
RELAXATION AND ITS ROLE IN VISION

by

Geoffrey E. Hinton

Ph. D. The s i s ,

University of Edinburgh,

1977

The composition of this thesis and the research

reported in it are entirely my own work, except ~here

otherwise stated.

-2-

CONTENTS

CONTENTS

ACKNoWLEDGEMENTS

ABSTRACT

OUTLINE

CHAPTER 1 : SEARCHING FOR OPTIMAL VISUAL
INTERPRETATIONS.

1 • 1 :
1 • 2:
1 • 3:

1 • 4:

1 • 5:

1 .. 6:

1 • 7:

1 • 8:

1 • 9:
1 • I 0:
1 • l 1 :

Structure and process in visual perception
~'thy tentative hypotheses are necessary
Two ways of avoiding tentative hypotheses

1 .3.1: The principle of least commitment
1 .3.2: Feature semantics

Ways of finding consistent interpretations
1 .4.1: Huffman/Clowes labelling
1 .4.2: Growing alternative consistent

contexts. ,
1 .4.3: Waltz filtering

The need for optimisation.
1 .5.1: Consistency versus goodness in the

blocks world.
Ways of finding good interpretations.

I .6.1: Guided depth-first search.
1 .6.2: Conniving.
1 .6.3: Assumptions and specialist error

procedures.
t .6.4: Bar-finding in Popeye.
1 .6.5: lAarr and Poggio (1976).
1~6.6: The breakdown of Waltz filtering.

Explicit numerical scores
1 .7.1: Probabilities and the costs of

hypotheses.
l .7.2: The advantages of a numerical

definition of the optimum.
Pattern Recognition and the Misuse of Numbers

1 .3.1: The pattern recognition paradigm.
1 .8.2: Incdequacies of Pattern Recognition

BrAnch-and-Bound search.
The Relevance of Parallel Hardware.
Si Ir!lmary of Ch8 pt er 1 •

-3-

3

7

8

9

12

12 .
14
1 5

18

24

27

36

39

43
-44
47

CHAPTER 2: THE TASK OF SEEING SOME OVERLAPPING
RECTANGLES AS A PUPPET.

50

2.1: The ease and purpose of the task. 50
2.2: Pictorial inout. 51

2.2.1: Th~ range of ~ossible pictures.
2.3: Non-pictorial input. 52
2.4: output of the best global interpretation. 54
2.5: The puppet model 54

2.5.1: Defining satisfactory joints.
2.6: Definition of the required output. 56

2.6.1: V~hat pictures depict.
2.6.2: Basic definition of the best

puppet. _
2.6.3: Modification of the definition of

best.
2.6.4: EquAl rivals.

CHAPTER 3: THE PUPPET FINDING PROGRAM. 60

3.0: The two main stages : An overview 60
3.1: The main data-structures and their creation 61

3.1.1: Representinq zones and computing
their overlaps.

3.2: CreAting the network of candidate hypotheses 63
3.2.1: Types of nuclei

3.3: Numerical constraints between supposition 67
values.

3.3.1: The function of continuous
supposition values.

3.3.2: States of supposition values:
terminology.

3.3.3: Normalised linear combinations
3.4: Probabilities and supposition values 70
3 • 5 : The hype r s p a c e mode 1 7 0
3.6: Representing arbitrary logical constraints 7i
3.7: Non-integer optima
3.8: The numerical constraints in the puppet task 76
3.9: The simplex algorithm 73
3.10: Assigning preferences to hypotheses 80
3 •. 11: Th~ abstract optimization problem and the 80

type of solution required.
3.12: Two types of relaxation 82
3.13: Two comoonents of the relaxation operator 82
3.14: Achieving feAsibility 83
3.15: The speed of convergence on a feasible state. 87
3.16: Ac~-deving optimality 89
3.17: A method of increasing the convergence speed 90
3.18: The method of selecting the final set of 91

hypotheses.
3.19: The final form of the relaxation operator 92

-4-

CHAPTER 4: THEORETICAL ANALYSES OF RELAXATION,
AND SOME POSSIBLE EXTENSIONS.

94

4.1: The avoidance of Explicit Enumeration 95
4.2: Decomposition into Interacting Sub-Systems 95
4.3: The Time Taken to Reach Equilibrium 98
4.4: Introducing non~linearity. 104
4.5: The Need for Intermediate Level Hypotheses. 105
4.6: Weak rules 107
4.7: Using relaxation to guide hypothesis creation 109

4. 7. t: The extended puppet-finding task
4.7.2: Generators

4.8: Optimising real-valued parameters 114

CHAPTER 5: COMPARISONS BETWEEN L.P. RELAXATION 119
AND. ALTERNATIVE SYSTEMS.

5.1: Rosenfeld, Hummel and Zucker (1975).
5.1.2: The non-linear model.

5.2: Line Labelling using LP relaxation
5.3: Yakimovsky and Feldman (1973)

5.3.1: A relaxation formulation
5.4: Barro\•t and Tennenbaum (' 1976)

5 • .4. 1 : The task

5.5:
5.6:
5.7:

5.4.2: The general strategy
5.4.3: Likelihoods and their

modification.
5.4.4: ' An abstract example
5.4.5: Comparison of MSYS with LP

relaxation.
Growing islands of consistent hypotheses.
M 3 t chin g by C 1 i qu e f i n din g
Hierarchical synthesis

CHAPTER 6: PERCEPTUAL SCHEMAS AND THEIR RELATIONSHIP

119

126
129

135

14C
144
145

TO PERCEPTUAL AWARENESS. 149

6. 1 :
6.2:

Current awareness and stored knowledge
Frames
6.2.1:
6.2.2:
6.2.3:

An example of a schema
!Ji nsky" s theory
Some !Jifficulties for Frames

-5-

149
153

CH.I\PTER 7: A SYSTEM WHICH USES RELAXATION t 61

7. 1 :
7.2:
7.3:
7.4:
7.5:
7.6:
7.7:
7.8:

TO COORDINATE NET~~JoRK GROWING .RULES.

Overview of the SETTLE system.
Schemas.
Slots.
Bonds
Specifying Rules.
Rule invocation.
Jobs
An example of the SETTLE system in action.

7.8.1: Specifying rules about family
relationships.

7.8.2: Interpreting claims about specific
people.

7.8.3: The effect of more, incompatible
claims.

CHAPTER 8: SUMMARY.·

8. 1 :
8.2:
8.3:
8.4:
8.5

8.6:

Presuppositions of the relaxation approach
The choice of nLwerical scores
Details of the relaxation operator
The SETTLE system
Relaxation and human vision

8.5.1: The temporal structure of vision
What has been shown.

APPENDICES

t 6 I
163
164
165
L66
168
171
174

179

179
181
181
182
192

185

Appendix 1 : Computing whether convex polygons 187
overlap.

A pp enc:!i x 2: Using penumbras to aid line labelling. 189
Appendix 3: Code for the puppet-finding program 191.
Appendix 4: How the supposition values change in 210

examples of the puppet program.
Appendix 5: Code for the line labelling example. 214
Appendix 6: Code for the SEITLE system 215

BIBLIOGRAPHY 235

-6-

ACKNC)WLEDGEMENTS

I would like to thank Christopher Longuet-Higgins,

Frank

able.

helped

0-'Gorman, and Aaron Sloman who have proved invalu

Christopher tirelessly supervised the work and

me to clarify my ideas·, Frank explained many dif-

f i cult points about vis ion,. and Aaron self 1 e ssl y provided

support, understanding and many helpful ideas, as well as

reading much of the manuscript.

I have been greatly helped by discussions with many

members of the Aei. communities at Edinburgh, Sussex and

Essex. I would especially like to thank Harry Barrow,

Richard Bornat, Mike Brady, Max Clowes, Roddy Cov-tie,

Steve Draper, Richard Gregory, Jim Howe <who also helped

administratively), Steve Isard, Christof von der

Mal sburq, Dave Owen, Larry Paul, Robin Poppleston e,

Richard Power, Naomi Roberts, Arnold Smith, Mark Steed-

.man, Sylvia Weir, and David Willshaw.

Wendy Taylor kindly did the typing under difficult

conditions, ably assisted by Judith Oenni~on, Jane Black

ett and Pru Heron.

The work was funded by research studentships from

the Science Research Council and the R6yal Society.

Later extensions were made as part of a project on ucorn

putational Flexibility in Visual Perceptiontt (S.R.C.

Grant BRG 8688-7). ·

-7-

ABSTRACT

It is argued that a visual system, especially one

which handles imperfect data, needs a way of selecting

the best consistent combination from among the many in

terrelated, local!~ ~lausible hypotheses about how parts

or aspects of the visual input may be· interpreted. A

method is presented in which each hypothesis is given a

supposition value between 0 and 1. A parallel relaxation
I

operator, based on the plausibilities of hypotheses and

the logical relations between them, is then used to modi-

fy the supposition values, and the process is repeated

until the best consistent set of hypotheses have supposi-

tion values of approximately 1, and the rest have values

of appiOXimately 0.

The method is incorporated in a program which can

interpret configurations of overlapping rectangles as

puppets. For this task it is possible to formulate all

the potentially relevant hypotheses before using relaxa-

tion to select the best consistent set. For more complex

tasks, ·it is necessary to use relaxation on the locally

plausible interpretations to guide the search for locally

less obvious ones. Ways of doing this are discussed.

Finally, an implemented system is presented which

allows the user to specify schemas and inference rules,

and uses relaxation to control the building of a network

of insta~ces of the schemas, when presented with data

about some instances and relations between them.

-8-

OUTLINE

This thesis explores the idea that relaxation may be
-·

a good way of organising the intera~tions between dif-

ferent hypotheses during the process of ~constructing the

internal representation of a scene.

Chapter 1 argues for some of the presuppositions

behind the use of relaxation: that a visual system needs

to formulate tentative hypotheses; that it needs to be

able to find a good consistent set of these hypotheses;

that the best set may be defined in terms of numerical

scores for the individual hypotheses; that the con-

straints between hypotheses need to be explicitly

represented; and that a method which can use constraint

propagation and can take advantage of para.llel hard\<~are

is desirable.

Chapter 2 defines a task designed to test and illus-

trate the use of relaxation. The task is to perceive a

collection of overlapping transparent rectangles as a

puppet. Many of the problems that arise in vision (e.g.

parts missing due to occlusion) are deliberately avoided

in this task.

Chapt~r 3 explains. the puppet-finding program.

First, it 1 •
exp.~..a1ns how the program discovers and-

represents the various possible hypotheses about the in-

-9- .

terpretation of rect3ngles as puppet parts, and about the

interpretations of overlaps between rectangles as joints

between puppet parts. Then it shows how logical con

straints. between hypotheses give rise to numerical con

straints between their supposition values. Finally, it

introduces and analyses a relaxation operator which mani

pulates the supposition values on the basis of the con

straints and the preferences for individual hypotheses.

The operator picks out the best consistent set of hy

potheses. Various aspects of the relaxation process are

illustrated with examples produced by the program.

Chapter 4 discusses various theoretical issues about

relaxation that arise from. the puppet-finding program.

It attempts to analyse the relaxation process, particu

larly the time it requires. It also points out so;ne of

the strengths and weaknesses of relaxation, and discusses

some ways of extending it to cope with specific theoreti

cal difficulties.

Chapter 5 compares my relaxation system with other

systems which were selected for comment either because

they used a form of relaxation, or because they used ex

plicit numericAl scores in defining the best interpreta~

tion, or because they dealt with the problem of finding

the best instantiation of a model. To aid comparison

with another system, there is a section on the use of re

laxation for Huffman/Clo'.'ies line labellinq, which sho\llS

clearly the sioilarities and differences between relaxa-

-10-

tion and Waltz filtering.

Chapter 6 is a theoretical interlude from the de-

tails of relaxation. It discusses the relationship

between stored knowledge and the representations created

during perception. The function of the chapter is to ar

gue against the idea that perception is merely a process

of matching the data to stored models, and thus to

prepare the ground for the rule-based SETTLE system

presented in Chapter 7. The issues are extremely complex

and so only a rather superficial treatment is possible,

but it may be sufficient to explain the approach adopted

in the SETTLE system.

Chapter 7 describes and illustrates an implemented

system which allows the user to define schemas and infer

ence rules which can be applied to co3binations of in

stances of the schemas. When given sorJe assertions about

related instances, the system notices which rules apply,

·and it ·uses relaxation to find the best consistent net

work of instances, given the input assertions. The

processes of relaxation and of making inferences are in

tegrated so as to avoid.forward chaining based on prem

ises that are- rejected by relaxation.

FinAlly, there is a brief summary.

-11-

CHAPTER 1

SEARCHING FOf-? OPTIMAL VISUAL INTERPRETATIONS.

1.1: Structure and process in·visual perception

Consider the pictures in figure 1.1. When we look at

them it seems that we form a clear idea of what they dep-
1

ict. In understanding how this idea is formed, there are

two sets of issues:

1. V'!hat is the nature of 1 the idea once it has been

formed? That is: What is the form of the represents-

tions produced by the process of perception?

2. What is the nature of the processes that generate

the representations?

Understanding the nature of the representations used

is probably the major part of understanding perception.

It is hard to say any thing about perceptual processes

without making some ~ssumptions about what the processes

are producing. However, it does not seem to be necessary

to complete the investigation of the representations be-

fore starting the investigation of the processes. Indeed.

any . simulated perceptual system needs both representa-

tio0s and processes. Artificial Intelligence research

CMinsky and Papert 197i, C1owes 1971, Winston 1970) has

already shown that perception of a picture involves more

than simply activ8ting a number of feature analysers and

·-12-

FIGURE 1 .1a: A blocks world picture.

11 11 • 11 11 • • • • • • • • • • • . 11 • . • 11 11 . ' .. •
•

• .. • • • e • ,
' a • • • •
• ' .. •

• 11 • .. • ..
• a • •

• • ' . • , • • • ,
• • • • •

fl ' 11 • ' 11 • • •• • " it • ' • • • •
• • • • • • • •

• • • •
•

f . • • • .
•• , f ' • • 11 .. 11 I .

. FIGURE 1 I 1 b: A Popeye picture.

using them to put the picture into one of a fixed number

of categories. The product of perception is not just a

categorization. It is a complex description which has the

following important properties:

1. A scene is articulated into a hierarchy of objects

and parts of objects so that its description involves

specifying the relationships between the objects and

object parts. For example, in figure t.~a, the

description that constitutes the interpretation of the

picture must somehow explicitly represent the fact
I

that there is a cube resting on one end of an ell-

beam ..

2. As well as a hierarchy of objects within a domain

there are also many different domains. For example,

the lines in a picture and the edges of objects which

they depict are quite different entities and need dif-

ferent representations. Similarly, in figure t.lb the

lines of dots, the bars whose edges these lines dep-

ict, and the letters whose stroke~ are depicted by

these bars are all entities in different domains.

These considerations show that the representations

produced by looking at a picture must be at least as rich

as a relntional network containing a great variety of

different types of node, and many diverse relations (e.g.

support, depiction, conn~ction). The way in which nodes

ahd relations of various types Qay be combined consti-

tutes a kind of grammatical knowledge. It deter~in.es

-13-

which particular networks are possible given the initial

picture structure. If 'tie assume that perception invo 1 ves

building some kind of relational network which satisfies

certain grammatical constraints, then it is possible to

focus on some of the important issues about the way in

which the network is constructed.

1. 2: V{hy tentative hypotheses are necessary

Tne hypothesize-and-test paradigm is often used in

Artificial Intelligence programs <Roberts 1965, Grape

1973) as a way of deciding how to interpret part of a

picture. An important assumption of the paradigm is that

once a specific hypothesis .has been formulat~d on the

basis of cues, it is po~sible to make a definite decision

about whether the hypothesis fits the data, so that a hy

pothesis can be accepted or rejected immediately after it

has been formulated, and it is not necessary to manipu

late a number of tentative, interdependent hypotheses

simultaneously. Unfortunately for the hypothesize-and

test method, there are many cases where no definite deci

sion about a hypothesis can be made on the basis of the

local data. The context may be necessary for disambigua

tion <Guzman 19·71, Clowes 1971 l as theE in Figure I. lb

shows. The context in which some local data is interpret

ed must itself be represented as a set of hypotheses

about the interpretation of other data, so hypotheses

about locAl interpretations may be mutually dependent,

-14-

and some kind of search mechanism is needed for selecting

a consistent set of them.

1.3: Two ways of avoiding tentative hypotheses

Before discussing ways of handling interdependent,

tent8tive hypotheses, two methods of eliminating the need

for tentative hypotheses will be examined and rejected.

1.3.1: The principl~ of least commitment

This method, advocated by Marr (1976) and Sloman

(1976) amongst others, involves never being more specific

than the local data and the context warrant, so that hy

potheses do not commit themselves to detAils that are, as

yet, undecidable. This requires th~t a rich set of not

too-specific concepts be available. For example, in the

early stages of perceiving a human form, a visual system

may notice a part which is definitely either a leg or an

arm, but which needs contextual disRmbiguation. If the

system has the concept of a limb available, it can

represent what it can safely conclude, without creating

any tentative hypotheses about arms or legs. Then, when

the context becomes clearer, the limb hypothesis can be

refined appropriately <The clearer contect may involve

non-committal limbs).

In practice, there are several difficulties in ap

plying the principle of least commitment. First, an enor

-15-

mous nuQber of concepts of varying degrees of specificity

may be needed to ensure that is possible to represent

just whAt can be definitely inferred in a given situation

and no more. Secondly, if hypotheses are to interact and

progressively refine 9ne another until they are all per

fectly specific, then complex transition tables may be

required to say how one hypothesis should be refined in

the context of others. Finally, when the data is imper-

feet and the aim is not to find just any consistent glo

bal interpretation, but to find the best one, (see sec-

tion 1.5) then it may be iffip?ssible to arrive at any

finite conclusions about optimal interpretations on the

basis of local evidence.

The principle of least commitment may be useful in

avoiding unnecessarily large numbers of alternative hy-

potheses, but there is no reason to suppose that it can

eliminate the use of alternatives altogether. I know of

no system which does this, when interpreting complex im-

perfect data.

1 .3.2: Feature semantics

The problem of choosing between alternative hy-

potheses arises because nodes in the network representing

R scene ~re taken to imply the existence of entities in

the scene, so nodes corresponding to non-existent enti-

ties are incorrect and must be rejected. Nodes can how-

ever given a different semantics in which they only

-16-

imply things about the appearance of the scene. In the

relational net built to represent figure l.lb, for exam-

ple, there could be two different nodes corresponding to

the first letter. One node could represent the fact that

it is somewhat E-shaped and the other that it is somewhat

F-shaped. These two nodes are quite compatible, provided

they are not taken to imply anything about which letter

is really there in the optimal interpretation, so there

is no need to reject one of th~ nodes as incorrect.

The reason for using the term Hfeature sementics" is

that the output of feature analysers in pattern recogni-

tion programs is often given just this semantics. Consid-

er for example, an analyser which looks for nbays" 0:1 the

right of a figure (as in C and K). If the an3lyser

responds positively ton particular figure, then the fi;

ure has the feature, since the precise definition of the

feature is simply what the analyser responds to.

Marr's primal ::;ketch <Marr 1975) also uses feature

semantics. Symbolic descriptions in the primal sketch

represent aspect~ of the grey-level data, rather than of

the scene ·causing that data. These rearesentations ~2y

nevertheless be expressed in ter~s of the scene ele~ents

which they appear to depict. (Section 1.;6.4 discusses

this difficult point in more detail). This is not in:en.j-

ed as a cri ti ci sm of the primal sketch. It is s en si::: le to

analyse the raw data and redescribe it in 3. more con-

venient form before trying to decide what it depicts.

-17-

However, the primary purpose of perception is to enable

us to act in the world, and so perception must tell us

what's there, not just how it appears.. Sooner or later

decisions have to be made between conflicting hypotheses

(except when interpreting very simple data).

1.4: Ways of finding consistent interpretations

Given a number of interrelated tent~tive hyp~theses,

one problem is to find a consistent set of them. This

section descr~bes some of the known ways of achieving

consistency, and then sections 1.6 and i.9 jiscuss how

these methods can be extended to the more difficult prob

lem of finding interpretations which are good or optimal

rather than just consistent. The Huffman/Clowes line-

labellinq task \'li 11 be used to illustrate so:ne of the

methods and so it is defined below.

1.4.1: _Huffman/Clowes labelling

Detailed discussions of line-labelling occur in

s e v er a 1 p 1 a c e s (H u f fm an 1 9 7 l , C 1 owes 1 9 7 1 , ~·1 a 1 t z 1 9 7 2 ,

Winston 1977) so only a brief description is given here.

The input consists of perfect line-drawings of

scenes composed of polyhedra. There are never nore than

three surfaces at a point in the scene, 8nd the viewpoint

is chosen so that vertices or edges are never on exactly

-18-

the same line of.sight as a nearer vertex. Given these

restrictions, the topology of the junctions in the

ture provides good evidence about what kinds of edge are

depicted by the lines (see figure 1.2). In the case of a

tee-junction, the evidence has an unambiguous implica-

tion. The crossbar must depict an occluding edge belong-

ing to the surface on the opposite side to the stem.

CJther junction types, however, provide ambiguous evidence

about line labels. A globally consistent set of line la-

bels can only be found by considering how the local evi-

dence interacts. The interactions are based on the fact

that a line must have the same labels at both ends.

1.4.2: Growing alternative consistent contexts.

Techniques such as depth-first and breadth-first

search <see Nilsson 1971, Winston 1977) involve consider-

ing all the alternative ways in which a context (a con-

sistent partial solution) can be extended. For each such

extension, a new context is spawned, and ways of extend-

ing it are considered. All consistent solutions c3n be

found in this way. For the line-labelling task, the con-

texts could consist of assignments of particular labels

to some of the lines, and contexts could be extended by

considering all possible labels for a previously unla-

belied line. A context is consistent if the cowbination

of line labels at each junction is one of the combin~-

tions allowed for a junction with that topology.

-19-

A A.AA 1\ 11\.

yyy
-rA+
/ \-""'

1\ 1\

i TT

FIGURE 1.2~ Showing all the possible junction labels, given

the Huffman/Clowes restrictions, and an ell-beam illustrating

them. "+.. means a convex edge, "-" means. a concave one, and.

.. ~ n means an occluding edge with the attached vee

lying in the nearer surface.

The contexts form an inverted tree, with complete

labellings at its lowest tips. Depth-first and breadth

first search differ, as their names suggest, in the order

in which this tree is investigated.

A major criticism of both these search techniques is

that they perform a lot of unnecessary work because they

do not make use of the fact that many suppositions are

independent of one another. They do not keep track of

which of the suppositions in a context were used in

deriving a conclusion, and so they cannot use the conclu

sion in rival contexts in which it is also valid. They

have to re-establish it each time. In figure lo3, for

example, the triangle has many alternative labellings.

It seems silly to rediscover the possible labellings of

the cube for each labelling of the triangle, but this is

what is done.

The Conniver programming language CSussman and

hlcDermott 1972) embodies, among other things, one partic

ular approach to this problem. It involves providing a

hierarchy of contexts which are ac~essible to the user.

A fact asserted in one context is available in all the

descendents of that context. When a new fact is esta

blished, the user can ensure that it is asserted in a

higher context than the current one if he is sure it is

also valid there. This makes the fact available in rival

contexts to the one in which it was discovered.

An alternative to the Conniver policy of leaving the

-20-

FIGURE 1.): The "cube" can have many different labellings

corresponding to different ways of being stuck to the

l:ackground plane. Hany of these choices are independent of

the line labels chosen for the triangle •

problem to the user is to systematically record all the

suppositions that are used in deriving each fact. The

system can then automatically assert a fact in the

highest context containing all the suppositions used to

derive it. Alternatively, the system can set up demons

which ensure that whenever a context contains all the

suppositions previously used to derive a particular fact,
I

that fact is automatica.lly asserted. The latter metho:::l

has the advantage that it may make the fact available i~

more contexts. Suppose, for exaQple, that there is an

ordered set of choice points A, B, C, D •••• and that the

choices are Al or A2, 81 or 82, Cl or C2, Dl or 02 •••

If it is discovered, whilst explorinq the Al branch cf

the seAr eh tree, that 81 and Cl i:-npl y Dl , then

highest available context in which to assert 01 is (AI,

81, Cl). This does not capture the fact that Dl must

also be true in (A2, 8 I, Cl). Because A comes above .:5

and C in the search tree, there is no single place in the

hierarchy of contexts where the assertion of Dl woulj

make it av~ilAble in just those contexts containing 31

and C 1.

Stallman and Sussman (1976) describe a systea fer

analysinq electrical circuits containing non-linear eo~-

ponents (e.g. trBnsistors). Each such comoonent can be

in one of a number of roughly linear operating regions,

and the system has to search for a consistent combinatio~

of reqions for the different components. It searches by

growing a number of contexts and it notices v1hich sup_::Jo-

-21-

sitions about operating regions are used to derive the

operating regions of other components. It uses these re

lationships to avoid having to rediscover the conse

quences of sets of suppositions. It also notices which

suppositions are involved whenever a contradiction is

derived, so that it can immedi.ately reject any other con

text containing that combination of suppositions.

Stallman and Sussman's work has been mentioned be

cause it implies that it is worth explicitly representing

the logical relations between hypotheses (suppositions),

rather than simply building up consistent sets of them.

This policy is an important aspect of the relaxation

method to be described later.

1.4.3: Waltz filtering

~·ialtz (1972) showed that ·Huffman/Clo~:1es labellin9 _

could be extended to deal with line drawings containing

shadow edges and also certain coinciden~es. This gives

many more legal labellings for each junction type, which

greatly increases the search spnce. However, Haltz

showed that a filtering process can quickly eliminate

most of the junction labels and often leaves a single

consistent labelling. The process depends on keeping,

for each junction, a list of all the labellings.which are

compatihle with its topology. Each junction labelling

must then find a "sponsor" at the other end of each of

-22-

the lines forming the junction. A sponsor is a labelling

of the other junction which agrees on the labelling of

the common line. If there is any line along which no

sponsor can be found for a particulnr junction labelling,

that labelling is removed from the list of possible la

bellings for that junction. This may well leave some le

belling of a neighbouring junction without a sponsor

along their common line, so it too will be eliminated.

This is how the effects propagate.

A major attraction of filtering is that it is suit

able for parallel computation. Each junction 9 or even

each junction,label, could be allocated to a separate

processor, which would be given links to the processors

for neighbouring junctions. All the processors could

then repeatedly check for sponsors in parallel.

A number of workers have attempted to extend the

filtering approach. Mackworth (1975)- and Freuder {1976)

consider ways of checking more than just pairwise con

sistency, so as to cope with cases where there are many

alternative labels each of which has the required s~n

sors, even though there is only one globally consistent

labelling (Waltz handled such cases by resorting to a

depth-first search~. Rosenfeld et al, B~rrow and Tennen

baum, and I, have tried to extend Waltz filtering s~ as

to find optimal interpretations when there are prefe~

ences for particular labels, or the constraints are not

binding (see Chapter 5).

-23-

1.5: The need for optimisation.

Consider the handwritten letters in figure 1.4.

n

Figure 1.4

The differen~e between the two m's is just -like the

difference between the h and the n. So why, on first in-

spection, isn't the h interpreted as a distorted n just

as one of the characters is interpreted as a distorted m?

There are two questions here. First, what makes the h

interpretation preferable, since the distorted n in-

terpretation also fits the data p~rfectly? Second~ how

does the existence of the h interoretation either
- .

suppress its rival or prevent it ever being explicitly

formulated?

The obvious answer is that the h interpretation is

preferred because it does not involve distortion, and

that the distorted n interpretation is not noticed be-

cause such interpretations are only sought when attempts

to find bett~r ones have failed. It will be shown, how-

ever, that this kind of solution runs into difficulties

if all the possible interpretations contain unattractive

-24-

features.

1.5.1: Consistency versus goodness in the blocks world.

Consider figures 1.5a and 1.5b. These have fairly

obvious interpretations as a hole and as a solid respec-

tively. There is some ambiguity about whether the solid

is attached to the background along any of its boun-
1

daries, but apart from this, a program can easily give

the pictures their appropriate line labellings. Notice,
I

however, that the interpretations of the two pictures can

be swapped if the bottom central junctions are seen as

the result of a special viewpoint. The tee-junctio~ in

figure 1 .5a could depict a trihedral vertex seen fro2 a

point lyinq in the same plane as the invisible surface.

Similarly the lower arrow junction in figure l.5b cQuld

depict the internal concave edge of a hole lying exactly

behind A corn er in the rim of the hol"e. Both these in~ -

terpretations are ruled out by the assumptions of Hu~f~a~

and Clowes, and so a program can discover the interpi.et-3-

tions which people find obvious simply by using con-

sistency. People, however, must use more complex cri-

teria than simple consistency,· since they also· make l.n

terpretations based on non-general viewpoint when the~e

are no better ones {See figure 1.5c) •

. There seems to be no way of redefining the ·notion of

consistency so as to allow the obvious interpretation ~or

-25-

FIGURE 1.5a: A hole FIGURE 1.5b: A solid

FIGURE 1.5c: AY-junction between the two cuboids is interpreted

as an accidental alignment of an edge at one depth with a closer

vertex. (The picture was suggested by Steve Draper).

figure 1.5c whilst ruli~g out the unlikely interpreta

tions of figures 1.5a and 1.5b. An alternative to con-

sistency for characterising the interpretations which

people come up with, is to introduce the.idea of the

goodness of an interpretation, and to define it in such a

way that people's interpretations are optimal or nearly

optimal. It is an interesting empirical question whethe~

such a definition is possible. There is no a priori rea-

son why it must be, though if good is equated \'li th prob-

able (see Section 1. 7.1), then the desire for the best

interpretation may be explained by the obvious I value of

finding the most probable interpretation of the visual

inpui when perceiving the real world.

Chapter 2 discusses what makes an interpretation good

in one domain. Another example of the se2ning of 11 good",

using the blocks-world, is given below, before discussing

how good interpretations may be found.

For blocks-world pictures, there are many different

aspects of an interpretation which affect how good it is.

Some of these can be explained by the concept of general .

viewpioint CRoddy Cowie, personal c6mmunication). The

perceiver is unlikely to be in such a position that cer-

tain important properties of the image would change with

a smRll chAnge of view~oint. For example, it is unlikely

that a straight line in the image is the projection of a

curved edge, or that para 11 el 1 in es in Bn orthogr-:=: phi c

image are caused by non-parallel edges seen from a spe-

-26-·

cial vie'npoint. The alternative interpretations of. fig

ures 1.5a and 1.5b provide further examples of non-

general viewpoints.

A different kind of desirable feature in the in-
--·

terpretation of a blocks scene is that there should be

three orthogonal directions with which many edges are

aligned. This helps to explain why a line drawing of a
I
!

cube is not seen as a non-rectangular paralle~ipiped.

Potential symmetries may also determine which interpreta-

tions people perceive (see Perkins 1976).

1.6: Ways of finding good interpretations.

This section describes a variety of methods for

finding good but not necessarily optimal interpretations.

It is by no means a complete survey. What the · methods

have in common is that they lack an adequate mechanism

for identifying trade-offs between the various ·ways in

which an interpretation may be imperfect. Since they

cannot identify complex trade-offs, decisions between

rival sets .of imperfections are not confronted. Conse-

quently, the methods do not need any systematic way of

evaluatinq combinations of imperfections of different

kinds. Rather, they tend to make use of domain-specific

heuristics for decidinq commonly encountered types of

conflict on a local basis. The term "procedurally embed-

ded optimisationu will be used to refer to these methods,

-27-

because they are ma~e to find good interpretations by

embedding ideas about goodness in the procedures for de

ciding whether to develop a context, or to ·make an as-

sumption. This contrasts with the use of explicit scores

for systematic optimisation.

One of· the s impl est and comrnones t \"lays of making a

program produce a good interpretation, is to inv~stigate
i

promising possibilities first and to accept the first

solution. Roberts (1965), for example, uses this method

in his program which interprets line drawings in terms of

known three-dimensional models. Various configurations of

lines and regions in the picture act as cues for particu-

lar models. The cues are ordered on the basis of how

much of a model they. depict, and ·then the program at-

tempts to match models to the line drawing in that 0:_
! V

er. The first sufficiently good match is accepted. The

problem with this approach is that the best cue may not

give the best match. Also, after the first object ha5

been found, the lines which remain may be very herd to

explain in terms of other objects. Roberts ignores this

trade-off between the quality of the first· object and

the quality of subsequent ones. This helps to explain

why he can get led up the garden path when doing corn~o

site analysis (Mackworth 19~7) • Grape's (1973) progra~

is also unable to make subsequent difficulties reverse a

decision to interpret part of a picture as a particular

view of ·a particular object.

-28-

l. 6. I : Guided depth-first search.

A systematic way of using ordering to achieve good

solutions is to combine it with a depth-first search

which terminates as soon as any solution is found. Back

tracking ensures that early choices are reconsidered if

they lead to inconsistency, and hence guarantees that a

consistent solution wi.ll be found if there are any.

each choice point, the possibilities are ordered on the

basis of how they would contribute to the goodness of

the global interpretation. Planner CHewitt 1972) a~lows

the user to specify the ordering so that he can guide the

search towards good solutions.

Unfortunately, the rejection of a locally poor pos-

sibility may force the.~cceptance of many poor choices

later, in order to achieve consistency. So the first con-

sistent, complete interpretation to be found may be far

from the best. For a guided depth-first search, the

ordering of choices high in the search tree has far more

effect than the ordering of lower ones in determining the

order in which consistent solutions are generated. Using

a guided depth first search to find good solutions

first, is like using the values of integers to find those

whose digits have a large sum.

-29-

1.6.2: Conniving.

Conniver embodies a more sophisticated way of combin

ing the use of contexts with the investigation of promis

ing possibilities first. The ability to jump to speci

fied contexts means that a line of investigation can be

abandoned as soon as it looks unpromising, but can be

reopened if there turns out to be nothing better, or if

evidence turns up suggesting that the abandoned context

was better than it appeared. Also, the reasons for aban

doning a context may suggest which other context to jump

to. Adler (1977) has argued that these control facili

ties can be helpful in interpreting pictures. A defi

ciency of Conniver, as section 1.4.1 explains, is that

the serial ordering of the suppositions which constitute

a context can prevent facts discovered in one context

from being made available wherever relevant. Another de

fect is apparent in tasks such as line-labelling where

there -are many strongly interrelated choices. It is not

clear how the control facilities avail~ble to the Con

niver user could help him to achieve anything like the

efficiency of the Waltz filter. .Brady and Wielinga

(1976) mention further difficulties encountered in using

a Conniver-like language for vision.

-30-

1.6.3: Assumptions and specialist error procedures.

In some domains, the need to store and develop many

separate contexts _can be avoided altogether. Instead of

spawning a new context for each possibility at a choice

point, a program can simply choose the possibility which

seems best on the evidence available. If the program has

a lot of domain-specific knowledge to ·help it choose , it

should be able to make the right choice in most situa

tions. In cases where there is no obvious right choice,

it may be possible to delay the decision until more

helpful evidence has emerged. Inevitably, such a program

will sometimes make mistakes. Sooner or later it will

arrive at a contradiction or notice that its combination

of assumptions is too implausible. When this happens, it

cannot jump or backtrack to another context, since it

has not kept any. Instead, it must examine the difficul

ty it has discovered and uses domain-specific knowledge

to decide which assumptions to abandon and which new ones

to put in their place.

It is hard to see how such a process can be

guaranteed not to oscillate, unless it keeps a record of

previous combinations of assumptions <which begins to·

look like depth-first search). Ho\•rever, the emphasis

placed on domain-specific knowledge means that the method

cannot be fairly evaluated in the abstract. It may be

that for the sorts of visual tasks at which people excel,

there is so much available information sUgJesting the

-31-

correct interpretation, that systematic sea~ch is un-

necessary. Several quite competent programs work in

this way and two are described below.

t~6.4: Bar-finding in Popeye.

One part of the Pop eye program (Slornan et al 19.77)

searches for bars in pictures like figure l.tb. The pro

gram expects long lines of dots to depict bar walls <the

longer sides), so if it finds two parallel lines ap

pro pr ia te ly pas it ioned, it assumes they are opposite

walls of a bar. If it subsequently discovers a good line

of dots between the two previous lines, it may jettison

the original bar, and replace it -by two new ones (cracks

are allowed). So the initial assumption can be undone a~

account of evidence discovered later.

In fact, bars in Popeye have a r~ther complex se

mantics which has similarities to the feature semantics

discussed in section 1.3.2. A distinction is jra~n

between picture-bar~ which are correct if the picture

contains good evidence for a scene bar, and scene-bars

which are only correct if they occur in the cotrect glo~

bal interpretation (i.e. the interpretation people see).

So the only assumption involved in asserting the presence

of a picture-bar is that the picture evidence is]CO~.

It is possible for the program to be mistaken about this,

because it does not perform an exhaustive low-level

-32-

analysi~ before looking for high-level structures.

The use of concepts like P.icture-bar enables deci

sions about scene-bars to be left until evidence is pro-

vided by higher level considerations, such as how well

picture bars combine with others to form letter-shaped

laminae. The use of higher-level structures to make lo

cal decisions is-an important way of avoiding making ar-
1

bitrary assumptions. I

1.6.5: Marr and Poggio (1976).

When each eye is presented with one of two random

dot patterns, which are identical except for lateral dis-

placements of some regions in one pattern, people see a

number of surfaces at different depths CJulesz 1971). To

do this we have to decide which dot in one pattern to

p2.i r with whi eh dot in the other. Si nee all dots are the .

same, there are many potential mates for each one. Ho'.·,r-

ever, each pairing wi.ll give a different angular dispar-

ity, and hence a different perceived depth for the dot.

Using the assumption that each dot can only be paired

with one other (based on the opacity of surfaces), and

the assumption that neighbouring dots in the merged image

should be at similar depths (based on the continuity of

surfaces), it is possible to make the many potential

pairings disambi~uate one another.

M9rr and Poggio show that the computation of a good

-33-

set of pairings can be done in an interesting way; They

use a binary "neuron 11 for each potential piece of sur-

face at each depth. Neurons corresponding to pieces of

surface lying along a line of sight from an eye tend to

inhibit one another __ <t:he opacity assumption), and neurons

corresponding to adjacent pieces of surface tend to ex

cite one another (the continuity assumption). A dot in a

pattern tends to excite neurons corresponding to1all the
i
I

pieces of surface on that line of sight. The computation

consists of an iterative process whereby each neuron is

turned on or off by the com~ined effects of the other·

currently active neurons and the input. Vlhen the

strengths and ranges of the effects have been tuned, the

system works very well and settles down in only a few

iterations.

