in the sample set.

Since MBR decoding is performed at a sentence level whereas BLEU is a corpus

level metric, we use SBLEU as the sentence-level approximation of BLEU.
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6.2.1 Related Work

We discussed n-best MBR and lattice MBR, the two existing methods of performing

MBR decoding in detail in Sections 2.3.2 and 2.4.3. Our sampler-based MBR decoder

shares similarities with these methods but also differs in some fundamental aspects.

When run with MERT trained weights, all three algorithms require that the weights

be scaled so as to obtain a probability distribution conducive to MBR decoding. This

weight scaling is done similarly to the procedure described in Section 6.1.2.1 with the

introduction of a scaling factor which is tuned on translation performance as measured

by BLEU on a held-out set.

Existing methods mine the search graph of a first pass beam decoder. In n-best

MBR, both the evidence and the hypothesis spaces are formed using an n-best list

of distinct derivations extracted from this search graph. n-best MBR makes a max

derivation approximation: the probability of a translation is approximated by the

probability of its most likely derivation. Additionally, the normalisation term Z( f )

required to convert the score of a derivation into a probability is computed by summing

up the scores of the derivations in the n-best list. Therefore, the estimate of p(e|f) of

each translation string e in the n-best list is liable to be a crude approximation of the

true probability.

Lattice MBR is able to leverage a much larger evidence space for the computation

of the Bayes risk of each translation in the hypothesis space by using a dynamic pro-

gramming algorithm over the entire search lattice. However, for efficiency purposes,

this lattice, which is already a pruned representation of the entire search space, has to

be further pruned prior to risk computation. The dynamic program used during lattice

MBR requires a gain function which decomposes over the edges of the lattice. This

precludes the use of SBLEU, so lattice MBR uses a linear approximation of log BLEU.

Both Tromble et al. (2008) and Kumar et al. (2009) find that lattice MBR (and

its variant for use with grammar-based translation models, hypergraph MBR) signif-

icantly outperforms n-best MBR. Their experiments show that the improvement in

performance comes from a more accurate estimation of risk brought about by using a

much larger evidence space while as far as the hypothesis space is concerned, results

using the entire hypergraph are as good as just using a 1000-best list.

Lattice MBR however introduces several parameters. Final decoding performance

is very sensitive to the settings of these parameters so they need to be carefully tuned

on a held-out set. One such parameter controls the amount of pruning which needs
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to be performed on the lattice prior to risk computation. Another set of parameters

determine how closely the linear approximation to log BLEU matches true BLEU. A

final parameter balances the contribution of the lattice MBR solution and the max

derivation solution. The latter interpolation is used to increase the robustness of the

algorithm.

On the other hand, the sampler-based MBR decoder combines the simplicity of

the n-best MBR decoder and its use of SBLEU, rather than an approximation thereof,

while theoretically guaranteeing an accurate and unbiased risk assessment, without the

introduction of any additional parameters in the algorithm.

6.3 Experiments

Having tuned the scale factor for each language pair and ascertained that full initial-

isation produced better translation results, we ran the sampler with these settings on

our test sets. These are the in-domain TEST2008 test set and the out-of-domain news-

dev2009b data set. Details about these datasets are given in Chapter 4.

We compare sampler-based max derivation, max translation and MBR decoding

with Moses max derivation and MBR decoding. For the sampler experiments, we

report mean results across 5 runs of the sampler, sampling for 10,000 iterations in each

run.

For both sampler and Moses MBR decoding experiments, we use the same scaling

factor (10 for French-English and 6 for German-English) as found in Section 6.1.2.1.

Sampler MBR is performed using all 10,000 samples as evidence space and the top

1,000 most probable translations as hypothesis space; in Moses MBR, the hypothesis

space is limited to the 1,000-best distinct derivations. In n-best MBR, the evidence

space is equal to the hypothesis space whereas in lattice MBR, the evidence space

consists of the search lattice pruned using Forward-Backward pruning (Sixtus and

Ortmanns, 1999) such that the average number of edges per word in the resulting

reduced lattice is equal to 50.

The translation results as evaluated by BLEU are shown in Table 6.4. Note that

for all these experiments, the test set contains only 1 reference sentence for each input

sentence. First we observe that when decoding with Moses the n-best MBR decision

rule does at least as well as the max derivation baseline on 3 out of 4 datasets. The

small gains obtained are consistent with results reported in the literature. When using
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fr-en de-en

in out in out

Moses MaxD 33.5 19.1 27.8 15.9

Moses N-MBR 33.4 19.3 27.8 16.1

Moses L-MBR 33.4 19.4 27.8 16.1

Sampler MaxD 33.2 18.9 27.0 15.3

Sampler MaxT 33.2 19.0 27.4 15.8

Sampler MBR 33.2 19.0 27.5 16.3

Table 6.4: Comparison of the BLEU score of the Moses decoder running in max deriva-

tion (MaxD), n-best MBR (N-MBR) and lattice MBR (L-MBR) modes with the sampler

running in max derivation (MaxD), max translation (MaxT) and MBR modes. The test

sets are TEST2008 (in) and NEWS-DEV2009B (out). Numbers in bold indicate the best

results for each test set.

lattice MBR, we fail to get improvements over n-best MBR except a minor one in the

case of the French-English out-of-domain data set.

In comparison to beam search, sampler results are, except in one test condition,

systematically lower. As we explained in Section 6.1.1.1, we do not expect the sampler

to perform as well as beam search as far as max derivation decoding is concerned. This

is borne out by the results in Table 6.4 where sampler max derivation trails beam search

max derivation by a margin of 0.2-0.8 BLEU. However, we do expect the sampler to

do well on max translation and MBR decoding since both require estimating p(e|f), a

probability distribution which, as we have seen in Section 7.1.1, the sampler is good

at estimating. We find that this is the case, especially in German-English translation:

max translation decoding does at least as good as max derivation decoding and likewise

MBR decoding does at least as good as max translation decoding. In fact, in the case

of out-of-domain German-English translation, the best performance is obtained using

sampler MBR.

Nevertheless, the sampler generally fares worse that Moses. We hypothesise that

this is because the weights used for these experiments were optimised by MERT

for max derivation decoding whereas the decision rules we use at decoding time

are sensitive to the translation model’s entire predictive distribution. Therefore, the

experiments do not rule out the possibility that max translation and MBR decoding
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will offer an advantage on an appropriately trained model. We consider methods of

training such a model in the next chapter.

6.4 Summary

In Chapter 5, we saw that our proposed Gibbs sampler for phrase-based translation is

able to reliably estimate the posterior distribution over derivations and the posterior

distribution over translations with only a finite number of samples. In this chapter, we

have investigated the use of the sampler for the task of decoding. More precisely, we

have described how the sampler can be used to perform approximate inference for two

intractable optimisation tasks, namely Maximum A Posteriori (MAP) decoding and

MBR decoding.

MAP decoding consists of finding the most probable translation in the model. Few

efficient algorithms exist for implementing this decision rule or even for computing a

close approximation of it; however, since such algorithms do exist for approximately

computing the most probable derivation in the model, the MAP decision rule is usually

approximated by the latter.

The sampler provides a tractable solution for computing both the most probable

derivation translation and the most probable translation. When used to implement

the two decision rules on test data, we found that the quality of the most probable

translation is always at least as good as that of the most probable derivation, confirming

recent findings in the SMT literature. However, we found that the sampler worked best

when used as an MBR decoder.

Nevertheless, the sampler’s empirical performance on these tasks trails behind

heuristic based search algorithms devised for these decision rules. We conjecture that

the sampler’s poor performance is due to the use of weights which have been optimised

to maximise 1-best performance, whereas the decision rules we would like to apply

them on take into account the entire distribution. The challenge therefore is to tune

the parameters of the translation model so that they exploit the predictive power of the

complete distribution. We present methods to do so in the next chapter.
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Minimum Risk Training

In the previous chapter, we described the use of the sampler for providing approximate

inference solutions when exact decoding is intractable. We found that the best transla-

tion performance was obtained when using the minimum Bayes risk (MBR) decision

rule. The MBR decision rule comes from statistical decision theory which says that

the optimal decision rule for any statistical model is the solution that minimises its risk

or expected loss. Since machine translation models are typically evaluated by BLEU, a

loss function which rewards partial matches, it is preferable to use the MBR solution

rather than the typical maximum a posteriori (MAP) solution, which, in fact, is the

MBR solution under the much harsher 0/1 loss function.

The MBR decision rule consists of calculating the expected loss (also known as the

risk) of each translation candidate drawn from a hypothesis space and then returning

the solution which minimises this risk. Since the decision rule involves calculating the

expectation of a function defined over translations in the model, the MBR decision rule

is ideally suited to be computed using sampling methods such as the Gibbs sampler

introduced in this thesis. However, the empirical performance of sampling MBR

lagged behind beam search implementations of the MAP and MBR decision rules.

We hypothesised that this unsatisfactory performance is due to the use of feature

weights trained using the Minimum Error Rate Training (MERT) parameter estimation

technique. The objective function used in this algorithm optimises the single best

derivation in the model to the detriment of other derivations which might be of good

quality too. An alternative objective which maximises the probability of a large number

of good quality translations in the model might produce distributions more suited for

use with the sampler. An additional drawback in using MERT optimised weights with

127
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the sampler is that a time consuming grid-search is required to scale the weights such

that they produce a distribution shaped appropriately for sampling.

Instead of MERT, we propose optimising the feature weights using minimum risk

training (Smith and Eisner, 2006). In this chapter we show that minimum risk training,

a parameter estimation technique which considers the entire distribution, is well suited

for the sampler. It produces already scaled weights and experimental evidence suggests

that these weights lead to better and more stable translation performance than when

using MERT optimised weights.

7.1 Motivation

In this thesis, we propose optimising the weights of the features of our log-linear model

using minimum risk training. This training regime aims to find weights that minimise

the expected loss or maximise the expected gain of the model on a given training set.

When used with the BLEU evaluation metric, this training criteria is also referred to as

expected BLEU training (Zens et al., 2007). The objective function for minimum risk

training using BLEU is:

λmr = argmin
λ

C

∑
c=1

∑
e,d

p(e,d|fc;λ)`(e,ec)

= argmax
λ

C

∑
c=1

∑
e,d

p(e,d|fc;λ)BLEU(e,ec) (7.1)

where {fc,ec}Cc=1 is a training corpus consisting of source sentences fc and ec denotes

one or many reference target sentences. Also, e is the yield of derivation d and

BLEU(e,ec) is the BLEU score of hypothesised translation e when the reference trans-

lation is ec.

Minimum risk training is an appealing training regime for several reasons:

• The training objective function takes into account the whole distribution of

derivations rather than focusing on the single best derivation like in the MERT

objective. Therefore, decoding algorithms such as max translation and MBR,

which marginalise over derivations, should fare better with a minimum risk

trained model.

• The training objective function has the exact same form as the MBR objective

used at decoding time. By maintaining a unified objective across the translation

pipeline, we expect better translation performance.
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• Since the objective function is defined in terms of an expectation, model param-

eters trained with respect to this criterion will already be appropriately scaled for

use with probabilistically defined decoding decision rules.

• The training objective function is continuous and differentiable, so, standard

gradient-based optimisation techniques, which scale to a large number of fea-

tures, can be employed.

Computing the minimum risk training objective involves an intractable summation

over an exponential number of derivations. Previous approaches to minimum risk

training for SMT models have approximated this summation using the derivations in an

n-best list (Smith and Eisner, 2006; Zens et al., 2007). A more recent approach is that

of Li and Eisner (2009) which describes a dynamic programming based algorithm for

performing minimum risk training on a translation forest, thus leveraging information

from a translation space orders of magnitude greater than that of an n-best list. Further

details on these techniques are provided in Section 2.5.4.

7.1.1 Global View of Distribution

The use of translation forests for minimum risk training follows a recent trend in

SMT inference tasks such as training and decoding to move away from n-best lists

and towards packed representations of a decoder’s search graph, referred to as lattices

in the case of phrase-based models and as forests for syntax-based models. Lattices

and forests are potentially more informative since they encode many more translation

hypotheses in them compared to an n-best list.

