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ABSTRACT 

It is argued that a visual system, especially one 

which handles imperfect data, needs a way of selecting 

the best consistent combination from among the many in

terrelated, local!~ ~lausible hypotheses about how parts 

or aspects of the visual input may be· interpreted. A 

method is presented in which each hypothesis is given a 

supposition value between 0 and 1. A parallel relaxation 
I 

operator, based on the plausibilities of hypotheses and 

the logical relations between them, is then used to modi-

fy the supposition values, and the process is repeated 

until the best consistent set of hypotheses have supposi-

tion values of approximately 1, and the rest have values 

of appiOXimately 0. 

The method is incorporated in a program which can 

interpret configurations of overlapping rectangles as 

puppets. For this task it is possible to formulate all 

the potentially relevant hypotheses before using relaxa-

tion to select the best consistent set. For more complex 

tasks, ·it is necessary to use relaxation on the locally 

plausible interpretations to guide the search for locally 

less obvious ones. Ways of doing this are discussed. 

Finally, an implemented system is presented which 

allows the user to specify schemas and inference rules, 

and uses relaxation to control the building of a network 

of insta~ces of the schemas, when presented with data 

about some instances and relations between them. 
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OUTLINE 

This thesis explores the idea that relaxation may be 
-· 

a good way of organising the intera~tions between dif-

ferent hypotheses during the process of ~constructing the 

internal representation of a scene. 

Chapter 1 argues for some of the presuppositions 

behind the use of relaxation: that a visual system needs 

to formulate tentative hypotheses; that it needs to be 

able to find a good consistent set of these hypotheses; 

that the best set may be defined in terms of numerical 

scores for the individual hypotheses; that the con-

straints between hypotheses need to be explicitly 

represented; and that a method which can use constraint 

propagation and can take advantage of para.llel hard\<~are 

is desirable. 

Chapter 2 defines a task designed to test and illus-

trate the use of relaxation. The task is to perceive a 

collection of overlapping transparent rectangles as a 

puppet. Many of the problems that arise in vision (e.g. 

parts missing due to occlusion) are deliberately avoided 

in this task. 

Chapt~r 3 explains. the puppet-finding program. 

First, it 1 • 
exp.~..a1ns how the program discovers and-

represents the various possible hypotheses about the in-

-9- . 



terpretation of rect3ngles as puppet parts, and about the 

interpretations of overlaps between rectangles as joints 

between puppet parts. Then it shows how logical con

straints. between hypotheses give rise to numerical con

straints between their supposition values. Finally, it 

introduces and analyses a relaxation operator which mani

pulates the supposition values on the basis of the con

straints and the preferences for individual hypotheses. 

The operator picks out the best consistent set of hy

potheses. Various aspects of the relaxation process are 

illustrated with examples produced by the program. 

Chapter 4 discusses various theoretical issues about 

relaxation that arise from. the puppet-finding program. 

It attempts to analyse the relaxation process, particu

larly the time it requires. It also points out so;ne of 

the strengths and weaknesses of relaxation, and discusses 

some ways of extending it to cope with specific theoreti

cal difficulties. 

Chapter 5 compares my relaxation system with other 

systems which were selected for comment either because 

they used a form of relaxation, or because they used ex

plicit numericAl scores in defining the best interpreta~ 

tion, or because they dealt with the problem of finding 

the best instantiation of a model. To aid comparison 

with another system, there is a section on the use of re

laxation for Huffman/Clo'.'ies line labellinq, which sho\llS 

clearly the sioilarities and differences between relaxa-
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tion and Waltz filtering. 

Chapter 6 is a theoretical interlude from the de-

tails of relaxation. It discusses the relationship 

between stored knowledge and the representations created 

during perception. The function of the chapter is to ar

gue against the idea that perception is merely a process 

of matching the data to stored models, and thus to 

prepare the ground for the rule-based SETTLE system 

presented in Chapter 7. The issues are extremely complex 

and so only a rather superficial treatment is possible, 

but it may be sufficient to explain the approach adopted 

in the SETTLE system. 

Chapter 7 describes and illustrates an implemented 

system which allows the user to define schemas and infer

ence rules which can be applied to co3binations of in

stances of the schemas. When given sorJe assertions about 

related instances, the system notices which rules apply, 

·and it ·uses relaxation to find the best consistent net

work of instances, given the input assertions. The 

processes of relaxation and of making inferences are in

tegrated so as to avoid.forward chaining based on prem

ises that are- rejected by relaxation. 

FinAlly, there is a brief summary. 
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CHAPTER 1 

SEARCHING FOf-? OPTIMAL VISUAL INTERPRETATIONS. 

1.1: Structure and process in·visual perception 

Consider the pictures in figure 1.1. When we look at 

them it seems that we form a clear idea of what they dep-
1 

ict. In understanding how this idea is formed, there are 

two sets of issues: 

1. V'!hat is the nature of 1 the idea once it has been 

formed? That is: What is the form of the represents-

tions produced by the process of perception? 

2. What is the nature of the processes that generate 

the representations? 

Understanding the nature of the representations used 

is probably the major part of understanding perception. 

It is hard to say any thing about perceptual processes 

without making some ~ssumptions about what the processes 

are producing. However, it does not seem to be necessary 

to complete the investigation of the representations be-

fore starting the investigation of the processes. Indeed. 

any . simulated perceptual system needs both representa-

tio0s and processes. Artificial Intelligence research 

CMinsky and Papert 197i, C1owes 1971, Winston 1970) has 

already shown that perception of a picture involves more 

than simply activ8ting a number of feature analysers and 

·-12-



FIGURE 1 .1a: A blocks world picture. 
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. FIGURE 1 I 1 b: A Popeye picture. 



using them to put the picture into one of a fixed number 

of categories. The product of perception is not just a 

categorization. It is a complex description which has the 

following important properties: 

1. A scene is articulated into a hierarchy of objects 

and parts of objects so that its description involves 

specifying the relationships between the objects and 

object parts. For example, in figure t.~a, the 

description that constitutes the interpretation of the 

picture must somehow explicitly represent the fact 
I 

that there is a cube resting on one end of an ell-

beam .. 

2. As well as a hierarchy of objects within a domain 

there are also many different domains. For example, 

the lines in a picture and the edges of objects which 

they depict are quite different entities and need dif-

ferent representations. Similarly, in figure t.lb the 

lines of dots, the bars whose edges these lines dep-

ict, and the letters whose stroke~ are depicted by 

these bars are all entities in different domains. 

These considerations show that the representations 

produced by looking at a picture must be at least as rich 

as a relntional network containing a great variety of 

different types of node, and many diverse relations (e.g. 

support, depiction, conn~ction). The way in which nodes 

ahd relations of various types Qay be combined consti-

tutes a kind of grammatical knowledge. It deter~in.es 
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which particular networks are possible given the initial 

picture structure. If 'tie assume that perception invo 1 ves 

building some kind of relational network which satisfies 

certain grammatical constraints, then it is possible to 

focus on some of the important issues about the way in 

which the network is constructed. 

1. 2: V{hy tentative hypotheses are necessary 

Tne hypothesize-and-test paradigm is often used in 

Artificial Intelligence programs <Roberts 1965, Grape 

1973) as a way of deciding how to interpret part of a 

picture. An important assumption of the paradigm is that 

once a specific hypothesis .has been formulat~d on the 

basis of cues, it is po~sible to make a definite decision 

about whether the hypothesis fits the data, so that a hy

pothesis can be accepted or rejected immediately after it 

has been formulated, and it is not necessary to manipu

late a number of tentative, interdependent hypotheses 

simultaneously. Unfortunately for the hypothesize-and

test method, there are many cases where no definite deci

sion about a hypothesis can be made on the basis of the 

local data. The context may be necessary for disambigua

tion <Guzman 19·71, Clowes 1971 l as theE in Figure I. lb 

shows. The context in which some local data is interpret

ed must itself be represented as a set of hypotheses 

about the interpretation of other data, so hypotheses 

about locAl interpretations may be mutually dependent, 

-14-



and some kind of search mechanism is needed for selecting 

a consistent set of them. 

1.3: Two ways of avoiding tentative hypotheses 

Before discussing ways of handling interdependent, 

tent8tive hypotheses, two methods of eliminating the need 

for tentative hypotheses will be examined and rejected. 

1.3.1: The principl~ of least commitment 

This method, advocated by Marr ( 1976) and Sloman 

(1976) amongst others, involves never being more specific 

than the local data and the context warrant, so that hy

potheses do not commit themselves to detAils that are, as 

yet, undecidable. This requires th~t a rich set of not

too-specific concepts be available. For example, in the 

early stages of perceiving a human form, a visual system 

may notice a part which is definitely either a leg or an 

arm, but which needs contextual disRmbiguation. If the 

system has the concept of a limb available, it can 

represent what it can safely conclude, without creating 

any tentative hypotheses about arms or legs. Then, when 

the context becomes clearer, the limb hypothesis can be 

refined appropriately <The clearer contect may involve 

non-committal limbs). 

In practice, there are several difficulties in ap

plying the principle of least commitment. First, an enor

-15-



mous nuQber of concepts of varying degrees of specificity 

may be needed to ensure that is possible to represent 

just whAt can be definitely inferred in a given situation 

and no more. Secondly, if hypotheses are to interact and 

progressively refine 9ne another until they are all per

fectly specific, then complex transition tables may be 

required to say how one hypothesis should be refined in 

the context of others. Finally, when the data is imper-

feet and the aim is not to find just any consistent glo

bal interpretation, but to find the best one, (see sec-

tion 1.5) then it may be iffip?ssible to arrive at any 

finite conclusions about optimal interpretations on the 

basis of local evidence. 

The principle of least commitment may be useful in 

avoiding unnecessarily large numbers of alternative hy-

potheses, but there is no reason to suppose that it can 

eliminate the use of alternatives altogether. I know of 

no system which does this, when interpreting complex im-

perfect data. 

1 .3.2: Feature semantics 

The problem of choosing between alternative hy-

potheses arises because nodes in the network representing 

R scene ~re taken to imply the existence of entities in 

the scene, so nodes corresponding to non-existent enti-

ties are incorrect and must be rejected. Nodes can how-

ever given a different semantics in which they only 

-16-



imply things about the appearance of the scene. In the 

relational net built to represent figure l.lb, for exam-

ple, there could be two different nodes corresponding to 

the first letter. One node could represent the fact that 

it is somewhat E-shaped and the other that it is somewhat 

F-shaped. These two nodes are quite compatible, provided 

they are not taken to imply anything about which letter 

is really there in the optimal interpretation, so there 

is no need to reject one of th~ nodes as incorrect. 

The reason for using the term Hfeature sementics" is 

that the output of feature analysers in pattern recogni-

tion programs is often given just this semantics. Consid-

er for example, an analyser which looks for nbays" 0:1 the 

right of a figure (as in C and K). If the an3lyser 

responds positively ton particular figure, then the fi;

ure has the feature, since the precise definition of the 

feature is simply what the analyser responds to. 

Marr's primal ::;ketch <Marr 1975) also uses feature 

semantics. Symbolic descriptions in the primal sketch 

represent aspect~ of the grey-level data, rather than of 

the scene ·causing that data. These rearesentations ~2y 

nevertheless be expressed in ter~s of the scene ele~ents 

which they appear to depict. (Section 1.;6.4 discusses 

this difficult point in more detail). This is not in:en.j-

ed as a cri ti ci sm of the primal sketch. It is s en si::: le to 

analyse the raw data and redescribe it in 3. more con-

venient form before trying to decide what it depicts. 

-17-



However, the primary purpose of perception is to enable 

us to act in the world, and so perception must tell us 

what's there, not just how it appears.. Sooner or later 

decisions have to be made between conflicting hypotheses 

(except when interpreting very simple data). 

1.4: Ways of finding consistent interpretations 

Given a number of interrelated tent~tive hyp~theses, 

one problem is to find a consistent set of them. This 

section descr~bes some of the known ways of achieving 

consistency, and then sections 1.6 and i.9 jiscuss how 

these methods can be extended to the more difficult prob

lem of finding interpretations which are good or optimal 

rather than just consistent. The Huffman/Clowes line-

labellinq task \'li 11 be used to illustrate so:ne of the 

methods and so it is defined below. 

1.4.1: _Huffman/Clowes labelling 

Detailed discussions of line-labelling occur in 

s e v er a 1 p 1 a c e s ( H u f fm an 1 9 7 l , C 1 owes 1 9 7 1 , ~·1 a 1 t z 1 9 7 2 , 

Winston 1977) so only a brief description is given here. 

The input consists of perfect line-drawings of 

scenes composed of polyhedra. There are never nore than 

three surfaces at a point in the scene, 8nd the viewpoint 

is chosen so that vertices or edges are never on exactly 

-18-



the same line of.sight as a nearer vertex. Given these 

restrictions, the topology of the junctions in the 

ture provides good evidence about what kinds of edge are 

depicted by the lines (see figure 1.2). In the case of a 

tee-junction, the evidence has an unambiguous implica-

tion. The crossbar must depict an occluding edge belong-

ing to the surface on the opposite side to the stem. 

CJther junction types, however, provide ambiguous evidence 

about line labels. A globally consistent set of line la-

bels can only be found by considering how the local evi-

dence interacts. The interactions are based on the fact 

that a line must have the same labels at both ends. 

1.4.2: Growing alternative consistent contexts. 

Techniques such as depth-first and breadth-first 

search <see Nilsson 1971, Winston 1977) involve consider-

ing all the alternative ways in which a context (a con-

sistent partial solution) can be extended. For each such 

extension, a new context is spawned, and ways of extend-

ing it are considered. All consistent solutions c3n be 

found in this way. For the line-labelling task, the con-

texts could consist of assignments of particular labels 

to some of the lines, and contexts could be extended by 

considering all possible labels for a previously unla-

belied line. A context is consistent if the cowbination 

of line labels at each junction is one of the combin~-

tions allowed for a junction with that topology. 

-19-
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FIGURE 1.2~ Showing all the possible junction labels, given 

the Huffman/Clowes restrictions, and an ell-beam illustrating 

them. "+.. means a convex edge, "-" means. a concave one, and. 

.. ~ n means an occluding edge with the attached vee 

lying in the nearer surface. 



The contexts form an inverted tree, with complete 

labellings at its lowest tips. Depth-first and breadth

first search differ, as their names suggest, in the order 

in which this tree is investigated. 

A major criticism of both these search techniques is 

that they perform a lot of unnecessary work because they 

do not make use of the fact that many suppositions are 

independent of one another. They do not keep track of 

which of the suppositions in a context were used in 

deriving a conclusion, and so they cannot use the conclu

sion in rival contexts in which it is also valid. They 

have to re-establish it each time. In figure lo3, for 

example, the triangle has many alternative labellings. 

It seems silly to rediscover the possible labellings of 

the cube for each labelling of the triangle, but this is 

what is done. 

The Conniver programming language CSussman and 

hlcDermott 1972) embodies, among other things, one partic

ular approach to this problem. It involves providing a 

hierarchy of contexts which are ac~essible to the user. 

A fact asserted in one context is available in all the 

descendents of that context. When a new fact is esta

blished, the user can ensure that it is asserted in a 

higher context than the current one if he is sure it is 

also valid there. This makes the fact available in rival 

contexts to the one in which it was discovered. 

An alternative to the Conniver policy of leaving the 

-20-



FIGURE 1.): The "cube" can have many different labellings 

corresponding to different ways of being stuck to the 

l:ackground plane. Hany of these choices are independent of 

the line labels chosen for the triangle • 



problem to the user is to systematically record all the 

suppositions that are used in deriving each fact. The 

system can then automatically assert a fact in the 

highest context containing all the suppositions used to 

derive it. Alternatively, the system can set up demons 

which ensure that whenever a context contains all the 

suppositions previously used to derive a particular fact, 
I 

that fact is automatica.lly asserted. The latter metho:::l 

has the advantage that it may make the fact available i~ 

more contexts. Suppose, for exaQple, that there is an 

ordered set of choice points A, B, C, D •••• and that the 

choices are Al or A2, 81 or 82, Cl or C2, Dl or 02 ••• 

If it is discovered, whilst explorinq the Al branch cf 

the seAr eh tree, that 81 and Cl i:-npl y Dl , then 

highest available context in which to assert 01 is (AI, 

81, Cl). This does not capture the fact that Dl must 

also be true in ( A2, 8 I, Cl). Because A comes above .:5 

and C in the search tree, there is no single place in the 

hierarchy of contexts where the assertion of Dl woulj 

make it av~ilAble in just those contexts containing 31 

and C 1. 

Stallman and Sussman (1976) describe a systea fer 

analysinq electrical circuits containing non-linear eo~-

ponents (e.g. trBnsistors). Each such comoonent can be 

in one of a number of roughly linear operating regions, 

and the system has to search for a consistent combinatio~ 

of reqions for the different components. It searches by 

growing a number of contexts and it notices v1hich sup_::Jo-
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sitions about operating regions are used to derive the 

operating regions of other components. It uses these re

lationships to avoid having to rediscover the conse

quences of sets of suppositions. It also notices which 

suppositions are involved whenever a contradiction is 

derived, so that it can immedi.ately reject any other con

text containing that combination of suppositions. 

Stallman and Sussman's work has been mentioned be

cause it implies that it is worth explicitly representing 

the logical relations between hypotheses (suppositions), 

rather than simply building up consistent sets of them. 

This policy is an important aspect of the relaxation 

method to be described later. 

1.4.3: Waltz filtering 

~·ialtz (1972) showed that ·Huffman/Clo~:1es labellin9 _ 

could be extended to deal with line drawings containing 

shadow edges and also certain coinciden~es. This gives 

many more legal labellings for each junction type, which 

greatly increases the search spnce. However, Haltz 

showed that a filtering process can quickly eliminate 

most of the junction labels and often leaves a single 

consistent labelling. The process depends on keeping, 

for each junction, a list of all the labellings.which are 

compatihle with its topology. Each junction labelling 

must then find a "sponsor" at the other end of each of 
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the lines forming the junction. A sponsor is a labelling 

of the other junction which agrees on the labelling of 

the common line. If there is any line along which no 

sponsor can be found for a particulnr junction labelling, 

that labelling is removed from the list of possible la

bellings for that junction. This may well leave some le

belling of a neighbouring junction without a sponsor 

along their common line, so it too will be eliminated. 

This is how the effects propagate. 

A major attraction of filtering is that it is suit

able for parallel computation. Each junction 9 or even 

each junction,label, could be allocated to a separate 

processor, which would be given links to the processors 

for neighbouring junctions. All the processors could 

then repeatedly check for sponsors in parallel. 

A number of workers have attempted to extend the 

filtering approach. Mackworth ( 1975)- and Freuder {1976) 

consider ways of checking more than just pairwise con

sistency, so as to cope with cases where there are many 

alternative labels each of which has the required s~n

sors, even though there is only one globally consistent 

labelling (Waltz handled such cases by resorting to a 

depth-first search~. Rosenfeld et al, B~rrow and Tennen

baum, and I, have tried to extend Waltz filtering s~ as 

to find optimal interpretations when there are prefe~

ences for particular labels, or the constraints are not 

binding (see Chapter 5). 
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1.5: The need for optimisation. 

Consider the handwritten letters in figure 1.4. 

n 

Figure 1.4 

The differen~e between the two m's is just -like the 

difference between the h and the n. So why, on first in-

spection, isn't the h interpreted as a distorted n just 

as one of the characters is interpreted as a distorted m? 

There are two questions here. First, what makes the h 

interpretation preferable, since the distorted n in-

terpretation also fits the data p~rfectly? Second~ how 

does the existence of the h interoretation either 
- . 

suppress its rival or prevent it ever being explicitly 

formulated? 

The obvious answer is that the h interpretation is 

preferred because it does not involve distortion, and 

that the distorted n interpretation is not noticed be-

cause such interpretations are only sought when attempts 

to find bett~r ones have failed. It will be shown, how-

ever, that this kind of solution runs into difficulties 

if all the possible interpretations contain unattractive 
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features. 

1.5.1: Consistency versus goodness in the blocks world. 

Consider figures 1.5a and 1.5b. These have fairly 

obvious interpretations as a hole and as a solid respec-

tively. There is some ambiguity about whether the solid 

is attached to the background along any of its boun-
1 

daries, but apart from this, a program can easily give 

the pictures their appropriate line labellings. Notice, 
I 

however, that the interpretations of the two pictures can 

be swapped if the bottom central junctions are seen as 

the result of a special viewpoint. The tee-junctio~ in 

figure 1 .5a could depict a trihedral vertex seen fro2 a 

point lyinq in the same plane as the invisible surface. 

Similarly the lower arrow junction in figure l.5b cQuld 

depict the internal concave edge of a hole lying exactly 

behind A corn er in the rim of the hol"e. Both these in~ -

terpretations are ruled out by the assumptions of Hu~f~a~ 

and Clowes, and so a program can discover the interpi.et-3-

tions which people find obvious simply by using con-

sistency. People, however, must use more complex cri-

teria than simple consistency,· since they also· make l.n

terpretations based on non-general viewpoint when the~e 

are no better ones {See figure 1.5c) • 

. There seems to be no way of redefining the ·notion of 

consistency so as to allow the obvious interpretation ~or 
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FIGURE 1.5a: A hole FIGURE 1.5b: A solid 

FIGURE 1.5c: AY-junction between the two cuboids is interpreted 

as an accidental alignment of an edge at one depth with a closer 

vertex. (The picture was suggested by Steve Draper). 



figure 1.5c whilst ruli~g out the unlikely interpreta

tions of figures 1.5a and 1.5b. An alternative to con-

sistency for characterising the interpretations which 

people come up with, is to introduce the.idea of the 

goodness of an interpretation, and to define it in such a 

way that people's interpretations are optimal or nearly 

optimal. It is an interesting empirical question whethe~ 

such a definition is possible. There is no a priori rea-

son why it must be, though if good is equated \'li th prob-

able (see Section 1. 7.1), then the desire for the best 

interpretation may be explained by the obvious I value of 

finding the most probable interpretation of the visual 

inpui when perceiving the real world. 

Chapter 2 discusses what makes an interpretation good 

in one domain. Another example of the se2ning of 11 good", 

using the blocks-world, is given below, before discussing 

how good interpretations may be found. 

For blocks-world pictures, there are many different 

aspects of an interpretation which affect how good it is. 

Some of these can be explained by the concept of general . 

viewpioint CRoddy Cowie, personal c6mmunication). The 

perceiver is unlikely to be in such a position that cer-

tain important properties of the image would change with 

a smRll chAnge of view~oint. For example, it is unlikely 

that a straight line in the image is the projection of a 

curved edge, or that para 11 el 1 in es in Bn orthogr-:=: phi c 

image are caused by non-parallel edges seen from a spe-
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cial vie'npoint. The alternative interpretations of. fig

ures 1.5a and 1.5b provide further examples of non-

general viewpoints. 

A different kind of desirable feature in the in-
--· 

terpretation of a blocks scene is that there should be 

three orthogonal directions with which many edges are 

aligned. This helps to explain why a line drawing of a 
I 
! 

cube is not seen as a non-rectangular paralle~ipiped. 

Potential symmetries may also determine which interpreta-

tions people perceive (see Perkins 1976). 

1.6: Ways of finding good interpretations. 

This section describes a variety of methods for 

finding good but not necessarily optimal interpretations. 

It is by no means a complete survey. What the · methods 

have in common is that they lack an adequate mechanism 

for identifying trade-offs between the various ·ways in 

which an interpretation may be imperfect. Since they 

cannot identify complex trade-offs, decisions between 

rival sets .of imperfections are not confronted. Conse-

quently, the methods do not need any systematic way of 

evaluatinq combinations of imperfections of different 

kinds. Rather, they tend to make use of domain-specific 

heuristics for decidinq commonly encountered types of 

conflict on a local basis. The term "procedurally embed-

ded optimisationu will be used to refer to these methods, 
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because they are ma~e to find good interpretations by 

embedding ideas about goodness in the procedures for de

ciding whether to develop a context, or to ·make an as-

sumption. This contrasts with the use of explicit scores 

for systematic optimisation. 

One of· the s impl est and comrnones t \"lays of making a 

program produce a good interpretation, is to inv~stigate 
i 

promising possibilities first and to accept the first 

solution. Roberts (1965), for example, uses this method 

in his program which interprets line drawings in terms of 

known three-dimensional models. Various configurations of 

lines and regions in the picture act as cues for particu-

lar models. The cues are ordered on the basis of how 

much of a model they. depict, and ·then the program at-

tempts to match models to the line drawing in that 0 ...... ......:_ 
! V 

er. The first sufficiently good match is accepted. The 

problem with this approach is that the best cue may not 

give the best match. Also, after the first object ha5 

been found, the lines which remain may be very herd to 

explain in terms of other objects. Roberts ignores this 

trade-off between the quality of the first· object and 

the quality of subsequent ones. This helps to explain 

why he can get led up the garden path when doing corn~o

site analysis (Mackworth 19~7) • Grape's (1973) progra~ 

is also unable to make subsequent difficulties reverse a 

decision to interpret part of a picture as a particular 

view of ·a particular object. 
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l. 6. I : Guided depth-first search. 

A systematic way of using ordering to achieve good 

solutions is to combine it with a depth-first search 

which terminates as soon as any solution is found. Back

tracking ensures that early choices are reconsidered if 

they lead to inconsistency, and hence guarantees that a 

consistent solution wi.ll be found if there are any. 

each choice point, the possibilities are ordered on the 

basis of how they would contribute to the goodness of 

the global interpretation. Planner CHewitt 1972) a~lows 

the user to specify the ordering so that he can guide the 

search towards good solutions. 

Unfortunately, the rejection of a locally poor pos-

sibility may force the.~cceptance of many poor choices 

later, in order to achieve consistency. So the first con-

sistent, complete interpretation to be found may be far 

from the best. For a guided depth-first search, the 

ordering of choices high in the search tree has far more 

effect than the ordering of lower ones in determining the 

order in which consistent solutions are generated. Using 

a guided depth first search to find good solutions 

first, is like using the values of integers to find those 

whose digits have a large sum. 
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1.6.2: Conniving. 

Conniver embodies a more sophisticated way of combin

ing the use of contexts with the investigation of promis

ing possibilities first. The ability to jump to speci

fied contexts means that a line of investigation can be 

abandoned as soon as it looks unpromising, but can be 

reopened if there turns out to be nothing better, or if 

evidence turns up suggesting that the abandoned context 

was better than it appeared. Also, the reasons for aban

doning a context may suggest which other context to jump 

to. Adler (1977) has argued that these control facili

ties can be helpful in interpreting pictures. A defi

ciency of Conniver, as section 1.4.1 explains, is that 

the serial ordering of the suppositions which constitute 

a context can prevent facts discovered in one context 

from being made available wherever relevant. Another de

fect is apparent in tasks such as line-labelling where 

there -are many strongly interrelated choices. It is not 

clear how the control facilities avail~ble to the Con

niver user could help him to achieve anything like the 

efficiency of the Waltz filter. .Brady and Wielinga 

(1976) mention further difficulties encountered in using 

a Conniver-like language for vision. 
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1.6.3: Assumptions and specialist error procedures. 

In some domains, the need to store and develop many 

separate contexts _can be avoided altogether. Instead of 

spawning a new context for each possibility at a choice 

point, a program can simply choose the possibility which 

seems best on the evidence available. If the program has 

a lot of domain-specific knowledge to ·help it choose , it 

should be able to make the right choice in most situa

tions. In cases where there is no obvious right choice, 

it may be possible to delay the decision until more 

helpful evidence has emerged. Inevitably, such a program 

will sometimes make mistakes. Sooner or later it will 

arrive at a contradiction or notice that its combination 

of assumptions is too implausible. When this happens, it 

cannot jump or backtrack to another context, since it 

has not kept any. Instead, it must examine the difficul

ty it has discovered and uses domain-specific knowledge 

to decide which assumptions to abandon and which new ones 

to put in their place. 

It is hard to see how such a process can be

guaranteed not to oscillate, unless it keeps a record of 

previous combinations of assumptions <which begins to· 

look like depth-first search). Ho\•rever, the emphasis 

placed on domain-specific knowledge means that the method 

cannot be fairly evaluated in the abstract. It may be 

that for the sorts of visual tasks at which people excel, 

there is so much available information sUgJesting the 
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correct interpretation, that systematic sea~ch is un-

necessary. Several quite competent programs work in 

this way and two are described below. 

t~6.4: Bar-finding in Popeye. 

One part of the Pop eye program ( Slornan et al 19.77) 

searches for bars in pictures like figure l.tb. The pro

gram expects long lines of dots to depict bar walls <the 

longer sides), so if it finds two parallel lines ap

pro pr ia te ly pas it ioned, it assumes they are opposite 

walls of a bar. If it subsequently discovers a good line 

of dots between the two previous lines, it may jettison 

the original bar, and replace it -by two new ones (cracks 

are allowed). So the initial assumption can be undone a~ 

account of evidence discovered later. 

In fact, bars in Popeye have a r~ther complex se

mantics which has similarities to the feature semantics 

discussed in section 1.3.2. A distinction is jra~n 

between picture-bar~ which are correct if the picture 

contains good evidence for a scene bar, and scene-bars 

which are only correct if they occur in the cotrect glo~ 

bal interpretation (i.e. the interpretation people see). 

So the only assumption involved in asserting the presence 

of a picture-bar is that the picture evidence is ]CO~. 

It is possible for the program to be mistaken about this, 

because it does not perform an exhaustive low-level 
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analysi~ before looking for high-level structures. 

The use of concepts like P.icture-bar enables deci

sions about scene-bars to be left until evidence is pro-

vided by higher level considerations, such as how well 

picture bars combine with others to form letter-shaped 

laminae. The use of higher-level structures to make lo

cal decisions is-an important way of avoiding making ar-
1 

bitrary assumptions. I 

1.6.5: Marr and Poggio (1976). 

When each eye is presented with one of two random 

dot patterns, which are identical except for lateral dis-

placements of some regions in one pattern, people see a 

number of surfaces at different depths CJulesz 1971). To 

do this we have to decide which dot in one pattern to 

p2.i r with whi eh dot in the other. Si nee all dots are the . 

same, there are many potential mates for each one. Ho'.·,r-

ever, each pairing wi.ll give a different angular dispar-

ity, and hence a different perceived depth for the dot. 

Using the assumption that each dot can only be paired 

with one other (based on the opacity of surfaces), and 

the assumption that neighbouring dots in the merged image 

should be at similar depths (based on the continuity of 

surfaces), it is possible to make the many potential 

pairings disambi~uate one another. 

M9rr and Poggio show that the computation of a good 
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set of pairings can be done in an interesting way; They 

use a binary "neuron 11 for each potential piece of sur-

face at each depth. Neurons corresponding to pieces of 

surface lying along a line of sight from an eye tend to 

inhibit one another __ <t:he opacity assumption), and neurons 

corresponding to adjacent pieces of surface tend to ex

cite one another (the continuity assumption). A dot in a 

pattern tends to excite neurons corresponding to1all the 
i 
I 

pieces of surface on that line of sight. The computation 

consists of an iterative process whereby each neuron is 

turned on or off by the com~ined effects of the other· 

currently active neurons and the input. Vlhen the 

strengths and ranges of the effects have been tuned, the 

system works very well and settles down in only a few 

iterations. 

Marr has expressed doubts <personal communication) 

about whether people solve the stereo corre~pondence 

problem in this way. However, it is a. good illustration· 

of the method of making assumptions and revising them if 

it seems necessary, since an active neuron corresponds to 

an assumption about surface depth. Notice how inap-

propriate it seems to find a solution by developing many 

separate consistent contexts. This illustrates that 

search methods appropriate in domains such as understand-

ing natural language (e.g. micro-planner) may be inap-

propriate for low-level vision. 

The difficulties that can be caused by the way in 
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which the consequences of an assumption can ramify do not 

seem to be encountered in the stereo correspondence 

task. This is partly explained by the fact that surfaces 

do not have to be continuous. Occasional discontinuities 

are allowed, and this means that no definite long-range 

consequences follow from an assumption about surface 

depth at one point. This, and the simplicity of the con-
I 

straints, means that the mechanism used by Marr and Pog-
I 

gio is adequate, even though it cannot capture the kind 

of rigid complex logical constraints which the rel.axation 

method handles (see Chapter 3). 

1.6.6: The breakdown of Waltz filtering. 

One search method which cannot easily be usec for 

finding good interpret8tions, is the filtering tech~ique 

which works so well for firidinq consiste~t labellings in 

a restricted domain. (see section 1.4.3). The ~ethod 

depends on being able to shov.r that labels are impossible 

because there are no compatible labels for neighbouring 

junctions. If, however, neighbouring junctions mey have 

very unlikely labellings, based on non-general viewpoint, 

then it is hard to eliminate Any labels. It can be 

disastrous to renove a label unless it is definitely im-

p o ~si b 1 e , s i n c e i f a cor re c t 1 2 be 1 i s a cc i dent a 11 y e-1 i m-

inated, this can ceuse the elimination of the correct la-

b 1 f · 1 'o 1· r o :tr t1· on s and the effec~~..s can .e s r0rn ne1gr10 ur 1_, J ne _, 

propag8te until no lAbels are left anywhere. Ther~ is 
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little hope of noticing when a correct label has been 

eliminated and backtrncking, since the correct label may 

not be the last one to be removed from a junction. Also, 

the divergent effects of some removals, which give Waltz 

filtering its power, make it very hard to trace and un

pick the effects of an erroneous removal. This dive~

qence of effects is also a major difficulty for the 

method of making assumptions and correcting errors when 

they are discovered. There seems to be no limit to the 

potential consequences of an assumption, and hence no 

limit to what an error-correcting procedure might need to 

do to unpick these consequences. 

1.7: Explicit numerical scores 

One 'r.ray of determining ho~.~ to make complex trade-

offs between hypotheses is to give them explicit numeri

cal scores, and to define the global best fit as the one 

which maximises the sum of the scores of its constituent 

hypotheses. This means that finding the best global in

terpretation becomes what is known in the operational 

reser:1rch literature as a "linear programming problen 11 

(often abbreviated to an "L.P. problemu). ~~.\ore specifi

cally, it is a 11 zero-one 11 progranmj_ng problem because in 

<3ny solution the hypotheses must have truth valu~s of 

zero or one. The following secti~ns attempt to answer 2 

number of issues concerning the validity and usefulness 

of ex p 1 i c i t n urn er i c a 1 s core s : 
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1. What is the underlying justification f~r the indi

vidual scores used, and for the method of combining 

them? 

2. What are the advantages of having a simple numeri

cal definition of the optimum? 

3. Is it sensible to introduce real numbers given 

that a major feature which differentiates t~e scene 

analysis approach from pattern recognition is its com

mittment to reasons and symbolic descriptions instead 

of numerical \·!eights? 

1.7.1: Probabilities and the costs of hy~otheses 

In Capital, Marx puts forward the idea that there 

must be some common underlying essence shared by all 

goods in order to explain how they can be given prices 

according to which they are exchanged. The same philo

sophicAl point seems to apply to hypotheses. There must 

be some property which they share in order to explain how 

they can be given scores according to which they are 

traded. The obvious candidate is probability. If the glo

bel best fit is defined as the least improbable set of 

consistent hypotheses, and if hypotheses are given nege-

tive scores (costs) corresponding to the loqs of their 

prob~bilities, then minimizing the su~ of the costs of 

the hypotheses will indeed produce the globally most 

prob~ble interpretAtion, (assuming that the probabilities 
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are independent, so that the most probable interpretation 

is the one whose constituent hypotheses have the greatest 

product of prob~bilities). 

It is not obvious how to apply probability theory to 

perception in order to assign costs to hypotheses, and it 

is particularly difficult to make the probabilities in-

de pendent. Hov1ever, ~'/ oods ( 1976) successfully employs ex-

plicit numerical scores based on probabilities in ~HWIM~ a 

speech understanding system. The scores are necessary be-

cause conflicts arise between knowledge sources of quite 

different kinds. For example, a poor phonemic interpreta-

tion may be chosen because it allows a much better prag-

matic interpretation or vice versa. The scores. 3re 

discovered by collecting statistics in cases where the 

correct interpretation is known. The method used in H~IM 

to find the best global interpretation (see Section 5.5) 

is different from the method examined in this thesis, but 
\ 

it is encouraQing that the theoretic2l arguments present-

ed here in favour of explicit numerical scores are sup-

parted by the practical usefulness of such scores in a 

large program dealing with real data. 

1 .7.2: The advantages of a numerical definition of the 

optimum, 

One me.jor advantage of using explicit numerical 

V8lues is that they provide 2 way of settling unforeseen 

conflicts between hypotheses of quite different types. 
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They al=o make it clear just how dive~~e, separate con

siderations can combine to overwhelm an hypothesis, a 

process which is hard to implement otherwise and tends to 

be avoided or glossed over within the framework of pro

cedurally embedded optimization. 

Another advnntage of using explicit numerical scores 

is that they· a..llow the problems of optimization to be 

abstracted from the welter of .specific visual knowledge. 

There is, of course, a danger in attempting to impose a 

uniform optimisation system on visual processing. The ap

propriate use of domain-specific knowledge is often more 

helpful in deciding ori the best interpretation than a lot 

of '-'lei ghing of evidence based on an inadequate under

standing. So an optimisation system is disadvantageous if 

its use of numbers rules out or discourages the use of 

any of the great variety of types of inference needed for 

scene anBlysis; This criticism, however, does not seem to 

be applicable to· a system which can handle arbitrary log

ical relations bet\'leen hypotheses. 

1.8: Pattern Recognition and the Misuse of Numbers 

The systematic use of real numbers and the accom

panying mathemat-ical arguments are regarded.with suspi

cion by· many 1.vorkers in Artificial Intelliqence. One of 

the main reasons for this suspicion is the inappropriate 

way real numbers were used in e2rly attempts to produce 

shape recognition systems. Books a~d journ3ls Ce.g. Pat-. 
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tern Recognition) ·were fill"ed with papers discussing 

mathem~tical methods and theorems which assumed a formal

isation of the process of perception that was inadequate. 

This section analyses the defects of the pattern recogni

tion approach in order to show that the ways in which 

real numbers vtere inappropriately used there, do not 

necessArily rule them out for defining the global op-

timum. 

1.8.1: The pattern recognition paradigm. 

Given some fixed set of feature analysers, gny spa

tial pattern can be described in terms of which features 

it has 3nd which it lacks. If some standard, na~ed p3t-

terns are described in this way then an unknown pattern 

can be classified as most similar to a particular stgn

dard pattern by comparing its feature set with the sets 

for the standard patterns. Different features may be 

given different real-number weights so that agreement 

with a standard pattern on some features is more impor

tant than on others. Major issues within the paradigm are 

how to select the best set of weights, and what features 

to use to achieve good separation of the standard pat

terns and to cope with size, position and orientation in

variance. 
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1.8.2: Inadequacies uf Pattern Recognition 

The model outlined above suggests that the aim of 

perception is to classify a pattern, that the representa

tions used are sets of features, and that the process 

consists of first extracting a feature set and then com

paring it with stored sets. By contrast Artificial Intel

ligence research suggests that perception consists in 

producing a description of a scene using complex articu

lated representations CMinsky a~d Papert 1972), and that 

the processes involved are far more sophisticated than 

simply extracting and comparing sets of features. 

The most obvious failing of the pattern recognition 

model is that it treats the input pattern as a whole. 

This presupposes that a sensible figure has already been 

segmented out CHebb 1949, Neisser 1967) and it also pre

cludes a recursive process in which description of the 

whole pattern may involve applying equally powerful _ 

descriptive apparatus to parts of the pattern (Minsky & 

Papert 1972). Except in special cases, such as the re~og

nition of separate, upright, ·typewritten letters, the 

types of representation and processes needed for the 

presupposed initial segmentation are far more complex 

than the feature sets, and the process of comparing them 

which is meant to model recognition. For example, the 

programs of Guzman (1968), Clowes ( 1971) and Waltz (1972> 

tJse a relational network to describe the picture struc

ture before starting on segmentation. This data structure 

-41-



itself is much riche1- than a set of features. 

Understandably, pattern recognition tends to avoid 

2-D pictures of 3-D scenes. It has no way of coping with 

the way in which the appearance of a three-dimensional 

object is affected by occlusion, lighting and the 

picture-taking process. There is no simple way of ini

tially normalizing the figure nor is there an adequate 

set of features which are invariant under the transforms-

tions. 

It is true that people may have been attracted to 

the pattern recognition paradigm because it allowed kno~n 

mathematical techniques to be applied to the selection of 

feature weights. It is also true that preoccupation with 

the weights and with ways of tuning them may have dis-

tracted people from noticing obvious inadequacies of t~e 

model. For example, a perceptron using local features 

cannot successfully discriminate between the connected 

and disconnected patterns in figure 1-.6 CMinsky and 

pert 1969). However, neither of these points implies t~at 

a successful formalisation of perception should avoid 

real numbers or systematic ways of manipulating the2 

based on mathematical principles •. Associating real number 

scores with hypotheses does not commit one to any partic-

ular kind of representation in the same way as the use of 

feature weights does. It will be shown (section 3.6) that 

any truth-functional logical relation can still be use:i, 

so thBt inferences based on occlusion, lighting, support, 

-42-



a b 

c d 

FIGURE 1.6: The connected figures (a and c) cannot be 

classified differently from the disconnected ones (b and d) 

by a perceptron with local feature detectors which are too 

small to encompass both ends of one of these figures 

simultaneously. The relationship between the sets of 

local features at the two ends is crt.(~ial, and it cannot 

be represented by a perceptron. 



or the picture-taking process can, in principle, be in

tegrated with the recognition of particular shapes. Simi

larly, giving hypotheses numerical values does not co~~it 

one either· to a pass-oriented or to a heterarchical ap

proach CWinston 1977) to the proces~ of perception • 

. 1.9: Branch-and-Bound search. 

Explicit numerical scores for global interpreta

tions, can be used to evaluate contexts (partial solu

tions). This allows many poor contexts to be abandoned 

before they have been completed or reached a contradic

tion. A systematic way of using evaluations to decide 

which context to develop is presented by Hart, Nilsson 

and Rapheal (1968). The method depends on being able to 

set an upper bound on the score which could be achieved 

by completing a context. For example, if ·all the local 

scores ~re negative (costs>, then the combined score for 

an incomplete context is an upper bound on the score for 

any completion of the context. During the search, a list 

of alternative contexts is created by branching at choice 

points. At each stage, the list is examined to find 

the context with the highest upper bound (e.g. the 

lowest Rccumulated cost). This context is then replaced 

by sever8l new ones which are made by branching at the 

next choice point. The search terminates when there is 

a complete solution with a score higher than any of the 

other upper bounds. 
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A branch-and-bound search ea~ be very efficient if 

it can find upper bounds on contexts that are not much 

higher than the actually achievable scores, but this is 

hard to do in complex domains. Without tight upper 

bounds, many Alternative contexts will be examined, and 

the same criticism applies as to depth-first search. 

There will be a lot of duplic~tion of work as the same 

local combinations of possibilities are examined within 
I 

the context of different, but irrelevant, higher level 

choices. A similar duplication occurs in the storage of 

the alternative contexts during the search. 

1.10: The Relevance of Parallel Hardware. 