Marr has expressed doubts <personal communication)

about whether people solve the stereo corre~pondence

problem in this way. However, it is a. good illustration·

of the method of making assumptions and revising them if

it seems necessary, since an active neuron corresponds to

an assumption about surface depth. Notice how inap-

propriate it seems to find a solution by developing many

separate consistent contexts. This illustrates that

search methods appropriate in domains such as understand-

ing natural language (e.g. micro-planner) may be inap-

propriate for low-level vision.

The difficulties that can be caused by the way in

-34-

which the consequences of an assumption can ramify do not

seem to be encountered in the stereo correspondence

task. This is partly explained by the fact that surfaces

do not have to be continuous. Occasional discontinuities

are allowed, and this means that no definite long-range

consequences follow from an assumption about surface

depth at one point. This, and the simplicity of the con-
I

straints, means that the mechanism used by Marr and Pog-
I

gio is adequate, even though it cannot capture the kind

of rigid complex logical constraints which the rel.axation

method handles (see Chapter 3).

1.6.6: The breakdown of Waltz filtering.

One search method which cannot easily be usec for

finding good interpret8tions, is the filtering tech~ique

which works so well for firidinq consiste~t labellings in

a restricted domain. (see section 1.4.3). The ~ethod

depends on being able to shov.r that labels are impossible

because there are no compatible labels for neighbouring

junctions. If, however, neighbouring junctions mey have

very unlikely labellings, based on non-general viewpoint,

then it is hard to eliminate Any labels. It can be

disastrous to renove a label unless it is definitely im-

p o ~si b 1 e , s i n c e i f a cor re c t 1 2 be 1 i s a cc i dent a 11 y e-1 i m-

inated, this can ceuse the elimination of the correct la-

b 1 f · 1 'o 1· r o :tr t1· on s and the effec~~..s can .e s r0rn ne1gr10 ur 1_, J ne _,

propag8te until no lAbels are left anywhere. Ther~ is

-35-

little hope of noticing when a correct label has been

eliminated and backtrncking, since the correct label may

not be the last one to be removed from a junction. Also,

the divergent effects of some removals, which give Waltz

filtering its power, make it very hard to trace and un

pick the effects of an erroneous removal. This dive~

qence of effects is also a major difficulty for the

method of making assumptions and correcting errors when

they are discovered. There seems to be no limit to the

potential consequences of an assumption, and hence no

limit to what an error-correcting procedure might need to

do to unpick these consequences.

1.7: Explicit numerical scores

One 'r.ray of determining ho~.~ to make complex trade-

offs between hypotheses is to give them explicit numeri

cal scores, and to define the global best fit as the one

which maximises the sum of the scores of its constituent

hypotheses. This means that finding the best global in

terpretation becomes what is known in the operational

reser:1rch literature as a "linear programming problen 11

(often abbreviated to an "L.P. problemu). ~~.\ore specifi

cally, it is a 11 zero-one 11 progranmj_ng problem because in

<3ny solution the hypotheses must have truth valu~s of

zero or one. The following secti~ns attempt to answer 2

number of issues concerning the validity and usefulness

of ex p 1 i c i t n urn er i c a 1 s core s :

-·36-

1. What is the underlying justification f~r the indi

vidual scores used, and for the method of combining

them?

2. What are the advantages of having a simple numeri

cal definition of the optimum?

3. Is it sensible to introduce real numbers given

that a major feature which differentiates t~e scene

analysis approach from pattern recognition is its com

mittment to reasons and symbolic descriptions instead

of numerical \·!eights?

1.7.1: Probabilities and the costs of hy~otheses

In Capital, Marx puts forward the idea that there

must be some common underlying essence shared by all

goods in order to explain how they can be given prices

according to which they are exchanged. The same philo

sophicAl point seems to apply to hypotheses. There must

be some property which they share in order to explain how

they can be given scores according to which they are

traded. The obvious candidate is probability. If the glo

bel best fit is defined as the least improbable set of

consistent hypotheses, and if hypotheses are given nege-

tive scores (costs) corresponding to the loqs of their

prob~bilities, then minimizing the su~ of the costs of

the hypotheses will indeed produce the globally most

prob~ble interpretAtion, (assuming that the probabilities

-37-

are independent, so that the most probable interpretation

is the one whose constituent hypotheses have the greatest

product of prob~bilities).

It is not obvious how to apply probability theory to

perception in order to assign costs to hypotheses, and it

is particularly difficult to make the probabilities in-

de pendent. Hov1ever, ~'/ oods (1976) successfully employs ex-

plicit numerical scores based on probabilities in ~HWIM~ a

speech understanding system. The scores are necessary be-

cause conflicts arise between knowledge sources of quite

different kinds. For example, a poor phonemic interpreta-

tion may be chosen because it allows a much better prag-

matic interpretation or vice versa. The scores. 3re

discovered by collecting statistics in cases where the

correct interpretation is known. The method used in H~IM

to find the best global interpretation (see Section 5.5)

is different from the method examined in this thesis, but
\

it is encouraQing that the theoretic2l arguments present-

ed here in favour of explicit numerical scores are sup-

parted by the practical usefulness of such scores in a

large program dealing with real data.

1 .7.2: The advantages of a numerical definition of the

optimum,

One me.jor advantage of using explicit numerical

V8lues is that they provide 2 way of settling unforeseen

conflicts between hypotheses of quite different types.

-38-

They al=o make it clear just how dive~~e, separate con

siderations can combine to overwhelm an hypothesis, a

process which is hard to implement otherwise and tends to

be avoided or glossed over within the framework of pro

cedurally embedded optimization.

Another advnntage of using explicit numerical scores

is that they· a..llow the problems of optimization to be

abstracted from the welter of .specific visual knowledge.

There is, of course, a danger in attempting to impose a

uniform optimisation system on visual processing. The ap

propriate use of domain-specific knowledge is often more

helpful in deciding ori the best interpretation than a lot

of '-'lei ghing of evidence based on an inadequate under

standing. So an optimisation system is disadvantageous if

its use of numbers rules out or discourages the use of

any of the great variety of types of inference needed for

scene anBlysis; This criticism, however, does not seem to

be applicable to· a system which can handle arbitrary log

ical relations bet\'leen hypotheses.

1.8: Pattern Recognition and the Misuse of Numbers

The systematic use of real numbers and the accom

panying mathemat-ical arguments are regarded.with suspi

cion by· many 1.vorkers in Artificial Intelliqence. One of

the main reasons for this suspicion is the inappropriate

way real numbers were used in e2rly attempts to produce

shape recognition systems. Books a~d journ3ls Ce.g. Pat-.

-39-

tern Recognition) ·were fill"ed with papers discussing

mathem~tical methods and theorems which assumed a formal

isation of the process of perception that was inadequate.

This section analyses the defects of the pattern recogni

tion approach in order to show that the ways in which

real numbers vtere inappropriately used there, do not

necessArily rule them out for defining the global op-

timum.

1.8.1: The pattern recognition paradigm.

Given some fixed set of feature analysers, gny spa

tial pattern can be described in terms of which features

it has 3nd which it lacks. If some standard, na~ed p3t-

terns are described in this way then an unknown pattern

can be classified as most similar to a particular stgn

dard pattern by comparing its feature set with the sets

for the standard patterns. Different features may be

given different real-number weights so that agreement

with a standard pattern on some features is more impor

tant than on others. Major issues within the paradigm are

how to select the best set of weights, and what features

to use to achieve good separation of the standard pat

terns and to cope with size, position and orientation in

variance.

-40-

1.8.2: Inadequacies uf Pattern Recognition

The model outlined above suggests that the aim of

perception is to classify a pattern, that the representa

tions used are sets of features, and that the process

consists of first extracting a feature set and then com

paring it with stored sets. By contrast Artificial Intel

ligence research suggests that perception consists in

producing a description of a scene using complex articu

lated representations CMinsky a~d Papert 1972), and that

the processes involved are far more sophisticated than

simply extracting and comparing sets of features.

The most obvious failing of the pattern recognition

model is that it treats the input pattern as a whole.

This presupposes that a sensible figure has already been

segmented out CHebb 1949, Neisser 1967) and it also pre

cludes a recursive process in which description of the

whole pattern may involve applying equally powerful _

descriptive apparatus to parts of the pattern (Minsky &

Papert 1972). Except in special cases, such as the re~og

nition of separate, upright, ·typewritten letters, the

types of representation and processes needed for the

presupposed initial segmentation are far more complex

than the feature sets, and the process of comparing them

which is meant to model recognition. For example, the

programs of Guzman (1968), Clowes (1971) and Waltz (1972>

tJse a relational network to describe the picture struc

ture before starting on segmentation. This data structure

-41-

itself is much riche1- than a set of features.

Understandably, pattern recognition tends to avoid

2-D pictures of 3-D scenes. It has no way of coping with

the way in which the appearance of a three-dimensional

object is affected by occlusion, lighting and the

picture-taking process. There is no simple way of ini

tially normalizing the figure nor is there an adequate

set of features which are invariant under the transforms-

tions.

It is true that people may have been attracted to

the pattern recognition paradigm because it allowed kno~n

mathematical techniques to be applied to the selection of

feature weights. It is also true that preoccupation with

the weights and with ways of tuning them may have dis-

tracted people from noticing obvious inadequacies of t~e

model. For example, a perceptron using local features

cannot successfully discriminate between the connected

and disconnected patterns in figure 1-.6 CMinsky and

pert 1969). However, neither of these points implies t~at

a successful formalisation of perception should avoid

real numbers or systematic ways of manipulating the2

based on mathematical principles •. Associating real number

scores with hypotheses does not commit one to any partic-

ular kind of representation in the same way as the use of

feature weights does. It will be shown (section 3.6) that

any truth-functional logical relation can still be use:i,

so thBt inferences based on occlusion, lighting, support,

-42-

a b

c d

FIGURE 1.6: The connected figures (a and c) cannot be

classified differently from the disconnected ones (b and d)

by a perceptron with local feature detectors which are too

small to encompass both ends of one of these figures

simultaneously. The relationship between the sets of

local features at the two ends is crt.(~ial, and it cannot

be represented by a perceptron.

or the picture-taking process can, in principle, be in

tegrated with the recognition of particular shapes. Simi

larly, giving hypotheses numerical values does not co~~it

one either· to a pass-oriented or to a heterarchical ap

proach CWinston 1977) to the proces~ of perception •

. 1.9: Branch-and-Bound search.

Explicit numerical scores for global interpreta

tions, can be used to evaluate contexts (partial solu

tions). This allows many poor contexts to be abandoned

before they have been completed or reached a contradic

tion. A systematic way of using evaluations to decide

which context to develop is presented by Hart, Nilsson

and Rapheal (1968). The method depends on being able to

set an upper bound on the score which could be achieved

by completing a context. For example, if ·all the local

scores ~re negative (costs>, then the combined score for

an incomplete context is an upper bound on the score for

any completion of the context. During the search, a list

of alternative contexts is created by branching at choice

points. At each stage, the list is examined to find

the context with the highest upper bound (e.g. the

lowest Rccumulated cost). This context is then replaced

by sever8l new ones which are made by branching at the

next choice point. The search terminates when there is

a complete solution with a score higher than any of the

other upper bounds.

-43-

A branch-and-bound search ea~ be very efficient if

it can find upper bounds on contexts that are not much

higher than the actually achievable scores, but this is

hard to do in complex domains. Without tight upper

bounds, many Alternative contexts will be examined, and

the same criticism applies as to depth-first search.

There will be a lot of duplic~tion of work as the same

local combinations of possibilities are examined within
I

the context of different, but irrelevant, higher level

choices. A similar duplication occurs in the storage of

the alternative contexts during the search.

1.10: The Relevance of Parallel Hardware.

A common criticism of artificial intelligence pro-

grams, as contributions to psychology, is that they are

tailored to serial digital computers, whereas neurophy-

siologic31 evidence shows that in the brain many activi-

ties occur in parallel. It has been claimed for exa~ple,

<Dreyfus 1972, Weizenbaum 1976) that hum~n abilities such

as inuitive thought and Gestalt perception depend on

parallel, holistic processes which are qualitatively dif

ferent from the sequential steps generated by a normal

computer program. These criticisms are simply not

relevant to one of the main functions of artificial in-

telligence programs, which-is to investigate the suita-

bility of particular kinds of representation for particu-

lar tasks. Also, the difference in hardwAre ·cannot be

-44-

used to rule out computer models, since a~y desired

_parallel machine can be simulated on a general-purpose

digital computer.

There is, however, a core of truth

tions. Within artificial intelligence

in the objec

it is accepted

that different programming languages encourage different

programming styles by making some operations (the primi

tives of the language) particularly easy (Sussman &

McDermott 1972). It seems likely that the relative ease

of different basic computations will depend on the na

ture of the hardware. So, unless efficiency and conveni

ence ar~ disregarded, different hardware, like different

languages, may encourage different programs.

It is sometimes claimed that the higher levels of

organisation of a progrAm are determined more by the na-

ture of the task than by the hardware. The history of

heterarchy however, shows that hardware considerations

can_be relevant even to general organisational princi-

ples. It was. found that it was very difficult to derive

a clean line drawing of some blocks .from the mass of

grey-level data produced by. a camera. Shirai (1973)

showed how higher-level knowledge could be used to guidB

line finding and his program was used to support the idea

that trtJly intelligent programs need rich interactions

between experts in different domains, rather t~an a

sequential, pass-oriented organisation. The application

of this idea to low-level vision was·attacked by M~rr

-45-

(1975) who argued that the enormously powerful, parallel

hard','fare known to exist in the brain, could produce much

richer symbolic descriptions about edges than convention

al A.I. programs, without invoking knowledge of particu

lar objects. The dispute has not been fully settled, but

there seems no doubt that claims about the existing

hardware are a major ingredient of Marr's case.

An early candidate for a useful computational primi

tive which might be more efficiently implemented on

parallel hardware was associative memory. Willshaw and

Longuet-Higgi ns (1 969) \'tent beyond suggestive analogies

with holography and demonstrated an efficient method, the

associatiNe net, for associating pairs of bit-patterns so

that one member of a pair could be produced in response

to the other. This technique has not been used in A.I.

programs, partly because of the need to translate to and

from bit-patterns, but mainly because, given a serial

digital computer, it is easier to use techniques such as

hash-coding than to simulate a para.llel ;nachine.

Another candidate for an important computational

process that might be more suited to parallel hardware,

is the problem, of selecting an optimal interpretation

from among a network of conflicting and co-operative hy

potheses. The desire to show how this process could be

decomposed into parallel interacting sub-processes was a

crucial consideration in the design of the relaxation

method presented in Chapter 3. This is a very different

-46-

approach to first writing a slow, serial program and then.

appealing to parallel hardware as a way of speeding it

up. Some programs written for a serial computer (e.g. a

breadth-first search) may, perhaps, be easily transfer

able to parallel hardware, but the serial nature of many

programs makes it hard for them to use parallel hardware

effectively.

1 • 1 1 : Summary of Chapter 1.

The thread of the argument of this chapter may not

have been obvious, so. it wi 11 be stated here without the

examples, elaborations and diversions:

The main problem in vision is to specify the types

of representations and the inferences and heuristics that

are available to build the representation of a particular

scene, given a picture or image of it.· Disregard for

these issues can lead to futile efforts like perceptrons.

Also, unnecessarily difficult search problems can be

created by using poor representations <Amarel 1968).

However, except in toy worlds, it is necessary to formu

late tentative hypotheses, and important theoretical is

sues arise about how to manipulate these. Sometimes

these issues can be side-stepped by using more knowledge,

but not always. Any complex visual system, especially

one dealing with messy data, needs systematic and princi

pled v.rays of handling tentative hypotheses. So this be-

-47-

comes an issue in its own right.

Searching for consistent sets of hypotheses by

developing separate contexts may involve unnecessary du

plication in both time and storage space. For line la

belling, a constraint propagation method, like that used

by Waltz (1972) or Fikes (1970) is much ~ore efficient.

In complex worlds it is not possible to spe~ify
I .

a

grammar of allowable interpretations which rules out all

but one or a few global int~rpretations. The concept of

a good or optimal interpretation is necessary.

There are several ways of finding good global in-

terpretations. However they cannot handle the complex

and unforeseeable tr~de-offs that may arise between dif~

ficulties of different kinds (e.g. missing line segments

versus unknown words in the Popeye domain). It would be

useful if we could find a principled way of making the

trads-offs at run-time. Explicit numerical costs based

on probabilities provide this. Some of the largest A.I.

systems for handling real data work this way.

Given numerical evaluation criteria, a branch-and-

bound .se arch is the obvious can·didate.. However, the use

of separate contexts can be inefficient. It would be.

better to represent constraints between hypotheses expli-

citly, if this allowed 8·parallel, constraint-pro~agation

method, l!ke Waltz filtering, to be u~ed. However, the

selection of hypotheses must be driven by the need for

-48-

optim~lity as well as consistency, and it is not obvious

how to do this with Waltz filtering.

-49-

CHAPTER 2

THE TASK OF SEEING SOME OVERLAPPING RECTANGLES

AS A PUPPET.

Figures 2. 1 to 2. 1 0 sho\A/, among other thing 1s, the

input and output of a computer proqram designed to find

the best puppet in a network of overlapping transparent

rectangles. The puppet may have soQe parts missing and

there may be some extra rectangles which are not puppet

parts. The best puppet i$ taken to be the one with the

greatest number of instc:tnt·iated joints between pe.rts, un-

less additional instructions are given.

2.1: The ease and purpose of the task.

By artificial intelligence standards the task is· a

simple one. The _only difficulty lies in d2finin9 ho~'l tv:o

parts should be related so as to constitute Rn acceptable

joint. Once this has been specified the search for th&

best fit can be done fairly simply by stBndard ~echniques

such as a branch-and-bound search CNilsson 1971 > or a

depth-first senrch. The existing program, however, uses

a relaxation technique for selecting the best global com-:-

bination from a network of ri va 1, candidate part

joint hypotheses. This makes it consider ,~tbly more co~:t-

-50-

plex and probably sl~wer than a conventional search for

all the examples given. The point of the progr~m is to

illustr8te and analyse the relaxation method in a simple

domain. It is argued in chapter 4 that for more complex

problems, especially with unreliable data and many layers

of interpretation, a suitably modified form of relaxation

is much faster than conventional search methods, espe

cially if implemented on parallel processors.

2.2: Pictorial input.

Pictures are input on a graphics display terminal by

drawing some overlapping rectangles with the cursor. Two

sides of a rectangle are drawn and a program then com

pletes it and gives it a single letter name. The names

and corner coordinates of the rectangles are stored in 8

file. This file is the immediate input to the program.

2.2.1: The range of possible pictures.

Although it will happily accept parallelograms, the

program is only intended for, and has only been tried on,

scenes consisting of overlapping rectangles or near rec-

tangles. Any configuration of these m.=.~y be used. Iso-

lated rectangles are simply ignored.

"o'·

-51-

FIGURE 2 .1a:

The L71put to the program.

! + b est. s <~-~ t. Y.
A1 TOP HEAD NECK B1
B1 TOP NECK HEAD A1
C2 TOP TRUNK NECK B1
D3 TOP THIGH TRUNK C2
E3 TOP Cr~LF THIGH D3
Fl BOT FODT C(.:1LF E:·5
G4 TOP THIGH TRUNK C2
H~5 TOP· CALF THIGH G4
Il TOP FOOT Ct1LF H!::;

FIGURE 2.1 b:

A pictorial interpretation

of the program's output.

Tl:i:UNI< C2
UPPEF\f-1F~t1 J:l. ~13
Cr~L.F E~5

FOOT F:J.

Cf':)LF H~:i

FDCJT I :1.

J:t TOP UPPERARM TRUNK·C2 LOWERARM K6
K6 TOP LOWERARM UPPERARM Jl HAND L7
L7 TOP HAND LOWERAM K6
113 TOP UPPERARM TRUNK C2 LOWERARM N4
N4 BOT LOWERARM UPPERARM M3 HAND 02
02 BDT HAND LOWERARM N4

FIGURE 2 .1c: The actual output of the program.

FIGURE 2 .2a: FIGURE 2 ,2b: .

The input Interpretation of output
- .

! • bes ·t:.~;~:-)t ~

A1 TOP HEr~lD NECK Bl
B:l TDF' NECK HEr.)D A 1 TF~UNI-\ C3
C3 TOP TRUNt< NECI---~ Hi UPPEF~t1F<I·'f -.. THIGH D3
D3 TOP THIGH TF~UNI\ C:3 C(~lLF ··-

FIGURE 2.2c: The actual output of the program.

FIGURE 2.2d: The nodes in the relational network of part and

joint hypotheses which form the best set. The indentations depict

slots. The lines depict two-way links.

! o) '!:i-hDl..JI""f(~t, 9
"A:I. TOF' HEr-;D NECK B :l
B:l. TDP
E, . .., BOT lA:.

NECI\ H[(.:·,I) A ·1 TF\lJNI·t f"' .. -\
U PP E F\ A Fo~ 1'1 .:. . . 1·1:·· L. ·,)".. •1·· {""' .; . , I l.:l' t'.:·,1::·1:·· ~ F·· ~~ ····

\ • I'< \ .,.I 1.J -· \ h \ IJ

Cl TOP
("'':> TOP """'""

LOWERARM UPPERARM - HAND D2
CALF THIGH - FOOT D1

C3 TOP TRUNK NECK B1 UPPERARM B2 THIGH D3
D:l. TDP FDDT C1~LF C2
D2 TOP
D:3 TDP

HAND LOWERARM C1
THIGH TPUNI\ C3 CALF ····

FIGURE 2 .3a: . The complete set of candidate hypotheses found

by the program when given the picture in figure 2.2a.

!tr~tointerPret [b as UPPerarm imPortance=2J;

! • be~;·t~:.c:·~t;
A:l TDP HEf."JD NECt< ·-·
)?'"> I 4,.. BOT UPPERARM TRUNK C3 LOWERARM -
C3 TOP TRUNK NECK - UPPERARM B2 THIGH D3
D3 TOP THIGH TRUNK C3 CALF -

FIGURE 2.Jb: An instruction given as additional input, with the

resulting output, and its interpretation.

A

A1 TOP HEAD NECI\ B:l.
B1 BOT NECK HEr~D f.):l. TF\UNI< C:l.
Cl BOT TRUNK NECK B:l. UF'PEF;~f;F~rt D4 E4 THIGH F3
D4 TOP UPPEF\~,~ r-<r1 'fRUNI\ C:l. L 0 WE F~,~ 1=\: N -
E4 BOT UPF'Ef~ARI1 Tl:~l.Jf-.JI"\ C:l. LOlA.IEHf~1RM
F3 TOP THIGH Tl=t:UNK C:l. c,~~LF -
G:3 BOT FOOT CALF H2
H2 BOT CALF THIGH I:·:) FOOT G3
I3 TOP THIGH TF~UNJ·:: C:l. C?~1LF H2

FIGURE 2.4a: A picture and the program's output.

F1 BOT NECI"\ HEAD G:l. TRlJi'~l"\ C2

F2 TOP UPPERAF\r1 TI:~UNI"\ ("'':> LOL·JEI~~f.1HM -
~"'-

F3 TOP THIGH TJ:::UNK c:t CALF' -··
F4 TOP LOl'-'EF\f.1FUi UPPEF~,~)r:~r-1 (" 1::· _.,J Ht')ND (32

F5 TOP CALF THIGH [~ ,~·) FDDT G".r ,.;

FIGURE 2.4b: The rival candidate hypotheses for F considered by

the program.

I3

Hotice that the hypothesis selected by the relaxation process

is one of the poorer ones in terms of its number of locally

possible joints.

!.bestset;
Al BOT TRUNK NECK B1
Bl BOT NECK HEAD Cl
Cl BOT HEAD NECK B1

UPPERARM D2 F2
TRUNK Al

D2 TOP UPPERARM TRUNK Al LOWERARM E4
E4 TOP LOWERARM UPPERARM D2 HAND -
F2 TOP UPPERARM TRUNK Al LOWERARM G2
G2 TOP LOWERARM UPPERARM F2 HAND H2
H2 TOP HAND LOWERARM G2
13 TOP THIGH TRUNK Al
J4 BOT CALF THIGH I3
K2 BOT THIGH TRUNK A1
L4 BOT CALF THIGH K2

CALF J4
FOOT -

CALF L4
FOOT -

THIGH I3

FIGURE 2.5: A picture of an upside-down puppet, with the program's

output. Unlike human perceivers, the program has no expectations

about orientation, so it finds this picture no harder than one of

an upright puppet.

!tr~tointerPret [trunk as upright imPortance=1J;
!tr~tointerPret Cthish as UPri~ht imPortance=1J;

!+bestset;
A2 TOP TRUNK NECK - UPPERARM J? Ki THIGH D3 F3
Bl BOT NECK HEAD Cl TRUNK -
Cl BOT HEAD NECK B1
D3 TOP THIGH TRUNK A2 CALF'E3
E3 TOP CALF THIGH D3 FOOT -
F3 TOP THIGH TRUNK A2 CALF E3
G3 TOP CALF THIGH F3 FOOT Hl
H1 TOP FOOT CALF G3
12 TOP UPPERARM TRUNK A2 LOWERARM J3
J3 BOT LOWERARM UPPERARM I2 HAND -
Kl BOT UPPERARM TRUNK A2 LOWERARM L3
L3 BOT LOWERARM UPPERARM K1 HAND -

FIGURE 2.6: In addition to the picture. the program has been given

instructions .to attempt to find an interpretation in which the trunk

and thighs are upright. It succeeds by finding an interpretation in

which the trunk.and neck are not connected.

·-
! .ber:;ts(~t,y
~11 TOP HEAD

BJ. TDP NECI'\
C2 TDP TF:UNI"\
D3 TOP THIGH
E3
F3
G3

TDP
TDP
TOP

CALF
THIGH
CALF

A

NECI\ B:t.

HEAD Al
NECK B:l.
Tf;~UNK C2

THIGH D3
TI~UNK C2

THIGH F~5

TRUNK C2
UPPEF\ARM Hi .J1

CALF E3
FOOT -

CALF G3
FODT --

H:l TOP UPPERARM TRUNK C2 LOWERARM Il
Il TOP L.Ot·JEF\•~I~M UPPEF~AI:;:~1 H :L HAND -
,J :l TOP LOWERARM TRUNK C2 LOWERARM K4
f\4 -BOT LOWERARM UPPERARM J1 HAND L6
Ll> J)CJT HAND LOWERARM K4

THIGH D3 F"3

FIGURE 2.7: A picture in which people see two puppets, and the

program's output, corresponding only to the best puppet.

A

! s w i. t' h a. t t e n t L o n { O· 5) i

! • b\0!.:;t.r..;et..;
L.2 TOP TF(UNI\

f·,i:3 TOP THIGH
N5 TOP UPPERARM
04 BOT UPPERARM
P :1. TDF'. NECI\
(]:J. TOP HEAD

NECt\ P:l.

TF~UNI\ L2
TF~UN~~
TI:;~UNI\

HEF-1D C~ :1.
NECI< P:l.

UPPEF\f:lRI"1 N5 04
C1~LF --

L2 LOV.JEF~ARr1 -
L2. . LOLJERAF\M· -
Tli:UNI'\ 1...2

THIGH M3

FIGURE 2.8: The output constitutes a "residual" interpret~tion

consisting mainly of rectangles which were uninterpreted in the

first interpretation (see figure 2.7). The .. switch attention"

instruction gives added importance to interpretations of the

previously omitted rectangles.

B
~--------------------------+-~

A L

(_

D

E

F

FIGURE-2.9a: A nonsense picture which has the same connectivity

graph as a perfect puppet containing no "accidentaln overlaps.

The p~cture shows the importance of metric considerations.

TAl BOT L. 0 l.\1 E F;: t!i !=~ l"i UPPEF<Ar.;.:M -- HAr-lD ?B2
"?A2 BOT CALF THIGH -- FDDT ?B1
"'?Bl TOP FOOT CALF ?A2
TB2 TOP HAND LDhiEI=~f.~RM ?r.)l

C1 BOT TF~UNK NECK - UPPEF:r-41:;:M G2 J2 THIGH
D3 BOT THIGH TF~UNK C1 C(.~f...F E2
E2 TQP cr~LF THIGH D3 FOOT -
G2 TOP UPPEI~Ar(M Tr:;:ur--~K C1 LOWER ARM -
"?1-11 TOP NECK HEAD "i>I 1 TF:UNK -
"?I1 BOT HEAD NECK ?Hi
J? BOT UPF'EI;:AJ:;:J-1 T!=~Ui"-!K C:l. LOWEF:AF:M -........

"?K1 TOP NECK HE(.~D '?L 1 TF~UNI< -
.. !>L1 TOP I-lEAD NE Cl< 'r'K1

D3

FIGURE 2 .9b: The output of the program when it is given the picture

above and allowed prolonged relaxation. The question marks. indicate

indecision. The way the program reacts to nonsense pictures is

informative. It highlights the program's inadequacies as a model of

human perception.

!tr~tointerPret [i

!tr~tointerPret [a as

(--. eA

---7
TH

head imPortance=0.5J~
calf imPortance=0.5J;

FT

! • best~;et;

A2 BOT CALF THIGH ·- FOOT B:l
B1 TOP FOOT CALF A2
Cl BOT Tr.;:uNK NECI\ - l.J P F' E 1:~ ,~ 1:;: 11 G2 J2 THIGH
D3 BOT THIGH TF:UNK C1 CAI ... F E2
E2 TOP C(~I...F THIGH D3 FOOT -
G2 TOP UPPERARM· TJ=~UNK C1 LDt·,IEF:f~F:M --
1-11 TOP NECK HEAD I:l. TI:~UNI< --
I1 BOT HEAD NECK H1.
.J2 BOT UPF'EF~AF:M TI=(UNK C:l. L.O~JEI\f."~RM -

D3

FIGURE 2.10: Two additional instructions are shown. when these are

given with the picture in figure 2.9a, they brea~ the deadlock

between equally good, partial interpretations seen in figure 2.9b.

The output of the program and its pictorial interpretation are

shown.

2.3: Non-pictorial input.

Various kinds of instruction can be given about how

to try to interpret a picture. The instructions always

have an associated number which indicates how important

it is to obey them (any real number is allowed). The

types of instruction are:

1. Try to interpret a particular rectanqle as a par

ticular puppet part. The instruction mAy also indi

cate whi eh way up the part should be, by saying wheth

er its proximal end (see below) should be at the top

or the bottom of the rectangle depicting it. A part

is 11 upsidedown" if its proximal end is at the bottom

of the rectangle depicting it.

e.g. TRYTOINTERPRET [A AS HEAD IMPORTANCE = 1 J;

or T RYT 0 I NT ER PR ET [A AS UPS I DE DOWN HE AD I M? 0 R·-

TANCE = 0. 5];

2. Try to interpret a particular rect~ngle as some

part of the puppet.

e.g. TP.YTOINTERPRET [A AS SOMEPART IMPORTANCE =1]1

If the· importance is negative the instruction means:

Try not to interpret the rectangle as any puppet part.

3. Try to find a global interpretation (i.e. a con

sistent set of local part and joint interpretations)

in which a particular puppet part is a p~rticular way

U:.J (only two orientations can be specified, thou;ih

more could easily be allowed):

-52-

e.g. TRYTOINTERPRET [TRUNK .. \S UPRRIGHT Il~\PCRTANCE =
3] ;

·4. After the best global interpretation has been found

the program may be instructed to try for a residual

global interpretation which tends to contain those

rectangles not included in the first interpretation

and which also tends not to contain those ~ectangles.

previously included. The importance of contalning or

not containing rectangles of the two types is given as

a parameter:

e • g • SW I T C HA IT ENT I oN (0. 3) ;

Any combination of instructions may be given. The

effect is to alter the definition of what constitutes the

best interpretation. The basic default requirement is to

find as many compatible instantiated joints as possible

with an importance of one for each joint. The arlditional

instructions have the effect of assigning im~ortances to

particular interpretations of rectangles of puppet parts.

If several instructions match the interpretation of a

rectangle as a puppet part, then their importances are

added to get the importance of including that interpreta

tion • The best pup p e t in s tan t i at ion i s the one whose

constituent parts and joints have the greatest sum of im

portances.

-53-

2 • 4 : 0 ut put of the be s t g 1 ob a 1 i n t er pr et at i o :1 •

When the relaxation process has finished there will

be a network of part and joint hypotheses which are r~-. '-

garded as correct. This network is output by showing its

part hypotheses, each of which is specified by its nawe

followed by its orientation, its type and the joints fil-

ling its slots. The names of the part hypotheses ara
I

made by appending successive integers to the name~ of the

corresponding rectangles. Their orientations are two-

valued and depend on whether the proximal end is at the

top or the bottom of the depicting rectangle. <Every

puppet part has a proximal end and a distal end. The

proximal end is the· one anatomically closest to the top

of the head. The arrows in figure 2.1b indicate which is

\•thi c h) • The joints in a slot are specified by followin~

the slo~ name with the name of the related part hy-

potheses.

2.5: The puppet model

A perfect puppet consists of fifteen rectangular

parts havin9 the following properties and relationships:

1. Each part has a proximal end and a distal end. The

proximal end is the one anatomically nearest to the

top of the head. The length of a part ~easured. alon~

the proximal distal axis is greAter than its width.

2. The trunk is wider than any of the upper limh

-54-

parts and each of these, in turn, is wider than its

connected lower limb part. Also the head and trunk are

wider than the neck.

3. The head is greater in area than the neck and· the

lower limb parts are greater in area than their asso

ciated hands or feet.

4. Anatomically connected parts overlap in th~ right

way (see below) to depict a joint.

The precise details of the puppet model cannot be

justified in terms of human perception, but something

more than simple connectivity must be used to exclude

cases like figure 2.9a.

2.5.1: Defining satisfActory joints.

Figure 2.12 shows some pairs of overlapping rectan

gles which have been assigned a distal-proximal direc

tion. Some pairs can plausibly be interpreted as depi~t

ing knee...:..joints and others cannot. One method for defin

ing these two classes is in terms of the way in which the

sides and ends of the rectangles intersect, The examples

given, however, show that these intersections are rather

varied, and it is difficult to find a natural definition

in terms of them. It seems as if the intersections of

the edge~ are more the result of the way the rectangles

overlap than a defining characteristic of their relation

ship. A simpler and more intuitively satisfactory way of

-55-

FIGURE 2.12a: Some examples of possible knee -joints. The

arrows indicate the distaL..:). proxim~ direction, The thigh

is the wider of the two parts. Notice the variety of ways in

which the ends and sides intersect.

T -
-

FIGURE 2.12b: Some unsatisfactory knee -joints.

articul2ting spatial relationships between rectangles is

to specify a set of zones in each rectangle, and then to

specify pairs of zones, one in each rectangle, which do

or do not overlap. Using this method, the examples given

in Figure 2.12 can easily be separated into satisfactory

and unsatisfactory knee joints on the basis of the zone

overlaps defined in Figure 2. 13. The use of zones rather

than edges to define spatial relationships is a simple

example, in tv1o dimensions, of the ·11 space occupancy 11 idea

referred to by Brady and Wielinga (1976). Paul (19J7)

defines _satisfactory relationships between parts of a

puppet in a similar way. The necessary and sufficient

definitions of all the various joints in the puppet are

shown in Fig~re 2.13b. These are not fully adequate be-

cause they are all or none. They do not allo·.'f for poor

but not hopeless joints. One way in which people ara

more flexible Cas p ercei vers) is that they will allow

some relations or proportions to be stretched provided

the rest are reasonable. The implications of this will

be discussed in Section 4.7.

2.6: Definition of the required output.

2.6.1: v'lhat pictures depict.

When we perceive the real world there is a clear

distinction between how things -are and how they appear to

be. We can make mistakes, and it is quite possible under

-56-

<

fROXfi?IIL
[NO ~

(Q 111lK1tR)

Pt.ax tnAL
/

HALl= '

!>JS/Ai.

[tJIJ

!J!51AL

HALF

FIGURE 2 .1)a: Six zones of a puppet part which has been

assigned a distal ~ proximal direction.

CALF T 1-/16- H OVERLAP?
o,- 0~

tODT (A L F OVFR LAP
Ot- or

LOVER-A RH UPPfP...-IJf..M HAJ.JD LPW€K-Af<F1

P. E. P.£. !1V5T D. E. L-1 HoL (nvsr Ncr
P. E. p. 1-1. f1U) T NOT

D. H. D. E. HU~T N01
WJ-/OL[f.~}. nusr Nc:f

TF-1!6-H TRUNk OVERLAP? {Jp PE/\ -I/ Rn Ti<IJ!VK ov [;~:.. ~ p ? l
/). /-f 11 U5T P.E. f>.l-1.

I

t1 U5 T I

I f.f.
P.f. P.H nvsr Nor P.F. J). H. NV5 T

.,,.._,
tV:., !

[).f. 1J. fOLF nusr /JoT ~[. f. POLE nusr Nod

NFLk TRvf./k. OVfRLAP? NE ere 1-1 rAp O{l(.fl. L,C p (

/),£. P.E. nv>r D.E. P.£. /"1 (J 5 T

WfiOLE /).1-1. /1USTNoT wf./OLf p. 1-1. !7f)5f l'.JtT

f.J-1. !tt/f/Ol (11V5T NOT P. f-t. Y-lfJOL[nv~r }..:0 T

D.== Dis taL H.= f-1 aLt

FIGURE _2 .~]Q: Showing the definition of satisfactory joints

used by the program. The two whole rectangles are assumed to

overlap. There are also constraints on relative lengths,

widths and areas (see section 2.5). Hotice how the. definition

of a knee-joint applies to figure 2.12a.

suitable circumstances for an object to consiJtently

pear to be something which it is not. The Ames Room is e

compelling example. The same distinction holds for pho

tographs, but for pictures there is no such simple dis

tinction between what they appear to depict and what they

actually depict. In some cases it may be possible to de

cide what a picture really depicts by appealing to the

intentions of its creator, the conventions of the

picture-making process, or how the picture appears to

normal perceivers. For example, such appeals may enable

us to decide whether a given picture is an imperfect dep-

iction of a perfect wire-frame cube pr a perfect depic-

tion of an imperfect one. For many puppet pictures the

difficult decision between incomplete or imperfect de~ic-

tion and depictions of the incomplete or imperfect, ~oulj

arise. It will be avoided by assuming that the depic-

tions are perfect. So missing rectangles mean that thA

puppet is incomplete, not the picture.