Decoding in SMT models typically uses beam search in conjunction with dynamic

programming, with low probability derivations heuristically pruned away from the

beam for faster decoding. Therefore, even though translation forests and lattices

encode many more hypotheses than n-best lists, they still only capture those high

probability derivations that have remained in the beam. Blunsom and Osborne (2008)

argue that looking at only the most probable derivations is liable to bias the learned

model to its detriment:

“The space of derivations contained within the beam will be tightly clus-
tered about a maximum, and thus a model trained with such an approxi-
mation will only see a very small part of the overall distribution, possibly
leading it astray. Consider the example of a language model feature: as
this is a very strong indicator of translation quality, we would expect all
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derivations within the beam to have a similar (high) language model score,
thereby robbing this feature of its discriminating power. However if our
model could also see the low probability derivations it would be clear that
this feature is indeed very strongly correlated with good translations. Thus
a good approximation of the space of derivations is one that includes both
good and bad examples, not just a cluster around the maximum.”

Our implementation of minimum risk training uses sampling to approximate the

feature expectations required by the optimisation algorithm. While the majority of the

sampled derivations will be drawn from regions of high probability, there should also

be some derivations sampled from the rest of the distribution.

To verify whether low probability derivations are indeed generated during sam-

pling, we ran both the sampler and an exhaustive decoder on an example 10 word long

input sentence from French-English TEST2008 data set. Note that exhaustive decoding

in our model is tractable for a sentence of that length. We ran the sampler for 10,000

iterations which generated 1,100 unique derivations. We then extracted the 1,100 most

probable derivations from the search space of the exhaustive decoder. We ran the sam-

pler twice to account for any possible variation in the results. In Figure 7.1, for each

sampler run, we plot the true value of the log-probability of each derivation, computed

using the procedure described in Section 7.1.1 against (a) its sampler estimated rank,

shown as a scatterplot and (b) its true rank, shown as a curve.

We observe that the majority of the sampler data points lie close to the n-best curve

in both sampler runs thus indicating that the sampler-estimated distribution closely

matches the true distribution. Note too that the mode of the sampled distribution is the

true mode of the distribution.

We also find that there is a small but significant number of low probability deriva-

tions in the sample set. These are derivations which are likely to be pruned away

during beam search and therefore would not appear in n-best lists or lattices but do

get observed during sampling. How many such low probability derivations exist in the

sample set? In order to find out, we ran the sampler for 10,000 iterations on 10 sen-

tences of lengths shorter than 20 words drawn from the French to English translation

task. At the end of each sampler run, we intersected each sample derivation with the

search lattice produced by a beam decoder translating the same sentence and calculated

the percentage of derivations in the sample set which are not in the lattice.

We found that on average, between 5% and 9% of sampled derivations are outside

of the pruned lattice and that around 50% are outside n-best lists containing an equiv-

alent number of derivations. As argued by Blunsom and Osborne (2008), in contrast
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Figure 7.1: Comparison of the true log probability of the top 1,100 most probable deriva-

tions as estimated by the sampler (shown in black) and of the 1,100 most probable

derivations as per the model (shown in red) for 2 different runs of the sampler on the

same input sentence.

to the more blinkered view obtained when using beam search, the presence of these

derivations should provide the model with a more global view of the distribution and

potentially enhance its power to discriminate between good and bad translations.

7.1.2 Comparison to MERT

The minimum risk training objective is in fact a smoothed version of the objective

function used during minimum error rate training. To observe this, let us first define

the MERT objective when used with BLEU as error function:

λMERT = argmax
λ

C

∑
c=1

BLEU(argmax
e

p(e,d|fc;λ),ec) (7.2)

= argmax
λ

C

∑
c=1

lim
α→∞

∑
e,d

BLEU(e,ec)p(e,d|fc;λ,α) (7.3)

Equation 7.2 is the standard MERT objective function. In Equation 7.3, the intro-

duction of α, a term that scales the probability distribution in the same way as in

Section 6.1.2.1, smooths the objective in (7.2). When α→ ∞, the objective in (7.2) is

recovered, whereas when α = 1, the objective in (7.3) is equal to that of minimum risk

training (7.1).
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Figure 7.2, reproduced from Och (2003), compares the error surface of the smoothed

and unsmoothed objective as the values of two different feature weights are varied.

Figure 7.2: Shape of error count and smoothed error count for two feature weights.

Diagram reproduced from (Och, 2003).

We can see that both objective functions are non-convex: they are riddled with

local optima. However, a much smoother curve is obtained by scaling the distribution.

While Och (2003) found that the smoothed and unsmoothed objectives give almost

identical results, (Smith and Eisner, 2006; Zens et al., 2007; Li and Eisner, 2009) all

report performance improvements using minimum risk training compared to MERT.

Since the smoothed objective is continuous and differentiable, it is amenable to

gradient descent methods of optimisation which are able to scale to a large number of

features. Li and Eisner (2009) exploit this characteristic to train a model with 20,000

sparse features in addition to the typical features used in SMT models, resulting in

improved translation performance.

On the other hand, as discussed in Section 2.5.3, MERT cannot be used to train

models with more than a few (around 15) features. This is because the single-parameter

line minimisation algorithm at the core of the MERT optimisation algorithm does not

scale well.
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7.2 Computing Feature Expectations

A crucial term needed for gradient-based optimisation of log-linear models is the

expectation of the features of the model under the current parameter settings. Since

the number of derivations in the model is exponential in the length of the input sen-

tence, it is too computationally expensive to calculate this expectation exactly for most

sentences and therefore approximations are required.

In this thesis, we approximate the feature expectation using Monte Carlo sampling.

Given a set of N samples drawn from the distribution, this expectation is given by:

Ep(e,d|f)[h]≈ 1
N

N

∑
i=1

h(ei,di, f) (ei,di, f)∼ p(e,d|f) (7.4)

Previous approaches have approximated the space of all derivations with either an

n-best of derivations (Smith and Eisner, 2006) or with a packed representation of all

the derivations in the pruned search space of a first-pass beam decoder (Li and Eisner,

2009). Both these approaches operate over a search space pruned in the first place using

heuristics which potentially introduce arbitrary biases in the resulting expectations.

As mentioned in Section 7.1.1, the argument against using heuristically pruned

search spaces for computing expectations in SMT log-linear models was first laid out

by Blunsom and Osborne (2008) who claim that the resulting approximation is too

concentrated around the mode of the distribution. A similar concern motivates the work

of Bouchard-Côté et al. (2009). Both Blunsom and Osborne (2008) and Bouchard-Côté

et al. (2009) present MCMC-based solutions to this problem. The former augment the

pruned forest of their syntax-based translation model with derivations sampled from

the distribution and show that this brings about an improvement in translation perfor-

mance. The latter propose an auxiliary variable sampling technique for computing

expectations in a bilingual parsing task and present empirical evidence showing that

their technique yields a reduction in bias.

To verify whether the claims of Blunsom and Osborne (2008) and of Bouchard-

Côté et al. (2009) are corroborated in the case of phrase-based translation models,

we ran experiments to compare expectations computed using three different evidence

spaces: a) n-best lists b) pruned lattices and c) sample set. As gold standard, we

exhaustively decoded 10 sentences from the French-English TEST2008 data set of

lengths shorter than 20 words using Moses and computed the exact feature expectations

on the resulting unpruned lattice using a variant of the forward-backward algorithm

used for training Hidden Markov Models (HMMs). Note that while this algorithm
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Condition Size DP WP LM TM1 TM2 TM3 TM4 PP

Exact 1070 -1.72 -13.57 -66.13 -14.99 -23.79 -7.72 -14.46 8.19

Lattice 1011 -1.68 -13.57 -66.12 -14.98 -23.79 -7.70 -14.46 8.18

N-best 2 ×102 -1.36 -13.63 -65.56 -13.58 -23.46 -6.89 -14.60 7.84

Samples 2 ×102 -2.13 -13.68 -67.04 -14.45 -23.17 -7.74 -14.62 8.29

N-best 103 -1.44 -13.61 -65.79 -13.87 -23.45 -7.08 -14.51 7.92

Samples 103 -2.00 -13.62 -66.57 -14.82 -23.62 -7.77 -14.58 8.24

N-best 2 ×103 -1.46 -13.60 -65.85 -14.03 -23.48 -7.16 -14.49 7.95

Samples 2 ×103 -1.68 -13.60 -66.44 -14.81 -23.67 -7.76 -14.53 8.18

N-best 5 ×103 -1.49 -13.58 -65.90 -14.24 -23.53 -7.26 -14.45 8.00

Samples 5 ×103 -1.80 -13.56 -66.21 -14.94 -23.76 -7.70 -14.41 8.19

N-best 104 -1.52 -13.58 -65.89 -14.38 -23.58 -7.32 -14.43 8.03

Samples 104 -1.87 -13.56 -66.10 -14.98 -23.74 -7.72 -14.40 8.21

N-best 2 ×104 -1.55 -13.56 -65.75 -14.50 -23.59 -7.38 -14.39 8.05

Samples 2 ×104 -1.86 -13.59 -66.24 -14.95 -23.67 -7.75 -14.47 8.22

Table 7.1: Comparison of the expectations of features in a standard phrase-based

model computed exactly and estimated using a pruned lattice, n-best lists and sampling.

The features of the model are a distortion feature (DP), a word penalty feature (WP),

a language model (LM) feature, four translation model features(TM1, TM2, TM3, TM4)

and a phrase penalty feature (PP). Size indicates the number of derivations considered

while computing the expectation.

runs in time linear to the size of the lattice, the packed representation of the unpruned

search space is far too large for this algorithm to be practical for longer sentences.1 We

also ran Moses with default pruning parameter values and computed the expectations

on the resulting pruned lattices. For the expectations computed using sampling and

n-best lists, we varied the number of derivations being considered from 100 up to a

maximum of 20,000.

1The unpruned lattice for a 19 word source sentence takes up 40G of RAM when stored in memory.
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Figure 7.3: Difference between estimated feature expectation and true feature expec-

tation as a function of evidence space type and size for each of the eight features in the

model.
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Table 7.1 summarises the results of our experiments. We report the expectation

of each of the eight features in our model averaged over 10 sentences. The features

are a distortion feature, a word penalty feature, a phrase penalty feature, a language

model feature and 4 translation model features. Further details about these features

are provided in Chapter 4. We also show the number of derivations considered in each

technique. In an unpruned lattice, an average of 1070 paths are considered. Pruning

reduces this number considerably although the resulting lattice still contains a very

large number of paths (1011).

To help show the different trends for each feature in the model, we also plot the

difference between the estimated feature expectation and the true expectation as a

function of the evidence space type and, in the case of n-best lists and sampling, size.

These plots are shown in Figure 7.3.

From Figure 7.3, we see that the expectations computed on the pruned lattice are

very close approximations to the true expectations. N-best approximations, on the

other hand, are not adequate. Taking the language model feature as example, for n

up to 20,000, the expectation of this feature is systematically overestimated. This is

because the n-best list mostly contains good translations which have high language

model scores. The lack of adequate negative examples results introduces a bias in

the expectation. A similar situation can be seen for the case of the backward phrasal

translation feature (Translation Model 1) where the lack of adequate negative examples

leads to the expected value of this feature to be overestimated.

Compared to n-best lists of the same size, sampling, on average, provides more

accurate estimates of the expectations of interest. For example, a very good approx-

imation of most feature expectations can be obtained with only 2000 samples while

for the same number of derivations, the n-best list estimates are in most cases much

worse. On the other hand, whereas the n-best list estimates get steadily better as the

evidence grows, there can be variance in the sampling estimates. This is due to the

inherent stochasticity of MCMC sampling algorithms.

Table 7.1 and Figure 7.3 evidence that sampling-based feature expectations are

more accurate than n-best list based ones. However, it suggests that we would be better

off computing the expectations by running a polynomial time dynamic programming

algorithm on the pruned lattice rather than by sampling. Not only are the estimates

more accurate but the algorithm is faster too. This result also contradicts the claims

of (Blunsom and Osborne, 2008; Bouchard-Côté et al., 2009) who state that heuristic
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pruning provides biased estimates of the true feature expectations. So should we be

sampling at all?