A common criticism of artificial intelligence pro-

grams, as contributions to psychology, is that they are 

tailored to serial digital computers, whereas neurophy-

siologic31 evidence shows that in the brain many activi-

ties occur in parallel. It has been claimed for exa~ple, 

<Dreyfus 1972, Weizenbaum 1976) that hum~n abilities such 

as inuitive thought and Gestalt perception depend on 

parallel, holistic processes which are qualitatively dif

ferent from the sequential steps generated by a normal 

computer program. These criticisms are simply not 

relevant to one of the main functions of artificial in-

telligence programs, which-is to investigate the suita-

bility of particular kinds of representation for particu-

lar tasks. Also, the difference in hardwAre ·cannot be 
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used to rule out computer models, since a~y desired 

_parallel machine can be simulated on a general-purpose 

digital computer. 

There is, however, a core of truth 

tions. Within artificial intelligence 

in the objec

it is accepted 

that different programming languages encourage different 

programming styles by making some operations (the primi

tives of the language) particularly easy (Sussman & 

McDermott 1972). It seems likely that the relative ease 

of different basic computations will depend on the na

ture of the hardware. So, unless efficiency and conveni

ence ar~ disregarded, different hardware, like different 

languages, may encourage different programs. 

It is sometimes claimed that the higher levels of 

organisation of a progrAm are determined more by the na-

ture of the task than by the hardware. The history of 

heterarchy however, shows that hardware considerations 

can_be relevant even to general organisational princi-

ples. It was. found that it was very difficult to derive 

a clean line drawing of some blocks .from the mass of 

grey-level data produced by. a camera. Shirai (1973) 

showed how higher-level knowledge could be used to guidB 

line finding and his program was used to support the idea 

that trtJly intelligent programs need rich interactions 

between experts in different domains, rather t~an a 

sequential, pass-oriented organisation. The application 

of this idea to low-level vision was·attacked by M~rr 
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(1975) who argued that the enormously powerful, parallel 

hard','fare known to exist in the brain, could produce much 

richer symbolic descriptions about edges than convention

al A.I. programs, without invoking knowledge of particu

lar objects. The dispute has not been fully settled, but 

there seems no doubt that claims about the existing 

hardware are a major ingredient of Marr's case. 

An early candidate for a useful computational primi

tive which might be more efficiently implemented on 

parallel hardware was associative memory. Willshaw and 

Longuet-Higgi ns ( 1 969) \'tent beyond suggestive analogies 

with holography and demonstrated an efficient method, the 

associatiNe net, for associating pairs of bit-patterns so 

that one member of a pair could be produced in response 

to the other. This technique has not been used in A.I. 

programs, partly because of the need to translate to and 

from bit-patterns, but mainly because, given a serial 

digital computer, it is easier to use techniques such as 

hash-coding than to simulate a para.llel ;nachine. 

Another candidate for an important computational 

process that might be more suited to parallel hardware, 

is the problem, of selecting an optimal interpretation 

from among a network of conflicting and co-operative hy

potheses. The desire to show how this process could be 

decomposed into parallel interacting sub-processes was a 

crucial consideration in the design of the relaxation 

method presented in Chapter 3. This is a very different 
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approach to first writing a slow, serial program and then. 

appealing to parallel hardware as a way of speeding it 

up. Some programs written for a serial computer (e.g. a 

breadth-first search) may, perhaps, be easily transfer

able to parallel hardware, but the serial nature of many 

programs makes it hard for them to use parallel hardware 

effectively. 

1 • 1 1 : Summary of Chapter 1. 

The thread of the argument of this chapter may not 

have been obvious, so. it wi 11 be stated here without the 

examples, elaborations and diversions: 

The main problem in vision is to specify the types 

of representations and the inferences and heuristics that 

are available to build the representation of a particular 

scene, given a picture or image of it.· Disregard for 

these issues can lead to futile efforts like perceptrons. 

Also, unnecessarily difficult search problems can be 

created by using poor representations <Amarel 1968). 

However, except in toy worlds, it is necessary to formu

late tentative hypotheses, and important theoretical is

sues arise about how to manipulate these. Sometimes 

these issues can be side-stepped by using more knowledge, 

but not always. Any complex visual system, especially 

one dealing with messy data, needs systematic and princi

pled v.rays of handling tentative hypotheses. So this be-
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comes an issue in its own right. 

Searching for consistent sets of hypotheses by 

developing separate contexts may involve unnecessary du

plication in both time and storage space. For line la

belling, a constraint propagation method, like that used 

by Waltz (1972) or Fikes (1970) is much ~ore efficient. 

In complex worlds it is not possible to spe~ify 
I . 

a 

grammar of allowable interpretations which rules out all 

but one or a few global int~rpretations. The concept of 

a good or optimal interpretation is necessary. 

There are several ways of finding good global in-

terpretations. However they cannot handle the complex 

and unforeseeable tr~de-offs that may arise between dif~ 

ficulties of different kinds (e.g. missing line segments 

versus unknown words in the Popeye domain). It would be 

useful if we could find a principled way of making the 

trads-offs at run-time. Explicit numerical costs based 

on probabilities provide this. Some of the largest A.I. 

systems for handling real data work this way. 

Given numerical evaluation criteria, a branch-and-

bound .se arch is the obvious can·didate.. However, the use 

of separate contexts can be inefficient. It would be. 

better to represent constraints between hypotheses expli-

citly, if this allowed 8·parallel, constraint-pro~agation 

method, l!ke Waltz filtering, to be u~ed. However, the 

selection of hypotheses must be driven by the need for 
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optim~lity as well as consistency, and it is not obvious 

how to do this with Waltz filtering. 
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CHAPTER 2 

THE TASK OF SEEING SOME OVERLAPPING RECTANGLES 

AS A PUPPET. 

Figures 2. 1 to 2. 1 0 sho\A/, among other thing 1s, the 

input and output of a computer proqram designed to find 

the best puppet in a network of overlapping transparent 

rectangles. The puppet may have soQe parts missing and 

there may be some extra rectangles which are not puppet 

parts. The best puppet i$ taken to be the one with the 

greatest number of instc:tnt·iated joints between pe.rts, un-

less additional instructions are given. 

2.1: The ease and purpose of the task. 

By artificial intelligence standards the task is· a 

simple one. The _only difficulty lies in d2finin9 ho~'l tv:o 

parts should be related so as to constitute Rn acceptable 

joint. Once this has been specified the search for th& 

best fit can be done fairly simply by stBndard ~echniques 

such as a branch-and-bound search CNilsson 1971 > or a 

depth-first senrch. The existing program, however, uses 

a relaxation technique for selecting the best global com-:-

bination from a network of ri va 1, candidate part 

joint hypotheses. This makes it consider ,~tbly more co~:t-
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plex and probably sl~wer than a conventional search for 

all the examples given. The point of the progr~m is to 

illustr8te and analyse the relaxation method in a simple 

domain. It is argued in chapter 4 that for more complex 

problems, especially with unreliable data and many layers 

of interpretation, a suitably modified form of relaxation 

is much faster than conventional search methods, espe

cially if implemented on parallel processors. 

2.2: Pictorial input. 

Pictures are input on a graphics display terminal by 

drawing some overlapping rectangles with the cursor. Two 

sides of a rectangle are drawn and a program then com

pletes it and gives it a single letter name. The names 

and corner coordinates of the rectangles are stored in 8 

file. This file is the immediate input to the program. 

2.2.1: The range of possible pictures. 

Although it will happily accept parallelograms, the 

program is only intended for, and has only been tried on, 

scenes consisting of overlapping rectangles or near rec-

tangles. Any configuration of these m.=.~y be used. Iso-

lated rectangles are simply ignored. 

"o'· 
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FIGURE 2 .1a: 

The L71put to the program. 

! + b est. s <~-~ t. Y. 
A1 TOP HEAD NECK B1 
B1 TOP NECK HEAD A1 
C2 TOP TRUNK NECK B1 
D3 TOP THIGH TRUNK C2 
E3 TOP Cr~LF THIGH D3 
Fl BOT FODT C(.:1LF E:·5 
G4 TOP THIGH TRUNK C2 
H~5 TOP· CALF THIGH G4 
Il TOP FOOT Ct1LF H!::; 

FIGURE 2.1 b: 

A pictorial interpretation 

of the program's output. 

Tl:i:UNI< C2 
UPPEF\f-1F~t1 J:l. ~13 
Cr~L.F E~5 

FOOT F:J. 

Cf':)LF H~:i 

FDCJT I :1. 

J:t TOP UPPERARM TRUNK·C2 LOWERARM K6 
K6 TOP LOWERARM UPPERARM Jl HAND L7 
L7 TOP HAND LOWERAM K6 
113 TOP UPPERARM TRUNK C2 LOWERARM N4 
N4 BOT LOWERARM UPPERARM M3 HAND 02 
02 BDT HAND LOWERARM N4 

FIGURE 2 .1c: The actual output of the program. 



FIGURE 2 .2a: FIGURE 2 ,2b: . 

The input Interpretation of output 
- . 

! • bes ·t:.~;~:-)t ~ 

A1 TOP HEr~lD NECK Bl 
B:l TDF' NECK HEr.)D A 1 TF~UNI-\ C3 
C3 TOP TRUNt< NECI---~ Hi UPPEF~t1F<I·'f -.. THIGH D3 
D3 TOP THIGH TF~UNI\ C:3 C(~lLF ··-

FIGURE 2.2c: The actual output of the program. 

FIGURE 2.2d: The nodes in the relational network of part and 

joint hypotheses which form the best set. The indentations depict 

slots. The lines depict two-way links. 



! o) '!:i-hDl..JI""f(~t, 9 
"A:I. TOF' HEr-;D NECK B :l 
B:l. TDP 
E, . .., BOT lA:. 

NECI\ H[(.:·,I) A ·1 TF\lJNI·t f"' .. -\ 
U PP E F\ A Fo~ 1'1 .:. . . 1·1:·· L. ·,)".. •1·· {""' .; . , I l.:l' t'.:·,1::·1:·· ~ F·· ~~ ···· 

\ • I'< \ .,.I ... . 1.J -· \ h \ IJ 

Cl TOP 
("'':> TOP """'"" 

LOWERARM UPPERARM - HAND D2 
CALF THIGH - FOOT D1 

C3 TOP TRUNK NECK B1 UPPERARM B2 THIGH D3 
D:l. TDP FDDT C1~LF C2 
D2 TOP 
D:3 TDP 

HAND LOWERARM C1 
THIGH TPUNI\ C3 CALF ···· 

FIGURE 2 .3a: . The complete set of candidate hypotheses found 

by the program when given the picture in figure 2.2a. 

!tr~tointerPret [b as UPPerarm imPortance=2J; 

! • be~;·t~:.c:·~t; 
A:l TDP HEf."JD NECt< ·-· 
)?'"> I 4,.. BOT UPPERARM TRUNK C3 LOWERARM -
C3 TOP TRUNK NECK - UPPERARM B2 THIGH D3 
D3 TOP THIGH TRUNK C3 CALF -

FIGURE 2.Jb: An instruction given as additional input, with the 

resulting output, and its interpretation. 



A 

A1 TOP HEAD NECI\ B:l. 
B1 BOT NECK HEr~D f.):l. TF\UNI< C:l. 
Cl BOT TRUNK NECK B:l. UF'PEF;~f;F~rt D4 E4 THIGH F3 
D4 TOP UPPEF\~,~ r-<r1 'fRUNI\ C:l. L 0 WE F~,~ 1=\: N -
E4 BOT UPF'Ef~ARI1 Tl:~l.Jf-.JI"\ C:l. LOlA.IEHf~1RM .... 
F3 TOP THIGH Tl=t:UNK C:l. c,~~LF -
G:3 BOT FOOT CALF H2 
H2 BOT CALF THIGH I:·:) FOOT G3 
I3 TOP THIGH TF~UNJ·:: C:l. C?~1LF H2 

FIGURE 2.4a: A picture and the program's output. 

F1 BOT NECI"\ HEAD G:l. TRlJi'~l"\ C2 

F2 TOP UPPERAF\r1 TI:~UNI"\ ("'':> LOL·JEI~~f.1HM -
~"'-

F3 TOP THIGH TJ:::UNK c:t CALF' -·· 
F4 TOP LOl'-'EF\f.1FUi UPPEF~,~)r:~r-1 (" 1::· _.,J Ht')ND (32 

F5 TOP CALF THIGH [~ ,~·) FDDT G".r ,.; 

FIGURE 2.4b: The rival candidate hypotheses for F considered by 

the program. 

I3 

Hotice that the hypothesis selected by the relaxation process 

is one of the poorer ones in terms of its number of locally 

possible joints. 



!.bestset; 
Al BOT TRUNK NECK B1 
Bl BOT NECK HEAD Cl 
Cl BOT HEAD NECK B1 

UPPERARM D2 F2 
TRUNK Al 

D2 TOP UPPERARM TRUNK Al LOWERARM E4 
E4 TOP LOWERARM UPPERARM D2 HAND -
F2 TOP UPPERARM TRUNK Al LOWERARM G2 
G2 TOP LOWERARM UPPERARM F2 HAND H2 
H2 TOP HAND LOWERARM G2 
13 TOP THIGH TRUNK Al 
J4 BOT CALF THIGH I3 
K2 BOT THIGH TRUNK A1 
L4 BOT CALF THIGH K2 

CALF J4 
FOOT -

CALF L4 
FOOT -

THIGH I3 

FIGURE 2.5: A picture of an upside-down puppet, with the program's 

output. Unlike human perceivers, the program has no expectations 

about orientation, so it finds this picture no harder than one of 

an upright puppet. 



!tr~tointerPret [trunk as upright imPortance=1J; 
!tr~tointerPret Cthish as UPri~ht imPortance=1J; 

!+bestset; 
A2 TOP TRUNK NECK - UPPERARM J? Ki THIGH D3 F3 
Bl BOT NECK HEAD Cl TRUNK -
Cl BOT HEAD NECK B1 
D3 TOP THIGH TRUNK A2 CALF'E3 
E3 TOP CALF THIGH D3 FOOT -
F3 TOP THIGH TRUNK A2 CALF E3 
G3 TOP CALF THIGH F3 FOOT Hl 
H1 TOP FOOT CALF G3 
12 TOP UPPERARM TRUNK A2 LOWERARM J3 
J3 BOT LOWERARM UPPERARM I2 HAND -
Kl BOT UPPERARM TRUNK A2 LOWERARM L3 
L3 BOT LOWERARM UPPERARM K1 HAND -

FIGURE 2.6: In addition to the picture. the program has been given 

instructions .to attempt to find an interpretation in which the trunk 

and thighs are upright. It succeeds by finding an interpretation in 

which the trunk.and neck are not connected. 



·-
! .ber:;ts(~t,y 
~11 TOP HEAD 

BJ. TDP NECI'\ 
C2 TDP TF:UNI"\ 
D3 TOP THIGH 
E3 
F3 
G3 

TDP 
TDP 
TOP 

CALF 
THIGH 
CALF 

A 

NECI\ B:t. 

HEAD Al 
NECK B:l. 
Tf;~UNK C2 

THIGH D3 
TI~UNK C2 

THIGH F~5 

TRUNK C2 
UPPEF\ARM Hi .J1 

CALF E3 
FOOT -

CALF G3 
FODT --

H:l TOP UPPERARM TRUNK C2 LOWERARM Il 
Il TOP L.Ot·JEF\•~I~M UPPEF~AI:;:~1 H :L HAND -
,J :l TOP LOWERARM TRUNK C2 LOWERARM K4 
f\4 -BOT LOWERARM UPPERARM J1 HAND L6 
Ll> J)CJT HAND LOWERARM K4 

THIGH D3 F"3 

FIGURE 2.7: A picture in which people see two puppets, and the 

program's output, corresponding only to the best puppet. 



A 

! s w i. t' h a. t t e n t L o n { O· 5) i 

! • b\0!.:;t.r..;et..; 
L.2 TOP TF(UNI\ 

f·,i:3 TOP THIGH 
N5 TOP UPPERARM 
04 BOT UPPERARM 
P :1. TDF'. NECI\ 
(]:J. TOP HEAD 

NECt\ P:l. 

TF~UNI\ L2 
TF~UN~~ 
TI:;~UNI\ 

HEF-1D C~ :1. 
NECI< P:l. 

UPPEF\f:lRI"1 N5 04 
C1~LF --

L2 LOV.JEF~ARr1 -
L2. . LOLJERAF\M· -
Tli:UNI'\ 1...2 

THIGH M3 

FIGURE 2.8: The output constitutes a "residual" interpret~tion 

consisting mainly of rectangles which were uninterpreted in the 

first interpretation (see figure 2.7). The .. switch attention" 

instruction gives added importance to interpretations of the 

previously omitted rectangles. 



B 
~--------------------------+-~ 

A L 

(_ 

D 

E 

F 

FIGURE-2.9a: A nonsense picture which has the same connectivity 

graph as a perfect puppet containing no "accidentaln overlaps. 

The p~cture shows the importance of metric considerations. 

TAl BOT L. 0 l.\1 E F;: t!i !=~ l"i UPPEF<Ar.;.:M -- HAr-lD ?B2 
"?A2 BOT CALF THIGH -- FDDT ?B1 
"'?Bl TOP FOOT CALF ?A2 
TB2 TOP HAND LDhiEI=~f.~RM ?r.)l 

C1 BOT TF~UNK NECK - UPPEF:r-41:;:M G2 J2 THIGH 
D3 BOT THIGH TF~UNK C1 C(.~f...F E2 
E2 TQP cr~LF THIGH D3 FOOT -
G2 TOP UPPEI~Ar(M Tr:;:ur--~K C1 LOWER ARM -
"?1-11 TOP NECK HEAD "i>I 1 TF:UNK -
"?I1 BOT HEAD NECK ?Hi 
J? BOT UPF'EI;:AJ:;:J-1 T!=~Ui"-!K C:l. LOWEF:AF:M -........ 

"?K1 TOP NECK HE(.~D '?L 1 TF~UNI< -
.. !>L1 TOP I-lEAD NE Cl< 'r'K1 

D3 

FIGURE 2 .9b: The output of the program when it is given the picture 

above and allowed prolonged relaxation. The question marks. indicate 

indecision. The way the program reacts to nonsense pictures is 

informative. It highlights the program's inadequacies as a model of 

human perception. 



!tr~tointerPret [i 

!tr~tointerPret [a as 

(--. eA 

---7 
TH 

head imPortance=0.5J~ 
calf imPortance=0.5J; 

FT 

! • best~;et; 

A2 BOT CALF THIGH ·- FOOT B:l 
B1 TOP FOOT CALF A2 
Cl BOT Tr.;:uNK NECI\ - l.J P F' E 1:~ ,~ 1:;: 11 G2 J2 THIGH 
D3 BOT THIGH TF:UNK C1 CAI ... F E2 
E2 TOP C(~I...F THIGH D3 FOOT -
G2 TOP UPPERARM· TJ=~UNK C1 LDt·,IEF:f~F:M --
1-11 TOP NECK HEAD I:l. TI:~UNI< --
I1 BOT HEAD NECK H1. 
.J2 BOT UPF'EF~AF:M TI=(UNK C:l. L.O~JEI\f."~RM -

D3 

FIGURE 2.10: Two additional instructions are shown. when these are 

given with the picture in figure 2.9a, they brea~ the deadlock 

between equally good, partial interpretations seen in figure 2.9b. 

The output of the program and its pictorial interpretation are 

shown. 



2.3: Non-pictorial input. 

Various kinds of instruction can be given about how 

to try to interpret a picture. The instructions always 

have an associated number which indicates how important 

it is to obey them (any real number is allowed). The 

types of instruction are: 

1. Try to interpret a particular rectanqle as a par

ticular puppet part. The instruction mAy also indi

cate whi eh way up the part should be, by saying wheth

er its proximal end (see below) should be at the top 

or the bottom of the rectangle depicting it. A part 

is 11 upsidedown" if its proximal end is at the bottom 

of the rectangle depicting it. 

e.g. TRYTOINTERPRET [A AS HEAD IMPORTANCE = 1 J; 

or T RYT 0 I NT ER PR ET [ A AS UPS I DE DOWN HE AD I M? 0 R·-

TANCE = 0. 5]; 

2. Try to interpret a particular rect~ngle as some 

part of the puppet. 

e.g. TP.YTOINTERPRET [A AS SOMEPART IMPORTANCE =1 ]1 

If the· importance is negative the instruction means: 

Try not to interpret the rectangle as any puppet part. 

3. Try to find a global interpretation (i.e. a con

sistent set of local part and joint interpretations) 

in which a particular puppet part is a p~rticular way 

U:.J (only two orientations can be specified, thou;ih 

more could easily be allowed): 
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e.g. TRYTOINTERPRET [TRUNK .. \S UPRRIGHT Il~\PCRTANCE = 
3] ; 

·4. After the best global interpretation has been found 

the program may be instructed to try for a residual 

global interpretation which tends to contain those 

rectangles not included in the first interpretation 

and which also tends not to contain those ~ectangles. 

previously included. The importance of contalning or 

not containing rectangles of the two types is given as 

a parameter: 

e • g • SW I T C HA IT ENT I oN ( 0. 3 ) ; 

Any combination of instructions may be given. The 

effect is to alter the definition of what constitutes the 

best interpretation. The basic default requirement is to 

find as many compatible instantiated joints as possible 

with an importance of one for each joint. The arlditional 

instructions have the effect of assigning im~ortances to 

particular interpretations of rectangles of puppet parts. 

If several instructions match the interpretation of a 

rectangle as a puppet part, then their importances are 

added to get the importance of including that interpreta

tion • The best pup p e t in s tan t i at ion i s the one whose 

constituent parts and joints have the greatest sum of im

portances. 

-53-



2 • 4 : 0 ut put of the be s t g 1 ob a 1 i n t er pr et at i o :1 • 

When the relaxation process has finished there will 

be a network of part and joint hypotheses which are r~-. '-

garded as correct. This network is output by showing its 

part hypotheses, each of which is specified by its nawe 

followed by its orientation, its type and the joints fil-

ling its slots. The names of the part hypotheses ara 
I 

made by appending successive integers to the name~ of the 

corresponding rectangles. Their orientations are two-

valued and depend on whether the proximal end is at the 

top or the bottom of the depicting rectangle. <Every 

puppet part has a proximal end and a distal end. The 

proximal end is the· one anatomically closest to the top 

of the head. The arrows in figure 2.1b indicate which is 

\•thi c h ) • The joints in a slot are specified by followin~ 

the slo~ name with the name of the related part hy-

potheses. 

2.5: The puppet model 

A perfect puppet consists of fifteen rectangular 

parts havin9 the following properties and relationships: 

1. Each part has a proximal end and a distal end. The 

proximal end is the one anatomically nearest to the 

top of the head. The length of a part ~easured. alon~ 

the proximal distal axis is greAter than its width. 

2. The trunk is wider than any of the upper limh 
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parts and each of these, in turn, is wider than its 

connected lower limb part. Also the head and trunk are 

wider than the neck. 

3. The head is greater in area than the neck and· the 

lower limb parts are greater in area than their asso

ciated hands or feet. 

4. Anatomically connected parts overlap in th~ right 

way (see below) to depict a joint. 

The precise details of the puppet model cannot be 

justified in terms of human perception, but something 

more than simple connectivity must be used to exclude 

cases like figure 2.9a. 

2.5.1: Defining satisfActory joints. 

Figure 2.12 shows some pairs of overlapping rectan

gles which have been assigned a distal-proximal direc

tion. Some pairs can plausibly be interpreted as depi~t

ing knee...:..joints and others cannot. One method for defin

ing these two classes is in terms of the way in which the 

sides and ends of the rectangles intersect, The examples 

given, however, show that these intersections are rather 

varied, and it is difficult to find a natural definition 

in terms of them. It seems as if the intersections of 

the edge~ are more the result of the way the rectangles 

overlap than a defining characteristic of their relation

ship. A simpler and more intuitively satisfactory way of 
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FIGURE 2.12a: Some examples of possible knee -joints. The 

arrows indicate the distaL..:). proxim~ direction, The thigh 

is the wider of the two parts. Notice the variety of ways in 

which the ends and sides intersect. 

T -
-

FIGURE 2.12b: Some unsatisfactory knee -joints. 



articul2ting spatial relationships between rectangles is 

to specify a set of zones in each rectangle, and then to 

specify pairs of zones, one in each rectangle, which do 

or do not overlap. Using this method, the examples given 

in Figure 2.12 can easily be separated into satisfactory 

and unsatisfactory knee joints on the basis of the zone 

overlaps defined in Figure 2. 13. The use of zones rather 

than edges to define spatial relationships is a simple 

example, in tv1o dimensions, of the ·11 space occupancy 11 idea 

referred to by Brady and Wielinga (1976). Paul (19J7) 

defines _satisfactory relationships between parts of a 

puppet in a similar way. The necessary and sufficient 

definitions of all the various joints in the puppet are 

shown in Fig~re 2.13b. These are not fully adequate be-

cause they are all or none. They do not allo·.'f for poor 

but not hopeless joints. One way in which people ara 

more flexible Cas p ercei vers) is that they will allow 

some relations or proportions to be stretched provided 

the rest are reasonable. The implications of this will 

be discussed in Section 4.7. 

2.6: Definition of the required output. 

2.6.1: v'lhat pictures depict. 

When we perceive the real world there is a clear 

distinction between how things -are and how they appear to 

be. We can make mistakes, and it is quite possible under 
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( Q 111lK1tR) 

Pt.ax tnAL 
/ 

HALl= ' 
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[tJIJ 

!J!51AL 

HALF 

FIGURE 2 .1)a: Six zones of a puppet part which has been 

assigned a distal ~ proximal direction. 

CALF T 1-/16- H OVERLAP? 
o,- 0~ 

tODT (A L F OVFR LAP 
Ot- or 

LOVER-A RH UPPfP...-IJf..M HAJ.JD LPW€K-Af<F1 

P. E. P.£. !1V5T D. E. L-1 HoL ( nvsr Ncr 
P. E. p. 1-1. f1U) T NOT 

D. H. D. E. HU~T N01 
WJ-/OL[ f.~}. nusr Nc:f 

TF-1!6-H TRUNk OVERLAP? {Jp PE/\ -I/ Rn Ti<IJ!VK ov [;~:.. ~ p ? l 
/). /-f 11 U5T P.E. f>.l-1. 

I 

t1 U5 T I 

I f.f. 
P.f. P.H nvsr Nor P.F. J). H. NV5 T 

.,,.._, 
tV:., ! 

[).f. 1J. fOLF nusr /JoT ~[. f. POLE nusr Nod 

NFLk TRvf./k. OVfRLAP? NE ere 1-1 rAp O{l(.fl. L,C p ( 
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FIGURE _2 .~]Q: Showing the definition of satisfactory joints 

used by the program. The two whole rectangles are assumed to 

overlap. There are also constraints on relative lengths, 

widths and areas (see section 2.5). Hotice how the. definition 

of a knee-joint applies to figure 2.12a. 



suitable circumstances for an object to consiJtently 

pear to be something which it is not. The Ames Room is e 

compelling example. The same distinction holds for pho

tographs, but for pictures there is no such simple dis

tinction between what they appear to depict and what they 

actually depict. In some cases it may be possible to de

cide what a picture really depicts by appealing to the 

intentions of its creator, the conventions of the 

picture-making process, or how the picture appears to 

normal perceivers. For example, such appeals may enable 

us to decide whether a given picture is an imperfect dep-

iction of a perfect wire-frame cube pr a perfect depic-

tion of an imperfect one. For many puppet pictures the 

difficult decision between incomplete or imperfect de~ic-

tion and depictions of the incomplete or imperfect, ~oulj 

arise. It will be avoided by assuming that the depic-

tions are perfect. So missing rectangles mean that thA 

puppet is incomplete, not the picture. 

2.6.2: Basic definition of the best puppet 

When there is nothing better in the picture people 

happily find incompl~te puppets. The program can do the 

same if it is given some way of evaluating incom!)lete 

puppets so that it can avoid poor global interpretations 

when there are better alternatives. Currently, the best 

puppet is defined as the one containing the greates~ 

number of satisfactory joints whilst satisfying the fol-
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lowing constraints: 

1. No rectangle can be seen as more than one part. 

2. A part may be involved in several joints but no 

part can have more _joints than in a perfect puppet. A 

trunk, for example, can not have three thighs, nor can 

a calf enter into two knee joints. 

3. No type of part can be instantiated more times 

than it occurs in the model: e.g. there wust not be 

more than two thighs. 

4. A joint cannot exist unless both parts are instan

tiated. 

This definition produces results similar to the per

ceptions of a person who is experi~nced in the domain and 

knows what the task is. ·It is hard to asse.5s how well it 

does because people seem to have the ability to learn to 

see the picture in the way the program does. The 

author's cons id er able perceptual experience of the 

domain, for example, may have evolved to fit the program 

as well as vicE?-. v.ersa. An interesting feature of the 

definition is that it allows disconnected instantiations 

as in Figure 2.6 • People can also see disconnected in

stantiations but they notice that they are disconnected 

which the program does not. Also if the best interpreta

tion is severely disconnected, as in Figure 2. 14, people 

often notice just how a rectanqle would have to be adde·:!. 

to unify the figure, and they may report what they see in 
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FIGURE 2.14: A puppet with a missing trunk. People notice that 

the limbs are correctly related despite the absence of the tr~~k. 

This is beyond the current program. 



these terms. Such abilities are beyond the current pro

gram. 

2.6.3: Modification of the definition of best. 

The specific instructions which may be given as in

put, along with the picture, can alter the definition of 

the best puppet by attaching importances to the interpre

tation of rectangles as puppet parts, but the instruc

tions cannot affect the four types of constraint that are 

listed above. So, for example, the program cannot be 

told to look for a one-legged or a three-legged puppet. 

The instructions are also unable to affect the relative 

proportions and the spatial relations which rectangles 

must have in order to depict a joint. 

2.6.4: Equal rivals. 

When there are several different optimal interpreta

tions it is reasonable to demand that a program give thew 

all. This could be achieved by adding control facilities 

_to the current program, but that would raise issues 

beyond those which the program was designed to investi

gate. So when there are equal rivals the program is not 

required to give a decisive output until given additional 

specific instructions which favour one rival over the 

others as in Figure 2.10. 
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Chapter 3 

THE PUPPET FINDING PROGRAM 

The aim of this chapter is to describe the program 

at a level above that of its implementation in a particu

lar language, but in sufficient detail to enable anyone 

familiAr with the language to follow the code. First 

there is a description of how the puppet task is reduced 

to the problem of finding the best consistent set among 

some lo<Jically related hypotheses. Then the principles 

behind ~ relaxation method for solving the proble3 are 

given. Finally, there are detailed examples of the meth0d 

applied to various puppet pictures. 

3.0: The two main stages : An overview 

The program works in two stages. First, many locally 

_feasible part and joint·hypotheses are created, and the 

constrAints between them are explicitly r~presented. Each 

hypo thesis is then Assigned An Arbitrary supposition 

value, which can be interpreted ~s the extent to which 

the program is currently supposing the hypothesis to be 

correct. The values are iteratively modified so as to 

satisfy numerical constraints, derived from the loqical 
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relations between hypotheses, whilst maximizii,g the sup

posed number of instantiated joints. When this relaxation 

process finishes, the hypotheses corresponding to the 

best puppet will generally have supposition values of l 

and the rest will have values of 0. 

3.1: The main data-structures and their creation 

When given a picture, the program forms three dif

ferent but interlinked networks whose nodes represent 

rectrJngles, hypotheses-, and surposi tions (see below). 

First it creates a data-structure for each rectangle and 

gives it a list of the overlapping rectangles and struc

tures for the zones within the rectangle. Then it creates 

p2rt hypotheses, which are interpretations of rectangles 

as puppet parts in particular orientations, and joint hy

potheses, which are interpretations of the spatial rela

tionships between rectangles as joints between puppet 

parts. 

The reason for hAving an explicit structure for a 

joint, rather than simply giving each slot in a part hy

pothesis a pointer to the related part hypothesis, is so 

that the program can refer directly to the joint and can 

associate other information with it. 

When the process of finding candidate local hy

potheses terminAtes, there is, generally, a surfeit of 

hypotheses, and before the best consistent set of thess 
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can be selected, it ~s necessary to instantiate the con

straints between them. To· do this, each hypothesis is 

given an associated supposition node which contains its 

importance <how important it is to include it in the fi

nal interpretation), its supposition value (which arbi

trarily starts at zero), and 1 ists of ,the. constraints on 

its supposition value which are derived from the defini

tion of the best puppet by the method described in sec

tion 3.8. 

Figures 3.1, 3.2, and 3.3. show the three networks 

built by the program for a simple picture. Notice that 

constraints are not directly linked to hypotheses but 

rather to their associated supposition nodes. This al

lows a modular program in which the particular structures 

used for hypotheses need not be accessed during the re

laxation process for finding the best consistent set. So 

the co,Je for this process, can be independent of any par

ticular domain. 

3.1.1: Representing zones and computing their overlaps 

There are six relevant, rectangular zones in each 

rectangle (see figure 2.13) as well as the whole rectan~ 

gle itself. The only computation in which zones are used 

is. for deciding whether or not t\vo of them overlap, and 

so their representation is designed to make this judge-

ment easy. Each zone is given pointers both to its 

corner points and to its four borders or half-spaces. 
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FIGURE 3 .1a: A simple picture. 
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FIGURE 3.1 b: The network of data-structures representing the · 

rectangles in the picture above. Each structure also has 

pointers to all its corresponding part hypotheses. 



FIGURE ).2: The network of candidate part and joint hypotheses for 

the picture in figure J.1. (See figure 2.Ja for an alternative 

representation). The indentations represent slots and the lines 

depict two way pointers. Every hypothesis also has a pointer to 

its supposition node, and part hypotheses have pointers to the data

structures for their rectangles. 



FIGURE 3 .. 3: The network of supposition nodes associated with the 

hypotheses in figure J.2. The prefix "S11:u is used to distinguish 

supposition nodes from hypotheses. Supposition nodes have pointers 

to constraints which, if violated, tend to raise (double arrow } or 

lower (single arrow) their supposition values. 

The only constraints in this network are on the sum of the values 

for nodes corresponding to one rectangle(2:), and oc the relative 

values .for joints and their parts(~). 



Each bolder has an on-side and an off-side and the zone 

is the intersection of the four on-sides. Points actually 

on the border are taken to be on its on-side. 

A border. can alv1ays be expressed in the form: a.x .+ 

b . y ~ c where the expression is tru,e for points on the 

on-side. So if the border is repr~sented by the coeffi

cients a, b, c, it is easy to compute which side of it a 

given point lies on. Using this basic test, a procedure 

can quickly decide whether or not two zones overlap by 

using the fact that convex polygons are disjoint if and 

only if one of them has a border which has the other en

tirely on its off-side •. This fact is not intuitively ob

vious, so in appendix 1 a construction is given which 

shows why ther~ must be such a border if the polygons are 

disjoint. 

The way in which zones are represented and overlaps 

are computed is not intended to have any psychological 

relevance. 

3.2: Cre~ting the network of candidate hypotheses 

Creation of a network of conflicting and supportin~ 

hypotheses is the first stage in finding the best puppet. 

This section describes in detail how the network is made. 

Since the relaxation process does not itself create 

nev1 locAl interpretations, it is essential that a·ll the 

correct hypotheses for the best puppet should exist be
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fore relaxation starts. one way of achieving this is to 

give ench rectangle all possible part hypotheses and then 

to find all possible joints. This method is costly even 

for the puppet problem and would be worse for more com

plex cases. It does, however, guarantee that hypotheses 

will not b~ missed just because they ~re locally implau

sible, like the hand in figure 2.7. A more economical 

method, implemented in the program, is to start by creat-

ing hypotheses for those rectangles which 

obvious interpretations. These initial 

have locally 

hypotheses are 

called nuclei, because they Act as a context which sug

gests interpretations for neighbouring, overlapping rec

ta n gl e s • ( Woods ( 1 9 7 6 ) us e s " seeds 11 i n a si m i 1 a r way in a 

speech understanding system.) These suggested interpreta

tions cAn then, in turri, act as a context for interpret

ing their neighbours, and so on until a whole set of re

lated hypotheses is formed around a nucleus. In fact, if 

the best puppet is connected and if it contains at least 

one nuc 1 eus then a 11 its hypotheses wi 11 be found, hovJev

er locally implausible some of them may be. In figure 

2.4, for example, rectangle G is given one interpretation 

-=lS a hAnd as a result of C being a trunk nucleus. Even if 

the best puppet has no nuclei it will still be found if 

any of its part hypotheses are created whilst developing 

other nuclei. 

The program simulates the simultaneous spreading of 

interpretation from a number of independently discovered 

nuclei by using discrete time steps. On the first step 
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the nuclear hypotheses are made, and on each subsequent 

step attempts are made to fill the slots of the part hy

pothesis created during the previous step. For each slot, 

all overlapping rectangles ~re examined to find any· which 

are related in the right way to depict the required pup

pet joint. Whenever a candidate joint 1 is found, the pro

gram creAtes a joint hypothesis and also makes a new part 

hypothesis for the overlapping rectangle, unless one al

reAdy exists. New part hypotheses act· just like nuclei, 

and the process is continued until no new part hypotheses 

are created. 

In more .sophisticated uses of relaxation (see sec

tion 4.7), the process of growing candidate hypotheses is 

integrated with relaxation rather than being a separate 

first pass. An integrated appro~ch is needed to ~void 

many of the enormous number of hypotheses that would be 

generated by a separate first pass in a complex domain. 

3.2.1: Types of nuclei 

The decision about what local configurations should 

constitute nuclei involves a compromise between havi~g so 

many .types of nuclei that a great number of irrelevant 

hypotheses are created and so few that the best pu;pet 

doesn't contain .any. The program uses the following th:ree 

types of nuclei which are normally adequqte (but see fig

ure 3. 4). 
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FIGURE 3.4: A picture in which there are no nuclei. The 

program cannot find the obvious interpration. 



1. A rectangle which only overlaps one other and 

which is wider than it, is interpreted as a head if 

the other rectangle is so related that it could be a 

eo nn ec ted neck. 

2. A rectangle which only overlaps one other and has 

less 8rea than it, is given rival interpretations as a 

foot and a hand if the two rectangles satisfy the 

overlap requirements for a lower-arm/hand or a 

c A 1 f If oo t j o in t . 

3. A rectangle which overlaps three or more narrower 

rectangles is given an interpretation as a trunk if at 

least one of the overlapping_ rectangles is suitably 

related to depict an upperarm, ·thigh or neck. Usually, 

tv:o rival trunk hypotheses with opposite or ientations 

v.ri 11 be created. 

There should, perhaps, also be A neck nucleus for a 

rect~ngle joining two wider ones. By stipulating that the 

central rectangle should have a smaller ~rea than either 

of the other two, confusion with calves and lower-arms 

would be avoided. 

A desirable feature of any set of nuclei, which 

helps to give it a reasonable pe~formance over a wide 

r~nge of pictures, is that some nuclei (e.g. and 2 

above) tend to remain, even when many rectangles are 

missinq, whereas others (e.g. 3) are immune to extra ir

relevant rectangles. 
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3.3: Numerical const1·aints between supposition values. 

Consider the logical constraint F v ~ and the nu

merical constraint SP + S~~ I where 5p means the supposi

tion value of the hypothesis p. The numerical constraint 

appears to be a good generalisation of the logical con-

straint because it rules out the same combination of in-

teger values for p and q, (0,0). The advantages and 

weaknesses of this kind of generalization are discussed 

in the following sectionsa 

3.3.1: The function of continuous supposition values. 

The purpose of using continuous supposition values 
I 

is to avoid explicit enumeration of combinations of the 

truth values of hypotheses during the process of search-

ing for the best consistent set. The aim in choosing the 

numerical constraints between supposition values is to 

ensure thRt iterative adjustment on the basis of the nu-

merical constraints leads to values of J for hypotheses 

in the best set and 0 for the rest. 

3.3.2: States of supposition values: terminology 

Sets of suooosition values which satisfy all the nu-.-. 
mericfll constraints wiJl be called feasible states. 

States in which all the values ~re I or 0 will be called 

integer states, and states in which some values are non-

integer will be called intermediate states. 
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3.3.3: Normalised linear combinations 

This section is difficult and may be easier to 

understand if read in conjunction with section 3.5 which 

explains the same ideas· using a spatial anal,o.gy. 

Given some feasible integer states, a new state can 

be obtained by multiplying ·each state vector by a .weight 

and adding the results. The resulting state vector is a 

linear combination of the original states. If the sum of 

the weights is 1, the result is a normalised linear corn-

bination. Figure 3.5 gives some examples. If the numeri-

cal constraints between supposition values are such that 

a.Jl the feasible states are normalised linear combfna-

tions of the feasible integer states, then the best in-

teger state can be found by hill-climbing in the space of 

feasible states. An informal argument shows why this is 

so: If every feasible state is a normalised linear combi-

nation of feasible integer states, it can be expressed as 

a set of weights on these states. Also, the total prefer

ence , T5 , of a state,· S, can be expressed in. terms of 

the total preferences of the feasible integer states: 

=I w. (_. 
{., l 

where Wi is the weight on an integer state and C.i. is its 

total preference. Now, consider what happens to a feasi-

ble state if the weight on the best feasible integer 

- state, B, is increased by ~ and the weight on some other 

f e 8. .s i b 1 e i n t eg er s t a t e A , i s de c re as ed by · S Provided 
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FIGURE J.5a: V1, V2, and VJ are the feasible combinations of 

truth values for p and q given the constraint p ::>q. 
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FIGURE J.5b: V4 is a linear combination of V1, V2, VJ. V5 is 

normalised linear combination because the weights on the vectors 

Vi, V2. V3 add to 1. 
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FIGURE 3 .5c: The feasible region of supposition values for p and 

q given the constraint Sq,? Sp which is the numerical equivalent of: 

p::>q. Triangles denote the feasible integer states, and nornalised 

linear combinations of these lie within the convex hull of the 

triangles. 



no weiglats have become more than 1 or less than 0, the 

new state is also a normalized linear combination of 

feasible integer states and hence it is a feasible state. 

Its preference has increased by: 

g ( T- - T) B A, 

where T
8

, TA are the total preferences of the states B, 

A. This is positive since B is better than A. So all 

feasible states except 8 can be improved by increasing 

the weight on B and decreasing some other weight. Notice 

that local maxima do not occur in this space, so the usu-

al objection to hill-climbing, that it gets stuck at lo-

cal maxima, does not apply. Figure 3.5 shows a simple ex-

ample in which a logical constraint has been used to 

derive a numerical constraint on the supposition values. 

This constraint ensures that the only feasible states are 

norm3lized combinations of feasible integer states. The 

guiding principle used in deriving numerical constraints 

is to find the strongest inequality which is true of nor-

malised linear combinations (i.e. the inequality which 

rules out the most states). By forcing the feasible 

- states to satisfy these conditions one can usually force 

them to be normalised linear combinations. Cases where 

this approach fails, and ways of handling them, are dis-

cussed in Section 3.7. 
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3.4: Probabilities and supposition values 

The constraints on the supposition values of hy

potheses are like the constraints on the probabilities of 

events. The similarity of the calculus of supposition 

values to the calculus of probabi~ities suggests that 
I 

supposition values may be interpretable as some kind of 

probability. It would be wrong to interpret them as the 

probability that the hypothesis is objectively correct, 

since a supposition value of 1 does not mean that the hy-

pothesis is right, but only that it is part of the -best 

consistent set. A more plausible candidate is, there-

fore, the probability that the hypothesis occurs in the 

best consistent set. This interpretation may be satis-

factory when the values have all settled down to or 0, 

but it is suspect as an interpretation of the changing 

values during the relaxation process, because they change 

withotrt any change in the relevant knowledge or evidence. 