2.6.2: Basic definition of the best puppet

When there is nothing better in the picture people

happily find incompl~te puppets. The program can do the

same if it is given some way of evaluating incom!)lete

puppets so that it can avoid poor global interpretations

when there are better alternatives. Currently, the best

puppet is defined as the one containing the greates~

number of satisfactory joints whilst satisfying the fol-

-57-

lowing constraints:

1. No rectangle can be seen as more than one part.

2. A part may be involved in several joints but no

part can have more _joints than in a perfect puppet. A

trunk, for example, can not have three thighs, nor can

a calf enter into two knee joints.

3. No type of part can be instantiated more times

than it occurs in the model: e.g. there wust not be

more than two thighs.

4. A joint cannot exist unless both parts are instan

tiated.

This definition produces results similar to the per

ceptions of a person who is experi~nced in the domain and

knows what the task is. ·It is hard to asse.5s how well it

does because people seem to have the ability to learn to

see the picture in the way the program does. The

author's cons id er able perceptual experience of the

domain, for example, may have evolved to fit the program

as well as vicE?-. v.ersa. An interesting feature of the

definition is that it allows disconnected instantiations

as in Figure 2.6 • People can also see disconnected in

stantiations but they notice that they are disconnected

which the program does not. Also if the best interpreta

tion is severely disconnected, as in Figure 2. 14, people

often notice just how a rectanqle would have to be adde·:!.

to unify the figure, and they may report what they see in

-58-

FIGURE 2.14: A puppet with a missing trunk. People notice that

the limbs are correctly related despite the absence of the tr~~k.

This is beyond the current program.

these terms. Such abilities are beyond the current pro

gram.

2.6.3: Modification of the definition of best.

The specific instructions which may be given as in

put, along with the picture, can alter the definition of

the best puppet by attaching importances to the interpre

tation of rectangles as puppet parts, but the instruc

tions cannot affect the four types of constraint that are

listed above. So, for example, the program cannot be

told to look for a one-legged or a three-legged puppet.

The instructions are also unable to affect the relative

proportions and the spatial relations which rectangles

must have in order to depict a joint.

2.6.4: Equal rivals.

When there are several different optimal interpreta

tions it is reasonable to demand that a program give thew

all. This could be achieved by adding control facilities

_to the current program, but that would raise issues

beyond those which the program was designed to investi

gate. So when there are equal rivals the program is not

required to give a decisive output until given additional

specific instructions which favour one rival over the

others as in Figure 2.10.

-59-

Chapter 3

THE PUPPET FINDING PROGRAM

The aim of this chapter is to describe the program

at a level above that of its implementation in a particu

lar language, but in sufficient detail to enable anyone

familiAr with the language to follow the code. First

there is a description of how the puppet task is reduced

to the problem of finding the best consistent set among

some lo<Jically related hypotheses. Then the principles

behind ~ relaxation method for solving the proble3 are

given. Finally, there are detailed examples of the meth0d

applied to various puppet pictures.

3.0: The two main stages : An overview

The program works in two stages. First, many locally

_feasible part and joint·hypotheses are created, and the

constrAints between them are explicitly r~presented. Each

hypo thesis is then Assigned An Arbitrary supposition

value, which can be interpreted ~s the extent to which

the program is currently supposing the hypothesis to be

correct. The values are iteratively modified so as to

satisfy numerical constraints, derived from the loqical

-60-

relations between hypotheses, whilst maximizii,g the sup

posed number of instantiated joints. When this relaxation

process finishes, the hypotheses corresponding to the

best puppet will generally have supposition values of l

and the rest will have values of 0.

3.1: The main data-structures and their creation

When given a picture, the program forms three dif

ferent but interlinked networks whose nodes represent

rectrJngles, hypotheses-, and surposi tions (see below).

First it creates a data-structure for each rectangle and

gives it a list of the overlapping rectangles and struc

tures for the zones within the rectangle. Then it creates

p2rt hypotheses, which are interpretations of rectangles

as puppet parts in particular orientations, and joint hy

potheses, which are interpretations of the spatial rela

tionships between rectangles as joints between puppet

parts.

The reason for hAving an explicit structure for a

joint, rather than simply giving each slot in a part hy

pothesis a pointer to the related part hypothesis, is so

that the program can refer directly to the joint and can

associate other information with it.

When the process of finding candidate local hy

potheses terminAtes, there is, generally, a surfeit of

hypotheses, and before the best consistent set of thess

-61-

can be selected, it ~s necessary to instantiate the con

straints between them. To· do this, each hypothesis is

given an associated supposition node which contains its

importance <how important it is to include it in the fi

nal interpretation), its supposition value (which arbi

trarily starts at zero), and 1 ists of ,the. constraints on

its supposition value which are derived from the defini

tion of the best puppet by the method described in sec

tion 3.8.

Figures 3.1, 3.2, and 3.3. show the three networks

built by the program for a simple picture. Notice that

constraints are not directly linked to hypotheses but

rather to their associated supposition nodes. This al

lows a modular program in which the particular structures

used for hypotheses need not be accessed during the re

laxation process for finding the best consistent set. So

the co,Je for this process, can be independent of any par

ticular domain.

3.1.1: Representing zones and computing their overlaps

There are six relevant, rectangular zones in each

rectangle (see figure 2.13) as well as the whole rectan~

gle itself. The only computation in which zones are used

is. for deciding whether or not t\vo of them overlap, and

so their representation is designed to make this judge-

ment easy. Each zone is given pointers both to its

corner points and to its four borders or half-spaces.

-62-

FIGURE 3 .1a: A simple picture.

NAME

NAnE
,. ,,

(_

1'
I

NAJ1E

"D If

NAhF

OVERLAPPtNf PART

/?ftT!tN6-Lf) H YPoTHE~fS

OYff.LAPP!IJ& PART
RflT!INGlfS HYPO T#[{ff>

\it r
0 vfthAP~JN6 PART

R f(T AAIC.lf) HYPO Tf/f~£5
I

11\
w

PA/l.T
(JV £!2. Lflti'INb
RElTAW!-U~ f{'(fOTfiESE)

FIGURE 3.1 b: The network of data-structures representing the ·

rectangles in the picture above. Each structure also has

pointers to all its corresponding part hypotheses.

FIGURE).2: The network of candidate part and joint hypotheses for

the picture in figure J.1. (See figure 2.Ja for an alternative

representation). The indentations represent slots and the lines

depict two way pointers. Every hypothesis also has a pointer to

its supposition node, and part hypotheses have pointers to the data

structures for their rectangles.

FIGURE 3 .. 3: The network of supposition nodes associated with the

hypotheses in figure J.2. The prefix "S11:u is used to distinguish

supposition nodes from hypotheses. Supposition nodes have pointers

to constraints which, if violated, tend to raise (double arrow } or

lower (single arrow) their supposition values.

The only constraints in this network are on the sum of the values

for nodes corresponding to one rectangle(2:), and oc the relative

values .for joints and their parts(~).

Each bolder has an on-side and an off-side and the zone

is the intersection of the four on-sides. Points actually

on the border are taken to be on its on-side.

A border. can alv1ays be expressed in the form: a.x .+

b . y ~ c where the expression is tru,e for points on the

on-side. So if the border is repr~sented by the coeffi

cients a, b, c, it is easy to compute which side of it a

given point lies on. Using this basic test, a procedure

can quickly decide whether or not two zones overlap by

using the fact that convex polygons are disjoint if and

only if one of them has a border which has the other en

tirely on its off-side •. This fact is not intuitively ob

vious, so in appendix 1 a construction is given which

shows why ther~ must be such a border if the polygons are

disjoint.

The way in which zones are represented and overlaps

are computed is not intended to have any psychological

relevance.

3.2: Cre~ting the network of candidate hypotheses

Creation of a network of conflicting and supportin~

hypotheses is the first stage in finding the best puppet.

This section describes in detail how the network is made.

Since the relaxation process does not itself create

nev1 locAl interpretations, it is essential that a·ll the

correct hypotheses for the best puppet should exist be

-63-

fore relaxation starts. one way of achieving this is to

give ench rectangle all possible part hypotheses and then

to find all possible joints. This method is costly even

for the puppet problem and would be worse for more com

plex cases. It does, however, guarantee that hypotheses

will not b~ missed just because they ~re locally implau

sible, like the hand in figure 2.7. A more economical

method, implemented in the program, is to start by creat-

ing hypotheses for those rectangles which

obvious interpretations. These initial

have locally

hypotheses are

called nuclei, because they Act as a context which sug

gests interpretations for neighbouring, overlapping rec

ta n gl e s • (Woods (1 9 7 6) us e s " seeds 11 i n a si m i 1 a r way in a

speech understanding system.) These suggested interpreta

tions cAn then, in turri, act as a context for interpret

ing their neighbours, and so on until a whole set of re

lated hypotheses is formed around a nucleus. In fact, if

the best puppet is connected and if it contains at least

one nuc 1 eus then a 11 its hypotheses wi 11 be found, hovJev

er locally implausible some of them may be. In figure

2.4, for example, rectangle G is given one interpretation

-=lS a hAnd as a result of C being a trunk nucleus. Even if

the best puppet has no nuclei it will still be found if

any of its part hypotheses are created whilst developing

other nuclei.

The program simulates the simultaneous spreading of

interpretation from a number of independently discovered

nuclei by using discrete time steps. On the first step

-64-

the nuclear hypotheses are made, and on each subsequent

step attempts are made to fill the slots of the part hy

pothesis created during the previous step. For each slot,

all overlapping rectangles ~re examined to find any· which

are related in the right way to depict the required pup

pet joint. Whenever a candidate joint 1 is found, the pro

gram creAtes a joint hypothesis and also makes a new part

hypothesis for the overlapping rectangle, unless one al

reAdy exists. New part hypotheses act· just like nuclei,

and the process is continued until no new part hypotheses

are created.

In more .sophisticated uses of relaxation (see sec

tion 4.7), the process of growing candidate hypotheses is

integrated with relaxation rather than being a separate

first pass. An integrated appro~ch is needed to ~void

many of the enormous number of hypotheses that would be

generated by a separate first pass in a complex domain.

3.2.1: Types of nuclei

The decision about what local configurations should

constitute nuclei involves a compromise between havi~g so

many .types of nuclei that a great number of irrelevant

hypotheses are created and so few that the best pu;pet

doesn't contain .any. The program uses the following th:ree

types of nuclei which are normally adequqte (but see fig

ure 3. 4).

-65-

FIGURE 3.4: A picture in which there are no nuclei. The

program cannot find the obvious interpration.

1. A rectangle which only overlaps one other and

which is wider than it, is interpreted as a head if

the other rectangle is so related that it could be a

eo nn ec ted neck.

2. A rectangle which only overlaps one other and has

less 8rea than it, is given rival interpretations as a

foot and a hand if the two rectangles satisfy the

overlap requirements for a lower-arm/hand or a

c A 1 f If oo t j o in t .

3. A rectangle which overlaps three or more narrower

rectangles is given an interpretation as a trunk if at

least one of the overlapping_ rectangles is suitably

related to depict an upperarm, ·thigh or neck. Usually,

tv:o rival trunk hypotheses with opposite or ientations

v.ri 11 be created.

There should, perhaps, also be A neck nucleus for a

rect~ngle joining two wider ones. By stipulating that the

central rectangle should have a smaller ~rea than either

of the other two, confusion with calves and lower-arms

would be avoided.

A desirable feature of any set of nuclei, which

helps to give it a reasonable pe~formance over a wide

r~nge of pictures, is that some nuclei (e.g. and 2

above) tend to remain, even when many rectangles are

missinq, whereas others (e.g. 3) are immune to extra ir

relevant rectangles.

-66-

3.3: Numerical const1·aints between supposition values.

Consider the logical constraint F v ~ and the nu

merical constraint SP + S~~ I where 5p means the supposi

tion value of the hypothesis p. The numerical constraint

appears to be a good generalisation of the logical con-

straint because it rules out the same combination of in-

teger values for p and q, (0,0). The advantages and

weaknesses of this kind of generalization are discussed

in the following sectionsa

3.3.1: The function of continuous supposition values.

The purpose of using continuous supposition values
I

is to avoid explicit enumeration of combinations of the

truth values of hypotheses during the process of search-

ing for the best consistent set. The aim in choosing the

numerical constraints between supposition values is to

ensure thRt iterative adjustment on the basis of the nu-

merical constraints leads to values of J for hypotheses

in the best set and 0 for the rest.

3.3.2: States of supposition values: terminology

Sets of suooosition values which satisfy all the nu-.-.
mericfll constraints wiJl be called feasible states.

States in which all the values ~re I or 0 will be called

integer states, and states in which some values are non-

integer will be called intermediate states.

-67-

3.3.3: Normalised linear combinations

This section is difficult and may be easier to

understand if read in conjunction with section 3.5 which

explains the same ideas· using a spatial anal,o.gy.

Given some feasible integer states, a new state can

be obtained by multiplying ·each state vector by a .weight

and adding the results. The resulting state vector is a

linear combination of the original states. If the sum of

the weights is 1, the result is a normalised linear corn-

bination. Figure 3.5 gives some examples. If the numeri-

cal constraints between supposition values are such that

a.Jl the feasible states are normalised linear combfna-

tions of the feasible integer states, then the best in-

teger state can be found by hill-climbing in the space of

feasible states. An informal argument shows why this is

so: If every feasible state is a normalised linear combi-

nation of feasible integer states, it can be expressed as

a set of weights on these states. Also, the total prefer

ence , T5 , of a state,· S, can be expressed in. terms of

the total preferences of the feasible integer states:

=I w. (_.
{., l

where Wi is the weight on an integer state and C.i. is its

total preference. Now, consider what happens to a feasi-

ble state if the weight on the best feasible integer

- state, B, is increased by ~ and the weight on some other

f e 8. .s i b 1 e i n t eg er s t a t e A , i s de c re as ed by · S Provided

-68-

p C}

V, I) I

V). = 0 .~ I

v3 == 0, 0

FIGURE J.5a: V1, V2, and VJ are the feasible combinations of

truth values for p and q given the constraint p ::>q.

p t p ~

0·1) V, 0·5 0· 5 0· Lj-
1V, - 0·4- 0·4-I I

+ 0·7 vl - 0 0· 7 O·b V 0 0·6 J)_ .I

+ 0 VJ - 0,0 0·0 ~ - 0 J 0

VLJ. - 0·5 J·l Vs - 0·4 I ·0 J J

FIGURE J.5b: V4 is a linear combination of V1, V2, VJ. V5 is

normalised linear combination because the weights on the vectors

Vi, V2. V3 add to 1.

11\

r s~

FIGURE 3 .5c: The feasible region of supposition values for p and

q given the constraint Sq,? Sp which is the numerical equivalent of:

p::>q. Triangles denote the feasible integer states, and nornalised

linear combinations of these lie within the convex hull of the

triangles.

no weiglats have become more than 1 or less than 0, the

new state is also a normalized linear combination of

feasible integer states and hence it is a feasible state.

Its preference has increased by:

g (T- - T) B A,

where T
8

, TA are the total preferences of the states B,

A. This is positive since B is better than A. So all

feasible states except 8 can be improved by increasing

the weight on B and decreasing some other weight. Notice

that local maxima do not occur in this space, so the usu-

al objection to hill-climbing, that it gets stuck at lo-

cal maxima, does not apply. Figure 3.5 shows a simple ex-

ample in which a logical constraint has been used to

derive a numerical constraint on the supposition values.

This constraint ensures that the only feasible states are

norm3lized combinations of feasible integer states. The

guiding principle used in deriving numerical constraints

is to find the strongest inequality which is true of nor-

malised linear combinations (i.e. the inequality which

rules out the most states). By forcing the feasible

- states to satisfy these conditions one can usually force

them to be normalised linear combinations. Cases where

this approach fails, and ways of handling them, are dis-

cussed in Section 3.7.

-69-

3.4: Probabilities and supposition values

The constraints on the supposition values of hy

potheses are like the constraints on the probabilities of

events. The similarity of the calculus of supposition

values to the calculus of probabi~ities suggests that
I

supposition values may be interpretable as some kind of

probability. It would be wrong to interpret them as the

probability that the hypothesis is objectively correct,

since a supposition value of 1 does not mean that the hy-

pothesis is right, but only that it is part of the -best

consistent set. A more plausible candidate is, there-

fore, the probability that the hypothesis occurs in the

best consistent set. This interpretation may be satis-

factory when the values have all settled down to or 0,

but it is suspect as an interpretation of the changing

values during the relaxation process, because they change

withotrt any change in the relevant knowledge or evidence.

·Even on the subjective interpretation of probabilities· as

degrees of belief, the belief should no~ change rapidly

on the basis of no new evidence. It seems that supposi-

tions and beliefs are different things, and this is con-

firmed by the fact that strong temporary suppositions

need not imply strong temporary beliefs.

3.5: The hyperspace model.

Supposition values can be represented as distances

along the axes of a multidimensional space. A set of

-70-

values is then a point in the space, and a nu~erical con-

straint corresponds to a hyperplane. To satisfy an equal

ity or inequality constraint the point must lie on the

hyperplane or on the appropriate side of it. The points

representing the feasible states form a convex polyhedron

because i

they lie in the intersection of some hyperplanes

(equality constraints) and some half-spaces (inequality

constraints). The total cost Cor preference) of a state

is defined as the scalar product of the cost vector with

the supposition value vector. In spatial terms this

means that the relative magnitudes of components of the

cost vector define a direction in the hyperspace, and the

optimal feasible state is the one furthest in that direc-

tion. In general, this will be a vertex of the po-

lyhedron9 The condition that the feasible states be the

normalised linear combinations of the feasible integer

states, is equivalent to the condition that the po-

lyhedron defined by the constraint planes has only in-

teger points as vertices, so that it is the convex hull

of the feasible ihteger states.

3.6: Representing arbitrary logical constraints

The examples given so far have only shown the numer-

ical constraints corresponding to simple logical expres-

sions. If the method is to be applicable to sets of hy-

potheses related by Arbitrary constraints in the proposi-

tion~l calculus, it is necessary to have en automatic

-71-

procedure for 11 cashir)gn ·any _proposi tional form. The fol

lowing four observations show how this is possible:

1. When a hypothesis is true its negation is false

and vice versa. This suggest that the supposition

values of a hypothesis and its negation should be re-

lated as follows:

5- :: I - 5 a. ~

v1here a.. means the negation of a.

2. Any disjunction corresponds to the constraint

that the sums of the supposition values must be at

least 1;

a.vbv (.

3.- A conjunction of disjunctions can be cashed by

simply cashing all the disjunctions separately:

4. Any logical expression can be put into conjunc-

tive normal form in which it becomes a conjunction of

disjunctions!

Although this approach allows one to derive a set of

numerical· constraints which rule out the same integer

combinations of truth-values as any prepositional form,

-72-

:r

it may not lead to the stro0gest set of numerical con

straints. For example, the constraints may not correspond

to the convex hull of the feasible integer states.

3.7: Non-integer optima

Consider three hypotheses a,b,c which have equal,

positive, unit preferences and are connected by the logi-

cal constraints: a/b, blc, cla where 11 /" means "not

bothn. The corresponding numerical constraints are:

Sa_, -r 5 b ~ I
J J

The best feasible state, which has a total preference of
I

I ~ h o4 occurs H .en:

Sa, = sb =

Clearly, this is a case where the obvious numerical con-

straints yield a larger polyhedron of feasible states

tha~ the convex hull of the feasible integer states. Fig-

ure. 3.6a shows the polyhedron and its non-integer ~ertex

• Such "bad 11 vertices are a serious threat to

- the use of continuous supposition values unless some way

can be found to handle them. There are two possible times

at which this can be done. Stronger numerical constraints

than those obviously implied by the logical constraints

can be sought when the constraints are made, and used to

ensure that only the norm~lised linear combinations are

feasible in the first place. Alternatively, the obvious

-73-

FIGURE 3 .6a.: The three constraint planes corresponding to a/b,

b/c, c/a and the non-integer vertex where they intersect.

FIGURE~: A cutting plane corresponding to the constraint

"at most one of a, b,c" which removes the non-integer vertex from

the polyhedron of feasible states.

constraints can be used inttia.lly, and_ whenever the best

vertex is non-integer, a stronger numerical constraint

(called a cutting plane) can be constructed to eliminate

it. This process of elimination can be continued until an

integer vertex is best. The second method has the advan-
1

tage that only those stronger constraints needed to rule

out optimal bad vertices need to be found. -All other

discrepancies between the polyhedron of feasible states

and the convex hull of the feasible integer states are

i rr e 1 ev an t •

For the example above, the obvious stronger con-

straint is:

Notice that this corresponds to the logical constraint

that at most one of a,b,c be true. This can be derived

logically from the three given logical constraints but it

does riot follow from the three.corresponding numerical

inequalities, because they lack the requirement that the

values be 1 or 0. However, the integer requirement can be

used in conjunction with the numerical constraints, to

derive the stronger condition:

Sa. + 5~, ~

5 b +Se <
Se. + 5a. <

2 sa..+ l sb + J se ~ 3
. . Sa. + sb +- 5{, ~ J 1 (f)

-74-

·In· any feasible integer state a 11 values on the LHS of

<t) must be integer. Tnerefore, no otherwise feasible in

teger st8tes·are ruled out by:

f s.
L I

There is a large literature on methods of deriving

cutting planes to eliminate non-integer optimal vertices

(" s e e Ga r f ink e 1 & Ne m ha user 1 9 7 2) • In part i c t Jl a r i t was

shown by Gomory (1958) that there are methods of con-

structing cutting planes which are guaranteed to elim-

inate all. non-integer optimal vertices in a finite.number

of cuts.

An alternative to the use of cutting planes is to

branch into two sub-problems whenever a bad optimal ver

tex is encountered, by fixing one of the intermediate

supposition values at 0 in one case and at t in the oth-

er. The .better of the optimal vertices of the sub-

problems is then considered and if it also is non-

integer, another intermediate supposition value is set at

or 0 to create two more sub-problems. Since the sub-

- problems must have Y.lorse optima than their parents, a

branch-and-bound search is possible. Branching need only

occur on the best of the remaining bad vertices and only

until some integer vertex is better. This bound may

prevent bronching on many of the bad vertices. The com-

bined use of branching and cutting planes is also possi-

ble (see Garfinkel and Nemhauser p.3P8).

-75-

Th& particular examples on \'lhich the final version

of the puppet-finding program has been tried have never

given rise to non-integer optima •• This may be due to the

nature of the constraints in the puppet domai.n though

this has· not been proved. Since the problem has not ar-
,

isen, no programs have been written for handling bad ver-

tices, though it is recognised that such programs may be
I

necessary for extending the use of continuous supposition

values to other domains.

3.8: The numerical constraints in the puppet ~asK

Section 2~6.2 lists four types of logical constraint

that mav occur between part and joint hypotheses. The

corresponding numerical constraints between their suppo-

sition values are:

I. For part hypotheses corresponding to one rectan-

gle:

This prevents a rectangle from having more than one

interpretation as a puppet part.

2. For joint hypotheses of the same kind which corn-

pete for the same part p:

5.
J

}

-76-

except for thigh/~runk ~r upper-arm/trunk joints which

are competing for a shared trunk, for which:

since a trunk can have two thighs ~r upper-arms. These
:

constraints prevent a part {e.g. a calf) from being

used in several different joints of the same kind

(e.g.knees).

3. For hypotheses about a type of part that occurs n

times in a complete puppet:

\ 5 {.. h
L P "
p

This prevents for example, two trunk hypotheses from

both being accepted.

4. For each joint hypothesis j, relating part hy-

potheses p and q:

This prevents joint hypotheses being accepted unless

both the related part hypotheses are accepted.

+ .
~1on

A stronger type of constraint based on a combina-

o·f (2) and (4) above is:

5. For joint hypotheses of the s3me kind co~pet-

inq for a part p: L sj (sp
" -,77-

or L sj ~ lSp
)

for joints competing for thigh or arm slots in a trunk.

The numerical constraints used for the puppet pro-

gram were designed~to be as strong as possible in an at-
1

tempt to remove non-integer optimal vertices. For all the

examples tried they were successful in doing this. An

earlier version of the program used constraints of types

(2) and (4) separately, without combining them into type

(5) constraints. As a result, the optimal vertices were

occasionally non-integer.

3.9: The simplex algorithm

The use of continuous suppositiori values allows the

problem of finding the best consistent set of hypotheses

to be reduced to a linear programming task. There is a

standard technique for solving such problems on 2 digital

computer, based on the Simplex Algorithm. Pierre (1969)

expounds the basic algorithm and variations of it -.-·rhi eh

increase efficiency in particular cases. Only the basic

strategy of the algorithm is explained here.

The problem is to find the vertex of a convex,

multi-dimensional polyhedron which is best, i.e. furthest

in the particular direction defined by the cost vector~

The strategy is to find any vertex and then to compare

its value (distance along the direction of decreasing

cost) with the values of all the neighbouring vertices .•

-78-

If none is better then the vertex is optimal, otherwise a

better neighbour is chosen and the process repeated.

Since each vertex is better than its predecessor, cycles

cannot occur and since the number of vertices is finite,

the process must terminate after a finite number of

steps.

Neighbouring vertices are not too difficult to find.

A vertex is defined by the intersection of a number of

hyperplanes, corresponding to inequality constraints. In

general a vertex in an n-dimensional space will be formed

by the intersection of n hyperplanes, though in degen

erate cases more planes may be involved. Neighbouring

·vertices are those which lie on n-1 of the original hy

perpl~nes and on at least one new one. So by considerinJ

possible additions and deletions to the set of inequality

constraints that are exactly satisfied, all neighbouring

vertices can be generated.

Despite its guarsnteed success, the simplex algo

rithm has serious deficiencies as a model of how the best

consistent set of hypothes.es might be found in a parallel

co!!lputer. Although neighbouring vertices could be exam

ined in parallel, the process of finding successively

better· vertices is inherently serial. For A .Polyhedron

•t~ith m~ny faces, the number of vertices traversed, anj

hence the number of serial steps, m~y be large. In fact,

for the I,·Jorst case, the number of 'iertices exanined is an

exponential function of the dimensionAlity of the spAce.

-79-

There is no polynomial upper bound. A further we2kness is

that the storage required may be large.

3.10: Assigning preferences to hypotheses

All part hypotheses have an initial preference of 0,

and all joint hypotheses are given a st8ndard initial

preference of 1, in order to implement the basic aim of

finding an interpretation with as many instantiated

j o i n t s as p os si b 1 e • A dei i t ion a 1 i n put i n s t r u c t ion s s u c h

as:

TRYTOINTERPRET [B AS CALF IMPORTANCE = 0.5];

are implemented in a very simple way. For each such in-

struction, the whole list of part hypotheses is searched

and any that fit the instruction have their preferences

incremented by the specified amount.

3.11: The abstract optimization problem and the type of

solution required.

The puppet-finding task has now been reduced to the

fall ov1i ng_ abstract problem: given some hypotheses, . a no

logical constrnints between them, and the i:nportance of

including each hypothesis in the final interpretation,

how can the best consistent set of hyp6theses ~e select-

ed?

There are many ways of tacklinq this problem and

-80-

some of them have already been discussed in Chapter 1.

This thesis is primarily concerned with examining one

particular method in which each hypothesis is given an

Associated real number, and the numbers are iteratively

modified to make the best consistent set of hypotheses

t d t Th · d h
1~ · t d 1 s an ou • , ere 1s a anger, \'l.~en t.rylng o eve op a

technique of this kind, of evol~ing a set of unprincipled

number- jugqling tricks which can be tuned to work

moderately well in a restricted domain, but which are not

clearly understood and can therefore only be extended to

other domains by empirical parameter tuning. Further

disadvantages of unprincipled tricks are that it is hard

to characterise the set of domains for which the method

works, or to express the nature of the computation being

performed in any more illuminating way than by givin; the

particular implementAtion details. Marr & Poggio {1976)

discuss the importance of separ3ting the nature ·of the

computation· from particular. implementations. Although an

implementation constitutes an effective procedure and

therefore has advantages over a purely verbal theory,

simply describing an implementation may confuse arbitrary

- implementation decisions with important principles.

The following sections are intended to provide A

sound theoretical basis for the way in which supposition

values are adjusted by the relaxation operator, t;1ou;:h.
• the precise details of the operAtor are not fully deter-

mined by the theory.

-81-

3.12: Two types of relaxation

There are various relaxation operators which make

iterative adjustments to the supposition values so as to

converge on the best feasible state or on a state close

to it. Methods in ~1hich the values ar
1

e modified one at a

time, and the updated state is used in deciding how to

modify the next value, wiJl be called serial relaxation.

By contrast, parallel relaxation involves using the

current supposition values to compute new values for all

the hypotheses, and then changing all the values togeth

er. It is more suitable for a parallel digital computar,

and is closer to the behaviour of an analogue system.

Both types of operator were tried for the puppet-finding

task. The parallel one was easier to analyse and needed

less iterations than a serial one working on a round ro-

bin basis, though clever scheduling might :,-Jell im;Jrove

the serial operator significantly. Only the parellel

operator was· used for the final version of the pro~ram,

and it is described below.

_ 3.13: Two components of the relaxation operator

The relaxation operator consists of two componBnts.

One is defined to ensure that the supposition values are

feasible or nearly feasible, and the other Adjusts the~

to achieve • optimali ty. There is a mech2nical analogy,

based on the. hy pers pace mode 1. One component exerts

strong forces on states which are outside the feasible

-82-

polyhedron and moves them t9wards it, ~whilst the other

component is equivalent to a constant weak force in·the

direction defined by the preference vector. r. ~ rlrst., the

component for achieving feasibility will be described and

then ways of combining it with the optirnality
I . component
I

will be discussed.

3.14: Achieving feasibility

The following discussion assumes. that all con-

straints are in the form of inequalities. Equality con-

straints can always be removed by using them to eliminate

a variable, or by ~imply representing the~ as two ine-

quality constraints:

e.g. e+b=n => a+b ~ n and a+b ~ n

One measure of how much a state of the supposition

values violates a particular constraint is: the normal

distance from the corresponding point to the correspond-·

ing hy9erplane if the point is on the infeasible side of

the plane, otherwise 0. Using this measure of violation,

the infeasibility of a state can be defined 2s:

I= L_
J

y vl
l j

where j rC!nges over a.ll the constraint planes, and V} is

the amount by which the state violates the j'th con-

straint.

Clearly, I is zero within the feasible region and

-83-

positive outside it. More significantly, the rate at

which I changes as the violation of a constraint j

changes, is given by:

T can be thought .1.

the hyperspace,

point by the j'th

·V·
J

of as a potential

and Jk,
dVj

is then

constraint p 1 an e.

eneroy
I --

function over

the force exerted at a

The equation above

shows that the force is proportional to the normal dis

tance of the point from the plane. This mechanical analo-

gy allows physical intuitions to be brought to bear on

the design of a relaxation operator for minimizing I.

One parallel relaxation operator for reducing the

i nf ea si bi li ty of a st8t e i nol ve s choosing each new su ppo-

sition value so as to minimize the infeasibility, assum-

ing the old values for all the other suppositions. In

mechanical terms this amounts to choosing the new suppo-

sition value so that the forces due to relevant violated

constraints, assuming that the remaining suppositions

have their old values, are in equilibrium. Unfortunate-

ly, this operator does not necessarily reduce the in-

feasibility. For states in which one supposition has the

new value and the rest have old ones, the infeasibility

is the same or less, but for the state with all the new

values it may be considerably higher, as Figure 3.7

shov1s. The reason is that several different supposition

values may be altered so as to reduce the violation of ·A

particular constraint, and although the alterations

-84-

FIGURE 3·7: Suppose there are two .. constraints:

x + y + z-'1 and X + y + z~1 and the initial state is

(0, 0, 0). Relaxation on any one dimension would

produce one of the feasible states where the plane cuts

an axis. Combining independent relaxation on three

dimensions, however, yields the state (1, 1, 1). By

symmetry, (f::. ,-
3
1

, .!..) is the foot of the perpendicular to
J 3 .

the plane from both (o, o, o) and (1, 1, 1), so the final

state has twice the violation of the initial one.

~eparat8ly reduce infeasi~ility, together they may

overshoot and cause other violations which outweigh the

reduction in the original one.

An alternative method is to find the direction, &t

the current point in the hyperspacb, in which the in-

feasibility decreases fastest and to move a small dis-·

tance in this direction. This is equivalent to changing

the individual supposition values in proportion to their

partial derivatives. In terms of the mechanical analogy,

the forces due to the violated constraints can be

resolved into components parallel to the axes. The resul-

tant of the force lies in the direction of steepest des-

cent and so therefore does a vector whose components are

proportional to the forces along the axes. The magnitude

in the change of each supposition value is determined by

a constant K f :

· t t I s.
L

t
5· l

f. t where Y is the value of (

the value of oi at time t.
d5i

S· l at time t, and (EJ)t is
as~

In the simplest possible case, when only one. con-

straint is being violated, and no other violations are

caused by moving directly towards the constraint plane,

the obvious value for Kf is 1. This has the effect of

exactly satisfying the constraint in one itetation (see

Figure 3.8~. However, if several violated constraints are

involved, or if new violations are caused by the change;

-85-

~ ~. I ~I
o_r
I

0

I

X

FIGURE 3.8: The force due to a single violated constraint

plane, and its coraponen ts in the x and y directions.

Altering each supposition value by an amount equal to its

component of the force wou~d exactly satisfy the constraint.

a smaller value of Kt may be neede~ to minimize the

reduction in the infeasibility. It is hard to co~pute

the optimal value of Kf , part! y because of the intera c-

tions between alter8tions of different supposition

·values, and partly because changes ma1 activate previous

ly s8tisfied constraints. However, the following theorem

shows that for any particular set of constraints there is

some finite value for kj which ensures that the in

feasibility is always decreased by a significant proper-

tion.

Theorem

For any finite set of constraints which allows sose

feasible states there is a finite value for kf sush

that moving a distance l<f dl. from any infeasible point ?
. cL~

in the direction of steepest descent at P, decreases I by
J.

at 1 east 1Kt{ifj ~I here ~ is the distance a long a 1 ine in the

direction of steepest ascent at p.

Proof:

The proof depends on showing that there is a li2it

to the rate at whi eh d J1.L can decrease, so that a suf:f i-'

ciently small step cannot move the state past the point

at which di~L changes sign and the infeasibility starts

increasing again. By definition:

• Q_ ·::: ~V· ~·
· · d L 4- 1 dL

J
-86-

' 1 l. 1 = ~ r VJ
J

\V· cos~· L ; J

)

di -
dL

--- L i Yt e w i t {,
y·a.dieht =m/

"-----' I

I

FIGURE 3.9: Showing how dl}l ~ changes with L The

r

slope ch~~ges by a discrete amount whenever a constraint

pla..YJ.e is crossed. The effect of a move of - -k d. I /J..L
from a state s, is shown. Even if dljdL had its maximum

gradient of m (indicated by the dotted line through S
1

)

the move could not reverse the sign of d!jdL . The

reduction in the infeasibility is the area under the curve

between s, and Sl. This is at least the area of the shaded

triangle.

L

where e.
J is the angle between direction of steepest

descent and the normal to the j'th constraint plane.

Hence:

J For each constraint plane, cos e. is at most one , so a
) .

Neak upper bound on d.:l-YcLLJ.. is therefore m, the number of

constraint planes. This corresponds to the case where the

constraints are all violated and all the corresponding

planes are normal to the direction of steepest ascent.

Generally, the maximim value of d)f;J_ L,!. will be much

smaller than m.

Now suppose K.j =:V.. so that the size of

the direction of steepest descent is ~ ~diL
' dl

ShOV/S that n cannot reverse its sign as a

the move in

• Figure 3.9

result of

such a move. Also, the decrease in I is At least the area

of the shaded t ri cingl e, whi eh is ; /YJ (1 { y.
3.15: The speed of convergence on a feasible state.

Figure 3.10 shows that in some cases the feasible

region may never be reached. However, if the infeasibili-

ty is reduced by at least some constant proportion on

each iteration, it will decay exponentially and can be

reduced to any finite level in a finite nuillber of itera-

tions. The theorem above shows that there is a value for

Kf which ensures that the infeasibility decreases by at

least _}_ 14L) l on each iteration. So provided (~I).{) cl
;. m ld L a .. L

-87-

FIGURE).10: If an infeasible state, S, violates two constraint

planes equally, the resultant force will be towards, V, the

intersection of the planes. Unless Kf is large enough to make

the state feasible ih one move, the same situation, but 0:1 a

s~~ler scale, will occur after each move, and the infeasibility

will never reach zero. The expression for the resultant force

shows that by making e , the angle between the planes,

sufficiently small, the resultant, for any given violation,

c~~ be reduced indefinitely.

where c is some finite constant, the infeaslbilty will

decrease by at least cAh1 on each iteration and so there

will be a lower bound on the rate of exponential decay of

the infeasibilty. Figure 3.10 shows that the constant c

may be made indefinitely small by choqsing opposed con-
i

straint planes which are sufficiently close to parallel.

For any given set of constraints, however, there will be

a most closely opposed pair of planes and these will

presumably set a l6wer bound on c, though I have been un-

able to discover an expression for this bound in terms of

the constraints. (Parallel opposed planes are ir-

revelevant since if there are any feasible states there

can be no infeasible ones which violate both planes). As-

suming there is a lower bound on c it can be combined

with the conservative value of ~ for to give

very conservative lower bound to the speed of convergence

for any qiven set of constraints. I cannot see how to es-

tablish a realistic estimate of the speed other than by

empirical observation. Similarly, a suitable value for

Kj rather than a conservative lower -bound, can be faun::!

by observing the behaviour of the system for any particu-

~lar problem. Small values cause slo~ convergence but

large ones cause oscillations which ~ay be divergent. In

·the puppet program a suitable value ;·1as found empirically

and the same value was used in all the examples, though

it would have been possible to optimize kf at run ti@e

by monitoring the changes in infeasibility and altering

K f appropriately.

-88-

3.16: Achieving optimality.

Using the mechanical analogy, suppose that in 3ddi-

tion to the forces caused by constraint violations, the~e

is a constant weak forcB in the direction of the prefe~-

ence vector. A· simple example
I

I

of 'the behAviour which

results is shown in figure 3. lla. Notice that the system

converges on a point which is near the best vertex and

just outside the feasible region. Adding a force in the

. direction of the preference vector is equivalent to. ad-

ding to each supposition a force proportional to the

preference of the corresponding hypothesis, where the

constant of proportionality kp is 1 if a unit preference

has the same affect as a unit violation of a constraint

plane normal to the axis defined by the su~position.