We present three arguments in favour of sampling. Firstly, while the lattice might

be a good approximation of the search space for the relatively short sentences we

considered, it might not be for longer sentences where many more derivations need

to be pruned so as to ensure efficient decoding. In these cases, the more theoretically

principled sampling approach could be more advantageous. Since in this thesis we

translate sentences of length up to 120 words, sampling is potentially a good solution.

Secondly, note that the features in our model are few and are dense. Dense features

are features which are active on every solution. For example, every derivation in the

model has an associated language model score. An active research topic in SMT is to

move towards models with large numbers of sparse features. Such models have been

shown to give state of the art results in many structured prediction tasks in NLP such

as dependency parsing (Mcdonald et al., 2005) and sentence compression (Mcdonald,

2006) and also in SMT (Chiang et al., 2008b, 2009). In these models, features may fire

on many or only on a few solutions.

The translation model of Blunsom and Osborne (2008) which contains 2.9 million,

mostly sparse, features is an instance of such a class of models. Note that in such

models, features with low expectations may be completely skipped if their supporting

derivations are pruned during beam search. In contrast, these low probability deriva-

tions may be observed when using sampling. We hypothesise that this is the reason

why Blunsom and Osborne (2008)’s model benefits from sampling as compared to

pruning assisted inference.

In the experiments in this thesis, we use a model with a small number of dense

features. For this model, lattice-based techniques are likely to outperform sampling-

based approaches. However, our model can easily be extended to include additional

features. The sampling techniques presented here provide sound approximate infer-

ence solutions for such a model.

A final reason for using sampling is that it provides a general purpose solution

for computing expectations of any function defined over structures in the model. For

example, in Section 7.3.3 we will see that sampling can be used to compute the Monte

Carlo estimate of the gradient of the entropy of a log-linear model in a straightforward

manner; computing the same term over a packed representation requires designing

special purpose dynamic programming algorithms, such as those presented in Li and

Eisner (2009), which may be hard to implement correctly.



7.3. Sampling for Minimum Risk Training 139

7.3 Sampling for Minimum Risk Training

In this section, we describe how sampling can be used to implement two variants

of minimum risk training considered in this thesis; sentence sampling optimises an

objective defined at the sentence level while corpus sampling optimises a corpus-based

objective.

7.3.1 Sentence Sampling

We begin by defining our training objective at the sentence level using BLEU as gain

function. Note that minimum risk training can be used in conjunction with any gain or

loss function of interest. (Och, 2003) shows empirically that we achieve best results

for any particular loss function when we use that function in our parameter estimation

objective function. Since our model’s translation performance is evaluated using BLEU,

we choose to use it as gain function during training.

The expected gain G of the probabilistic translation model when defined at the

sentence level is given by:

G =
C

∑
c=1

∑
d∈D(fc)

p(e,d|fc)SBLEU(e,ec) (7.5)

where C is a training corpus {fc,ec}Cc=1 of source sentences and one or many reference

sentences for each source sentence, D(fc) is the set of all derivations that the model

can generate given source sentence fc, and e is the yield of derivation d.

Note that since we compute the gain at the sentence level whereas BLEU is defined

at the corpus level and does not decompose over individual sentences, we approximate

BLEU using the sentence-level variant presented in Section 2.2.1. In Equation 7.5,

SBLEU(e,ec) denotes the sentence level BLEU score of hypothesised translation e when

the reference translation is ec.

The objective function in (7.5) is identical to the one used by (Zens et al., 2007),

except that the latter approximate the space of all derivations with an n-best list. In their

implementation of minimum risk training, the objective function is optimised using the

Downhill Simplex algorithm, a general purpose optimisation procedure. This method

which requires only function evaluations, not derivatives, is not very efficient in terms

of the number of function evaluations that it requires. Another drawback with the

algorithm is that it does not scale well to a large number of parameters.
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Recall that the probabilistic formulation of our translation model is given by:

p(e,d|f;λ) =
exp [λ ·h(e,d, f)]

∑〈e′,d′〉 exp [λ ·h(e′,d′, f)]
(7.6)

where h is a feature vector and λ is a weight vector of m components each.

We can exploit Equation 7.6 to facilitate the optimisation of the objective in (7.5).

This is because, given the probabilistic formulation of the translation model, the objec-

tive function is continuous and differentiable with respect to the model parameters λ.

Therefore, we can use powerful gradient descent based optimisation techniques. Dur-

ing optimisation, algorithms such as Stochastic Gradient Descent (SGD) only require

the value of the gradient of the objective function with respect to each parameter λm;

the value of the objective function itself is not needed. This gradient is given by:

∂G
∂λm

=
C

∑
c=1

∑
d∈D(f)

SBLEU(e,ec)
∂p

∂λm

where
∂p

∂λm
= p(e,d|fc;λ)(hm−Ep(e,d|fc;λ)[hm])

(7.7)

Notice that the gradient can be rewritten in terms of an expectation thus making it

amenable to Monte Carlo estimation:

∂G
∂λm

=
C

∑
c=1

Ep(e,d|fc;λ)
[

SBLEU(e,ec) · (hm−Ep(e,d|fc;λ)[hm])
]

(7.8)

Calculating (7.8) therefore requires a first pass through the sample set to calculate

Ep(e,d|fc;λ)[hm] (the expectation of the feature values under the distribution), followed

by a second pass to compute the gradient itself.

7.3.2 Optimisation Algorithm

As we have shown how to compute the gradient of the objective function with respect

to the model parameters we want to optimise, we can use any standard first-order

optimisation technique. Since the sampler introduces stochasticity into the gradient

and objective, we use stochastic gradient descent (SGD) methods which are more

robust to noise than more sophisticated quasi-Newtonian methods like L-BFGS (Liu

and Nocedal, 1989). For the experiments in this thesis, we used the approximated

exponentiated gradient descent algorithm of Schraudolph (1999).
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At each iteration t of the optimisation, this algorithm updates the weight vector λ

based on the gradient ∂Gt of the objective function at iteration t and a dynamic learning

rate vector η which is composed of a rate for each of the m features in the model:

λt+1 = λt +ηt ·∂Gt (7.9)

The learning rates η are adapted based on a linear approximation to exponentiated

gradient descent described in Schraudolph (1999) :

ηt = ηt−1 ·max(0.1,1+µ ·∂Gt · vt) (7.10)

where µ is a user-defined global meta-learning rate and the multiplier is set to be at

least 0.1 to prevent unreasonably small or negative values.

The gradient trace v measures the effect that a change in the local learning rate

has on the corresponding weight. Assuming that θt+1 depends only on ηt , the gradient

trace can be simplified to:

vt+1 = ηt ·∂Gt (7.11)

Note that this is an online algorithm: the gradient of the objective function is

approximated by the gradient of a single training instance. As the algorithm goes

through the training data, it performs a parameter update after seeing each training

example. Online learning algorithms contrast with batch learning algorithms which

make a parameter update only after inspecting the entire training data. As a result,

batch algorithms can be expensive when dealing with large amounts of training data.

In contrast, online learning algorithms, while only using an approximation of the true

gradient, typically converge faster since parameter updates are done after each training

instance. A compromise between online learning and batch learning uses mini-batches

where the true gradient is approximated by a sum over a small number of training

examples. For the experiments in this thesis, we use mini-batches.

Online learning can be susceptible to the order in which training instances are

presented to the algorithm. In order to account for this, we draw batches of randomly

chosen training instances from the training set.

The approximated exponentiated gradient descent algorithm used in this thesis is

a simple algorithm to implement and contains only two hyper-parameters, µ and η0.

While in principle we could have a different learning rate for each feature, we typically

use the same initial value for all features.



142 Chapter 7. Minimum Risk Training

7.3.3 Deterministic Annealing

Global optimisation of non-convex functions with local optima is a very hard problem

(Torn and Zhilinskas, 1989). The algorithms available for optimisation of non-convex

functions, including the class of stochastic gradient descent methods, can only be

expected to find a local optimum.

In our initial sentence sampling experiments, we observed a tendency for transla-

tion performance on held-out data to quickly increase to a maximum and then plateau

(these experiments are described in the next section). Hypothesising that we were

being trapped in local maxima as G is non-convex, we decided to employ deterministic

annealing (DA; Rose (1998)).

Note that any hill-climbing method, including gradient descent, is liable to get

stuck in a local optimum depending on its initialisation point (this is why, for instance,

EM or the optimisation algorithm inside MERT require multiple random restarts). DA

alleviates this dependency by first smoothing the objective function into a convex

one for which it is easier to find a global optimum. In the next step, the function is

transformed into one which is a little harder to optimise; the solution to the preceding

step is used as the new initialisation point. As the current function is similar to the

previous one, a local optimum of the current function should be close by and therefore

easy to find, and possibly be the global optimum. DA is an iterative algorithm which

terminates when the current function being optimised is equal to the original one. The

algorithm provides no guarantee as to the goodness of the optimum eventually found

but in practice has been found to give good results for many NLP tasks (Smith and

Eisner, 2004, 2006; Smith, 2006).

Our instantiation of deterministic annealing is based on the work of Smith and

Eisner (2006). It involves the addition of an entropic prior to the objective in Equation

(7.5) to give

G =
C

∑
c=1

[(
∑

d∈D(fc)
p(e,d|fc)SBLEU(e,ec)

)
+T ·H(p)

]
(7.12)

where H(p) is the entropy of the probability distribution p(e,d|fc), and T > 0 is

a temperature paramater which is gradually lowered as the optimisation progresses

according to a configurable cooling schedule.

At high temperature settings, the objective function is dominated by the entropy

term - the optimiser is lead to find weights which describe a high entropy or a fairly

flat distribution. As the temperature is gradually diminished, the impact of expected
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gain overshadows the entropy term and pushes the optimiser towards a more peaked

distribution.

Using the definition of the entropy of a distribution (H(p) def= −∑ p log p) and the

product rule, we can differentiate (7.12) with respect to λm to obtain the following

expression for the annealed gradient:

∂G
∂λm

=
C

∑
c=1

∑
d∈D(f)

(SBLEU(e,ec)−T (1+ log p(e,d|fc)))
∂p

∂λm

where
∂p

∂λm
= p(e,d|fc;λ)(hm−Ep(e,d|fc;λ)[hm])

(7.13)

In comparison to the gradient in (7.7), the annealed gradient also requires com-

puting the log probability of each derivation. When using sampling, this term can

be computed trivially. This is also the case when performing deterministic annealing

using n-best lists as in Smith and Eisner (2006), although the estimate of the probability

is likely to be biased. A dynamic programming algorithm for computing the gradient

of the entropy over a hypergraph is presented in Li and Eisner (2009).

When the temperature is high, the contribution of the entropy term also serves to

regularise the model so that it does not overfit to the training examples seen early

during optimisation. We also experimented with using a Gaussian prior (Chen and

Rosenfeld, 1999) which penalises feature weights that grow too large but found no

additional benefits.

In our implementation of DA, at each temperature setting, we performed a con-

figurable number of iterations (typically between 10 and 20) of SGD. In their deter-

ministic annealing formulation, (Smith and Eisner, 2006; Li and Eisner, 2009) have an

additional free parameter γ that scales the exponential distribution given in (7.6) and

whose value is optimised along with λ. We did not find any benefits from optimising

this term and therefore left its value to 1.

7.3.4 Sentence Sampling Experiments

We ran sentence sampling experiments on three different language pairs: Arabic-

English, French-English and German-English. As described in Chapter 4, the tuning

set for each of the language pairs consisted of 1,043, 2,000 and 2,000 sentence pairs

respectively and contained 10 reference sentences for each source sentence in the case

of Arabic-English and a single reference per source sentence for the other two language

pairs.
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The sampler is run with random initialisation using our default setup of two sam-

pling chains each starting with a burn-in step of 100 sampling iterations. In Table 7.1,

we saw that a good approximation of the feature expectations can be obtained with a

sample size of around 5,000. In the sentence sampling experiments, we ran each of

the 2 chains used until 2,000 samples were collected ending up with 4,000 samples in

total.