·Even on the subjective interpretation of probabilities· as 

degrees of belief, the belief should no~ change rapidly 

on the basis of no new evidence. It seems that supposi-

tions and beliefs are different things, and this is con-

firmed by the fact that strong temporary suppositions 

need not imply strong temporary beliefs. 

3.5: The hyperspace model. 

Supposition values can be represented as distances 

along the axes of a multidimensional space. A set of 
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values is then a point in the space, and a nu~erical con-

straint corresponds to a hyperplane. To satisfy an equal

ity or inequality constraint the point must lie on the 

hyperplane or on the appropriate side of it. The points 

representing the feasible states form a convex polyhedron 

because i 

they lie in the intersection of some hyperplanes 

(equality constraints) and some half-spaces (inequality 

constraints). The total cost Cor preference) of a state 

is defined as the scalar product of the cost vector with 

the supposition value vector. In spatial terms this 

means that the relative magnitudes of components of the 

cost vector define a direction in the hyperspace, and the 

optimal feasible state is the one furthest in that direc-

tion. In general, this will be a vertex of the po-

lyhedron9 The condition that the feasible states be the 

normalised linear combinations of the feasible integer 

states, is equivalent to the condition that the po-

lyhedron defined by the constraint planes has only in-

teger points as vertices, so that it is the convex hull 

of the feasible ihteger states. 

3.6: Representing arbitrary logical constraints 

The examples given so far have only shown the numer-

ical constraints corresponding to simple logical expres-

sions. If the method is to be applicable to sets of hy-

potheses related by Arbitrary constraints in the proposi-

tion~l calculus, it is necessary to have en automatic 
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procedure for 11 cashir)gn ·any _proposi tional form. The fol

lowing four observations show how this is possible: 

1. When a hypothesis is true its negation is false 

and vice versa. This suggest that the supposition 

values of a hypothesis and its negation should be re-

lated as follows: 

5- :: I - 5 a. ~ 

v1here a.. means the negation of a. 

2. Any disjunction corresponds to the constraint 

that the sums of the supposition values must be at 

least 1; 

a.vbv (. 

3.- A conjunction of disjunctions can be cashed by 

simply cashing all the disjunctions separately: 

4. Any logical expression can be put into conjunc-

tive normal form in which it becomes a conjunction of 

disjunctions! 

Although this approach allows one to derive a set of 

numerical· constraints which rule out the same integer 

combinations of truth-values as any prepositional form, 
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it may not lead to the stro0gest set of numerical con

straints. For example, the constraints may not correspond 

to the convex hull of the feasible integer states. 

3.7: Non-integer optima 

Consider three hypotheses a,b,c which have equal, 

positive, unit preferences and are connected by the logi-

cal constraints: a/b, blc, cla where 11 /" means "not 

bothn. The corresponding numerical constraints are: 

Sa_, -r 5 b ~ I 
J J 

The best feasible state, which has a total preference of 
I 

I ~ h o4 occurs H .en: 

Sa, = sb = 

Clearly, this is a case where the obvious numerical con-

straints yield a larger polyhedron of feasible states 

tha~ the convex hull of the feasible integer states. Fig-

ure. 3.6a shows the polyhedron and its non-integer ~ertex 

• Such "bad 11 vertices are a serious threat to 

- the use of continuous supposition values unless some way 

can be found to handle them. There are two possible times 

at which this can be done. Stronger numerical constraints 

than those obviously implied by the logical constraints 

can be sought when the constraints are made, and used to 

ensure that only the norm~lised linear combinations are 

feasible in the first place. Alternatively, the obvious 

-73-



FIGURE 3 .6a.: The three constraint planes corresponding to a/b, 

b/c, c/a and the non-integer vertex where they intersect. 

FIGURE~: A cutting plane corresponding to the constraint 

"at most one of a, b,c" which removes the non-integer vertex from 

the polyhedron of feasible states. 



constraints can be used inttia.lly, and_ whenever the best 

vertex is non-integer, a stronger numerical constraint 

(called a cutting plane) can be constructed to eliminate 

it. This process of elimination can be continued until an 

integer vertex is best. The second method has the advan-
1 

tage that only those stronger constraints needed to rule 

out optimal bad vertices need to be found. -All other 

discrepancies between the polyhedron of feasible states 

and the convex hull of the feasible integer states are 

i rr e 1 ev an t • 

For the example above, the obvious stronger con-

straint is: 

Notice that this corresponds to the logical constraint 

that at most one of a,b,c be true. This can be derived 

logically from the three given logical constraints but it 

does riot follow from the three.corresponding numerical 

inequalities, because they lack the requirement that the 

values be 1 or 0. However, the integer requirement can be 

used in conjunction with the numerical constraints, to 

derive the stronger condition: 

Sa. + 5~, ~ 

5 b +Se < 
Se. + 5a. < 

2 sa..+ l sb + J se ~ 3 
. . Sa. + sb +- 5{, ~ J 1 ......... (f) 
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·In· any feasible integer state a 11 values on the LHS of 

<t) must be integer. Tnerefore, no otherwise feasible in

teger st8tes·are ruled out by: 

f s. 
L I 

There is a large literature on methods of deriving 

cutting planes to eliminate non-integer optimal vertices 

(" s e e Ga r f ink e 1 & Ne m ha user 1 9 7 2 ) • In part i c t Jl a r i t was 

shown by Gomory (1958) that there are methods of con-

structing cutting planes which are guaranteed to elim-

inate all. non-integer optimal vertices in a finite.number 

of cuts. 

An alternative to the use of cutting planes is to 

branch into two sub-problems whenever a bad optimal ver

tex is encountered, by fixing one of the intermediate 

supposition values at 0 in one case and at t in the oth-

er. The .better of the optimal vertices of the sub-

problems is then considered and if it also is non-

integer, another intermediate supposition value is set at 

or 0 to create two more sub-problems. Since the sub-

- problems must have Y.lorse optima than their parents, a 

branch-and-bound search is possible. Branching need only 

occur on the best of the remaining bad vertices and only 

until some integer vertex is better. This bound may 

prevent bronching on many of the bad vertices. The com-

bined use of branching and cutting planes is also possi-

ble (see Garfinkel and Nemhauser p.3P8). 
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Th& particular examples on \'lhich the final version 

of the puppet-finding program has been tried have never 

given rise to non-integer optima •• This may be due to the 

nature of the constraints in the puppet domai.n though 

this has· not been proved. Since the problem has not ar-
, 

isen, no programs have been written for handling bad ver-

tices, though it is recognised that such programs may be 
I 

necessary for extending the use of continuous supposition 

values to other domains. 

3.8: The numerical constraints in the puppet ~asK 

Section 2~6.2 lists four types of logical constraint 

that mav occur between part and joint hypotheses. The 

corresponding numerical constraints between their suppo-

sition values are: 

I. For part hypotheses corresponding to one rectan-

gle: 

This prevents a rectangle from having more than one 

interpretation as a puppet part. 

2. For joint hypotheses of the same kind which corn-

pete for the same part p: 

5. 
J 

} 

-76-



except for thigh/~runk ~r upper-arm/trunk joints which 

are competing for a shared trunk, for which: 

since a trunk can have two thighs ~r upper-arms. These 
: 

constraints prevent a part {e.g. a calf) from being 

used in several different joints of the same kind 

(e.g.knees). 

3. For hypotheses about a type of part that occurs n 

times in a complete puppet: 

\ 5 {.. h 
L P " 
p 

This prevents for example, two trunk hypotheses from 

both being accepted. 

4. For each joint hypothesis j, relating part hy-

potheses p and q: 

This prevents joint hypotheses being accepted unless 

both the related part hypotheses are accepted. 

+ . 
~1on 

A stronger type of constraint based on a combina-

o·f ( 2) and ( 4) above is: 

5. For joint hypotheses of the s3me kind co~pet-

inq for a part p: L sj ( sp 
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or L sj ~ lSp 
) 

for joints competing for thigh or arm slots in a trunk. 

The numerical constraints used for the puppet pro-

gram were designed~to be as strong as possible in an at-
1 

tempt to remove non-integer optimal vertices. For all the 

examples tried they were successful in doing this. An 

earlier version of the program used constraints of types 

(2) and (4) separately, without combining them into type 

(5) constraints. As a result, the optimal vertices were 

occasionally non-integer. 

3.9: The simplex algorithm 

The use of continuous suppositiori values allows the 

problem of finding the best consistent set of hypotheses 

to be reduced to a linear programming task. There is a 

standard technique for solving such problems on 2 digital 

computer, based on the Simplex Algorithm. Pierre (1969) 

expounds the basic algorithm and variations of it -.-·rhi eh 

increase efficiency in particular cases. Only the basic 

strategy of the algorithm is explained here. 

The problem is to find the vertex of a convex, 

multi-dimensional polyhedron which is best, i.e. furthest 

in the particular direction defined by the cost vector~ 

The strategy is to find any vertex and then to compare 

its value (distance along the direction of decreasing 

cost) with the values of all the neighbouring vertices .• 
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If none is better then the vertex is optimal, otherwise a 

better neighbour is chosen and the process repeated. 

Since each vertex is better than its predecessor, cycles 

cannot occur and since the number of vertices is finite, 

the process must terminate after a finite number of 

steps. 

Neighbouring vertices are not too difficult to find. 

A vertex is defined by the intersection of a number of 

hyperplanes, corresponding to inequality constraints. In 

general a vertex in an n-dimensional space will be formed 

by the intersection of n hyperplanes, though in degen

erate cases more planes may be involved. Neighbouring 

·vertices are those which lie on n-1 of the original hy

perpl~nes and on at least one new one. So by considerinJ 

possible additions and deletions to the set of inequality 

constraints that are exactly satisfied, all neighbouring 

vertices can be generated. 

Despite its guarsnteed success, the simplex algo

rithm has serious deficiencies as a model of how the best 

consistent set of hypothes.es might be found in a parallel 

co!!lputer. Although neighbouring vertices could be exam

ined in parallel, the process of finding successively 

better· vertices is inherently serial. For A .Polyhedron 

•t~ith m~ny faces, the number of vertices traversed, anj 

hence the number of serial steps, m~y be large. In fact, 

for the I,·Jorst case, the number of 'iertices exanined is an 

exponential function of the dimensionAlity of the spAce. 
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There is no polynomial upper bound. A further we2kness is 

that the storage required may be large. 

3.10: Assigning preferences to hypotheses 

All part hypotheses have an initial preference of 0, 

and all joint hypotheses are given a st8ndard initial 

preference of 1, in order to implement the basic aim of 

finding an interpretation with as many instantiated 

j o i n t s as p os si b 1 e • A dei i t ion a 1 i n put i n s t r u c t ion s s u c h 

as: 

TRYTOINTERPRET [B AS CALF IMPORTANCE = 0.5]; 

are implemented in a very simple way. For each such in-

struction, the whole list of part hypotheses is searched 

and any that fit the instruction have their preferences 

incremented by the specified amount. 

3.11: The abstract optimization problem and the type of 

solution required. 

The puppet-finding task has now been reduced to the 

fall ov1i ng_ abstract problem: given some hypotheses, . a no 

logical constrnints between them, and the i:nportance of 

including each hypothesis in the final interpretation, 

how can the best consistent set of hyp6theses ~e select-

ed? 

There are many ways of tacklinq this problem and 
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some of them have already been discussed in Chapter 1. 

This thesis is primarily concerned with examining one 

particular method in which each hypothesis is given an 

Associated real number, and the numbers are iteratively 

modified to make the best consistent set of hypotheses 

t d t Th · d h 
1~ · t d 1 s an ou • , ere 1s a anger, \'l.~en t.rylng o eve op a 

technique of this kind, of evol~ing a set of unprincipled 

number- jugqling tricks which can be tuned to work 

moderately well in a restricted domain, but which are not 

clearly understood and can therefore only be extended to 

other domains by empirical parameter tuning. Further 

disadvantages of unprincipled tricks are that it is hard 

to characterise the set of domains for which the method 

works, or to express the nature of the computation being 

performed in any more illuminating way than by givin; the 

particular implementAtion details. Marr & Poggio {1976) 

discuss the importance of separ3ting the nature ·of the 

computation· from particular. implementations. Although an 

implementation constitutes an effective procedure and 

therefore has advantages over a purely verbal theory, 

simply describing an implementation may confuse arbitrary 

- implementation decisions with important principles. 

The following sections are intended to provide A 

sound theoretical basis for the way in which supposition 

values are adjusted by the relaxation operator, t;1ou;:h. 
• the precise details of the operAtor are not fully deter-

mined by the theory. 
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3.12: Two types of relaxation 

There are various relaxation operators which make 

iterative adjustments to the supposition values so as to 

converge on the best feasible state or on a state close 

to it. Methods in ~1hich the values ar
1

e modified one at a 

time, and the updated state is used in deciding how to 

modify the next value, wiJl be called serial relaxation. 

By contrast, parallel relaxation involves using the 

current supposition values to compute new values for all 

the hypotheses, and then changing all the values togeth

er. It is more suitable for a parallel digital computar, 

and is closer to the behaviour of an analogue system. 

Both types of operator were tried for the puppet-finding 

task. The parallel one was easier to analyse and needed 

less iterations than a serial one working on a round ro-

bin basis, though clever scheduling might :,-Jell im;Jrove 

the serial operator significantly. Only the parellel 

operator was· used for the final version of the pro~ram, 

and it is described below. 

_ 3.13: Two components of the relaxation operator 

The relaxation operator consists of two componBnts. 

One is defined to ensure that the supposition values are 

feasible or nearly feasible, and the other Adjusts the~ 

to achieve • optimali ty. There is a mech2nical analogy, 

based on the. hy pers pace mode 1. One component exerts 

strong forces on states which are outside the feasible 
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polyhedron and moves them t9wards it, ~whilst the other 

component is equivalent to a constant weak force in·the 

direction defined by the preference vector. r. ~ rlrst., the 

component for achieving feasibility will be described and 

then ways of combining it with the optirnality 
I . component 
I 

will be discussed. 

3.14: Achieving feasibility 

The following discussion assumes. that all con-

straints are in the form of inequalities. Equality con-

straints can always be removed by using them to eliminate 

a variable, or by ~imply representing the~ as two ine-

quality constraints: 

e.g. e+b=n => a+b ~ n and a+b ~ n 

One measure of how much a state of the supposition 

values violates a particular constraint is: the normal 

distance from the corresponding point to the correspond-· 

ing hy9erplane if the point is on the infeasible side of 

the plane, otherwise 0. Using this measure of violation, 

the infeasibility of a state can be defined 2s: 

I= L_ 
J 

y vl 
l j 

where j rC!nges over a.ll the constraint planes, and V} is 

the amount by which the state violates the j'th con-

straint. 

Clearly, I is zero within the feasible region and 
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positive outside it. More significantly, the rate at 

which I changes as the violation of a constraint j 

changes, is given by: 

T can be thought .1. 

the hyperspace, 

point by the j'th 

·V· 
J 

of as a potential 

and Jk, 
dVj 

is then 

constraint p 1 an e. 

eneroy 
I --

function over 

the force exerted at a 

The equation above 

shows that the force is proportional to the normal dis

tance of the point from the plane. This mechanical analo-

gy allows physical intuitions to be brought to bear on 

the design of a relaxation operator for minimizing I. 

One parallel relaxation operator for reducing the 

i nf ea si bi li ty of a st8t e i nol ve s choosing each new su ppo-

sition value so as to minimize the infeasibility, assum-

ing the old values for all the other suppositions. In 

mechanical terms this amounts to choosing the new suppo-

sition value so that the forces due to relevant violated 

constraints, assuming that the remaining suppositions 

have their old values, are in equilibrium. Unfortunate-

ly, this operator does not necessarily reduce the in-

feasibility. For states in which one supposition has the 

new value and the rest have old ones, the infeasibility 

is the same or less, but for the state with all the new 

values it may be considerably higher, as Figure 3.7 

shov1s. The reason is that several different supposition 

values may be altered so as to reduce the violation of ·A 

particular constraint, and although the alterations 

-84-



FIGURE 3·7: Suppose there are two .. constraints: 

x + y + z-'1 and X + y + z~1 and the initial state is 

( 0, 0, 0). Relaxation on any one dimension would 

produce one of the feasible states where the plane cuts 

an axis. Combining independent relaxation on three 

dimensions, however, yields the state (1, 1, 1). By 

symmetry, (f::. ,-
3
1 

, .!..) is the foot of the perpendicular to 
J 3 . 

the plane from both (o, o, o) and (1, 1, 1), so the final 

state has twice the violation of the initial one. 



~eparat8ly reduce infeasi~ility, together they may 

overshoot and cause other violations which outweigh the 

reduction in the original one. 

An alternative method is to find the direction, &t 

the current point in the hyperspacb, in which the in-

feasibility decreases fastest and to move a small dis-· 

tance in this direction. This is equivalent to changing 

the individual supposition values in proportion to their 

partial derivatives. In terms of the mechanical analogy, 

the forces due to the violated constraints can be 

resolved into components parallel to the axes. The resul-

tant of the force lies in the direction of steepest des-

cent and so therefore does a vector whose components are 

proportional to the forces along the axes. The magnitude 

in the change of each supposition value is determined by 

a constant K f : 

· t t I s. 
L 

t 
5· l 

f. t where Y is the value of ( 

the value of oi at time t. 
d5i 

S· l at time t, and (EJ)t is 
as~ 

In the simplest possible case, when only one. con-

straint is being violated, and no other violations are 

caused by moving directly towards the constraint plane, 

the obvious value for Kf is 1. This has the effect of 

exactly satisfying the constraint in one itetation (see 

Figure 3.8~. However, if several violated constraints are 

involved, or if new violations are caused by the change; 
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X 

FIGURE 3.8: The force due to a single violated constraint 

plane, and its coraponen ts in the x and y directions. 

Altering each supposition value by an amount equal to its 

component of the force wou~d exactly satisfy the constraint. 



a smaller value of Kt may be neede~ to minimize the 

reduction in the infeasibility. It is hard to co~pute 

the optimal value of Kf , part! y because of the intera c-

tions between alter8tions of different supposition 

·values, and partly because changes ma1 activate previous

ly s8tisfied constraints. However, the following theorem 

shows that for any particular set of constraints there is 

some finite value for kj which ensures that the in

feasibility is always decreased by a significant proper-

tion. 

Theorem 

For any finite set of constraints which allows sose 

feasible states there is a finite value for kf sush 

that moving a distance l<f dl. from any infeasible point ? 
. cL~ 

in the direction of steepest descent at P, decreases I by 
J. 

at 1 east 1Kt{ifj ~I here ~ is the distance a long a 1 ine in the 

direction of steepest ascent at p. 

Proof: 

The proof depends on showing that there is a li2it 

to the rate at whi eh d J1.L can decrease, so that a suf:f i-'

ciently small step cannot move the state past the point 

at which di~L changes sign and the infeasibility starts 

increasing again. By definition: 

• Q_ ·::: ~V· ~· 
· · d L 4- 1 dL 

J 
-86-
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di -
dL 

--- L i Yt e w i t {, 
y·a.dieht =m/ 

"-----' I 

I 

FIGURE 3.9: Showing how dl}l ~ changes with L The 

r 

slope ch~~ges by a discrete amount whenever a constraint 

pla..YJ.e is crossed. The effect of a move of - -k d. I /J..L 
from a state s, is shown. Even if dljdL had its maximum 

gradient of m (indicated by the dotted line through S
1 

) 

the move could not reverse the sign of d!jdL . The 

reduction in the infeasibility is the area under the curve 

between s, and Sl. This is at least the area of the shaded 

triangle. 

L 



where e. 
J is the angle between direction of steepest 

descent and the normal to the j'th constraint plane. 

Hence: 

J For each constraint plane, cos e. is at most one , so a 
) . 

Neak upper bound on d.:l-YcLLJ.. is therefore m, the number of 

constraint planes. This corresponds to the case where the 

constraints are all violated and all the corresponding 

planes are normal to the direction of steepest ascent. 

Generally, the maximim value of d)f;J_ L,!. will be much 

smaller than m. 

Now suppose K.j =:V.. so that the size of 

the direction of steepest descent is ~ ~diL 
' dl 

ShOV/S that n cannot reverse its sign as a 

the move in 

• Figure 3.9 

result of 

such a move. Also, the decrease in I is At least the area 

of the shaded t ri cingl e, whi eh is ; /YJ (1 { y. 
3.15: The speed of convergence on a feasible state. 

Figure 3.10 shows that in some cases the feasible 

region may never be reached. However, if the infeasibili-

ty is reduced by at least some constant proportion on 

each iteration, it will decay exponentially and can be 

reduced to any finite level in a finite nuillber of itera-

tions. The theorem above shows that there is a value for 

Kf which ensures that the infeasibility decreases by at 

least _}_ 14L) l on each iteration. So provided (~I).{) cl 
;. m ld L a .. L 
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FIGURE ).10: If an infeasible state, S, violates two constraint 

planes equally, the resultant force will be towards, V, the 

intersection of the planes. Unless Kf is large enough to make 

the state feasible ih one move, the same situation, but 0:1 a 

s~~ler scale, will occur after each move, and the infeasibility 

will never reach zero. The expression for the resultant force 

shows that by making e , the angle between the planes, 

sufficiently small, the resultant, for any given violation, 

c~~ be reduced indefinitely. 



where c is some finite constant, the infeaslbilty will 

decrease by at least cAh1 on each iteration and so there 

will be a lower bound on the rate of exponential decay of 

the infeasibilty. Figure 3.10 shows that the constant c 

may be made indefinitely small by choqsing opposed con-
i 

straint planes which are sufficiently close to parallel. 

For any given set of constraints, however, there will be 

a most closely opposed pair of planes and these will 

presumably set a l6wer bound on c, though I have been un-

able to discover an expression for this bound in terms of 

the constraints. (Parallel opposed planes are ir-

revelevant since if there are any feasible states there 

can be no infeasible ones which violate both planes). As-

suming there is a lower bound on c it can be combined 

with the conservative value of ~ for to give 

very conservative lower bound to the speed of convergence 

for any qiven set of constraints. I cannot see how to es-

tablish a realistic estimate of the speed other than by 

empirical observation. Similarly, a suitable value for 

Kj rather than a conservative lower -bound, can be faun::! 

by observing the behaviour of the system for any particu-

~lar problem. Small values cause slo~ convergence but 

large ones cause oscillations which ~ay be divergent. In 

·the puppet program a suitable value ;·1as found empirically 

and the same value was used in all the examples, though 

it would have been possible to optimize kf at run ti@e 

by monitoring the changes in infeasibility and altering 

K f appropriately. 
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3.16: Achieving optimality. 

Using the mechanical analogy, suppose that in 3ddi-

tion to the forces caused by constraint violations, the~e 

is a constant weak forcB in the direction of the prefe~-

ence vector. A· simple example 
I 

I 

of 'the behAviour which 

results is shown in figure 3. lla. Notice that the system 

converges on a point which is near the best vertex and 

just outside the feasible region. Adding a force in the 

. direction of the preference vector is equivalent to. ad-

ding to each supposition a force proportional to the 

preference of the corresponding hypothesis, where the 

constant of proportionality kp is 1 if a unit preference 

has the same affect as a unit violation of a constraint 

plane normal to the axis defined by the su~position. 

Increasing t!te value of K p increases the spee:! of 

convergence but it also makes the equilibrium point 

further from the best vertex. Figure 3.12 shows the ef-

feet of different values of Kp on a particular puppet 

problem. A good practical strategy used for the exa~ples 

in·. Chapter 2 is to start with a larqe value for k. p 

which gives rapid convergence on roughly the right re

gion, and then to lower kp to obtain slovJer conver9ence 

on a point closer to the best vertex. For the p u pp et 

task, the values to be used for Kp ~tlere determinad in 

advance {see section 3.19), rather than being dynamically 

controlled at run time. 
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i 
P.,e_j Ueht. fl 

v-edo, 

je4·ri.Lle 
re9 r on 

FIGURE J.11a: Showing how the state moves from S to the 

equilibrium state~T~under the combined influence of the· 

preferences and the violated constraints. 

F-tAJi bLe 
r~Jion 

P'rfj erehc-e 
v-ettdr 

FIGURE J.11b: Showing how the speed of convergence is 

increased by magnifying the forces due to the preference 

vecto~. Notice that the equilibrium state is further from 

the best vertex. 



!showconversence(O;~) A 

!-' 

c:3 C~3 B:l. D:l. D2 A1 
A1 B :l B2 C1 ("'':> C3 D:l. D2 I(3 D:·:~ B2 C3 c~:~ Cl Bi o~ .... 

0 0 0 0 () () 0 () () 0 () () 0 0 0 
43 !::"'") 47 34 34 ~) :i. -vr·· :·:)!~j 46 60 l>O ? •I 46 46 56 ,J A"., .~.;) (J .1. 

87 79 64 33 33 77 ~)!:.:; :3!:) f..; f..; (') , 
\:) (:) B6 <y() 49 49 94 

99 87 64 26 2,s 89 27 '") """} ._._I 02 99 9:1. <.:>9 41 41 99 
99 86 66 23 '")" ... 

..:.. ... :) 90 24 24 B!:i 99 <;>:3 99 :38 :3B 99 
99 86 66 22 22 <y :1. 2:3 2~~ 86 99 (")'"1. 

.~ ,,} 99 37 37 S)9 
99 86 67 '") '") 22 9:1. 23 '') •·v B6 9<? <:>-:' 91? 37 37 9<7\ .,.._.A- .. · .... ~ .I,;) .. ~ 

99 86 67 22 22 <;> :1. 23 2::) 86 9<)> 93 99 ~)7 37 99 
99 86 J .... } 

t.> I 
,.) '") 
A-..,.~_ 

'") '") .-:..,:.. 9:1. 2:':) 2:'3 86 7''? <)>4 99 37 37 99 
99 86 6' ... / 22 22 9:1. ::.~:·5 '") .... 

olo~. -~ B6 99 <)>4 <)>9 37 37 99 
99 86 67 ,.) '") 22 <j :1. 23 '") .... B6 99 ('){.I. 91)> :37 ·--z·-) 99 ,:_...:._ -.· .. ,:) .> ., 'o.J! 

99 86 67 22 '"> '') .A·- ... :. ?:I. '') ").' .,.._ ... } '") .... ,.__,:) B6 99 94 9<_;.> :37 37 99 

FIGURE J.12a: Each row of numbers shows the supposition 

values (X 100) for the part and joint hypotheses for the 

picture in figure 3 ./a. The ·values are printed on every 

tenth iteration, except for the final row which is the 

equilibrium state found by continuing for 250~iterations. 

The headings indicate the identity of the hypotheses. 

Joints have a double heading giving the names of the two 

related parts. For formattL"lg reasons, only the integer 

parts of the numbers are shown and 100 is printed as 99. 

The values of the coefficients were: K p = 0·4-
kf : 0·3 The remaining coefficients (see below) were 

both zero. 



!showconver~ence(0.2); 

C3 C3 B1 D1 D2 A1 
A1 B1 B2 Cl C2 C3 D1 D2 D3 D3 B2 C3 C2 Cl B1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
21 26 23 18 18 27 18 18 23 30 30 30 23 23 28 
48 52 50 33 33 50 34 34 46 54 56 56 40 40 54 
68 64 56 30 30 62 31 31 56 66 67 69 38 38 72 
80 72 56 26 26 69 27 27 64 74 69 77 34 34 82 
87 77 53 22 22 75 23 23 72 81 68 183 30 30 88 
93 82 49 19 19 82 20 20 79 88 64 88 27 27 94 
98 88 44 16 16 88 16 16 85 94 60 94 24 24 99 
99 91 40 13 13 93 13 13 91 99 55 99 21 21 99 
99 92 37 11 11 94 12 12 92 99 52 99 19 19 99 
99 92 36 11 11 95 11 11 93 99 50 99 18 18 99 

99 92 35 11 11 95 11 11 93 99 49 99 18 18 99 

FIGURE J.12b: As in figure 3.12a, but with the value of Kp 

halved. Notice that the number of iterations required to · 

approximately reach the final state is doubled, but that 

the equilibrium state is half as f~ from the optimal 

·integer vertex. 

C3 C3 B:l. D:l. D2 t-1:!. 
A:l Bl 

0 0 
B2 C :1. C~,:.~ c:·5 D1 D2 D3 D3 B2 C3 C2 Cl- Bl 

0 0 0 0 0 0 0 0 0 
9 9 1:1. 15 15 15 11 :1.1 14 

19 19. 25 .28 28 28 21 21 27 
29 29 40 29 29 38 41 41 41 31 31 40 

0 
10 :1.3 11 
24 26 2~5 
~37 ~:59 3B 

() () 0 
<_-; :1.3 9 

19 :1.9 26 

50 51 50 31 31 49 :·:) :1. 3 :1. 4 ~) ~7j () 

59 57 53 28 28 55 29.29 51 56 ~)B ~j<;.> 

6~5 60 52 
68 63 !:5:1. 

26 26 59 26 26 56 61 59 63 

73.68 4? 

24 24 62 24 24 60 65 
22 22 65 22 22 63 68 
20 20 68 21 2:1. 67 71 

~::;9 66 
!5'7 6B 
!=s ~:=_; :r :t 

32 32 6:1. 
:~o 30 66 
2B 2B 69 
26 26 7:1. 
::.~4 24 74 

76 71 45 19 :1.9 71 19 :1.9 ?0 74 52 74 23 23 77 

99 <?6 :i. 7 I::' ..... ? 99 

FIGURE J.12c: Halving Kp to 0.1 again halves the distance of 

the equilibrium state from the optL~al vertex, but doubles the 

time to reach equilibrium. 



3.17: A method of increasing the convergence speed 

~'Jhen l< p is sma 11 and the best vert ex is only 

slightly better than some other one, the supposition 

values tend to change Very slowly. Figure 3 •. 11a shows an 

abstract example in two dimensions and Figure 3~12c 5hows 

a rSal puppet example. The reason for the slowness is 

that the preference vector is almost normal to the direc-

tion in which the state needs to move if its to improve 

without increasing its infeasibility. Under such cir-

cumstances the state moves in small steps in a roughly 

constant direction. If the steps are m~de to depend not 

only on the currently active forces, but also on the pre-

vious step, it is possible to make them increase steadily 

in size when the supposition values are ooving in a con-· 

stant direction. So the formula used to determine the 

= 

\'1 here .p_ i s the p re f e re n c e v e c tor , V i s the res u 1 tan t o f 

all the_ violations,- and Mt is the previous move .. 

The effect of the term containing Ht is to give the 

system a simple kind of memory so that each move depends 

on the history of previous moves. The forces exerted on 

the state at time t contribute to each subsequent move at 

time t+n , but by an exponentially 

k; (assuming kd <1 ). When k, :r 

decaying· factor of 

is small and kd-;f the 

~ystem behaves as if the state has inertia, so that once 
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it has be en made to ~ov e it can onlj be sto pp·ed by o pp o

site forces. This leads to o se i.lla ti on s \•Jhich m!3y be 

divergent for kJ.,) J but \vhich are damped for k{L <I • · A 

value of 0.8 was found to significantly reduce the number 

of iterations required in examoles of the ouooet problem , I , • , 

without causing other problems. Indeed, the introduction 

of kJ may actually reduce oscillations caused by a high 

value of k f as figure 3.13 shows. 

3.18: The method of selecting the final set of hypotheses 

When the system is nearing its equilibrium point, 

the supposition values will generally be near 1 or 0 if 

the optimal vertex is integer and kp is sm~ll enough 

for the equilibrium point to be near it. One might use a 

simple threshold of 0.8, say, and choose the hypotheses 

with a higher supposition value as the best set. However, 

there is no guarantee that -the set will be c6nsistent, 

since one of the high values may only be allowed if 

several of the low values are not zero. For example the 

constraint A ~ B+C+D+E is satisfied by A=O.B and 

- B=C=D=E=0.2. An alternative to thresholding is to intra-

duce small extra forc~s which pull high values towards 1 

and lo\·1 values to\'tards 0. If the equilibrium point is 

near an integer vertex, then small extra forces will 

cause telaxation to actually achieve an integer state 

and, provided the extra forces are too weak to cause a 

significant constraint violation, the final state will be 
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A:l. B:l. B2 Cl 
99 9\1) :1.? 6 
9? 96 :1.7 ~5 

99 <;.>6 :1.7 5 
99 9c'> :1.1' !:"i 
9<J 96 :1.7 5 

99 96 :1.7 5 
9<J 96 :1.7 5 
99 'J6 1? 
9<J 96 :1. :1-' 
9<;> <J6 :1.7 
99 ~J6 :1.7 

a::
•• J 

C3 C3 B:J. Dl D2 A1 
C2 C3 D:l. D2 D3 D3 B2 C3 C2 Cl B1 

6 97 6 6 96 99 24 99 8 8 99 
5 97 5 5 96 99 24 99 9 9 99 
5 97 6 6 96 99 24 99 9 9 99 
5 97 5 5 96 99 24 99 9 9 99 
5 97 5 5 96 99 24 99 9 9 99 
5 9"? 
5 97 
~5 (_:}/' 
:_:=j 97 
~) 97 
!:5 S'7 

6 6 96 99 24 99 9 
5 5 96 99 24 99 9 
6 6 96 99 24 99 9 
5 5 96 99 24 99 9 
5 5 96 99 24 99 9 
~.) 5 96 _<;>r; 24 99 9 

9 99 
9 99 
9 99 
9 99 
9 99 
9 99 

FIGURE 3·13a: A stable state in which the large value of 

0.7 for Kf does not cause problems because Ka also is large 

(0.8) and therefore smoothes out rapid oscillations. 

Kp = 0.1 as in figure J.1Jc. 

C3 C3 Bl Dl D2 A1 
A1 B1 B2 Cl C2 C3 D1 D2 D3 D3 B2 C3 C2 Ct B1 
9? <J6 :1.? 
99 <)>6 :1.7 
<;.>9 ?6 :1. )' 
9<;.> 96 :1. .7 
9? 96 :I.? 
99 9·7 1B 
99 9~.i :1.7 

1::" 
,J 

6 
4 
7 

5 97 5 5 96 99 24 99 9 9 99 
5 97 5 5 96 99 24 99 9 9 99 
5 97 5 5 ?6 99 24 99 9 9 99 
6 97 6 6 96 99 24 99 8 8 99 
4 97 4 4 96 99 24 99 10 10 99 
7 ?8 8 8 97 99 24 99 6 6 99 
2 94 2 2 94 99 25 99 13 13 99 

99 98 :1.8 12 12 99 :1.2 12 ?9 98 24 97 0 0 99 
89 2 2 89 99 25 99 6 6 99 
99 6 6 9? 91 "22 88 5 5 98 

99 (7:1. :1.5 2 2 
99 9<J 22 6 6 
99 BB 1:1. :1. :1. 
99 9<J 2B :1. :1. :1. :1. 
99 B5 :1.4 ~5 :3 

?4 1 :1. ?4 98 29 95 1? 12 99 
97 :1.1 11 ?8 ?9 :1.8 95 0 0 96 
89 2 2 90 99 25 99 7 7 99 

99 99 25 6 6 99 6 6 99 92 2:1. 82 0 6 92 
94 99 28 89 13 13 99 
99 98 20 ?4 0 0 94 

9? 87 12 1 :1. 94 1 1 
9? 99 28 :1.3 :1.3 96 13 13 

FIGURE 3·13b: When Kd is reduced to 0 oscillations start 

because of the large Kf • 



consistent. The last minute flips from low to high (or 

vice versa) which cause problems for thresholding are 

precipitated by forcing the other values to 1 or 0. The 

magnitude of the extra force on a supposition value, si 
is determined by the coefficient k h in the expression: 

Extra jtJr-ce := I k~. (Si- O·f)} 

3.19: The final form of the relaxation operator 

the 

5_t t I 

' 

When all the above modifications are incorporated, 

expression used to compute a new supposition value 

is: 

s/+l == S/ + kf (Kp-fi + (~ V)Cosej) + 1<~-, (sf-0·5~ 
+ Kc:~. ( s/- s/-) 

where is the f/th supposition value at time t, fi 

is the preference for the i/th hypothesis, Vj is the 

violation of the j'th constraint, and cos8j~ is the angle 

between the normal to the j'th constraint plane and the 

axis defined by the i'th supposition value Cthe angle is 

90 degrees for the constraints not involving the supposi-

tion value). 

If the nev.,r value for Si is out si de the rAnge 0 to 

it is rounded up or dO'lln accordingly. 

For the examples in Chapter2, 50 iterations were 

used with the values of the coefficients set as shown: 
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K p Kd K 
f Kh Iterations 

0.4 0.5 0.3 0 10 

0.2 0.5 0.3 0 10 

0 .. 1 0.8 0.3 0 -- 10 

o. 1 0.8 0.3 0. I 20 

Appendix 4 shows, for the examples in Chapter 2 how the 

supposition values of the hypotheses changed during re-

laxation. 
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Chapter 4 

THEORETICAL ANALYSES OF RELAXATION, AND SOME 
i 

POSSIBLE EXTENSIONS. 

This chapter starts by analysing what is happening 

during relax~tion. Comparisons are made with search 

methods in which partial solutions are formulated expli-

citly, and there is a discussion of how the time taken by 

relaxation depends on the number of hypotheses. However, 

the "technical" problems of Bchieving rapid convergence 

on a state sufficiently close to the optimum, and of re-

moving non-integer optima have not been fully investiqat-

ed. The fAct that the puppet program works is A start, 

but more theoretical analysis is required. This may prove 

fruitful because the linear programming formulation not 

only makes the relaxation operator easy to understand but 

also facilitates analysis of the effects of modifyin~ the 

basic operator. 

L~ter sections discuss. ways in which relax8tion 

needs to be extended to be arplicable to more co~plex 

rroblems. A recurring theme is the n8ed to integrate the 

process of creating hypotheses with the process of 

selecting hetJeen them. A major weakness of simple L.P. 

relaxation is its separation of these t~o processes into 

distinct phases so that the selection performed by relax-
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ation is unable to guide hypothesis creation. The 

development of an integrated system for an extended ver

sion of the puppet task is discussed towards the end of 

the chapter. 

4.1: The avoidance of Explicit Enumeration 

The number of feasible combinations of hypot~eses 

is, generally, an exponential function of the number of 

hypotheses, so that, for large problems, exhaustive ex

plicit enumeration is out of the question. The use of 

·continuous supposition values allows intermediate states, 

which can be thought of as normalised linear combinations 

of many different integer stAtes, and when an intermedi

Rte state is modified the system is typically movin~ to

\·lards a very large number of integer st2tes and away fro:n 

many others. Thus, particular combinations of hypotheses 

qre dealt with implicitly, which gives a potentially ex

ponential saving in space or time. 

4.2: Decomposition into Interacting Sub-Systems 

Perhaps the most ·attractive feature of L.P. relaxa

tion is the way in which it is naturally suited to 

parallel hardware. Each supposition value and each con

straint cAn be given its own processor thus achieving a 

1 iner=tr but large saving in speed over a serir:Il system. Of 

course., there are still problems about ho':l to set up the 

configur8tion of processors and the interconnections 
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needed for a specific task, but the way in which the 

processes should interact once they have been set up is 

clearly specified by L.P. relaxation. The space required 

is only a linear function of the number of hypotheses and 

constraints because explicit enumeration of combinations 

of hypotheses is avoided. By contrast implementing a 

breadth-first search on parallel hard~,Ialre,. is • 1 
Sl:Tip .... y 

way of trading a combinatorial explosion iri time for one 

in spAce. 

It is interesting to try to analyse the wh6le syste@ 

in terms of sets of hypotheses which have dense internal 

conn e et ions but whi eh are relatively sparsely connected 

with one another. In an extreme case, for example, there 

might be two independent sets, and given parallel 

harcbu=!re, the tioe to reach equilibrium t•Jould then be the 

longer of the times for each set separately. Notice that 

for a serial depth-first or breadth-first search the co2-

bined time. is the product of the separate times. Of 

c ours e A se r i a 1 s ear c h c o u 1 d be modi f i e d so t ha t i t f i r s t 

checked whether there were two independent sets, and if 

so performed two separate searchese If, however, the sets 

Rre largely but not completely inde.pendent, there is no 

simple way of using the near-i0dependence in a conven-

tionAl search. An interesting simple. case is when two 

subsystems are linked by constraints that allow a eo~-

bined optimum which is simply the combination of the op-

tima for the separate subsystems. If the linking con-

straints rule out combinations of independently feasible, 
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near-optimal states of the subsystems, then the whole 

system may converge faster then either subsystem alone. 

Figure 4.1 shows an example of this effect. 

There is a way of viewing the interactions between 

subsystems which helps to clarifyl the relationship 

between L.P. relaxation and a technique known as dynamic 

programming (see Pierre 1969 for an exposition). In L.P. 

relaxation, each subsystem can be seen as optimising its 

own internal state, subject to the boundary conditions 

imposed by those other supposition values v1hich a ro ... " 

linked t~ the subsystem by constraints. A subsystem ex-

erts pressure on its current boundary conditions tending 

to change them so as to allow a higher optimum for the 

subsystem. In dynamic programming, a table or function .is 

created for-~ subsytem, which gives its aptimum internal 

state for each possible combination of boundary condi-

tions. This is the only information about the subsystem 

which is of relevance to the determination pf the global 

optimum. Dynamic programming works by expanding the sub-

system (incorporating new hypotheses), and simultaneously 

modifyin.:J the CJssociated -.table or function. ~-I hen the 

subsystem has engulfed all the hypo the s e s , there •t~i ll 

only be the null· boundary condition, and its associated 

optimal state will be the solution. Dynamic programming 

is pElrticularly effective if subsystems have simple ~oun-

dary conditions, for then the tables or functions are 

simple. In a puppet task, a subsystem containing 8bout 

half the hypotheses will, typically, ·be linked by con-
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! r- C::·~ 1 a >~ ( ~j 0 v ~) ) ~ ! r· e 1 a~·~ < 50 !I !5 ) y 

A B c D E F 
() () () 0 0 0 

50 22 () 24 "'"> . ..:.. ,;..•_ () 

89 ~:~4 :1. 49. 4~3 0 
99 2!:5 7 61 54 0 
99 23 6 63 ~j3 0 
99 22 5 64 !:.) :1. 0 
99 20 4 65 50 () 
QC\ , )! :1. <J 3 66 4<J () 

99 :1.8 :L 68 48 0 
OQ j7 () 69 46 () 7' .. ' 
~v\9 :1. !5 0 70 4':.-- ,.} () 

FIGURE 4.1a: Showing the speed of convergence for two 

independent sets of hypotheses {A,B,cJ and {n,E,Ff . 
Fifty iterations are shown with printing every fifth iteration. 

The constraints are A 1\ B 1\ C and D 1\ .E 1\ F. In nuinerical form 

these are SA + S8 -1~ Se and SD + SE ~1 ~SF • The 

preferences for the set {A,B,c} are (2, 0.9, -1) so the best 

feasible state is (1, O, 0) with (1, 1, 1) a close second. For 

{n,E.,Fj the preferences are (1, 0.9, -2) g1ving an optimum.of 

(1, 0, 0) with (0, 1, 0) a close second. 