Increasing t!te value of K p increases the spee:! of

convergence but it also makes the equilibrium point

further from the best vertex. Figure 3.12 shows the ef-

feet of different values of Kp on a particular puppet

problem. A good practical strategy used for the exa~ples

in·. Chapter 2 is to start with a larqe value for k. p

which gives rapid convergence on roughly the right re

gion, and then to lower kp to obtain slovJer conver9ence

on a point closer to the best vertex. For the p u pp et

task, the values to be used for Kp ~tlere determinad in

advance {see section 3.19), rather than being dynamically

controlled at run time.

-89-

i
P.,e_j Ueht. fl

v-edo,

je4·ri.Lle
re9 r on

FIGURE J.11a: Showing how the state moves from S to the

equilibrium state~T~under the combined influence of the·

preferences and the violated constraints.

F-tAJi bLe
r~Jion

P'rfj erehc-e
v-ettdr

FIGURE J.11b: Showing how the speed of convergence is

increased by magnifying the forces due to the preference

vecto~. Notice that the equilibrium state is further from

the best vertex.

!showconversence(O;~) A

!-'

c:3 C~3 B:l. D:l. D2 A1
A1 B :l B2 C1 ("'':> C3 D:l. D2 I(3 D:·:~ B2 C3 c~:~ Cl Bi o~

0 0 0 0 () () 0 () () 0 () () 0 0 0
43 !::"'") 47 34 34 ~) :i. -vr·· :·:)!~j 46 60 l>O ? •I 46 46 56 ,J A"., .~.;) (J .1.

87 79 64 33 33 77 ~)!:.:; :3!:) f..; f..; (') ,
\:) (:) B6 <y() 49 49 94

99 87 64 26 2,s 89 27 '") """} ._._I 02 99 9:1. <.:>9 41 41 99
99 86 66 23 '")" ...

..:.. ... :) 90 24 24 B!:i 99 <;>:3 99 :38 :3B 99
99 86 66 22 22 <y :1. 2:3 2~~ 86 99 (")'"1.

.~ ,,} 99 37 37 S)9
99 86 67 '") '") 22 9:1. 23 '') •·v B6 9<? <:>-:' 91? 37 37 9<7\ .,.._.A- .. · ~ .I,;) .. ~

99 86 67 22 22 <;> :1. 23 2::) 86 9<)> 93 99 ~)7 37 99
99 86 J }

t.> I
,.) '")
A-..,.~_

'") '") .-:..,:.. 9:1. 2:':) 2:'3 86 7''? <)>4 99 37 37 99
99 86 6' ... / 22 22 9:1. ::.~:·5 '")

olo~. -~ B6 99 <)>4 <)>9 37 37 99
99 86 67 ,.) '") 22 <j :1. 23 '") B6 99 ('){.I. 91)> :37 ·--z·-) 99 ,:_...:._ -.· .. ,:) .> ., 'o.J!

99 86 67 22 '"> '') .A·- ... :. ?:I. '') ").' .,.._ ... } '") ,.__,:) B6 99 94 9<_;.> :37 37 99

FIGURE J.12a: Each row of numbers shows the supposition

values (X 100) for the part and joint hypotheses for the

picture in figure 3 ./a. The ·values are printed on every

tenth iteration, except for the final row which is the

equilibrium state found by continuing for 250~iterations.

The headings indicate the identity of the hypotheses.

Joints have a double heading giving the names of the two

related parts. For formattL"lg reasons, only the integer

parts of the numbers are shown and 100 is printed as 99.

The values of the coefficients were: K p = 0·4-
kf : 0·3 The remaining coefficients (see below) were

both zero.

!showconver~ence(0.2);

C3 C3 B1 D1 D2 A1
A1 B1 B2 Cl C2 C3 D1 D2 D3 D3 B2 C3 C2 Cl B1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 26 23 18 18 27 18 18 23 30 30 30 23 23 28
48 52 50 33 33 50 34 34 46 54 56 56 40 40 54
68 64 56 30 30 62 31 31 56 66 67 69 38 38 72
80 72 56 26 26 69 27 27 64 74 69 77 34 34 82
87 77 53 22 22 75 23 23 72 81 68 183 30 30 88
93 82 49 19 19 82 20 20 79 88 64 88 27 27 94
98 88 44 16 16 88 16 16 85 94 60 94 24 24 99
99 91 40 13 13 93 13 13 91 99 55 99 21 21 99
99 92 37 11 11 94 12 12 92 99 52 99 19 19 99
99 92 36 11 11 95 11 11 93 99 50 99 18 18 99

99 92 35 11 11 95 11 11 93 99 49 99 18 18 99

FIGURE J.12b: As in figure 3.12a, but with the value of Kp

halved. Notice that the number of iterations required to ·

approximately reach the final state is doubled, but that

the equilibrium state is half as f~ from the optimal

·integer vertex.

C3 C3 B:l. D:l. D2 t-1:!.
A:l Bl

0 0
B2 C :1. C~,:.~ c:·5 D1 D2 D3 D3 B2 C3 C2 Cl- Bl

0 0 0 0 0 0 0 0 0
9 9 1:1. 15 15 15 11 :1.1 14

19 19. 25 .28 28 28 21 21 27
29 29 40 29 29 38 41 41 41 31 31 40

0
10 :1.3 11
24 26 2~5
~37 ~:59 3B

() () 0
<_-; :1.3 9

19 :1.9 26

50 51 50 31 31 49 :·:) :1. 3 :1. 4 ~) ~7j ()

59 57 53 28 28 55 29.29 51 56 ~)B ~j<;.>

6~5 60 52
68 63 !:5:1.

26 26 59 26 26 56 61 59 63

73.68 4?

24 24 62 24 24 60 65
22 22 65 22 22 63 68
20 20 68 21 2:1. 67 71

~::;9 66
!5'7 6B
!=s ~:=_; :r :t

32 32 6:1.
:~o 30 66
2B 2B 69
26 26 7:1.
::.~4 24 74

76 71 45 19 :1.9 71 19 :1.9 ?0 74 52 74 23 23 77

99 <?6 :i. 7 I::' ? 99

FIGURE J.12c: Halving Kp to 0.1 again halves the distance of

the equilibrium state from the optL~al vertex, but doubles the

time to reach equilibrium.

3.17: A method of increasing the convergence speed

~'Jhen l< p is sma 11 and the best vert ex is only

slightly better than some other one, the supposition

values tend to change Very slowly. Figure 3 •. 11a shows an

abstract example in two dimensions and Figure 3~12c 5hows

a rSal puppet example. The reason for the slowness is

that the preference vector is almost normal to the direc-

tion in which the state needs to move if its to improve

without increasing its infeasibility. Under such cir-

cumstances the state moves in small steps in a roughly

constant direction. If the steps are m~de to depend not

only on the currently active forces, but also on the pre-

vious step, it is possible to make them increase steadily

in size when the supposition values are ooving in a con-·

stant direction. So the formula used to determine the

=

\'1 here .p_ i s the p re f e re n c e v e c tor , V i s the res u 1 tan t o f

all the_ violations,- and Mt is the previous move ..

The effect of the term containing Ht is to give the

system a simple kind of memory so that each move depends

on the history of previous moves. The forces exerted on

the state at time t contribute to each subsequent move at

time t+n , but by an exponentially

k; (assuming kd <1). When k, :r

decaying· factor of

is small and kd-;f the

~ystem behaves as if the state has inertia, so that once

-90-

it has be en made to ~ov e it can onlj be sto pp·ed by o pp o

site forces. This leads to o se i.lla ti on s \•Jhich m!3y be

divergent for kJ.,) J but \vhich are damped for k{L <I • · A

value of 0.8 was found to significantly reduce the number

of iterations required in examoles of the ouooet problem , I , • ,

without causing other problems. Indeed, the introduction

of kJ may actually reduce oscillations caused by a high

value of k f as figure 3.13 shows.

3.18: The method of selecting the final set of hypotheses

When the system is nearing its equilibrium point,

the supposition values will generally be near 1 or 0 if

the optimal vertex is integer and kp is sm~ll enough

for the equilibrium point to be near it. One might use a

simple threshold of 0.8, say, and choose the hypotheses

with a higher supposition value as the best set. However,

there is no guarantee that -the set will be c6nsistent,

since one of the high values may only be allowed if

several of the low values are not zero. For example the

constraint A ~ B+C+D+E is satisfied by A=O.B and

- B=C=D=E=0.2. An alternative to thresholding is to intra-

duce small extra forc~s which pull high values towards 1

and lo\·1 values to\'tards 0. If the equilibrium point is

near an integer vertex, then small extra forces will

cause telaxation to actually achieve an integer state

and, provided the extra forces are too weak to cause a

significant constraint violation, the final state will be

-91-

A:l. B:l. B2 Cl
99 9\1) :1.? 6
9? 96 :1.7 ~5

99 <;.>6 :1.7 5
99 9c'> :1.1' !:"i
9<J 96 :1.7 5

99 96 :1.7 5
9<J 96 :1.7 5
99 'J6 1?
9<J 96 :1. :1-'
9<;> <J6 :1.7
99 ~J6 :1.7

a::
•• J

C3 C3 B:J. Dl D2 A1
C2 C3 D:l. D2 D3 D3 B2 C3 C2 Cl B1

6 97 6 6 96 99 24 99 8 8 99
5 97 5 5 96 99 24 99 9 9 99
5 97 6 6 96 99 24 99 9 9 99
5 97 5 5 96 99 24 99 9 9 99
5 97 5 5 96 99 24 99 9 9 99
5 9"?
5 97
~5 (_:}/'
:_:=j 97
~) 97
!:5 S'7

6 6 96 99 24 99 9
5 5 96 99 24 99 9
6 6 96 99 24 99 9
5 5 96 99 24 99 9
5 5 96 99 24 99 9
~.) 5 96 _<;>r; 24 99 9

9 99
9 99
9 99
9 99
9 99
9 99

FIGURE 3·13a: A stable state in which the large value of

0.7 for Kf does not cause problems because Ka also is large

(0.8) and therefore smoothes out rapid oscillations.

Kp = 0.1 as in figure J.1Jc.

C3 C3 Bl Dl D2 A1
A1 B1 B2 Cl C2 C3 D1 D2 D3 D3 B2 C3 C2 Ct B1
9? <J6 :1.?
99 <)>6 :1.7
<;.>9 ?6 :1.)'
9<;.> 96 :1. .7
9? 96 :I.?
99 9·7 1B
99 9~.i :1.7

1::"
,J

6
4
7

5 97 5 5 96 99 24 99 9 9 99
5 97 5 5 96 99 24 99 9 9 99
5 97 5 5 ?6 99 24 99 9 9 99
6 97 6 6 96 99 24 99 8 8 99
4 97 4 4 96 99 24 99 10 10 99
7 ?8 8 8 97 99 24 99 6 6 99
2 94 2 2 94 99 25 99 13 13 99

99 98 :1.8 12 12 99 :1.2 12 ?9 98 24 97 0 0 99
89 2 2 89 99 25 99 6 6 99
99 6 6 9? 91 "22 88 5 5 98

99 (7:1. :1.5 2 2
99 9<J 22 6 6
99 BB 1:1. :1. :1.
99 9<J 2B :1. :1. :1. :1.
99 B5 :1.4 ~5 :3

?4 1 :1. ?4 98 29 95 1? 12 99
97 :1.1 11 ?8 ?9 :1.8 95 0 0 96
89 2 2 90 99 25 99 7 7 99

99 99 25 6 6 99 6 6 99 92 2:1. 82 0 6 92
94 99 28 89 13 13 99
99 98 20 ?4 0 0 94

9? 87 12 1 :1. 94 1 1
9? 99 28 :1.3 :1.3 96 13 13

FIGURE 3·13b: When Kd is reduced to 0 oscillations start

because of the large Kf •

consistent. The last minute flips from low to high (or

vice versa) which cause problems for thresholding are

precipitated by forcing the other values to 1 or 0. The

magnitude of the extra force on a supposition value, si
is determined by the coefficient k h in the expression:

Extra jtJr-ce := I k~. (Si- O·f)}

3.19: The final form of the relaxation operator

the

5_t t I

'

When all the above modifications are incorporated,

expression used to compute a new supposition value

is:

s/+l == S/ + kf (Kp-fi + (~ V)Cosej) + 1<~-, (sf-0·5~
+ Kc:~. (s/- s/-)

where is the f/th supposition value at time t, fi

is the preference for the i/th hypothesis, Vj is the

violation of the j'th constraint, and cos8j~ is the angle

between the normal to the j'th constraint plane and the

axis defined by the i'th supposition value Cthe angle is

90 degrees for the constraints not involving the supposi-

tion value).

If the nev.,r value for Si is out si de the rAnge 0 to

it is rounded up or dO'lln accordingly.

For the examples in Chapter2, 50 iterations were

used with the values of the coefficients set as shown:

-92-

K p Kd K
f Kh Iterations

0.4 0.5 0.3 0 10

0.2 0.5 0.3 0 10

0 .. 1 0.8 0.3 0 -- 10

o. 1 0.8 0.3 0. I 20

Appendix 4 shows, for the examples in Chapter 2 how the

supposition values of the hypotheses changed during re-

laxation.

-93-

Chapter 4

THEORETICAL ANALYSES OF RELAXATION, AND SOME
i

POSSIBLE EXTENSIONS.

This chapter starts by analysing what is happening

during relax~tion. Comparisons are made with search

methods in which partial solutions are formulated expli-

citly, and there is a discussion of how the time taken by

relaxation depends on the number of hypotheses. However,

the "technical" problems of Bchieving rapid convergence

on a state sufficiently close to the optimum, and of re-

moving non-integer optima have not been fully investiqat-

ed. The fAct that the puppet program works is A start,

but more theoretical analysis is required. This may prove

fruitful because the linear programming formulation not

only makes the relaxation operator easy to understand but

also facilitates analysis of the effects of modifyin~ the

basic operator.

L~ter sections discuss. ways in which relax8tion

needs to be extended to be arplicable to more co~plex

rroblems. A recurring theme is the n8ed to integrate the

process of creating hypotheses with the process of

selecting hetJeen them. A major weakness of simple L.P.

relaxation is its separation of these t~o processes into

distinct phases so that the selection performed by relax-

-94-

ation is unable to guide hypothesis creation. The

development of an integrated system for an extended ver

sion of the puppet task is discussed towards the end of

the chapter.

4.1: The avoidance of Explicit Enumeration

The number of feasible combinations of hypot~eses

is, generally, an exponential function of the number of

hypotheses, so that, for large problems, exhaustive ex

plicit enumeration is out of the question. The use of

·continuous supposition values allows intermediate states,

which can be thought of as normalised linear combinations

of many different integer stAtes, and when an intermedi

Rte state is modified the system is typically movin~ to

\·lards a very large number of integer st2tes and away fro:n

many others. Thus, particular combinations of hypotheses

qre dealt with implicitly, which gives a potentially ex

ponential saving in space or time.

4.2: Decomposition into Interacting Sub-Systems

Perhaps the most ·attractive feature of L.P. relaxa

tion is the way in which it is naturally suited to

parallel hardware. Each supposition value and each con

straint cAn be given its own processor thus achieving a

1 iner=tr but large saving in speed over a serir:Il system. Of

course., there are still problems about ho':l to set up the

configur8tion of processors and the interconnections

-95-

needed for a specific task, but the way in which the

processes should interact once they have been set up is

clearly specified by L.P. relaxation. The space required

is only a linear function of the number of hypotheses and

constraints because explicit enumeration of combinations

of hypotheses is avoided. By contrast implementing a

breadth-first search on parallel hard~,Ialre,. is • 1
Sl:Tip y

way of trading a combinatorial explosion iri time for one

in spAce.

It is interesting to try to analyse the wh6le syste@

in terms of sets of hypotheses which have dense internal

conn e et ions but whi eh are relatively sparsely connected

with one another. In an extreme case, for example, there

might be two independent sets, and given parallel

harcbu=!re, the tioe to reach equilibrium t•Jould then be the

longer of the times for each set separately. Notice that

for a serial depth-first or breadth-first search the co2-

bined time. is the product of the separate times. Of

c ours e A se r i a 1 s ear c h c o u 1 d be modi f i e d so t ha t i t f i r s t

checked whether there were two independent sets, and if

so performed two separate searchese If, however, the sets

Rre largely but not completely inde.pendent, there is no

simple way of using the near-i0dependence in a conven-

tionAl search. An interesting simple. case is when two

subsystems are linked by constraints that allow a eo~-

bined optimum which is simply the combination of the op-

tima for the separate subsystems. If the linking con-

straints rule out combinations of independently feasible,

-96-

near-optimal states of the subsystems, then the whole

system may converge faster then either subsystem alone.

Figure 4.1 shows an example of this effect.

There is a way of viewing the interactions between

subsystems which helps to clarifyl the relationship

between L.P. relaxation and a technique known as dynamic

programming (see Pierre 1969 for an exposition). In L.P.

relaxation, each subsystem can be seen as optimising its

own internal state, subject to the boundary conditions

imposed by those other supposition values v1hich a ro ... "

linked t~ the subsystem by constraints. A subsystem ex-

erts pressure on its current boundary conditions tending

to change them so as to allow a higher optimum for the

subsystem. In dynamic programming, a table or function .is

created for-~ subsytem, which gives its aptimum internal

state for each possible combination of boundary condi-

tions. This is the only information about the subsystem

which is of relevance to the determination pf the global

optimum. Dynamic programming works by expanding the sub-

system (incorporating new hypotheses), and simultaneously

modifyin.:J the CJssociated -.table or function. ~-I hen the

subsystem has engulfed all the hypo the s e s , there •t~i ll

only be the null· boundary condition, and its associated

optimal state will be the solution. Dynamic programming

is pElrticularly effective if subsystems have simple ~oun-

dary conditions, for then the tables or functions are

simple. In a puppet task, a subsystem containing 8bout

half the hypotheses will, typically, ·be linked by con-

-97-

! r- C::·~ 1 a >~ (~j 0 v ~)) ~ ! r· e 1 a~·~ < 50 !I !5) y

A B c D E F
() () () 0 0 0

50 22 () 24 "'"> . ..:.. ,;..•_ ()

89 ~:~4 :1. 49. 4~3 0
99 2!:5 7 61 54 0
99 23 6 63 ~j3 0
99 22 5 64 !:.) :1. 0
99 20 4 65 50 ()
QC\ ,)! :1. <J 3 66 4<J ()

99 :1.8 :L 68 48 0
OQ j7 () 69 46 () 7' .. '
~v\9 :1. !5 0 70 4':.-- ,.} ()

FIGURE 4.1a: Showing the speed of convergence for two

independent sets of hypotheses {A,B,cJ and {n,E,Ff .
Fifty iterations are shown with printing every fifth iteration.

The constraints are A 1\ B 1\ C and D 1\ .E 1\ F. In nuinerical form

these are SA + S8 -1~ Se and SD + SE ~1 ~SF • The

preferences for the set {A,B,c} are (2, 0.9, -1) so the best

feasible state is (1, O, 0) with (1, 1, 1) a close second. For

{n,E.,Fj the preferences are (1, 0.9, -2) g1ving an optimum.of

(1, 0, 0) with (0, 1, 0) a close second.

! r t"-? 1 a>~ (50 ~· !:_:j) y

A B f' ..• D E F
0 0 () 0 () 0

4:1. 22 () ~5:3 '/'")
A· •• • •,:, 0

71::" ·-· 4:1. 0 ?0 4:.3 ()

86 ::57 '") . ..: .. BO 3B ()

94 ~:)0 ~3 BB ~5 :1. 0
99 2~5 :3 9~j 24 0
99 :1.9 :1. 9B :1.9 ()

9<J :l.l:· 0 <)<)> :1.6 0
99 :1. ~::; 0 fjHJ :1. ~:; 0
99 :l.~j () <j><;,> :1. ~:.i 0
9<1 :1. ~:) 0 <:)(;)

·' /
:1. ~~i 0

FIGURE 4e-1 b: Showing the faster convergence when there are

linking constraints: 5A := Sn , 58 ::: 5 f Se.::. 5F •
The best feasible state is then much better than its nearest

rival.

straints to many others. The boundary conditions are all

the feasible combinations of truth values of these other

hypotheses, which may be a large number. Relaxation

avoids this explosion by avoiding explicit enumeration of

the possible boundary conditions of a subsystem.
I

4.3: The Time Taken to Reach_ Equilibrium

An important factor in determining whether L.P. re-

laxation is a good search me.thod is the number of itera-

tions required to reach the equilibrium state. The puppet

examples have few enough hypotheses for serial se3rch

techniques to be relatively quick, but as the number of

hypotheses increases, the. time required for these me:.ho.ds

increases exponentially. By contrast, it will be shown

that the· time required for relaxation, using par2llel

hard•.1are, is independent of the number· of hypotheses,.

given certAin reasonable assumptions.

The puppet examples (appendix 4) show that much of

the time required to reach equilibrium is spent in cree~-

ing towards the optimum state and away froo a very dif-

ferent integer state with a slightly lower score. The

reason progress is so slow is that the state is movi~]

parallel to an edge which is almost normal to the prefer-

ence vector, so that the componenent of the preference

vector in the direction of motion is very small (see fig-

ur e 3. 11 a).

As A first step to analysing how the time depenjs on

-98-

I

the number of hypotheses, it will be shown that the time

is related to the rate of travel along the ridge which is

most nearly normal to the preference vector. Let us call

the direction of the _preference vector "vertical". The

optimal feasible stat~·then corresponds to the highest
I

vertex Cthe peak). The relaxation process can be divided

into two stages. First, the state is made roughly feasi

ble, and then it moves to a point near the peak, either

by going through the interior of the polyhedron or by

staying just outside it and movinq roughly parallel to

its surface. The first stage, achieving near-feasibility,

may not be necessary, and _even if it is, it is generally

relatively quick compared with the second stage. So only

the time for the second stage will be considered. The

problem, therefore, is to find the time taken to travel

in the local direction of steepest Ascent from an arbi-

trary point within or nearly within the polyhedron, to a

point near the peak, given that the rate of travel

depends on the cosine of the angle with the vertical. The

problem is made more tractable if the starting point is

a pp r ox i m a t e d by the n ear e s t po i n t , S , w hi c h i s act u a.ll y

on or within the polyhedron, and the equilibrium point is

a (:proxima ted by B, the peak. If there are n hypotheses,

the distance between S and 8 cannot exceed lh since the

feasible polyhedron lies within a unit hypercube whose

longest diagonal has length lh. So., if the shallowest

ridge <the most nearly horizontal one) connects S to B

t he t i me t a k en i s at m os t Jn/y- , "''here r i s t he rat e o f

travel along the shallowest ridge. If S and B are not

-99-

connected by this ridge, th~n the point representing the

current state \-.Ji 11 travel at 2n ang 1 e closer to the vert-

ical and will therefore travel faster, but it may also

have to travel much further, since it may follow a zig-

zag path. It can be shown, however, that the time taken
I

cannot exceed _i m
2 y-

Theorem

Let a particular direction in an n-dioensional ·space

be called "vertical·"· Let B be the "highest" point on a

convex polyhedron enclosed within a unit hypercube, and

1 et S be any point on or within the polyhedron. Follo\·1-

ing the path of locally steepest ascent, the time taken

to +-r~·vel from .. S ..I...LO 8 1· no..!... mor ""han 3 ..,. <.A Id _ 5 l. il C L. t ' 2

is the ~ngle between the shallowest ridge of the po-

lyhedron and the vertical, and the rate of travel in a

direction which makes an angle of e ~·li th the vertic3l is

1< c. os. e .

Proof

Rather th~n considering the distance travelled and

the rate of travel, it is easier to consider the differ

ence in the heights, hs , hp, of S and 8 3nd the rate at

vJ hi c h t h i s d i f f e re n c e i s r ed u c e d • For a d i re c t ion iT! a k i n:;;

1 e ·th th ..~.... ~1 the r.~-re of travel is 8n ang e Wl e vert..lc~ , Q~

k. cos e , so the rate at which the heiqht increases is

given by: dh - k cos,}. e - .
dt -100-

The difference in height between S and B can be divided

into two parts by Jsing a height he such that:

The total time,~ 8 , to rise from h5 t~ h9 is the time fsc
taken to rise to he. plus the time tc 8 to rise from there

to h8•

The reason for using he to divide up the height in

terval is to enable different types of argument to be

used about the maximum values of the component times tsc.

Bnd tee. A maximum time for tee , the last part of the

journey, can be determined from the slope of the shal-

lowest ridge in the polyhedron of feasible states (see

belo\·I). By contrast, a stronger upper limit can be set

on the first part of the journey, by relating the

minimum rate of gain of height to the dist3nce below the

peak. This limit is only stronger if the height differ

ence is at least [;:;cos?' hence the definition of he. •

The minimum value for d)ft occurs when trave:lli ng

along the shallowest ridge, and is given by:

mi n (~;) =

Hehce: tc 8 ~

t{. 8 ~

, ' tc 8 ~

k). I

CO) f

J,B -h (..
k c.os:;.cf

Jh C0_5 cP.
K C05).f

Jh
K eo~ f:>
-101-

An upper bound on the time taken to rise from h s to ~ c

can be found by~ using the fact that, for a convex po-

lyhedron the direction of steepest ascent at a point must

always be at least as steep as the direct line fro~ the

point to the peak. Since the point ca~not be further than

In from the peak the direct line has a cosine v1ith the

vertical of at least (h 8 -J,VJh . So:

. .

t ~(, < h h.

;>. k (t1o- J,c))_k (hp- 11 5)

Since the .term h/~k(l1 8 -h>) · is positive, it can be

_omitted, and by definition:

I I = r,: {05 ~ ns- Y1c vVl r

J }(CD) </J

So comb in in g t s c and t c 8 , the tot a 1 t i m e f s B i s bound e d

by: t < }_ Jh .
5 g ' 1. k Cos tj .

-102-

A simple example will now be used to illustrate the ap

plication of the~above expression, and then the expres

sion will be used to illuminate more complex cases. Sup-.

pose there are two identical sets of hypotheses with no

inteconnecting constraints. Given para~lel hardware, the

time taken to reach equilibrium is the same for the two

sets as for either set alone. Comparing the expression

for the two sets with ~hat for a single set, ~os 1 stays

the same because the gains in height and the distances

trave.ll ed both increase by a fa et or of fi . The term Jh'

increases by a fa c tor 5, but t hi s i s o f f set by a si m i 1 a r

increase in K due to.the greater magnitude of the com

bined preference vector. The larger preference vector

does not drag the equilibrium supposition values further

from the values at the best vertex, because it is opposed

by twice as many constraints, each of which is less ef

fective by a factor of Jf because the corresponding ~lane

makes a smAller angle with the preference vector.

Now, consider what happens to the time taken to

reach equilibrium when the number of hypotheses is in-

_creased by a factor of f, but the magnitudes of the indi

vidual preferences and the number of constraints per hy

pothesis remain the same. Even if the hypotheses c3nnot

be split into disconnected sets, the same reasoning as

above can be applied, so cos~ will remain roughly the

same,. whereas /hand J< will both increese by a factor of

Jf· The time therefore, will be unaffected.

-103-

4.4: Introducing non-linearity.

If there are two equally good interpretations, the

ridge joining.the corresponding points in hyperspace will

be horizontal (assuming the direction of the preference
I

vector is taken as vertical). So the system will not

reach either vertex. This is clearly unsatisfactory.

Human perception of pictures like the Necker cube sug

gests that it would be better to somehow select ·one in-

terpretation arbitrarily. This can be done using the

coefficient I<J, <section 3.18).

The effect of a non-zero value for kh is to change

the forces acting at each point in the hyperspace. As

well as the forces due to the preference vector and any

violated constraint planes, an extra force is added,

whose magnitude and direction differs at different

places. Near a corner. of the unit hypercube (i.e. an in-

teger vertex>, the extra force is at its greatest and

points towards the corner. At the centre of the unit hy-

percube the force is zero. In fact, the force is radi

cally symmetrical, and its magnitude at a point is pro

portional to the distance of the point from the centre of

the unit hypercube.

One way of thinking about the effect of k h is in

terms of a non- uniform force field like that shown in

fiqure 4.2b. Alternatively, provided kh is small, a· to

pological transformation c~n be applied which makes the

force field uniform at the expense of bending and non-

-104-

D

~-

0
.!.
,).

·FIGURE 4.2a: Showing two equal

rivals, and the additional forces

caused by K h .•

FIGURE 4.2c: Showing the

effect of a topological

transformation designed to

make the force field uniform.

FIGURE 4.2b: Showing

the force field obtained

by combining the

preference vector and the

extra forces.

0

FIGURE 4.2d: Showing a

non-integer optimu~

vertex and the effect

of Kh.

uniformly compressing the constraint planes and Axes, as

in figure 4.2c. Th1.s representation h8s the disadvantage

that the forces due to violated constraints need not act

normally to the constraint planes. This means that in-

tuitions about the speed at which the ~tate moves can be
I

misleading, though it can never make the state move

downhill along a constraint plane (taking the force vec-

tor to be vertical).

Using the representation in which K~ distorts the

constraint planes, but leaves a uniform force field, it

is clear that the two equal rivals have become.local op-

tima. It is also clear that a sufficiently high value

for k~ can turn a globally optimal non-integer vertex

into a very local optimum, as in figure 4.2d.

Although kh has been used to speed up the puppe-t

program, its effects have not been rigorously analysei.

This needs doing because of its apparent helpfulness wit~

the important problems. of equal rivals, speed, and non-

integer optima. The representation in t. 1 k wn1cn /,... C3US es

non-linear, curved constraint planes may be helpful for

further analysis, though its value has not yet bee~

demonstrated.

4.5: The Need for Intermediate Level Hypotheses.

An important and valid criticism of the puppet pro-

aram is that it lacks explicit representations of sig~i-

-105-

ficant groups of par~s such as complete arms or legs, or

even whole puppets. This lack is a characteristic feature

of "holistic" systems (e.g. ce.llular automata) in which

global patterns emerge on the basis of local interac

tions. Its advantage is that it avoids the potentially
I

explosive number of combinations of local hypotheses. Its

disadvantage is that it is generally impossible to ex-

press all the required characteristics of the global op-

timum in terms of preferences and constraints on low lev-

el constituents. The puppet task was chosen precisely be-

cause much of our knowledge of the human form is reduci-

ble to knowledge of the relationships between its rigid

parts, but even here, there may be irreducible aspects •.

Suppose, for example, that good puppet instantiations

should have both a~ms the same length, but that the corn-

parative sizes of the corresponding parts of the two arms

·are irnrnaterial. A preference for equal arm lengths can

be incorporated into· the puppet program by creating ex-

plicit hypotheses for pairs of arms. Alternatively,

pairs of hypotheses for single arms of different lengths

could have their suppositions linked by weak incompata-

·_ bility constraints (see section 4.6). Either way, an ex-

plicit hypothesis of at least the complexity of an arm is

required for the expression of knowlege about ar~

lengths.

The kind of relaxation used in the purpet program,

is quite capable of handling hierafchially structured hy-

potheses, provided the logical constraints are specified ..

-106-

In this y-espect it diff::?rs from the intrinsically 11flat 11

relaxation techniques described in sections 5.1 and 5.4.

These methods are restricted to tasks in which the prob

lem is to decide which labels (interpretations) to assign

to various entities (picture structures). However,

although L.P. relaxation
I
i

can handle many levels of hy-

potheses simultaneously, it could prove extremely expen-

sive to create all hypotheses at .all levels before doing

any selection, and it would contradict a major aim of re-

laxation, which is to avoid explicit enumeration. What is

needed is a way of using the initial results of relaxa-

tion to guide the creation of plausible higher level hy-

potheses, so that explicit nodes are not created for corn-

binations of local hypotheses unless they fit in well

globally. As mentioned above, the use of relaxation to

guide hypothesis creation is discussed later, though not

in the context of hierarchically structured hypotheses.

4.6: Weak rules

So far, the only constraints used have been ones

which must be satisfied in any allowable global interpre-
•

tation. This requirement seems too strict to capture the

f 1 exi bi 1 i ty of human percept ion. People are ea pabl e of

violAtinq normal constrRints if by doing so they can

achieve a much better global interpretation. If a puppet

has three well-connected,· perfect legs for example,

that's how people will see it. Similarly, in interpreting

-107-

some lines as capital letters, people will drop the usual

perceptunl assumption that one line can depict only one

letter stroke, if they can thereby arrive at a-more sen-

sible interpretation. Ideally, an .f-. • .L.. •

op~lmiZaLlon sys~em

should allow a trade-off between preferences for

potheses i' and violations of weak rules in arriving at

optimum interpretation.

hv-·:J

One way of attempting to ~mp lement such a trade-off

is to make the constraints co.rresponding to breakable

rules have a much weaker effect on the relaxation opera-

tor. If the forces due to violated weak constrAints

of roughly the same magnitude as the forces due to the

preferences, then the equilibrium position may well in-

valve some weak constraints being significantly violated

as a result of the pull in the direction of the prefer-

ence vector. The disadvantaqe of this approach is the.t

the forces due to a constraint violation are proportional

to the magnitude of the violation, whereas the preference

forces are constant. As a result, the system will tend to

settle down at an intermediate state where some weak con-

straints are being violated a bit, but not too much.

a state is senseless if the weak rules are of the type

that either hold or are broken. Suppose, for exa~ple,

there is a weak rule that a pup~et has only two legs.

Given a picture in which there is a candidate for a third

leg, the best interpretation should either included it or

leave it out. It should not contain the third leg to a

certain extent, at the cost of violating the ttJec:~k. con-

-108-

straint n little.

There is a simple way of incorporating breakable

rules which does not run into the above di-fficulties.

Whenever a weak rule gives rise to a constraint, an extra
I

hypothesis is created to represent the possibility that

the rule is broken. The hypothesis is given an associated

cost depending on the strength of the rule, and insteed

of the obvious constraint, a mbre complex one • 'l •
lnVO..!.Vlng

the extra hypothesis is created. Suppose, for exa.:-:tple, ·

that a weak rule implies the constraint fv~. An extra

hypothesis e (equ i v al en t to p" Z[) is made together ~-:i th

the strong constraint f v1 v € • So it is possible to

break the rule and have neither p nor q~ but only by pey-

ing the cost associated with e. An impleoented exe~~le

in which weak inference rules are handled in this w~y is

described in chapter 7.

4.7: Using relaxation to guide hypothesis creation

The puppet-finding program described in ch~pter 3 is

~unrealistically simple as a model of how people percieve

the pup p e t pi c t u res • One de f i c i en cy of t h e t E: s k i s t ~ e t

the number of po~ential part and joint hypotheses is

small enough to allow all the hypotheses to be created

before relaxation commences. If the definition of 0 s~-

tisfactory part or joint is extended to ellow pcor 1n-

stances (see figure 4.3), then the nu~ber of • . . l po-c e:; :: e .l..

hypotheses becomes much larger, so it beco~es impoyt~~t

-109-

FIGURE 4.}:_ Peopl.e see this as a puppet even though the knee

and shoulder joints are poor, and the head and trunk have the

~Tong proportions. The program needs extending to handle such

locally poor joints and parts.

to avoid ever formulating many of the possible hy-

potheses.

This section describes how relaxation and hy-

potheses creation can be integrated so that the globally
I

best interpretation is achieved without formulating many

of the possible hypotheses. No program has been written

for this extended version of the puppet task~ so there

may be unforeseen snags in thi method proposed.

4.7.1: The extended puppet-finding task

For human perception, there seem to be many dif-

ferent degrees of acceptability of parts and joints~ but

for s i m p 1 i c i t y on l y three c a t ego r i e s v1 i 11 be cons i de red :

perfectly acceptable, poor,
1
and unacceptable. Precise de-

finitions of what constitutes a poor part or joint have

not been formulated. They should, however, present no

problem as they can be of the same form as the d~finition

of good parts and joints, but with less restrictive re-

quirements on the proportions and overlaps.

For reasons which will become apparent later, it is

desirable to use only negative scores for hypotheses.

Clearly, an interpretation is worse if it has poor p3rts

or joints rather than good ones, but worse still if sooe

parts or joints are missing altogether. A simple, though

somewhat ad hoc, method of scoring global interpretations

is as follows:

-110-

1. For each poor joint or poor part score -1.

2. For each missing slot filler in a part hypothesis

score -1.

3. Since all the scores are .L. .I
nega~.,lJve, it is n ece ssa ry

to prevent a global interpretation in which there are

no hypotheses at all. This can be done by forcing the

program to have a single, obligatory puppet-instance

with slots for each part~ and imposing penalties on

unfilled slots. These penalties need to be large

enough to force the slots in the puppet-instance to be

filled by rather poor, largely disconnected, parts

where necessary, but not so large as to encourage fil-

ling by entirely unsupported part hypothes$s.

4.7.2: Generators

There is a simple trick which allows relaxation to

be started before all possible joints·and parts have been

found. As well as the normal pArt and joint hypotheses,

slot fillers of a new type called generators are • .L.
1n~ro-

duced. These have the property that if relaxation Qa~es

their supposition values high, they 3re 11 !'"Un 11 and re-

placed by the part or joint ~ypotheses whic~ are

discovert?d. Generators cnn be thouqht of 85 representin·;:

sets of potenti,ql hypotheses which hsve not yet bee:1

plicitly created.

-111-

If all the good joints ·and parts are found before

doing any relaxation, then all of the hypotheses in the

set represented by a generator will be poor ones and will

have an associated cost. So the generator can itself be

given a cost equal to that of the best hypotheses that
I

might be in its set. If the relaxation process gives a

high supposition value to a generator, this means that it

is worth searching for the hypotheses which it implicitly

represents. If, however, relaxation rejects the genera-

tor, then there is no point in running it since any hy-

potheses so produced \•Iould also be rejected.

Figure 4.4 shows a simple case in which relaxation

applied to the initial set of good hypotheses could guide

the search for poorly connected parts without jeopardis-

ing the guarantee of finding the best puppet instantia-

tior. Those poor joints which were never ~xplicitly for-

mulated could not be relevant, since they could not be

better than· their generator which was rejected by relaxa~

tion. The guarantee of optimBlity stems from the fact

that expanding a generator can never improve the .state

reached by relaxation. It may, of course, make the state·

worse, since running the generator may produce no hy-

potheses at all, so that some other, more costly, slot

filler would have to be used instead of the generator.