We initialised the optimisation algorithm with all feature weights set to zero and

use mini-batches of randomly drawn 100 training instances. We found in preliminary

experiments that a batch of that size allowed us to perform enough iterations of gradient

descent while at the same time providing good estimates of the true gradient.

The optimisation algorithm has two hyper-parameters: µ and η0. In preliminary

experiments, we found that setting them both to a value of 2 provided a good balance

between rapid optimisation and good translation performance on a held-out set.

The deterministic algorithm has 2 hyper-parameters: a) the initial temperature T

and b) a cooling schedule. We found that when initialising to T to 100, optimisation

was fast and converged to a good optimum. We experimented with two exponentially

decaying cooling schedules, one with a slow decay rate of 0.9 and one with a fast decay

rate of 0.5, performing 20 iterations of SGD optimisation at each temperature setting.

Training was stopped when T reached 0.0001 or at the end of 48 hours of processing,

whichever came first.

To account for the variance in results due to the stochasticity of the sampler, we ran

training for each condition 5 different times and report the averaged results.

7.3.4.1 Training Performance

Figure 7.4 shows the training learning curve of expected SBLEU for French-English

as a function of the number of iterations of the optimiser. Each iteration is equal to a

pass over 5% of the tuning data. We compare sequential batch training with random

batch training. Expected SBLEU for the no DA, slow DA and fast DA conditions

are shown with points in red, blue and green respectively in the background. In the

foreground, we plot the average expected SBLEU after every 10 iterations. We also

indicate with horizontal lines the maximum averaged expected SBLEU value for each

training condition.

In Figure 7.4a, without annealing, a peak is reached quickly after which the curve

plateaus. With deterministic annealing, performance at the start of the optimisation

is low for a long time. This is because when T is high, the objective function is
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Figure 7.4: Expected tuning SBLEU averaged across 5 training runs. (a) shows training

with sequential batches and (b) shows training with randomised batches. Best scores

are indicated by dotted lines.

dominated by the entropy term: the optimiser finds weight settings which produce

high entropy distributions rather than good translations. As T lowers eventually, DA

ends up finding weights which produce good translations. With fast annealing, these

weights are obtained quicker than with slow annealing. In fact, in Figure 7.4a, unlike

fast annealing performance which has already plateaued, the training objective is still

increasing when using slow annealing.

While the learning curve during sequential training for each training regime is

smooth, this is not the case in Figure 7.4b reflecting the random nature of the mini-

batches. Still the general trend during training is similar to that in Figure 7.4a. There

are two main differences. First, the peaks reached during random batch training are

slightly higher than those obtained during sequential batch training suggesting that

the learner finds better weights in the former case. This is in line with conventional

wisdom about online learning algorithms which states that it is preferable to randomise

the order in which training instances are presented to the learner. For the remaining

experiments in this thesis, we use randomised batches. We also observe that the

learning curves for both slow DA and no DA drop in the later iterations of randomised

training whereas in Figure 7.4a they plateau. We attribute this behaviour to the vagaries
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Figure 7.5: Expected tuning SBLEU averaged across 5 training runs using random

batches. Best scores are indicated by dotted lines.

of randomised training: the objective function might appear to drop if the learner

encounters a long consecutive run of hard to translate sentences.

Figure 7.5 shows similar random batch training learning curves for German-

English and Arabic-English. Each iteration corresponds to seeing roughly 10% of

the tuning data in the case of Arabic-English and 5% for German-English.

When comparing the 3 training setups, we see that for 2 language pairs the best

training expected SBLEU is obtained when no determistic annealing is used. For the

third language pair, Arabic-English, if the optimisation is run for long enough, slow

annealing eventually marginally outperforms no annealing. These results seem to

suggest that the benefits of deterministic annealing are marginal at best and that if

training time is at a premium, then it is better to forego annealing.

7.3.4.2 Decoding Performance on Held-out Data

Recall that the objective function used during training differs from test time decision

rules. Thus, there is no guarantee that weights which give the best expected SBLEU

results at training time will also produce the best translations for the different decoding

decision rules under consideration. To account for the discrepancy between training

and testing objectives, we output feature weights after every 50 iterations of training

which we then use to measure max derivation, max translation and MBR decoding

performance on a held-out set by running the sampler as a decoder. The held-out set for
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the Arabic-English was the 663 sentence long MT03 data set and for German-English

and French-English was the 1000 sentence long TEST2007A set. Further details on the

held-out sets are given in Chapter 4.

Note that we can use the sampler as decoder with the learnt weights without having

to resort to feature weight scaling. This is because the probabilistic training objective

function produces weights which are already appropriately scaled. These weights can

be plugged in the sampler directly. This is also the case even when performing MBR

decoding (recall that when using a beam decoder to perform MBR decoding, MERT

optimised weights need to be scaled first.)
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Figure 7.6: Held-out performance for French-English training averaged across 5 training

runs. Best scores achieved are indicated by dotted line.
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Figure 7.7: Held-out performance for German-English training averaged across 5 train-

ing runs. Best scores achieved are indicated by dotted line.

Figures 7.6, 7.7 and 7.8 show the translation BLEU scores on the French-English,

German-English and Arabic-English held-out sets respectively. The figures compare

sentence sampling without DA, with slow DA and with fast DA. We observe that
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Figure 7.8: Held-out performance for Arabic-English training averaged across 5 training

runs. Best scores achieved are indicated by dotted line.

deterministic annealing is beneficial for all three language pairs with slow deterministic

annealing giving the best translation performance. While the difference between slow

and fast DA is small (between 0.1 and 0.3% BLEU), the difference with no annealing

is much more marked (between 0.5 and 1.0% BLEU). These results are in contrast to

what we observed during training where, in 2 out of 3 cases, minimum risk training

without annealing gave better expected SBLEU performance.

The results suggest that, without annealing, the learning algorithm overfits the

training data whereas the addition of the entropic prior during annealing plays an

important role in regularising the model and in improving its ability to generalise to

unseen data. Even with annealing, the learning algorithm does eventually overfit the

training data. This is demonstrated by the fact that in all three training regimes, test

time performance eventually starts to drop.

We also observe when not using any annealing that all three decoding decision

rules give very similar results. This is because the optimisation algorithm finds weights

which produce low entropy distributions. Since there is not much diversity amongst

the sampled derivations, the benefits of marginalising over derivations are mitigated. In

contrast, the addition of the entropic prior during annealing encourages high entropy

distributions. In the presence of increased diversity, the benefits of summing over

derivations are clear: max translation decoding does better than max derivation decod-

ing and MBR does best. As training proceeds and the temperature decreases to zero,

the model sharpens, thus voiding the benefits of max translation and MBR decoding.

The benefits of high entropy distributions on translation performance when using

max translation and MBR decoding rules can be seen in Table 7.2 where for all three

language pairs, we compare the best averaged max derivation, max translation and
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Language Training Iteration MaxD MaxT MBR Entropy

Pair regime

Fr-En No DA 100 32.5 32.6 32.6 6.51

Fast DA 200 32.7 32.7 32.8 7.12

Slow DA 750 32.5 33.0 33.1 7.91

De-En No DA 50 27.1 27.4 27.4 6.54

Fast DA 100 26.9 27.6 28.1 8.35

Slow DA 550 26.9 27.7 28.2 8.37

Ar-En No DA 100 43.8 44.0 44.2 6.11

Fast DA 50 40.0 42.1 45.1 8.65

Slow DA 350 43.3 44.4 45.2 8.31

Table 7.2: Entropy of estimated distribution at iteration at which best translation per-

formance is obtained on French-English, German-English and Arabic-English held-out

sets. Figures in bold indicate best BLEU score for each language pair. MBR deci-

sion rule produces better translations than max derivation (MaxD) and max translation

(MaxT).

MBR decoding held-out performance with the entropy of the derivation distribution

estimated by the sampler. We also report the training iteration at which the best

translation performance was obtained. Table 7.2 confirms that the entropies of the

distribution obtained using DA are higher than when not using any annealing and that

these high entropy distributions benefit greatly from decision rules which marginalise

over derivations.

7.4 Corpus Sampling

While the objective functions in Equations (7.5) and (7.12) use a sentence-level variant

of BLEU as gain function, the model’s test-time performance is evaluated with corpus

level BLEU. As we discussed in Section 2.2.1, BLEU is not decomposable at the sen-

tence level: there is no guarantee that improving the translation of one sentence leads

to an increase in the overall score, or that degrading the translation of a sentence will

lead to a drop in overall score. Thus, maximising the expected SBLEU of each sentence

in the corpus individually does not necessarily lead to maximising the expected BLEU

of the corpus of sentences.
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There have been previous attempts to address the discrepancy between the tuning

and the testing gain functions. In particular, the training objective function used in

(Smith and Eisner, 2006; Li and Eisner, 2009) maximises expected log BLEU gain,

defined as the change in corpus log BLEU brought about by the inclusion of a given

translation relative to not including it in the corpus. Smith and Eisner (2006) report

that models trained using this new objective function outperform ones trained using

the objective in (7.5). However, when using it for hypergraph-based MBR decod-

ing, Kumar et al. (2009) remark that this approximation is not guaranteed to be a close

match to the actual corpus BLEU.

In this section, we present corpus sampling, an algorithm for maximising expected

corpus BLEU directly. Given a training corpus of the form 〈CF ,CÊ〉 where CF is a set

of N source sentences f1...fN and CÊ is a set containing the reference translations for

each source sentence, let D(CF) denote the set of all hypothesised translations of CF ,

i.e. D(CF) = D(f1)×D(f2)×·· ·D(fN). Then, given a corpus translation CE such that

CE ∈ D(CF), P(CE |CF) is the probability of translating CF as CE and BLEU (CE ,CÊ)

gives the score of the corpus translation CE given the corpus reference CÊ .

The expected gain when defined at the corpus level is given by:

G = ∑
CE∈D(CF )

P(CE |CF)BLEU(CE ,CÊ) (7.14)

where we refer to a pair 〈CE ,CF〉 drawn from the distribution as a corpus sample.

We can optimise the above corpus sampling objective using gradient descent. The

gradient for the gain function in (7.14) with respect to a model parameter λm is given

by:

∂G
∂λm

= ∑
CE∈D(CF )

BLEU(CE ,CÊ)
∂P

∂λm

where
∂P

∂λm
=
(

hC
m−EP(CE |CF )[h

C
m]
)

P(CE |CF)

(7.15)

where hC
m is the m-th component of a corpus sample feature vector, hC .

As in the case of sentence sampling, the gradient above can be rewritten as an

expectation:

∂G
∂λm

= EP(CE |CF )BLEU(CE ,CÊ)
(

hC
m−EP(CE |CF )[h

C
m]
)

(7.16)

We use Monte Carlo estimation to approximate this gradient, which is otherwise

intractable to compute, by drawing corpus samples from the distribution P(CE |CF).
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The feature values of a corpus sample are the average of the feature values of its

constituting derivations and its BLEU score is computed based on the yield of its

derivations.

Our phrase-based Gibbs sampler produces samples at the sentence level, whereas

we require corpus samples. In order to generate n corpus samples, we use the fol-

lowing procedure. First, we draw a sequence of n samples (e1,d1, f), . . . ,(en,dn, f)
for each source sentence f in the corpus. We then generate corpus samples: the first

corpus sample is obtained by iterating through the source sentences and taking the

first sampled derivation for each sentence, then the second corpus sample is generated

by taking the second sampled derivation for each sentence and so on until n corpus

samples have been generated.

This procedure is simple and provides an efficient solution to the task of drawing

corpus samples from P(CE |CF) given that we only we have a mechanism to sample

from p(e,d|f). However, it introduces biases since any corpus sample is dependent on

the order in which the sentence samples were generated in the first place. To eliminate

this bias, we refine our corpus sampling procedure. For each source sentence, we

first draw m(m ≥ n) sentence samples from which we obtain an empirical estimate of

p(e,d|f). We then resample n derivations from this empirical distribution. We can

subsequently generate n corpus samples using the same procedure as above.