! r t"-? 1 a>~ ( 50 ~· !:_:j ) y 

A B f' ..• D E F 
0 0 () 0 () 0 

4:1. 22 () ~5:3 '/'") 
A· •• • •,: .. .., 0 

71::" ·-· 4:1. 0 ?0 4:.3 () 

86 ::57 '") . ..: .. BO 3B () 

94 ~:)0 ~3 BB ~5 :1. 0 
99 2~5 :3 9~j 24 0 
99 :1.9 :1. 9B :1.9 () 

9<J :l.l:· 0 <)<)> :1.6 0 
99 :1. ~::; 0 fjHJ :1. ~:; 0 
99 :l.~j () <j><;,> :1. ~:.i 0 
9<1 :1. ~:) 0 <:)(;) 

·' / 
:1. ~~i 0 

FIGURE 4e-1 b: Showing the faster convergence when there are 

linking constraints: 5A := Sn , 58 ::: 5 f Se.::. 5F • 
The best feasible state is then much better than its nearest 

rival. 



straints to many others. The boundary conditions are all 

the feasible combinations of truth values of these other 

hypotheses, which may be a large number. Relaxation 

avoids this explosion by avoiding explicit enumeration of 

the possible boundary conditions of a subsystem. 
I 

4.3: The Time Taken to Reach_ Equilibrium 

An important factor in determining whether L.P. re-

laxation is a good search me.thod is the number of itera-

tions required to reach the equilibrium state. The puppet 

examples have few enough hypotheses for serial se3rch 

techniques to be relatively quick, but as the number of 

hypotheses increases, the. time required for these me:.ho.ds 

increases exponentially. By contrast, it will be shown 

that the· time required for relaxation, using par2llel 

hard•.1are, is independent of the number· of hypotheses,. 

given certAin reasonable assumptions. 

The puppet examples (appendix 4) show that much of 

the time required to reach equilibrium is spent in cree~-

ing towards the optimum state and away froo a very dif-

ferent integer state with a slightly lower score. The 

reason progress is so slow is that the state is movi~] 

parallel to an edge which is almost normal to the prefer-

ence vector, so that the componenent of the preference 

vector in the direction of motion is very small (see fig-

ur e 3. 11 a). 

As A first step to analysing how the time depenjs on 
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the number of hypotheses, it will be shown that the time 

is related to the rate of travel along the ridge which is 

most nearly normal to the preference vector. Let us call 

the direction of the _preference vector "vertical". The 

optimal feasible stat~·then corresponds to the highest 
I 

vertex Cthe peak). The relaxation process can be divided 

into two stages. First, the state is made roughly feasi

ble, and then it moves to a point near the peak, either 

by going through the interior of the polyhedron or by 

staying just outside it and movinq roughly parallel to 

its surface. The first stage, achieving near-feasibility, 

may not be necessary, and _even if it is, it is generally 

relatively quick compared with the second stage. So only 

the time for the second stage will be considered. The 

problem, therefore, is to find the time taken to travel 

in the local direction of steepest Ascent from an arbi-

trary point within or nearly within the polyhedron, to a 

point near the peak, given that the rate of travel 

depends on the cosine of the angle with the vertical. The 

problem is made more tractable if the starting point is 

a pp r ox i m a t e d by the n ear e s t po i n t , S , w hi c h i s act u a.ll y 

on or within the polyhedron, and the equilibrium point is 

a (:proxima ted by B, the peak. If there are n hypotheses, 

the distance between S and 8 cannot exceed lh since the 

feasible polyhedron lies within a unit hypercube whose 

longest diagonal has length lh. So., if the shallowest 

ridge <the most nearly horizontal one) connects S to B 

t he t i me t a k en i s at m os t Jn/y- , "''here r i s t he rat e o f 

travel along the shallowest ridge. If S and B are not 
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connected by this ridge, th~n the point representing the 

current state \-.Ji 11 travel at 2n ang 1 e closer to the vert-

ical and will therefore travel faster, but it may also 

have to travel much further, since it may follow a zig-

zag path. It can be shown, however, that the time taken 
I 

cannot exceed _i m 
2 y-

Theorem 

Let a particular direction in an n-dioensional ·space 

be called "vertical·"· Let B be the "highest" point on a 

convex polyhedron enclosed within a unit hypercube, and 

1 et S be any point on or within the polyhedron. Follo\·1-

ing the path of locally steepest ascent, the time taken 

to +-r~·vel from .. S ..I...LO 8 1· no..!... mor ...... ""han 3 ..,. <.A Id _ 5 l. il C L. t ' 2 

is the ~ngle between the shallowest ridge of the po-

lyhedron and the vertical, and the rate of travel in a 

direction which makes an angle of e ~·li th the vertic3l is 

1< c. os. e . 

Proof 

Rather th~n considering the distance travelled and 

the rate of travel, it is easier to consider the differ

ence in the heights, hs , hp, of S and 8 3nd the rate at 

vJ hi c h t h i s d i f f e re n c e i s r ed u c e d • For a d i re c t ion iT! a k i n:;; 

1 e ·th th ..~.... ~1 the r.~-re of travel is 8n ang e Wl e vert..lc~ , Q~ 

k. cos e , so the rate at which the heiqht increases is 

given by: dh - k cos,}. e - . 
dt -100-



The difference in height between S and B can be divided 

into two parts by Jsing a height he such that: 

The total time,~ 8 , to rise from h5 t~ h9 is the time fsc 
taken to rise to he. plus the time tc 8 to rise from there 

to h8• 

The reason for using he to divide up the height in

terval is to enable different types of argument to be 

used about the maximum values of the component times tsc. 

Bnd tee. A maximum time for tee , the last part of the 

journey, can be determined from the slope of the shal-

lowest ridge in the polyhedron of feasible states (see 

belo\·I). By contrast, a stronger upper limit can be set 

on the first part of the journey, by relating the 

minimum rate of gain of height to the dist3nce below the 

peak. This limit is only stronger if the height differ

ence is at least [;:;cos?' hence the definition of he. • 

The minimum value for d)ft occurs when trave:lli ng 

along the shallowest ridge, and is given by: 

mi n ( ~;) = 

Hehce: tc 8 ~ 

t{. 8 ~ 

, ' tc 8 ~ 

k ). I 

CO) f 

J,B -h (.. 
k c.os:;.cf 

Jh C0_5 cP. 
K C05).f 

Jh 
K eo~ f:> 
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An upper bound on the time taken to rise from h s to ~ c 

can be found by~ using the fact that, for a convex po-

lyhedron the direction of steepest ascent at a point must 

always be at least as steep as the direct line fro~ the 

point to the peak. Since the point ca~not be further than 

In from the peak the direct line has a cosine v1ith the 

vertical of at least (h 8 -J,VJh . So: 

. . 

t ~(, < h h. 

;>. k (t1o- J,c) )_k (hp- 11 5) 

Since the .term h/~k(l1 8 -h>) · is positive, it can be 

_omitted, and by definition: 

I I = r,: {05 ~ ns- Y1c vVl r 

J }(CD) </J 

So comb in in g t s c and t c 8 , the tot a 1 t i m e f s B i s bound e d 

by: t < }_ Jh . 
5 g ' 1. k Cos tj . 
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A simple example will now be used to illustrate the ap

plication of the~above expression, and then the expres

sion will be used to illuminate more complex cases. Sup-. 

pose there are two identical sets of hypotheses with no 

inteconnecting constraints. Given para~lel hardware, the 

time taken to reach equilibrium is the same for the two 

sets as for either set alone. Comparing the expression 

for the two sets with ~hat for a single set, ~os 1 stays 

the same because the gains in height and the distances 

trave.ll ed both increase by a fa et or of fi . The term Jh' 

increases by a fa c tor 5, but t hi s i s o f f set by a si m i 1 a r 

increase in K due to.the greater magnitude of the com

bined preference vector. The larger preference vector 

does not drag the equilibrium supposition values further 

from the values at the best vertex, because it is opposed 

by twice as many constraints, each of which is less ef

fective by a factor of Jf because the corresponding ~lane 

makes a smAller angle with the preference vector. 

Now, consider what happens to the time taken to 

reach equilibrium when the number of hypotheses is in-

_creased by a factor of f, but the magnitudes of the indi

vidual preferences and the number of constraints per hy

pothesis remain the same. Even if the hypotheses c3nnot 

be split into disconnected sets, the same reasoning as 

above can be applied, so cos~ will remain roughly the 

same,. whereas /hand J< will both increese by a factor of 

Jf· The time therefore, will be unaffected. 
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4.4: Introducing non-linearity. 

If there are two equally good interpretations, the 

ridge joining.the corresponding points in hyperspace will 

be horizontal (assuming the direction of the preference 
I 

vector is taken as vertical). So the system will not 

reach either vertex. This is clearly unsatisfactory. 

Human perception of pictures like the Necker cube sug

gests that it would be better to somehow select ·one in-

terpretation arbitrarily. This can be done using the 

coefficient I<J, <section 3.18). 

The effect of a non-zero value for kh is to change 

the forces acting at each point in the hyperspace. As 

well as the forces due to the preference vector and any 

violated constraint planes, an extra force is added, 

whose magnitude and direction differs at different 

places. Near a corner. of the unit hypercube (i.e. an in-

teger vertex>, the extra force is at its greatest and 

points towards the corner. At the centre of the unit hy-

percube the force is zero. In fact, the force is radi

cally symmetrical, and its magnitude at a point is pro

portional to the distance of the point from the centre of 

the unit hypercube. 

One way of thinking about the effect of k h is in 

terms of a non- uniform force field like that shown in 

fiqure 4.2b. Alternatively, provided kh is small, a· to

pological transformation c~n be applied which makes the 

force field uniform at the expense of bending and non-
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·FIGURE 4.2a: Showing two equal 

rivals, and the additional forces 

caused by K h .• 

FIGURE 4.2c: Showing the 

effect of a topological 

transformation designed to 

make the force field uniform. 

FIGURE 4.2b: Showing 

the force field obtained 

by combining the 

preference vector and the 

extra forces. 

0 

FIGURE 4.2d: Showing a 

non-integer optimu~ 

vertex and the effect 

of Kh. 



uniformly compressing the constraint planes and Axes, as 

in figure 4.2c. Th1.s representation h8s the disadvantage 

that the forces due to violated constraints need not act 

normally to the constraint planes. This means that in-

tuitions about the speed at which the ~tate moves can be 
I 

misleading, though it can never make the state move 

downhill along a constraint plane (taking the force vec-

tor to be vertical). 

Using the representation in which K~ distorts the 

constraint planes, but leaves a uniform force field, it 

is clear that the two equal rivals have become.local op-

tima. It is also clear that a sufficiently high value 

for k~ can turn a globally optimal non-integer vertex 

into a very local optimum, as in figure 4.2d. 

Although kh has been used to speed up the puppe-t 

program, its effects have not been rigorously analysei. 

This needs doing because of its apparent helpfulness wit~ 

the important problems. of equal rivals, speed, and non-

integer optima. The representation in t. 1 k wn1cn /,... C3US es 

non-linear, curved constraint planes may be helpful for 

further analysis, though its value has not yet bee~ 

demonstrated. 

4.5: The Need for Intermediate Level Hypotheses. 

An important and valid criticism of the puppet pro-

aram is that it lacks explicit representations of sig~i-
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ficant groups of par~s such as complete arms or legs, or 

even whole puppets. This lack is a characteristic feature 

of "holistic" systems (e.g. ce.llular automata) in which 

global patterns emerge on the basis of local interac

tions. Its advantage is that it avoids the potentially 
I 

explosive number of combinations of local hypotheses. Its 

disadvantage is that it is generally impossible to ex-

press all the required characteristics of the global op-

timum in terms of preferences and constraints on low lev-

el constituents. The puppet task was chosen precisely be-

cause much of our knowledge of the human form is reduci-

ble to knowledge of the relationships between its rigid 

parts, but even here, there may be irreducible aspects •. 

Suppose, for example, that good puppet instantiations 

should have both a~ms the same length, but that the corn-

parative sizes of the corresponding parts of the two arms 

·are irnrnaterial. A preference for equal arm lengths can 

be incorporated into· the puppet program by creating ex-

plicit hypotheses for pairs of arms. Alternatively, 

pairs of hypotheses for single arms of different lengths 

could have their suppositions linked by weak incompata-

·_ bility constraints (see section 4.6). Either way, an ex-

plicit hypothesis of at least the complexity of an arm is 

required for the expression of knowlege about ar~ 

lengths. 

The kind of relaxation used in the purpet program, 

is quite capable of handling hierafchially structured hy-

potheses, provided the logical constraints are specified .. 
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In this y-espect it diff::?rs from the intrinsically 11flat 11 

relaxation techniques described in sections 5.1 and 5.4. 

These methods are restricted to tasks in which the prob

lem is to decide which labels (interpretations) to assign 

to various entities (picture structures). However, 

although L.P. relaxation 
I 
i 

can handle many levels of hy-

potheses simultaneously, it could prove extremely expen-

sive to create all hypotheses at .all levels before doing 

any selection, and it would contradict a major aim of re-

laxation, which is to avoid explicit enumeration. What is 

needed is a way of using the initial results of relaxa-

tion to guide the creation of plausible higher level hy-

potheses, so that explicit nodes are not created for corn-

binations of local hypotheses unless they fit in well 

globally. As mentioned above, the use of relaxation to 

guide hypothesis creation is discussed later, though not 

in the context of hierarchically structured hypotheses. 

4.6: Weak rules 

So far, the only constraints used have been ones 

which must be satisfied in any allowable global interpre-
• 

tation. This requirement seems too strict to capture the 

f 1 exi bi 1 i ty of human percept ion. People are ea pabl e of 

violAtinq normal constrRints if by doing so they can 

achieve a much better global interpretation. If a puppet 

has three well-connected,· perfect legs for example, 

that's how people will see it. Similarly, in interpreting 
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some lines as capital letters, people will drop the usual 

perceptunl assumption that one line can depict only one 

letter stroke, if they can thereby arrive at a-more sen-

sible interpretation. Ideally, an .f-. • .L.. • 

op~lmiZaLlon sys~em 

should allow a trade-off between preferences for 

potheses i' and violations of weak rules in arriving at 

optimum interpretation. 

hv-·:J 

One way of attempting to ~mp lement such a trade-off 

is to make the constraints co.rresponding to breakable 

rules have a much weaker effect on the relaxation opera-

tor. If the forces due to violated weak constrAints 

of roughly the same magnitude as the forces due to the 

preferences, then the equilibrium position may well in-

valve some weak constraints being significantly violated 

as a result of the pull in the direction of the prefer-

ence vector. The disadvantaqe of this approach is the.t 

the forces due to a constraint violation are proportional 

to the magnitude of the violation, whereas the preference 

forces are constant. As a result, the system will tend to 

settle down at an intermediate state where some weak con-

straints are being violated a bit, but not too much. 

a state is senseless if the weak rules are of the type 

that either hold or are broken. Suppose, for exa~ple, 

there is a weak rule that a pup~et has only two legs. 

Given a picture in which there is a candidate for a third 

leg, the best interpretation should either included it or 

leave it out. It should not contain the third leg to a 

certain extent, at the cost of violating the ttJec:~k. con-
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straint n little. 

There is a simple way of incorporating breakable 

rules which does not run into the above di-fficulties. 

Whenever a weak rule gives rise to a constraint, an extra 
I 

hypothesis is created to represent the possibility that 

the rule is broken. The hypothesis is given an associated 

cost depending on the strength of the rule, and insteed 

of the obvious constraint, a mbre complex one • 'l • 
lnVO..!.Vlng 

the extra hypothesis is created. Suppose, for exa.:-:tple, · 

that a weak rule implies the constraint fv~. An extra 

hypothesis e ( equ i v al en t to p" Z[ ) is made together ~-:i th 

the strong constraint f v1 v € • So it is possible to 

break the rule and have neither p nor q~ but only by pey-

ing the cost associated with e. An impleoented exe~~le 

in which weak inference rules are handled in this w~y is 

described in chapter 7. 

4.7: Using relaxation to guide hypothesis creation 

The puppet-finding program described in ch~pter 3 is 

~unrealistically simple as a model of how people percieve 

the pup p e t pi c t u res • One de f i c i en cy of t h e t E: s k i s t ~ e t 

the number of po~ential part and joint hypotheses is 

small enough to allow all the hypotheses to be created 

before relaxation commences. If the definition of 0 s~-

tisfactory part or joint is extended to ellow pcor 1n-

stances (see figure 4.3), then the nu~ber of • . . l po-c e:; :: e .l.. 

hypotheses becomes much larger, so it beco~es impoyt~~t 
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FIGURE 4.}:_ Peopl.e see this as a puppet even though the knee 

and shoulder joints are poor, and the head and trunk have the 

~Tong proportions. The program needs extending to handle such 

locally poor joints and parts. 



to avoid ever formulating many of the possible hy-

potheses. 

This section describes how relaxation and hy-

potheses creation can be integrated so that the globally 
I 

best interpretation is achieved without formulating many 

of the possible hypotheses. No program has been written 

for this extended version of the puppet task~ so there 

may be unforeseen snags in thi method proposed. 

4.7.1: The extended puppet-finding task 

For human perception, there seem to be many dif-

ferent degrees of acceptability of parts and joints~ but 

for s i m p 1 i c i t y on l y three c a t ego r i e s v1 i 11 be cons i de red : 

perfectly acceptable, poor, 
1
and unacceptable. Precise de-

finitions of what constitutes a poor part or joint have 

not been formulated. They should, however, present no 

problem as they can be of the same form as the d~finition 

of good parts and joints, but with less restrictive re-

quirements on the proportions and overlaps. 

For reasons which will become apparent later, it is 

desirable to use only negative scores for hypotheses. 

Clearly, an interpretation is worse if it has poor p3rts 

or joints rather than good ones, but worse still if sooe 

parts or joints are missing altogether. A simple, though 

somewhat ad hoc, method of scoring global interpretations 

is as follows: 
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1. For each poor joint or poor part score -1. 

2. For each missing slot filler in a part hypothesis 

score -1. 

3. Since all the scores are .L. .I 
nega~.,lJve, it is n ece ssa ry 

to prevent a global interpretation in which there are 

no hypotheses at all. This can be done by forcing the 

program to have a single, obligatory puppet-instance 

with slots for each part~ and imposing penalties on 

unfilled slots. These penalties need to be large 

enough to force the slots in the puppet-instance to be 

filled by rather poor, largely disconnected, parts 

where necessary, but not so large as to encourage fil-

ling by entirely unsupported part hypothes$s. 

4.7.2: Generators 

There is a simple trick which allows relaxation to 

be started before all possible joints·and parts have been 

found. As well as the normal pArt and joint hypotheses, 

slot fillers of a new type called generators are • .L. 
1n~ro-

duced. These have the property that if relaxation Qa~es 

their supposition values high, they 3re 11 !'"Un 11 and re-

placed by the part or joint ~ypotheses whic~ are 

discovert?d. Generators cnn be thouqht of 85 representin·;: 

sets of potenti,ql hypotheses which hsve not yet bee:1 

plicitly created. 
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If all the good joints ·and parts are found before 

doing any relaxation, then all of the hypotheses in the 

set represented by a generator will be poor ones and will 

have an associated cost. So the generator can itself be 

given a cost equal to that of the best hypotheses that 
I 

might be in its set. If the relaxation process gives a 

high supposition value to a generator, this means that it 

is worth searching for the hypotheses which it implicitly 

represents. If, however, relaxation rejects the genera-

tor, then there is no point in running it since any hy-

potheses so produced \•Iould also be rejected. 

Figure 4.4 shows a simple case in which relaxation 

applied to the initial set of good hypotheses could guide 

the search for poorly connected parts without jeopardis-

ing the guarantee of finding the best puppet instantia-

tior. Those poor joints which were never ~xplicitly for-

mulated could not be relevant, since they could not be 

better than· their generator which was rejected by relaxa~ 

tion. The guarantee of optimBlity stems from the fact 

that expanding a generator can never improve the .state 

reached by relaxation. It may, of course, make the state· 

worse, since running the generator may produce no hy-

potheses at all, so that some other, more costly, slot 

filler would have to be used instead of the generator. 

The simple type of generator described above could 

be el2borated to cope with ~any different degrees of ac-

ceptability of slot fillers. Initi~lly, a generator with 
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FIGURE 4.4: A puppet with some poor joints. If generators 

are used to control the search for poor parts, no search will 

be made for A because the generator will be suppressed by the 

interpretation of B. There would, however, be a search for C. 

Similarly, the initial candidate interpretation of E as foot 

and D as calf would be suppressed by competition, and so the 

generator far a related thigh would not be run. 



a low cost equal to the best of ~he po~ential hypotheses 

would be used. If relaxation gave this generator a high 

supposition value,·a search would be performed for the 

fairly good hypotheses and the original generator would 

be replaced by these hypotheses plus a new generator \·:i th 

a higher 
I 

associated cost equ8l to that of the best hy-

potheses which might still be found by further se3rch. 

Provided the search can be organised to find the hy-

potheses in order of increasing cost, it should always be 

possible to avoid searching for hypotheses which are so 

poor that relaxation would reject them anyway. 

The decision about what cost to associate with a 

gener~tor may be complicated by the fact that a hy-

pbthesi~ produced when the generator is run can fill 

several slots. For example, a joint hypothesis produced 

by a joint generator will fill slots in two different 

part hypotheses. Although each part hypothesis separate-

ly may be too weakly supported to bear the cost of a poor 

joint, together they may be able to bear it. No~, if 

slots in both parts are filled with separate joint-

generators and these generators have the cost of a poor 

joint, relaxation may reject the generators even thou?h 

it v;ould Accept a shared, poor joint. One solution is to 

associate with a generator the cost of the best potential 

hypothesis divided by the number of slots. the hypothesis 

would fill. If each slot contain~ a generator with this 

cost, t~en the search for the potential poor slot-fillers 

will only be avoided if none of the generators are well 
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enough ~upported to bear their share of the cost. This 

guarantees that hypotheses which might form part of the 

optimal solution will not be missed, but also means that 

generators may be run even when relaxation will reject 

the best hypothesis they might produc~. 
! 

4.8: Optimising real-valued parameters 

So far, relaxation has only been used to find the 

optimal combination of truth values for sets of inter-

related hypotheses. ManY problems also involve determin-

ing the optimal combination of values for sets of real-

valued vqriables. For example, in finding edges in grey-

level d9t~, parameters such as orientation of each piece 

of edge need to be opti~ised CZucker 1976). This section 

will show how L.P. relaxation can be used for determining 

real values, though no program has been written. It is 

important not to confuse supposition values with valuei 

of_ parameters such as orientation. It would be absurd tb 

ar-ply L.P. relaxation directly to the the later. OuantL-

tive decisions need to be reduced to qualitative ones be-

-fore applying relaxation. 

First, an abstract version of the problem will be 

defined. Suppose there is a finite set of variables, and 

a finite .=et of functions each of which takes as input a 

set of valrJes for .::1 subset of the variables rJnd returns a 

cost. The t~sk is to find the set of values which minim-

izes the sum of the costs returned by all the functions. 
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Pr0vided the costs do not vary too rapidly as the 

VC3lues of the variables change, a simple but expensive 

way of using relaxation to find an approxim~te optimum is 

to consider a number of evenly-spaced values for each 

veriable. A variable-value hypothesis, must be created for 
! 

each possible assignment of e value to VAriable. Also, a· 

cost-hypothesis must be created for each possible combi-

nation of argument values of each cost function. The 

cost-hypotheses should have associated costs equal to the 

results of their cost functions and should be bound by 

constraints which demand that a cost-hypothesis be ac-

cepted if all its relevant variable~value hypotheses are 

accepterl. There must also be constraints which require 

that e8ch variahle has exactly one value. For exemple, 

if among the variables there are two, o, for which 

valtJt:~s of 1, 2 are considered, then there will be 

vari2ble-value hypotheses corresponding to A=l, A=2, 8=1, 

2=2. If there is a cost function which accepts values for 

A and B and returns the difference as the cost, then 

there would have to be two cost hypotheses with a cost of 

0 and two with a cost of 1. The conjunction of the 

variAble-value hypotheses A=t and 8=1 would imply one of 

the cost-hypotheses which had a cost of n v, and there 

w o u 1 d he a eo n s t r a i n t rep re sent i n g this i r:19 l i c a t i on • 

Clearly, if the cost functions havs ~any arguments 

or if many values are .considered for eac~ v2riable, an 

e no rq or 1 s number o f h Y.P o the s e s and · eo n s t r A i n t s may be 

neec!8c', so the . 1 Slffif)_8 rne thocf of formulating all the 
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variable-value hypotheses before relax~tion, is infeasi-

ble. However, by using a technique similar to the gene~a

tors described above, relaxation can be integrated with 

the formulation of variable-value hypotheses and a great 

many irrelevant hypotheses can be avoided. The basic 

idea is to consider intervals in Lhich the value of a 

va~iable may lie. Initially the range of possible values 

for each variable can be covered by a few large inter-

vals, so that instead of many variable-value hypotheses 

there are a few variAble-interval hypotheses. 

In order to use relaxation to establish the most 

promisinq set of variable-interv8l hypotheses, it is 

necessary to modify the cost f4nctions so that instead of 

taking specific values and returning a cost, they take 

intervals for the values and return a lower bound on the 

cost that could be achieved using values within the in-

tervAls. For example, if a particular cost function took 

tNo nurneri ea 1 arguments and re turned their dLfference" as 

the cost, then its modified version would take two inter-

vals and return either zero Cif the interv~ls overlapped) 

or the difference between the top of the lower interval 

and the bottom of the higher one. 

Using the modified cost functions to create cost-

hypotheses, a promising set of variable-interval ~y-

potheses c~n be selected by relaxation, and the intervals 

involved can then be further sub-divided, so that the 

selected variable-interval hypotheses are replaced by 
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finer Oltes •. Repetition of this process of selection and 
·~ 

·sub-division ·allows the optimal values to be determined 

accurately without requiring detailed considerati-on of 

values within unpromising intervals. If n is the ratio of 
I 

the range of possible values divided ~y the accuracy to 

which the optimal values are required, then, provided 

there is no back-tracking (see below), the number of 

interval-hypotheses needed is proportional to log n in-

stead of n for the simpler method described earlier. 

Interval-hypotheses which are initially rejected by 

relaxation must, nevertheless, be retained in the network 

of possible hypotheses, since when the initially promis-

ing intervals are sub-divided it may be impossible to 

find a combination of the smAller intervals which gives 

as low A cost as the lower bound estimated for the larger _ 

intervals. A simple example shows how this can happen. 

S u ppo se the r e are t hr e e v a r i a b 1 e s , A , 8 , C w i t h re a 1 -

values in the range 0 to 9, and suppose that there are 

six cost functions which return costs of: 

1 A -a; , /P- c 1 I r -Af 

These functions "try" to make A·~o, 8=4.5, and C=9, but 

also try to make A=B=C. The best solution is A=B=C=4.5 

which has a cost of 9. Suppose the initial intervals used 

are 0 to 3, 3 to 6, and 6 to 9. Relaxation would select 

the combination of hypotheses A0 _3 , 81 _ 6 , (_6-q .. .,here 

A o-3 means that the value of A is in the interval 0 to 

3. This combination has zero cost, since for each cost 
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function there are values yielding a cgst of zero within 

the chosen . ~ 
1n terval s. However, different values within 

the intervAls are required to satisfy different cost 

functions. So v1hen the sele'cted interva 1 hypotheses are 
I 

replaced by more speclfic ones involv~ng smaller intervals, 

relaxation may select one of the previously rejected, 

coarser intervals. If, for example, the selected inter-

vals are sub-divided into intervals of size t, then r·e-

laxation would reject all the more specific hypotheses 

for A and C and backtrack to the hypotheses A 1_6 and 

{_ 3 J-

6 
VI hi c h to g et he r w i t h B If _ 5' g i v e a to t a 1 c o s t o f 6 • 
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CHAPTER 5 

COMPARISONS BETWEEN L. P. REI.JAXATION 

AND ALTERNATIVE SYSTEMS. 

In this chapter a number of alternatives to L.P. re-

laxation are described and criticized. 

included on the use of L.P. 

A section is also 

relaxation for 

Huffman/Clowes line labelling, since this is the domain 

chosen by one rival system. 

5.1: Rosenfeld, Hummel and Zucker ( 1975). 

In their paper "Scene labelling by relaxation opera

tions", Rosenfeld et al discuss ways of extending :Nal tz 

filtering so as to incorporate degrees of compatibility 

between labels, rather than the simple all or none compa

tibilities used by Waltz. They describe three models. 

The first and least interesting is based on fuzzy set 

theory and associates fuzzy weights with labels. It is 

like one of the methods used by Barrow and Tennenbaum 

(see section 5.4.3) and will not be discussed further. 

The remaining two models use probabilistic weights for 

labels. These weights are similar in many respects to 

supposition values, but it will be argued that there are 

crucial differences which make these methods less satis

factory than L.P. relaxation. 
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5. 1.1. The linear probabilistic model. 

A weight between 0 and 1 is associated with each 

po ss i b 1 e 1 ab e 1 ( e • g • + ' - ' r 0 r 1 for each object 

(e.g. a line). The weights on the labels for an object 
I 

sum to 1, so they can be interpreted Js the probabilities 

that the labels are correct (if the distinctions dis-

cussed in section 3.4 are ignored). The weights are said 

to be consistent when each one has a required value which 

can be calculated (see below) from the weights and compa-

tibilities of the labels on neighbouring objects. If the' 

weights are inconsistent, each is replaced by the value 

determined by the label weights on neighbouring objects. 

It can be shown that if this relaxation operator is re-

peatedly applied in parallel to all the weights. a con~ 

sistent state will eventually be reached. The expression 

used to deterrni ne the required weight fi (>) on the label 

A for the i'th object is: 

pi(A) = 4- Lij r ~ fij (>d>:) fi (XJ] 
J 

where the CLj are coefficients such that f Cij =I for 

all i. The inner sum in the expression is the expected 

probability of /\.1 £j(.A), given the weights and condi

tional probabilities of the labels at j. The outer sum 

is a weiqhteci average of the f (A) over all i's neigh

bours. The rnagni tu de of the constants· Cij , Ci K indicates 

the relative importances of the estimates £j (A.) , 
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provided by -the neighbouring objects in 

determining the wei~ghts of the labels at i. 

Rosenfeld et al give no justification for their de

finition of a consistent set of weights. It is hard to 

see how it can be reconciled with proJability theory be-

cause of the following example: suppose that for an ob-

ject, j ' the label 

other labels have 

f 'j ( A I \) ~ o i . e • 

have label A 

,\/ ·has a weight of and all the 

a weight of o. Suppose, also, that 

given that j has label 
\ / 

/\ i 
/ 

The inner sum of expression 

cannot 

(above) 

correctly yields £ j (A)::: 0 , but because of the weighted 

averaging of the [ (~) this does not force the outer 

sum to be zero. So a non-z.ero value for f i (.t\) may be 

allot.>~ed by the expression even though it is inconsistent 

with.the conditional probabilities. 

The linear model has the interesting property that 

it converges on a set of weights which is entirely deter-

mined by the values of the (0 and the conditional proba

bilities, and is independent of the initial set of label 

weights. Rosenfeld et al assume, as do Barrow and Ten-

nenbaum, that the initial weights for particular labels 

should be used to implement the preferences, which. may 

arise from their a priori probabilities or their goodness 

of fit to the local data. This assumption leads them to 

reject the linear model in favour of a non-linear one in 

which the final state depends on the ihitial one. They 

do not discuss the alternative, used by L~P. relaxation 
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and by Marr and Pogg!o (1976) of implementing preferences 

by an extra term i~ the relaxation operator. 

---
5.1.2: The non-linear model. 

The example with f·j (A I x)::: 0 which was used to 

criticise the expression ( 1) above, is actually an ex-

treme case of an undesirable property which Rosenfeld et 
/ 

al discuss. If a label A at j has a high weight then it 

should have a strong tendency to reduce the weights of 

labels on neighbouring objects with which it has a low 

compatibility. Expression 1 does not work like this, so 

Rosenfeld et al suggest replacing the conditional proba-

bilities by correlations, which can have a negative value 

and can therefore cause the m~ximum reduction in pi(~) 

when the weights on the incompatible labels for j are 

high. The new expression gives the required change in 

p; (.A) rather than its required value, and there is no 

guarantee that the weights wi.ll stay positive or that the 

new weights for labels of a single object will add to t. 

These two desirable properties can be restored by modify-

ing the rel2xation operator so that it effectively renor-

malises the new label weights. 

The same criticism applies as in the linear model. 

The- way in which the £(A) are averaged in the relaxation 

operator means tbat a weight of 1 for a label on j 

can coexist with a non-zero weight for a label ~ on i 
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even though their correlation is -1. 

The convergence properties of the non-linear opera-

tor have not been established. It has been tried on the 

simple problem of choosing the best Huffman/Clowes label-
i 

ling for a triangle, where a good labelling is defined as 

one which assigns highly correlated labels to the two 

lines at an ell junction. The lines were the objects, 

and the correlations between line-labels at a junction 

the compatibility functions. The weights converged fair-

ly rapidly, often on integer values, and the initial 

weights were capable of determininq which of the possible 

unambiguous labellings was chosen. 

The main wea'kness of this model is that it is not 

clear what computation is being p~rformed. The underly-

ing idea is to enhance label weights local interac-

tions, but there is no definition of what counts as a 

good enhancement. A consequence of this lack of a pre-

cise problem is that the relaxation operator cannot be 

derived so as to satisy well speci~ied criteria. In-

stead, an operator is chosen which has qualitative 

-characteristics which are thought to be desirable. By 

contrast, L.P. relaxation is designed to perform a well 

specified task which provides clear-cut criteria for 

evaluating the relaxation operator. 

Zucker (1976) reviews the ~pplications of the non-

linear model to "image enhancement" in a number of 

domains. It is hard to assess the usefulness of some of 
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the applications since they are intended as a pre

processing stage. In the absence of any clear definition 

of what this stage is intended to achieve, it can only be 

evaluated by seeing how much it helps later stages and 

these are generally non-existent. 

One application \·lhich is similar in some respects to 

the puppet task is the enhancement of combinations of 

parts which match a model CDavis and Rosenfeld 1976). 

The model used is an upright square of fixed size whose 

parts are simply its four corners. Nodes are created for 

candidate corners which are found in a noisy gr·ey-scale 

picture. Dummy nodes are also created to . represent 

corners which were not found in the grey-level data, but 

which can be predicted from the corners which were found. 

Each node has five possible labels corresponding to the 

four corner types and "no match". The initial label 

weights at a node reflect the goodness of fit of the 

corresponding corner types to the local grey level data. 

The compatibilities between label weights depend on the 

relative positions of the nodes. For two nodes which are 

horizontally or vertica.lly separated by exactly the 

side-length of the square, there will be some pairs of 

labels, one on each node, which agree and some which 

disagree. These have compatibilities of +1 and -l 

respectively. For pairs of nodes whose relative posi

tions are approximately but not precisely correct, the 

label compatibilities have correspondingly smaller rnagni

tudes, and for all other pairs of nodes the label weights 
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do not affect each other. This approach to model match

ing suffers from all the ctiticisms already made of the 

non-linear relaxation method. There is no clear ·specifi

cation of the task, so it is hard to justify the initial 

label weights or the compatibility functions, or the re

laxation operator, or _to say precise!~ what the relaxa

tion process achieves. 

One of the aims of the non-linear model is to make 

use of probabi 1 is tic constraints bet\'ieen labellings as 

well as local biases for particular labellings. It is 

instructive to see how these types of knowledge can be 

captured by L.P. relaxation in the example used by Rosen

feld et al. The local biases can obviously be implement

ed as preferences, but the probabilistic .constraints are 

obviously different from the logical constraints used in 

L.P. relaxation. Nevertheless, L.P. relaxation can han

dle probabilistic constraints if they are reduced to log

ical ones by introducing extra hypotheses with associated 

costs or preferences (see section 4.6). For the line la

be 11 i ng example used by Rosenf e ld et al the extra hy

potheses take the form of junction labels. A formulation 

-of the task suitable for L.P. relaxation is given in 

section 5.2. Compared with the non-linear model, the 

ti8e taken to reach equilibrium is longer and the number 

of nodes· _required is larger. However, it is clear what 

the computation achieves, and the relaxation process can 

be analysed. 
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5.2: Line Labelling using LP relaxation 

Huffman/Clowes labelling is ex~lained in section 

1 .4.1 There are two reasons for wanting to get the 

best labelling rather than just a list of all the feasi

ble ones: 

1. The number of feasible laSellings can become 

enormous if the set of junction labels is extended to 

allow f6r accidental alignment of edges with vertices 

of different depths, or to accommodate laminae as well 

as solid objects <Draper- personal communication). 

2~ People are quite capable of interpreting junc

tions as accidental alignments, yet they never see 

more than a few of the interpretations which are pos

sible if such accidentAls are allowed. 

There are several quite different reasons for asso

ciating costs or preferences with particular labellings: 

1. If an expanded set of labels is used, costs can 

be attached to labels which require either accidental 

alignment or non-solid objects. This can be viewed as 

a way of providing a set of unusual labels which are 

to be used sparingly, and only when the usual set ·is 

inadequate. 

2. If the input is a noisy grey-scale image; rather 

thah a line drawing, there may be weak evidence which 

suggests particular labels. For example, under some 
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conditions of illuminat~on, convex edges have slight 

highlights along them, and concave ones have slight 

shadows CRosenfeld et al 1975). Also, shade~ edges 

have distinctive grey level characteristics <see ap

pendix 2). To incorporAte this extra information, the 
I 

idea of extracting a line drawing from'the grey-level 

data needs to be extended to include extracting 

preferences for particular line labels. The process 

of finding a consistent lAbelling for the picture can 

then operate on richer data than the line drawing 

alone. 

3. When people view a scene they do not perform a 

detailed analysis of all parts of it simultaneously. 

It appears that they perceive it in a sequence of 

glances whose results are synthesised into a represen-

tation of the whole scene CHochberg 1968). Each 

glan~e will be accompanied by expectations based on 

the representation of the scene derived from previous 

glances. So when a person attends to one part of a 

scene and attempts to discern its 3-D structure he may 

already expect it to contain certain types of edge or 

vertex. It would be possible to mobilise expectations 

of this kind to aid the interpretation of lines as 

particular kinds of edges. If a hole is expected, for 

example, there could be a higher prBference for the 

labelling of those ell junctions Nhich correspond to 

an interpretation in which the reflex angle lies in 

the nearer occluding surface. 
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So it is interesting to see how a program might dis

cover the optimal ~onsistent labelling of a line drawing, 

where the optimum is defined in terms .of preferences or 

costs for particular line and junction l8bels. 

-. I 
In a consistent interpretation each line and each 

junction have exactly one label, so the supposition 

values in all normalised linear combinations of con-

sistent interpret at ions satisfy ·the following con-

straints: 

For each line, 1, and for each junction, j, 

I 5. = I tl-h cL r sl :), ~ I 
.A J:A A 

where >.. ranges over the po ss ibl e 1 a bel s .for a line 

or junction and L: A means that the line l has label 

A· 

Also, in a consistent interpretation, if a line, 1, 

has la be 1 )\ then a junction at the end of it~ j, must 

have a label, A',·which is compatible with A Hence 

for line labels: 

= 

where ranges over the labels of j which give the la-

bel A to line 1. 

Using these constraints, a network of line label and 

junction label hypotheses was created.for a line drawing 

of a triangle. Figure 5.1 shows the possible line and 
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FIGURE 5.1: The possible labellings of a triangle, given the 

, Huffman/CloHes labels for an ell-junction (see figure 1.2). 

The names A1, A2 etc., are used to refer to particular line 

labels in figure 5.2 • 
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FIGURE 5.2a: Showing how the supposition values change durL~g 

relaxation for the line labels on the three sides of a triangle. 

The lines are A, B, C and the suffixes 0, 1, 2, 3 indicate the 

labels. The meanings of A1, A2 etc., are shown i."Yl figure 5.1. 

Junction label hypotheses were also involved. but are· not 

shown. The preferences were 0.5 for each of the three junctio:i 

labels corresponding to occluding convex corners, and 0 for all 

other' hypotheses. 
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FIGURE 5.2b: If the junction labels corresponding to concave 

occluding corners are given preferences of 1, the triangular 

hole interpretation becomes the best. 
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FIGURE 5.2c: A preference of 3 for the uconve:x~ edge" label, 

B2, overrides preferences of 0.5 for the "a.c.LLte occluding 

corner" junction-labels (since 3 > 0.5 x 3), causing the 

equilibrium state to be the best containing B2. 



junction labels and figure -5.2 gives examples of relaxa

tion with various fabel preferences. 

5.3: Yakimovsky and Feldman < 1973) 

One \<Jay of segmenting an image of a natural scene is 

to start with a large number of small, roughly homogenous 

regions and to merge them into larger regions which 

correspond to meaningful parts of the scene. Yakimovsky 

and Feldman describe a way of arriving at good partitions 

of images into regions and good interpretations of the 

regions, which utilizes knowledge about the scenes. The 

two kinds of knowledge employed are the probabilities of 

the regions of different kinds depicting particular scene 

constituents and the probabilities of boundaries of dif-

ferent kinds existing between regions with p8rticular in-

terpretations. For example, blue regions are unlikely to 

be trees and regions interpreted as road and sky are un-

likely to share a vertical boundary. If the probabili-

ties are assumed to be independent and there are no other 

a priori probabilities, then a global interpretation G, 

is optimal if it maximizes the product: 

lT (reqion i has J region i has the) 
I i I f i nt erpr et at ion int ( i, G) measured values 

TT (boundary B ( i, j) is between/_ BC i, j) has the ) 
X f int<i,G) and int(j,G> measured values 

for neighbouring 
regions i,j 

where int(i,G) is the interpretation given to region i in 
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the global interpretation G, and B(i,j) is the boundary 

between region i and region j. 

Using conventional techniques it would be extremely 

expensive to evaluate the product for all the combina

tions of region interpretations for a~l partitions of the 

image into reqioris. To avoid this, the part of the pro

~ram discussed by Yakimovsky a~d Feldman only-considers a 

sequence of _partitions generated by removing possible 

boundaries one at a time in a particular order, and for 

each partitirin it only computes upper and lower bounds on 

the product. Given these bounds, graph searching tech

niques can be used to find good interpretations of par

ticular partitions. The upper bounds are found by relax

ing the consistency constraints, so that the individual 

terms in the product are simply the probabilities of the 

locally best interpretation for each region • The lower 

bounds are found by choosing interpretations for the re

gions one at a time, the extent by which the most prob

able interpretation ~f a region outstrips the others be

ing· used to decide which region to interpret next. This 

is an example of a method discussed in Section 1-~. I for 

- finding good but not necessarily optimal interpretations~ 

There are serious objections to the way in which 

YAkimovsky and Feldman have formulated the segmentation 

problem. They have ommitted general knowledge about 3~0 

strticture whilst including specific knowledge about the 

probabilities of particular scene constituents being dep-
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icted by neighbourinq regions. At a low enough level 

both types of knowledge may be absent, and at a high 

enouqh one both may be present, but it seems unlikely 

that really·good segmenters (people) invoke knowledge of 

oarticular objects before invoking ge~eral 3-D knowledge 
I 

<Marr 1975). The most impressive segmentation programs 

use inferences based on 3-D structure and not on specific 

types of object {Guzman 1968, Clowes 1971, Waltz 1972). 