The simple type of generator described above could

be el2borated to cope with ~any different degrees of ac-

ceptability of slot fillers. Initi~lly, a generator with

-112-

FIGURE 4.4: A puppet with some poor joints. If generators

are used to control the search for poor parts, no search will

be made for A because the generator will be suppressed by the

interpretation of B. There would, however, be a search for C.

Similarly, the initial candidate interpretation of E as foot

and D as calf would be suppressed by competition, and so the

generator far a related thigh would not be run.

a low cost equal to the best of ~he po~ential hypotheses

would be used. If relaxation gave this generator a high

supposition value,·a search would be performed for the

fairly good hypotheses and the original generator would

be replaced by these hypotheses plus a new generator \·:i th

a higher
I

associated cost equ8l to that of the best hy-

potheses which might still be found by further se3rch.

Provided the search can be organised to find the hy-

potheses in order of increasing cost, it should always be

possible to avoid searching for hypotheses which are so

poor that relaxation would reject them anyway.

The decision about what cost to associate with a

gener~tor may be complicated by the fact that a hy-

pbthesi~ produced when the generator is run can fill

several slots. For example, a joint hypothesis produced

by a joint generator will fill slots in two different

part hypotheses. Although each part hypothesis separate-

ly may be too weakly supported to bear the cost of a poor

joint, together they may be able to bear it. No~, if

slots in both parts are filled with separate joint-

generators and these generators have the cost of a poor

joint, relaxation may reject the generators even thou?h

it v;ould Accept a shared, poor joint. One solution is to

associate with a generator the cost of the best potential

hypothesis divided by the number of slots. the hypothesis

would fill. If each slot contain~ a generator with this

cost, t~en the search for the potential poor slot-fillers

will only be avoided if none of the generators are well

-113-

enough ~upported to bear their share of the cost. This

guarantees that hypotheses which might form part of the

optimal solution will not be missed, but also means that

generators may be run even when relaxation will reject

the best hypothesis they might produc~.
!

4.8: Optimising real-valued parameters

So far, relaxation has only been used to find the

optimal combination of truth values for sets of inter-

related hypotheses. ManY problems also involve determin-

ing the optimal combination of values for sets of real-

valued vqriables. For example, in finding edges in grey-

level d9t~, parameters such as orientation of each piece

of edge need to be opti~ised CZucker 1976). This section

will show how L.P. relaxation can be used for determining

real values, though no program has been written. It is

important not to confuse supposition values with valuei

of_ parameters such as orientation. It would be absurd tb

ar-ply L.P. relaxation directly to the the later. OuantL-

tive decisions need to be reduced to qualitative ones be-

-fore applying relaxation.

First, an abstract version of the problem will be

defined. Suppose there is a finite set of variables, and

a finite .=et of functions each of which takes as input a

set of valrJes for .::1 subset of the variables rJnd returns a

cost. The t~sk is to find the set of values which minim-

izes the sum of the costs returned by all the functions.

- t j 4-

Pr0vided the costs do not vary too rapidly as the

VC3lues of the variables change, a simple but expensive

way of using relaxation to find an approxim~te optimum is

to consider a number of evenly-spaced values for each

veriable. A variable-value hypothesis, must be created for
!

each possible assignment of e value to VAriable. Also, a·

cost-hypothesis must be created for each possible combi-

nation of argument values of each cost function. The

cost-hypotheses should have associated costs equal to the

results of their cost functions and should be bound by

constraints which demand that a cost-hypothesis be ac-

cepted if all its relevant variable~value hypotheses are

accepterl. There must also be constraints which require

that e8ch variahle has exactly one value. For exemple,

if among the variables there are two, o, for which

valtJt:~s of 1, 2 are considered, then there will be

vari2ble-value hypotheses corresponding to A=l, A=2, 8=1,

2=2. If there is a cost function which accepts values for

A and B and returns the difference as the cost, then

there would have to be two cost hypotheses with a cost of

0 and two with a cost of 1. The conjunction of the

variAble-value hypotheses A=t and 8=1 would imply one of

the cost-hypotheses which had a cost of n v, and there

w o u 1 d he a eo n s t r a i n t rep re sent i n g this i r:19 l i c a t i on •

Clearly, if the cost functions havs ~any arguments

or if many values are .considered for eac~ v2riable, an

e no rq or 1 s number o f h Y.P o the s e s and · eo n s t r A i n t s may be

neec!8c', so the . 1 Slffif)_8 rne thocf of formulating all the

-1 t 5-

variable-value hypotheses before relax~tion, is infeasi-

ble. However, by using a technique similar to the gene~a

tors described above, relaxation can be integrated with

the formulation of variable-value hypotheses and a great

many irrelevant hypotheses can be avoided. The basic

idea is to consider intervals in Lhich the value of a

va~iable may lie. Initially the range of possible values

for each variable can be covered by a few large inter-

vals, so that instead of many variable-value hypotheses

there are a few variAble-interval hypotheses.

In order to use relaxation to establish the most

promisinq set of variable-interv8l hypotheses, it is

necessary to modify the cost f4nctions so that instead of

taking specific values and returning a cost, they take

intervals for the values and return a lower bound on the

cost that could be achieved using values within the in-

tervAls. For example, if a particular cost function took

tNo nurneri ea 1 arguments and re turned their dLfference" as

the cost, then its modified version would take two inter-

vals and return either zero Cif the interv~ls overlapped)

or the difference between the top of the lower interval

and the bottom of the higher one.

Using the modified cost functions to create cost-

hypotheses, a promising set of variable-interval ~y-

potheses c~n be selected by relaxation, and the intervals

involved can then be further sub-divided, so that the

selected variable-interval hypotheses are replaced by

-116-

finer Oltes •. Repetition of this process of selection and
·~

·sub-division ·allows the optimal values to be determined

accurately without requiring detailed considerati-on of

values within unpromising intervals. If n is the ratio of
I

the range of possible values divided ~y the accuracy to

which the optimal values are required, then, provided

there is no back-tracking (see below), the number of

interval-hypotheses needed is proportional to log n in-

stead of n for the simpler method described earlier.

Interval-hypotheses which are initially rejected by

relaxation must, nevertheless, be retained in the network

of possible hypotheses, since when the initially promis-

ing intervals are sub-divided it may be impossible to

find a combination of the smAller intervals which gives

as low A cost as the lower bound estimated for the larger _

intervals. A simple example shows how this can happen.

S u ppo se the r e are t hr e e v a r i a b 1 e s , A , 8 , C w i t h re a 1 -

values in the range 0 to 9, and suppose that there are

six cost functions which return costs of:

1 A -a; , /P- c 1 I r -Af

These functions "try" to make A·~o, 8=4.5, and C=9, but

also try to make A=B=C. The best solution is A=B=C=4.5

which has a cost of 9. Suppose the initial intervals used

are 0 to 3, 3 to 6, and 6 to 9. Relaxation would select

the combination of hypotheses A0 _3 , 81 _ 6 , (_6-q .. .,here

A o-3 means that the value of A is in the interval 0 to

3. This combination has zero cost, since for each cost

- t 1 7-

function there are values yielding a cgst of zero within

the chosen . ~
1n terval s. However, different values within

the intervAls are required to satisfy different cost

functions. So v1hen the sele'cted interva 1 hypotheses are
I

replaced by more speclfic ones involv~ng smaller intervals,

relaxation may select one of the previously rejected,

coarser intervals. If, for example, the selected inter-

vals are sub-divided into intervals of size t, then r·e-

laxation would reject all the more specific hypotheses

for A and C and backtrack to the hypotheses A 1_6 and

{_ 3 J-

6
VI hi c h to g et he r w i t h B If _ 5' g i v e a to t a 1 c o s t o f 6 •

-118-

CHAPTER 5

COMPARISONS BETWEEN L. P. REI.JAXATION

AND ALTERNATIVE SYSTEMS.

In this chapter a number of alternatives to L.P. re-

laxation are described and criticized.

included on the use of L.P.

A section is also

relaxation for

Huffman/Clowes line labelling, since this is the domain

chosen by one rival system.

5.1: Rosenfeld, Hummel and Zucker (1975).

In their paper "Scene labelling by relaxation opera

tions", Rosenfeld et al discuss ways of extending :Nal tz

filtering so as to incorporate degrees of compatibility

between labels, rather than the simple all or none compa

tibilities used by Waltz. They describe three models.

The first and least interesting is based on fuzzy set

theory and associates fuzzy weights with labels. It is

like one of the methods used by Barrow and Tennenbaum

(see section 5.4.3) and will not be discussed further.

The remaining two models use probabilistic weights for

labels. These weights are similar in many respects to

supposition values, but it will be argued that there are

crucial differences which make these methods less satis

factory than L.P. relaxation.

-119-

5. 1.1. The linear probabilistic model.

A weight between 0 and 1 is associated with each

po ss i b 1 e 1 ab e 1 (e • g • + ' - ' r 0 r 1 for each object

(e.g. a line). The weights on the labels for an object
I

sum to 1, so they can be interpreted Js the probabilities

that the labels are correct (if the distinctions dis-

cussed in section 3.4 are ignored). The weights are said

to be consistent when each one has a required value which

can be calculated (see below) from the weights and compa-

tibilities of the labels on neighbouring objects. If the'

weights are inconsistent, each is replaced by the value

determined by the label weights on neighbouring objects.

It can be shown that if this relaxation operator is re-

peatedly applied in parallel to all the weights. a con~

sistent state will eventually be reached. The expression

used to deterrni ne the required weight fi (>) on the label

A for the i'th object is:

pi(A) = 4- Lij r ~ fij (>d>:) fi (XJ]
J

where the CLj are coefficients such that f Cij =I for

all i. The inner sum in the expression is the expected

probability of /\.1 £j(.A), given the weights and condi

tional probabilities of the labels at j. The outer sum

is a weiqhteci average of the f (A) over all i's neigh

bours. The rnagni tu de of the constants· Cij , Ci K indicates

the relative importances of the estimates £j (A.) ,
·-120-

provided by -the neighbouring objects in

determining the wei~ghts of the labels at i.

Rosenfeld et al give no justification for their de

finition of a consistent set of weights. It is hard to

see how it can be reconciled with proJability theory be-

cause of the following example: suppose that for an ob-

ject, j ' the label

other labels have

f 'j (A I \) ~ o i . e •

have label A

,\/ ·has a weight of and all the

a weight of o. Suppose, also, that

given that j has label
\ /

/\ i
/

The inner sum of expression

cannot

(above)

correctly yields £ j (A)::: 0 , but because of the weighted

averaging of the [(~) this does not force the outer

sum to be zero. So a non-z.ero value for f i (.t\) may be

allot.>~ed by the expression even though it is inconsistent

with.the conditional probabilities.

The linear model has the interesting property that

it converges on a set of weights which is entirely deter-

mined by the values of the (0 and the conditional proba

bilities, and is independent of the initial set of label

weights. Rosenfeld et al assume, as do Barrow and Ten-

nenbaum, that the initial weights for particular labels

should be used to implement the preferences, which. may

arise from their a priori probabilities or their goodness

of fit to the local data. This assumption leads them to

reject the linear model in favour of a non-linear one in

which the final state depends on the ihitial one. They

do not discuss the alternative, used by L~P. relaxation

-121-

and by Marr and Pogg!o (1976) of implementing preferences

by an extra term i~ the relaxation operator.

5.1.2: The non-linear model.

The example with f·j (A I x)::: 0 which was used to

criticise the expression (1) above, is actually an ex-

treme case of an undesirable property which Rosenfeld et
/

al discuss. If a label A at j has a high weight then it

should have a strong tendency to reduce the weights of

labels on neighbouring objects with which it has a low

compatibility. Expression 1 does not work like this, so

Rosenfeld et al suggest replacing the conditional proba-

bilities by correlations, which can have a negative value

and can therefore cause the m~ximum reduction in pi(~)

when the weights on the incompatible labels for j are

high. The new expression gives the required change in

p; (.A) rather than its required value, and there is no

guarantee that the weights wi.ll stay positive or that the

new weights for labels of a single object will add to t.

These two desirable properties can be restored by modify-

ing the rel2xation operator so that it effectively renor-

malises the new label weights.

The same criticism applies as in the linear model.

The- way in which the £(A) are averaged in the relaxation

operator means tbat a weight of 1 for a label on j

can coexist with a non-zero weight for a label ~ on i

-1 ~2-

even though their correlation is -1.

The convergence properties of the non-linear opera-

tor have not been established. It has been tried on the

simple problem of choosing the best Huffman/Clowes label-
i

ling for a triangle, where a good labelling is defined as

one which assigns highly correlated labels to the two

lines at an ell junction. The lines were the objects,

and the correlations between line-labels at a junction

the compatibility functions. The weights converged fair-

ly rapidly, often on integer values, and the initial

weights were capable of determininq which of the possible

unambiguous labellings was chosen.

The main wea'kness of this model is that it is not

clear what computation is being p~rformed. The underly-

ing idea is to enhance label weights local interac-

tions, but there is no definition of what counts as a

good enhancement. A consequence of this lack of a pre-

cise problem is that the relaxation operator cannot be

derived so as to satisy well speci~ied criteria. In-

stead, an operator is chosen which has qualitative

-characteristics which are thought to be desirable. By

contrast, L.P. relaxation is designed to perform a well

specified task which provides clear-cut criteria for

evaluating the relaxation operator.

Zucker (1976) reviews the ~pplications of the non-

linear model to "image enhancement" in a number of

domains. It is hard to assess the usefulness of some of

-123-

the applications since they are intended as a pre

processing stage. In the absence of any clear definition

of what this stage is intended to achieve, it can only be

evaluated by seeing how much it helps later stages and

these are generally non-existent.

One application \·lhich is similar in some respects to

the puppet task is the enhancement of combinations of

parts which match a model CDavis and Rosenfeld 1976).

The model used is an upright square of fixed size whose

parts are simply its four corners. Nodes are created for

candidate corners which are found in a noisy gr·ey-scale

picture. Dummy nodes are also created to . represent

corners which were not found in the grey-level data, but

which can be predicted from the corners which were found.

Each node has five possible labels corresponding to the

four corner types and "no match". The initial label

weights at a node reflect the goodness of fit of the

corresponding corner types to the local grey level data.

The compatibilities between label weights depend on the

relative positions of the nodes. For two nodes which are

horizontally or vertica.lly separated by exactly the

side-length of the square, there will be some pairs of

labels, one on each node, which agree and some which

disagree. These have compatibilities of +1 and -l

respectively. For pairs of nodes whose relative posi

tions are approximately but not precisely correct, the

label compatibilities have correspondingly smaller rnagni

tudes, and for all other pairs of nodes the label weights

-124-

do not affect each other. This approach to model match

ing suffers from all the ctiticisms already made of the

non-linear relaxation method. There is no clear ·specifi

cation of the task, so it is hard to justify the initial

label weights or the compatibility functions, or the re

laxation operator, or _to say precise!~ what the relaxa

tion process achieves.

One of the aims of the non-linear model is to make

use of probabi 1 is tic constraints bet\'ieen labellings as

well as local biases for particular labellings. It is

instructive to see how these types of knowledge can be

captured by L.P. relaxation in the example used by Rosen

feld et al. The local biases can obviously be implement

ed as preferences, but the probabilistic .constraints are

obviously different from the logical constraints used in

L.P. relaxation. Nevertheless, L.P. relaxation can han

dle probabilistic constraints if they are reduced to log

ical ones by introducing extra hypotheses with associated

costs or preferences (see section 4.6). For the line la

be 11 i ng example used by Rosenf e ld et al the extra hy

potheses take the form of junction labels. A formulation

-of the task suitable for L.P. relaxation is given in

section 5.2. Compared with the non-linear model, the

ti8e taken to reach equilibrium is longer and the number

of nodes· _required is larger. However, it is clear what

the computation achieves, and the relaxation process can

be analysed.

-125-

5.2: Line Labelling using LP relaxation

Huffman/Clowes labelling is ex~lained in section

1 .4.1 There are two reasons for wanting to get the

best labelling rather than just a list of all the feasi

ble ones:

1. The number of feasible laSellings can become

enormous if the set of junction labels is extended to

allow f6r accidental alignment of edges with vertices

of different depths, or to accommodate laminae as well

as solid objects <Draper- personal communication).

2~ People are quite capable of interpreting junc

tions as accidental alignments, yet they never see

more than a few of the interpretations which are pos

sible if such accidentAls are allowed.

There are several quite different reasons for asso

ciating costs or preferences with particular labellings:

1. If an expanded set of labels is used, costs can

be attached to labels which require either accidental

alignment or non-solid objects. This can be viewed as

a way of providing a set of unusual labels which are

to be used sparingly, and only when the usual set ·is

inadequate.

2. If the input is a noisy grey-scale image; rather

thah a line drawing, there may be weak evidence which

suggests particular labels. For example, under some

-126-

conditions of illuminat~on, convex edges have slight

highlights along them, and concave ones have slight

shadows CRosenfeld et al 1975). Also, shade~ edges

have distinctive grey level characteristics <see ap

pendix 2). To incorporAte this extra information, the
I

idea of extracting a line drawing from'the grey-level

data needs to be extended to include extracting

preferences for particular line labels. The process

of finding a consistent lAbelling for the picture can

then operate on richer data than the line drawing

alone.

3. When people view a scene they do not perform a

detailed analysis of all parts of it simultaneously.

It appears that they perceive it in a sequence of

glances whose results are synthesised into a represen-

tation of the whole scene CHochberg 1968). Each

glan~e will be accompanied by expectations based on

the representation of the scene derived from previous

glances. So when a person attends to one part of a

scene and attempts to discern its 3-D structure he may

already expect it to contain certain types of edge or

vertex. It would be possible to mobilise expectations

of this kind to aid the interpretation of lines as

particular kinds of edges. If a hole is expected, for

example, there could be a higher prBference for the

labelling of those ell junctions Nhich correspond to

an interpretation in which the reflex angle lies in

the nearer occluding surface.

-127-

So it is interesting to see how a program might dis

cover the optimal ~onsistent labelling of a line drawing,

where the optimum is defined in terms .of preferences or

costs for particular line and junction l8bels.

-. I
In a consistent interpretation each line and each

junction have exactly one label, so the supposition

values in all normalised linear combinations of con-

sistent interpret at ions satisfy ·the following con-

straints:

For each line, 1, and for each junction, j,

I 5. = I tl-h cL r sl :), ~ I
.A J:A A

where >.. ranges over the po ss ibl e 1 a bel s .for a line

or junction and L: A means that the line l has label

A·

Also, in a consistent interpretation, if a line, 1,

has la be 1)\ then a junction at the end of it~ j, must

have a label, A',·which is compatible with A Hence

for line labels:

=

where ranges over the labels of j which give the la-

bel A to line 1.

Using these constraints, a network of line label and

junction label hypotheses was created.for a line drawing

of a triangle. Figure 5.1 shows the possible line and

-128-

c.o
f loa i i h j above

b~(k,rovhd

+
C..t

1 C I
hole

FIGURE 5.1: The possible labellings of a triangle, given the

, Huffman/CloHes labels for an ell-junction (see figure 1.2).

The names A1, A2 etc., are used to refer to particular line

labels in figure 5.2 •

! r·e 1 a>~~)O () y

AO A:l. f-12 (.}3 r:o B:l. B2 B:3 CO Cl C2 C3
0 0 0 0 0 0 0 0 0 0 0 0 ' I"" 22 :1.4 l l>!::i t.>.) ~~~ :~~ :1.4 l (. 1:." '1'") :1.4 :1. L• ,_a . .:.. . .;..

90 7 4 () <?() 7 4 0 90 7 4 0
(?9 0 0 0 99 () 0 0 <?<? 0 0 ()
99 0 0 () <;.><;> 0 0 0 99 () 0 0 <;><:> () 0 () 99 0 0 ') <::J9 () 0 0 , .! 1,.,

FIGURE 5.2a: Showing how the supposition values change durL~g

relaxation for the line labels on the three sides of a triangle.

The lines are A, B, C and the suffixes 0, 1, 2, 3 indicate the

labels. The meanings of A1, A2 etc., are shown i."Yl figure 5.1.

Junction label hypotheses were also involved. but are· not

shown. The preferences were 0.5 for each of the three junctio:i

labels corresponding to occluding convex corners, and 0 for all

other' hypotheses.

! [h~) :l ·r.:· ,.J.::J 1 k~5 :1.] ~ '!;:. E·~ t F' "f' (:·~ f S ;

! T'e 1 a>~~j() () ..
~·

B2 B3 CO C:l. c:::.~ c·· ...
AO A:l (.~2. tl~5 BO :tel. ,., }

0 0 () () 0 () 0 0 0 () b 0
~)? B9 () () -zn

,.} ') B9 () 0 3<? B<.f () 0

:1.4 95 0 0 :l4 9~5 () () :1.4 9~:_:_; ') r.., 0
~) 99 () 0 ~5 9fJ 0 0 :·5 99 0 (' ,}

() nq
'j ' 0 0 0 9~"J 0 0 () 99 () 0

() <_-:;<;.> 0 0 () 99 () 0 0 9'? () ()

FIGURE 5.2b: If the junction labels corresponding to concave

occluding corners are given preferences of 1, the triangular

hole interpretation becomes the best.

! r (:-~ 1 a>~ ~:i 0 () '· !'

t10 f~l :1. f::)::~ (.) :·:::. HO B:l. J-) ~ ... :.~ :e:::) CO Cl C2 c:3
0 0 0 0 () () 0 0 0 0 () 0

4B 56 ~.i 0 34 0 <:~ <:)
/ ·' 0 40 ~:_:; (:·:· ~j ()

4:1. .f.t::" ••. .> ,.J () 0 2f.> ') r.. .. <)<,;> 0 4:1. (~) ~=s 0 0
:.~~:) B:l. 0 0 :~···· . ,") 0 (_;>•:_".) (' ,} ~?3 B:l. 0 0

() 99 0 () () 0 <;;. 1:;~' 0 0 <)9 0 0
0 99 0 () () 0 S'9 0 () <_;><;? 0 0

FIGURE 5.2c: A preference of 3 for the uconve:x~ edge" label,

B2, overrides preferences of 0.5 for the "a.c.LLte occluding

corner" junction-labels (since 3 > 0.5 x 3), causing the

equilibrium state to be the best containing B2.

junction labels and figure -5.2 gives examples of relaxa

tion with various fabel preferences.

5.3: Yakimovsky and Feldman < 1973)

One \<Jay of segmenting an image of a natural scene is

to start with a large number of small, roughly homogenous

regions and to merge them into larger regions which

correspond to meaningful parts of the scene. Yakimovsky

and Feldman describe a way of arriving at good partitions

of images into regions and good interpretations of the

regions, which utilizes knowledge about the scenes. The

two kinds of knowledge employed are the probabilities of

the regions of different kinds depicting particular scene

constituents and the probabilities of boundaries of dif-

ferent kinds existing between regions with p8rticular in-

terpretations. For example, blue regions are unlikely to

be trees and regions interpreted as road and sky are un-

likely to share a vertical boundary. If the probabili-

ties are assumed to be independent and there are no other

a priori probabilities, then a global interpretation G,

is optimal if it maximizes the product:

lT (reqion i has J region i has the)
I i I f i nt erpr et at ion int (i, G) measured values

TT (boundary B (i, j) is between/_ BC i, j) has the)
X f int<i,G) and int(j,G> measured values

for neighbouring
regions i,j

where int(i,G) is the interpretation given to region i in

-129-

the global interpretation G, and B(i,j) is the boundary

between region i and region j.

Using conventional techniques it would be extremely

expensive to evaluate the product for all the combina

tions of region interpretations for a~l partitions of the

image into reqioris. To avoid this, the part of the pro

~ram discussed by Yakimovsky a~d Feldman only-considers a

sequence of _partitions generated by removing possible

boundaries one at a time in a particular order, and for

each partitirin it only computes upper and lower bounds on

the product. Given these bounds, graph searching tech

niques can be used to find good interpretations of par

ticular partitions. The upper bounds are found by relax

ing the consistency constraints, so that the individual

terms in the product are simply the probabilities of the

locally best interpretation for each region • The lower

bounds are found by choosing interpretations for the re

gions one at a time, the extent by which the most prob

able interpretation ~f a region outstrips the others be

ing· used to decide which region to interpret next. This

is an example of a method discussed in Section 1-~. I for

- finding good but not necessarily optimal interpretations~

There are serious objections to the way in which

YAkimovsky and Feldman have formulated the segmentation

problem. They have ommitted general knowledge about 3~0

strticture whilst including specific knowledge about the

probabilities of particular scene constituents being dep-

-130-

icted by neighbourinq regions. At a low enough level

both types of knowledge may be absent, and at a high

enouqh one both may be present, but it seems unlikely

that really·good segmenters (people) invoke knowledge of

oarticular objects before invoking ge~eral 3-D knowledge
I

<Marr 1975). The most impressive segmentation programs

use inferences based on 3-D structure and not on specific

types of object {Guzman 1968, Clowes 1971, Waltz 1972).

CGuzman~s program does not appear to use 3-D knowledge.

However, the reason his program works so well is that it

uses 2-D cues which allow powerful inferences because of

the 3-0 structures they imply).

The abstract problem presented by Yakimovsky and

Feldman suggests a relaxati-on approach, and it is infor-

mative to see how relaxation can _be applied, what diffi-

culties it runs into, and how they :n.:1y be overcome.

5.3.1: A relaxation formulation

The task of maximising the product given above is

equivalent to minimizing the total cost of a set of hy-

potheses about region and boundary interpretations, where

the individuai costs are the logs of the probabilities.

It seems to be necessary to have hypotheses about re-

gions, boundaries, region interpretations a~d boundary

interpretations. The constraints are:

1. Larger regions are produced by merging small ini-

-131-

tial reGions. In any global interpretation, an ini

tial region must be either unmerged or pa~t of exactly

one larger region. So for all regions which share an

initial region:

2. Every region should be given exactly one in-

terpretation:

L 5 ri - J -
L

where is the supposition value of the hypothesis

that region r has interpretation i.

3. If two neighbouring regions q, r exist in the

best interpretation then so does the boundary between

them. So for all neighbouring pairs q, r:

11\r~ Ii(~;r)

~ V/'" V 8 (~ 1 f-)

(!-5't) + (1-)v-) -1 ~B(p)). J

.5 8 (}J) ;) s1 f s r - 1

4. Similarly, if two neighbouring regions q, r have

interpretations i, j then the boundary between them

has interpretation B(1i, rj) :

\>~here 5 () is the supposition
p J; / Y;

value of the hy-

-132-

pothes is B ('fi, r) and 5'j i is the supposition value of

the hypothesis ~hat region q has interpretation i.

There are three main objections to straightfor11rardly

creating all the relevant hypotheses and constraints and

then finding the best--state.

1. It is not clear in advance how many region hy

potheses to make. Yakimovsky and Feldman continued re-

moving boundaries until the upper and lower bounds on

the best possible interpretation of the current parti-

tion fell sharply. This relies on the assumption that

once the product falls significantly, further merging

will not raise it again. If the assumption is valid,

relaxation could be used on some initial partitions,

and further merging to produce new partitions might

only be necessary if the best solution found by relax-

ation involved one of the later partitions, that is,

one with many merges.

2 • I f t h er e a r e i in t er p re t a t i on s for each r eg ion ,

and r regions, the number of region-interpretation

hypotheses is i.r, which may be of the order· of a

thousand for the data given. For boundary interpreta-

t · h th num'oer 1· s about -+b. 1· ~ .r 1 ons, ov1ev er, e c'. where b

is the boundaries per region. This is a formidable

number if i is large. Fortunately, it is possible to

avoid ever formulating many of the boundary interpre-

t~tion hypotheses. Hypotheses about the interpreta-

tion of a boundary need only be added when the relaxa-

-133-

tion process raises to a signific8nt level the suppo

sition values of p~rticul~r interpretations of the re-

gions on either siae 6f the boundary. This is because

boundary interpretations have associated costs and so

will not be included-in the best global intepretation
I

unless they have to be. The only ~hing that can force

the inclusion of a boundt?ry interpret~tion is a con-

straint of type (4) above which does not become opera-

tive until the sum of the supposition values for the

alternative interpretations of a region exceeds 1.

This is another example of the iQportant technique of

avoiding irrelevant hypotheses by integrating hy-

pothesis creation with relaxation.

3. Since all the preferences are negative, there is

a tendency for constraints like (4) above to lead to

non-integer optima, so that relaxation does not pro-

duce a clear-cut answer and it is necessary to use

cutting planes or branching (see Section 3.7). The

reason for expecting non-integer optima is that if

many region interpretations are given supposition

values of a half or less, constraints of type (4) do

not constrain the supposition values of the boundary

interpretations, and so the associated costs are not

incurred. Constraints of type (2) above can still be

satisfied by several different interpretations of a

region, each of which has a smAll supposition value.

If a relaxation program_ of the kind described could

-134-

be made to work then apArt from the advantAge that it

could use parallel hardware, it would be capable of find~

ing a solution in which there \'/ere late merges in one

part of the image without being too committed to earlier

!Tlerges in another oArt.- Yakimovsky and
l i

Feldman
. I

strict ordering for boundnry rerrJoval and this sequential

strategy prevents. them from ever considering most_ of ·th~~

complete partitions involving subsets of the candidAte

regions they generate. This point may be clArified by a

simple example. Suppose there are four initial regions

Rl, R2, R3, R4. If merges are considered in the order RI

+ R2 -7R12, R3+R4-7R34, R12 + R34----7Rl234 then the par-

tition Rl, R2, R34 will never be considered, even though

it only involves existing regions.

5.4: Barrolv and Tennenbaum (1976)

5.4.1: The task

Barrow and Tennenbaum describe a system, MSYS, which

is designed to find the optimal consistent set of in-

terpretations for regions in a hand- partitioned image of

a room seen e. Regions correspond to entities like .the

back of a chair, a picture, a door or a patch of floor.

Region interpretations are given a priori likelihoods on

the basis of their height in the scene and their surface

orientations, which are discovered using a laser range

finder. There are various constraints between the in-

-135-

terpretations of different regions. A picture, for exam-

Ple Ca nnot 'oe adJ·ar.P.n+- + :I : -!... .L h ~ _ , __ ~ ~o a coor, ana LWO paLe es or

floor must be of similAr brightness.

5.4.2: The general strategy

Barrow and Tennenbau~ descri.be several versions of

their system. Only the version for which there is -=1

guarantee of finding the best solution is described

The optimal set of region interpretations can be

found by using a branch- and-bound search CDuda 1970).

Branches are created by opting for or against a particu

lar region interpretation, and an upper bourid is set on

the best terminal state reachAble along a given branch by

combining the likelihoods of the locally best surviving

interpretations for each region. MSYS uses a branch-

and-bound search, but for each inter~ediate state it at-

t em p t s to get a much t i g h t er u pp er bound • Instead of

simply combining the best surviving a priori likelihoods,

it enters a relaxation phase in which the constraints are

used to lower the likelihoods. It then uses the best

lowered a posteriori likelihood for each region, the lo

cal optimum, to compute the global upper bound. The hope

i s that given s uJ f i c i en t 1 y · rich cons t r a in t s the u pp er

bound will be so tight that hardly any branching is re-

qui red.

-136-

'5.4.3: Likelihoods and their modification

Tne actual method MSYS uses for modifying the likel-.

ihoods during the relaxation phase is hard to grasp be-

cause it is not clear what the likelihoods are, and so it

is not clear how they should be ma~ipulated. The real

logic behind th~ way the likelihoods change seems to be

the requirement that they always fall so that the highest

value in intermediate states can be used to set an upper

bound on the values obtainable in terminal states. Given

this requirement on how the numbers should behave it is

not clear that any sensible interpretation of them ex-

ists. The a priori likelihoods of the different in-

terpretations of a region sum to 1 ~vhich suggests that

they are probabilities. However, after a phase of relax-

ation the sum is no longer 1. The numbers cannot be re-

normalised, because this might raise some of them. Also,

although the numbers start off looking like probabili-

ties, the way the local optima are combined to get a glo-

bal upper bound is by addition, not multiplication. This

may suqqest that likelihoods a~e logs of probabilities,

but the way they interact via constraints argues against

it. The basic foro of a constraint is that an interp!e-

tation Ri _of one region, R, must be supported by partic-

ular interpretations Sj , Tk ••• of other regions S, T ••••

If these interpretAtions have low or zero likelihoods

then so r;JUst " .n • The actual numerical constrAints may be

based either on set theory or on fuzzy set theory (see JiJ- 53).

-137-

R · -. S · ----\. 1 (R ·) ~ l (S.)
,__; ;-:T ' J

Figure 5.3 Sho~_ng how logical constraints give rise to

numerical ones using set theory. "::::>" means "must be supported

by" and l(Ri.) is the likelihood o:f R i •

RL ~ Sj=?l(Ri)~l(Sj)

R£2>SjATk~l(Ri)~inf(l(Sj), l(T}())

R· ~ S. V Tv==? l(R·)~sup(l(S.), l(T~,.-))
L J '\ l J r'-

Figure 5. 3b Sho~Iing the numerical constrai.n-cs derived using

fuzzy set theory.

5.4.4: An abstract example

Suppose there are two regions, R,S, each with three

interpretationsa Figure 5.~b shows some a priori likeli

hoods, and the a posteriori likelihoods reached after re

laxation using the constrBints shown in figure 5.3e.

When equilibrium is reached a branch is made on the

likelihood of R
3

, sBy, by setting it or all its rivals

to zero. This gives the states shown in figure 5.3c.

After relaxation, a terminal stAte is reached which has

value 0.24 + 0.2. Since this is better than the combined

local optima in the other, intermediate state, it is the

best solution according to the criterion used by MSYS.

Notice, howeve~ that the ~elution R S is consistent and

that both sum and the product of its a priori likelihoods

are better than for MSYS's choice. The reason why MSYS

does not find the solution R S is that it only uses the

constraint R, :J 5, v{) vS3 to lov1er the likelihood of R1

whereas if likelihoods are anything like probabilities,

the constraint should also have the effect of raising

S
1

, S ..2. or S
5

when R 1 i s hi g h and they 3 re a ll 1 o w , a s

it does in L.P. relaxation.

-138-

\

R l ~ S 1 v S2 v 53 , S 1 ~ R 1 , S3 :::> R3

1 C R 1) ~ sup (1 CS 1) , 1 (S2) , 1 (53))

lCSI) ~ 1CR1), 1 (52) ~ 1 (R2) , 1 <53 > ~ l < R3)

FIGURE 5.~a : Some constraints between interpretations of
R and S (first line) and the corresponding numerical
constraints between likelihoods <second and third lines).

1 < Rl) = 0. 76 -> 0. 7 -> 0. 2

1CR2) = 0.01

1CR3) = 0.24

t(s 1) = o. 1

1(52) = 0.7 -> 0.01

1 (S3) = 0. 2

Figure 5.lf.b : Some a priori likelihoods, and the results
of a relaxation phase (indicated by arrows) using the
constraints above.

lCRl)=0

1CR2)=0

Choose R3

1 (s 1) =0. 1->0

1 (52)=0.01->0

1CR3)=0.24 1(53)=0.2

Reject R3

1 (R 1) =0 .. 2-> 0. 1 1 <51) =0. I

1CR2)=0.01 1(52)=0.01

l<R3)=0 1(53)=0.2->0

FIGURE 5.~c : Two states obtained by branching on R3
from the state obtained after the relaxation phase
in fiqure,5.~b above.

5.4.5: Comparison of MSYS with LP relaxation

The main criticism of MSYS is the lack of a precise

interpretation for likelihoods. From the point of view

of LP relaxation, the reason for the confusion is the

lack of a distinction between preferen~es and supposition

values. Likelihoods seem to be an attempt to combine

these two different types of number into one. A priori

probabilities (preferences) are represented as initial

values for likelihoods, so when the likelihoods change,

the a priori probabilities are lost and the criterion of

the optimal consistent state cannot be in ter~s of their

product. The criterion of maximizing· the sum of the

likelihoods seems like an unprincipled choice for facili-

tating the branch-and-bound search. By contrast, when T?

relaxation is combined with a branch-and-bound search es

a way of handling non-integer vertices (see Section 3.7)

the measure which is being optimized, and is used as a

bound, is a principled one.

Despite these criticisms of detail, the general vie~

of the way computations may be performed in vision is

_shared by the authors of :\1SYS and LP relaxation. In par-

ticular, the importance of constraint p!-op8gc=ttion for

avoidinq search, as illustrated by Waltz's pro.;rram

REF-ARF (Fikes 1970), 1vas first explained to me by Ser-

r ov1.

-139-

5.5 Growing islands of consistent hypotheses.

In the revised puppet task (Section 4.7), distorted

parts And poor relations are a·llowed but hAve a~ associ-

ated cost. The problem is to find the consistent set of

interpretations of the rectangles and overlaps with the
I

m i n i m al tot a 1 cos t . On e a 1 t ern 2 t i v e to re 1 a x at ion i s A

branch-and-bound seArch (see Section 1.9) in which the

cost of a partial solution is the sum of the costs of its

constituent hypotheses. The first complete solution

whose cost is lower than any of the uncompleted partial

solutions is the optimum. Unfortunately, R partial solu-

tion which is nearly complete will tend to have a much

higher cost than one which contains only a few hy-

potheses, especially for a puppet picture in which the

best interpretation contains many poor • • .l- .l...

jOlnt..s or p3rt..s.

Consequently, th~ optimal solution will not be reAched·

until all the other partial solutions have been developed

to contain a considerable number of costly hypotheses.

This means that the bound will not prune the search tr.ee

very effectively.

The reason for the ineffectiveness of the branch-

and-bound search is that large partial solutions are un-

fairly penalised compared with small ones. A better

measure of the promise of a partial solution can be ob-

tained by comparing the total cost it has incurred with

its size., More precisely, the nshortfall density" of a

partial solution can be defined as the mean value, over

-140-

all its hypotheses, of the difference between the cost of

the hypothesis chosen and the cost of the locally best

hypothesis for explaining the same data (i.e. the rectan

~le or overlap). The smaller the shortfall density the

better the partial solution. This measure cannot be used
I

in a branch-and-bound search· because the best overall

solution might start life as a very unpromising partial

solution, and so there is no guarantee that a complete

solution which has a lower shortfall density than any

currently existing partial sol ut ion is the optimum. How-

ever~ an island growing technique used in the H~IM speech

understanding system and described by Woods (1977) caG

make effective use of shortfall density to prune the

search space. The way in which a modified version of the

technique would be applied to the revised puppet task is

described below~ At present this application is enttrely

hypothetical.