The corpus sampling procedure is illustrated in Figure 7.9. In practice, we do

not have to store all the sentence samples from all sentences in order to perform the

resampling step; we can just store the sufficient statistics of the samples (in our case,

feature values and n-gram precision counts for computing BLEU).

The gradient in (7.15) is computed over the entire tuning set. In this case, the

estimate of corpus BLEU is exact but training will be slow since we will effectively be

doing full batch training. We can speed up optimisation by splitting the tuning corpus

into sub-batches and updating the model weights using stochastic gradient descent

each time a sub-batch is processed. Note that by using sub-batches, we are speeding

up training but are potentially jeopardising the accuracy of the BLEU estimates. If

the sub-batches are made too small, we are liable to obtain unreliable estimates of

BLEU and consequently unreliable estimates of the gradient of the gain. In the extreme

case where the sub-batch contains only sentence, if a hypothesised translation does

not contain any of the high order n-grams in the reference translation(s), then its BLEU

score (and its contribution to the gradient) will be zero, which is clearly undesirable. In
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Figure 7.9: Example illustrating the extraction of 2 corpus samples for a corpus of

source sentences f1, f2, f3. In the first step, we sample 5 derivations for each source

sentence. We then resample 2 derivations from the empirical distributions of each

source sentence. The n-th corpus sample is composed of the n-th resampled derivation

for each of the source sentences.

section 7.4.2 we show that, as long as the sub-batches are large enough, we can obtain

reliable estimates of BLEU.

7.4.1 Deterministic Annealing for Corpus Sampling

In the sentence sampling experiments, we found that deterministic annealing (DA)

helps find weights which bring about improved translation performance. We now

describe how to add DA to the corpus sampling objective.

When using deterministic annealing with sentence sampling, the entropy term is

computed over the sampler estimate of p(e,d|f) for each individual sentence. In corpus

sampling, the distribution under consideration is P(CE |CF); however, since the corpus

sampling procedure invariably generates a set of samples which are all distinct, the

Monte Carlo estimate of this latter distribution is almost always uniform. Therefore,

any entropic prior defined over P(CE |CF) will be of minimal use.

Instead, we define the entropic prior over the distribution p(e,d|f) of each of the

input sentences in CF . The annealed sampling gain function is therefore:

G = ∑
CE∈D(CF )

P(CE |CF)BLEU(CE ,CÊ)+
T
|CF | ∑

f∈CF

H(p(e,d|f)) (7.17)
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with gradient

∂G
∂λm

= ∑
CE∈D(CF )

BLEU(CE ,CÊ)
(

hC
m−EP(CE |CF )[h

C
m]
)

P(CE |CF)

− T
|CF | ∑

f∈CF

∑
d∈D(f)

p(e,d|f)(log p(e,d|f)+1)
∂p

∂λm

where
∂p

∂λm
= hm−Ep(e,d|f)[hm] and e = Y (d)

Also, h is a sentence-level feature vector whereas hC is a corpus level feature

vector. Given this gradient, we can use SGD to optimise the annealed corpus sampling

objective.

7.4.2 Corpus Sampling Experiments

We ran our corpus sampling experiments on the same language pairs and datasets used

for the sentence sampling experiments in Section 7.3.4. We sampled using the same

procedure as in sentence sampling and collected a total of 4,000 samples. We then

resampled 2,000 corpus samples from the empirical distribution estimated from the

first 4,000 samples.

Having ascertained during sentence sampling that deterministic annealing is ben-

eficial, we focused our preliminary corpus sampling experiments on examining how

the size of the batches used during corpus sampling affects translation performance,

as measured by BLEU, on unseen data. To do so, we used batches of 200, 400 and

600 sentences. Note that the size of a batch corresponds to the number of sentences

which form a corpus sample. The gradient of the objective function is computed over

the 2,000 corpus samples drawn from a batch and subsequently a parameter update is

made. With small batch sizes, we are able to compute gradients faster and therefore

perform parameter updates more often. On the other hand, we should obtain a closer

approximation to the true corpus BLEU score as the size of the batch increases. When

the batch size is equal to the size of the tuning set, we are performing batch learning.

However, this is too slow to be practical in our setup.

An important consideration when using annealing is the schedule at which the

annealing temperature is cooled. In Section 7.3.4 we found that decaying the tem-

perature at a slow rate enabled the optimiser to find weights which gave improved test

time performance. In our experiments, we tried two different slow decay rates, 0.8 and
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0.9. At each temperature setting, 10 iterations of gradient descent were performed.

Training was stopped when T reached a floor temperature of 0.0001 or at the end of

48 hours of processing, whichever came first.
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Figure 7.10: Held-out MBR decoding performance for Arabic-English training as a

function of the number of training iterations. Best scores achieved are indicated by

dotted line.

In Figure 7.10, we compare held-out MBR performance on Arabic-English, as

measured by BLEU, against the number of training iterations for annealing decay rates

of 0.8 and 0.9 respectively. For all batch sizes, when using a decay rate of 0.8, we are

able to run optimisation till the annealing temperature reached the floor temperature.

In this set of experiments, we observe that peak test time performance is impervious

to the choice of batch size and that this peak performance is marginally better than the

best BLEU score obtained during sentence sampling (45.4 vs 45.2).

With a decay rate of 0.9, while the annealing temperature reaches the floor tem-

perature for the tuning experiments with batch sizes 200 and 400, the experiments

do not complete within 48 hours of processing when using a batch size of 600. This

is reflected by the fact that the held-out performance with batch size of 600 is lower

compared to using smaller batch sizes. In contrast, when using batches of 200 and 400

sentences, the best performance on the held-out set matches the peak performances

observed with the faster decay rate.

Figure 7.10 allows us to draw two conclusions. Firstly, it indicates that the corpus

sampling algorithm is a reasonable method to optimise expected corpus BLEU even
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though it approximates the exponential space of all possible translations of a given

corpus with only a finite number of samples. Secondly, it shows that the corpus

sampling algorithm is robust to the size of the batches used for gradient computation.

To have a better feel as to how corpus sampling compares to sentence sampling,

we ran additional corpus sampling experiments on the Arabic-English, French-English

and German-English language pairs. We compared deterministic annealing with a

decay rate of 0.8 with not using any annealing. The results in Figure 7.10 motivated

us to use a decay rate of 0.8 for all annealing experiments and to use batches of 400

sentences when tuning the Arabic-English model. For German-English and French-

English, we used batches of 96 and 160 sentences respectively. We made this decision

because running the experiments with larger batch sizes is too slow.

Test time conditions are identical to the sentence sampling ones and we measure

max derivation, max translation and MBR performance on a held-out set after every 20

iterations of the learner. To account for the variance in results due to the stochasticity of

the sampler, we ran training for each condition 5 different times and report the averaged

results for French-English, German-English and Arabic-English in Figures 7.11, 7.12

and 7.13 respectively.
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Figure 7.11: Held-out performance for French-English corpus sampling training aver-

aged across 5 training runs. Best scores achieved are indicated by dotted line.



156 Chapter 7. Minimum Risk Training

50 100 150 200 250

15

20

25

30

Training iterations

B
le

u
Corpus Sampling, Without DA

● ● ● ● ●
● ●

● ● ● ● ● ●
28.1

●

MaxDeriv
MaxTrans
MBR

50 150 250 350

15

20

25

30

Training iterations
B

le
u

Corpus Sampling, With DA

● ●

●

●
●

●
● ● ● ● ●

●
● ● ●

●
●

28.5

●

MaxDeriv
MaxTrans
MBR

Figure 7.12: Held-out performance for German-English corpus sampling training aver-

aged across 5 training runs. Best scores achieved are indicated by dotted line.
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Figure 7.13: Held-out performance for Arabic-English corpus sampling training aver-

aged across 5 training runs. Best scores achieved are indicated by dotted line.
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We observe that the shape of the plotted curves for corpus sampling are very

similar to the ones for sentence sampling (see Figures 7.6, 7.7 and 7.8) underlying

the similarity in the objective functions. However, the peaks for the corpus sampling

experiments are higher than for the sentence sampling ones. The benefits of corpus

sampling are especially apparent when not using any annealing. In such cases we note

that corpus sampling training outperforms sentence sampling by between 0.3 and 0.7%

BLEU. When using annealing, the improvements are between 0.1 and 0.3% BLEU.

These improvements are small but consistent across 5 different training runs, allowing

us to conclude that corpus sampling does give improved translation performance in

comparison to sentence sampling.

7.5 Beam Search vs Sampling

In the previous chapter, we proposed the use of sampling as an approximate inference

solution for two intractable decision rules: max translation decoding and minimum

Bayes risk decoding. However, when used in conjunction with weights optimised

using MERT, we found that the sampler’s performance lagged behind heuristic-based

beam search solutions to the decision rules. We hypothesised that the sampler fared

poorly because the MERT objective function, which optimises an unnormalised model

for the single best derivation, produces model parameters unsuitable for use with the

sampler.

A more suitable objective function is minimum risk training, which we introduced

in this chapter. In the previous sections, we showed how to perform unbiased mini-

mum risk training using sampling. Since the risk objective is a difficult one to opti-

mise numerically, we availed of deterministic annealing to help with the optimisation.

Finally, we described an algorithm that allowed us to optimise expected BLEU directly

rather than an approximation thereof.

Armed with a suitable parameter estimation technique for the sampler, we are now

in a position to assess how our sampling-based pipeline compares with the standard

beam search pipeline. Let us recall what this latter pipeline consists of. First, the fea-

ture weights are optimised using MERT, an efficient line search based batch algorithm

which maximises corpus BLEU. Then, a dynamic programming based beam search

algorithm is used to find the most likely derivation in the model. The most likely

derivation serves an approximation to the most likely string. Finally, either an n-best
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list of derivations or even the whole lattice obtained at the end of beam search is used

to approximate the evidence space required for MBR decoding.

7.5.1 A Brief Note on Statistical Significance

In this section, we will often be comparing the decoding performance of various com-

peting systems, as measured by BLEU. It is not always clear when a difference in

scores between two systems represents a significant difference in their output. A boot-

strap resampling method to compute statistical confidence intervals for most automatic

metrics, including BLEU, is described in Koehn (2004b). However, the statistical basis

that bootstrapping rests on, for example a normal distribution of errors, is not founded

for BLEU scores.

A bigger concern about statistical significance tests in general in SMT is that

most models are trained using MERT, which is well known to be extremely unstable:

different MERT runs produce different weights and these weights produce different

translations. These translations can have large variability in their BLEU scores. One

might end up with “significant” results purely as a result of the instability of MERT. If

a statistical significance test cannot help us distinguish such cases, then it is of limited

value.

In the remainder of this section, we mitigate the instability of MERT by running it

10 times on each language pair’s tuning set. We use each of the resulting weight sets to

decode the test data and report the minimum, maximum, mean and standard deviation

of the BLEU scores across decoding runs. For models optimised by expected BLEU

training, we run optimisation 5 times. Decoding with the sampler introduces further

randomness; we account for it by running the sampler with each weight set 10 different

times and report detailed statistics for the results.

7.5.2 Baseline

We use the beam search pipeline as implemented in Moses as our baseline. We

performed experiments on the Arabic-English, French-English and German-English

language pairs using MT02 as tuning set for Arabic-English and the appropriate DEV

2006 data as the tuning set for the other two language pairs. Each test set was decoded

using the max derivation, n-best and lattice MBR decision rules. We used MT05 as

the Arabic-English test set. For the European language pairs, we used TEST2008A

as the in-domain and NEWSDEV2009B as the out-of-domain test sets. Full details on
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these datasets, the baseline decoder and the features used in the model are given in

Chapter 4.