CGuzman~s program does not appear to use 3-D knowledge. 

However, the reason his program works so well is that it 

uses 2-D cues which allow powerful inferences because of 

the 3-0 structures they imply). 

The abstract problem presented by Yakimovsky and 

Feldman suggests a relaxati-on approach, and it is infor-

mative to see how relaxation can _be applied, what diffi-

culties it runs into, and how they :n.:1y be overcome. 

5.3.1: A relaxation formulation 

The task of maximising the product given above is 

equivalent to minimizing the total cost of a set of hy-

potheses about region and boundary interpretations, where 

the individuai costs are the logs of the probabilities. 

It seems to be necessary to have hypotheses about re-

gions, boundaries, region interpretations a~d boundary 

interpretations. The constraints are: 

1. Larger regions are produced by merging small ini-
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tial reGions. In any global interpretation, an ini

tial region must be either unmerged or pa~t of exactly 

one larger region. So for all regions which share an 

initial region: 

2. Every region should be given exactly one in-

terpretation: 

L 5 ri - J -
L 

where is the supposition value of the hypothesis 

that region r has interpretation i. 

3. If two neighbouring regions q, r exist in the 

best interpretation then so does the boundary between 

them. So for all neighbouring pairs q, r: 

11\r~ Ii(~;r) 

~ V/'" V 8 (~ 1 f-) 

(!-5't) + (1-)v-) -1 ~B(p) ). J 

.5 8 ( }J) ;) s1 f s r - 1 

4. Similarly, if two neighbouring regions q, r have 

interpretations i, j then the boundary between them 

has interpretation B(1i, rj) : 

\>~here 5 ( ) is the supposition 
p J; / Y; 

value of the hy-
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pothes is B ( 'fi, r) and 5'j i is the supposition value of 

the hypothesis ~hat region q has interpretation i. 

There are three main objections to straightfor11rardly 

creating all the relevant hypotheses and constraints and 

then finding the best--state. 

1. It is not clear in advance how many region hy

potheses to make. Yakimovsky and Feldman continued re-

moving boundaries until the upper and lower bounds on 

the best possible interpretation of the current parti-

tion fell sharply. This relies on the assumption that 

once the product falls significantly, further merging 

will not raise it again. If the assumption is valid, 

relaxation could be used on some initial partitions, 

and further merging to produce new partitions might 

only be necessary if the best solution found by relax-

ation involved one of the later partitions, that is, 

one with many merges. 

2 • I f t h er e a r e i in t er p re t a t i on s for each r eg ion , 

and r regions, the number of region-interpretation 

hypotheses is i.r, which may be of the order· of a 

thousand for the data given. For boundary interpreta-

t · h th num'oer 1· s about -+b. 1· ~ .r 1 ons, ov1ev er, e c'. where b 

is the boundaries per region. This is a formidable 

number if i is large. Fortunately, it is possible to 

avoid ever formulating many of the boundary interpre-

t~tion hypotheses. Hypotheses about the interpreta-

tion of a boundary need only be added when the relaxa-
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tion process raises to a signific8nt level the suppo

sition values of p~rticul~r interpretations of the re-

gions on either siae 6f the boundary. This is because 

boundary interpretations have associated costs and so 

will not be included-in the best global intepretation 
I 

unless they have to be. The only ~hing that can force 

the inclusion of a boundt?ry interpret~tion is a con-

straint of type (4) above which does not become opera-

tive until the sum of the supposition values for the 

alternative interpretations of a region exceeds 1. 

This is another example of the iQportant technique of 

avoiding irrelevant hypotheses by integrating hy-

pothesis creation with relaxation. 

3. Since all the preferences are negative, there is 

a tendency for constraints like (4) above to lead to 

non-integer optima, so that relaxation does not pro-

duce a clear-cut answer and it is necessary to use 

cutting planes or branching (see Section 3.7). The 

reason for expecting non-integer optima is that if 

many region interpretations are given supposition 

values of a half or less, constraints of type (4) do 

not constrain the supposition values of the boundary 

interpretations, and so the associated costs are not 

incurred. Constraints of type (2) above can still be 

satisfied by several different interpretations of a 

region, each of which has a smAll supposition value. 

If a relaxation program_ of the kind described could 
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be made to work then apArt from the advantAge that it 

could use parallel hardware, it would be capable of find~ 

ing a solution in which there \'/ere late merges in one 

part of the image without being too committed to earlier 

!Tlerges in another oArt.- Yakimovsky and 
l i 

Feldman 
. I 

strict ordering for boundnry rerrJoval and this sequential 

strategy prevents. them from ever considering most_ of ·th~~ 

complete partitions involving subsets of the candidAte 

regions they generate. This point may be clArified by a 

simple example. Suppose there are four initial regions 

Rl, R2, R3, R4. If merges are considered in the order RI 

+ R2 -7R12, R3+R4-7R34, R12 + R34----7Rl234 then the par-

tition Rl, R2, R34 will never be considered, even though 

it only involves existing regions. 

5.4: Barrolv and Tennenbaum ( 1976) 

5.4.1: The task 

Barrow and Tennenbaum describe a system, MSYS, which 

is designed to find the optimal consistent set of in-

terpretations for regions in a hand- partitioned image of 

a room seen e. Regions correspond to entities like .the 

back of a chair, a picture, a door or a patch of floor. 

Region interpretations are given a priori likelihoods on 

the basis of their height in the scene and their surface 

orientations, which are discovered using a laser range 

finder. There are various constraints between the in-
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terpretations of different regions. A picture, for exam-

Ple Ca nnot 'oe adJ·ar.P.n+- + :I : -!... .L h ~ _ , __ ~ ~o a coor, ana LWO paLe es or 

floor must be of similAr brightness. 

5.4.2: The general strategy 

Barrow and Tennenbau~ descri.be several versions of 

their system. Only the version for which there is -=1 

guarantee of finding the best solution is described 

The optimal set of region interpretations can be 

found by using a branch- and-bound search CDuda 1970). 

Branches are created by opting for or against a particu

lar region interpretation, and an upper bourid is set on 

the best terminal state reachAble along a given branch by 

combining the likelihoods of the locally best surviving 

interpretations for each region. MSYS uses a branch-

and-bound search, but for each inter~ediate state it at-

t em p t s to get a much t i g h t er u pp er bound • Instead of 

simply combining the best surviving a priori likelihoods, 

it enters a relaxation phase in which the constraints are 

used to lower the likelihoods. It then uses the best 

lowered a posteriori likelihood for each region, the lo

cal optimum, to compute the global upper bound. The hope 

i s that given s uJ f i c i en t 1 y · rich cons t r a in t s the u pp er 

bound will be so tight that hardly any branching is re-

qui red. 
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'5.4.3: Likelihoods and their modification 

Tne actual method MSYS uses for modifying the likel-. 

ihoods during the relaxation phase is hard to grasp be-

cause it is not clear what the likelihoods are, and so it 

is not clear how they should be ma~ipulated. The real 

logic behind th~ way the likelihoods change seems to be 

the requirement that they always fall so that the highest 

value in intermediate states can be used to set an upper 

bound on the values obtainable in terminal states. Given 

this requirement on how the numbers should behave it is 

not clear that any sensible interpretation of them ex-

ists. The a priori likelihoods of the different in-

terpretations of a region sum to 1 ~vhich suggests that 

they are probabilities. However, after a phase of relax-

ation the sum is no longer 1. The numbers cannot be re-

normalised, because this might raise some of them. Also, 

although the numbers start off looking like probabili-

ties, the way the local optima are combined to get a glo-

bal upper bound is by addition, not multiplication. This 

may suqqest that likelihoods a~e logs of probabilities, 

but the way they interact via constraints argues against 

it. The basic foro of a constraint is that an interp!e-

tation Ri _of one region, R, must be supported by partic-

ular interpretations Sj , Tk ••• of other regions S, T •••• 

If these interpretAtions have low or zero likelihoods 

then so r;JUst " .n • The actual numerical constrAints may be 

based either on set theory or on fuzzy set theory (see JiJ- 53). 
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R · -. S · ----\. 1 (R · ) ~ l ( S. ) 
,__; ;-:T ' J 

Figure 5.3 Sho~_ng how logical constraints give rise to 

numerical ones using set theory. "::::>" means "must be supported 

by" and l(Ri.) is the likelihood o:f R i • 

RL ~ Sj=?l(Ri)~l(Sj) 

R£2>SjATk~l(Ri)~inf( l(Sj ), l(T}()) 

R· ~ S. V Tv==? l(R· )~sup( l(S. ), l(T~,.-) ) 
L J '\ l J r'-

Figure 5. 3b Sho~Iing the numerical constrai.n-cs derived using 

fuzzy set theory. 



5.4.4: An abstract example 

Suppose there are two regions, R,S, each with three 

interpretationsa Figure 5.~b shows some a priori likeli

hoods, and the a posteriori likelihoods reached after re

laxation using the constrBints shown in figure 5.3e. 

When equilibrium is reached a branch is made on the 

likelihood of R
3 

, sBy, by setting it or all its rivals 

to zero. This gives the states shown in figure 5.3c. 

After relaxation, a terminal stAte is reached which has 

value 0.24 + 0.2. Since this is better than the combined 

local optima in the other, intermediate state, it is the 

best solution according to the criterion used by MSYS. 

Notice, howeve~ that the ~elution R S is consistent and 

that both sum and the product of its a priori likelihoods 

are better than for MSYS's choice. The reason why MSYS 

does not find the solution R S is that it only uses the 

constraint R, :J 5, v{) vS3 to lov1er the likelihood of R1 

whereas if likelihoods are anything like probabilities, 

the constraint should also have the effect of raising 

S 
1 

, S ..2. or S 
5 

when R 1 i s hi g h and they 3 re a ll 1 o w , a s 

it does in L.P. relaxation. 
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R l ~ S 1 v S2 v 53 , S 1 ~ R 1 , S3 :::> R3 

1 C R 1 ) ~ sup ( 1 CS 1 ) , 1 ( S2) , 1 (53) ) 

lCSI) ~ 1CR1 ), 1 (52) ~ 1 ( R2) , 1 <53 > ~ l < R3 ) 

FIGURE 5.~a : Some constraints between interpretations of 
R and S (first line) and the corresponding numerical 
constraints between likelihoods <second and third lines). 

1 < Rl ) = 0. 76 -> 0. 7 -> 0. 2 

1CR2) = 0.01 

1CR3) = 0.24 

t( s 1 ) = o. 1 

1(52) = 0.7 -> 0.01 

1 ( S3) = 0. 2 

Figure 5.lf.b : Some a priori likelihoods, and the results 
of a relaxation phase (indicated by arrows) using the 
constraints above. 

lCRl )=0 

1CR2)=0 

Choose R3 

1 ( s 1 ) =0. 1->0 

1 (52)=0.01->0 

1CR3)=0.24 1(53)=0.2 

Reject R3 

1 ( R 1 ) =0 .. 2-> 0. 1 1 <51 ) =0. I 

1CR2)=0.01 1(52)=0.01 

l<R3)=0 1(53)=0.2->0 

FIGURE 5.~c : Two states obtained by branching on R3 
from the state obtained after the relaxation phase 
in fiqure,5.~b above. 



5.4.5: Comparison of MSYS with LP relaxation 

The main criticism of MSYS is the lack of a precise 

interpretation for likelihoods. From the point of view 

of LP relaxation, the reason for the confusion is the 

lack of a distinction between preferen~es and supposition 

values. Likelihoods seem to be an attempt to combine 

these two different types of number into one. A priori 

probabilities (preferences) are represented as initial 

values for likelihoods, so when the likelihoods change, 

the a priori probabilities are lost and the criterion of 

the optimal consistent state cannot be in ter~s of their 

product. The criterion of maximizing· the sum of the 

likelihoods seems like an unprincipled choice for facili-

tating the branch-and-bound search. By contrast, when T? 

relaxation is combined with a branch-and-bound search es 

a way of handling non-integer vertices (see Section 3.7) 

the measure which is being optimized, and is used as a 

bound, is a principled one. 

Despite these criticisms of detail, the general vie~ 

of the way computations may be performed in vision is 

_shared by the authors of :\1SYS and LP relaxation. In par-

ticular, the importance of constraint p!-op8gc=ttion for 

avoidinq search, as illustrated by Waltz's pro.;rram 

REF-ARF (Fikes 1970), 1vas first explained to me by Ser-

r ov1. 
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5.5 Growing islands of consistent hypotheses. 

In the revised puppet task (Section 4.7), distorted 

parts And poor relations are a·llowed but hAve a~ associ-

ated cost. The problem is to find the consistent set of 

interpretations of the rectangles and overlaps with the 
I 

m i n i m al tot a 1 cos t . On e a 1 t ern 2 t i v e to re 1 a x at ion i s A 

branch-and-bound seArch (see Section 1.9) in which the 

cost of a partial solution is the sum of the costs of its 

constituent hypotheses. The first complete solution 

whose cost is lower than any of the uncompleted partial 

solutions is the optimum. Unfortunately, R partial solu-

tion which is nearly complete will tend to have a much 

higher cost than one which contains only a few hy-

potheses, especially for a puppet picture in which the 

best interpretation contains many poor • • .l- .l... 

jOlnt..s or p3rt..s. 

Consequently, th~ optimal solution will not be reAched· 

until all the other partial solutions have been developed 

to contain a considerable number of costly hypotheses. 

This means that the bound will not prune the search tr.ee 

very effectively. 

The reason for the ineffectiveness of the branch-

and-bound search is that large partial solutions are un-

fairly penalised compared with small ones. A better 

measure of the promise of a partial solution can be ob-

tained by comparing the total cost it has incurred with 

its size., More precisely, the nshortfall density" of a 

partial solution can be defined as the mean value, over 
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all its hypotheses, of the difference between the cost of 

the hypothesis chosen and the cost of the locally best 

hypothesis for explaining the same data (i.e. the rectan

~le or overlap). The smaller the shortfall density the 

better the partial solution. This measure cannot be used 
I 

in a branch-and-bound search· because the best overall 

solution might start life as a very unpromising partial 

solution, and so there is no guarantee that a complete 

solution which has a lower shortfall density than any 

currently existing partial sol ut ion is the optimum. How-

ever~ an island growing technique used in the H~IM speech 

understanding system and described by Woods (1977) caG 

make effective use of shortfall density to prune the 

search space. The way in which a modified version of the 

technique would be applied to the revised puppet task is 

described below~ At present this application is enttrely 

hypothetical. 

The first stage is to create a number of seed hy-

potheses which will act as the initial islands. These 

are like the nuclei used in the puppet program (See sec-

tion 3.2), thoug~ they differ in that it is not always 

sufficient simply to find just one seed in the best in-

terpretation. To be sure of finding the optimum it is 

necessary that all its good cohstituent hypotheses be 

seeds (see below). One v1ay of ensuring this is to make 

all the gqod local hypotheses act As initial islands. 

The second stage consists in growing islands either 
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'oy merg1· ng tt·'o · 1 d b .~- · · ,-4 ,. • ·'~ lS an•. S, or. y crea1..1ng ana ac .. cnng ne::; ln-

terpretations of the rectangles or overlaps neighbourinq 

an island. The island with the lowest shortfall density 

is always selected as the next one to be grown until 

there is an island which covers all the rectangles and 
I 

overlaps and still has a lower shortfall density than any 

other. This is taken to be the best global interprets-

tion. The reason that it can be accepted is the best in 

this case though it would be unacceptable in a branch-

and-bound search, is that if there were a better complete 

solution, it would have to contain a partial solution 

with a lower shortfall density and if thera were such a 

good partial solution it would already have been grown 

from one of the seeds. To put it another way, a tree 

search imposes an ordering on the rectangles and ovelaps 

which may force the best global interpretation to grow 

from a partial solution with a high shortfall density~ 

whereas island growing from a sufficient number of seeds 

allows the best parts of a global interpretation to be 

grown first. 

Compared •,•Ji th LP relaxation, island gro1:'ling has both 

strengths and we~knesses. It avoids all the messy prob-

lems associated with the use of continuous supposition 

values. Also, by combining the constraints imposed by 

the hypotheses in an island, it should be possible to 

restrict the search for the new hypotheses which may act 

as extensions to the island. A potential weakness of is-

land growing is that whenever a new island is created, a 
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check must be made to ensure that it is not a copy of an 

island which already exists. Given a large quantity of 

data and hence many islands, the checking process can be 

very time consuming. A further difficulty is that there 

is no simple, economical way of handltnq minor VAriations 
I -

of an island. The obvious strategy is to allow islands 

to contain noR" nodes, but there may be interactions 

betv1een the choices at different 11 0R 11 nodes. Suppose, 

for example, that at one place in an island there is a 

choice of A or B, and at another place there is a choice 

of C or D. It may be that A is incompatible with D, and 

B with C. If "OR" nodes are tc be used, 'these dependen·-

cies need to be explicitly represented, perhaps by some-

thing like the connectivity matrices of Hearsay II CErman 

and Lesser 1 9 7 6 ) • A 1 so , n 0 R 11 nodes great 1 y · c o m p 1 i cat e 

the process of using the content of an island to restrict 

the searr.h for possible extensions. So perhaps the best 

strategy is the simple but expensive one of creatin~ two 

completely separate islands for each minor variation. 

In the absence of a detailed example of the use of 

island growing and shortfall density for picture in-

terpretation, it is hard to assess the importance of the. 

above criticisms or to discover the effectiveness of 

shortfall density in limiting the number of islands. The 

fairly successful use of island growing in HWIM (Woods 

1976) seems to be-the best available guide to its value. 
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,5.6: Matching by Clique finding 

Ambler et al ( 1975) describe an efficient matching 

technique which is well-suited to the puppet task. In 

their example, the problemsrnof finding the best match 
I 

b • 't h d dl I 

1 
• J... f e-cween a oa a-grap an . a mo e -g1;apn, 1s ~...rans ·armed 

into the problem of finding maximal completely connected 

subgraphs (cliques) of a third graph, in which each node 

corresponds to an interpretation of a data-node as a 

mode 1-n od e • Two interpretation nodes are linked by an 

undirected arc if and only if the interpretations are 

compatible. In the puppet example, there is ho explicit 

model-graph, but the part and joint hypotheses are 

equivalent to interpretation nodes and the clique-finding 

technique can be applied if a·ll compatible pairs of hy-

potheses are linked by arcs. 

An efficient clique finding algorithm is described 

by Bran and Kerbosch (1973). It works by extending to-

tally connected subgraphs, but unlike islahd growing, it 

manages to avoid ever creating the same clique twice, and 

hence avoids checking for duplicates. 

Although it may be the best solution to the simpl~ 

puppet task described in Chapter 2, it is not clear how 

clique findi~g can incorporate additional input instruc-

tions favouring certain solutions over others, or how it 

can be extended to the revised puppet task Csee Section 

4.7) in which the hypotheses do not all have preferences 

of one or zero. Ambler et al suggest using thresholds to 
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eliminate poor hypotheses and also poor arcs between 

pairs of hypotheses which are only poorly compatible. 

All remaining hypotheses and the compatibility arcs 

between them are then treated as equally good, thus 

reducing the problem to the· previous form. However, 
I 

something 
I 

is lost in the reduction. }f • • • the 1qax1 m1 s1 n,;; 

number of consistent goo~ 0ypotheses is not the sa~1e 

problem as finding the best consisterit set of hypotheses. 

So although clique-finding is efficient for some m3tching 

problems, there is no obvious way of extending it to the 

more general problems to which LP relaxation can be ap-

p 1 i ed. 

5.7: Hierarchical synthesis 

Barrow et al ( 1972) describe a very efficient ~raph 

matching technique stemming from work by Selfridge and 

Neisser ( 1960). Rather than h~ving a single model-graph, 

there is a hierarchy of them corresponding to the hierar-

chy of parts in the model. Each part has a corresponding 

graph or relational net whose nodes correspond to smaller 

_parts. In the program which implements hierarchical syn-

thesis, each part of a model has a corresponding program 

module which contains the relational network of smaller 

parts, pointers to the modules for smaller parts, and 

back-pointers to all the modules whose relational net-

works contain the part. During matching, activated 

modules search for all reasonable instantiations of their 
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relational nets. To do this they need instantiations of 

their lower level modules so they activate them. When a 

module finds any successful inst8ntiation it returns it 

to its higher level modules which are in tutn, activated. 

Top-down matching is caused by initially activating the 
I 

top-level module, and bottom-up mat~hing by activating 

all the lowest level modules. The reason that hierarchi-

cal synthesis is efficient is that modules remember their 

instantiations, so that time is not wasted in repeated 

efforts to match the same subgraph. As this suggests, 

~he method is particularly effective if many different 

higher level modules share a lower level one. 

Some kind of hierarchical structuring seems inevit-

able in visual perception, but there are a number of ways 

in which the simple version of hierarchical synthesis 

described above is not an entirely adequat~ model: 

1. When a module is activated by a lower level one, 

it requests it, in effect, to search for all reason-

able instantiations. This is not a rich enough in-

teraction between modules, since under many cir-

cumstances the search could be restricted by mobilis-

ing constraints imposed by the instantiations of si-

bling modules.. For example, suppose a leg module has 

pointers to lower level foot, calf and thigh modules. 

If a thigh and foot have already been found, then when 

the leg module activates the calf module, it should 

give addit.ional information about the expected size, 
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position and orientation of the calf. 

2. There is evidence (Navon 1977) that in human per-

ception, an awareness of coarse, global structure pre-

cedes the analysis of details. In hierarchical syn-

thesis this is impossible since t~e only way of dis

covering that a high level module is instantiated is 

via its lower level modules. What is needed is a more 

direct link between higher modules and the grey-level 

data. 

3. For many objects, there is no natural unambiguous 

hierarchical decomposition into parts, so each module 

may need to have alternative relational networks using 

different decompositions (see. Turner 1974). Another 

reason for wanting modules corresponding to many dif-

ferent, overlapping fragments of , . + . an oojec .. 1s that 

when an object is partially occluded, the remainin~ 

fragment is probably easier to recognise if it can be 

seen as one of a few known fragments th2n if it can 

only be analysed as fragments of fragments. 

4. In general, modules will not find perfect instan-

tiations, so some mechaniso is needed for makin~ the 

best of imperfect ones. Turner Ct974) uses linear 

threshold functions to decide whether an 

stantiation is acceptable. However, this means that a 

high level module may accept an instantiation consist

ing of many barely acceptable parts, but reject one 

with several perfect parts and one just unacceptable 
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one. As in cliqc3-finding, local thresholding cannot 

guarantee the global optimum. 

5. Perhaps the greatest potential advantage of LP 

re la xa ti on over graph-matching techniques like 

hierarchical synthesis or clique-finding, lies in the 

way that occlusion, lighting, and support might be 

handled. It is hard to see how knowledge of these ef

fects can be mobilised in graph-matching. In fact, 

occlusion is typically treated as if it 1:1ere inexpli

cable noise (Turner 1974). By contrast, LP relaxation 

provides a mechanism which should be able to incor

porate specific inferences based on explicit hy

potheses about occlusion, lighting, or support, se> 

that relaxation could integrate decisions about these 

effects with decisions about three-dimensional shape. 

Naturally, a great deal of work would be required to 

write a program which demonstrated that this promise 

could actually be fulfilled. 
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CHAPTER 6 

PERCEPTUAL SCHEMAS AND THEIR RELATIONSHIP· 
I 

TO PERCEPTUAL AWARENESS. 

The main aim of this thesis is to investigate relax-

ation as a method of finding optimal interpretations of 

scenes, and so many important perceptual issues have been 

deliberately avoided in discussing the relatively simple 

applications of relaxation which have been described so 

far • Ho 'tJ ever , t h e next a pp 1 i c a t i on to be des c i bed is a 

system which allows relaxation to be used in the con-

struction of more complex perceptual representations, and 

in order to implement the system, it was necessary to 

face up to some difficult general issues. Decisions had 

to be taken about the types of representation used in 

perception, and about the relafionship between stored 

knowledge and the current awareness of r~ particular 

scene. So this chapter discusses these issues, and then 

_ Chapter 7 shows, in detail, how a particular approach to 

them can be incorporated in a working system. 

6.1: Current awareness and stored knowledge 

It will be assumed that the representAtion of a par-

ticular scene is some kind of relational nework, (see 
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Guzman 1968, Winston 1970). An important issue is how 

these representations are related to those of stored gen

era l kn o~'l 1 ed g e about the for m s o f ob j e c t s • I n psycho 1 o g

ical terms this amounts to the relationship between the· 

contents of current awareness and the contents of long 

term memory. There is a vi ev;, common in· Psychology and 

Artificial Intelligence, that the two types of represen

tation are similar in form, so that the contents of long 

term memory are like copies of the contents of current 

awareness. This view will be criticised and contrasted 

with.an alternative model, a simple version of which has 

been implemented. 

The following two assumptions constitute a model of 

how objects are remembered and recognised which seems to 

be used implicitly by many psychologists. 

1. Long term memory consists of a store of soillething 

like copies of percepts, and recalling consists in re

trieving things from this store, or in activating 

them. 

2: Recognition involves comparing percepts with 

stored memory images. 

Some of the plausibility of this model of recogni-

tion and memory may cqme from its similarity to well. 

known systems which work in just this way. For example, 

finger-prints are recorded by taking copies of them and 

suspect prints are recognised by comparing them \•Ji th the 
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stored copies. Also, the conten~s of current awareness 

seem, introspectively, to be similar when we perceive an 

object and when we recall it. 

A quite different model of memory, which was sup-

parted by Bartlett's (1932) experi~ents, is that recal-
: 

ling is a constructive process of creating a coherent, 

articulated representation rather than simply re-

activating or r etri ev ing a eo py·. A good analogy is 

·"remembering" a sweater by keeping the knitting instruc-

tions so that the sweater can be recreated, as opposed to 

re~embering it by keeping another similar sweater. On 

this model, the contents of current awareness resulting 

from recall may be different from the contents of long-

term memory, so . that the expression "memory image" must 

be reserved for one or the other. If we use "memory im-

age 11 to mean a rep~esent~tion in current awareness creat-

ed in the absence of the relevant perceptual input, then 

the contents of long-term membry may be nothing like a 

memory image. 

Perceiving is also a constructive process which uses 

some of the same long- term memory information as 

remembering, but this does not m~an that any rememberinJ 

goes on when we perceive. We may deliberately choose to 

compAre a perceived· object vJith a memory image, but this 

is introspectively quite different from the p~rception 

and feco~nition of a familiar object. 

The evidence against the stored copies model co~es 
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rna1"nly fron1 the gener~tl.'le t f t· j • Ll r:1 na ure o percep 1on an, 

memory. Bartlett, for example, showed that if peo~ple 

are asked to recall A story after progressively longer 

intervals, they produce stories which contain less and 

less of the detail of the original and are more and more 
I 

i 

in accordance with general expectations. This seems to 

fit the idea that what are stored are rules for con-

structing the story and that if any of the rules are 

lost, general principles are used in their place. The 

idea of stored rules also seems to be necessary to ex-

plain how we can perceive objects which have never before 

been encountered, such as a flight of stairs with nine-

teen steps. Stored copies of previously perceived 

flights of stairs would presumably contain a particular 

number of steps, but what we n~ed is an awareness of the 

grammar of stairs, the way in which risers and treads al-

ternate. The similarity between structures built during 

perception and the structures which Linguists assign to 

sentences, has been expounded by Narasiman ( 1966) and 

Clowes ( 1969) among others. The linguisti~ analogy is 

particularly helpful here, for supposing that our 

_knowledge of spatial structures resides in stored copies 

of percepts, is like supposing that our knowledge of 

grammatical structure resides in a set of stored sen-

tences. 



6.2 Frames 

In a widely read paper, Minsky (1975) expounded a 

theory of the way in which knowledge is structured and 

used in perception and understanding. His theory will be 

discussed at some length, mainly inforder to attack his 

view that current awar~ness and long term memory have the 

same form, but also because many of his ideas about t~e 

structuring of knowledge into frames are incorporated in 

the system to be described. 

6.2.1: An example of a schema 

The idea that we understand the world by assimi lat

ing it to our own schemas Cor frames) is far ·from new, 

having been expounded by Kant ( 1781). Piaget C 1954) ·and 

Bartlett (1932) among others. The difficulty of the fol

lowing task is a striking illustration of the existence 

of schemas and their ~owerful influence on our awareness 

of reality. Imagine a solid, regular tetr8hedron, and 

then try to imagine a plane which cuts it so as to give a 

square cross-section. Most people cannot imagine such a 

plane. Their schema for a tetrahedron gives it a tri

angular base and three sloping triangular faces. There 

are three horizontal base-edges and a tripod of other 

edges. Not only are there no right angles, but edges and 

faces nAturally fall into groups of three. 

There is, however, a quite different schema for a 
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.tetrflhedron, whi eh is more a ooroori ate 
• . l 

\'I hen the 

t e t re he d r on i s i n a d i f f ere n t or i en t a t i on , · s i n c e then t he 

edges and faces which are grouped together have similar 

inclinations to the v~·rtical. Imagine a horizontal edge 

resting on the support plane, with another horizontal 
I 

i 

edge at right angles to it and some distance above it, so 

that the centres of the edges are vertically aligned. 

Now join each end of one edge to each end of the other as 

in figure 6.1. This is a quite different way of thinking 

of a tetrahedron. The faces naturally form tv1o pairs 

each of which is hinged across a horizontal edge. The 

edges fall into a group of two horizontal ones and four 

sloping ones. In volumetric terms, the tetrahedron can 

be seen as a stack of rectangular laminae which are very 

elongated at the bottom, become progressively squatter 

nearer the middle, and are elongated the other way at the 

top. Half way up is a square. 

6.2.2: Minsky's theory 

Minsky ptits forward a theory of how frames are used 

_and inter-related: 

_.,Here i ·s the essence of the theory: ~·lhen one 

encounters a new situation (or makes a substantial 

change in one's view of the present problem) one 

selects from memory a substantial structure called a 

frame. This is a remembered framework to be ad~pted 

to fit reality by changing details as necessary. 
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FIGURE 6 .. 1: A tetrahedron inscribed in a cube (after Hilbert 

and Cohn-Vossen 1952). The top/bottom direction suggested by 

the cube can be used for understanding the tetrahedron, b~t it 

gives rise to a different schema from the normal one (see 

section 6.2 .1). Conversely, the normal schema. for a tetrahedro:1 

involves an intrinsic top/bottom direction which can be imposed 

on the cube to reveal a different schema in which the hexagonal 

cross-section is apparent. (This takes practice). 



11 A frame is a dat-a-structure for representing a 

sterotyped situAtion, like being in a certain kind 

of living room, or going to a child's birthday par-· 

ty. Attached to each frame are several kinds of in

formation. S6me of this information is about how to 

use the frame. Some is about what one can expect to 

happen nex~. Some is about whAt to do if these ex

pectations are not confirmed• 

11 ~'/e can think of a frame 85 a netv1ork of nodes 

and relations. The .!t top 1 evel s 11 of a frame are 

fixed, and represe~t things that are always true 

about the supposed situatiDn. The lower levels have 

many terminals - "slots" that must be fi.lled by 

specific instances or data. Each terminal can 

specify conditions its assignments must meet. CThe 

assignments themselves are usually smaller "sub--.. 

frames 11 .) Simple conditions are specified by mark-

ers that might require a terminal assignment to a 

person, an object of sufficient value, or a pointer 

to a sub-frame of a certain type. More complex con

ditions can specify relations among the ~hings as

signed to several terminals. 

-"Much of the phenom enol ogi cal power of the 

theory hinges on the inclusion of expectations and 

other kinds of presumptions. A frame's terminals 

are normally already filled with 11 defaul t-" assign

ments. Thus, a frame may contain a great many de-
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tails whose suppositi~n is not specifically warrant

ed by the situation. These have many uses in 

representing general information, most-likely cases~ 

techniques -for. bypassing 11 logicn, and ways to make 

useful generalizations.n 

One of the main aims of the theory is to show ho\'1 our ap

parently rich and complex immediate. awareness of the 

scene can be compatible with seriAl processing. Minsky 

believes that, although parallelism may be useful at 

lower levels, it offers little help to hypothesis forma

tion and confirmation methods that seem necessary at 

higher levels. Instead of the parallel formation and 

parallel interaction of many hypotheses, expounded in 

this thesis, he proposes tha serial manipulation of com

plex pre-existing structures so that the richness of 

awareness comes from selecting the correct existing 

structure rather than from constructing one. 

6.2.3: Some Difficulties for Frames 

Minsky implies that frames are data-structures which 

get joined together by making terminal assignments during 

perception. This creates a problem for rooms with two 

windows. Presumably there is only one window frame, so 

what happens when both window slots in the room are 

filled?. If the details of the windo0s differ, there will 

be rival fillers for the slots in the window frame. It 
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seems that we must be able to copy the window frame and 

use separate copies for the two slots in the room frame. 

So the economical idea that all the main high-level 

data-structures used in perception are ones that already 

exist has to be abandoned. 

A more serious difficulty is that some frames, such 

es those for a polygon or a zebra crossing, need to have 

a v2riable number of slots. This suggests that frames 

cont~in ~enerators for instances rather than simply being 

copied to produce instances, just as in computing 

languages structures like arrays are not made by copying 

a standArd array but by a procedure which can take param

eters. Even when the number of slots is fixed, as in a 

?0?-2 record, there is no need to generate instances by 

copying a standard example. There is an important issue 

here about the value of ~ particular example of the 

structure - a structural template - as a model of struc-

tures of that kind. At first sight such a direct 

representation seems to have many advantages (see Sloman 

1971). However, it also has many disadvantages. For ex

ample, our knowledge that a square has square corners is 

more economically represented as a single rule that can 

be applied to any corner of the square rather than as 

four separate pieces of knowledge atteched to the four 

corner slots, and the same goes for our knowledge that 

each white .stripe in a zebra crossing is bounded by two 

black ones. 
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Another difficulty for_ structural templates, stems 

from the hierarchy of types of _object. For example, an 

ostrich is a type of bird, so it seems to be redundant to 

have a frame for an ostrich which contains two slots for 

wings, since this structural informBtion is already 
I 

con-

tained in the frame for a bird. Although it may be con-

venient, as an implementation detail, to store knowledge 

about ostriches within a bird-frame, this structure need 

neither be used nor copied to create the bird instances 

used for representing a particular ostrich, since we may 

create a representation of a bird before deciding whether 

it is an emu or ostrich and hence before the ostrich 

frame has been selected at all. The view that instances 

Are created by copying frames leads to awkward questions 

about whether to copy the bird frame or the ostrich frame 

or both in order to represent a particular ostrich. Such 

questions do not arise if stored knowledge consists of 

schemas which define roles and rules (see below) since 

then the instance representing an ostrich in current 

awareness can derive roles and rules from both schemas 

simultaneously. 

A further unsatisfactory feature of frames is their 

use of default fillers. One reason for having default? 

seems to be that since frames are structural templates 

the slots gre available, so they might as well be filled 

with something. A default is a simple direct way of 

representing a particular expectation, but it is clearly 

inadequate for representing a range of possible frame-
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types, or restrictions which any particular instance of a 

frame must sBtisfy in order-to fill the slot. Given that 

some more sophisticated kind of representation is needed 

for this more complex information, it is questionable how 

much is added by using specific defaults. Minsky"s 

claims that defaults are useful for bJ-passing logic and 

making generalisations have yet to be substantiated. 

Reasoning with defaults is a tricky business because of 

their peculiar status. They may be suggestive but in 

particular cases no firm conclusions can be drawn because 

the defaults may be wrong. 

The main motivation for defaults is to explain the 

apparent richness of immediate awareness without appeal-

ing to parallel processing at high levels. There is no 

need, however., to suppose that decisions have already 

been taken about specific details when we first perceive 

a se en e. rii u c h of the de t a i 1 may on 1 y be apparent 1 y 

present, owing to the peculiar properties of introspec-

tion. When we examine real objects such as a television 

picture we can assume the picture does not change simul-

taneously with our attention, so if we examine one part 

-of it in detail we can assume that all those details were 

then even when we were not looking at that part. We have 

no such guarantee for introspection, so it may well be 

that people use a kind of "demand processing" whereby 

slots are filled only when their values are needed. If 

this process is smooth, rapid and unconscious it might 

well appear to naive introspection that the fillers were 
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there all the time. This line of argument has its own 

problems because decisions about how to fill one slot 

normally involve decisions about filling other slots, so 

that slots cannot be filled one at a time when needed. 

Ho'tlever, demand processi-ng seems 1 i ke: a 
I 

good 

to defaults, if one wants to explain how 

alternntive 

richness of awareness could be compatible with relatively 

slow serial processing. 
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CHAPTER 7 

A SYSTEM ~~IHICH USES RELAXATION ~0 COORDINATE 

NETWORK GROWING RULES. 

If one accepts the view that perception consists in 

using stored rules to grow a network of instances from 

the low-level data, then two of the major issues which 

arise are: 

1. How is it possible to notice the occurrence of 

subsets of instances which satisfy the left hand sides 

of rules, without extensive searching? 

2. When the low-level data or the rules are dubious, 

how can relaxation be used to find the best consistent 

interpretation? 

A system called SEITLE has been implemented which 

incorporAtes answers to both these questions. SEITLE is 

described in detail in the rest of this chapter, gnd is 

illustrated using the domain of .family relationships. 

7.1: Overview of the SETTLE system. 

SE IT LE or o v i des a s et of fa c i 1 i t i e s \·J hi c h a r e 

designed to make it easy to write programs of a particu-
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lar kind. The aim of the system is to allow the user to 

concentrate on defining the schemas needed for a particu

lar domain, and the inference rules which apply to coobi-

nations of instances of the schemas. The business of 

noticing when rules apply, setting up the relevant con
I 

straints between hypotheses, and achieving a consistent 

network of instances is handled by the system. 

The term Schema will be reserved for stored 

knowledge about a particular type of entity and the term 

Instance will be used to refer to a represent~tion in 

current awareness of an entity of that type. Schemas are 

thought of as far more like grammars than like instances. 

A Schema specifies a number of roles or slots which have 

associated restrictions on individual fillers, or on the 

relationships which should hold between the fillers of 

different slots. Schemas do not, at present, contain 

pro~edural information about how to search for fillers of 

slots. It is hard to use knowledge gained at run-tioe 

about properties of the thing that should be in a slot, 

to constrain the search for candidate fillers. This 

problem has been temporarily ignored. 

Instances and the connections between theo are 

created by the action p~rts of rules. An action is P;:::!Y"-
.... J. 

formed \•Jhen. the pattern specified on the left hand 

of a rule matches a subset of the existing instance-

network. For example, a rule might say th2t if a person 

A has a spouse B, and A also has a child C, then tha 
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11 child 11 slot of B should be filled by C (only convention-

·al families are allO\'Ied!). Once this·rule has been en

tered in the person schema, the system ensures that it is 

invoked whenever it is appropriate. In 'this respect 

rules resemble Planner antecedent theorems CHewitt 1972). 

Each instance and each filling of a slot is a hy

pothesis. It has an associated supposition value and is 

bound by constraints. For example, when the ru 1 e 

described above is invoked, the action part not only 

creates the hypotheses that B has C as a child, but also 

sets up a constraint so that relaxation will ensure that 

this hypothesis is accepted if the hypotheses '"ihich · 

matched the left hand side of the rule (called its key) 

are accepted. The use of relaxation means that instances 

and connections can be added to the network even though 

they are not definitely correct. If costs dependent on 

the, probabilities of tentative hypotheses are associate j 

with their rejection, then relaxation will find the most 

probable combination of instances and connections. 

7.2: Schemes. 

The person-sche~a which will be used to illustrate 

the SETTLE system is created by the command: 

MAKESCHEl.\A ( 11 ?ERSOt\JI 1 , [SPOUSE PARENT 2 CHILD 0 SEX 

SURNAME]); 
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The v1ords following 11 Person 11 are the names of the slots. 

Slots are assumed to be limited to one filler unless they 

are followed by a number indicating a higher limit (0 is 

used to mean no limit). ~hen an instance of the schema 

is required, a one-dimensional array (a strip) is creat-
i 

ed. The function rtmakeschema 11 assi6ns strip-accessing 

functions to the slot names so that they can be used to 

access the slots of instances. 

7.3: Slots. 

A slot is not simply a location for holding a 

pointer to some other instance. It is a complex data-

structure with the following components: 

1 • A p o i n t er b a c k to the part of the s c hem a ~,,hi c h 

contains information about the slot, such as the rules 

involving its fillers. 

2. A list of demons which are waiting for new slot 

fillers (see below). 

3. A list of hypotheses about potential slot fill-

er s. 



t ·~ .. ! .. _-_ 

7. 4: Bonds 

Connections between instances involve each instance 

filling a slot in the other. Slot fillings are hy-

potheses which are bound by constraints and have their 
.. 

supposition values manipulated. by ~elaxation, so they 

need to be represented by data-structures rather than 

simply being pointers. The system us~s structures called 

"bonds 11 to implement slot fillers. As figure 7.1 sho\ts, 

a bond has pointers to the two instances which it joins, 

and also an associated record, called a surposition-node, 

vi hi c h con t a i n s t he s up po si t i on v a 1 u e of the bond and the 

constraints involving it. The relevant slots in the two 

connected· instances have pointers to the bond in their 

lists of candidate fLJ.lers. 

In the domain for which the systeo was designed, 

when A fills a particular slot in 8, it generally follows 

that 8 must fill a kno\'/n slot in A, and so it is unneces-

sary to have separate hypotheses about the two reciprocal 

fillings. This is the reason for using a single two-way 

bond rather than two one-way ones. When a slot is fLlled 

with something other than an instance, or when the in-

verse slot is unknown, a single slot filling can be 

represented by sfmply omitting one of the pointers to the 

bond. 

The way in which slot fillings are impleoented is 

ex pensive and cumbersome, but the cornpl.exi ty seems to be 

a necessary consequence of the need to refer to fillings 
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lt'IGURE 7.1: Showing some of the data-structures used in the 

SETTLE system. The use of demons, and explicit constraiHts 

means that the connections between instances are considerably 

more complex than simple pointers from a field in one inst&~ce 

to the other instance. 



as hypotheses. 

7.5: Specifying Rules. 

Once a s eh em a has been created, ru'l es can be added 
I 

to it .. These determine how instances of the schema can 

combine with other instances. Rules typically specify 

that a particular subset of instances is illegal, or that 

it implies some other instance or bond between instances. 

Rules are entered in a list format that is convenient for 

typing, but they are compiled into records containing a 

key and an action, before they are stored in schemas. 

The left hand side of a rule contains a list of bonj 

specifications and a list of other conditions 111hich must 

be satisfied by the matching instances. For exa;nple, .L..' 
~..ne 

rule that a person's child is also their spouse's has the 

folloNinq form: 

[3 PERSON [ A CHILD CJ [ A SPOUSE BJ J ===> [inferbon:! 