The first stage is to create a number of seed hy-

potheses which will act as the initial islands. These

are like the nuclei used in the puppet program (See sec-

tion 3.2), thoug~ they differ in that it is not always

sufficient simply to find just one seed in the best in-

terpretation. To be sure of finding the optimum it is

necessary that all its good cohstituent hypotheses be

seeds (see below). One v1ay of ensuring this is to make

all the gqod local hypotheses act As initial islands.

The second stage consists in growing islands either

-141-

'oy merg1· ng tt·'o · 1 d b .~- · · ,-4 ,. • ·'~ lS an•. S, or. y crea1..1ng ana ac .. cnng ne::; ln-

terpretations of the rectangles or overlaps neighbourinq

an island. The island with the lowest shortfall density

is always selected as the next one to be grown until

there is an island which covers all the rectangles and
I

overlaps and still has a lower shortfall density than any

other. This is taken to be the best global interprets-

tion. The reason that it can be accepted is the best in

this case though it would be unacceptable in a branch-

and-bound search, is that if there were a better complete

solution, it would have to contain a partial solution

with a lower shortfall density and if thera were such a

good partial solution it would already have been grown

from one of the seeds. To put it another way, a tree

search imposes an ordering on the rectangles and ovelaps

which may force the best global interpretation to grow

from a partial solution with a high shortfall density~

whereas island growing from a sufficient number of seeds

allows the best parts of a global interpretation to be

grown first.

Compared •,•Ji th LP relaxation, island gro1:'ling has both

strengths and we~knesses. It avoids all the messy prob-

lems associated with the use of continuous supposition

values. Also, by combining the constraints imposed by

the hypotheses in an island, it should be possible to

restrict the search for the new hypotheses which may act

as extensions to the island. A potential weakness of is-

land growing is that whenever a new island is created, a

-142-

check must be made to ensure that it is not a copy of an

island which already exists. Given a large quantity of

data and hence many islands, the checking process can be

very time consuming. A further difficulty is that there

is no simple, economical way of handltnq minor VAriations
I -

of an island. The obvious strategy is to allow islands

to contain noR" nodes, but there may be interactions

betv1een the choices at different 11 0R 11 nodes. Suppose,

for example, that at one place in an island there is a

choice of A or B, and at another place there is a choice

of C or D. It may be that A is incompatible with D, and

B with C. If "OR" nodes are tc be used, 'these dependen·-

cies need to be explicitly represented, perhaps by some-

thing like the connectivity matrices of Hearsay II CErman

and Lesser 1 9 7 6) • A 1 so , n 0 R 11 nodes great 1 y · c o m p 1 i cat e

the process of using the content of an island to restrict

the searr.h for possible extensions. So perhaps the best

strategy is the simple but expensive one of creatin~ two

completely separate islands for each minor variation.

In the absence of a detailed example of the use of

island growing and shortfall density for picture in-

terpretation, it is hard to assess the importance of the.

above criticisms or to discover the effectiveness of

shortfall density in limiting the number of islands. The

fairly successful use of island growing in HWIM (Woods

1976) seems to be-the best available guide to its value.

-143-

,5.6: Matching by Clique finding

Ambler et al (1975) describe an efficient matching

technique which is well-suited to the puppet task. In

their example, the problemsrnof finding the best match
I

b • 't h d dl I

1
• J... f e-cween a oa a-grap an . a mo e -g1;apn, 1s ~...rans ·armed

into the problem of finding maximal completely connected

subgraphs (cliques) of a third graph, in which each node

corresponds to an interpretation of a data-node as a

mode 1-n od e • Two interpretation nodes are linked by an

undirected arc if and only if the interpretations are

compatible. In the puppet example, there is ho explicit

model-graph, but the part and joint hypotheses are

equivalent to interpretation nodes and the clique-finding

technique can be applied if a·ll compatible pairs of hy-

potheses are linked by arcs.

An efficient clique finding algorithm is described

by Bran and Kerbosch (1973). It works by extending to-

tally connected subgraphs, but unlike islahd growing, it

manages to avoid ever creating the same clique twice, and

hence avoids checking for duplicates.

Although it may be the best solution to the simpl~

puppet task described in Chapter 2, it is not clear how

clique findi~g can incorporate additional input instruc-

tions favouring certain solutions over others, or how it

can be extended to the revised puppet task Csee Section

4.7) in which the hypotheses do not all have preferences

of one or zero. Ambler et al suggest using thresholds to

-144-

eliminate poor hypotheses and also poor arcs between

pairs of hypotheses which are only poorly compatible.

All remaining hypotheses and the compatibility arcs

between them are then treated as equally good, thus

reducing the problem to the· previous form. However,
I

something
I

is lost in the reduction. }f • • • the 1qax1 m1 s1 n,;;

number of consistent goo~ 0ypotheses is not the sa~1e

problem as finding the best consisterit set of hypotheses.

So although clique-finding is efficient for some m3tching

problems, there is no obvious way of extending it to the

more general problems to which LP relaxation can be ap-

p 1 i ed.

5.7: Hierarchical synthesis

Barrow et al (1972) describe a very efficient ~raph

matching technique stemming from work by Selfridge and

Neisser (1960). Rather than h~ving a single model-graph,

there is a hierarchy of them corresponding to the hierar-

chy of parts in the model. Each part has a corresponding

graph or relational net whose nodes correspond to smaller

_parts. In the program which implements hierarchical syn-

thesis, each part of a model has a corresponding program

module which contains the relational network of smaller

parts, pointers to the modules for smaller parts, and

back-pointers to all the modules whose relational net-

works contain the part. During matching, activated

modules search for all reasonable instantiations of their

-145-

relational nets. To do this they need instantiations of

their lower level modules so they activate them. When a

module finds any successful inst8ntiation it returns it

to its higher level modules which are in tutn, activated.

Top-down matching is caused by initially activating the
I

top-level module, and bottom-up mat~hing by activating

all the lowest level modules. The reason that hierarchi-

cal synthesis is efficient is that modules remember their

instantiations, so that time is not wasted in repeated

efforts to match the same subgraph. As this suggests,

~he method is particularly effective if many different

higher level modules share a lower level one.

Some kind of hierarchical structuring seems inevit-

able in visual perception, but there are a number of ways

in which the simple version of hierarchical synthesis

described above is not an entirely adequat~ model:

1. When a module is activated by a lower level one,

it requests it, in effect, to search for all reason-

able instantiations. This is not a rich enough in-

teraction between modules, since under many cir-

cumstances the search could be restricted by mobilis-

ing constraints imposed by the instantiations of si-

bling modules.. For example, suppose a leg module has

pointers to lower level foot, calf and thigh modules.

If a thigh and foot have already been found, then when

the leg module activates the calf module, it should

give addit.ional information about the expected size,

-146-

position and orientation of the calf.

2. There is evidence (Navon 1977) that in human per-

ception, an awareness of coarse, global structure pre-

cedes the analysis of details. In hierarchical syn-

thesis this is impossible since t~e only way of dis

covering that a high level module is instantiated is

via its lower level modules. What is needed is a more

direct link between higher modules and the grey-level

data.

3. For many objects, there is no natural unambiguous

hierarchical decomposition into parts, so each module

may need to have alternative relational networks using

different decompositions (see. Turner 1974). Another

reason for wanting modules corresponding to many dif-

ferent, overlapping fragments of , . + . an oojec .. 1s that

when an object is partially occluded, the remainin~

fragment is probably easier to recognise if it can be

seen as one of a few known fragments th2n if it can

only be analysed as fragments of fragments.

4. In general, modules will not find perfect instan-

tiations, so some mechaniso is needed for makin~ the

best of imperfect ones. Turner Ct974) uses linear

threshold functions to decide whether an

stantiation is acceptable. However, this means that a

high level module may accept an instantiation consist

ing of many barely acceptable parts, but reject one

with several perfect parts and one just unacceptable

-147-

one. As in cliqc3-finding, local thresholding cannot

guarantee the global optimum.

5. Perhaps the greatest potential advantage of LP

re la xa ti on over graph-matching techniques like

hierarchical synthesis or clique-finding, lies in the

way that occlusion, lighting, and support might be

handled. It is hard to see how knowledge of these ef

fects can be mobilised in graph-matching. In fact,

occlusion is typically treated as if it 1:1ere inexpli

cable noise (Turner 1974). By contrast, LP relaxation

provides a mechanism which should be able to incor

porate specific inferences based on explicit hy

potheses about occlusion, lighting, or support, se>

that relaxation could integrate decisions about these

effects with decisions about three-dimensional shape.

Naturally, a great deal of work would be required to

write a program which demonstrated that this promise

could actually be fulfilled.

-148-

CHAPTER 6

PERCEPTUAL SCHEMAS AND THEIR RELATIONSHIP·
I

TO PERCEPTUAL AWARENESS.

The main aim of this thesis is to investigate relax-

ation as a method of finding optimal interpretations of

scenes, and so many important perceptual issues have been

deliberately avoided in discussing the relatively simple

applications of relaxation which have been described so

far • Ho 'tJ ever , t h e next a pp 1 i c a t i on to be des c i bed is a

system which allows relaxation to be used in the con-

struction of more complex perceptual representations, and

in order to implement the system, it was necessary to

face up to some difficult general issues. Decisions had

to be taken about the types of representation used in

perception, and about the relafionship between stored

knowledge and the current awareness of r~ particular

scene. So this chapter discusses these issues, and then

_ Chapter 7 shows, in detail, how a particular approach to

them can be incorporated in a working system.

6.1: Current awareness and stored knowledge

It will be assumed that the representAtion of a par-

ticular scene is some kind of relational nework, (see

-149-

Guzman 1968, Winston 1970). An important issue is how

these representations are related to those of stored gen

era l kn o~'l 1 ed g e about the for m s o f ob j e c t s • I n psycho 1 o g

ical terms this amounts to the relationship between the·

contents of current awareness and the contents of long

term memory. There is a vi ev;, common in· Psychology and

Artificial Intelligence, that the two types of represen

tation are similar in form, so that the contents of long

term memory are like copies of the contents of current

awareness. This view will be criticised and contrasted

with.an alternative model, a simple version of which has

been implemented.

The following two assumptions constitute a model of

how objects are remembered and recognised which seems to

be used implicitly by many psychologists.

1. Long term memory consists of a store of soillething

like copies of percepts, and recalling consists in re

trieving things from this store, or in activating

them.

2: Recognition involves comparing percepts with

stored memory images.

Some of the plausibility of this model of recogni-

tion and memory may cqme from its similarity to well.

known systems which work in just this way. For example,

finger-prints are recorded by taking copies of them and

suspect prints are recognised by comparing them \•Ji th the

-150-

stored copies. Also, the conten~s of current awareness

seem, introspectively, to be similar when we perceive an

object and when we recall it.

A quite different model of memory, which was sup-

parted by Bartlett's (1932) experi~ents, is that recal-
:

ling is a constructive process of creating a coherent,

articulated representation rather than simply re-

activating or r etri ev ing a eo py·. A good analogy is

·"remembering" a sweater by keeping the knitting instruc-

tions so that the sweater can be recreated, as opposed to

re~embering it by keeping another similar sweater. On

this model, the contents of current awareness resulting

from recall may be different from the contents of long-

term memory, so . that the expression "memory image" must

be reserved for one or the other. If we use "memory im-

age 11 to mean a rep~esent~tion in current awareness creat-

ed in the absence of the relevant perceptual input, then

the contents of long-term membry may be nothing like a

memory image.

Perceiving is also a constructive process which uses

some of the same long- term memory information as

remembering, but this does not m~an that any rememberinJ

goes on when we perceive. We may deliberately choose to

compAre a perceived· object vJith a memory image, but this

is introspectively quite different from the p~rception

and feco~nition of a familiar object.

The evidence against the stored copies model co~es

-151-

rna1"nly fron1 the gener~tl.'le t f t· j • Ll r:1 na ure o percep 1on an,

memory. Bartlett, for example, showed that if peo~ple

are asked to recall A story after progressively longer

intervals, they produce stories which contain less and

less of the detail of the original and are more and more
I

i

in accordance with general expectations. This seems to

fit the idea that what are stored are rules for con-

structing the story and that if any of the rules are

lost, general principles are used in their place. The

idea of stored rules also seems to be necessary to ex-

plain how we can perceive objects which have never before

been encountered, such as a flight of stairs with nine-

teen steps. Stored copies of previously perceived

flights of stairs would presumably contain a particular

number of steps, but what we n~ed is an awareness of the

grammar of stairs, the way in which risers and treads al-

ternate. The similarity between structures built during

perception and the structures which Linguists assign to

sentences, has been expounded by Narasiman (1966) and

Clowes (1969) among others. The linguisti~ analogy is

particularly helpful here, for supposing that our

_knowledge of spatial structures resides in stored copies

of percepts, is like supposing that our knowledge of

grammatical structure resides in a set of stored sen-

tences.

6.2 Frames

In a widely read paper, Minsky (1975) expounded a

theory of the way in which knowledge is structured and

used in perception and understanding. His theory will be

discussed at some length, mainly inforder to attack his

view that current awar~ness and long term memory have the

same form, but also because many of his ideas about t~e

structuring of knowledge into frames are incorporated in

the system to be described.

6.2.1: An example of a schema

The idea that we understand the world by assimi lat

ing it to our own schemas Cor frames) is far ·from new,

having been expounded by Kant (1781). Piaget C 1954) ·and

Bartlett (1932) among others. The difficulty of the fol

lowing task is a striking illustration of the existence

of schemas and their ~owerful influence on our awareness

of reality. Imagine a solid, regular tetr8hedron, and

then try to imagine a plane which cuts it so as to give a

square cross-section. Most people cannot imagine such a

plane. Their schema for a tetrahedron gives it a tri

angular base and three sloping triangular faces. There

are three horizontal base-edges and a tripod of other

edges. Not only are there no right angles, but edges and

faces nAturally fall into groups of three.

There is, however, a quite different schema for a

-153-

.tetrflhedron, whi eh is more a ooroori ate
• . l

\'I hen the

t e t re he d r on i s i n a d i f f ere n t or i en t a t i on , · s i n c e then t he

edges and faces which are grouped together have similar

inclinations to the v~·rtical. Imagine a horizontal edge

resting on the support plane, with another horizontal
I

i

edge at right angles to it and some distance above it, so

that the centres of the edges are vertically aligned.

Now join each end of one edge to each end of the other as

in figure 6.1. This is a quite different way of thinking

of a tetrahedron. The faces naturally form tv1o pairs

each of which is hinged across a horizontal edge. The

edges fall into a group of two horizontal ones and four

sloping ones. In volumetric terms, the tetrahedron can

be seen as a stack of rectangular laminae which are very

elongated at the bottom, become progressively squatter

nearer the middle, and are elongated the other way at the

top. Half way up is a square.

6.2.2: Minsky's theory

Minsky ptits forward a theory of how frames are used

_and inter-related:

_.,Here i ·s the essence of the theory: ~·lhen one

encounters a new situation (or makes a substantial

change in one's view of the present problem) one

selects from memory a substantial structure called a

frame. This is a remembered framework to be ad~pted

to fit reality by changing details as necessary.

-154-

-~-- --___!.... . .,..,

FIGURE 6 .. 1: A tetrahedron inscribed in a cube (after Hilbert

and Cohn-Vossen 1952). The top/bottom direction suggested by

the cube can be used for understanding the tetrahedron, b~t it

gives rise to a different schema from the normal one (see

section 6.2 .1). Conversely, the normal schema. for a tetrahedro:1

involves an intrinsic top/bottom direction which can be imposed

on the cube to reveal a different schema in which the hexagonal

cross-section is apparent. (This takes practice).

11 A frame is a dat-a-structure for representing a

sterotyped situAtion, like being in a certain kind

of living room, or going to a child's birthday par-·

ty. Attached to each frame are several kinds of in

formation. S6me of this information is about how to

use the frame. Some is about what one can expect to

happen nex~. Some is about whAt to do if these ex

pectations are not confirmed•

11 ~'/e can think of a frame 85 a netv1ork of nodes

and relations. The .!t top 1 evel s 11 of a frame are

fixed, and represe~t things that are always true

about the supposed situatiDn. The lower levels have

many terminals - "slots" that must be fi.lled by

specific instances or data. Each terminal can

specify conditions its assignments must meet. CThe

assignments themselves are usually smaller "sub--..

frames 11 .) Simple conditions are specified by mark-

ers that might require a terminal assignment to a

person, an object of sufficient value, or a pointer

to a sub-frame of a certain type. More complex con

ditions can specify relations among the ~hings as

signed to several terminals.

-"Much of the phenom enol ogi cal power of the

theory hinges on the inclusion of expectations and

other kinds of presumptions. A frame's terminals

are normally already filled with 11 defaul t-" assign

ments. Thus, a frame may contain a great many de-

-155-

tails whose suppositi~n is not specifically warrant

ed by the situation. These have many uses in

representing general information, most-likely cases~

techniques -for. bypassing 11 logicn, and ways to make

useful generalizations.n

One of the main aims of the theory is to show ho\'1 our ap

parently rich and complex immediate. awareness of the

scene can be compatible with seriAl processing. Minsky

believes that, although parallelism may be useful at

lower levels, it offers little help to hypothesis forma

tion and confirmation methods that seem necessary at

higher levels. Instead of the parallel formation and

parallel interaction of many hypotheses, expounded in

this thesis, he proposes tha serial manipulation of com

plex pre-existing structures so that the richness of

awareness comes from selecting the correct existing

structure rather than from constructing one.

6.2.3: Some Difficulties for Frames

Minsky implies that frames are data-structures which

get joined together by making terminal assignments during

perception. This creates a problem for rooms with two

windows. Presumably there is only one window frame, so

what happens when both window slots in the room are

filled?. If the details of the windo0s differ, there will

be rival fillers for the slots in the window frame. It

-156-

seems that we must be able to copy the window frame and

use separate copies for the two slots in the room frame.

So the economical idea that all the main high-level

data-structures used in perception are ones that already

exist has to be abandoned.

A more serious difficulty is that some frames, such

es those for a polygon or a zebra crossing, need to have

a v2riable number of slots. This suggests that frames

cont~in ~enerators for instances rather than simply being

copied to produce instances, just as in computing

languages structures like arrays are not made by copying

a standArd array but by a procedure which can take param

eters. Even when the number of slots is fixed, as in a

?0?-2 record, there is no need to generate instances by

copying a standard example. There is an important issue

here about the value of ~ particular example of the

structure - a structural template - as a model of struc-

tures of that kind. At first sight such a direct

representation seems to have many advantages (see Sloman

1971). However, it also has many disadvantages. For ex

ample, our knowledge that a square has square corners is

more economically represented as a single rule that can

be applied to any corner of the square rather than as

four separate pieces of knowledge atteched to the four

corner slots, and the same goes for our knowledge that

each white .stripe in a zebra crossing is bounded by two

black ones.

-157-

Another difficulty for_ structural templates, stems

from the hierarchy of types of _object. For example, an

ostrich is a type of bird, so it seems to be redundant to

have a frame for an ostrich which contains two slots for

wings, since this structural informBtion is already
I

con-

tained in the frame for a bird. Although it may be con-

venient, as an implementation detail, to store knowledge

about ostriches within a bird-frame, this structure need

neither be used nor copied to create the bird instances

used for representing a particular ostrich, since we may

create a representation of a bird before deciding whether

it is an emu or ostrich and hence before the ostrich

frame has been selected at all. The view that instances

Are created by copying frames leads to awkward questions

about whether to copy the bird frame or the ostrich frame

or both in order to represent a particular ostrich. Such

questions do not arise if stored knowledge consists of

schemas which define roles and rules (see below) since

then the instance representing an ostrich in current

awareness can derive roles and rules from both schemas

simultaneously.

A further unsatisfactory feature of frames is their

use of default fillers. One reason for having default?

seems to be that since frames are structural templates

the slots gre available, so they might as well be filled

with something. A default is a simple direct way of

representing a particular expectation, but it is clearly

inadequate for representing a range of possible frame-

-158-

types, or restrictions which any particular instance of a

frame must sBtisfy in order-to fill the slot. Given that

some more sophisticated kind of representation is needed

for this more complex information, it is questionable how

much is added by using specific defaults. Minsky"s

claims that defaults are useful for bJ-passing logic and

making generalisations have yet to be substantiated.

Reasoning with defaults is a tricky business because of

their peculiar status. They may be suggestive but in

particular cases no firm conclusions can be drawn because

the defaults may be wrong.

The main motivation for defaults is to explain the

apparent richness of immediate awareness without appeal-

ing to parallel processing at high levels. There is no

need, however., to suppose that decisions have already

been taken about specific details when we first perceive

a se en e. rii u c h of the de t a i 1 may on 1 y be apparent 1 y

present, owing to the peculiar properties of introspec-

tion. When we examine real objects such as a television

picture we can assume the picture does not change simul-

taneously with our attention, so if we examine one part

-of it in detail we can assume that all those details were

then even when we were not looking at that part. We have

no such guarantee for introspection, so it may well be

that people use a kind of "demand processing" whereby

slots are filled only when their values are needed. If

this process is smooth, rapid and unconscious it might

well appear to naive introspection that the fillers were

-159-

there all the time. This line of argument has its own

problems because decisions about how to fill one slot

normally involve decisions about filling other slots, so

that slots cannot be filled one at a time when needed.

Ho'tlever, demand processi-ng seems 1 i ke: a
I

good

to defaults, if one wants to explain how

alternntive

richness of awareness could be compatible with relatively

slow serial processing.

-160-

CHAPTER 7

A SYSTEM ~~IHICH USES RELAXATION ~0 COORDINATE

NETWORK GROWING RULES.

If one accepts the view that perception consists in

using stored rules to grow a network of instances from

the low-level data, then two of the major issues which

arise are:

1. How is it possible to notice the occurrence of

subsets of instances which satisfy the left hand sides

of rules, without extensive searching?

2. When the low-level data or the rules are dubious,

how can relaxation be used to find the best consistent

interpretation?

A system called SEITLE has been implemented which

incorporAtes answers to both these questions. SEITLE is

described in detail in the rest of this chapter, gnd is

illustrated using the domain of .family relationships.

7.1: Overview of the SETTLE system.

SE IT LE or o v i des a s et of fa c i 1 i t i e s \·J hi c h a r e

designed to make it easy to write programs of a particu-

-161-

lar kind. The aim of the system is to allow the user to

concentrate on defining the schemas needed for a particu

lar domain, and the inference rules which apply to coobi-

nations of instances of the schemas. The business of

noticing when rules apply, setting up the relevant con
I

straints between hypotheses, and achieving a consistent

network of instances is handled by the system.

The term Schema will be reserved for stored

knowledge about a particular type of entity and the term

Instance will be used to refer to a represent~tion in

current awareness of an entity of that type. Schemas are

thought of as far more like grammars than like instances.

A Schema specifies a number of roles or slots which have

associated restrictions on individual fillers, or on the

relationships which should hold between the fillers of

different slots. Schemas do not, at present, contain

pro~edural information about how to search for fillers of

slots. It is hard to use knowledge gained at run-tioe

about properties of the thing that should be in a slot,

to constrain the search for candidate fillers. This

problem has been temporarily ignored.

Instances and the connections between theo are

created by the action p~rts of rules. An action is P;:::!Y"-
.... J.

formed \•Jhen. the pattern specified on the left hand

of a rule matches a subset of the existing instance-

network. For example, a rule might say th2t if a person

A has a spouse B, and A also has a child C, then tha

-162-

11 child 11 slot of B should be filled by C (only convention-

·al families are allO\'Ied!). Once this·rule has been en

tered in the person schema, the system ensures that it is

invoked whenever it is appropriate. In 'this respect

rules resemble Planner antecedent theorems CHewitt 1972).

Each instance and each filling of a slot is a hy

pothesis. It has an associated supposition value and is

bound by constraints. For example, when the ru 1 e

described above is invoked, the action part not only

creates the hypotheses that B has C as a child, but also

sets up a constraint so that relaxation will ensure that

this hypothesis is accepted if the hypotheses '"ihich ·

matched the left hand side of the rule (called its key)

are accepted. The use of relaxation means that instances

and connections can be added to the network even though

they are not definitely correct. If costs dependent on

the, probabilities of tentative hypotheses are associate j

with their rejection, then relaxation will find the most

probable combination of instances and connections.

7.2: Schemes.

The person-sche~a which will be used to illustrate

the SETTLE system is created by the command:

MAKESCHEl.\A (11 ?ERSOt\JI 1 , [SPOUSE PARENT 2 CHILD 0 SEX

SURNAME]);

-163-

The v1ords following 11 Person 11 are the names of the slots.

Slots are assumed to be limited to one filler unless they

are followed by a number indicating a higher limit (0 is

used to mean no limit). ~hen an instance of the schema

is required, a one-dimensional array (a strip) is creat-
i

ed. The function rtmakeschema 11 assi6ns strip-accessing

functions to the slot names so that they can be used to

access the slots of instances.

7.3: Slots.

A slot is not simply a location for holding a

pointer to some other instance. It is a complex data-

structure with the following components:

1 • A p o i n t er b a c k to the part of the s c hem a ~,,hi c h

contains information about the slot, such as the rules

involving its fillers.

2. A list of demons which are waiting for new slot

fillers (see below).

3. A list of hypotheses about potential slot fill-

er s.

t ·~ .. ! .. _-_

7. 4: Bonds

Connections between instances involve each instance

filling a slot in the other. Slot fillings are hy-

potheses which are bound by constraints and have their
..

supposition values manipulated. by ~elaxation, so they

need to be represented by data-structures rather than

simply being pointers. The system us~s structures called

"bonds 11 to implement slot fillers. As figure 7.1 sho\ts,

a bond has pointers to the two instances which it joins,

and also an associated record, called a surposition-node,

vi hi c h con t a i n s t he s up po si t i on v a 1 u e of the bond and the

constraints involving it. The relevant slots in the two

connected· instances have pointers to the bond in their

lists of candidate fLJ.lers.

In the domain for which the systeo was designed,

when A fills a particular slot in 8, it generally follows

that 8 must fill a kno\'/n slot in A, and so it is unneces-

sary to have separate hypotheses about the two reciprocal

fillings. This is the reason for using a single two-way

bond rather than two one-way ones. When a slot is fLlled

with something other than an instance, or when the in-

verse slot is unknown, a single slot filling can be

represented by sfmply omitting one of the pointers to the

bond.

The way in which slot fillings are impleoented is

ex pensive and cumbersome, but the cornpl.exi ty seems to be

a necessary consequence of the need to refer to fillings

-165-

\
\
\

I I
l r
r /

8
I I

8
List DJ List of

List Of· bot?ds lh boh d) Lh List eLl
SLot r , d e;;..;o:~ deW~oh5 I) L c r

Dh >lot I Oh >fot
I I

I
I

\ /
I

\} -v ~ 'V'

lt'IGURE 7.1: Showing some of the data-structures used in the

SETTLE system. The use of demons, and explicit constraiHts

means that the connections between instances are considerably

more complex than simple pointers from a field in one inst&~ce

to the other instance.

as hypotheses.

7.5: Specifying Rules.

Once a s eh em a has been created, ru'l es can be added
I

to it .. These determine how instances of the schema can

combine with other instances. Rules typically specify

that a particular subset of instances is illegal, or that

it implies some other instance or bond between instances.

Rules are entered in a list format that is convenient for

typing, but they are compiled into records containing a

key and an action, before they are stored in schemas.

The left hand side of a rule contains a list of bonj

specifications and a list of other conditions 111hich must

be satisfied by the matching instances. For exa;nple, .L..'
~..ne

rule that a person's child is also their spouse's has the

folloNinq form:

[3 PERSON [A CHILD CJ [A SPOUSE BJ J ===> [inferbon:!

([8 CH I LD C J) J ;

The square brackets are list brackets. The first two

items of the LHS are the number of the rule and the sche-

ma to which it should be added. The remaining items are

bond specifications. These declare variables which

bound to instances during a match. There are conventions

that if a variable is repeated it must be matched to t~e-

-166-

same instar.ces, and that different variables must be

matched to different instances. The specification [A

CHILD C] should be read nA has child C11 •

There are several elaborations to the basic way of

specifying a bond. [A BROTHER 8 SISTER] is equivalent to
I

I

the two specifications [A BROTHER BJ, [8 SISTE?. AJ. Such

a specification may be useful when slots do not have

unique inverses. [A SEX=· MALEJ is used to indicate that

the fi 11 er of A~ s sex-slot should be the v;ord u::nal en

rather than an instance. (A SEX /= MALE] means that an

instance will only match A if it does not have male in

the sex-slot. Any part of a specification c-3~ be preced-

e d by t h e 11 & u s i g n w hi c h causes the v a 1 u e of t he f o ll o \·!-

ing word to be used. For example, if the value of the

variable SLOTNAME is !!CHILD" and. the velue of the vari-

ab 1 e X i s C , t h en [A &. SL 0 TN Ar.:! E & X J i s e q u i v a l en t to [A

CHILD CJ. This facility is useful when rulss .:1re being

generated by a function ·rather than being ty~ed in

directly.

F i n a 11 y , i t ems s tart i ng w i t h a 11 • 11 on t ~1 e LH S o f a

rule specification are conditions which must be satis-

fied. For example, t6 ensure thAt children ere younger

than their parents, the following rule could b~ adde::.f:

[4 PERSON [,tJ. CH I LD C J (A AGE X J [C .t. G E Y J [• LE SS

Y J J == >, [CON T R AD I C T I 0 N () J ;

-167-

Condition specifications consist of a dot followed by a

function or function name- followed by arguments (as in

lisp>. The match fails unless the function returns true.

Variations in the way in which conditions can be speci-

fied are explained in ~omments in the code in Appendix 6.

7.6: Rule invocation.

This section starts by describing a method of rule

invocation which assumes that all the instances and bonds

are present before any matching starts, and then shows

how the method can be extended to the harder problem of

noticing vvhen a rule becomes applicable through the addi

tion of a new instance or bond.

The LHS of a rule is compiled into a key, which is a

data structure that is designed to facilitate rapid

matching.

each of

matchinq.

A key is a rooted, directed graph of keynodes,

which gets bound to a different instance durinJ

The basic strategy is to bind the keynodes one

at a time and to generate candidate bindings for new key

nodes by looking in the slots of instances which are al

ready bound. For example, if the bonds specified are:

[A CHILD C] and EA SPOUSE BJ

then once. A has been bound, the fillers of its child and

spouse slots are the candidates for C and 8 respectively.

-168-

On 1 y per f e c t mat c he s to the k e y a r e re qui r ed , .,.., hi c h

means that the keynodes can be bound in a predetermined

order, and a match can fail as soon as it reaches a key

node for which there are no suitable instances. The sup

position values of instances and bonds are ignored durin~

matching, so several alternative bindings ~ay be possible

for a keynode and a depth-first search is used to find

all the ways in which a key is instantiated in the in

stance network.

The candidate bindings for the first keynode are all

the instances of the schema with which the rule is asso

ciated. Bond specifications are used to give eAch key

node, except the first, a pointer to an earlier keynode

and an associated slot narne. It uses these to generate

c.qndidate instances from the instance bound to the ear

lier keynode. The candidates are not al~ays feasible,

because they may already have been bound to ·an earlier

keynode, or they may violate one.of the conditions s~eci

fied later in the LHS. Each such condition is associated

with a particular keynode and, in order to prune the

search, it is tested as soon as that keynode is boun~.

Conditions which take as arguments the instA~ces bound to

several different keynodes are associated with the last

one to be bound.

If ~ore bonds are specified than there are non-root

keynodes, then the key will be a lattice or grAph rather

than a tree. In this case the system selects A subset of

-169-

the bon~ specifications which form a rooted tree, and

uses these for generating candidate bindings, as above.

The remaining, extra bond specifications are handled like

the conditions. They are associated with the last of

their keynodes to be bound and are tested before
i

bindings. I

If the bond specifications do not contain a

further

rooted,

directed tree, then there may be no economical W3Y of

generating candidate bindings for some keynodes, so keys

of this form are not allowed and any such rule specifica-

tion is rejected by the system.

So far the description of rule invocation has ig-

nored the fact that the instance network grows, so that 9

match which initially fails may later succeed.

new bond is added to the network the sy st e:-:t needs to h.::: V9

some way of deciding which keys may now ~atch. It would

be possible to index each key under all the types of bon·:i

involved. However, if a potentially relevant key ~as

found in this way, then a fresh match would have to start

at the new bond and so the simplicity ani speed gained by

~being able to match the keynodes in a oredetermined order

would have to be sacrificed. Also, if m3tching sterte:i

afresh with each new bond, there would (;e ~ great de3l or

duplication of the 'l'lork done during ear-lier, feilei

matches.

An 3lternative strategy, which agai~ deoends on the

fact that only perfect matches are required, is to set up

-170-

a de8on whenever a match fails on account of a missing

bond. The demon 11 si ts 11 on the slot in which the bond

will go, and so no searching is required to activate . ~
1 l...

The demon keeps a list of the .instances to which keynodes.

were bound in the earlier match before it failed. So
I
I

when a n e VJ b.; n d i s put in the s 1 o t , t he key nodes can be

rebound and the match continued using the ne\•/ bond,

without any duplication of previous work. The demon is,

in effect, a suspended partial match.

Since any slot may gain another filler after the

first attempt at matching a key, it is not sufficient

only to leave demons on slots containing no suitable

filler. Every slot which is used to generate cAndidate

instances for a keynode needs to be given a de~on. This

leads· to a lot of demons and so implementation tricks

(explained in coMments in the code), are used both to

keep down the number of demons and to make then compact.

7. 7: Jobs

It ~ould be possible, when a key matched, to perform

the c o rr e s pond i n g a c t i on i mm e d i at e l y. Ho \'I eve r , a c t ions

often create new bonds which cause other keys to match or

the same key to match in a different way, so actions

would be called within other actions. If this embeddin;

occurrerl in any depth, it would cause inconveniently deep

callin~ sequences. Like several other progr~os CSloman

-171-

1977, Paul 1977) the system avoids this problem by using

a job queue. When ever a new bond is added to the in-

stance network, all the resulting matches are found. For

each match, a job-record is created which contains the

bindings of the variables in the key, ~he bonds matched
I

. i
by the key, and the action part of the rule. The job is

added to the queue. When the job is run it restores the

bindings of the variables used in the key, so that the

code for the action can use the variables to refer to the

same instances. The matchi~g bonds are stored because

actions typically infer some other bond fro~ them and so,

for the purposes of relaxation, they need to set up a

constraint between the matching bo0ds and the inferred

one.

There is another and more important reason ror using

jobs. Any system which is based on forward chaining (an-

tecedent theorems) and also keeps alternative possibili-

ties, is liable to explode. Some Qethod of limitin~ the

forward chaining is needed, and the SEITLE system uses

relaxation coupled with the assumption that an action is

only relevant if all the bonds which matched the key have

high supposition values. For example, if A rule involves

inferring a new bond from the old ones matching the key,

then the action wLll set up a constraint which requires

the new bond to be true if all the old ones are. This

constrAint has no effect if any of the old bonds are re-

jected, so there is no point even making the constraint

u n 1 e s s a 11 t h e o 1 d bonds ha v e hi g h s r 1 pp os i t i on v a 1 u e s •

-172-

It would be possible, but not easy, to tAke supposi~

tion values into account during matching. When a match

failed because there was no suitable bond with a high

enough supposition value, a demon would be set up waiting

for such a bond. Unfortunately, by the time a suitable
I

bond arrived, the supposition value of some bond used

earlier in the suspended partial match might have fallen.

So whenever high supposition values fell, it would be

necessary to garbage-collect all the demons which were

waiting to complete the partial matches which were no

longer valid. A further difficulty would be that oscilla-

tions in the supposition value of a bond would cause the

same match to be rediscovered several times.

The system ignores supposition values wh~n findinJ

matches but takes them into account in deciding whether

or not to run a job. It examines the first job on the

queue to ensure that all the bonds which matched.·its k 0'' '-)

have high supposition values. If they do, the job is

run, but if any are low, the job is removed from the

queue and hung on the bond responsible. Whenever .!..'
~...ne

supposition value of a bond rises to a high enou~h value,

-a check is made for hanging jobs, which are· then put bac~

on the job queue. The effect of this procedure is thet

jobs are only actually run when all the bonds matchi~g

their key have high supposition val~es, so that ma~y

ineffective constraints and unsupported bonds and ir.-·

stances are never added to the instance network. Provided

all the scores are neqative, hanging jobs c8nnot lead t~

-173-

the best global interpretation being overlooked. Running

a job can only make matters worse for the set of bonds

and instances currently favoured by relaxation. Any set

of hypotheses which is rejected by relaxation would still

be rejected after running hanging jobs which added furth-
-- i

er constraints or costs to that set. I

7.8: An example of the SETTLE system in action.

Although SETTLE is intended as a way of applying re-

laxation to vision tasks, the domain of fa@ily relation-

ships has been chosen to illustrate, in detail, how the

systeo ·r'lorks. The reason for the choice is that people

are very familiar with family relationships, so there

should be no. confusions about the domain to acd to the

difficulties of understanding the systeo. The exanple is

not intended as a model of how people hanile information

about family relationships.

7.8.1: Specifying rules about family relationships.