To account for the instability of MERT training, we ran it 10 times and decoded

the test sets with each of the 10 optimised weight sets. We present the best and the

worst test set results along with the mean and the standard deviation (σ) of these

results in Table 7.3. For n-best and lattice MBR decoding, we optimised for the scaling

factor using a grid-search on held-out data. For lattice MBR decoding, we optimised

the lattice density and set the p and r parameters as per Tromble et al. (2008). For

both n-best and lattice MBR decoding, the hypothesis set was composed of the top

1000 unique translations produced by the beam search decoder, and the same 1000

translations were used as evidence set for n-best MBR.

As Table 7.3 shows, translation results using MERT optimised weights vary sig-

nificantly from one tuning run to the other, with results varying from a range of 0.3%

BLEU (French-English in-domain data) to 1.3% BLEU (German-English out-of-domain

data) when performing max derivation decoding.

We compare the max derivation decision rule to MBR decoding. For the Arabic-

English test set, MBR decoding brings about a significant improvement in translation

performance. N-best MBR does better than max derivation and lattice MBR improves

upon n-best MBR. This result is consistent with the results in the lattice MBR liter-

ature (Tromble et al., 2008; Kumar et al., 2009). However, MBR decoding does not

help much when translating the in-domain European test sets. This is because the

significant overlap between the n-grams in the training data and those in the test data

produces spiky distributions. As we discussed in Section 7.3.4.2, for such distributions,

the benefits of MBR decoding are likely to be mitigated.

MBR decoding does help in the case of out-of-domain data. While the improve-

ment in French to English is minimal and only observed when using n-best MBR, the

more powerful lattice MBR algorithm brings about a significant increase in BLEU on

the German-English data set. In particular, the MERT run which produced a BLEU

score of 14.9 on max derivation decoding and 15.0 on n-best MBR gives a score of

16.0 with lattice MBR: lattice MBR is able to find a consensus solution of signifi-

cantly higher quality than the 1-best solution under the model. Lattice MBR generally

peforms well; however there is a small drop in performance compared to n-best MBR

on the French-English data sets. This suggests that the hyper-parameters of the lattice

MBR algorithm, which we tuned on the held-out set, did not generalise to the unseen

test sets.
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Max Derivation N-best MBR Lattice MBR

min max mean σ min max mean σ min max mean σ

AR-EN 43.7 44.3 44.0 0.17 44.2 44.5 44.4 0.13 44.4 45.0 44.6 0.22

FR-EN In 33.1 33.4 33.3 0.10 33.2 33.6 33.4 0.12 33.1 33.4 33.3 0.12

FR-EN Out 19.1 19.6 19.4 0.18 19.3 19.7 19.5 0.12 19.2 19.6 19.4 0.16

DE-EN In 27.6 27.9 27.8 0.10 27.6 27.9 27.7 0.10 27.6 27.9 27.7 0.10

DE-EN Out 14.9 16.2 15.7 0.33 15.0 16.3 15.7 0.33 16.0 16.4 16.1 0.24

Table 7.3: Baseline results - MERT trained models decoded using max derivation, nbest

MBR and lattice MBR. MERT was run 10 times for each language pair. We report

minimum, maximum, mean and standard deviation of test set BLEU scores across the

10 runs. Best performance on each data set is in bold.

7.5.3 Sampling

Having verified the benefits of deterministic annealing from the experimental results in

Section 7.3.4 and 7.4.2, Table 7.4 compares annealed sentence sampling with annealed

corpus sampling on our five test sets. To account for sampler variance during both

training and decoding, we average scores across 50 runs; 10 runs each using the

best weight set from 5 training runs. We run training until the cooling temperature

reaches the floor temperature or training has gone on for 48 hours, whichever comes

first. During training, the current weight settings are periodically output after every 20

iterations and are then used to decode the held-out set. The weight set which gives the

best translation performance on the held-out set is considered the best weight set and

is ultimately used for decoding the test set.

The results in Table 7.4 confirm recent findings of (Blunsom et al., 2008; Arun

et al., 2009) that max translation improves over max derivation decoding for models

trained to account for multiple derivations. We also see that MBR performs best on

all test sets establishing that the sampler is best used as an MBR decoder. For MBR

decoding, we also report the minimum and maximum scores across the 50 decoding

runs, along with the standard deviation of the scores.

The trend observed on held-out sets carry over to the test sets. Table 7.4 shows

that corpus sampling does at least as well as sentence sampling on four out of five

datasets, with small but consistent improvements on three of them. These results show

that corpus sampling is a suitable algorithm for performing expected BLEU training.
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Sentence sampling Corpus sampling

MaxD MaxT MBR MaxD MaxT MBR

Test set Mean Mean Min Max Mean σ Mean Mean Min Max Mean σ

AR-EN 43.0 43.9 44.4 44.9 44.6 0.11 41.8 43.1 44.2 44.8 44.5 0.14

FR-EN In 32.2 32.8 32.6 33.2 32.9 0.16 32.5 33.0 33.1 33.3 33.2 0.06

FR-EN Out 19.0 19.6 19.5 19.9 19.7 0.09 19.2 19.6 19.7 19.9 19.8 0.05

DE-EN In 26.9 27.3 27.4 27.8 27.6 0.07 27.2 27.6 27.6 28.0 27.8 0.11

DE-EN Out 15.8 16.3 16.5 16.7 16.6 0.07 15.9 16.3 16.4 16.8 16.6 0.12

Table 7.4: Comparison of bleu scores for annealed sentence sampling and corpus

sampling using 3 different decision rules. The scores are the average across 50 runs;

10 decoding runs each using the best weight set from 5 training runs. For MBR

decoding, max, min, mean and standard deviation (σ) are also included. Numbers

in bold represent best performance for each data set.

7.5.4 Comparison

We now compare our strongest sampling pipeline, annealed corpus sampling training

followed by MBR decoding, with the best results obtained using MERT optimised

Moses. The results obtained with MERT correspond to the figures shown in bold in

Table 7.3. As before, we average sampling scores across 50 runs; 10 decoding runs

each using the best weight set from 5 training runs. The Moses results are obtained by

averaging scores from 10 different MERT training runs. Results are shown in Table 7.5.

The sampling pipeline markedly outperforms beam search methods on out-of-

domain test sets, with an improvement of 0.3% BLEU in French-English and 0.5%

BLEU in German-English. However, there is no improvement and in some cases a

slight deterioration when translating in-domain data. We delay further discussion of

these results to the next section.

An interesting thing to note is that the sampler results are significantly more stable

than those obtained with MERT weights on 4 out of 5 test sets whereas on the 5th

test set, both methods give results of almost similar stability. The instability of MERT

is a topic of sufficient concern to have generated substantial research interest. The

work of Foster and Kuhn (2009) is of special relevance since it performs a thorough

investigation of MERT’s stability (or lack thereof), finding that test set BLEU scores

can vary by 1 % across 10 MERT runs. However, they were unable to come up with an
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MERT/Moses Sampler

Test set Best σ MBR σ

AR-EN MT05 44.6 (L-MBR) 0.22 44.5 0.14

FR-EN In 33.4 (N-MBR) 0.12 33.2 0.06

FR-EN Out 19.5 (N-MBR) 0.12 19.8 0.05

DE-EN In 27.8 (MaxD) 0.10 27.8 0.11

DE-EN Out 16.1 (L-MBR) 0.24 16.6 0.12

Table 7.5: Results comparing MERT/Moses pipeline with unified sampler pipeline.

Sampler uses corpus sampling during training and MBR decoding at test time. Moses

results are averaged across decoding runs using weights from 10 MERT runs and

sampler results are averaged across 10 decoding runs for each of 5 different training

runs. We report BLEU scores and standard deviation (σ). For Moses results, we indicate

the decision rule used. L-MBR: Lattice MBR, N-MBR: n-best MBR and MaxD: max

derivation. Scores in bold indicate best performances for the data set.

effective way of reducing this variance. The results in Table 7.5 suggest that gradient-

based optimisation of the minimum risk training objective is a parameter estimation

technique with lower variance than MERT. We attribute the improved stability to the

more powerful optimisation algorithm used by the sampler: the information provided

by the gradient steers the model towards better weights. MERT, on the other hand,

optimises one feature at a time using line search and therefore does not explore the full

feature space as thoroughly.

We next compare the decoding speed for the different flavours of MBR decoding

algorithms. The average decoding times are 10 seconds per sentence for Moses n-

best MBR, 40 seconds per sentence for Moses lattice MBR and 180 seconds per

sentence for sampling MBR. Sampling the phrase-based model is expensive, meaning

that lattice MBR is still faster (around 4 times) to run than sampling MBR. However,

due to the unified nature of the training and decoding criterion in our approach, the

minimum risk trained weights can be plugged directly into the sampler MBR decoder,

whereas lattice MBR requires an additional expensive step of tuning the model hyper-

parameters.

Some example translations drawn randomly from French-English and German-

English out-of-domain experiments, comparing reference translations, the Moses out-

puts and the sampler outputs are shown in Table 7.6 and 7.7 respectively.
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Output

R the option to buy 18.49 percent from investment company vatas had already been arranged back in

august .

M the right to buy the per cent of society 18,49 investment had already been decided in vatas august .

S the right to buy the 18,49 per cent of society investment vatas had already been decided in august .

R the sports confederation hamburg ( hsb ) regretted von beust ’ s comments .

M the sports federation in hamburg ( ) the statements of hsb regrettait beust .

S the sports federation of hamburg ( hsb ) regrettait declarations of beust .

R the bankers got $ 7.3 million while fastow , kopper and others skimmed about $ 12.3 million ,

according to the indictment .

M according to the accusations , the bankers have obtained $ 7.3 while , and the other fastow kopper

would have won $ 12.3 million .

S according to the accusations , the bankers have obtained $ 7.3 while fastow , kopper and others

would have won $ 12.3 million .

Table 7.6: Comparison of reference translation (R), Moses MBR output (M) and Sam-

pler MBR output (S) on 3 randomly chosen sentences from the French-English NEWS-

DEV2009B test set.

Output

R the bank was merely holding the shares for a third party , rumours in the financial market suggested .

M is the only for the geldhaus shares a third party , it was said on financial market .

S the geldhaus think the shares only for a third party , it was said on financial market .

R the in-the-flesh resurrection of harmonia takes place at the berlin house of cultures of the world .

M the physical resurrection of the house will take place at the berlin harmonia cultures of the world .

S the physical resurrection of harmonia will take place at the berlin house of the cultures of the world .

R the british trio was arrested three months later .

M the british trio was three months later , arrested .

S the british trio was arrested three months later .

Table 7.7: Comparison of reference translation (R), Moses MBR output (M) and Sam-

pler MBR output (S) on 3 randomly chosen sentences from the German-English NEWS-

DEV2009B test set.



164 Chapter 7. Minimum Risk Training

7.5.5 Discussion

In Table 7.5, we compared our best sampling pipeline consisting of sampling-based

minimum risk training and sampling MBR with a beam search pipeline of MERT train-

ing followed by lattice-based MBR decoding2. We found that the sampling pipeline

gave marked improvements on out-of-domain test sets but a slight deterioration on in-

domain test sets. Since in most realistic applications of MT, the test data comes from

a domain different to that of the training data, these results are particular encouraging.

We hypothesise two possible reasons for these results. Firstly, we speculate that

MERT overfits in-domain data. Generally speaking, overfitting tends to be an issue

in models where the features capture very specific characteristics of the input and/or

output. In our model, the features are mostly log probability scores and are few; thus,

overfitting seems unlikely.

However, note that one of the features in the model is the phrase penalty feature.

When the phrase penalty feature weight is positive, the model prefers translations made

of a large number of short phrases whereas a small number of long phrases is preferred

if the feature weight is negative. We noticed that in 15 out of the 20 MERT optimised

weights obtained from the FR-EN and DE-EN tuning runs, the weight for this feature

is negative. Intuitively this makes sense: MERT optimises for single-best derivations

and generally, in the in-domain data used for MERT tuning, the 1-best derivations tend

to be hypotheses which use a small number of phrases. By assigning a negative value

to the feature, a model which favours the use of a small number of phrases during

translation is learnt.