( [ 8 CH I LD C J ) J ; 

The square brackets are list brackets. The first two 

items of the LHS are the number of the rule and the sche-

ma to which it should be added. The remaining items are 

bond specifications. These declare variables which 

bound to instances during a match. There are conventions 

that if a variable is repeated it must be matched to t~e-
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same instar.ces, and that different variables must be 

matched to different instances. The specification [A 

CHILD C] should be read nA has child C11 • 

There are several elaborations to the basic way of 

specifying a bond. [A BROTHER 8 SISTER] is equivalent to 
I 

I 

the two specifications [A BROTHER BJ, [8 SISTE?. AJ. Such 

a specification may be useful when slots do not have 

unique inverses. [A SEX=· MALEJ is used to indicate that 

the fi 11 er of A~ s sex-slot should be the v;ord u::nal en 

rather than an instance. (A SEX /= MALE] means that an 

instance will only match A if it does not have male in 

the sex-slot. Any part of a specification c-3~ be preced-

e d by t h e 11 & u s i g n w hi c h causes the v a 1 u e of t he f o ll o \·!-

ing word to be used. For example, if the value of the 

variable SLOTNAME is !!CHILD" and. the velue of the vari-

ab 1 e X i s C , t h en [ A &. SL 0 TN Ar.:! E & X J i s e q u i v a l en t to [ A 

CHILD CJ. This facility is useful when rulss .:1re being 

generated by a function ·rather than being ty~ed in 

directly. 

F i n a 11 y , i t ems s tart i ng w i t h a 11 • 11 on t ~1 e LH S o f a 

rule specification are conditions which must be satis-

fied. For example, t6 ensure thAt children ere younger 

than their parents, the following rule could b~ adde::.f: 

[ 4 PERSON [ ,tJ. CH I LD C J ( A AGE X J [ C .t. G E Y J [ • LE SS 

Y J J == >, [ CON T R AD I C T I 0 N ( ) J ; 
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Condition specifications consist of a dot followed by a 

function or function name- followed by arguments (as in 

lisp>. The match fails unless the function returns true. 

Variations in the way in which conditions can be speci-

fied are explained in ~omments in the code in Appendix 6. 

7.6: Rule invocation. 

This section starts by describing a method of rule 

invocation which assumes that all the instances and bonds 

are present before any matching starts, and then shows 

how the method can be extended to the harder problem of 

noticing vvhen a rule becomes applicable through the addi

tion of a new instance or bond. 

The LHS of a rule is compiled into a key, which is a 

data structure that is designed to facilitate rapid 

matching. 

each of 

matchinq. 

A key is a rooted, directed graph of keynodes, 

which gets bound to a different instance durinJ 

The basic strategy is to bind the keynodes one 

at a time and to generate candidate bindings for new key

nodes by looking in the slots of instances which are al

ready bound. For example, if the bonds specified are: 

[A CHILD C] and EA SPOUSE BJ 

then once. A has been bound, the fillers of its child and 

spouse slots are the candidates for C and 8 respectively. 
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On 1 y per f e c t mat c he s to the k e y a r e re qui r ed , .,.., hi c h 

means that the keynodes can be bound in a predetermined 

order, and a match can fail as soon as it reaches a key

node for which there are no suitable instances. The sup

position values of instances and bonds are ignored durin~ 

matching, so several alternative bindings ~ay be possible 

for a keynode and a depth-first search is used to find 

all the ways in which a key is instantiated in the in

stance network. 

The candidate bindings for the first keynode are all 

the instances of the schema with which the rule is asso

ciated. Bond specifications are used to give eAch key

node, except the first, a pointer to an earlier keynode 

and an associated slot narne. It uses these to generate 

c.qndidate instances from the instance bound to the ear

lier keynode. The candidates are not al~ays feasible, 

because they may already have been bound to ·an earlier 

keynode, or they may violate one.of the conditions s~eci

fied later in the LHS. Each such condition is associated 

with a particular keynode and, in order to prune the 

search, it is tested as soon as that keynode is boun~. 

Conditions which take as arguments the instA~ces bound to 

several different keynodes are associated with the last 

one to be bound. 

If ~ore bonds are specified than there are non-root 

keynodes, then the key will be a lattice or grAph rather 

than a tree. In this case the system selects A subset of 
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the bon~ specifications which form a rooted tree, and 

uses these for generating candidate bindings, as above. 

The remaining, extra bond specifications are handled like 

the conditions. They are associated with the last of 

their keynodes to be bound and are tested before 
i 

bindings. I 

If the bond specifications do not contain a 

further 

rooted, 

directed tree, then there may be no economical W3Y of 

generating candidate bindings for some keynodes, so keys 

of this form are not allowed and any such rule specifica-

tion is rejected by the system. 

So far the description of rule invocation has ig-

nored the fact that the instance network grows, so that 9 

match which initially fails may later succeed. 

new bond is added to the network the sy st e:-:t needs to h.::: V9 

some way of deciding which keys may now ~atch. It would 

be possible to index each key under all the types of bon·:i 

involved. However, if a potentially relevant key ~as 

found in this way, then a fresh match would have to start 

at the new bond and so the simplicity ani speed gained by 

~being able to match the keynodes in a oredetermined order 

would have to be sacrificed. Also, if m3tching sterte:i 

afresh with each new bond, there would (;e ~ great de3l or 

duplication of the 'l'lork done during ear-lier, feilei 

matches. 

An 3lternative strategy, which agai~ deoends on the 

fact that only perfect matches are required, is to set up 
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a de8on whenever a match fails on account of a missing 

bond. The demon 11 si ts 11 on the slot in which the bond 

will go, and so no searching is required to activate . ~ 
1 l... 

The demon keeps a list of the .instances to which keynodes. 

were bound in the earlier match before it failed. So 
I 
I 

when a n e VJ b.; n d i s put in the s 1 o t , t he key nodes can be 

rebound and the match continued using the ne\•/ bond, 

without any duplication of previous work. The demon is, 

in effect, a suspended partial match. 

Since any slot may gain another filler after the 

first attempt at matching a key, it is not sufficient 

only to leave demons on slots containing no suitable 

filler. Every slot which is used to generate cAndidate 

instances for a keynode needs to be given a de~on. This 

leads· to a lot of demons and so implementation tricks 

(explained in coMments in the code), are used both to 

keep down the number of demons and to make then compact. 

7. 7: Jobs 

It ~ould be possible, when a key matched, to perform 

the c o rr e s pond i n g a c t i on i mm e d i at e l y. Ho \'I eve r , a c t ions 

often create new bonds which cause other keys to match or 

the same key to match in a different way, so actions 

would be called within other actions. If this embeddin; 

occurrerl in any depth, it would cause inconveniently deep 

callin~ sequences. Like several other progr~os CSloman 
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1977, Paul 1977) the system avoids this problem by using 

a job queue. When ever a new bond is added to the in-

stance network, all the resulting matches are found. For 

each match, a job-record is created which contains the 

bindings of the variables in the key, ~he bonds matched 
I 

. i 
by the key, and the action part of the rule. The job is 

added to the queue. When the job is run it restores the 

bindings of the variables used in the key, so that the 

code for the action can use the variables to refer to the 

same instances. The matchi~g bonds are stored because 

actions typically infer some other bond fro~ them and so, 

for the purposes of relaxation, they need to set up a 

constraint between the matching bo0ds and the inferred 

one. 

There is another and more important reason ror using 

jobs. Any system which is based on forward chaining (an-

tecedent theorems) and also keeps alternative possibili-

ties, is liable to explode. Some Qethod of limitin~ the 

forward chaining is needed, and the SEITLE system uses 

relaxation coupled with the assumption that an action is 

only relevant if all the bonds which matched the key have 

high supposition values. For example, if A rule involves 

inferring a new bond from the old ones matching the key, 

then the action wLll set up a constraint which requires 

the new bond to be true if all the old ones are. This 

constrAint has no effect if any of the old bonds are re-

jected, so there is no point even making the constraint 

u n 1 e s s a 11 t h e o 1 d bonds ha v e hi g h s r 1 pp os i t i on v a 1 u e s • 
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It would be possible, but not easy, to tAke supposi~ 

tion values into account during matching. When a match 

failed because there was no suitable bond with a high 

enough supposition value, a demon would be set up waiting 

for such a bond. Unfortunately, by the time a suitable 
I 

bond arrived, the supposition value of some bond used 

earlier in the suspended partial match might have fallen. 

So whenever high supposition values fell, it would be 

necessary to garbage-collect all the demons which were 

waiting to complete the partial matches which were no 

longer valid. A further difficulty would be that oscilla-

tions in the supposition value of a bond would cause the 

same match to be rediscovered several times. 

The system ignores supposition values wh~n findinJ 

matches but takes them into account in deciding whether 

or not to run a job. It examines the first job on the 

queue to ensure that all the bonds which matched.·its k 0'' '-) 

have high supposition values. If they do, the job is 

run, but if any are low, the job is removed from the 

queue and hung on the bond responsible. Whenever .!..' 
~...ne 

supposition value of a bond rises to a high enou~h value, 

-a check is made for hanging jobs, which are· then put bac~ 

on the job queue. The effect of this procedure is thet 

jobs are only actually run when all the bonds matchi~g 

their key have high supposition val~es, so that ma~y 

ineffective constraints and unsupported bonds and ir.-· 

stances are never added to the instance network. Provided 

all the scores are neqative, hanging jobs c8nnot lead t~ 
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the best global interpretation being overlooked. Running 

a job can only make matters worse for the set of bonds 

and instances currently favoured by relaxation. Any set 

of hypotheses which is rejected by relaxation would still 

be rejected after running hanging jobs which added furth-
-- i 

er constraints or costs to that set. I 

7.8: An example of the SETTLE system in action. 

Although SETTLE is intended as a way of applying re-

laxation to vision tasks, the domain of fa@ily relation-

ships has been chosen to illustrate, in detail, how the 

systeo ·r'lorks. The reason for the choice is that people 

are very familiar with family relationships, so there 

should be no. confusions about the domain to acd to the 

difficulties of understanding the systeo. The exanple is 

not intended as a model of how people hanile information 

about family relationships. 

7.8.1: Specifying rules about family relationships. 

Only one schema is used in this example. Figure 7.2 

shows how it is defined, and how the systeo is told about 

rules to be applied to instances of the scheme. v'lhen 

this code is compiled, the structures made fro~ the 

the rule specifications are essociated with the relevant 

par t s of the per son s c he m a • For ex a m p 1 e , r :J 1 e l i s k e p t 
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MAKESCHEMAC"PERSON",[SPOUSE PARENT 2 CHILD 0 SEX SURNAMEJ.); 

COMMENT SOME SLOTS HAVE KNOWN INVERSES; 
SPOUBE<-··>SPOUSE !I PAF\:ENT<····>CH I LD ~ 

COMMENT A PERSONS PARENTS ARE MARR~ED; 
[1 PERSON [X PARENT P1J[X PARENT P2J J 
==> CINFER<[P1 SPOUSE P2J)J; 

CDr·tl·-tENT A PEI~SDNS CH II ... DI:~EN AF\E AL~30 HIS ~)PO USES CHILDREN; 
[2 PERSON [p CHILD CJ[P SPOUSE QJ J 
==> CINFERC[Q CHILD CJ)J; 

COt·ii·1ENT A PEr~SDNS SPOUBE IS or:- THE OF'F'DS I TE ~3EX 1 
[3 PERSON [p SPOUSE QJ[P SEX SJ J 
:::: = > [ I F S = 11 i''l r:) L. E 11 THEN IN FE 1:\: ( [ 0 SE X ::::FEMALE] ) 

ELSEIF S="FEMALE" THEN INFER([Q SEX =MALEJ> 
ELSE INSTPRCP>JPR(' HAS FUNNY SEX !);PR<S>; 
CL.D~3EJ; 

COMMENT SPOUSES HAVE THE SAME NAME; 
[4 PERSON [p SPOUSE QJ[P SURNAME NJ J 
==> CINFERC[Q SURNAME NJ)J; 

COl"-iNENT rit~L.E CH I I...DI:\:EI·· .. ! Ht1VE THE IF~ p,~~lF;~ENT~:; i'·!i":~·,i""JE; 

[ ~5 PER~:)ON [ P CH I I ... D C J [ C SEX ==l'i1~~1... F] J 
==> [SAMEFILLER(P,SURNAME,c,SURNAMEJJ; 

COMMENT UNMARRIED FEMALE CHILDREN HAVE THEIR PARENTS NAME; 
[ 6 PEI:;.~SOI'·.! [ C SEX ::::FEI'lf."~I...E J [ C BPOU~)E =NONE J [ C F'f~l!:;~ENT F' J J 
==> [SAMEFILLER<C~SURNAME,p,sURNAME)J~ 

C 0 r1 t'i ENT FE r'l f~ L. E CH I L. :0 F;~ EN l}J I T H THE I F~ P c-':tl~ E r·i T ~:> r·l A r1 E A F~ E . 
PROBABLY UNMARRIED; 
[7 PERSON [C SEX =FEMALEJCC PARENT PJ[C SURNAME NJ 

t::P Sl.JF~Nf.ll·-lE N::l J 
==> [SOFTINFER<CC SPOUSE =NONEJ,0.7)J; 

COMNENT l"'l~~iF:F;: I ED CH IL.DF;:EN t•.JHO H(~\.JE THE IF: 
PARENTS NAME ARE PROBABLY MALE; 
[8 PE~SON CC SPOUSE /=NONEJCC PARENT PJ[C SURNAME NJ 

t:: P ~:> U F;~ i··.J ~~~, f"'l E . N J ::1 
==> CSOFTINFER([C SEX =MALEJr0.7)J; 

FIGURE 7.2: The person schema and some rules about family 

relationships. 



in the part of the schema w~ich stores • .t= • • 
1 n.~. orr.:.:=:n::on 

relevant to the PARENT slots of the instances. When 2n 

instance has_ its parent slot filled, the key of rule 

will start matching by binding the keynode for X to the 

instance and the keynode for P to the ~iller. 
I 
I 

There are several features of figure 7.2 which have 

not, so far, been explained. Rule 3 demonstrates the 

convenience of being able to use arbitrary POP-2 code to 

specify the action p a r t of the r u 1 e • I t a 11 o v1 s e rr or 

messages and tracing to be included, as well as allowi~; 

arbitrarily complex actions. 

Rules 5 and 6 show the use of the SA!\~EFILLER fu::c-

tion. It is often possible to infer that two slots mus~ 

have the same filler, without knowing what it is. 

knowledge could be captured in two rules each of ~hie~ 

required a filler for one of the slots as part of ~~~-

condition, and then inferred that the filler also fille~ 

the other slot as its action. However, it is mor-e 

economical to have a single rule with a si~pler conditi~n 

which sets up special demons on both slots, so that 2~1 

_fillers of one are inferred to fill the other, subject ~o 

the continued truth of the conditions which caused· t~e 

demons to be set up. 

Rules 6, 7, and 8 show how the filler "NONE" c~:1 be 

used to represent the fact that there is no filler foi 2 

slot of a type which can have at most one filler. 
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such a slot, the system automatically keeps· a con-

straint, which it modifies when new candidate fillers are 

found, to prevent more than one filler being accepted as 

true. So by supporting the filler 11 NONEi', real fillers 

can be kept out. 

needed, since 

Some. kind of mechanism like this is 
!' 

i 

the known absence of a~y filler cannot be 

represented simply by the absence of fillers from the 

slot. However, it may be that using 11 NONE 11 fillers is 

just an unprincipled hack. The method cannot be used 

when slots which can potentially have any numbei of fill-

ers, are discovered to have none Cas opposed to not be-

ing discovered to have any). I suspect that this ap-

parently minor difficulty is the tip of an iceberg. 

Sometimes, the implication of a rule involves quantifiers 

rather than being about particular fillers. These are 

hard to handle in the current SETILE syste;n. 11 SAMEFILL-

ER 11 demons and 11 NONE 11 fillers cope viith the tv;o cases 

that have arisen so far, but a more general. mech3nism for 

handling quantifiers would be better. 

Rules 7 and 8 show how non-binding inferences can 

be handled. The function SOFTINFER causes a constraint 

to be set up, so that if the conditions of the rule are 

accepted, but the implication is rejected, then a penalty 

of 0. 7 is pa i d. (See section 4.6). This particular 

number is qiven meaning by its magnitude relativa to 

other costs which determine the trade-offs made in de-

ciding which hypotheses to accept and which to reject. 
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7.8.2: Interpreting claims about specific people. 

Figure 7.3a shows one way of inputting data about a 

particular set of people and their r~lationships. The 

claims give 
I 

preferences to parti cu l'ar bonds. Their 

strength, 1, means that a claim can override one soft 

inference, but not two, since 0.7 + 0.7 > 1. The in-

stances and candidate bonds are shown in figure 7.3b. 

This also indicates the way in which bonds generated by 

inference rules depend on other bonds. The result of 29 

round~·of relaxation is shown in figure 7.4b. It is the 

best consistent set of beliefs given the claims and 

inference rules. Figure 7.4a shows the job statistics 

as relaxation proceeds. In this case relaxation is au-

tomatically terminated after 15 clear rounds in whic~ no 

jobs are made or roused. Notice how three jobs made on 

the second round of relaxation do not get run until 

eighth round, when the bonds matching the rule keys have 

a.ll attained high supposition values. The way the suppo-

sition vAlues change during relaxation is shown in figure 

7.5. 

7.8.3: The effect of·more, incompatible claims. 

Figure 7.6 sho\·Js some more claims and the networic of 

candidate bonds and instances v:hich is caused by these 

extra claims and by the inference rules which they 
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trigger off. Some previously accepted bonds now have to 

be rejected in order to reach the best consistent set of 

be 1 i e f s i n t h e 1 i g h t of the · n e v.,r data • F i g u re 7 • 7 b s ho ~·1 s 

this optimal set, which is discovered by the program. 

Notice th8t one of the original claims (about the sex of 

person2) has been rejected. Figure 7.7a again shows the 

job st0tistics As relaxation proceeds trntil there are 15 

clear rounds. The way the values change during this 

phase of relaxation is shown in figure 7.8. 
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COMMENT THIS IS HOW PEOPLE ARE MADE; 
2 <* MAKEINSTCPERSON) *>; 

CLAIMC[PERSON1 CHILD PERSON2J,1); 

CLAIM<CPERSON1 SURNAME =JONESJ,l);i 

CL.f~Ir··j ( t::PEJ=~SDN2 nur~Nf:~ME ::::.JDNE~>J !I :l) 9 

CLAIMCCPERSON2 SEX =FEMALEJ,1)~ 

FIGURE ?.Ja: Some claims about people. 

11 

JoN£5 
/I 

,, 
f[MALE" 

I• 

TONE>" 

11 

NON£ 

FIGURE 7=3b: The candidate bonds created by the claims and the 

inferences they trigger off. Bonds are given numbers, and 

implicationsbetween bonds are indicated by following a bond 

number with the numbers of a conjunction of bonds that imply it~ · 



! :1. !7j " s <-":~ t t. 1 (-:~ 9 

F~OUSED F~UN BTDf~ED 11f~lDE 

() () :1. () 

0 0 0 () 

:1. 1 () 3 
() () ~:~ 0 
0 () () 0 
() () 0 () 

:3 :3 () 2 
() '") 

./a• •• 0 0 
() () 0 () 

() () () 0 
0 () () _0 
0 () 0 () 

0 0 0 () 

0 0 () () 
() () 0 () 

0 () 0 0 
0 () () () 

0 () () () 

0 () 0 0 
() 0 0 () 

0 () () 0 
() () 0 0 
0 0 () () 

FIGURE ?.4a: Job statistics. Each row corresponds to a 

round of relaxation. Tobs are roused when a bo~d which 

they depend on reaches a high enough supposition value 

(0.7 in this case). Jobs are stored if any bond they 

depend on has a lower value than this. 

! ,. shot-.rt 1'1..1<-":~ ;; 

_ PEF:~sON2 
SPOUSE [NONE·J PARENT [ PERSONl J CHILD CJ SEX [FEMALE J 
Sl..IF~Nf~,{--IE [ JONES ::1 

PEf~SON:I. 

sPousE r: ::1 P ,~ r~ ENT 1:: ::1 c H I 1... r.r 1:: PEr~ noN 2 J sEx . r: J 
SUF<.Nt·,r· .. iE C • .JDNES ::1 

FIGURE ?.4b: The optimal interpreta-tion of the claims, 

reached by relaxation (see figure z.s). 



! 2 0 ~ run ITJ o r e ~ 
~)() ~j0 60 60 60.60 
57 60 60 7:1. 7:1. ?l 
69 76 7b 8'") \.A.. B4 B.<l- ~::;o 0 
83 90 BB 9.4 9B r;n ~)() 0 
<J6 99 97 9<J 99 <)<_".) ··- , .:)o 0 
99 99 99 99 9<;> 99 c.>7 0 
99 99 99 99 99 99 fJO () 

99 <J9 99 99 <?9 <J9 9:1. () 

99 99 99 99 99 99 9<} () 

99 99 <.i9 99 <J<J <"J<j' 99 0 
99 99 99 <J~i <_".)9 99 99 0 
99 99 9? <;.>9 q<:> , ,. 99 99 0 
99 99 99 9'i 9<.:; 99 9? 0 
99 99 99 99 99 ')9 99 0 
99 99 99'99 9<.)> <.1'9 99 0 
<;>9 99 99 99 99 9S' <.:,.'9 (). 

99 99 99 9<? c-.q 
1' 99 9<) 0 

99 99 99 99 9'? 99 (;)(J 
/ / () 

99 99 99 9•:;> '?9 <_i)<J 99 0 
99 99 99 9~:.> 99 c;.>9 ~t9 0 

P:t. P:l. P':> r·· .... \ .. :.:.: P':> .... 
P1 P2 F' ·:> ~JD • .JO FE NO cr-J 

FIGURE 7.5: Showing how the supposition values change during 

relaxation after the claims. The "headings" are at the bottom 

because not all the hypotheses are known in advance. 

The column headings in this figure are rather cryptic. 

Headings with just one row refer to a person instance (e.g. Pl), 

or to the extra hypothesis set up by a soft inference rule 

(rule 7 or 8 in figure 7 .2). Constraints force such an extra 

hypothesis to be accepted if the rule is broken, and a cost is 

then paid. Unfortunately, the relevant inference cannot be 

identified from the heading. Headings on two rows refer to 

bonds, either between two instances, or between an instance and 

a word which is abbreviated to its first two letters. 



,, 

2 <* MAKEINST<PERSON> *>? 

CLAIM(CPERSON2 SPOUSE PERSON3Jy1); 

C L1~ I M ( [PER S D N 2 CH I 1... D PEr;: S D N 4 ::1 !1 :1. ) v 

C 1 ... A I M < [ PER S D N 3 CH I L D PE H ~:; D N 4 ::1 !I i:l. ) !I 

C I ... A I M ( [ PE F\ ~:> D N ~:~ SE X ::::FE t-·1 f~) I ... E ] v :1. ) !I 

JON£s'' 

" ,, 

" ,, 
Torv£ s 

FIGURE 7.6: So~e more claims, and the resulting network of 

candidate bon.ds. The slot names have been onunitted, but should 

be obvious from the fillers. The bonds are numbered in order 

of creation. The numbers in brackets after each bond number 

are the sets of other bonds which imply it. Some of these 

implications may only be weak ones, derived from rules 7 and 8. 

Bonds which were entered as claims are underlined. The 

claims may be rejected (e.g. bond 4). Competition between bonds_ 

for slots is not shown. 

nAL£ 



I~OUSED F~UN STDF~ED l··iADE 
0 () (."r' () 

:1. :1. 0 () 

2 '') ,,: .. () 0 
0 0 0 0 
6 6 () . ~5 
() <?. ~5 0 
0 (), 0 0 
() 0 () () 

0 0 0 0 
:1. j_ () 0 
() 0 () 0 
0 0 () 0 
2 2 0 '") 

1': •• 

0 2 0 0 
0 0 () 0 
() () 0 0 
() 0 0 0 
0 0 0 0 
0 0 () 0 

FIGURE ?.?a: 'Job statistics for the relaxation following 

the claims in figure 7•5• The last ten rows of zeros are 

not shown. 

! + Sh(Jklt T'I..IE) Y 
F'Ef;:SDI··.~4 
SPOUSE [J PARENT [ PERSON3 PERSON2 J CHILD [J SEX [J 
SUI~Nf:1f···lE [ J 

. F'EI;:SON3 
SPOUSE [ PERSON2 J PARENT [J CHILD [ PERSON4 J 
S~X CFEMALE·J SURNAM~ [JONES J 

F'EF~SDN2 

SPOUSE [ PERSON3 J PARENT [ PERSON1 J CHILD [ PERSON4 J 
~>EX [ l'"i~,I...E J SUF;~r··li~·,I"'}E [ -...IDr-!E~:> ] 

PEPSDNl 
SPOU!:)E [ J Pf~F<EI'·.!T [ J CHILD [ PEr;~SON2 J SEX [ J 
SUI~Nf:~,f·'iE [ JDNES J 

FIGURE ?.?b: The best interpretation of all the claL~s, 

found after the 29 rounds of relaxation sh9wn above. Some 

beliefs in figure ?.4b have been rejected. 



!20 .. runmore; 
99 99 99 99 99 99 83 
99 99 99 99 99 99 70 
99 99 99 99 99 99 66 
99 99 99 99 99 99 68 
99 99 99 99 99 99 66 
99 99 99 99 94 80 59 
99 99 99 99 97 70 52 
99 99 99 99 95 64 43 
99 99 99 99 99 64 39 
99 99 99 99 99 59 37 
99 99 99 99 99 53 36 
99 99 99 99 99 46 34 
99 99 99 99 99 40 28 
99 99 99 99 99_35 22 
99 99 99 99 99 30 17 
99 99 99 99 99 26 12 
99 99 99 99 99 22 9 
99 99 99 99 99 19 6 
99 99 99 99 99 17 4 
99 99 99 99 99 15 3 

P:l. P1 F'2 P;.:.~ P2 
P :1. P2 P2 JO ..JO FE J-·.JO 

0 50 50 42 60 60 60 
0 57 57 39 71 68 71 
0 69 69 43 82 74 82 
0 83 83 60 86 77 94 
0 94 91 70 96 87 99 50 50 50 0 
0 99 98 58 99 95 88 42 38 55 0 
0 99 99 74 91 89 82 33 22 59 c 
0 99 99 62 94 93 82 41 18 64 0 
0 99 99 72 92 92 91 47 18 67 0 
0 99 99 74 95 96 98 56 19 70 0 
0 99 99 77 98 99 99 63 16 73 0 
0 99 99 84 99 99 99 68 12 77 0 
0 99 99 85 99 99 99 73 
0 99 99 89 99 99 99 77 
0 99 99 93 99 99 99 81 
0 99 99 95 99 99 99 85 
0 99 99 98 99 99 99 89 
0 99 99 99 99 99 99 91 

:lO 81. - c-
<::J 85 0 
8 g<;- 0 

8 93 0 
B 97 0 
7 99 0 

0 99 99 99 99 99 99 94 7 99 0 
0 99 99 99 99 99 99 95 6 99 0 

P2 P2 P3 P3 P2 P3 P3 
CN P3 P4 P3 P4 P4 FE MA MA JO CN 

FIGURE 7 .8~ Showing how the supposition values change 

during the first 2~ rounds of relaxation after the extra 

claims in figure 7.6. 



CHAPTER 8 

SUMMAHY 

This chapter summarises the 

the relaxation approach. It 

presuppositions behind 
I 

then mentions the main 

inadequacies in the treatment given to relaxation, in-

eluding the failure to relate it to human vision. Fi na 1-

ly there is a brief summary of what has actually been 

achieved. 

8.1: Presuppositions of the relaxation approach 

L.P. rel2xation is only relevant to vision if the 

following claims are correct: 

1. During the process of building the internal 

representation of a scene, tentative hypotheses must 

be formulated and selections must be made from among 

rival hypotheses. 

2. A vi sua 1 system cannot arrive at the same kinds 

of interpret8tion as people do, if inconsistency is 

its only way of ruling out interpretations. It must 

h~ve ~ way of arriving at good interpretations and 

avoiding poor ones. 
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3. A sensible way of r~solving complex and unfore

seeable conflicts between sets of hypotheses of dif

ferent kinds, is to use numerical scores for the con

stituent hypotheses of a global interpretation and to 

maximize the sum of these scores. 

The first tNo claims are defended in Chapter I, and 

though they may be false, they are not unduly specula

tive. The -third claim is the one which many artificial 

intelligence researchers regard with suspicion. Some 

workers (e.g. Paul 1977) regard the avoidance of real

numbers for evaluating hypotheses as a positive virtue, 

and have demonstrated that, for some vision problems, ex

plicit numerical scores are unnecessary. If it is ac-

cepted that n um er i ea 1 scores are an undesirable last 

resort, then their use can only be defended by showi n-; 

that no other method l;'fi 11 lt/0 l-k. This ~·IOU le be very dif-

ficult, and has not been attempted. Instead, the preju-

dice against numerical scores has been attacked. It has 

been argued that the properties _of real numbers are par

ticularly appropriate for resolving conflicts (section 

that the past misuse of numbers is irrelevant 

(section 1.8); and that the choice of numerical V3lues 

need not be arbitrary (section 1.7. I>. 

Ho 1tlever, it has not been established that the reso

lu t i on o f . cam pl ex eo n f 1 i c t s bet v; e en hypo the s e s of d i f

ferent kinds is a necessary part of normal vision, or 

that the interpretations people notice can be defined in 
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terms of the probabilities of their constituent hy

potheses~ So numerical scores, and hence relaxation, may 

be simply irrelevant to vision. 

8.2: The choice of numerical scores 

In section 1.7.1 it was argued that probabiliies 

could provide a systematic basis for the choice of numer

ical scores. Woods ( 1976), has shown that this idea can 

be-applied in speech perception, but the programs in this 

thesis use scores which were chosen so as to give sensi

ble interpretations, rath~r than being based on probabil

ities. More-work is required to show how scores can be 

based on probabilities without running into problems 

caused by combining non-independent probabilities. 

8.3 D~tails of the relaxation opeiator 

A lot of effort has gone into analysing and improv

ing the basic relaxation operator, but many problems 

remain unsolved: 

1. How can relaxation be made to select one of a 

·pair of equally good, rival global interpretations? 

2. What should be done about non-integer optima if 

they cannot be removed by a better numerical for~ula

tion of the logical constraints?. 
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3. How can the time to -reach the equilibrium state 

be decreased? 

4. How can the system decide when it is sufficiently 

close to the equilibrium state? 

The coefficient K whose qualitative effects are 

d i s c u ss ed in se c t i on 4 • 4 can he 1 p w i t h a 11 t he se p ro b-

lems. Its quantitative effects need to be investigated 

both empirically and analytically. 

8.4: The SETTLE system 

The most advanced and promising use of relaxation is 

in the SETTLE system described in Chapter 7, but this 

system still needs a lot of development. An attempt has 

been made to use it for interpreting Popeye pictures 

(like figure 1. Jb). This application is not described 

here since several major problems have been encountered 

and have not yet been resolved. Until the SETfLE systetJ 

has been successfully applied to a vision task which re-

-quires its skill at handling messy date and dubious 

inferences, it will be hard to asses its value. 

8.5: Relaxation and human vision 

There are two rather different sets of considera

tions which are relevant when developing a theory 3bou~ 
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the mec~3nism of human vision. On the one hand, a 

mechanism must be clearly defined and shown to be ade-

quate for its postulated role. This is the main purpose 

of most Artificial Intelligence programs and the only aim 

of this thesis. On the other 
I 

hand, I evidence must be 

found to show that people use the mechanism. No attempt 

has been made to find evidence for relaxation in human 

vision. An obvious first step would be to sho\·1 that for 

a task·such as the interpretation of line drawings of po-

lyhedra, the interpretations which people perceive can be 

distinguished from other consistent interpretations by 

giving them scores on the basis of their constituent hy-

potheses. It would also be interesting to try to an~lyse 

in detail our perception of pictures like the Meeker cube 

or the Penrose triangle. However, these projects would 

inevitably involve many other difficult issues, sor:te of 

which are outlined below. 

8.5.1: The temporal structure of vision 

Peo~le.move their eyes~ so their visual input con-

sists of a sequence of retinAl images. For each new fix-

ation, low-level representations of what the retin~l im-

age contains have to be re-computed. (These low-level 

representations will be called the primal sketch, by af~ 

finity with Marr's primal sketch). Howevar, the world 

appe::1rs stable as \·Je r.1ove our eyes o~_,. ~_<?if.e .arcun~=r, so 

presun~bly h ~,,C) C()~'e reol-nson+-~,+-l·onc l•/1.-).l·c'.·n l_ji;; -~·;_C't n . '·· ...) .._ t. 1 ~ , c; _ '-' ! ~ .-::1 L. _.., • 1 - ,_ ·~' -
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~ith our retinal images CHochberg 1968). These will be 

called the cognitive map •. Given this distinction between 

types of representation, there are a r.usber of possibl~ 

roles for relaxation which have not been distinguished in 

the simple tAsks to which it has been a~plied: 

1. The creation of the primal sketch. This needs ta 

be fast and there may not be tine for L.?. relaxation 

unless it can be speeded up. Also, 1~ may not be 

necessary to decide between alternatives at this level 

(see section 1 .3.2). 

2. The discovery in the primal sketch of objects to 

be represented in the cognitive ~ap. This sta]e of 

perception is the one which the pu;pet-finding progre~ 

is intended to model. 

3. The construction of a consistent co~nitiVe ~a~. 

The evidence provided by one reti~3l i2?ge may con~ 

tradfct representations based on an earlier image. 

Relaxation could be used to resolve such conflicts. 

A gre~t deal of work needs to be do~e to clarify the 

various ways in which relaxation night ~e used in a visu

Al system as complex at the human on9. 
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8. 6: ~·vha t has been shO'.Aln. 

A relaxation method for selecting the best con-

sistent set of hypotheses has been clearly defined. The 

method does not appear to suffer from a combinatorial ex
i 

plosion in time or space as the number of hypotheses in-

creases. It can oake effective use of parallel hardware, 

and is one of the first cleally defined ways of organis-

ing parallel interactions bet~tl een conflicting and 

cooperating hypotheses so as to make a good 11 Gestaltn e::~-

erg e .. 

It has been shown how to handle any logical con-

straint that can be expressed in the prepositional cal

culus. The ·successful application of the method to the 

two simple tasks of puppet-finding and line-labelling has 

been demonstrated. 

Several ways of chan~ing the relaxation operator 

have been discussed and their effects h~ve been investi-

gated empirically. They have also been analysed theore~-

ically using a hyperspace representation. The difficul-

~ties caused by non-int~ger vertices and equal rivals h~vg 

been revealed. 

It has been shown, using an extended version of the 

puppet task, that as well as selecting from among exist-

i ng hypotheses, re 1 ax at ion cAn be used to cont ro 1 .,.,hi c ~-i 

hypotheses are created. The application of the techni~'Je 

to the choice of numerical values for param~ters has als2 
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been discussed. 

Finally, the SETTLE system has shown how relaxation 

can be used to control a data-driven system which grows a 

relational network by noticing when complex conditions 

become true and usin~-forward chaining. 

way of organising a search within a kind 

system. 
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APPENDIX 1 

COl·,~fPUTI NG WHETHER CONVEX POLYGONS OVERLAP 

This is .not a formal proof. It is a construction to 

show how an unobvious fact follows from obvious ones. 

Corresponding to each infinite straight line there 

are two borders. A border has an on-side ( includin;; the 

points in the line) and an off-side. The sides of a con

vex polygon are segments of infinite lines which c3n be 

·assigned corresponding borders in such a way that t~e po

lygon contains all and only the points on the on-si~e of 

all the borders. 

We want to show that if two convex polygons are dis

joint (have no common points), then at least one bJrjer 

of one of them has the .other polygon entirely on lts 

off-side. 

Let us say that a .line separates tv1o polygo;;s if 

their interior points lie on opposite sides of it. For 

any pair of disjoint, convex polygons there are so~e 

separating 1 in es (unproved but obvious).. In parti c'.Jl~r-, 

there is one separating line which cannot be rc~2~ej 

clockwise about any of its points without intersectin~ 

the interior of one polygon (see figure APP1 ). Similarly 

the~e is a most-anti-clockwise separ~ting line. Cell 

these two lines band c, and their Point of intersection 
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FIGURE App1: Showing the construction involving the 

most-clockwise separating line, b, and the nost

anticlockwise, C. 



P. Since b and c are separating lines, P can~ot lie in 

the interior of either polygon and since the polygons are 

disjoint they cannot both have vertices at P. So at 

least one of them, call it G, must have P outside 
i 

For P to be out·side G it must be on th~ off-side of at 

least one of G/s borders, call it d. Since d is a border 

of G, all the vertices of G are on its on-side. In par-

ticular, the vertices of G which lie on b and c must be 

on the on-side· So, considering figure APPl, d must have P 

on its off-side and V and W on its on-side. Hence d must 

intersect b between P and V Cor at V> and it must inter-

sect c between P and W Cor at ~). Because d can only in-

tersect the lines b and c once, it is obvious Ct~ough 

unproved) that the quadrant Q must lie entirely on the 

off-side of d, and hence so must the polygon within 0. 

Note: The idea that one polygon must co~tain a separat-

ing border was suggested to me by Frank 0/Gor~sn. 
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APPENDIX 2 

USING PENUMBHAS TO AID LINE!LABELLING 

Waltz (1972) shows how it is possible to extend 

Huffman/Clowes labelling to line drawings in which some 

lines depict shadow edges. Waltz uses perfect line draw-

ings and so he ignores the question of whether the grey

level data can provide information about the type of an 

edge as well as about it existence. Evidence which sug-

gests the type of an edge, but which is not conclusive, 

is interesting because it is easily incorporated .into a 

relaxation approach as a preference for e particular le-

belling. 

Under some conditions of illumination there should 

be direct grey-level evidence suggestin~ that some ed]es 

are shadow edges. Figure APP2 shows the shadow cast 

an object when there is a single source of illumination 

which is not infinitely small. The shadow edges have ps-

- nuobras which diverge as the distance from the castin~ 

edge increases. For small sources this should be detect-

able as a fuzziness wh'ich increases linearly in the 

direction away from the casting edge, provided this 

is straight and the shadow lies on a flat surface. A~ 

example of the usefulness of such inform8tion is seen a~ 

junctions J and K in Figure APP2. The degree of fuzzi-

ness caused by the penu~bra supports the interpretation 
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FIGURE App?t A cuboid casting a shadow. The width of 

the lines depicting shadow edges indicates the width 

of the penumbras caused by a light source of finite 

magnitude. Notice that the fuzziness of the shadow 

edge at K suggests an accidental alignment of vertex 

and shadow edge • 



of juncti or, J as involving an attached shc:do;,·/, but sug-

gests 8n accidental alignment of vertex 3nd shadow at K. 

It is not clear whether human perception makes use 

of the way in which the penumbras d~verge along shadow 
i 

edges. 
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APPENDIX 3 

CODE FOR THE PUPPET-FINDING PROGRAM 

A number of basic functions and macros are used but 
are not listed below. The meanings of most of them are 
evident from their their names and the context, but the 
following need some explanation: 

FILTLIST: This filters a list through a predicate, re
turning a list of all the elements satisfying the predi
cate. 

RIG: This takes a list constant and returns a list in 
\•Jhich all elements preceded by 11 &11 have been evaluated. 

RECORD: This is a macro for declaring records. The de
fault field size is COMPND, but full-word fields can be 
selected by using a 0 after the field name declaration. 
Constructor and destructor functions are mAde by conca
tenating the class name with 11 cons" or "destn. 

RHLOOP: , This is a looping macro. On each iteration, an 
item in the list preceding RHLOOP is assigned to the 
variable RH. The macro ENDRH terminates the loop. 

The printing functions are not listed. 
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'"-~** SOME RECORD CLASSES AND GLOBAL VARIABLES *·** 
VARS RECTS PERCEPTS RELATIONS ; 
NIL->PERCEPTS;NIL->PERCEPTS;NIL->RELATIONS;NIL->RECTS; 
CCH~1MENT"triples and quadruples already exist. 
this allows their components to be. given 
more meaningful names!; 

0->POPCOMMENT; 
TRIP 1-> RELSLOT 1 ;TR I P.2->RELSLOT2 ;TR I PJ-> RELCRED; 
OUAD1->SLOTPER;QUA02->SLOTFUN;OUA03->SLOTTYPE; 
OUAD4-> SLOT RELS; 

COMMENT"these are the zones in a rectangle 
which has been given a top/bottom direction!; 
[ 1 J 0.8 OJ->DEFTOPEND; [0.2 1 0 OJ->DEFBOTEND; 
[1 l 0.5 OJ->DEFTOPHALF;[0.5 1 0 01->DEFBOTHALF; 
[ 0. 9 0. 8 0. 7 0. 2] ->DEFTOPPOLE; [ 0. 3. 0. 8 0. 1 0. 2 J->DEFBOTPOLE; 

1->POPCOMMENT; 

C()J,~l.{~!,JT"interpretations of rectangles as puppet 
parts used to be called "percepts". interpretations 
of over 1 a ps a s j o i n t s \·1 er e c a 11 e d n re 1 a ti on s 11 • 

the morphe;nes 11 per" and ·11 rel 11 are used vd th 
this sense.!; 

RECORD PERCEPT PERNAME PERRECT PERPROX PERTYPE PERSLOTS 
PERCRED; 

RECORD RECT fiECTNAME RECTCON RECTPERS WHOLE TOPEND BOTEND 
TOP HALF BOTHALF TOPPOLE BOTPOLE; 

*** GODE FOR MAKING CONSTRAINTS *** 
ENSURELIST CONSTRAINTS; 

RECORD CONSTR CONVIOL 0 HYPLENGTH 0 OLDCONVIOL O; 

C().'.H~1ENT"conviol stores the amount by which 
the constraint is violated. whenever a supposition 
value changes, the violations of all constraints 
involving it are changed appropriately. each 
suooosition node will cause some of its constraints 
to' be more violated when its value goes up, and 
will also cause others to be less violated. it 
keeps these two sets of constraints in separate 
lists called ceilings and floors!; 
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COMMENT'the number stored in conviol is the 
difference between the two sides of the 
algebraic inequality.Cpositive numbers mean 
violation).this number is not the same as the 
distance in hyperspace of the point from the 
plane. however, for any given plane the 
violation and the distance h~ve a fixed ratio. 
this is kept in hyplength. I 

I e . ' 
COMiAENT 'consider , for ex amp 1 e, the constraint 
x-2y > 0. when this has a violation of I, 
then the force in the x direction should be 
l/sqrt(5) and in they direction it should 
be -2/sqrt(5). the hyplength is sqrt(5), 
which the root of the sum of the squares 
of the coefficients in the inequality. 
f • . ' 
FUNCTION CREDSUM L=>SUM; 
0->SUM; 
L RnLOOP;RH.CREDVAL+SUM->SUM;ENDRH; 
END; 

FU!ICTION REr,fOVEALL X L=>N REM; 
Co!.~MENT'removes all occurences of x from 1 and returns 
their number and the remaining list!; 
NIL->REM; 1->N; 
L RHLOOP; 
IF RH=X THEN N+l->N ELSE RH::REM->REM CLOSE; 
EcJJRH; 
Ei<D; 

FUNCTION SUMSQUARES L; 
COl~!MEi'IT'returns the sum of the squares of the occurence 

/numbers!; 
VARS N;IF L.NULL .THEN 0 EXIT; 
RE?r\OVEA LL ( L. HO, L. TL )->L->N; 
N*N+L. SUf·:~SOUARES; 
END; 

FUNCTION RETURNCONSTR FLIST CLIST N=>C; 
CO\~MENT'n+the credvals in clist musnt exceed the credvals 
in flist i.e. the sum of the credvals in flist-the sum in 
clist must be at least n.!; 

CONSCONSTR<CLIST.CREDSUM-FLIST.CREOSUM+N, 
SORT<FLIST.SUMSOUARES+CLIST.SUMSQUARES>,UNDEF,FLIST,CLIST> 

->C; 
C:: :CoNSTRAINTS; 
FLIST·RHLOOP;C::RH.FLOORS->RH.FLOORS;ENORH; 
CLIST RHLOOP;C::RH.CEILINGS->RH.CEILINGS;ENORH; 

FU~fCVAR MAKECONSTR RETURNCONSTR FNCOMP ERASE; 
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FUNCTION MAKECREO OBJ P=>C; 
CON SC RE ON 0 0 E ( 0 BJ , N I L , NI L , N I L , 0 , 0 , p ) - > C ; 
END; 

FUNCTION ATMOSTONE L; 
MAK ECON STFH NIL, L, -1 ) ; 
END; 

FUNCTION ATi\.10STTWO L; 
MAKECONSTR< NIL, L, -2); 
END1 

FUNCTION MORECRED A B; 
MAKECONSTR<A,B,O); 
END; 

.. 