Only one schema is used in this example. Figure 7.2

shows how it is defined, and how the systeo is told about

rules to be applied to instances of the scheme. v'lhen

this code is compiled, the structures made fro~ the

the rule specifications are essociated with the relevant

par t s of the per son s c he m a • For ex a m p 1 e , r :J 1 e l i s k e p t

-17 /J,-

MAKESCHEMAC"PERSON",[SPOUSE PARENT 2 CHILD 0 SEX SURNAMEJ.);

COMMENT SOME SLOTS HAVE KNOWN INVERSES;
SPOUBE<-··>SPOUSE !I PAF\:ENT<····>CH I LD ~

COMMENT A PERSONS PARENTS ARE MARR~ED;
[1 PERSON [X PARENT P1J[X PARENT P2J J
==> CINFER<[P1 SPOUSE P2J)J;

CDr·tl·-tENT A PEI~SDNS CH II ... DI:~EN AF\E AL~30 HIS ~)PO USES CHILDREN;
[2 PERSON [p CHILD CJ[P SPOUSE QJ J
==> CINFERC[Q CHILD CJ)J;

COt·ii·1ENT A PEr~SDNS SPOUBE IS or:- THE OF'F'DS I TE ~3EX 1
[3 PERSON [p SPOUSE QJ[P SEX SJ J
:::: = > [I F S = 11 i''l r:) L. E 11 THEN IN FE 1:\: ([0 SE X ::::FEMALE])

ELSEIF S="FEMALE" THEN INFER([Q SEX =MALEJ>
ELSE INSTPRCP>JPR(' HAS FUNNY SEX !);PR<S>;
CL.D~3EJ;

COMMENT SPOUSES HAVE THE SAME NAME;
[4 PERSON [p SPOUSE QJ[P SURNAME NJ J
==> CINFERC[Q SURNAME NJ)J;

COl"-iNENT rit~L.E CH I I...DI:\:EI·· .. ! Ht1VE THE IF~ p,~~lF;~ENT~:; i'·!i":~·,i""JE;

[~5 PER~:)ON [P CH I I ... D C J [C SEX ==l'i1~~1... F] J
==> [SAMEFILLER(P,SURNAME,c,SURNAMEJJ;

COMMENT UNMARRIED FEMALE CHILDREN HAVE THEIR PARENTS NAME;
[6 PEI:;.~SOI'·.! [C SEX ::::FEI'lf."~I...E J [C BPOU~)E =NONE J [C F'f~l!:;~ENT F' J J
==> [SAMEFILLER<C~SURNAME,p,sURNAME)J~

C 0 r1 t'i ENT FE r'l f~ L. E CH I L. :0 F;~ EN l}J I T H THE I F~ P c-':tl~ E r·i T ~:> r·l A r1 E A F~ E .
PROBABLY UNMARRIED;
[7 PERSON [C SEX =FEMALEJCC PARENT PJ[C SURNAME NJ

t::P Sl.JF~Nf.ll·-lE N::l J
==> [SOFTINFER<CC SPOUSE =NONEJ,0.7)J;

COMNENT l"'l~~iF:F;: I ED CH IL.DF;:EN t•.JHO H(~\.JE THE IF:
PARENTS NAME ARE PROBABLY MALE;
[8 PE~SON CC SPOUSE /=NONEJCC PARENT PJ[C SURNAME NJ

t:: P ~:> U F;~ i··.J ~~~, f"'l E . N J ::1
==> CSOFTINFER([C SEX =MALEJr0.7)J;

FIGURE 7.2: The person schema and some rules about family

relationships.

in the part of the schema w~ich stores • .t= • •
1 n.~. orr.:.:=:n::on

relevant to the PARENT slots of the instances. When 2n

instance has_ its parent slot filled, the key of rule

will start matching by binding the keynode for X to the

instance and the keynode for P to the ~iller.
I
I

There are several features of figure 7.2 which have

not, so far, been explained. Rule 3 demonstrates the

convenience of being able to use arbitrary POP-2 code to

specify the action p a r t of the r u 1 e • I t a 11 o v1 s e rr or

messages and tracing to be included, as well as allowi~;

arbitrarily complex actions.

Rules 5 and 6 show the use of the SA!\~EFILLER fu::c-

tion. It is often possible to infer that two slots mus~

have the same filler, without knowing what it is.

knowledge could be captured in two rules each of ~hie~

required a filler for one of the slots as part of ~~~-

condition, and then inferred that the filler also fille~

the other slot as its action. However, it is mor-e

economical to have a single rule with a si~pler conditi~n

which sets up special demons on both slots, so that 2~1

_fillers of one are inferred to fill the other, subject ~o

the continued truth of the conditions which caused· t~e

demons to be set up.

Rules 6, 7, and 8 show how the filler "NONE" c~:1 be

used to represent the fact that there is no filler foi 2

slot of a type which can have at most one filler.

-175-

such a slot, the system automatically keeps· a con-

straint, which it modifies when new candidate fillers are

found, to prevent more than one filler being accepted as

true. So by supporting the filler 11 NONEi', real fillers

can be kept out.

needed, since

Some. kind of mechanism like this is
!'

i

the known absence of a~y filler cannot be

represented simply by the absence of fillers from the

slot. However, it may be that using 11 NONE 11 fillers is

just an unprincipled hack. The method cannot be used

when slots which can potentially have any numbei of fill-

ers, are discovered to have none Cas opposed to not be-

ing discovered to have any). I suspect that this ap-

parently minor difficulty is the tip of an iceberg.

Sometimes, the implication of a rule involves quantifiers

rather than being about particular fillers. These are

hard to handle in the current SETILE syste;n. 11 SAMEFILL-

ER 11 demons and 11 NONE 11 fillers cope viith the tv;o cases

that have arisen so far, but a more general. mech3nism for

handling quantifiers would be better.

Rules 7 and 8 show how non-binding inferences can

be handled. The function SOFTINFER causes a constraint

to be set up, so that if the conditions of the rule are

accepted, but the implication is rejected, then a penalty

of 0. 7 is pa i d. (See section 4.6). This particular

number is qiven meaning by its magnitude relativa to

other costs which determine the trade-offs made in de-

ciding which hypotheses to accept and which to reject.

-176-

7.8.2: Interpreting claims about specific people.

Figure 7.3a shows one way of inputting data about a

particular set of people and their r~lationships. The

claims give
I

preferences to parti cu l'ar bonds. Their

strength, 1, means that a claim can override one soft

inference, but not two, since 0.7 + 0.7 > 1. The in-

stances and candidate bonds are shown in figure 7.3b.

This also indicates the way in which bonds generated by

inference rules depend on other bonds. The result of 29

round~·of relaxation is shown in figure 7.4b. It is the

best consistent set of beliefs given the claims and

inference rules. Figure 7.4a shows the job statistics

as relaxation proceeds. In this case relaxation is au-

tomatically terminated after 15 clear rounds in whic~ no

jobs are made or roused. Notice how three jobs made on

the second round of relaxation do not get run until

eighth round, when the bonds matching the rule keys have

a.ll attained high supposition values. The way the suppo-

sition vAlues change during relaxation is shown in figure

7.5.

7.8.3: The effect of·more, incompatible claims.

Figure 7.6 sho\·Js some more claims and the networic of

candidate bonds and instances v:hich is caused by these

extra claims and by the inference rules which they

-177-

trigger off. Some previously accepted bonds now have to

be rejected in order to reach the best consistent set of

be 1 i e f s i n t h e 1 i g h t of the · n e v.,r data • F i g u re 7 • 7 b s ho ~·1 s

this optimal set, which is discovered by the program.

Notice th8t one of the original claims (about the sex of

person2) has been rejected. Figure 7.7a again shows the

job st0tistics As relaxation proceeds trntil there are 15

clear rounds. The way the values change during this

phase of relaxation is shown in figure 7.8.

-178-

COMMENT THIS IS HOW PEOPLE ARE MADE;
2 <* MAKEINSTCPERSON) *>;

CLAIMC[PERSON1 CHILD PERSON2J,1);

CLAIM<CPERSON1 SURNAME =JONESJ,l);i

CL.f~Ir··j (t::PEJ=~SDN2 nur~Nf:~ME ::::.JDNE~>J !I :l) 9

CLAIMCCPERSON2 SEX =FEMALEJ,1)~

FIGURE ?.Ja: Some claims about people.

11

JoN£5
/I

,,
f[MALE"

I•

TONE>"

11

NON£

FIGURE 7=3b: The candidate bonds created by the claims and the

inferences they trigger off. Bonds are given numbers, and

implicationsbetween bonds are indicated by following a bond

number with the numbers of a conjunction of bonds that imply it~ ·

! :1. !7j " s <-":~ t t. 1 (-:~ 9

F~OUSED F~UN BTDf~ED 11f~lDE

() () :1. ()

0 0 0 ()

:1. 1 () 3
() () ~:~ 0
0 () () 0
() () 0 ()

:3 :3 () 2
() '")

./a• •• 0 0
() () 0 ()

() () () 0
0 () () _0
0 () 0 ()

0 0 0 ()

0 0 () ()
() () 0 ()

0 () 0 0
0 () () ()

0 () () ()

0 () 0 0
() 0 0 ()

0 () () 0
() () 0 0
0 0 () ()

FIGURE ?.4a: Job statistics. Each row corresponds to a

round of relaxation. Tobs are roused when a bo~d which

they depend on reaches a high enough supposition value

(0.7 in this case). Jobs are stored if any bond they

depend on has a lower value than this.

! ,. shot-.rt 1'1..1<-":~ ;;

_ PEF:~sON2
SPOUSE [NONE·J PARENT [PERSONl J CHILD CJ SEX [FEMALE J
Sl..IF~Nf~,{--IE [JONES ::1

PEf~SON:I.

sPousE r: ::1 P ,~ r~ ENT 1:: ::1 c H I 1... r.r 1:: PEr~ noN 2 J sEx . r: J
SUF<.Nt·,r· .. iE C • .JDNES ::1

FIGURE ?.4b: The optimal interpreta-tion of the claims,

reached by relaxation (see figure z.s).

! 2 0 ~ run ITJ o r e ~
~)() ~j0 60 60 60.60
57 60 60 7:1. 7:1. ?l
69 76 7b 8'") \.A.. B4 B.<l- ~::;o 0
83 90 BB 9.4 9B r;n ~)() 0
<J6 99 97 9<J 99 <)<_".) ··- , .:)o 0
99 99 99 99 9<;> 99 c.>7 0
99 99 99 99 99 99 fJO ()

99 <J9 99 99 <?9 <J9 9:1. ()

99 99 99 99 99 99 9<} ()

99 99 <.i9 99 <J<J <"J<j' 99 0
99 99 99 <J~i <_".)9 99 99 0
99 99 9? <;.>9 q<:> , ,. 99 99 0
99 99 99 9'i 9<.:; 99 9? 0
99 99 99 99 99 ')9 99 0
99 99 99'99 9<.)> <.1'9 99 0
<;>9 99 99 99 99 9S' <.:,.'9 ().

99 99 99 9<? c-.q
1' 99 9<) 0

99 99 99 99 9'? 99 (;)(J
/ / ()

99 99 99 9•:;> '?9 <_i)<J 99 0
99 99 99 9~:.> 99 c;.>9 ~t9 0

P:t. P:l. P':> r·· \ .. :.:.: P':>
P1 P2 F' ·:> ~JD • .JO FE NO cr-J

FIGURE 7.5: Showing how the supposition values change during

relaxation after the claims. The "headings" are at the bottom

because not all the hypotheses are known in advance.

The column headings in this figure are rather cryptic.

Headings with just one row refer to a person instance (e.g. Pl),

or to the extra hypothesis set up by a soft inference rule

(rule 7 or 8 in figure 7 .2). Constraints force such an extra

hypothesis to be accepted if the rule is broken, and a cost is

then paid. Unfortunately, the relevant inference cannot be

identified from the heading. Headings on two rows refer to

bonds, either between two instances, or between an instance and

a word which is abbreviated to its first two letters.

,,

2 <* MAKEINST<PERSON> *>?

CLAIM(CPERSON2 SPOUSE PERSON3Jy1);

C L1~ I M ([PER S D N 2 CH I 1... D PEr;: S D N 4 ::1 !1 :1.) v

C 1 ... A I M < [PER S D N 3 CH I L D PE H ~:; D N 4 ::1 !I i:l.) !I

C I ... A I M ([PE F\ ~:> D N ~:~ SE X ::::FE t-·1 f~) I ... E] v :1.) !I

JON£s''

" ,,

" ,,
Torv£ s

FIGURE 7.6: So~e more claims, and the resulting network of

candidate bon.ds. The slot names have been onunitted, but should

be obvious from the fillers. The bonds are numbered in order

of creation. The numbers in brackets after each bond number

are the sets of other bonds which imply it. Some of these

implications may only be weak ones, derived from rules 7 and 8.

Bonds which were entered as claims are underlined. The

claims may be rejected (e.g. bond 4). Competition between bonds_

for slots is not shown.

nAL£

I~OUSED F~UN STDF~ED l··iADE
0 () (."r' ()

:1. :1. 0 ()

2 '') ,,: .. () 0
0 0 0 0
6 6 () . ~5
() <?. ~5 0
0 (), 0 0
() 0 () ()

0 0 0 0
:1. j_ () 0
() 0 () 0
0 0 () 0
2 2 0 '")

1': ••

0 2 0 0
0 0 () 0
() () 0 0
() 0 0 0
0 0 0 0
0 0 () 0

FIGURE ?.?a: 'Job statistics for the relaxation following

the claims in figure 7•5• The last ten rows of zeros are

not shown.

! + Sh(Jklt T'I..IE) Y
F'Ef;:SDI··.~4
SPOUSE [J PARENT [PERSON3 PERSON2 J CHILD [J SEX [J
SUI~Nf:1f···lE [J

. F'EI;:SON3
SPOUSE [PERSON2 J PARENT [J CHILD [PERSON4 J
S~X CFEMALE·J SURNAM~ [JONES J

F'EF~SDN2

SPOUSE [PERSON3 J PARENT [PERSON1 J CHILD [PERSON4 J
~>EX [l'"i~,I...E J SUF;~r··li~·,I"'}E [-...IDr-!E~:>]

PEPSDNl
SPOU!:)E [J Pf~F<EI'·.!T [J CHILD [PEr;~SON2 J SEX [J
SUI~Nf:~,f·'iE [JDNES J

FIGURE ?.?b: The best interpretation of all the claL~s,

found after the 29 rounds of relaxation sh9wn above. Some

beliefs in figure ?.4b have been rejected.

!20 .. runmore;
99 99 99 99 99 99 83
99 99 99 99 99 99 70
99 99 99 99 99 99 66
99 99 99 99 99 99 68
99 99 99 99 99 99 66
99 99 99 99 94 80 59
99 99 99 99 97 70 52
99 99 99 99 95 64 43
99 99 99 99 99 64 39
99 99 99 99 99 59 37
99 99 99 99 99 53 36
99 99 99 99 99 46 34
99 99 99 99 99 40 28
99 99 99 99 99_35 22
99 99 99 99 99 30 17
99 99 99 99 99 26 12
99 99 99 99 99 22 9
99 99 99 99 99 19 6
99 99 99 99 99 17 4
99 99 99 99 99 15 3

P:l. P1 F'2 P;.:.~ P2
P :1. P2 P2 JO ..JO FE J-·.JO

0 50 50 42 60 60 60
0 57 57 39 71 68 71
0 69 69 43 82 74 82
0 83 83 60 86 77 94
0 94 91 70 96 87 99 50 50 50 0
0 99 98 58 99 95 88 42 38 55 0
0 99 99 74 91 89 82 33 22 59 c
0 99 99 62 94 93 82 41 18 64 0
0 99 99 72 92 92 91 47 18 67 0
0 99 99 74 95 96 98 56 19 70 0
0 99 99 77 98 99 99 63 16 73 0
0 99 99 84 99 99 99 68 12 77 0
0 99 99 85 99 99 99 73
0 99 99 89 99 99 99 77
0 99 99 93 99 99 99 81
0 99 99 95 99 99 99 85
0 99 99 98 99 99 99 89
0 99 99 99 99 99 99 91

:lO 81. - c-
<::J 85 0
8 g<;- 0

8 93 0
B 97 0
7 99 0

0 99 99 99 99 99 99 94 7 99 0
0 99 99 99 99 99 99 95 6 99 0

P2 P2 P3 P3 P2 P3 P3
CN P3 P4 P3 P4 P4 FE MA MA JO CN

FIGURE 7 .8~ Showing how the supposition values change

during the first 2~ rounds of relaxation after the extra

claims in figure 7.6.

CHAPTER 8

SUMMAHY

This chapter summarises the

the relaxation approach. It

presuppositions behind
I

then mentions the main

inadequacies in the treatment given to relaxation, in-

eluding the failure to relate it to human vision. Fi na 1-

ly there is a brief summary of what has actually been

achieved.

8.1: Presuppositions of the relaxation approach

L.P. rel2xation is only relevant to vision if the

following claims are correct:

1. During the process of building the internal

representation of a scene, tentative hypotheses must

be formulated and selections must be made from among

rival hypotheses.

2. A vi sua 1 system cannot arrive at the same kinds

of interpret8tion as people do, if inconsistency is

its only way of ruling out interpretations. It must

h~ve ~ way of arriving at good interpretations and

avoiding poor ones.

-179-

3. A sensible way of r~solving complex and unfore

seeable conflicts between sets of hypotheses of dif

ferent kinds, is to use numerical scores for the con

stituent hypotheses of a global interpretation and to

maximize the sum of these scores.

The first tNo claims are defended in Chapter I, and

though they may be false, they are not unduly specula

tive. The -third claim is the one which many artificial

intelligence researchers regard with suspicion. Some

workers (e.g. Paul 1977) regard the avoidance of real

numbers for evaluating hypotheses as a positive virtue,

and have demonstrated that, for some vision problems, ex

plicit numerical scores are unnecessary. If it is ac-

cepted that n um er i ea 1 scores are an undesirable last

resort, then their use can only be defended by showi n-;

that no other method l;'fi 11 lt/0 l-k. This ~·IOU le be very dif-

ficult, and has not been attempted. Instead, the preju-

dice against numerical scores has been attacked. It has

been argued that the properties _of real numbers are par

ticularly appropriate for resolving conflicts (section

that the past misuse of numbers is irrelevant

(section 1.8); and that the choice of numerical V3lues

need not be arbitrary (section 1.7. I>.

Ho 1tlever, it has not been established that the reso

lu t i on o f . cam pl ex eo n f 1 i c t s bet v; e en hypo the s e s of d i f

ferent kinds is a necessary part of normal vision, or

that the interpretations people notice can be defined in

-180-

terms of the probabilities of their constituent hy

potheses~ So numerical scores, and hence relaxation, may

be simply irrelevant to vision.

8.2: The choice of numerical scores

In section 1.7.1 it was argued that probabiliies

could provide a systematic basis for the choice of numer

ical scores. Woods (1976), has shown that this idea can

be-applied in speech perception, but the programs in this

thesis use scores which were chosen so as to give sensi

ble interpretations, rath~r than being based on probabil

ities. More-work is required to show how scores can be

based on probabilities without running into problems

caused by combining non-independent probabilities.

8.3 D~tails of the relaxation opeiator

A lot of effort has gone into analysing and improv

ing the basic relaxation operator, but many problems

remain unsolved:

1. How can relaxation be made to select one of a

·pair of equally good, rival global interpretations?

2. What should be done about non-integer optima if

they cannot be removed by a better numerical for~ula

tion of the logical constraints?.

-181-

3. How can the time to -reach the equilibrium state

be decreased?

4. How can the system decide when it is sufficiently

close to the equilibrium state?

The coefficient K whose qualitative effects are

d i s c u ss ed in se c t i on 4 • 4 can he 1 p w i t h a 11 t he se p ro b-

lems. Its quantitative effects need to be investigated

both empirically and analytically.

8.4: The SETTLE system

The most advanced and promising use of relaxation is

in the SETTLE system described in Chapter 7, but this

system still needs a lot of development. An attempt has

been made to use it for interpreting Popeye pictures

(like figure 1. Jb). This application is not described

here since several major problems have been encountered

and have not yet been resolved. Until the SETfLE systetJ

has been successfully applied to a vision task which re-

-quires its skill at handling messy date and dubious

inferences, it will be hard to asses its value.

8.5: Relaxation and human vision

There are two rather different sets of considera

tions which are relevant when developing a theory 3bou~

-182-

the mec~3nism of human vision. On the one hand, a

mechanism must be clearly defined and shown to be ade-

quate for its postulated role. This is the main purpose

of most Artificial Intelligence programs and the only aim

of this thesis. On the other
I

hand, I evidence must be

found to show that people use the mechanism. No attempt

has been made to find evidence for relaxation in human

vision. An obvious first step would be to sho\·1 that for

a task·such as the interpretation of line drawings of po-

lyhedra, the interpretations which people perceive can be

distinguished from other consistent interpretations by

giving them scores on the basis of their constituent hy-

potheses. It would also be interesting to try to an~lyse

in detail our perception of pictures like the Meeker cube

or the Penrose triangle. However, these projects would

inevitably involve many other difficult issues, sor:te of

which are outlined below.

8.5.1: The temporal structure of vision

Peo~le.move their eyes~ so their visual input con-

sists of a sequence of retinAl images. For each new fix-

ation, low-level representations of what the retin~l im-

age contains have to be re-computed. (These low-level

representations will be called the primal sketch, by af~

finity with Marr's primal sketch). Howevar, the world

appe::1rs stable as \·Je r.1ove our eyes o~_,. ~_<?if.e .arcun~=r, so

presun~bly h ~,,C) C()~'e reol-nson+-~,+-l·onc l•/1.-).l·c'.·n l_ji;; -~·;_C't n . '·· ...) .._ t. 1 ~ , c; _ '-' ! ~ .-::1 L. _.., • 1 - ,_ ·~' -

-183-

~ith our retinal images CHochberg 1968). These will be

called the cognitive map •. Given this distinction between

types of representation, there are a r.usber of possibl~

roles for relaxation which have not been distinguished in

the simple tAsks to which it has been a~plied:

1. The creation of the primal sketch. This needs ta

be fast and there may not be tine for L.?. relaxation

unless it can be speeded up. Also, 1~ may not be

necessary to decide between alternatives at this level

(see section 1 .3.2).

2. The discovery in the primal sketch of objects to

be represented in the cognitive ~ap. This sta]e of

perception is the one which the pu;pet-finding progre~

is intended to model.

3. The construction of a consistent co~nitiVe ~a~.

The evidence provided by one reti~3l i2?ge may con~

tradfct representations based on an earlier image.

Relaxation could be used to resolve such conflicts.

A gre~t deal of work needs to be do~e to clarify the

various ways in which relaxation night ~e used in a visu

Al system as complex at the human on9.

-184-

8. 6: ~·vha t has been shO'.Aln.

A relaxation method for selecting the best con-

sistent set of hypotheses has been clearly defined. The

method does not appear to suffer from a combinatorial ex
i

plosion in time or space as the number of hypotheses in-

creases. It can oake effective use of parallel hardware,

and is one of the first cleally defined ways of organis-

ing parallel interactions bet~tl een conflicting and

cooperating hypotheses so as to make a good 11 Gestaltn e::~-

erg e ..

It has been shown how to handle any logical con-

straint that can be expressed in the prepositional cal

culus. The ·successful application of the method to the

two simple tasks of puppet-finding and line-labelling has

been demonstrated.

Several ways of chan~ing the relaxation operator

have been discussed and their effects h~ve been investi-

gated empirically. They have also been analysed theore~-

ically using a hyperspace representation. The difficul-

~ties caused by non-int~ger vertices and equal rivals h~vg

been revealed.

It has been shown, using an extended version of the

puppet task, that as well as selecting from among exist-

i ng hypotheses, re 1 ax at ion cAn be used to cont ro 1 .,.,hi c ~-i

hypotheses are created. The application of the techni~'Je

to the choice of numerical values for param~ters has als2

-185-

been discussed.

Finally, the SETTLE system has shown how relaxation

can be used to control a data-driven system which grows a

relational network by noticing when complex conditions

become true and usin~-forward chaining.

way of organising a search within a kind

system.

-186-

This is a novel

of production

APPENDIX 1

COl·,~fPUTI NG WHETHER CONVEX POLYGONS OVERLAP

This is .not a formal proof. It is a construction to

show how an unobvious fact follows from obvious ones.

Corresponding to each infinite straight line there

are two borders. A border has an on-side (includin;; the

points in the line) and an off-side. The sides of a con

vex polygon are segments of infinite lines which c3n be

·assigned corresponding borders in such a way that t~e po

lygon contains all and only the points on the on-si~e of

all the borders.

We want to show that if two convex polygons are dis

joint (have no common points), then at least one bJrjer

of one of them has the .other polygon entirely on lts

off-side.

Let us say that a .line separates tv1o polygo;;s if

their interior points lie on opposite sides of it. For

any pair of disjoint, convex polygons there are so~e

separating 1 in es (unproved but obvious).. In parti c'.Jl~r-,

there is one separating line which cannot be rc~2~ej

clockwise about any of its points without intersectin~

the interior of one polygon (see figure APP1). Similarly

the~e is a most-anti-clockwise separ~ting line. Cell

these two lines band c, and their Point of intersection

-187-

Q
G-

b

FIGURE App1: Showing the construction involving the

most-clockwise separating line, b, and the nost

anticlockwise, C.

P. Since b and c are separating lines, P can~ot lie in

the interior of either polygon and since the polygons are

disjoint they cannot both have vertices at P. So at

least one of them, call it G, must have P outside
i

For P to be out·side G it must be on th~ off-side of at

least one of G/s borders, call it d. Since d is a border

of G, all the vertices of G are on its on-side. In par-

ticular, the vertices of G which lie on b and c must be

on the on-side· So, considering figure APPl, d must have P

on its off-side and V and W on its on-side. Hence d must

intersect b between P and V Cor at V> and it must inter-

sect c between P and W Cor at ~). Because d can only in-

tersect the lines b and c once, it is obvious Ct~ough

unproved) that the quadrant Q must lie entirely on the

off-side of d, and hence so must the polygon within 0.

Note: The idea that one polygon must co~tain a separat-

ing border was suggested to me by Frank 0/Gor~sn.

-188-

APPENDIX 2

USING PENUMBHAS TO AID LINE!LABELLING

Waltz (1972) shows how it is possible to extend

Huffman/Clowes labelling to line drawings in which some

lines depict shadow edges. Waltz uses perfect line draw-

ings and so he ignores the question of whether the grey

level data can provide information about the type of an

edge as well as about it existence. Evidence which sug-

gests the type of an edge, but which is not conclusive,

is interesting because it is easily incorporated .into a

relaxation approach as a preference for e particular le-

belling.

Under some conditions of illumination there should

be direct grey-level evidence suggestin~ that some ed]es

are shadow edges. Figure APP2 shows the shadow cast

an object when there is a single source of illumination

which is not infinitely small. The shadow edges have ps-

- nuobras which diverge as the distance from the castin~

edge increases. For small sources this should be detect-

able as a fuzziness wh'ich increases linearly in the

direction away from the casting edge, provided this

is straight and the shadow lies on a flat surface. A~

example of the usefulness of such inform8tion is seen a~

junctions J and K in Figure APP2. The degree of fuzzi-

ness caused by the penu~bra supports the interpretation

-189-

J

FIGURE App?t A cuboid casting a shadow. The width of

the lines depicting shadow edges indicates the width

of the penumbras caused by a light source of finite

magnitude. Notice that the fuzziness of the shadow

edge at K suggests an accidental alignment of vertex

and shadow edge •

of juncti or, J as involving an attached shc:do;,·/, but sug-

gests 8n accidental alignment of vertex 3nd shadow at K.

It is not clear whether human perception makes use

of the way in which the penumbras d~verge along shadow
i

edges.

-190-

APPENDIX 3

CODE FOR THE PUPPET-FINDING PROGRAM

A number of basic functions and macros are used but
are not listed below. The meanings of most of them are
evident from their their names and the context, but the
following need some explanation:

FILTLIST: This filters a list through a predicate, re
turning a list of all the elements satisfying the predi
cate.

RIG: This takes a list constant and returns a list in
\•Jhich all elements preceded by 11 &11 have been evaluated.

RECORD: This is a macro for declaring records. The de
fault field size is COMPND, but full-word fields can be
selected by using a 0 after the field name declaration.
Constructor and destructor functions are mAde by conca
tenating the class name with 11 cons" or "destn.

RHLOOP: , This is a looping macro. On each iteration, an
item in the list preceding RHLOOP is assigned to the
variable RH. The macro ENDRH terminates the loop.

The printing functions are not listed.

-191-

'"-~** SOME RECORD CLASSES AND GLOBAL VARIABLES *·**
VARS RECTS PERCEPTS RELATIONS ;
NIL->PERCEPTS;NIL->PERCEPTS;NIL->RELATIONS;NIL->RECTS;
CCH~1MENT"triples and quadruples already exist.
this allows their components to be. given
more meaningful names!;

0->POPCOMMENT;
TRIP 1-> RELSLOT 1 ;TR I P.2->RELSLOT2 ;TR I PJ-> RELCRED;
OUAD1->SLOTPER;QUA02->SLOTFUN;OUA03->SLOTTYPE;
OUAD4-> SLOT RELS;

COMMENT"these are the zones in a rectangle
which has been given a top/bottom direction!;
[1 J 0.8 OJ->DEFTOPEND; [0.2 1 0 OJ->DEFBOTEND;
[1 l 0.5 OJ->DEFTOPHALF;[0.5 1 0 01->DEFBOTHALF;
[0. 9 0. 8 0. 7 0. 2] ->DEFTOPPOLE; [0. 3. 0. 8 0. 1 0. 2 J->DEFBOTPOLE;

1->POPCOMMENT;

C()J,~l.{~!,JT"interpretations of rectangles as puppet
parts used to be called "percepts". interpretations
of over 1 a ps a s j o i n t s \·1 er e c a 11 e d n re 1 a ti on s 11 •

the morphe;nes 11 per" and ·11 rel 11 are used vd th
this sense.!;

RECORD PERCEPT PERNAME PERRECT PERPROX PERTYPE PERSLOTS
PERCRED;

RECORD RECT fiECTNAME RECTCON RECTPERS WHOLE TOPEND BOTEND
TOP HALF BOTHALF TOPPOLE BOTPOLE;

*** GODE FOR MAKING CONSTRAINTS ***
ENSURELIST CONSTRAINTS;

RECORD CONSTR CONVIOL 0 HYPLENGTH 0 OLDCONVIOL O;

C().'.H~1ENT"conviol stores the amount by which
the constraint is violated. whenever a supposition
value changes, the violations of all constraints
involving it are changed appropriately. each
suooosition node will cause some of its constraints
to' be more violated when its value goes up, and
will also cause others to be less violated. it
keeps these two sets of constraints in separate
lists called ceilings and floors!;

-1S2-

COMMENT'the number stored in conviol is the
difference between the two sides of the
algebraic inequality.Cpositive numbers mean
violation).this number is not the same as the
distance in hyperspace of the point from the
plane. however, for any given plane the
violation and the distance h~ve a fixed ratio.
this is kept in hyplength. I

I e . '
COMiAENT 'consider , for ex amp 1 e, the constraint
x-2y > 0. when this has a violation of I,
then the force in the x direction should be
l/sqrt(5) and in they direction it should
be -2/sqrt(5). the hyplength is sqrt(5),
which the root of the sum of the squares
of the coefficients in the inequality.
f • . '
FUNCTION CREDSUM L=>SUM;
0->SUM;
L RnLOOP;RH.CREDVAL+SUM->SUM;ENDRH;
END;

FU!ICTION REr,fOVEALL X L=>N REM;
Co!.~MENT'removes all occurences of x from 1 and returns
their number and the remaining list!;
NIL->REM; 1->N;
L RHLOOP;
IF RH=X THEN N+l->N ELSE RH::REM->REM CLOSE;
EcJJRH;
Ei<D;

FUNCTION SUMSQUARES L;
COl~!MEi'IT'returns the sum of the squares of the occurence

/numbers!;
VARS N;IF L.NULL .THEN 0 EXIT;
RE?r\OVEA LL (L. HO, L. TL)->L->N;
N*N+L. SUf·:~SOUARES;
END;

FUNCTION RETURNCONSTR FLIST CLIST N=>C;
CO\~MENT'n+the credvals in clist musnt exceed the credvals
in flist i.e. the sum of the credvals in flist-the sum in
clist must be at least n.!;

CONSCONSTR<CLIST.CREDSUM-FLIST.CREOSUM+N,
SORT<FLIST.SUMSOUARES+CLIST.SUMSQUARES>,UNDEF,FLIST,CLIST>

->C;
C:: :CoNSTRAINTS;
FLIST·RHLOOP;C::RH.FLOORS->RH.FLOORS;ENORH;
CLIST RHLOOP;C::RH.CEILINGS->RH.CEILINGS;ENORH;

FU~fCVAR MAKECONSTR RETURNCONSTR FNCOMP ERASE;

-193 -

FUNCTION MAKECREO OBJ P=>C;
CON SC RE ON 0 0 E (0 BJ , N I L , NI L , N I L , 0 , 0 , p) - > C ;
END;

FUNCTION ATMOSTONE L;
MAK ECON STFH NIL, L, -1) ;
END;

FUNCTION ATi\.10STTWO L;
MAKECONSTR< NIL, L, -2);
END1

FUNCTION MORECRED A B;
MAKECONSTR<A,B,O);
END;

..

FUNCTION ATLEASTONE L;
MAKECONSTR< L,NIL, 1);
END;

FUNCTION INFERFROM L B;
MAKECON STFH 8: :NIL, L, 1-L. LENGTH);
END;

... b~* CODE FOR CHANGING SUPPOSITION VALUES -*·*-:~

co:~IMENT'supposi tion nodes used to be called
crednodes. the morpheme ttcredn is used like
this! ;

ENSURELIST CREDNODES;

RECORD CREDNOOE CREDOBJ FLOORS CEILINGS CREDVAL 0 CREDINC 0
CREDPREF O;

COMMENT'credobj is the hypothesis, credpref
is its preference, and credval is its
suooosition value. ~redinc is the next
in~~ement in credval, which is computed
and then stored until the other
~redincs have also been computed using
the curr~nt set of supposition values.
this is necessary for parallel
relaxation. floors
and ·ceilings are lists ·of the constraints
which, when violated, tend to hold the
supposition value up(floors) or down
(ceilings).!;

-194-

FUNCTION CHANGEVALS CREONODE INC;
CREDNODE.CEILINGS RHLOOP;

RH. CC)NV I CJL +I NC-> RH. CC)NV I CJL;
E:NORH;
CREDNOOE. FLOORS RHLOOP;

RH.CONVIOL-INC->RH.Co'NVIOL;
END RH;
CREONODE.CREOVAL+INC->CREONODE.CREDVAL;
END;

FUNCTION ENDFIXINC INC X;
V AR S N ; IN C+ X- >N :;
IF N>l THEN INC+l-N
ELSEIF N<O THEN INC-N
ELSE INC
CLOSE;
END;

FUNCTION CHANGETO C VAL;
CHANGEVALS<C,VAL-C.CREOVAL);
END;

FUNCTION RESETVALS;
APPLI ST (CREDNODES, CHANGETCH ?~01~));
END;

" *** SET IN IT I N CS ..,,_ **
! . P RSTR ~NG;

VARS COEFFLIST DCOEFF PCOEFF FCOEFF HCOEFF;
[PCOEFF OCOEFF FCOEFF HCOEFFJ->COEFFLIST;
VARS COARSE MED IlJl;l FINE TERMINAL;
[0.4 0.5 0.3 OJ->COARSE;
~0.2 0.5 0.3 0]->MEDIUM;
[0.1 0.8 0.3 OJ->FINE;
[0.1 0.8 0.3 0.1]->TERMINAL;

FUNCTION SETCOEFFS L;
POP L->PCOEFF;
POP L->DCOEFF;
POP L->FCOEFF;
POP L->HCOEFF;
END;

COARSE. SETCOEFFS;

-195-

FUNCTION INITINCS;
APPLI ST CCREDNODES,

LAMBDA C;O->C.CREDINC;ENDl;
END;

FUNCTION CEILFORCE CON;
VARS V; CON. CONV IOL->V; · !

IF V>O THEN (-V)/CON.HYPLENGTH ELSE 0 CLOSE;
END;

FUNCTION FLOORFORCE CON?
·vARS V;CON.CONVIOL->V;
IF V>O THEN V/CON.HYPLENGTH ELSE 0 CLOSE;
END;

FUNCTION UPFOHCE C;
APPSUMCC.CEILINGS,CEILFORCE>+APPSUM(C.FLOORS,FLOORFORCE>;
END;

FUNCTION STORESTEP C;
COMMENT 'this stores the size of the next step in credinc!;
VARS INC;
C.CREDINC*DCOEFF
+ < C .UPFORCE+C. CREDPREF-A-PCOEFF+ (C. CREDVAL-1 /2) *HCOEFF>*FCOEFF
->I NC;
ENDFIXINC<INC,C.CREDVALl->C.CREDINC;
END;

FUNCTION TAKESTEP C;
CH.A.NGEVALS (C, ENDF I X I t~C (C. CRED I NC, C. CREDVAL));
END;

FUNCTION MOVE;
APPLI ST (CREDNODES, STORE STEP);
APPLI ST (CREDNODES, TAKESTEP);
END;

FUNCTION GETSHOWLIST;
-IF CREDNODES.LENGTH>20 THEN FIRST<20,CREDNODES)
ELSE CREDNODES CLOSE;
END;

FUNCTION- RELAXAND.SHOW STEPS PRFREO PRINTLIST;
;VARS N; PRFREO->N;
PRINTLIST.SHOWNAMES;
PRINTLI ST .SHOWCREDS;
STEPS<* .MOVE;

IF N> 1 THEN N-1 ->N ELSE PR I NTLI ST. SHCH'iCREDS;
P RFREO->N ;CLOSE;*>;

END;

-196-

FUNCTION RELAX;
• GETSHOWLIST. RELAXANDSHCWJ;
END; .

FUNCTION RELA XI NSTAGES STAGES; .
. VARS L; .GETSHCWJLIST->L;

L. SHOWNAMES ;L. SHCH\iCREOS;
APPLI ST (STAGES,

LAMBDA X;
IF X. I SWORD THEN X. VALOF. SETCOEFFS
ELSE X<* .·MoVE *>;L.SHOWCREDS CLOSE;
END);

l. NL;
. END;

FUNCTION RELAX50;
.RESETVALS;.INITINCS;_
(COARSE 10 MEDIUM 10· FINE 10 TERMINAL 10 lOJ.RELAXINSTAGES;
END;

.._"(·** ZONE GEOMETRY ***
FUNCTION GETBORD P Q;

· VARS A B C D;
. P.DESTPAIR->8->A;O.DESTPAIR->D->C;

CONSTRI PLEC o..:..s, A-C, A ... 't-0-B*C);
END; . . .

FUNCTION ONSIDE P B; .
B. TRIP 1 *P. FRONT+B. TRI P2*P. BACK>=B. TRI P3; .
END;

- FUNCTION OFFSIDE P B; ·
ONSIDECP,B>.NoT;
END; . -

FUNCTION NOTSEP X;
COMMENT'tests whether all points. in one·
rectangle are on ·the off-side of the
boundary x!; ·

. o NS I 0 E.(A, X > · p R ON SI DE (8 , X) 0 R 0 N S I DE< C , X) 0 R 0 N SI DE (0 , X) ;
END; .