Figure 7.3 evidenced that the sampler can obtain a very accurate estimate of the

expectation of the phrase penalty feature; therefore, we expect that minimum risk

training with the sampler should provide good weights for this feature. In fact, we

found that expected BLEU training always assigned positive weights to the phrase

penalty feature.

Recall that the minimum risk training criterion optimises a softer objective than

MERT: instead of moving the probability mass towards the 1-best derivation, each

derivation in the model is assigned a share of the probability mass proportional to its

gain with respect to the reference translations. A positive weight for the phrase penalty

feature suggests that while the 1-best derivation uses a small number of phrases, there

are many other high quality derivations which use a larger number of phrases.

2We consider n-best MBR as a specialised variant of lattice MBR.
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By favouring the use of a large number of phrases during translation, minimum risk

training ultimately increases the model’s ability to generalise. This could explain the

improved translation performance on out-of-domain data since out-of-domain transla-

tion tends to require the use of a larger number of short phrases.

An alternate explanation is that, compared to in-domain test sets where most of

the n-grams have already been seen in the training corpus, the majority of out-of-

domain n-grams have rarely or not been seen. This has the consequence that there

is a high level of uncertainty during translation. As a result, rather than relying on

the 1-best derivation of the model, a search for a consensus translation, such as the

MBR translation, finds a solution of better quality. Of course, MBR decoding of out-

of-domain data was tried for MERT trained models too. However, recall that MERT

weights need to be rescaled prior to MBR decoding: there is no guarantee that the

scaling factor used is optimal for decoding out-of-domain data.

7.5.5.1 Sampler Decoding: MERT vs Minimum Risk Training

In order to tease apart the effects of minimum risk training and MBR decoding, we ran

additional decoding experiments where for the sake of completeness, we decoded all

5 of our test sets. We begin by keeping the decoder constant and varying the feature

weights. In Table 7.8, we compare using rescaled MERT trained weights with expected

BLEU optimised weights while using the sampler as decoder. We used weights from

5 MERT and from 5 expected BLEU runs, running the decoder 10 times with each

weights. We report the mean sampling MBR BLEU scores across the 50 decoding runs

for each parameter estimation technique.

On out-of-domain test sets, the expected BLEU weights give substantial improve-

ments over MERT weights, thus adding credence to the hypothesis that minimum

risk training generalises better. However, since improvements are also obtained on

in-domain test sets, the most apt conclusion to draw is that MERT trained weights are

simply not suitable for use with the sampler.

7.5.5.2 Moses Decoding: MERT vs Minimum Risk Training

Next, we compare MERT and expected BLEU weights using Moses as decoder. We

perform max derivation, n-best MBR and lattice MBR decoding. For n-best and lattice

MBR decoding with MERT weights, we optimised for the scaling factor using a grid-

search on held-out data. For similar experiments with expected BLEU weights, no
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Test set MERT Expected BLEU

AR-EN 44.0 44.5

FR-EN In 33.2 33.2

FR-EN Out 19.0 19.8

DE-EN In 27.5 27.8

DE-EN Out 16.3 16.6

Table 7.8: Comparing sampling MBR BLEU scores when run with MERT optimised and

expected BLEU trained weights. Scores are averaged across 10 decoding runs for each

of 5 different training runs.

rescaling is required since the weights are already scaled appropriately. Prior to lattice

MBR decoding, we optimised the lattice density and set the p and r parameters as

per (Tromble et al., 2008). In both n-best and lattice MBR decoding experiments, the

hypothesis set consisted of the top 1000 unique translations produced by the beam

search decoder. The same 1000 translations were used as evidence set for n-best

MBR. We used weights from 5 different MERT and from 5 different expected BLEU

optimisation runs.

The results are shown in Table 7.9. The improvement in out-of-domain results

across all decision rules when using expected BLEU weights suggests that minimum

risk training is in fact a more appropriate objective function to be optimised when

generalisation is important. On in-domain data, the performance of max derivation is

generally better using MERT weights confirming our belief that MERT weights, while

lacking generalisation, do well when decoding in-domain data.

Except for in-domain French-English, the best BLEU scores are obtained when

using lattice MBR decoding in conjunction with expected BLEU weights. Given that

lattice MBR with MERT weights fails to produce similar improvements, it seems

plausible that the minimum risk training criterion might be a better fit for lattice MBR

than the MERT criterion. An analogous observation is made by Pauls et al. (2009)

who find that a training objective function which accounts for the entire distribution

outperforms MERT when used with a lattice MBR like consensus decoding algorithm.

An alternate explanation as to why lattice MBR with MERT weights underperforms

is that a weight rescaling step is required prior to decoding. The rescaling factor is

usually optimised on a held-out set. There is no guarantee that the rescaled weights

generalise to unseen data. On the other hand, the minimum risk training algorithm as
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Training MERT Expected BLEU

Decoding MaxD N-MBR L-MBR MaxD N-MBR L-MBR

mean σ mean σ mean σ mean σ mean σ mean σ

AR-EN 44.0 0.17 44.4 0.13 44.6 0.22 44.1 0.08 44.4 0.06 44.7 0.15

FR-EN In 33.3 0.10 33.4 0.12 33.3 0.12 33.1 0.04 33.1 0.04 33.3 0.05

FR-EN Out 19.4 0.18 19.5 0.12 19.4 0.16 19.5 0.10 19.7 0.12 19.8 0.08

DE-EN In 27.8 0.10 27.7 0.10 27.7 0.10 27.7 0.10 27.8 0.09 28.0 0.08

DE-EN Out 15.7 0.33 15.7 0.33 16.1 0.24 16.2 0.20 16.4 0.18 16.6 0.12

Table 7.9: Moses under max derivation (MaxD), N-best MBR (N-MBR) and lattice MBR

(L-MBR) decoding regimes with MERT and expected BLEU trained weights. Results

are averaged across decoding runs using weights from 5 MERT and 5 expected BLEU

training runs.We report mean BLEU scores and standard deviation (σ). Scores in bold

are best performances for the data set.

implemented with the sampler is probabilistic and scales the weights automatically to

the appropriate scale.

At the beginning of this section, we hypothesised that the improvement obtained

on out-of-domain data when using the sampling pipeline can be due to either better

parameter estimation or due to the use of the MBR decision rule. From Table 7.9,

we see that while out-of-domain 1-best decoding results with expected BLEU trained

weights are better than the corresponding results with MERT weights, the combination

of MBR decoding and expected BLEU weights does even better: However, as Table 7.9

shows, provided that the weights have been optimised so that the distribution over

derivations in the model is appropriately shaped, the MBR decision rule is generally

beneficial both for in-domain and out-of-domain data.

Similar to the figures in Table 7.5, the results with sampler trained expected

BLEU weights are more stable than with MERT weights, underlying the usefulness

of gradient-based optimisation. The stability of the results can be seen by small stan-

dard deviation across expected BLEU decoding results compared to results with MERT

weights.

7.5.5.3 Minimum Risk Training: Sampler vs Moses

We have so far seen that both the sampler and Moses benefit from minimum risk

trained weights. In a final set of experiments, we keep the weights constant and instead

compare two alternate MBR decoding algorithms: sampling-based MBR versus lattice
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Sampling MBR Lattice MBR

Test Set Min Max Mean σ Min Max Mean σ

AR-EN 44.2 44.8 44.5 0.14 44.5 44.9 44.7 0.15

FR-EN In 33.1 33.3 33.2 0.06 33.2 33.3 33.3 0.05

FR-EN Out 19.7 19.9 19.8 0.05 19.6 19.8 19.8 0.08

DE-EN In 27.6 28.0 27.8 0.11 27.9 28.1 28.0 0.08

DE-EN Out 16.4 16.8 16.6 0.12 16.5 16.8 16.6 0.12

Table 7.10: Comparison of Sampling MBR and Lattice MBR decoding as measured

by BLEU. For sampling MBR, scores are the average across 50 runs; 10 decoding

runs each using the best weight set from 5 training runs. For lattice MBR, scores are

averaged across 1 decoding run for each of the 5 training runs. We report minimum,

maximum and the standard deviation of the scores across all decoding runs. Best

averaged results are indicated in bold.

MBR. Since MERT weights are unsuitable for use with the sampler, we use expected

BLEU trained weights.

Lattice MBR and sampling MBR are both solutions to the same problem, which

is to accurately estimate the risk of each solution in the exponential translation search

space. Lattice MBR computes this risk by using an efficient dynamic program which

involves all the derivations in the pruned search space whereas sampling MBR does

so by using small number of derivations sampled from the posterior distribution of

derivations in the search space.

Table 7.10 presents results from experiments comparing the two decoding tech-

niques. We used the weights from 5 different expected BLEU optimisation runs. Lattice

MBR is a deterministic algorithm: given a weight vector, if the hyperparameters of the

algorithm stay constant, then the output will always be the same. This is not the case

for sampling MBR; therefore, we ran 10 decoding runs with each of the 5 feature

weights. We report the minimum, the maximum and the standard deviation of the

scores across all decoding runs. The evidence space in lattice MBR naturally consists

of the entire lattice whereas in sampling MBR it is made of 10,000 derivations sampled

from the distribution. Both lattice and sampling MBR use hypothesis spaces contain-

ing the 1,000 most probable translations: the former does so by extracting the top

1,000 distinct derivations from the lattice while the latter uses the 1,000 most probable

translations in the evidence space as per their Monte Carlo estimate of p(e|f).
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Comparing the mean MBR scores, we observe that on out-of-domain data, both

sampling MBR and lattice MBR give identical results. On the other hand, lattice

MBR gives better results on in-domain data; however, we found that sampling MBR

matches lattice MBR on all test sets when the evidence space is increased from 10,000

to 100,000 derivations.

These results also serve as a sanity check: given the same feature weights, both

algorithms converge to the same result. Note that lattice MBR uses as evidence set

the whole lattice, consisting of roughly 1070 derivations (see Table 7.1), whereas the

evidence set in sampling MBR typically consists of 10,000 derivations sampled from

the distribution. Nevertheless, the sampler’s limited evidence set is enough to give

a good estimate of the probability distribution and therefore a good estimate of the

expected BLEU of the translations in the model.

Still, sampling MBR is around 4 times slower than lattice MBR. The results in

Table 7.10 suggest that an alternate efficient and accurate way of doing MBR decoding,

which maintains the extended view of the distribution provided by sampling MBR,

is to first train the feature weights using sampling-based minimum risk training and

then perform lattice MBR. This procedure has the added advantage of eschewing the

expensive step of tuning the scaling factor of the feature weights, thus reducing the

number of hyper-parameters in the algorithm.

7.6 Summary

In this chapter, we used the sampler introduced in Chapter 5 to approximate in a

principled manner the intractable problem of minimum risk training. The need for

minimum risk training was motivated by the fact that merely applying sampling MBR

to MERT optimised models failed to give satisfactory performance. We attributed this

result to the mismatch between the MERT training objective which aims to move the

probability mass of the distribution towards the single-best derivation and the MBR

decoding objective which reasons in terms of translations rather than derivations and

which aims to find the translation that minimises the expected loss of the model. MBR

therefore can be seen as seeking a consensus solution whereas MERT seeks to ensure

that the best solution is ranked first, disregarding all other solutions in the search space.

The minimum risk training objective, on the other hand, has the same form as the MBR

decoding objective, making this consistency of objective across the translation pipeline

very appealing.
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A key component of minimum risk training as well as many other parameter

estimation techniques for log-linear models is the computation of the expectation of

the feature values under the distribution. One of the contributions of this chapter is a

detailed comparison of various methods used for approximating this expectation. We

showed empirically that, if the number of derivations used for the calculation of the

expectation is kept constant, a closer approximation to the true expectation is obtained

when the derivations are sampled from the entire distribution rather than just from the

vicinity of its mode. This result suggests that some of the prior work in MT where

the feature expectation has been computed over n-best lists might benefit from the

inclusion of low probability solutions too.

While sampling provides a close approximation to the true expectation, we found

that the closest approximation is obtained when computing the expectation over a

packed representation of all the unpruned derivations in the model. This representation

is a by-product of dynamic programming based decoding algorithms and typically

compactly encodes around 1070 derivations for medium sized sentences whereas we

usually sample 104 derivations. This result indicates that an avenue worth pursuing

in the future is to store a packed representation of the derivations encountered during

sampling which can subsequently be used for the calculation of expectations.