FUNCTION ATLEASTONE L; 
MAKECONSTR< L,NIL, 1); 
END; 

FUNCTION INFERFROM L B; 
MAKECON STFH 8: :NIL, L, 1-L. LENGTH); 
END; 

... b~* CODE FOR CHANGING SUPPOSITION VALUES -*·*-:~ 

co:~IMENT'supposi tion nodes used to be called 
crednodes. the morpheme ttcredn is used like 
this! ; 

ENSURELIST CREDNODES; 

RECORD CREDNOOE CREDOBJ FLOORS CEILINGS CREDVAL 0 CREDINC 0 
CREDPREF O; 

COMMENT'credobj is the hypothesis, credpref 
is its preference, and credval is its 
suooosition value. ~redinc is the next 
in~~ement in credval, which is computed 
and then stored until the other 
~redincs have also been computed using 
the curr~nt set of supposition values. 
this is necessary for parallel 
relaxation. floors 
and ·ceilings are lists ·of the constraints 
which, when violated, tend to hold the 
supposition value up(floors) or down 
(ceilings).!; 
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FUNCTION CHANGEVALS CREONODE INC; 
CREDNODE.CEILINGS RHLOOP; 

RH. CC)NV I CJL +I NC-> RH. CC)NV I CJL; 
E:NORH; 
CREDNOOE. FLOORS RHLOOP; 

RH.CONVIOL-INC->RH.Co'NVIOL; 
END RH; 
CREONODE.CREOVAL+INC->CREONODE.CREDVAL; 
END; 

FUNCTION ENDFIXINC INC X; 
V AR S N ; IN C+ X- >N :; 
IF N>l THEN INC+l-N 
ELSEIF N<O THEN INC-N 
ELSE INC 
CLOSE; 
END; 

FUNCTION CHANGETO C VAL; 
CHANGEVALS<C,VAL-C.CREOVAL); 
END; 

FUNCTION RESETVALS; 
APPLI ST ( CREDNODES, CHANGETCH ?~01~)); 
END; 

" *** SET IN IT I N CS ..,,_ ** 
! . P RSTR ~NG; 

VARS COEFFLIST DCOEFF PCOEFF FCOEFF HCOEFF; 
[PCOEFF OCOEFF FCOEFF HCOEFFJ->COEFFLIST; 
VARS COARSE MED IlJl;l FINE TERMINAL; 
[0.4 0.5 0.3 OJ->COARSE; 
~0.2 0.5 0.3 0 ]->MEDIUM; 
[0.1 0.8 0.3 OJ->FINE; 
[0.1 0.8 0.3 0.1]->TERMINAL; 

FUNCTION SETCOEFFS L; 
POP L->PCOEFF; 
POP L->DCOEFF; 
POP L->FCOEFF; 
POP L->HCOEFF; 
END; 

COARSE. SETCOEFFS; 
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FUNCTION INITINCS; 
APPLI ST CCREDNODES, 

LAMBDA C;O->C.CREDINC;ENDl; 
END; 

FUNCTION CEILFORCE CON; 
VARS V; CON. CONV IOL->V; · ! 

IF V>O THEN (-V)/CON.HYPLENGTH ELSE 0 CLOSE; 
END; 

FUNCTION FLOORFORCE CON? 
·vARS V;CON.CONVIOL->V; 
IF V>O THEN V/CON.HYPLENGTH ELSE 0 CLOSE; 
END; 

FUNCTION UPFOHCE C; 
APPSUMCC.CEILINGS,CEILFORCE>+APPSUM(C.FLOORS,FLOORFORCE>; 
END; 

FUNCTION STORESTEP C; 
COMMENT 'this stores the size of the next step in credinc!; 
VARS INC; 
C.CREDINC*DCOEFF 
+ < C .UPFORCE+C. CREDPREF-A-PCOEFF+ (C. CREDVAL-1 /2) *HCOEFF>*FCOEFF 
->I NC; 
ENDFIXINC<INC,C.CREDVALl->C.CREDINC; 
END; 

FUNCTION TAKESTEP C; 
CH.A.NGEVALS ( C, ENDF I X I t~C (C. CRED I NC, C. CREDVAL)); 
END; 

FUNCTION MOVE; 
APPLI ST ( CREDNODES, STORE STEP); 
APPLI ST (CREDNODES, TAKESTEP); 
END; 

FUNCTION GETSHOWLIST; 
-IF CREDNODES.LENGTH>20 THEN FIRST<20,CREDNODES) 
ELSE CREDNODES CLOSE; 
END; 

FUNCTION- RELAXAND.SHOW STEPS PRFREO PRINTLIST; 
;VARS N; PRFREO->N; 
PRINTLIST.SHOWNAMES; 
PRINTLI ST .SHOWCREDS; 
STEPS<* .MOVE; 

IF N> 1 THEN N-1 ->N ELSE PR I NTLI ST. SHCH'iCREDS; 
P RFREO->N ;CLOSE;*>; 

END; 
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FUNCTION RELAX; 
• GETSHOWLIST. RELAXANDSHCWJ; 
END; . 

FUNCTION RELA XI NSTAGES STAGES; . 
. VARS L; .GETSHCWJLIST->L; 

L. SHOWNAMES ;L. SHCH\iCREOS; 
APPLI ST (STAGES, 

LAMBDA X; 
IF X. I SWORD THEN X. VALOF. SETCOEFFS 
ELSE X<* .·MoVE *>;L.SHOWCREDS CLOSE; 
END); 

l. NL; 
. END; 

FUNCTION RELAX50; 
.RESETVALS;.INITINCS;_ 
(COARSE 10 MEDIUM 10· FINE 10 TERMINAL 10 lOJ.RELAXINSTAGES; 
END; 

.._"(·** ZONE GEOMETRY *** 
FUNCTION GETBORD P Q; 

· VARS A B C D; 
. P.DESTPAIR->8->A;O.DESTPAIR->D->C; 

CONSTRI PLEC o..:..s, A-C, A ... 't-0-B*C); 
END; . . . 

FUNCTION ONSIDE P B; . 
B. TRIP 1 *P. FRONT+B. TRI P2*P. BACK>=B. TRI P3; . 
END; 

- FUNCTION OFFSIDE P B; · 
ONSIDECP,B>.NoT; 
END; . -

FUNCTION NOTSEP X; 
COMMENT'tests whether all points. in one· 
rectangle are on ·the off-side of the 
boundary x!; · 

. o NS I 0 E.( A, X > · p R ON SI DE ( 8 , X) 0 R 0 N S I DE< C , X ) 0 R 0 N SI DE ( 0 , X ) ; 
END; . 

FUNCTION NOSEPARATOR PTS SOS; 
VARS A B C D;PTS.OESTOUAD->0->C->B->A; 
BDS.OUADl.NoTSEP AND BOS.QUAD2.NOTSEP AND 
BOS.OUAD3.NOTSEP AND BDS.QUAD4.NOTSEP 
END; 

-197-



FUN CT I 0 N o V E f? LA P Z 1 Z 2 ; 
CO:\'iMENT"if t~,vo convex polyqons dont overlap there :nust be 
a line which separates them, and one of their borders must 
be su eh a l in e! ; 
NOSEPARATonCZ1.FnoNT,Z2.BACK) 
AND NOSEPAt?ATOR CZ2. FF?ONT ,Z 1 ~BACK) 
END; 

FUN CT I 0 N 80 HOSE CT B I I3 2 ·; 
C0!:1MENT'finds the point of intersection of two borders!; 
VARS A B C D E F DIV; · 

1 

. 81 • DESTTRI PLE->C- >3-> A 9 82. OESITRI ?LE->F-> E->D; 
B*·D-A*E->0 I V; 
IF DIV=O THEN ttPARALLEL";EXIT; 
CONSPAif~C CB*F-C,~E)/DIV, CC*D-A*F)/D!V); 
END; 

FUNCTION AVBORD E F P; 
COMMENT"checks that borders e and f are parallel and rllakes 
a new one which is a weighted average usirig p of e 
and q of f! ; · 

OPERATION 7 === X Y; 
APPROXEOC X, Y, I); 
END; 

VARS 0 R; t-P->0; 
IF E. TRIP2===0 OR F .. TRIP2====0 
THEN IF E.TRIP2===F.TRIP2 

THEN CONSTRIPLECP~\:E.TRI?l+OxF. Tr:?I?l ,0, 
P*E.TRIP3+G*F.TRIP3) 

ELSE 11 AV BO RD u. POPE RR; 
CLOSE; 

ELSEIF E.TRIP1/E.TRIP2=====F.TRIP1/F.TRIP2 
THEN E.TRIP2/F.TRIP2->R; 

CONSTH I PLE (E. TRIP 1 , E. TRI P2, P-kE. TRI P3+Q·A-R-;<F. TRI P3) 
ELSE 11 AVBORD" .POPER~?; 
CLOSE; 
END; 

FUNCTION REVBORD B; 
C 0 N ST ·R I P LE C .... C 8 • T R I P 1 ) , - C B • T I~ I P 2 ) , - < B. T R I P 3 ) ) ; 
END; 

-FUNCTION ZONEPTS Z; 
COMMENT"gets the corners of a zone from the borders!; 
VARS A 8 C O;Z.OESTQUAD->0->C->B~>A; 
CONSOUAD( BORDSECT ( 0 ,A), BORDSECT CA, 8), BOROSECT ( 8, C), 

BORDSECTCC,O)); 
END; 

-198-



FUNCTION MKZONEBDS P L; 
COMMENT-"makes zone borders from rectangle borders and a 
list of relative positions of ymax ,xrnax, ymin, xrnin!; 
VARS A BC D F;P.BACK.DESTOUAD->0->C->B->A;REVBORD->F; 
C, 0 N SO U A 0 C A V 80 R D ( A , C • F , P 0 P L ) ., A V BO RO C 8 , D • F , P 0 P L ) , 

AVBORDCA.F ,C ,POP L) ,AVBOROCB.F,O,POP L)); 
END; 

FUNCTION GETZONE OEFZONE P; 
COMMENT'returns a pair consisting of the corners and borders 

· for a specified zone relative ~o p!; 
VARS B; 
MKZONEBDSCP,OEFZONE)->8; 
CONSPAIR<B.ZONEPTS,B>; 
END; 

FUNCTION LASTCORN L; 
VARS A B C;POP L->A;POP L->B;POP L->C; 
CONSPAI RCA.FRONT+C. Ff-!ONT-8. FRONT, A. BACK+C. BACK-B. BACK); 
END; 

FUNCTION CONVPAIR L; 
CON SPA I R < L. HO , L • T L. HO ) ; 
END; 

FUNCTION MAKEWHOLE L; 
COMMENT 'makes the ooi nt s and borders of the \•lho 1 e from a 

list of it~ corner points!; 
VARS BOROS CORNS; 
A PPLI ST CL, I DENTFN). CONSOU AD->CORNS; 
CONSOUADCGETBORDCCORNS.OUADl ,CORNS.OUA02), 

GETBORD (CORNS. OUAD2, CORf·.rS. OUAD3) , 
GETBOROCCORNS.OUAD3,CORNS.OUA04), 
GETBORDCCORNS.QUA04,CORNS.OUA01J)->80RDS; 

CONSPAI RC CORNS, BOROS); 
END; 

FUNCTION CON~'/HSUB R S; 
I F oVER LAP C R • V·l H 0 LE , S • VJ H 0 LE ) 
THEN R:: S. RECTCON-> S. RECTCON; Se:: R. RECTCON->R. RECTCON; 
CLOSE; 
END; 

FUNCTION CONV·lHOLE L; 
LOOP IF L. I SLINK 
THEN APPLISTC L. TL,CONWHSUB( ~sL. HO%)) ;L. TL->L; 
CLOSE; 
END; 
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FUNCTION MAKE RECT L => i?ECT? 
VARS POINTS NAME P F;L.HD->NAME; 
f.,f AP L I ST ( L • T L , CON V P A I F? ) - > P 0 I NT S ; 
PCH NTS. MAKE~''H-!OLE->P; 
GET ZONE< %P7.~ )- >F; 
CONSRECTCNAME,NIL,NIL,P,DEFTOPENO.F,OEFBOTEND.F, 

DEFTOPHALF.F,OEFBOTHALF.F.,DEFTOPPOLE.F, 
DEFBOTPOLE.F)_:->RECT; 

RECT->NAME.VALOF; 
END; 

FUNCTION h\YDI ST P O; 
SORT( ( P. FRONT -Q. FRONT) A 2 + ( P. BACK -0. BACK YA2); 
END; 

FUNCTION ~'1IOTH R; 
VARS PTS; R.~VHOLE.FRONT->PTS; 
MYDIST<PTS.OUA01,PTS.OUAD2>; 
END; 

FUNCTION HEIGHT R; 
VARS PTS;R.~~JHOLE.FRONT->PTS; 
MYDISTCPTS.OUA02,PTS.OUAD3); 
END; 

FUNCTION AREA R; 
R • HE I GHT :~: R. W I DT H; 
END; 

FUNCTION PUP I f'·.J F I LENAl:\E; 
CO£,H,1ENT-'the data files give lists of lists 
of coordinates 'dhen compiled!; 
MAPLI ST C F ILENAME. CC) MP ILE, M;\KEHECT )->RECTS; 
RECTS. CON~~HDLE; 
END; 
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-;~** CODE FOR DEC.IDING WHETHER AN 
*** OVERLAP COULD OEP I CT A JoINT .,~:** 

MACRO MACP; 
VARS Zl Z2;.ITEMREAD->Zl;.ITEMREAD->Z2; 
MACRESULTS([LAMBDA P;IF P.PERPROX= 11 TOP 11 THEN P.PEHRECT.&Zl 

ELSE P.P~PRECT.&Z2 CLOSE;ENO;J.RIG); 
END; 

FUNCTION ~'IIDE R P 0; 
P.PERRECT.WIOTH>O.PERRECT.WIDTH; 
END; 

FUNCTION ALL P; 
P. P ERRECT. vn-Io LE; 
END; 

VARS PROXEND DISTEND PROXPOLE DISTPOLE PROXHALF DISTHALF; 
MACP TOPEND BOTEND->P ROXENO; 
l·:iACP BOTEND TOPEND->D I STEND; 
MACP TOPPOLE BOTPOL!:->PROXPOLE; 
MACP BOTPOLE TOPPOLF->DISTPOLE; 
MACP TOPHALF BOTHALF->PROXHALF; 
MACP BOTHALF TOPHALF->DISTHALF; 

FUN CT I 0 N KN EE J 0 I N P 0 ; 
P.PERRECT.WIDTH=<O.PERRECT.WIDTH 
AND OVERLAP<P.PROXEND,O.OISTEND) 
AND OVERLAP<P.PROXEND,O.PROXHALF).NOT 
AND OVERLAP ( P .D I STHALF, Q. DI STEN 0) • NOT 
END; 

FUNCTION TERMJOIN P O; 
COMMENT/for hands or feet <terminal parts)!; 
P.PERRECT.HEIGHT<O.PERRECT.HEIGHT 
AND P.P~RRECT.AREA<O.PERRECT.AREA 
AND OVERLAP<P.DISTENO,O.ALL>.NoT 
AND OVERLAP ( P .ALL, 0. P f~OXHALF). NOT 
END; 

-FUNCTION ARMJOI N P O; 
WIDERCQ,P) 
AND OVERLAPCP.PROXEND,O.PROXHALF) 
AND OVERLAP<P.PROXEND,O.OISTHALF).NOT 
AND OVERLAP<P.OISTEND,O.PROXPOLE>.NOT 
END; 

FUNCTION LEGJOIN P O; 
YHDER(Q ,P) 
AND OVERLAP<P.PROXENO,O.DISTHALF) 
AND oVERLAP< P. P ffOXEI'JO, 0. P ROXHALF). NOT 
AND oVERLAP<P.DISTEND,O.OISTPOLE).NOT 
END; 
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FUNCTION HEADJOIN P O; 
~~ I D ER ( P , 0 ) AN 0 P • PE RR E CT. HE I G HT< 2 * P • P ERR E CT • V'l I DT H 
AND OVERLAPCP.DISTENO,O.PROXEND) 
AND OVERLAPCP.ALL,O.OISTHALF).NOT 
AND OVERLAPCP.PROXHALF,O.ALL).NOT 
END; 

FUNCTION NECKJOIN P O; 
COl·:IMENT~"for joint betv1een neck and 
P.PERRECT.WIOTH<O.PERRECT.WIOTH 
AND OVERLAPCP.DTSTENO,O.PnOXEND) 
AND OVERLAPCP.ALL,O.DISTHALF).NOT 
AND OVERLAP ( P. PRO XHALF, 0. ALL). NOT 
END; . 

] 

trunk!; 

FUNCTIOI'.J JOir.J!--·!EAD P O;HEADJOINCO,P) ;END; 
FUNCTION JOINNECK P Q;NECKJOINCO,P>;END; 
FUNCTION JOINKNEE P Q;KNEEJOINCO,?);END; 
FUNCTION JOINTERM P O;TERMJOINCO,P>;END; 

FUNCTION JOINARM P Q;ARMJOINCO,P);END; 
FUNCTION JOINLEG P O;LEGJOINCO,P) ;END; 

VARS HEAD HECK HAND LOWERARM UPPERARM TRUNK CALF THIGH FooT; 

[ [ HEADJOI N NECK J )..:..>HEAD; 
[ [JOINHEAD HEAD] [NECKJOIN TRUNK JJ->NECK; 
[ [ T ER(.1J 0 IN LOWE RA R?,·\ J J ->HAND; 
[ [KNEEJOIN UPPEF~ARM J [ JOINTERM HANDJ J->LOWERARM; 
[ [AF?MJOIN THUNK J [JOINKNEE LOWERARM J J->UPPERARM; 
[ [TERMJOif\J CALF J ]->FOOT; 
[ [ KNEEJOI N THIGH J [ JOI NTERM FOOT J J ->CALF; 
[[LEGJOIH THUNKJ[JOINKNEE CALFJJ->THIGH; 
[[JOIHNECK NECK) (JOINARM UPPERAfV,1J(JOINLEG THIGHJJ 
->THUNK; 
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-J.--K* CODE For? GROV/ ING THE ~IcTHORI( -.·,·:;.··/< .. -

**~~ OF PART AND JoINT HYPOTHESES ~':~'d: 

FUNCTION GIVERECT P; 
P::P.P~RRECT.RECTPERS->P.PERRECT.RECTPERSl 
END; 

FU~!CT ION MAKE SLOT L P; 
~ 0 l'·J SO U AD ( P , L • HO , L • T L • HD ,- N I L ) ; 
Ei'·JD; 

FUNCTION MAKEPER RECT PROX TYPE=>PER; 
COr'·ISP ERCEPT ( lJ NO EF, RECT, PROX, TYPE, UNDEF, UNDEF) ->PER; 
~AKECRED<PER,PERPREFl->PER.PERCRED; 
(~~APLI ST (TYPE. VALOF, MAKE SLOT ( 7~PERZ)) ->PER. PERSLOTS; 
PER::PERCEPTS->PERCEPTS; . 
PER::RECT.RECTPERS->RECT.R~CTPERS; 
END; 

FUNCTION OTHERPER R P; 
VAP.S X~ R. RELSLOT 1. SLOTPER-> X; 
IF X=P THEN R. RELSL()T 2. SLOT PER ELSE X CLOSE i 
ENJ; 

FU>TCTIOP ALREADY RELS 0; 
S0.1A ::1 ::<U E ( f:!ELS, LA}t BOA R; 

R.RELSLOT1.SLOTPER=O OR P..RELSLOT2.SLO.TPER=O 
::No; 

FU>-ICTION FINDSLOT P O; 
VARS T FUN;O.PERTYPE->T; 
P.?ERSLOTS RHLOOP; 

IF :=-lH. SLOTTYPE=T. 
THEN RH ; EXIT; ; 

Ei·JD RH; 
.. POPERR? 
Ei'·EJ; 

FUNCTioN ADDREL P 0 PSLOT; 

END); 

VA?..S OSLOT REL; 
P.PERRECT.RECTNAME.PR;1.SP;O.PERRECT.RECTNAME.PR;3.SP; 
Ffi·fDSLOT( Q, P) ->OS LOT; 
CCNSTRIPLE<PSLOT,OSLOT,UNDEF>->REL; 

-MAKECRED<REL,RELPREF)->REL.RELCREO; 
REL::RELATIONS->RELATIONS; 
REL:: PS LOT. SLOT RELS->PSLOT. SLOT RELS; 
REL:: OS LOT. SLOT RELS-> OS LOT. SLOT RELS; 
END; 
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FUNCTION GETEXISTINGPER RECT TYPE ORIENT; 
RECT. RECTPE RS F?HLOOP; 

ENORH; 
FALSE; 
END; 

IF RH.PERTYPE==TYPE AND RH.PERPF?OX=ORIENT THEN RH;EXIT; 

FUNCTION TRYTHEPER P SLOT RECT ORIENT; 
VARS DONE 0 REOTYPE FUNi 
SLOT.SLOTTYPE->REOTYPE;SLOT.SLOTFUN.VALOF->FUN; 
GETEXISTINGPERCRECT,REOTYPE,ORIENT)->0; 
'rF 0 
THEN IF O==P THEN EXIT; 

IF ALREADY<SLOT.SLOTHELS,O).NOT AND FUNCP,O) 
THEN O.ANYREL->DONE; ADDREL<P,O,SLOT); 

UNLESS DONE THEN 0 CLOSE; 
CLOSE; 

ELSE r:\AKEPEHC RECT ,DRI ENT, REOTYPE)->0? I 

CLOSE; 
END; 

IF FUN<P,Q) THEN ADDREL<P,O,SLOT);Q;CLOSE; 
CO!·:~(-~ENT'this is where future members of livelist are 

dumped! 7 

FUNCTION TRYFILLSLOT SLOT PERCEPT; 
PERCEPT .PEf-cRECT .RECTCON RHLOOP; 

THYTHEP ER (PERCEPT, SLOT, RH, "TOP"); 
TRYTHEP ER (PERCEPT, SLOT, RH, u BoTn); 

END RH; 
er r..ff\ .. 

l ~ ._.1 , 

FUNCTION TRYGROvV P; 
A PPLI ST CP. P ERSLOTS, LAMBDA S; TRYFI LLSLOT < S, P); END) ; 
EI~D; 

FUNCTION GROHPERS LIVELIST; 
COM~.{ENT"this takes the most recently created percepts and 

tries to fi.ll their slots,possibly making.more percepts!; 
IF LIVELIST.NULL THEN EXIT; 
[ ~6A PPLI ST ( LI VEL I ST, TRYGRCWi) ~:~ J. GROl"lPERS; 
END; 

FUNCTION MAKEBOTH R T; 
i~AKEPER ( R, 11 TOP 11 , T); MAKE PER ( R, "BOT", T) ; 
END; 
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FUNCTION GETPOSSNUCLEI; 
Co?.rMENT"there are three types of nucleus: 

a trunk requires 3 feasible connected rectangles. 
a he.ad requires the right pro port ions and ex a et ly 

one other connected rectangle ,which must 
be narrower. a hand or foot requires 
exactly one connected rectangle ,with greater area.!; 

;.~APLI ST < RECTS, 
LA:.~ BOA R; 
VARS L;R.RECTCON->L; 
IF L.LENGTH=1 
THEN IF L.HO.WIOTH<R.WIDTH 

THEN MAKEBOTH<R, 11 HEA0 11 ) 

CLOSE; 
IF L.HD.AREA>R.AREA 
THEN MAKE BOTH< R., "HAND 11 ) ; MAKE BOTH ( 8, 11 FOOT 11 ) 

CLOSE; 
ELSEIF L.LENGTH>2 
AND FILTLIST<L,LAMBOA X;X.WIDTH<R.WIOTH;END).LENGTH>2 
THEN MAKE BOTH ( R ,-"TRUI'-JK") 
CLOSE; 
END); 
E~:o; 

FU:.JCTION ANYREL P; 
S0:11tET RUE CP. PE RSLOTS, SLOTRELS. FNCOMP I SLINK); 
END; 

FUNCTION GIVEPERNAME P L; 
CONCATWORDCP.PERRECT.RECTNAME,NUMWORDCITEMNUMCP,L)J) 
->P .PERI'··JAME;P->P. PERNAME. VALOF; 
END; 

FUNCTION NEATPERS; 
VARS L; 
I'J I L ->PERCEPTS; 
RECTS. REV RHLOOP; 

RH.RECTPERS->L; 
APPLISTCL,GIVEPERNAMEC%L%)); 
L<>PERCEPTS->PERCEPTS; 

El'IDRH; 

FUNCTION MAKEPERNET; 
VARS LI VELI ST ;NI L->PERCEPTS ;NI L->RELATI <JNS; 
.GETPOSSNUCLEI->LIVELIST; 
LIVELIST->PERCEPTS;NIL->RELATIONS; 

_GROWPERS( PERCEPTS); 
FILTLISTCPERCEPTS,ANYREL)->PERCEPTS; 
APPLI ST < RECTS ,LAMBDA X;NI L->X. RECTPERS; END); 
APPLISTCPERCEPTS,GIVERECT); 
.UEATPERS; 
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*** CODE FOR HANDLING EXTRA INPUT *** 
*** INSTRUCTIONS LIKE 11 TRYTOINTERPRET 11 **"k 

FUNCTION CLEARPERPREF S; 
APPLISTCPERCEPTS,LAM3DA P;O->P.PERCRED.CREDPREP;END>; 
END; I 

FUNCTION CLEARRELPREFS; 
APPLISTCRELATIONS,LAMBDA R;O->R.RELCREO.CREDPREF;END>; 
END; 

FUNCTION I SOFTY PE X T; 
X. P ERTYPE=T.; 
END; 

FUNCTION ISOFRECT X NAME; 
X.PERRECT.RECTNAME=NAME; 
END; 

FUNCTION HASPRCJ.XAT X W; 
X. PERPROX=V·/; 
END; 

FUNCVAR I SUPR IGHT HASPROXATC7~ 11 TOP"~~); 

FUNCTION HELPPERS N PRED; 
APPLISTCPERCEPTS, 

LAr'i BOA P; 
IF P.PRED THEN N+P.PERCREO.CREDPREF->P.PERCRED.CREDPREF 
CLOSE; 
END); 

END9 

FUNCTION HELPRELS N PRED7 
A PPLI ST C RELATIONS, 

LAMBDA R; 
IF R.PRED THEN N+R.RELCREO.CREDPREF->R.RELCREO.CREDPREF 
CLOSE; 
END); 

END; 

FUNCTION HELPPER P N; 
N+P .PERCRED .C REDPREF- >P. PERCRED. CREDPREF; 
END; 

FUNCTION THERELBETWEEN P O; 
VARS X Y; 
RELl\TIONS RHLOOP; 

RH.RELSLOT1.SLOTPER->X;RH.RELSLOT2.SLOTPER->Y; 
IF ( X=P, AND Y=O) 0 R ( X=O AND Y=P) THEN RH; EXIT; 

ENDRH; 
FALSE; 
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FUNCTICH~ HELPREL R N; 
.N+R.RELCRED.CREDPREF->R.RELCRED.CREDPREF; 
EUD; 

FUtJCT ION SETORI ENTPREF PART OR I ENT N; 
HEL PP ERS ( t,T, LAMBDA P; I SOFTY PE ( P, PART) AND HASP ROXAT C P, OR I ENT) 

; END); · 
Et<D; 

FUNCTION SETPARTPREF RECT L N; 
VARS W PART;L.HD->W; 
r F v·f = "ToP n oR w = u a o T" 
THEN L.TL.HD->PART; 

HELPPERSCN,LAMBDA P; 
I SOFRECTC P, RECT) AND HASPROXATC P, IV) 
AND I SOFfYPEC P, PART); 

END); 
ELSEIF W=HSOMEPART 11 

THEN HELP PE RS ( N, LAM BOA P; I SOF RECT ( P, R ECT); END) 
ELSE HE LPPE RS ( N, LAMBDA P; I SOF~?ECT ( P, RECT) AND I SOFTYPE ( P, W) ; 

END) 
CLOSE; 

OP!::P.ATION 3 TRYTOINTERPRET L;. 
VARS W (·I; 
~A?LISTCL,LA~BDA W; 

Ef\JD )->L; 

IF ~·J= 11 U PR I GHTu THEN nToP 11 

ELSEI F ~·\i= 11 UPSIDEDOWt.J 11 THEN usoT" 
ELSE // CLOSE; 

CO!M:~ENT"the program likes "top" and Hbot" but people dont 
understand them!; l.rev.hd->n;l.hd->w; 
IF !.\E~.\BERCW, [HEAD NECK TRUNK UPPERARM LOWERAR!!. HAND THrGH 

CALF FooT]) 
THEN SETORI ENTP REF< iV, L. TL. TL. HD, N); 
ELSE S~TPARTPREFCW,L.TL.TL,N) 
CLOSE; 
END; 

_ FU >J CT I 0 N I N HI 8 I T N ; 
APPLI ST <CREDNODES, 

LAMBDA C;IF C.CREDVAL>0.5 THEN C.CREDPREF-N->C.CREDPREF 
CLOSE; 

END); 

FUr·.JCT I ON SI\' ITCHATTENT I ON N; 
VARS L CHANGE; 
~ECTS RHLOOP; 

EI--JD RH; 
END; 

MAPLIST(R1-I.P.ECTPERS,PERCRED>->L; 
IF SO~.-tETRUE<L,LAMBDA C;C.CREDVAL>O.S;ENO) 
THEN -N->CHANGE ELSE r·J->CHANGE CLOSE; 
APPLI ST CL, LAlft BOA C; C. CREDP REF +CHANGE->C. CHEDPREF; END); 
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-;,-x·x CODE FOR C REAT rNG. THE CO!-JSTRAI NTS ·-l .. ··r.-J-: 

FU~~CTION SLOTS I ZE S; 
IF S. SLOTPER. PERTYPE="TRUNKI' 
AND S/==S.SLOTPER.PERSLOTS.HD 
THEN 2 ELSE 1 CLOSE; 
END; 

VARS RELPREF PERPREF; 1->RELPREF;O->PERPREF; 

FUNCTION THREECOLPR X EXTRALINE; 
VARS F;PERNAME FNCOMP PR~>F; 
IF X. DATA~'JORD=" PERCEPT" THEN IF EXTRALINE THEN 3. SP 

ELSE t.SP;X.F CLOSE; 
ELSE IF EXT!~ALI NE THEN 1. SP; X. RELSLOT I. SLOTPER. F 

ELSE 1 .SP; X. RELSLOT2. SLOTP ER. F 
CLOSE; 

CLOSE; 
END; 

FUNCTION SETRECTCONSTR RECT; 
MAPLISTCRECT.RECTPERS"~PERCREDl.ATMOSTONE; 
END; 

FUNCTION SEITYPECONSTR TYPE PERLIST FUN; 
VARS L;FILTLISTCPERLIST,LAMBDA P;P.PERTYPE=TYPE;ENDl->L; 
MAPLISTCL,PERCREDl;FUN; 
EN~; 

FUNCTION SETSLOTCONSTR S; 
VARS FLIST P; 
S.SLOTPER.PERCRED->P; 
IF S.SLOTSIZE=2 THEN [%P,P%J ELSE [~sP7~J CLOSE->FLIST; 
MORECREDCFLIST,MAPLISTCS.SLOTRELS,RELCREO)); 
END; 

FUNCTION SETCONSTRAINTS; 
-APPLI ST <RELATIONS, 

LAMBDA R;VARS L;R.RELCREO.::NIL->L; 
MORECREDCR.RELSLOTl.SLOTPER.PERCREO-::NIL,L>; 
MOREC RED ( R. RELSLOT2. SLOTP ER. PE RC RED:: NIL, L); 
END>; 

APPLI ST ( RECTS, SETRECTCONSTR); 
. APPLI STC [HEAD NECK TRUNK] ,SETIYPECONSTRC%PERCEPTS,ATMOSTONE%)); 
APPLISTC[HAND FOOT LOWERARM UPPERARM CALF THIGH], 

SETTYPECONSTRC%PERCEPTS ,ATMOSTIVJOJ-~J); 
APPLISTCPERCEPTS, 

LA].{ 8DA P; A PPLI ST < P. PER SLOTS, SETSLOTCONSTR); END}; 
END; 
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*** THE TOP LEVEL FUNCTION FOR CREATING *** 
*** THE NETWORK OF CANDIDATE HYPOTHESES *** 

FUNCTION FIRST N L; 
IF L.NULL OR N=O THEN NIL 
ELSE L.HO: :FIRST<N-1 ,L.TL) CLOSE; 
END; 

FUNCTION GETPUPNET FNAME; 
NI L->PERCEPTS·;N IL-> RECTS; NI L->CONSTRAINTS; NIL->CREDNODES; 
FNAME.PUPIN;.MAKEPERNET;l.NL; 
.SETCONSTRAINTS; 
MAPLISTCPERCEPTS,PERCRED>->PLIST; 
PL I ST <>?,1APLI ST< RELATIONS, RELCRED) ->CREDNODES; 
FIRSTC20,PLIST)->PLIST; 
"PLIST CREATED. 
! • P RSTR ING; 
END; 
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APPENDIX 4 

This shows the way the supposition values change 

during relaxation for the examples in chapter 2. Only 

the first nineteen part-hypotheses are shown in many 

cases. The function RELAX50 causes fifty rounds of re-
I 

laxation with printing initially and after every ten 

rounds. Supposition values X 100 are shown, and for for-

matting reasons, 100 is printed as 99. The coefficients 

in the relaxation operator are set at: 

Kp )(d Kf KJ.t lte.-atior.s 

O·Lt 0. t 0. j 0 10 

O·l D·5 () . 3 0 10 

0 ·I D·S D ·3 0 10 

0 ·I 0·8 O·j D·l :tO 

The hypotheses which get selected can be identified 

by referring to the figures in chapter 2. 
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! rela~-~50 (); 

Al B:l PI") ...... _ B3 C:l. c~") 
.~.:.. D1 D2 D3 D4 D5 El E2 E3 E4 E5 Fl F2 F3 

0 0 0 _0 0 0 0 () 0 0 0 0 0 0 0 0 0 0 0 
59 65 l")t::" 

A".....J 26 63 68 23 53 54 5 10 20 60 61 0 0 57 57 18 
85 83 12 10 I::" I::" ,_,,J 66 14 53 55 0 0 4 55 56 0 0 54 53 3 
98 94 6 2 50 63 4 49 ~57 0 2 4 49 56 0 0 54 49 2 

99 99 0 0 44 76 0 42 6<7 0 0 0 42 65 0 0 62 41 0 
99 99 0 0 17 99 0 16 <J6 0 0 0 15 92 0 0 89 14 0 

For the example in figure 2.1" 

! • re 1 <:~~·~50; 
C3 C3 B1 Di D2 Al 

A1 Bl B? Ci C2 C~5 D1- D2 [13 D3 B2 C3 C2 Cl Bl 
0 0 0 0 0 0 0 () 0 0 0 0 0 0 0 

73 65 99 36 36 78 3B 38 6B 90 99 84 53 53 80 
86 60 98 17 17 87 1B 18 8:3 93 99 71::" .. J 25 25 75 
86 39 93 9 9 93 8 8 9!5 99 97 47 12 1 r) .:.. 47 
99 19 99 0 0 99 0 0 99 99 99 24 1 1 24 
99 12 99 () () 99 () () 99 99 99 16 1 1 16 

For the example in figure 2.2. The double 

column headings indicate joint hypotheses. 

! • re-1 a~-~50; 

Al B1 B2 B3 B4 B5 Cl C2 C3 C4 C5 C6 D1 D2 D3 D4 D5 El E2 

0 0 0 0 0 0 0 0 () 0 0 _0 0 0 0 0 0 0 0 

60 47 32 34 10 10 61 61 18 18 4 6 17 17 7 39 41 17 17 

76 70 28 22 0 0 68 55 10 :1.0 0 0 10 10 0 48 4,., .:.. 10 10 
84 75 19 6 '"> 2 68 46 4 4 0 0 3 3 0 57 42 3 3 .:.. 

99 98 0 0 0 0 87 :~1 0 0 0 0 0 0 0 80 28 0 0 
99 99 0 0 0 0 99 0 0 0 0 0 0 0 0 99 0 0 0 

For the example in figure 2 .4. 
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! • rela}<50; 

A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 Cl Ill D2 D3 [14 D5 El E2 
0 0 0 0 0 0 0 () 0 0 0 0 0 0 0 0 0 0 0 

72 60 12 0 14 0 49 36 -·,-7! 
..:>. •• } 1 1 8 .. > .:.. 0 45 41 27 28 35 35 

70 51 6 0 6 0 61 32 20 0 0 96 0 44 35 19 18 22 23 
71 47 0 0 0 0 76 24 6 0 0 99 0 48 35 14 10 15 17 

.86 34 0 0 0 0 99 0 0 0 0 99 0 76 31 0 0 0 0 
99 0 0 0 0 0 99 0 0 0 0 ('f9 0 99 0 0 0 0 0 

For the examPle in figure 2.5. 

! • re 1 a~< 50 ; 

A1 A2 A3 A4 A5 A6 Bl B':> ,._ B3 B4 B5 Cl D1 [12 D3 [14 D5 El E2 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

60 94 2 0 21 0 4~5 24 70 0 0 8:1. () 39 62 20 27 33 29 
50 88 0 0 8 0 52 8 60 0 0 94 0 36 59 9 18 21 13 
40 86 0 0 3 0 69 0 45 0 0 96 0 ~56 63 3 12 16 3 -

25 99 0 0 0 0 99 () B 0 0 99 0 18 96 0 0 0 0 
6 99 0 0 0 0 99 () 1::" 

... J 0 0 99 0 0 9<J 0 0 0 0 

For the example in figure 2.6~ 

! • rela}<50; 

A1 A2 B1 B2 B3 B4 B5 Cl c~., .:.. C3 C4 C5 D1 D2 D3 D4 [15 El E2 
0 0 0 0 0 0 0 0 o· 0 0 0 0 0 0 0 0 0 0 

49 14 49 23 13 8 7 55 6,.> .:... 19 1 ~5 1~5 0 38 40 29 29 38. 38 
60 7 59 11 6 0 0 45 59 9 7 8 0 34 40 21 21 27 27 
66 0 65 4 0 1 1 40 61 1 4 7 1 34 46 14 14 19 18 
92 0 95 0 0 0 0 ~39 84 0 0 () 0 :~9 75 0 0 0 0 

-99 0 99 0 0 0 0 3 99 0 0 0 0 0 99 0 0 0 0 

For the example in figure 2.7~ 
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! • re 1 a~< 50 Y 

A1 A2 B1 B2 C1 C2 Dl D2 [13 E1 E2 Gl G2 G3 H:L !1 J1 J2 J3 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

63 63 63 63 72 63 21 71 74 67 68 15 67 60 42 55 15 67 60 
56 56 56 56 62 56 0 6:1. 67 56 62 3 60 54 57 57 3 60 54 
54 54 54 54 58 c.- I") 

~...:.. 3 ~ .. y 

~ .... ~ :j9 51 57 ,.) 
.:.. 57 51 53 54 ,.) 

.:.. 1::"7 .J. 51 
53 53 53 53 62 48 0 51 6~5 48 62 0 62 48 56 54 p 62 48 
54 54 54 54 75 36 0 40 78 36 75 0 74 36 55 54 0 74 36 

.. -

!relaxinstases([terminal 10 :i.o :LOJ); 

A1 A2 Bl B2 Cl C2 Dl D2 [13 El E2 G1 G2 G3 H1 Il Jl J2 J3 
54 54 54 54 75 36 0 40 78 36 75 0 74 36 55 54 0 74 36 
54 54 54 54 99 3 0 4 99 '"> 99 0 99 3 55 54 0 99 3 ...:.. 

54 54 54 54 99 1 0 :1. 99 0 99 0 99 0 55 54 0 99 0 
54 54 54 54 99 1 () 1 9<J 0 99 0 99 0 55 54 0 99 0 

For the example in figure 2.9-

Thirty extra rounds of relaxation are shown, with the 

coefficients at their terminal settings 

!relaxinstages([terminal 10 :1.0]); 

A1 A2 Bl B2 Cl C2 Dl D2 D3 El E2 GJ. G2 G3 Hl Il J1 J2 J3 
54 54 54 54 99 1 0 1 99 0 99 0 99 0· 55 54 0 99 0 
44 66 64 44 99 1 0 0 99 0 99 0 99 0 66 67 0 99 0 
11 99 97 12 99 1 0 0 9<t 0 99 0 99 0 99 99 0 99 o: 

For the example in figure 2e10. 

The deadlock is broken by additional input instructions. 
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A PP Ft F) I X 5 

CODE FOR THE EXAMPLE II\! SF:CTI o:1 5. 2 

FUNCT I Ot,; SA!dESU M L ~ 
COMMENT "r:J·:1!·,: es cons tr.q i nt s ~'!hi c h force the he 3d of the list 
to h::JV8 the s8me sum ;:,s the rest! t 
VARS X L;MAPLISTCL~VALOF)->L; 
L • H 0 : : N I L-> X t L. TL- > L; 
!-.I 0 n EC RED C X , L ) ; : .. 1 0 i~ E C RE Q ( L , X ) ; 
END; 

FUNCTION Ul'.I IT SUM L; 
CO\H.\ENT~'sets up tv1o constraints to en.s! 1Jre tr:J.t the 
sunposi tion V3lues of the nodes in l Adc to one.!; 
:.fAPLI ST< L, VALOF )->L; 
AT"/OSTONE CL) 7 ATLE:AST01··JE ( L); 
E>IJ 7 

CO\'if,1ENTJ'l is a list of nodennmes ar1d nu:::be::-s!; 

UI'.'T IL L .. NULL 

f,I-> X. VALOF. CrF:DPf.?EF; 
~N l)!JO 1 
c~.l!) n 

. ;_. ll -· '} 

. FtFTCT In t·~ ;-~.t..:C:NoDE l\i; 
VARS Ct 
CO\! SC f1E Dii or:r: C IS, NIL, NIL, 0, 0, 0)- > C; 
C-> \'·1. VALOF r C:: C REDNODES->CREOND~ES; 
ENQ; 

APPLIST( [AO A 1 A2 A3 PO El 22 83 CO Cl C2 C3 H4 H5 E6 ":t 
H8 H9 J 4 J5 J 6 J7 J9 J9 K4 K5 K 5 K7 KS ;(9 J, i'lld(E~Ioc::) i 

A PP L I ST ( [ [ A 0 A 1 A 2 A 3 J [ BO B 1 E 2 B 3 J [ C 0 C i C 2 C 3 J 
[H!~ liS H6 H7 H8 i-!9] [JL JS J6 .J7 Jq JyJ 
[ K,·~ K5 K6 K7 l(>l K9 J J, u~;I TSU'\); 

AP?LIST( [ [ A 0 H 4 t 1 tS J [ A 1 H 5 H 9 J [ _,.,_ 2 
[AQ K4 K7J[Al K5 KQ][A2 
(80 J4 J6J[G1 J5 J9J[22 
[ HO H 4 H 7 J [ U l H5 HA J [ f3~ 
[CO K 4- K5 J [ C 1 I<5 K9 J [ C2 
( C CJ J ~~ J 7 ] [ C I J 5 J F~ J [ C 2 

VA ;~ ~-; P L I ;·:T ~ 

HE'J[A3 
{9) [ A_3 
J (n r R:3 
H9 J [ ?3 

J9 J [ CJ 

- . ....,. , 
;1 I .! 
:.'A 1 
.\. ) ..J 

,.....,. , 
.J I J 
-.~,:.:.. ] 

~<7 j 

,'/}Y L I ~)T ( [ A0 A 1 t\-2 /\:.1
: PO ?1 P.2 r3J CO C 1 C2 C3 J "'I ALOF) 

->PLI ~3T ~ 
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APPENDIX 6 

CODE FOR THE 11 SEITLE 11 SYSTEM • 
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. *** CODE FOR MAKING SCHEMAS AND INSTANCES *** 

COMMENT'this file is for making schemas and instances for 
a settle system. rules have to be added after the schema 
is made. ! ; 

ENSURELIST SCHEMAS; 

COM.i\\ENT'some slots have known inverses. knov1ing these 
facilit~tes bond specifications!; 

OPERATION 4 <-> X Y; 
CONSPAIR<X,Y) ::INVERSES->INVERSES; 
END; 

ENSURELIST INVERSES; 

FUNCTION INVERSE F; 
INVERSES HHLOOP; 

IF RH.FRONT=F THEN RH.BACK,RETURN 
ELSEIF RH.BACK=F THEN RH.FRONT,RETURN 
CLOSE; 

END RH; 
UNDEF; 
END; 

COMMENT'instances are strios,butslot names are used to 
access components of them,· so accessing functions are 
assigned to slot names. to avoid creating unnecessary 
functions, or creating copies of them, there is a 
dynamic list of them!; 

FUNCTION NEXTFUN N SELF; 
COMMENT' a closure of this produces a selector function 
for then th component of a strip!; 

VARS FUN; 
POPVAL( [LAMBDA S;SUBSCR<&N,S) ;END; J.RIG>->FUN; 
CONCATWORD< ".SUB 11 , N. NUMWORD) ::FUN. FNPROPS->FUN. FNPROPS; 
POPVAL( [LAMBDA C S;C->SUBSCR<&N ,S) ;ENDJ .RIG)->FUN.UPOATER; 
FUN; 
N+ 1 ->FROZVAL( 1, SELF); 
END; 

, VARS GENERATOR SUBSCRFUN; 
NEXTFUN ( ~~ 1, UNDEF% )->GENEHATOR; 
GENERATOR->FROZVAL(2,GENERATOR); 
ITEMC%GENERATOR. FNTOLI ST% )->SUBSCRF; 
COMMENT'subscrfun takes an integer n and returns a 
selector for the n'th component of a strip.!; 
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FUNCTION NAMESLOT N ~-J; 
-"'A%% W IS MADE THE NAME OF THE N'TH COMPONENT OF AN INSTANCE. 
P 0 P V A L ( [ % 11 V A R S u , W , n ; .u % J ) ; 
N. SUBSC RFUN-> W. VALOF; 
END; 

·"'A~;~r, ALL INSTANCES START WITH THREE SPECIAL COMPONEI'.ffS 
·"'A%% CALLED INSTNAME, INSTOF AND INSTCRED. 
:'A%% INSTNAME CONTAINS THE NAME OF THE INSTANCE. 
·"'A~~% .IN STOF CONTAINS THE SCHEMA. 
·"'A~~~~ INSTCRED CONTAINS THE ASSOCIATED 11 CREDNOOE 11 • 

NAMESLOT( 1 , "I NSTNAME"); NAME SLOT ( 2, 11 INSTOF 11 ); 

NAMESLOTC 3, 11 I NSTCRE0 11 ); 

I 

RECORD SCHEMA SCHNAME SCHKNOWLEDGE SCHINSTS SCHNUMOF O; 

COMMENT" the schknO'v'/ledge of each schema is a strip \·!hose 
components are slotknowledge records. these contain 
knowledge about the sizes of the slots, the types of 
fillers allowed and the constraints.!; 

RECORD SLOTKNOWLEDGE SKNAME SKSIZE 0 SKTY?ECHECKS SKRULES; 

COW~ENT'an instance of a schema is a strip whose 
components (apart from the first three defined above) 
re records of type slot. 

each slot has a list of demons, a list of bonds~ anc a 
pointer to the part of the schema which contains rules 
whose k~ys may start matching when the slot is filled.!; 

RECORD SLOT SLOTKNOWLEDGE SLOITRIGS SLOTBONDS; 
RECORD BOND BONDINSTl BONDINST2 BONDCRED; 

VARS .SLOTNAME;SLOTKNOWLEDGE FNCOMP SKtiAME->SLOTNAME; 

FUNCTION SCHSLOTNAMES -SCHEMA; 
COMMENT'oroduces the names of slots from a schema!; 

MAPLI ST <SCHEMA. SCHKNOWLEDGE .DATAL I ST. BACK. BACK. BACK ,SK~!A!.1E > 
END; 

FUNCTION MAKENEXTNAME SCHEMA=>W; 
. COMMENT'all instances of a schema have names consistin·;; 

of the schema name followed by an integer!; 
, VARS N; SCHEMA. SCHNUMOF+ 1->N ;N->SCHEMA. SCHNUIAOF; 

CON CA TWORD( SCHEI.,·~A. SCHNAlviE, N .NUM WORD)->~·;; 
[ % il V A R s ! I ' w ' 11 ; 11 % ] • p () p V AL ; 
END; 
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FUNCTION GETNEWINST SCHEMA=>NEW; 
_..,..A%% THIS MAKES A NEW INSTANCE OF A SCHEMA. 
VARS C; 
<I SCHEMA.MAKENEXTNAME, SCHEMA, UNDEF, 

APPLISTCSCHEMA.SCHKNOWLEDGE.DATALIST.TL.TL.TL, 
C 0 N SS LoT ( 7& N I L , N I L%) ) I> - > NE Y'i ; 

CONSCREDNOOE( NE~···J,NIL, NI L,NIL,O. 5,0,0)->C; 
C->NEW. INSTCRED ;c,: :CREONOOES->CREDNODES; 

NEW->NEW.INSTNAME.VALoF; 
NEW::SCHEMA.SCHINSTS->SCHEMA.SCHINSTS; 
END; 

VARS MAKEINST;GETNE~'IINST FNCOMP ERASE->MAKEINST;. 

FUNCTION MAKESCHEMA SCHNAi\·\E L; 
VARS SCHEMA SLOTSIZE NA1·:1E N KSTRIP; 
4->N; 
<I UNDEF, UNDEF, UNDEF, 

LOOPIF L.ISLINK 
THEN POP L->N AME ;NAMESLOT C N, NA!~~E); 

. IF L.ISLINK AND L.HO.ISINTEGER 
THEN POP l->SLOTSIZE; 
ELSE 1->SLOTSIZE 
CLOSE; 

CON SSLOTKNOvifLEDGE (NAME, SLOTS I ZE, NIL, NIL) ; 
N+1->N; 
CLOSE /> ->KSTRIP; 

CON SSCHEMAC SCHNAME, KSTR IP, NIL, 0 )-> SCHE\\A; 
SCHEMA:: SCHEMAS->SCHEMAS; 
SCHEMA->SCHNAME. VALOF .; 
END; 

*** CODE FOR CREATING KEYS FRo!.{ THE *** 
*** BOND AND CONDITION SPEC IF ICATIC~NS *** 

RECORD EXTRABOND EBSOURCE EBFUN EBGOAL; 
RECORD KEYNODE KNBINDING KNCONDS KNGEN KNEXTRAS; 
RECORD RULE RULENUM 0 RULEKEY RULEACTION; 

FUNCTION UNPACKBONDS L; 
COMMENT"this destructively alters 1 substituting two one 
way specifications for one two way one!; 

.VARS R B; 
UNTIL L.NULL 

, DO L.HO->B; 
IF B.LENGTH=4 _ 

ENDOO; 
END; 

THEN ITEMC4,Bl->R;NIL->B.TL.TL.TL; 
[;~B.TL. TL.HD, R, B.HD%J-: :L. TL->L. TL; 
L.TL.TL->L; 

ELSE L.TL->L; 
CLOSE; 
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FUNCTION COMESFIRST A 8 L; 
L RHLOOP; 

IF RH=B THEN FALSE;RETURN ELSEIF RH=A THEN TRUE;EXIT; 
END RH; 
• POPE RR; 
END; 

FUNCTION GETOROEREDNODES BONOSPECS=>REACHABLE SPECS; 
'COMMENT'this takes a list of bond specifications and 
ensures that the firstnode in each bond can be reached 
from a previously mentioned node. i. e. it 
will reorder [ [a fun b] [c fun dJ [b fun c] J. 
it also returns a list of node names!; 

VARS SUSPECT B; 
FUNCTION TRYADD B; 
VARS X;B.TL.TL.HD->Xt 
UNLESS MEMBERCX,REACHABLE) 
THEN NCJO IN (REACHABLE, x.:: NIL)-> REACHABLE CLOSE; 
END; 

POP BONDSPECS->8;[%8 .. HD,B.TL.TL.HO%J->REACHABLE; 
NIL->SU SPECT; 
(%8, 

LCXJPI F BONDSPECS. I SLINK 
THEN POP BONDSPECS->8; 

IF MEMBERCB.HO,REACHABLE> 
THEN B; B. TRY ADD; 

SUSPECT RHLOOP; 

END RH; 

IF MEMBERCRH.HD,REACHABLE> 
THEN RH;RH.TRYADD; 
REMOVE<RH,SUSPECT)->SUSPECT 
CLOSE; 

ELSE B::SUSPECT->SUSPECT 
CLOSE; 

CLOSE% ]->SPECS; 
UNLESS SUSPECT.NULL 
THEN 'INVALID KEY SPECIFICATION. CULPRITS: !.PRSTRING; 

SUSPECT. PR; 
.POPREADY; 

CLOSE; 
END; 

FUNCTION GETNAMEDNODE W; 
COMMENT'assumes global keylist!; 

KEYLIST RHLOOP; 
IF RH.KNBINDING=W THEN RH;EXIT; 
ENDRH; 
FALSE; 
END; 
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-': '·:. -, . . . ' ~ . 

COMMENT"some complex bond specifications are split into 
bonds and tests for conditions.i.e. [a spouse =none] is 
handled by translating it into something like: 

[a spouse bJ and [.equal b none] 
·so dummy names Clike "b11 ) are needed.!;_ 

VARS DIFFERENT NEXTDUMMYNAME; 
EQUAL FNCOMP NOT->OLFFERENT; 
GENSYMC "DUMMYNOOE 11 )->NEXTDUMMYNAME; 

FUNCTION EXTHACTCOND BONDSPEC; 
COMMENT" this 1 ooks for a special syfilbol C = or /=) before 
the second node and destructively changes the bondspec and 
stacks the required condition!; 

VARS W LASTBIT FUN; 
BONDSPEC. TL. TL->LASTBIT; LASTBIT. HD->~·1; 
IF W= 11 =11 THEN EQUAL->FUN 
ELSEI F V·J="/= 11 THEN DI FFERENT->FUN 
ELSE RETURN 
CLOSE; 
.NEXTDUMMYNAME->W; [%W%J->BONDSPEC. TL. TL; 
[%FUN,W,LASTBIT.TL.HD%J; 
END; 

FUNCTION GETCONDARG W; 
COMMENT'the argue11ents specified in A cond may or may 
not be keynodes! ; 

VARS X;V'l.GETNAMEDNOOE->X; 
IF X THEN X ELSE ~'i CLOSE; 
END; 

FUNCTION LASTNODE L M; 
COMMENT., returns the member of. 1 which occurs last in :n!; 

COMMENT.,if no member of 1 occurs in m then this 
returns m.hd!; 
M. REV-> M; 
UNTIL M. TL.NULL OR MEMBERCM.HO,L) DO M. TL->M ENODO; 
M.HD; 
END; 

FUNCTION ADDKEYCOND COND; 
COMMENT'cond is turned into a list of keynodese.r other 

arguments preceded by a function and stored under the last 
named node. keylist is assumed to be global.!; 
VARS F L K; 
COND.RIG->COND; 
IF COND.HD. ISWORD THEN COND.HO. VALOF->F ELSE COND.HD->:: 
CLOSE; 
MAPLISTCCONO.TL,GETCONDARG)->L; 

, LASTNODECL,KEYLIST)->K; 
CF: :L): :K.KNCONDS->K. KNCONDS; 
END; 
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FUNCTION ADDKEYBOND BOND NODENAMES; 
COMMENT"this takes a bond specification, and uses it to 
modify the key appropriately. 
a bond specification may contain either a function 
or a word for the slotfun!; 

VARS KNA KNB A F B;BONO.DL->8->F->A; 
UNLESS F. ISFUNC THEN F. VALOF->F CLOSE; 
A.GETNAMEONODE->KNA;B.GETNAMEDNODE->KNB; 
IF COMESFIRST<A,B,NODENAMES> 
THEN IF KNB.KNGEN=UNDEF 

THEN CONSPAIR<F,KNA)->KNB.KNGEN 
ELSE C 0 N SE XT RA 80 N D ( K N A , F , K NB ) : : K NB • K NEXT RA S 

->KNB.KNEXTRAS 
CLOSE; 

ELSE CONSEXTRABOND<KNA,F,KNB)::KNA.KNEXTRAS->KNA.KNEXTRAS 
CLOSE; 
END; 

FUNCTION MAKEKEY NODENAMES CONDS BONDS=>KEYLIST; 
COMMENT"during the creation of the keynodes we keep their 
names in knbindinq!; 

MAPLI ST ( NODENAMES, CONSKEYNODE< ~~NIL, UNDEF, NI L~~J) ->KEYL I ST; 
APPLI ST (CON OS ,ADDKEYCOND); 
APPLI ST <BONDS ,ADDKEYBOND< ?~NODENAMES~6J >; 
END; 

FUNCTION MAKERULE N BONDS CONDS ACTION; 
VARS KEYLIST NODENAMES; 
MAPLIST<BONDS,RIG)->BONDS; 
MAPLIST(BONDS,EXTRACTCOND)<>CONDS->CONDS; 
BC)NOS. U NPACKBCJNOS; 8C)N0S. GETCJROEREDNC)OES-> BCJNOS-> NC)0ENA1-~1ES; 
MAKEKEY (NODE~·! AMES, CON OS, BONDS> ->KEYLI SI; 
CONSRULE<N,KEYLIST, 

POPVAL((% 11 LAMBDA 11 , 11 FROZRULE 11 , 11 FROZBONDS", 
NoD EN AM E S • 0 L , " ; 11 , ACT I 0 N . 0 L , u EN 0 n , n ; n ~~ J ) ) ; 

END; 

FUNCTION TRYFRESHRULE INST F L; 
COMMENT'when a new rule is added to a schema, this tries 
to match its key ~o all the existing instances in the 
appropriate slot 
of all instances of the schema!; 

APPLI SI< I NST .. F .SLOT BONDS, 
LAMBDA B; 
STARTKEY< L, INST ,OTHERil'.JST< 8, INSTJ); 
END); 

END; 
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FUNCTION ADDRULE SCHEMA RULE ; 
CCHHAENT'for adding rules to schemas so that when an 
instance of one of the schemas is created, each slot in it 
will be able to look at the corresponding component of 

schknowledge to find its initial rules!; 
VARS SK L F;RULE.RULEKEY.TL.HD.KNGEN.FRONT->F; 
SCHEMA. SCHKNcH~!LEDGE .F->SK; 
f %RULE~~]-> L; 
L::SK.SKRULES->SK.SKRULES; 
APPLI ST ( SCHEl~A. SCHI NSTS, TRYFRESHRULE( %F, L~,; >); 
END; 

OPERATION 4 ==> LHS RHS; 
VARS SCHEMA RULE N BONDS CONOS; 
NIL->BONDS;NIL->CONOS;POP LHS->N; 
POP LHS->SCHEMA; 
APPLISTCLHS,LAMBDA L; 

IF L.HD= 11 • 11 THEN L.TL::coNDS->CONDS 
ELSE L:: BONDS-> BONDS; 
CLOSE; END); 

MAKERULE<N,BONDS,CONDS,RHS)->RULE; 
IF SCHEMA.ISWORD THEN ADDRULE<SCHEMA.VALOF,RULE> 
ELSE APPLIST< SCHEMA, VALOF FNCOMP ADDRULE< 3~RULE%J) 
CLOSE; 
END; 

*** SOME MISCELLANEOUS FUNCTIONS •c·k·k 

FUNCTION OTHERI NST BOND- I NST; 
COMMENT'halfbonds have bondinst2=undef!; 

VARS X;BONO.BONDINSTl->X; 
IF X=INST THEN BONO.BONDINST2 ELSE X CLOSE; 
END; -

VARS WHERESLOTSSTART;4->WHERESLOTSSTART; 

FUNCTION I SIN STANCE X; 
X. I SSTR I P AND X. I NSTOF. DATAWORD=:t SCHEMA 11 

END; 

FUNCTION BEFORE A B; 
COMJAENT'checks ·whether a was made before b. 

the instances in a schema aie in reverse order!; 
A.INSTOF.SCHINSTS RHLOOP; 

IF RH=B AND RH/=A THEN TRUE;RETURN 
ELSEIF RH=A THEN FALSE;EXIT; 

END RH; 
, .POPERR; 

END; 
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*** CODE FOR CREATING AND *** 
*** MANIPULATING BONDS *** 

FUNCTION FILLERS INST SLOTORFUN; 
IF SLOTORFUN.ISFUNC THEN INST.SLOTORFUN->SLOTORFUN CLOSE; 
MAPLISTCSLOTORFUN.SLOTBONDS, 

LAMBDA B;OTHERINST< 8, INST) ;END>; 
END; 

FUNCTION GETBOND SOURCE FUN GOAL; 
SOURCE. FUN. SLOT BONDS RHLOOP; 

IF OTHERINSTC RH,SOURCE>=GOAL THEN RH; EXIT; 
END RH; 
FALSE; 
END; 

FUNCTION GETIHEBOND SOURCE FUN GOAL;. 
GET BOND (SOURCE. KNBI NO ING, FUN, GOAL. KNB I ND I NG); 
END; 

FUNCTION GETEXTRABONDS K; 
A PPL I ST ( K. KNE XTRAS, DE STEXTRABOND FNCOM? GEITHEBOND); 
END; 

FUNCTION GETGEN BONJ K; 
VARS B;K.KNGEN->B; 
GETTHEBOND CB. BACK, B. FRONT, K); 
END; 

FUNCTION GETBONDSUSED KEYLIST; 
CCH1MENT'this assumes that the nodes in keylist are 
correctly bound and returns all the bonds used in matching 
the key!; 

[ 16A PPLI ST < KEYLI ST. TL, GETGEN BOND), 
APPLI ST< KEYLI ST ,GETEXTRABONDS )56]; 

END; 

FU~lCTION COMMONMEM LL; 
VARS COMMON; 
FILTLISTCLL.HD,LAMBDA X; 

ALLTRUECLL.TL,LAMBDA L;MEMBERCX,L>;END>; 
END)->COMMON; 

IF COM!t\ON.LENGTH/=1 THEN .POPERR CLOSE; 
COMMON. HO; 
END; 
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FUNCTION COMMONCEIL BONOS; 
MAPLIST<BONDS,BONDCRED FNCOMP CEILINGS).COMMONMEM; 
END; 

FUNCTION ONEFILLERCONSTR BOND OLOBONOS; 
'COMMENT'this type of constraint is only added if there 
is more than one fLller. if a constraint already exists 
it is modified to include the new bond!; 

VARS COM C;BONO.BONOCRED->C; 
IF OLOBONDS.NULL THEN 
ELSEIF OLDBONDS.TL.NULL 
THEN ATMOSTONE< [%C,OLOBONOS.HO.BONDCRE0%]) 
ELSE OLD BONDS. COMMONCEI L->COM; c.:: COM. CONCEI LI NGS 

->COM.CONCEILINGS; 
COM:: C. CE I L INGS->C. CEILINGS 

CLOSE;. 
END; 

FUNCTION ADDBOND INST FUN BOND; 
COMMENT"puts the bond in the slot and adds the constraint 
that the instance must be at least as true 
as the bond. it also adds the 
constraint between the fillers of the slot,where 

.q pp l i c a b l e ! ; 
VARS SLOT SLOTSIZE OLDBONOS;INST.FUN->SLoT; 
SLOT. SLOTSONOS->OLOBONDS; 
BCJ!'·JO: :OLOBONDS->SLOT. SLOT BONDS; 
~~\OR ECRED < INST. I tJSTC RED,: :NIL, BONO. BONDCRED:: NIL) ; 
INST. IN STC)F. SCHKNC)~'lLEOGE. FUN. SKSI ZE-> SLC)TS IZE; 
IF SLOTSIZE=l THEN ONEFILLERCONSTR(BOND,OLDBONDS) CLOSE; 
COMMENT/assumes new credval=O!; 

END; 

FUNCTION RETURNBOND INST1 FUN 1 INST2 FUN2=>B; 
eo lv\M ENT;' t hi s e i the r re turns an ex i s t i n g bond , or i f 
there is none,it makes a new one. 
if inst2 isnt an instance fun2 must be undef!; 

VARS CREDNODE; 
GETBONDC INSTl ,FUN t, INST2)->8; 
IF BAND <FUN2=UNOEF OR MEMBERC8,INST2.FUN2.SLOTB00IDSJ) 

THEN EXIT; 
CON SBOND ( II'--IST t ~I NST 2, UNDEF) -> B; 
co:.JSC REDNODE ( 8, NIL, NIL, NIL, 0. 5, 0, 0 )->CREDNOOE; 

CREONODE: :CREONODES->CREONOOES; CREDNODE-> B. BOHDCRED; 
;\DDBONO( INSTl ,FUN 1, 8); 
IF FUN2/=Ul'JOEF 
ThEN ADDBOND( INST2, FUN2, 8); 
CLOSE; 
RUNTRIGS(INSTI,FUNl ,INST2); 
IF FUN2/=Uf\JOEF 
THEI'J RU r··.JTr-?I GS (I NST 2 ,FUN 2, I NST 1 ) CLOSE; 
Et\JD ; 

-224-



FUNCTION MAKE BOND; 
• RETURN BOND. ERASE; 
END; 

· VARS LINK;MAKEBOND<%UNDEF%>->LINK; 

*** CODE FOR ?v1AKING AND RUNNING JOBS ***' 

VARS JOBSRUN TRIGTHRESH;O->JOBSRUN;0.7->TRIGTHRESH; 

FUNCTION JOBRULE J; 
F ROZV AL ( 1 , J) ; 
END; 

FUNCTION JO BBONDS J.; 
FRO ZV AL ( 2 , J ) ; 
END; 

VARS JOBLIST;NIL.:...>JOBLIST; 

FUNCTION CHECKBONDVALS JOB; 
COr/fAENT"this either returns true or puts the job in e. list 
on the crednode of an implausible bond!; 

VAf.~S CRED; 
JOB.JOBBONDS RHLOOP; 

RH.BONDCRED->CRED; 
IF CRED.CREDVAL=<TRIGTHRESH 
THEN JoB: :CRED.CREDJOBS->CRED.CREOJOBS; FALSE; 
EXIT; 

END RH; 
TRUE; 
END; 

FU>1CTION ADDJOB J; 
i\JCJOIN< JOBLI ST, J.: :NIL )->JOBLI ST; 
END; 

FUNCTION F?UNJOB J; 
J .APPLY; 1 +JOBSRUN->JOSSRUN; 
EHD; 

F(E,JCTION TRYOORMANT JOB JOB; 
IF JOB.CH2CKBONDVALS THEN JOB.ADDJOB CLOSE; 

' END; 

FU>TCTION TRYACTIVEJOB JOB; 
CClWAENT'assumes that the job has been removed fro~ jojlist!; 

IF JOB .CHECKBONDVALS THEN JOB. APPLY; 1 +JOBSRUN->JOBSRU~·I; 
CL() SE:; ~ 

END; 
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FUNCTION TRYJOB J; 
J.TRYACTIVEJOB;REMOVE(J,JOBLIST)->JOBLIST; 
END; 

FUNCTION TRYALLJOBS; 
VARS L;JOBLIST->L;NIL->JOBLLST; 
APPLI ST CL, TRY ACTI VEJOB); 
END; 

FUNCTION TRYJOBN N; 
ITEM<N, JOBLIST). TRY JOB; 
END; 

i 

FUNCTION ADDSAMEF ILLERJOB T INST FUN FILLER; 
COMMENT'this adds the job to infer the appropriate bond 
when a samefiller demon is activated.jobs are assumed to 
be closures o~ functions with frozrule and frozbonds as 
their first two formal parameters,so the function 
sfenviron is provided!; 

FUNCTION SFENVIRON FROZRULE FROZBONOS BONDSPEC; 
INFER< BONOSPEC) ; 
END; 

SFENV IRON ( ~~T. SF RULE, GET BOND C I NST, FUN, FILLER)_: :T. SF BONDS, 
[ ~&T. SFOTHER INST .. CONSR EF, 

T. SFOTHERFUN. CON SREF, FI LLE:R. COIJSREF ~6] ~~). ADDJOB; 
COMMENT'the function that interprets hondspecs expects 

words or references!; 
END; 

FUNCTION ADDRULEJOB RULE; 
COl·~MENT'assumes that the key will be bound!; 

VARS KEY;RULE.RULEKEY->KEY; 
RULE. RULE ACT I ONC ~;RULE, KEY. GETBONOSUSED, 

APPLISTCKEY ,KNBINDING)~~) .ADDJOB; 
END; 
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*** CODE FOR MAKING AND TRIGGERING DEMONS ***. 

RECORD EBTRIG EBTGOAL EBTREM EBTBINDINGS; 

C01AMENT" ebtrig records are used as demons whi eh 
wait for extra bonds, i.e. ones not used to 
generate candidate bindings for the next keynode! 
"these records sit on a slot in one instance and 
wait for a bond to another particular :instance 
{ ebtgoal). the remaining extra· bond needed from the 
instance are held in ebtrem, and the bindings of 
previous keynodes in ebtbindings.!; 

VARS ISKEYNODE; 
SAMEDAT AC ;~coNSKEYNODE (NIL, NIL, NIL, NIL )J6 )->I SKEYNODE; 

FUNCTION CHECKCOND COND; 
COMMENT"assumes cond is a list of keynodes 
words or integers preceded by a function!; 

VARS FUN;COND.HD->FUN; 
COND. TL RHLOOP; 

IF RH.ISKEYNODE THEN RH.KNBINOING ELSE Rh CLOSE; 
ENDRH;.FUN; 
END; 

FUNCTION CHECKCONOS KEYNODE; 
ALLTHUECKEYNODE.KNCONDS,CHECKCONO); 
END; 

FUNCTION EBPRESENT EB; 
CC)i~11¥{EI'lT~checks thnt an extra bond is present asstJming that 
the keynodes have the right bindings!; 
COMM.ENT"information -?bout the required extra bonds 
is kept in a k~ynode·in an extrabond record. the 
keynode is in ebsource, and ebgoal co~tains another 
keynode. the extra bond must be between the instances 
bound to these two key nodes, and should be in the 
ebfun slot of the ebsource instance!; 

, GET BOND C E B. EBSOU RCE. KN B I NO I r~G '; E B. EBFUr'.;, 2:8 .E RGOAL. K:--IBI ~·;J I:·~G > ; 
END; 
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FUNCTION CHECK~ A'TRABONDS EXTRAS 8 INDI NGS; 
COMMENT'tests whether all the extras are present.if not it 
leaves a demon on the appropriate slot!; 

VARS EB SLOT; 
IF EXTRAS.NULL THEN TRUE 
ELSEIF EXTRAS.HD.EBPRESENT 
THEN CHECKEXTRABONDS< EXTRAS.TL, BINDINGS) 
ELSE EXTRAS.HD->EB; 

CLOSE; 
END; 

( EB. E BFUN) ( EB. EBSOU RCE. KNBI NO I NG>->SLOT; 
CONSEBTRI GC EB. EBGOAL .. KNBINDING, EXTRAS. TL, BINDINGS) 
::SLOT. SLOTTR I GS->SLOT. SLOTTR I GS; 
FALSE; 

FUNCTION CANBIND INST KEY~.lODE BINDINGS; 
MEMBER< INST ,BINDINGS) .NOT AND : 
( INST ->KEYNODE. KNBIND ING; KEYNODE. CHECKCONDS) AND 
CHECKEXTRABONDS<KEYNODE.KNEXTRAS,BINOINGS); 
END; 

FUNCTION TRYTOBIND REMKEY RULE BINDINGS; 
COMMENT'this attempts to bind the rernainiT~:.J keynoc.fes. 
it generates candidate instr1nces for :::! keynode by looki!Jg 
at the instances filling the slot specified by the knbond 
in kngen. it also leaves a demon on this slot in case core 
fillers turn up lAter!; 

VARS I0JST KEYNODE GENBOND SOUF?CEINST GENSLOT; 
IF REMKEY .NULL THEN RULE.ADORULEJOB;EXIT; 
COMMENT'\';hen a match succeeds a job is made!; 

REMKEY .. HC)->KEYNOOE;KEYNODE.KNGEN->GEN130ND; 
GENBOND.BACK.KNBINOING->SOURCEINST; 
( GENBON D. FRONT) (SOU RC EI N ST) -> GEN SLOT; 
BINOINGS::GENSLOT.SLOTIRIGS->GENSLOT.SLOTTRIGS; 
C01v~j\\ENT"bindinas is a list whose last element is 3 

rule.implementing demons this way is econo~ical 
because descendants of a demon can be have orre new 
binding and a pointer back to the smaller demon 
i.e. the tail of a demon is its parent!; 

GENSLOT.SLOTBONDS RHLOOP; 
OTHERINST( RH,SOURCEINST)->INST; 
IF.CANBINDCINST,KEYNODE,BINDINGS) 
THEN T RYTO 8 I NO C REMKEY. TL, RULE, I ?·J ST:: BI !··JD IN GS) 
CLOSE; 

END RH; 
END; 
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FUNCTION REBIND BINDINGS=>RULE REl·~KEY; · 
CCHI.MENT'used for rebinding keynodes when a demon fires. 
remkey will be the nodes not yet bound!; 

VARS X; 
HENOOFBINDINGS 11 ,BINDINGS.DL->RULE; 
RULE.RULEKEY->REMKEY; 
UNTIL (->X; X="ENOOFBINOINGSn) 
DO X->REMKEY.HO.KNBINOING;REMKEY.TL->REMKEY; 
ENDOO; .. 
END; 

FUNCTION STARTKEY RULELIST STARTINST NEWINST; 
COMMENT'rulelist is a list of the rules whose keys 
can start matching when a filler (newinst) is put 
in the appropriate slot of nn instance <startinst>. 
if binding the instances to the keynodes violAtes 
a condition in the key, the match fnils before 
calling trytobind. so no demons are s~t up unless 
at least two instances and a bond between them 
fits the key. this avoids many demons.!; 

VARS RULE KEYLIST; 
RULELIST.HO->RULE;RULE.RULEKEY->KEYLIST; 
IF CANBINDCSTARTINST,KEYLIST.HD,RULELIST) 
AND C.t\N BIND< NEvv INST 7 KEYLI ST. TL. HO, START I NST:: RULELI ST) 
THEN TRYTOBINDCKEYLIST.TL.TL,RULE, 

NEW INST:: ( STARTINST:: RULELI ST)) 
CLOSE; 
END; 

FUNCTION GBCONTINUE l\fE}VINST BINDINGS; 
CO MM ENT' c a 11 ed when a ne \v i n s tan c e f i 11 s · a s l o t 
which has a demon on it!; 

VARS NEWBINDINGS REMKEY RULE;BINDINGS.REBIND->REMK~Y->RULE; 
NEWINST::BINDINGS->NEWBINOINGS; 
IF CANBIND<NEWINST,REMKEY.HD,BINDINGS> 
THEN TRYTOBIND< REMKEY. TL,RULE,NE~BINDINGS) 
CLOSE; 
END; 

FUNCTION EBCONTINUE REMEB BINDINGS; 
COh~MENT' ea 11 ed when the required instance fills .:1 

slot which has a demon waiting for an ~xtra bond.!; 
VARS REMKEY RULE;BINDINGS.REBIND->REMKEY->RULE; 
IF CHECKEXTRABONOS( RE;v\EB, BINDINGS) 
THEN TRYTOBIND< REl·!KEY ,RULE, BINDINGS) 
CLOSE; . 
END; 
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FUNCTION RUNT RIGS ST.\RTINST FUN NEWINST ;. 
C01~MENT'demons are of tvJo kinds. one is looking for a 
candidate for the next keynode and is represented by a 
list of the bindings so far sitting on the slot from which 
the next knbinding will have to be generated! 'the other 
is looking for an extra bond involving the last bound 
keynode and is represented by an ebtrig record containing 
the goal instance, the remaining extrabonds in the last 
bound keynode, and the bindings. the record sits on the 
appropriate slot of the bo~ds source instance.! 'in both 
cases the bindings list has the rule as last item! · 
'finally, the rules in the schemq need to be examined in 
case any key matches start with the new bond!; 
VARS SLOT;STARTINST.FUN->SLOT; 

APP LIST C SLOT. SLOTKNCW/LEDGE. SKt?ULES, 
STARTKEY C %START I NST, NE~·~ I t··.JST~~J); 

APP LIST C SLOT. SLOTTR I GS, 
LAMBDA T; 

END; 

IF T.ISLIST THEN GBCONTINUECNtWINST,T) 
ELSEIF ·r.DATAWORD="SAMEFILLER" 
THEr·I ADDSAMEFI LLERJOB ( T, STARTINST, FUN, NE~·f INST) 
ELSE IF T. EBTGOAL=NE~'HNST 
THEN REMOVE ( T, SLOT. SLOTTR I GS) ->SLOT. SLOIT RIGS; 

EBCONT I NUE ( T. E BTREM, T. EBTB IND I ~··.fGS) 
CLOSE; 
END); 
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*.._"* CODE FOR MAKING CONSTRAINTS *** 
*** (MOSTLY LISTED IN PUPPET PROGRAM) *** 

RECORD CONSTR CONVIOL 0 HYPLENGTH 0 OLDCONVIOL 0 
CONFLOORS CONCEILINGS; 

COMMENT/ constraints have been given extra fields 
compared with the puppet p~ogram. the fields 
conceilings and confloors are used to hold lists 
of the nodes whose supposition values may be 
held down or held up by the constraint!; 

FUNCTION INFERCONSTR L B; 
RETURNCONSTR< 8-: :NIL,L, 1 -L.LENGTH>; 
END; 

FUNCTION DENYCONSTR L B; 
RETURNCONSTR< NIL, B:: L, C-L. LENGTH>); 
END; 

FUNCTION NOTALLCCH'~STR L i 
RETURNCON SIR (NIL, L, 1--._ L. LENGTr-0; 
END; 

-231-



*** CODE FOR THE FUNCTIONS USED IN *** 
*** THE ACTION PARTS OF RULES *** 

RECORD SAMEFILLER SFRULE SFBONOS SFOTHERINST SFOTHERFUN; 

FUNCTION ADDANDTRYSFDEMON INST FUN TOTHERINST OTHERFUN; 
COMMENT"this adds a samefiller demon to a slot and also 

runs the demon on all existing fillers!; 
VARS T S;INST.FUN->S; 
CON SSAi·;~EFI LLER< FROZRU LE, FROZBONDS, TOT HE RI NST, OTHERFUN )-> T; 
T:: S. SLOTTR I GS->S. SLOTT RIGS; 
APPFILLERS<INST,S, 

LAM.BDA FILLER ;A DDSAMEFI LlERJOB( T, INST, FUN ,FILLER); 
END); 

END; 

FUNCTION SAMEFILLER INSTA SFA INSTB SFB; 
COlS'~~ ENT' this assumes it is called in the a et ion part 

of a rule!; 
UNLESS INSTA. ISINSTANCE AND INSTB. ISINSTANCE T;-IEN EXIT; 
ADDANDT F?YSFDEMON ( IN STA, SFA, I NSTB, SFB) ; 
ADDANDT f?YSFDEMON C I i'J STB, SF B, I NST A, SFA) ; 
END; 

FUNCTION EVALSPEC X; 
IF X. IS~'fOF?D THEN X. VALOF 
ELSEIF X.OATAWORD="REF" THEN X.CONT 
ELSE .POPERR CLOSE; 
END; 

FUNCTION CASHSPEC L; 
COMMENT"takes a bond specification And returns false, 

or true and the bond!; 
V AR S X IN ST 1 IN ST ~ SF 1 SF 2; 
EVALSPEC (POP L) ->I I·~ ST 1 ; 
UNLESS INSTl.ISINSTANCE THEN O;EXIT; 
EVALSPEC(POP L)->SFl;POP L ->X; 
IF X= 11 =11 THEN POP L->INST2 ELSE X.EVALSPEC->Il·~ST2 CLOSE; 
I F IN ST 2 • I SIN ST AI ,f C E 
THEN IF L. I SL IN!< THE'·f L .HD. EVALSPEC->SF2; 

ELSE SFl. INVERSE->SF2 CLOSE 
ELSE UNDEF->SF2 
CLOSE; 
RETUiiNBOND< INST I., SF I, INST2, SF2) ;TRUE 
END;· 

FUNCTION CLAIM LIST ?REF; 
VARS CRED;LIST.CASrlSPEC.ERASE'.BONDCRED->CRE::J; 
PREF+CRED.CREDPREF->CRED.CREDPREF; 
END; 
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FUNCTION MAKESOFTCONSTR FLIST CLIST N PENALTYt 
VARS PE~:NODE C; 
IF PENALTY 
THEN CONSCF?EDNODE ( UNDEF, NIL, NIL, NIL, 0, 0, -PE;'-IALTY} 

-> P E~'JNC)OE; 
PENNOOE:: :CREDNODES;PENNOOE::FLIST->FLIST; 

CLOSE; 
RETURNCONSTRCFLIST,CLIST,N}->C; 
IF PENALTY THEN C->PENNOOE.CREDOBJ·CLOSE; 
END; 

FUNCTION SOFTINFERBOND 8 PENALTY; 
VARS CLIST C; 
MAPLIST<FROZBONDS,BONDCRED>->CLIST; 
MAKESOFTCONSTR<B.BONDCREO::NIL,CLIST, 1-CLIST.LENGTn, 

PENALTY)? 
END; 

FUNCTION SOFTDENYBOND 8 PENALTY; 
VARS CLIST C; 

1 

8. BONDCRED: :MAPLI ST ( F ROZBONDS, BONDC RED:) ->CLI ST; 
MAKESOFTCON ST R (NIL, CL I ST, 0-CL I ST. LENGTH, P E'J AL TY}; 
END; 

FUNCTION SOFTCONTRADICTION PENALTY; 
VARS CLIST C; 
MAPLI ST C F RC)Z8C)NOS, BC)NOCREO) ->CL I ST; 
rAAKESOFTCONSTRC NIL, CL I ST, 1-CL I ST. LENGTii,? ::~J ALTY); 
END; 

FUNCVAR CONTRAD I CTI Ol\I SOFTCONTRAD ICTI 0\ C )~05~); 

COMMENT-'there are several formats for inferring or de~ying 
a bond.the bond,or its instences and functions, o~ a list 

of them, can all be used!; 

FUNCTION SOFTINFER4 P; 
SOFT INFER BOND<. RETU l~N BOND, P); 
END; 

FUNCTION SOFT DENY 4 P; 
SOFTDENYBONDC • RETURN BOND, P); 
END; 

FUNCTION SOFT IN FER L PEN; . 
IF L. CA.SHSPEC THEN PEN. SOFTINFERBOND CLOSE; 
END; 

FUNCTION SOFTDENY L PEN; 
IF L. CASHSPEC THEN PEN. SOFTCEI\iYBO!-JD CLos::; 
END; 

VARS INFER DENY INFEi~BOND DENYE.ONO INFE:R4 DENY4; 
SOFT INFER C )'sO~~)-> INFER; SOFTDENY. C 5~0~s) -> r:;::;\;y; 
SOFT I NF ER4( 5~0~s) ->I l'·fFE R4 ;SoFTDEf-IY4 C %0~~)- >D~NY4; 
SOFT I NF EF?DOND ( 5s0~~)- >INFER BOND; SOFTDENY so:.JD C 5~07~) -> J:::<Y 2~1 ~<); 
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**'~ CODE FOR RUNNING RELAXATION *** 
*** (MOSTLY LISTED IN PUPPET PROGRAM) -*** 

FUNCTION UPFORCE C=>SUM; 
COMMENT"this computes the total force on c due to 

constraints!; 
COMMENT"more efficient the1n the separate funct.ions 
used in the puppet program!; 

VARS V;O->SUM; . 
C.CEILINGS RHLOOP; 

RH. CONV I OL- >V; 
IF V>O THEN SUM-V /RH. HYPLENGfH->SUM CLOSE;· 

END RH; 
C.FLOORS RHLOOP; 

RH .. CO NV I 0 L- >V ; 
IF V>O THEN SUM+V/RH.HYPLENGTH->SUM CLOSE; 

-ENDRH; I 

END; 

· FUNCTION RUNMORE STEPS; 
STEPS<•~ .MOVE;. TRYALLJOBS;CREDNODES. REV. SHCWiCREOS;*>; 
CREDNODES. REV. SHOWNAMES; 

"END; 

0. 2-> PCOE FF; 
0.5->DCOEFF; 
0 • 5 -> FC 0 E FF ; 
0.05->HCOEFF; 

f-UNCTION SEITLE CLEARROUNOS; 
COMMENT'after eAch round of relaxation this shows the 
number of dormant jobs 
aroused,and the number of jobs run and stored 
by a tryalljobs,and the number 
of new jobs created by those run!; 

VARS N TOTAL ROUSED MAOE;O->N;JOBLIST.LENGTH->MADE; 

ROUSED RUN STORED MADE 
! • P RSTR ING; 
UNTIL N=CLEARROUNDS 
DO .MOVE? 

IF JOBLIST. I SLINK THEN 0->N ELSE N+ 1->N CLOSE; 
JOBLI ST. LE!··IGTH->TOT AL; TOTAL-\LADE->ROU SED; 
0->JO BSRUN i 
• TF?YA U_JOBS; 
JOBLI ST. !...Et-!GTH->MADE; 
Ir··fTPR <ROUSED., 3); I NTPR C JOBSRUN, 4); 
I NTPf~ C ToT P.L-J OB SHUN, 4) ; 

INTPR<1.-1ADE, 4); 
1 • r·r L; 
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