Our model’s performance is evaluated with the standard MT metric, BLEU, which

is defined at the corpus level. We experimented with two formulations of minimum

risk training. In the first place, we defined the objective at the sentence level (sentence

sampling) and the objective was aggregated over all input sentences. In this formula-

tion, we approximated BLEU with a sentence-level variant. When aggregated over the

corpus, sentence-level BLEU is known not to correlate well with corpus-level BLEU.

Instead, we proposed a novel sampling algorithm which allowed us to draw samples

at the corpus level (corpus sampling) and therefore, unlike approximations used by

previous methods, directly use corpus BLEU in our objective function. The training

objective is non-convex so we used deterministic annealing to smooth the objective

thus decreasing the chances of the optimiser to get trapped in local optima.

When using the sampler with MERT trained weights in Chapter 6, we had found

that max translation and MBR decoding only marginally outperformed max derivation

decoding. With minimum risk trained models though, the experimental results were

consistently in keeping with our initial intuition: max translation clearly outperformed

max derivation and MBR did best, thus showing the benefits of marginalising over

derivations and of taking into account the whole distribution.
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The unified sampling pipeline of minimum risk training and MBR decoding was

found to do particularly well on out domain translation when compared with the typical

SMT pipeline of MERT tuning followed by max derivation or MBR decoding. Further

analysis showed that this is because the minimum risk objective generalises better than

the 1-best objective of MERT.

Another benefit of our training regime was that the learnt parameters were found

to be more stable that MERT optimised parameters, indicating that the gradient-based

optimisation technique made possible by the probabilistic formulation of the training

objective explores the parameter space in a more systematic manner than the line-

search used by MERT.

The overall best decoding results were obtained by running lattice MBR on

expected BLEU trained weights, suggesting that minimum risk training criterion is in

fact a better fit for MBR than MERT. This approach has the additional benefit that it

obviates the need for feature weight rescaling, a step which is required when using

MERT weights.

An additional benefit of minimum risk training, not explored in this thesis, is that

unlike MERT training, it can scale to a large number of features. We leave this for

future work.





Chapter 8

Conclusions and Future Directions

8.1 Summary

Recent advances in statistical machine translation have used beam search methods for

approximate inference within probabilistic translation models. Despite their success,

these methods compromise the probabilistic interpretation of the underlying model

thus limiting the application of probabilistically defined decision rules during training

and decoding. As an alternative, this thesis has proposed a novel Monte Carlo sampling

framework for theoretically sound approximate probabilistic inference in these models.

The main contributions of the thesis are as follows:

• We developed a Gibbs sampler for sampling derivations from the distribution

defined by a phrase-based machine translation model and showed that it effec-

tively explores this distribution. Since the state space, i.e. the space of deriva-

tions allowed by the model, does not easily decompose into a graphical model,

textbook Gibbs sampling could not be applied. Instead, we used a block Gibbs

sampling approach in which a subset of variables in the model are sampled

conditioned on the remaining ones. At each iteration of Gibbs sampling, the

subset of variables to be sampled are selected by so called Gibbs operators. Each

operator defines a set of variables neighbouring the current variable. The Gibbs

operators were defined such that the entire state space could be explored by the

successive application of each operator at each position in the source sentence.

Having defined the Gibbs sampler, we demonstrated empirically that in most

cases the sampler convergences to the true distribution in the sampling limit thus

evidencing that the sampler is drawing samples from the distribution of interest.
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This convergence is obtained irrespective of the manner in which the sampler is

initialised, showing that the operators allow the sampler to mix well.

Occasionally, the sampler was found to get stuck in local optima. These cases

served as stark reminders that the distribution being sampled from is highly

multimodal.

• Having ascertained that the Gibbs sampler is able to efficiently explore the

state space of derivations, we applied the sampling framework to a variety of

inference problems. The sampler can be used to provide an unbiased estimate

of any expression that can be written in terms of an expectation of a function

defined over the probability distribution being sampled from. We showed that

the sampler can therefore be used to obtain estimates of the probability of a

derivation, the probability of a translation and the expected gain of a transla-

tion. The solutions which maximise each of these terms are the max derivation,

max translation and MBR solutions respectively. The sampler thus provides a

tractable way for implementing these decoding decision rules.

The sampler can also be used for minimum risk training, a parameter estimation

technique which optimises a probabilistically defined objective function. Since

this objective takes into account the entire distribution and has the exact same

form as the MBR decision rule used at test time, we considered it to be par-

ticularly well suited to the sampler. A key term required during gradient-based

optimisation of this training regime is the expectation of the values of the features

in the model. Computing this term exactly is intractable so was approximated

with sampling. We found that the mix of high probability and low probability

derivations obtained through sampling provided a more accurate estimate of the

feature expectations than merely using the high probability derivations contained

in an n-best list.

Finally, we compared the novel pipeline of sampling-based minimum risk train-

ing and decoding with the standard pipeline of MERT training and dynamic

programming-based beam decoding. We found that the sampling pipeline can

improve upon the latter. The improvements were noted on out-of-domain test

sets, suggesting that minimum risk training generalises better than MERT. We

also found that the minimum risk trained feature weights produced more consis-

tent results than MERT trained weights.
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The best overall performance was generally obtained when combining minimum

risk trained weights with lattice MBR, a dynamic programming based decoding

algorithm which estimates the risk of every translation using the entire pruned

lattice of a first pass beam decoder. This result suggests that minimum risk

training is a better fit for lattice MBR than MERT training. Sampling MBR

matched lattice MBR on some data sets and was found to match it on all of them

when the sample set was made larger.

In summary, this thesis demonstrates the potential of the proposed sampling-based

framework as an alternative to dynamic programming based beam search algorithms

for both training and decoding in phrase-based translation models. For these tasks,

sampling allies the simplicity of n-best list approaches with the extended view of the

distribution that lattice-based approaches benefit from.

Additionally, by using Monte Carlo techniques we avoid the biases associated with

beam pruning. In doing so, we provide a further tool to the translation community that

we envision will allow the development and analysis of increasing theoretically well

motivated techniques.

However, one drawback of our framework is its slow runtime. This is because it is

computationally expensive to draw samples from the distribution. In the next section,

we suggest ways to improve sampling efficiency as well as outline some future research

possibilities.

8.2 Future Directions

8.2.1 Sampler Efficiency

We have shown in this thesis that sampling is a practical approximate inference tool for

SMT models. However, a concern with the proposed sampling framework is its slow

runtime. This has limited the number of samples we can use for efficient training and

decoding. Both tasks should improve with more samples; indeed, in Section 7.5.5.3

we observed that sampling MBR can match the decoding performance of lattice MBR

by using a larger evidence set than currently used.

Consequently, an obvious area of future work is to speed up sampling. A possible

solution can be found by revisiting the algorithm of the scan function which was

detailed in Algorithm 5.1. The algorithm discards a large number of intermediate

samples in order to reduce the correlation between successive samples. One way to



176 Chapter 8. Conclusions and Future Directions

speed up sampling is to retain some of these discarded samples, e.g. we could collect a

sample after each operator scan (lines 5, 17 and 20 in Algorithm 5.1) rather than only

at the end of all of their scans. This is a straightforward way to get a three-folds speed

up in sampling although the impact on sampling performance by having more highly

correlated samples needs to be determined.

Another potential way to speed up the algorithm is to replace the sequential scan-

ning procedure whereby each operator systematically traverses the input sentence from

left to right with a random scan procedure (Levine and Casella, 2006). In random

scanning, the operator to sample with and the source position to sample at are them-

selves sampled from a pre-specified probability distribution over operators and source

positions; successive samples are therefore less likely to be correlated. To ensure that

autocorrelation is minimised, every m-th sample can be collected. A drawback of this

scanning procedure is that it introduces additional hyper-parameters, in the form of the

distribution over operators and source positions, to the scanning algorithm.

A common way of improving the performance of an SMT system is by using large

order language models (LMs). In the experiments in this thesis, we used trigram LMs

but it is not uncommon in large scale tasks to see models using 5-gram, 6-gram or even

7-gram LMs. The use of high order LMs has an impact on the dynamic program used

for hypothesis recombination during beam decoding. As the n-gram order increases,

fewer recombinations take place so more aggressive pruning is required to maintain an

acceptable decoding speed. The n-gram order of the LM used also impacts sampling

speed. In fact, the complexity of our sampling algorithm is linear in the n-gram order.

We give a broad sketch of a Metropolis-Hastings approach for reducing this com-

plexity to constant time. In this approach, the block sampling steps are performed using

a low order language model. The sample obtained after a full scan is then accepted or

rejected based on a Metropolis-Hastings acceptance test. In this Metropolis-Hasting

step1, the proposal distribution is the distribution with the low order LM and the target

distribution is the desired high order language model. If the distribution of derivations

using low order n-grams is close to that using high order n-grams, the acceptance rate

should be high leading to fast convergence. On the other hand, if the two distributions

are far apart, the proposed sample will be rejected often causing the sampler to con-

verge slowly. In the best case scenario, the sampling algorithm will be significantly

speeded up since instead of calling the high order LM during all the intermediate

sampling steps, the latter is called only once per sampler iteration. As this algorithm

1This step is performed immediately after line 10 in Algorithm 5.2.
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uses the MCMC machinery, it also retains all the theoretical guarantees of sampling

approaches.

8.2.2 Feature Engineering

Arguably the most exciting avenue of future research provided by the sampling frame-

work is through its support for feature engineering. Feature engineering is a very

active current area of research in SMT. It consists of augmenting the base features

found in most log-linear models of SMT with additional features capable of identifying

characteristics of the input and the output sentences that are indicative of whether the

output is good or not.

Feature engineering for SMT was hindered for years due a lack of alternative

to MERT, a training algorithm which does not scale to a large number of features.

Recent work using margin-based optimisation algorithms has shown that the trans-

lation performance of some syntax-based linear translation models (Watanabe et al.,

2007; Chiang et al., 2008b, 2009) can be improved with the addition of a large number

of sparse features, therefore demonstrating the promise of this research avenue. Phrase-

based translation models should benefit from feature engineering too. The sampling

framework offers support for such a pursuit by allowing the use of gradient-based

optimisation algorithms which scale to a large number of features.

The sampling framework offers another advantage. Recall that for beam decoding

methods to be computationally efficient, the features characterising the steps in the

derivation must be either computable independently of each other or with only limited

local context (as in the case of the language model or distortion costs). This has led

to a situation where entire classes of potentially useful features are not considered

because they would be impractical to integrate into a dynamic programming based

translation system. In the sampling framework, this restriction is lifted. Any function

of h(e, f,d), local or global, may participate in the translation model subject only to its

own computability.

The sampling approach presented in this thesis therefore offers the SMT commu-

nity a unique framework for improving machine translation quality by exploring a vast

number of both local and global features.
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8.2.3 Syntax-based Translation Models

The sampling framework proposed in this thesis has many benefits. In addition to

enabling tractable unbiased minimum risk training and decoding, it also allows the

verification of the utility of standard approximation techniques such as the dynamic

programming based max derivation decoding employed by most SMT systems. As

such, it would be useful to have a sampler for syntax-based models too.

We give a brief sketch of how this sampler would look like for a synchronous

contex-free grammar (SCFG) based translation model. For this model, given an

exhaustive translation forest, i.e. a packed representation of all the derivations in the

search space, a fast top-down recursive algorithm for sampling derivations exists and

is described in Blunsom and Osborne (2008). However, such an exhaustive translation

forest is possible only for models without a language model; the addition of a language

model causes the packed representation to be too large to be practical.

Denoting the forest for the model without a language model as the -LM forest, an

algorithm for sampling derivations from a SCFG model with a language model can

make use of the algorithm for sampling with -LM forest. Samples can be drawn from

the latter and then rescored with a language model. A Metropolis-Hastings step is then

used to accept or reject the proposed derivation.
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