FUNCTION NOSEPARATOR PTS SOS;
VARS A B C D;PTS.OESTOUAD->0->C->B->A;
BDS.OUADl.NoTSEP AND BOS.QUAD2.NOTSEP AND
BOS.OUAD3.NOTSEP AND BDS.QUAD4.NOTSEP
END;

-197-

FUN CT I 0 N o V E f? LA P Z 1 Z 2 ;
CO:\'iMENT"if t~,vo convex polyqons dont overlap there :nust be
a line which separates them, and one of their borders must
be su eh a l in e! ;
NOSEPARATonCZ1.FnoNT,Z2.BACK)
AND NOSEPAt?ATOR CZ2. FF?ONT ,Z 1 ~BACK)
END;

FUN CT I 0 N 80 HOSE CT B I I3 2 ·;
C0!:1MENT'finds the point of intersection of two borders!;
VARS A B C D E F DIV; ·

1

. 81 • DESTTRI PLE->C- >3-> A 9 82. OESITRI ?LE->F-> E->D;
B*·D-A*E->0 I V;
IF DIV=O THEN ttPARALLEL";EXIT;
CONSPAif~C CB*F-C,~E)/DIV, CC*D-A*F)/D!V);
END;

FUNCTION AVBORD E F P;
COMMENT"checks that borders e and f are parallel and rllakes
a new one which is a weighted average usirig p of e
and q of f! ; ·

OPERATION 7 === X Y;
APPROXEOC X, Y, I);
END;

VARS 0 R; t-P->0;
IF E. TRIP2===0 OR F .. TRIP2====0
THEN IF E.TRIP2===F.TRIP2

THEN CONSTRIPLECP~\:E.TRI?l+OxF. Tr:?I?l ,0,
P*E.TRIP3+G*F.TRIP3)

ELSE 11 AV BO RD u. POPE RR;
CLOSE;

ELSEIF E.TRIP1/E.TRIP2=====F.TRIP1/F.TRIP2
THEN E.TRIP2/F.TRIP2->R;

CONSTH I PLE (E. TRIP 1 , E. TRI P2, P-kE. TRI P3+Q·A-R-;<F. TRI P3)
ELSE 11 AVBORD" .POPER~?;
CLOSE;
END;

FUNCTION REVBORD B;
C 0 N ST ·R I P LE C C 8 • T R I P 1) , - C B • T I~ I P 2) , - < B. T R I P 3)) ;
END;

-FUNCTION ZONEPTS Z;
COMMENT"gets the corners of a zone from the borders!;
VARS A 8 C O;Z.OESTQUAD->0->C->B~>A;
CONSOUAD(BORDSECT (0 ,A), BORDSECT CA, 8), BOROSECT (8, C),

BORDSECTCC,O));
END;

-198-

FUNCTION MKZONEBDS P L;
COMMENT-"makes zone borders from rectangle borders and a
list of relative positions of ymax ,xrnax, ymin, xrnin!;
VARS A BC D F;P.BACK.DESTOUAD->0->C->B->A;REVBORD->F;
C, 0 N SO U A 0 C A V 80 R D (A , C • F , P 0 P L) ., A V BO RO C 8 , D • F , P 0 P L) ,

AVBORDCA.F ,C ,POP L) ,AVBOROCB.F,O,POP L));
END;

FUNCTION GETZONE OEFZONE P;
COMMENT'returns a pair consisting of the corners and borders

· for a specified zone relative ~o p!;
VARS B;
MKZONEBDSCP,OEFZONE)->8;
CONSPAIR<B.ZONEPTS,B>;
END;

FUNCTION LASTCORN L;
VARS A B C;POP L->A;POP L->B;POP L->C;
CONSPAI RCA.FRONT+C. Ff-!ONT-8. FRONT, A. BACK+C. BACK-B. BACK);
END;

FUNCTION CONVPAIR L;
CON SPA I R < L. HO , L • T L. HO) ;
END;

FUNCTION MAKEWHOLE L;
COMMENT 'makes the ooi nt s and borders of the \•lho 1 e from a

list of it~ corner points!;
VARS BOROS CORNS;
A PPLI ST CL, I DENTFN). CONSOU AD->CORNS;
CONSOUADCGETBORDCCORNS.OUADl ,CORNS.OUA02),

GETBORD (CORNS. OUAD2, CORf·.rS. OUAD3) ,
GETBOROCCORNS.OUAD3,CORNS.OUA04),
GETBORDCCORNS.QUA04,CORNS.OUA01J)->80RDS;

CONSPAI RC CORNS, BOROS);
END;

FUNCTION CON~'/HSUB R S;
I F oVER LAP C R • V·l H 0 LE , S • VJ H 0 LE)
THEN R:: S. RECTCON-> S. RECTCON; Se:: R. RECTCON->R. RECTCON;
CLOSE;
END;

FUNCTION CONV·lHOLE L;
LOOP IF L. I SLINK
THEN APPLISTC L. TL,CONWHSUB(~sL. HO%)) ;L. TL->L;
CLOSE;
END;

.-199- .

FUNCTION MAKE RECT L => i?ECT?
VARS POINTS NAME P F;L.HD->NAME;
f.,f AP L I ST (L • T L , CON V P A I F?) - > P 0 I NT S ;
PCH NTS. MAKE~''H-!OLE->P;
GET ZONE< %P7.~)- >F;
CONSRECTCNAME,NIL,NIL,P,DEFTOPENO.F,OEFBOTEND.F,

DEFTOPHALF.F,OEFBOTHALF.F.,DEFTOPPOLE.F,
DEFBOTPOLE.F)_:->RECT;

RECT->NAME.VALOF;
END;

FUNCTION h\YDI ST P O;
SORT((P. FRONT -Q. FRONT) A 2 + (P. BACK -0. BACK YA2);
END;

FUNCTION ~'1IOTH R;
VARS PTS; R.~VHOLE.FRONT->PTS;
MYDIST<PTS.OUA01,PTS.OUAD2>;
END;

FUNCTION HEIGHT R;
VARS PTS;R.~~JHOLE.FRONT->PTS;
MYDISTCPTS.OUA02,PTS.OUAD3);
END;

FUNCTION AREA R;
R • HE I GHT :~: R. W I DT H;
END;

FUNCTION PUP I f'·.J F I LENAl:\E;
CO£,H,1ENT-'the data files give lists of lists
of coordinates 'dhen compiled!;
MAPLI ST C F ILENAME. CC) MP ILE, M;\KEHECT)->RECTS;
RECTS. CON~~HDLE;
END;

-200-

-;~** CODE FOR DEC.IDING WHETHER AN
*** OVERLAP COULD OEP I CT A JoINT .,~:**

MACRO MACP;
VARS Zl Z2;.ITEMREAD->Zl;.ITEMREAD->Z2;
MACRESULTS([LAMBDA P;IF P.PERPROX= 11 TOP 11 THEN P.PEHRECT.&Zl

ELSE P.P~PRECT.&Z2 CLOSE;ENO;J.RIG);
END;

FUNCTION ~'IIDE R P 0;
P.PERRECT.WIOTH>O.PERRECT.WIDTH;
END;

FUNCTION ALL P;
P. P ERRECT. vn-Io LE;
END;

VARS PROXEND DISTEND PROXPOLE DISTPOLE PROXHALF DISTHALF;
MACP TOPEND BOTEND->P ROXENO;
l·:iACP BOTEND TOPEND->D I STEND;
MACP TOPPOLE BOTPOL!:->PROXPOLE;
MACP BOTPOLE TOPPOLF->DISTPOLE;
MACP TOPHALF BOTHALF->PROXHALF;
MACP BOTHALF TOPHALF->DISTHALF;

FUN CT I 0 N KN EE J 0 I N P 0 ;
P.PERRECT.WIDTH=<O.PERRECT.WIDTH
AND OVERLAP<P.PROXEND,O.OISTEND)
AND OVERLAP<P.PROXEND,O.PROXHALF).NOT
AND OVERLAP (P .D I STHALF, Q. DI STEN 0) • NOT
END;

FUNCTION TERMJOIN P O;
COMMENT/for hands or feet <terminal parts)!;
P.PERRECT.HEIGHT<O.PERRECT.HEIGHT
AND P.P~RRECT.AREA<O.PERRECT.AREA
AND OVERLAP<P.DISTENO,O.ALL>.NoT
AND OVERLAP (P .ALL, 0. P f~OXHALF). NOT
END;

-FUNCTION ARMJOI N P O;
WIDERCQ,P)
AND OVERLAPCP.PROXEND,O.PROXHALF)
AND OVERLAP<P.PROXEND,O.OISTHALF).NOT
AND OVERLAP<P.OISTEND,O.PROXPOLE>.NOT
END;

FUNCTION LEGJOIN P O;
YHDER(Q ,P)
AND OVERLAP<P.PROXENO,O.DISTHALF)
AND oVERLAP< P. P ffOXEI'JO, 0. P ROXHALF). NOT
AND oVERLAP<P.DISTEND,O.OISTPOLE).NOT
END;

-201-

FUNCTION HEADJOIN P O;
~~ I D ER (P , 0) AN 0 P • PE RR E CT. HE I G HT< 2 * P • P ERR E CT • V'l I DT H
AND OVERLAPCP.DISTENO,O.PROXEND)
AND OVERLAPCP.ALL,O.OISTHALF).NOT
AND OVERLAPCP.PROXHALF,O.ALL).NOT
END;

FUNCTION NECKJOIN P O;
COl·:IMENT~"for joint betv1een neck and
P.PERRECT.WIOTH<O.PERRECT.WIOTH
AND OVERLAPCP.DTSTENO,O.PnOXEND)
AND OVERLAPCP.ALL,O.DISTHALF).NOT
AND OVERLAP (P. PRO XHALF, 0. ALL). NOT
END; .

]

trunk!;

FUNCTIOI'.J JOir.J!--·!EAD P O;HEADJOINCO,P) ;END;
FUNCTION JOINNECK P Q;NECKJOINCO,P>;END;
FUNCTION JOINKNEE P Q;KNEEJOINCO,?);END;
FUNCTION JOINTERM P O;TERMJOINCO,P>;END;

FUNCTION JOINARM P Q;ARMJOINCO,P);END;
FUNCTION JOINLEG P O;LEGJOINCO,P) ;END;

VARS HEAD HECK HAND LOWERARM UPPERARM TRUNK CALF THIGH FooT;

[[HEADJOI N NECK J)..:..>HEAD;
[[JOINHEAD HEAD] [NECKJOIN TRUNK JJ->NECK;
[[T ER(.1J 0 IN LOWE RA R?,·\ J J ->HAND;
[[KNEEJOIN UPPEF~ARM J [JOINTERM HANDJ J->LOWERARM;
[[AF?MJOIN THUNK J [JOINKNEE LOWERARM J J->UPPERARM;
[[TERMJOif\J CALF J]->FOOT;
[[KNEEJOI N THIGH J [JOI NTERM FOOT J J ->CALF;
[[LEGJOIH THUNKJ[JOINKNEE CALFJJ->THIGH;
[[JOIHNECK NECK) (JOINARM UPPERAfV,1J(JOINLEG THIGHJJ
->THUNK;

-202-

-J.--K* CODE For? GROV/ ING THE ~IcTHORI(-.·,·:;.··/< .. -

**~~ OF PART AND JoINT HYPOTHESES ~':~'d:

FUNCTION GIVERECT P;
P::P.P~RRECT.RECTPERS->P.PERRECT.RECTPERSl
END;

FU~!CT ION MAKE SLOT L P;
~ 0 l'·J SO U AD (P , L • HO , L • T L • HD ,- N I L) ;
Ei'·JD;

FUNCTION MAKEPER RECT PROX TYPE=>PER;
COr'·ISP ERCEPT (lJ NO EF, RECT, PROX, TYPE, UNDEF, UNDEF) ->PER;
~AKECRED<PER,PERPREFl->PER.PERCRED;
(~~APLI ST (TYPE. VALOF, MAKE SLOT (7~PERZ)) ->PER. PERSLOTS;
PER::PERCEPTS->PERCEPTS; .
PER::RECT.RECTPERS->RECT.R~CTPERS;
END;

FUNCTION OTHERPER R P;
VAP.S X~ R. RELSLOT 1. SLOTPER-> X;
IF X=P THEN R. RELSL()T 2. SLOT PER ELSE X CLOSE i
ENJ;

FU>TCTIOP ALREADY RELS 0;
S0.1A ::1 ::<U E (f:!ELS, LA}t BOA R;

R.RELSLOT1.SLOTPER=O OR P..RELSLOT2.SLO.TPER=O
::No;

FU>-ICTION FINDSLOT P O;
VARS T FUN;O.PERTYPE->T;
P.?ERSLOTS RHLOOP;

IF :=-lH. SLOTTYPE=T.
THEN RH ; EXIT; ;

Ei·JD RH;
.. POPERR?
Ei'·EJ;

FUNCTioN ADDREL P 0 PSLOT;

END);

VA?..S OSLOT REL;
P.PERRECT.RECTNAME.PR;1.SP;O.PERRECT.RECTNAME.PR;3.SP;
Ffi·fDSLOT(Q, P) ->OS LOT;
CCNSTRIPLE<PSLOT,OSLOT,UNDEF>->REL;

-MAKECRED<REL,RELPREF)->REL.RELCREO;
REL::RELATIONS->RELATIONS;
REL:: PS LOT. SLOT RELS->PSLOT. SLOT RELS;
REL:: OS LOT. SLOT RELS-> OS LOT. SLOT RELS;
END;

-203-

FUNCTION GETEXISTINGPER RECT TYPE ORIENT;
RECT. RECTPE RS F?HLOOP;

ENORH;
FALSE;
END;

IF RH.PERTYPE==TYPE AND RH.PERPF?OX=ORIENT THEN RH;EXIT;

FUNCTION TRYTHEPER P SLOT RECT ORIENT;
VARS DONE 0 REOTYPE FUNi
SLOT.SLOTTYPE->REOTYPE;SLOT.SLOTFUN.VALOF->FUN;
GETEXISTINGPERCRECT,REOTYPE,ORIENT)->0;
'rF 0
THEN IF O==P THEN EXIT;

IF ALREADY<SLOT.SLOTHELS,O).NOT AND FUNCP,O)
THEN O.ANYREL->DONE; ADDREL<P,O,SLOT);

UNLESS DONE THEN 0 CLOSE;
CLOSE;

ELSE r:\AKEPEHC RECT ,DRI ENT, REOTYPE)->0? I

CLOSE;
END;

IF FUN<P,Q) THEN ADDREL<P,O,SLOT);Q;CLOSE;
CO!·:~(-~ENT'this is where future members of livelist are

dumped! 7

FUNCTION TRYFILLSLOT SLOT PERCEPT;
PERCEPT .PEf-cRECT .RECTCON RHLOOP;

THYTHEP ER (PERCEPT, SLOT, RH, "TOP");
TRYTHEP ER (PERCEPT, SLOT, RH, u BoTn);

END RH;
er r..ff\ ..

l ~ ._.1 ,

FUNCTION TRYGROvV P;
A PPLI ST CP. P ERSLOTS, LAMBDA S; TRYFI LLSLOT < S, P); END) ;
EI~D;

FUNCTION GROHPERS LIVELIST;
COM~.{ENT"this takes the most recently created percepts and

tries to fi.ll their slots,possibly making.more percepts!;
IF LIVELIST.NULL THEN EXIT;
[~6A PPLI ST (LI VEL I ST, TRYGRCWi) ~:~ J. GROl"lPERS;
END;

FUNCTION MAKEBOTH R T;
i~AKEPER (R, 11 TOP 11 , T); MAKE PER (R, "BOT", T) ;
END;

-204-

FUNCTION GETPOSSNUCLEI;
Co?.rMENT"there are three types of nucleus:

a trunk requires 3 feasible connected rectangles.
a he.ad requires the right pro port ions and ex a et ly

one other connected rectangle ,which must
be narrower. a hand or foot requires
exactly one connected rectangle ,with greater area.!;

;.~APLI ST < RECTS,
LA:.~ BOA R;
VARS L;R.RECTCON->L;
IF L.LENGTH=1
THEN IF L.HO.WIOTH<R.WIDTH

THEN MAKEBOTH<R, 11 HEA0 11)

CLOSE;
IF L.HD.AREA>R.AREA
THEN MAKE BOTH< R., "HAND 11) ; MAKE BOTH (8, 11 FOOT 11)

CLOSE;
ELSEIF L.LENGTH>2
AND FILTLIST<L,LAMBOA X;X.WIDTH<R.WIOTH;END).LENGTH>2
THEN MAKE BOTH (R ,-"TRUI'-JK")
CLOSE;
END);
E~:o;

FU:.JCTION ANYREL P;
S0:11tET RUE CP. PE RSLOTS, SLOTRELS. FNCOMP I SLINK);
END;

FUNCTION GIVEPERNAME P L;
CONCATWORDCP.PERRECT.RECTNAME,NUMWORDCITEMNUMCP,L)J)
->P .PERI'··JAME;P->P. PERNAME. VALOF;
END;

FUNCTION NEATPERS;
VARS L;
I'J I L ->PERCEPTS;
RECTS. REV RHLOOP;

RH.RECTPERS->L;
APPLISTCL,GIVEPERNAMEC%L%));
L<>PERCEPTS->PERCEPTS;

El'IDRH;

FUNCTION MAKEPERNET;
VARS LI VELI ST ;NI L->PERCEPTS ;NI L->RELATI <JNS;
.GETPOSSNUCLEI->LIVELIST;
LIVELIST->PERCEPTS;NIL->RELATIONS;

_GROWPERS(PERCEPTS);
FILTLISTCPERCEPTS,ANYREL)->PERCEPTS;
APPLI ST < RECTS ,LAMBDA X;NI L->X. RECTPERS; END);
APPLISTCPERCEPTS,GIVERECT);
.UEATPERS;

-205-

*** CODE FOR HANDLING EXTRA INPUT ***
*** INSTRUCTIONS LIKE 11 TRYTOINTERPRET 11 **"k

FUNCTION CLEARPERPREF S;
APPLISTCPERCEPTS,LAM3DA P;O->P.PERCRED.CREDPREP;END>;
END; I

FUNCTION CLEARRELPREFS;
APPLISTCRELATIONS,LAMBDA R;O->R.RELCREO.CREDPREF;END>;
END;

FUNCTION I SOFTY PE X T;
X. P ERTYPE=T.;
END;

FUNCTION ISOFRECT X NAME;
X.PERRECT.RECTNAME=NAME;
END;

FUNCTION HASPRCJ.XAT X W;
X. PERPROX=V·/;
END;

FUNCVAR I SUPR IGHT HASPROXATC7~ 11 TOP"~~);

FUNCTION HELPPERS N PRED;
APPLISTCPERCEPTS,

LAr'i BOA P;
IF P.PRED THEN N+P.PERCREO.CREDPREF->P.PERCRED.CREDPREF
CLOSE;
END);

END9

FUNCTION HELPRELS N PRED7
A PPLI ST C RELATIONS,

LAMBDA R;
IF R.PRED THEN N+R.RELCREO.CREDPREF->R.RELCREO.CREDPREF
CLOSE;
END);

END;

FUNCTION HELPPER P N;
N+P .PERCRED .C REDPREF- >P. PERCRED. CREDPREF;
END;

FUNCTION THERELBETWEEN P O;
VARS X Y;
RELl\TIONS RHLOOP;

RH.RELSLOT1.SLOTPER->X;RH.RELSLOT2.SLOTPER->Y;
IF (X=P, AND Y=O) 0 R (X=O AND Y=P) THEN RH; EXIT;

ENDRH;
FALSE;
END; -206-

FUNCTICH~ HELPREL R N;
.N+R.RELCRED.CREDPREF->R.RELCRED.CREDPREF;
EUD;

FUtJCT ION SETORI ENTPREF PART OR I ENT N;
HEL PP ERS (t,T, LAMBDA P; I SOFTY PE (P, PART) AND HASP ROXAT C P, OR I ENT)

; END); ·
Et<D;

FUNCTION SETPARTPREF RECT L N;
VARS W PART;L.HD->W;
r F v·f = "ToP n oR w = u a o T"
THEN L.TL.HD->PART;

HELPPERSCN,LAMBDA P;
I SOFRECTC P, RECT) AND HASPROXATC P, IV)
AND I SOFfYPEC P, PART);

END);
ELSEIF W=HSOMEPART 11

THEN HELP PE RS (N, LAM BOA P; I SOF RECT (P, R ECT); END)
ELSE HE LPPE RS (N, LAMBDA P; I SOF~?ECT (P, RECT) AND I SOFTYPE (P, W) ;

END)
CLOSE;

OP!::P.ATION 3 TRYTOINTERPRET L;.
VARS W (·I;
~A?LISTCL,LA~BDA W;

Ef\JD)->L;

IF ~·J= 11 U PR I GHTu THEN nToP 11

ELSEI F ~·\i= 11 UPSIDEDOWt.J 11 THEN usoT"
ELSE // CLOSE;

CO!M:~ENT"the program likes "top" and Hbot" but people dont
understand them!; l.rev.hd->n;l.hd->w;
IF !.\E~.\BERCW, [HEAD NECK TRUNK UPPERARM LOWERAR!!. HAND THrGH

CALF FooT])
THEN SETORI ENTP REF< iV, L. TL. TL. HD, N);
ELSE S~TPARTPREFCW,L.TL.TL,N)
CLOSE;
END;

_ FU >J CT I 0 N I N HI 8 I T N ;
APPLI ST <CREDNODES,

LAMBDA C;IF C.CREDVAL>0.5 THEN C.CREDPREF-N->C.CREDPREF
CLOSE;

END);

FUr·.JCT I ON SI\' ITCHATTENT I ON N;
VARS L CHANGE;
~ECTS RHLOOP;

EI--JD RH;
END;

MAPLIST(R1-I.P.ECTPERS,PERCRED>->L;
IF SO~.-tETRUE<L,LAMBDA C;C.CREDVAL>O.S;ENO)
THEN -N->CHANGE ELSE r·J->CHANGE CLOSE;
APPLI ST CL, LAlft BOA C; C. CREDP REF +CHANGE->C. CHEDPREF; END);

~207-

-;,-x·x CODE FOR C REAT rNG. THE CO!-JSTRAI NTS ·-l .. ··r.-J-:

FU~~CTION SLOTS I ZE S;
IF S. SLOTPER. PERTYPE="TRUNKI'
AND S/==S.SLOTPER.PERSLOTS.HD
THEN 2 ELSE 1 CLOSE;
END;

VARS RELPREF PERPREF; 1->RELPREF;O->PERPREF;

FUNCTION THREECOLPR X EXTRALINE;
VARS F;PERNAME FNCOMP PR~>F;
IF X. DATA~'JORD=" PERCEPT" THEN IF EXTRALINE THEN 3. SP

ELSE t.SP;X.F CLOSE;
ELSE IF EXT!~ALI NE THEN 1. SP; X. RELSLOT I. SLOTPER. F

ELSE 1 .SP; X. RELSLOT2. SLOTP ER. F
CLOSE;

CLOSE;
END;

FUNCTION SETRECTCONSTR RECT;
MAPLISTCRECT.RECTPERS"~PERCREDl.ATMOSTONE;
END;

FUNCTION SEITYPECONSTR TYPE PERLIST FUN;
VARS L;FILTLISTCPERLIST,LAMBDA P;P.PERTYPE=TYPE;ENDl->L;
MAPLISTCL,PERCREDl;FUN;
EN~;

FUNCTION SETSLOTCONSTR S;
VARS FLIST P;
S.SLOTPER.PERCRED->P;
IF S.SLOTSIZE=2 THEN [%P,P%J ELSE [~sP7~J CLOSE->FLIST;
MORECREDCFLIST,MAPLISTCS.SLOTRELS,RELCREO));
END;

FUNCTION SETCONSTRAINTS;
-APPLI ST <RELATIONS,

LAMBDA R;VARS L;R.RELCREO.::NIL->L;
MORECREDCR.RELSLOTl.SLOTPER.PERCREO-::NIL,L>;
MOREC RED (R. RELSLOT2. SLOTP ER. PE RC RED:: NIL, L);
END>;

APPLI ST (RECTS, SETRECTCONSTR);
. APPLI STC [HEAD NECK TRUNK] ,SETIYPECONSTRC%PERCEPTS,ATMOSTONE%));
APPLISTC[HAND FOOT LOWERARM UPPERARM CALF THIGH],

SETTYPECONSTRC%PERCEPTS ,ATMOSTIVJOJ-~J);
APPLISTCPERCEPTS,

LA].{ 8DA P; A PPLI ST < P. PER SLOTS, SETSLOTCONSTR); END};
END;

-208-

*** THE TOP LEVEL FUNCTION FOR CREATING ***
*** THE NETWORK OF CANDIDATE HYPOTHESES ***

FUNCTION FIRST N L;
IF L.NULL OR N=O THEN NIL
ELSE L.HO: :FIRST<N-1 ,L.TL) CLOSE;
END;

FUNCTION GETPUPNET FNAME;
NI L->PERCEPTS·;N IL-> RECTS; NI L->CONSTRAINTS; NIL->CREDNODES;
FNAME.PUPIN;.MAKEPERNET;l.NL;
.SETCONSTRAINTS;
MAPLISTCPERCEPTS,PERCRED>->PLIST;
PL I ST <>?,1APLI ST< RELATIONS, RELCRED) ->CREDNODES;
FIRSTC20,PLIST)->PLIST;
"PLIST CREATED.
! • P RSTR ING;
END;

-209-

APPENDIX 4

This shows the way the supposition values change

during relaxation for the examples in chapter 2. Only

the first nineteen part-hypotheses are shown in many

cases. The function RELAX50 causes fifty rounds of re-
I

laxation with printing initially and after every ten

rounds. Supposition values X 100 are shown, and for for-

matting reasons, 100 is printed as 99. The coefficients

in the relaxation operator are set at:

Kp)(d Kf KJ.t lte.-atior.s

O·Lt 0. t 0. j 0 10

O·l D·5 () . 3 0 10

0 ·I D·S D ·3 0 10

0 ·I 0·8 O·j D·l :tO

The hypotheses which get selected can be identified

by referring to the figures in chapter 2.

-210-

! rela~-~50 ();

Al B:l PI") _ B3 C:l. c~")
.~.:.. D1 D2 D3 D4 D5 El E2 E3 E4 E5 Fl F2 F3

0 0 0 _0 0 0 0 () 0 0 0 0 0 0 0 0 0 0 0
59 65 l")t::"

A".....J 26 63 68 23 53 54 5 10 20 60 61 0 0 57 57 18
85 83 12 10 I::" I::" ,_,,J 66 14 53 55 0 0 4 55 56 0 0 54 53 3
98 94 6 2 50 63 4 49 ~57 0 2 4 49 56 0 0 54 49 2

99 99 0 0 44 76 0 42 6<7 0 0 0 42 65 0 0 62 41 0
99 99 0 0 17 99 0 16 <J6 0 0 0 15 92 0 0 89 14 0

For the example in figure 2.1"

! • re 1 <:~~·~50;
C3 C3 B1 Di D2 Al

A1 Bl B? Ci C2 C~5 D1- D2 [13 D3 B2 C3 C2 Cl Bl
0 0 0 0 0 0 0 () 0 0 0 0 0 0 0

73 65 99 36 36 78 3B 38 6B 90 99 84 53 53 80
86 60 98 17 17 87 1B 18 8:3 93 99 71::" .. J 25 25 75
86 39 93 9 9 93 8 8 9!5 99 97 47 12 1 r) .:.. 47
99 19 99 0 0 99 0 0 99 99 99 24 1 1 24
99 12 99 () () 99 () () 99 99 99 16 1 1 16

For the example in figure 2.2. The double

column headings indicate joint hypotheses.

! • re-1 a~-~50;

Al B1 B2 B3 B4 B5 Cl C2 C3 C4 C5 C6 D1 D2 D3 D4 D5 El E2

0 0 0 0 0 0 0 0 () 0 0 _0 0 0 0 0 0 0 0

60 47 32 34 10 10 61 61 18 18 4 6 17 17 7 39 41 17 17

76 70 28 22 0 0 68 55 10 :1.0 0 0 10 10 0 48 4,., .:.. 10 10
84 75 19 6 '"> 2 68 46 4 4 0 0 3 3 0 57 42 3 3 .:..

99 98 0 0 0 0 87 :~1 0 0 0 0 0 0 0 80 28 0 0
99 99 0 0 0 0 99 0 0 0 0 0 0 0 0 99 0 0 0

For the example in figure 2 .4.

-211-

! • rela}<50;

A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 Cl Ill D2 D3 [14 D5 El E2
0 0 0 0 0 0 0 () 0 0 0 0 0 0 0 0 0 0 0

72 60 12 0 14 0 49 36 -·,-7!
..:>. •• } 1 1 8 .. > .:.. 0 45 41 27 28 35 35

70 51 6 0 6 0 61 32 20 0 0 96 0 44 35 19 18 22 23
71 47 0 0 0 0 76 24 6 0 0 99 0 48 35 14 10 15 17

.86 34 0 0 0 0 99 0 0 0 0 99 0 76 31 0 0 0 0
99 0 0 0 0 0 99 0 0 0 0 ('f9 0 99 0 0 0 0 0

For the examPle in figure 2.5.

! • re 1 a~< 50 ;

A1 A2 A3 A4 A5 A6 Bl B':> ,._ B3 B4 B5 Cl D1 [12 D3 [14 D5 El E2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60 94 2 0 21 0 4~5 24 70 0 0 8:1. () 39 62 20 27 33 29
50 88 0 0 8 0 52 8 60 0 0 94 0 36 59 9 18 21 13
40 86 0 0 3 0 69 0 45 0 0 96 0 ~56 63 3 12 16 3 -

25 99 0 0 0 0 99 () B 0 0 99 0 18 96 0 0 0 0
6 99 0 0 0 0 99 () 1::"

... J 0 0 99 0 0 9<J 0 0 0 0

For the example in figure 2.6~

! • rela}<50;

A1 A2 B1 B2 B3 B4 B5 Cl c~., .:.. C3 C4 C5 D1 D2 D3 D4 [15 El E2
0 0 0 0 0 0 0 0 o· 0 0 0 0 0 0 0 0 0 0

49 14 49 23 13 8 7 55 6,.> .:... 19 1 ~5 1~5 0 38 40 29 29 38. 38
60 7 59 11 6 0 0 45 59 9 7 8 0 34 40 21 21 27 27
66 0 65 4 0 1 1 40 61 1 4 7 1 34 46 14 14 19 18
92 0 95 0 0 0 0 ~39 84 0 0 () 0 :~9 75 0 0 0 0

-99 0 99 0 0 0 0 3 99 0 0 0 0 0 99 0 0 0 0

For the example in figure 2.7~

-212-

! • re 1 a~< 50 Y

A1 A2 B1 B2 C1 C2 Dl D2 [13 E1 E2 Gl G2 G3 H:L !1 J1 J2 J3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

63 63 63 63 72 63 21 71 74 67 68 15 67 60 42 55 15 67 60
56 56 56 56 62 56 0 6:1. 67 56 62 3 60 54 57 57 3 60 54
54 54 54 54 58 c.- I")

~...:.. 3 ~ .. y

~ ~ :j9 51 57 ,.)
.:.. 57 51 53 54 ,.)

.:.. 1::"7 .J. 51
53 53 53 53 62 48 0 51 6~5 48 62 0 62 48 56 54 p 62 48
54 54 54 54 75 36 0 40 78 36 75 0 74 36 55 54 0 74 36

.. -

!relaxinstases([terminal 10 :i.o :LOJ);

A1 A2 Bl B2 Cl C2 Dl D2 [13 El E2 G1 G2 G3 H1 Il Jl J2 J3
54 54 54 54 75 36 0 40 78 36 75 0 74 36 55 54 0 74 36
54 54 54 54 99 3 0 4 99 '"> 99 0 99 3 55 54 0 99 3 ...:..

54 54 54 54 99 1 0 :1. 99 0 99 0 99 0 55 54 0 99 0
54 54 54 54 99 1 () 1 9<J 0 99 0 99 0 55 54 0 99 0

For the example in figure 2.9-

Thirty extra rounds of relaxation are shown, with the

coefficients at their terminal settings

!relaxinstages([terminal 10 :1.0]);

A1 A2 Bl B2 Cl C2 Dl D2 D3 El E2 GJ. G2 G3 Hl Il J1 J2 J3
54 54 54 54 99 1 0 1 99 0 99 0 99 0· 55 54 0 99 0
44 66 64 44 99 1 0 0 99 0 99 0 99 0 66 67 0 99 0
11 99 97 12 99 1 0 0 9<t 0 99 0 99 0 99 99 0 99 o:

For the example in figure 2e10.

The deadlock is broken by additional input instructions.

-213-

A PP Ft F) I X 5

CODE FOR THE EXAMPLE II\! SF:CTI o:1 5. 2

FUNCT I Ot,; SA!dESU M L ~
COMMENT "r:J·:1!·,: es cons tr.q i nt s ~'!hi c h force the he 3d of the list
to h::JV8 the s8me sum ;:,s the rest! t
VARS X L;MAPLISTCL~VALOF)->L;
L • H 0 : : N I L-> X t L. TL- > L;
!-.I 0 n EC RED C X , L) ; : .. 1 0 i~ E C RE Q (L , X) ;
END;

FUNCTION Ul'.I IT SUM L;
CO\H.\ENT~'sets up tv1o constraints to en.s! 1Jre tr:J.t the
sunposi tion V3lues of the nodes in l Adc to one.!;
:.fAPLI ST< L, VALOF)->L;
AT"/OSTONE CL) 7 ATLE:AST01··JE (L);
E>IJ 7

CO\'if,1ENTJ'l is a list of nodennmes ar1d nu:::be::-s!;

UI'.'T IL L .. NULL

f,I-> X. VALOF. CrF:DPf.?EF;
~N l)!JO 1
c~.l!) n

. ;_. ll -· '}

. FtFTCT In t·~ ;-~.t..:C:NoDE l\i;
VARS Ct
CO\! SC f1E Dii or:r: C IS, NIL, NIL, 0, 0, 0)- > C;
C-> \'·1. VALOF r C:: C REDNODES->CREOND~ES;
ENQ;

APPLIST([AO A 1 A2 A3 PO El 22 83 CO Cl C2 C3 H4 H5 E6 ":t
H8 H9 J 4 J5 J 6 J7 J9 J9 K4 K5 K 5 K7 KS ;(9 J, i'lld(E~Ioc::) i

A PP L I ST ([[A 0 A 1 A 2 A 3 J [BO B 1 E 2 B 3 J [C 0 C i C 2 C 3 J
[H!~ liS H6 H7 H8 i-!9] [JL JS J6 .J7 Jq JyJ
[K,·~ K5 K6 K7 l(>l K9 J J, u~;I TSU'\);

AP?LIST([[A 0 H 4 t 1 tS J [A 1 H 5 H 9 J [_,.,_ 2
[AQ K4 K7J[Al K5 KQ][A2
(80 J4 J6J[G1 J5 J9J[22
[HO H 4 H 7 J [U l H5 HA J [f3~
[CO K 4- K5 J [C 1 I<5 K9 J [C2
(C CJ J ~~ J 7] [C I J 5 J F~ J [C 2

VA ;~ ~-; P L I ;·:T ~

HE'J[A3
{9) [A_3
J (n r R:3
H9 J [?3

J9 J [CJ

-,. ,
;1 I .!
:.'A 1
.\.) ..J

,.....,. ,
.J I J
-.~,:.:..]

~<7 j

,'/}Y L I ~)T ([A0 A 1 t\-2 /\:.1
: PO ?1 P.2 r3J CO C 1 C2 C3 J "'I ALOF)

->PLI ~3T ~
-214-

APPENDIX 6

CODE FOR THE 11 SEITLE 11 SYSTEM •

. -215-

. *** CODE FOR MAKING SCHEMAS AND INSTANCES ***

COMMENT'this file is for making schemas and instances for
a settle system. rules have to be added after the schema
is made. ! ;

ENSURELIST SCHEMAS;

COM.i\\ENT'some slots have known inverses. knov1ing these
facilit~tes bond specifications!;

OPERATION 4 <-> X Y;
CONSPAIR<X,Y) ::INVERSES->INVERSES;
END;

ENSURELIST INVERSES;

FUNCTION INVERSE F;
INVERSES HHLOOP;

IF RH.FRONT=F THEN RH.BACK,RETURN
ELSEIF RH.BACK=F THEN RH.FRONT,RETURN
CLOSE;

END RH;
UNDEF;
END;

COMMENT'instances are strios,butslot names are used to
access components of them,· so accessing functions are
assigned to slot names. to avoid creating unnecessary
functions, or creating copies of them, there is a
dynamic list of them!;

FUNCTION NEXTFUN N SELF;
COMMENT' a closure of this produces a selector function
for then th component of a strip!;

VARS FUN;
POPVAL([LAMBDA S;SUBSCR<&N,S) ;END; J.RIG>->FUN;
CONCATWORD< ".SUB 11 , N. NUMWORD) ::FUN. FNPROPS->FUN. FNPROPS;
POPVAL([LAMBDA C S;C->SUBSCR<&N ,S) ;ENDJ .RIG)->FUN.UPOATER;
FUN;
N+ 1 ->FROZVAL(1, SELF);
END;

, VARS GENERATOR SUBSCRFUN;
NEXTFUN (~~ 1, UNDEF%)->GENEHATOR;
GENERATOR->FROZVAL(2,GENERATOR);
ITEMC%GENERATOR. FNTOLI ST%)->SUBSCRF;
COMMENT'subscrfun takes an integer n and returns a
selector for the n'th component of a strip.!;

-216-

FUNCTION NAMESLOT N ~-J;
-"'A%% W IS MADE THE NAME OF THE N'TH COMPONENT OF AN INSTANCE.
P 0 P V A L ([% 11 V A R S u , W , n ; .u % J) ;
N. SUBSC RFUN-> W. VALOF;
END;

·"'A~;~r, ALL INSTANCES START WITH THREE SPECIAL COMPONEI'.ffS
·"'A%% CALLED INSTNAME, INSTOF AND INSTCRED.
:'A%% INSTNAME CONTAINS THE NAME OF THE INSTANCE.
·"'A~~% .IN STOF CONTAINS THE SCHEMA.
·"'A~~~~ INSTCRED CONTAINS THE ASSOCIATED 11 CREDNOOE 11 •

NAMESLOT(1 , "I NSTNAME"); NAME SLOT (2, 11 INSTOF 11);

NAMESLOTC 3, 11 I NSTCRE0 11);

I

RECORD SCHEMA SCHNAME SCHKNOWLEDGE SCHINSTS SCHNUMOF O;

COMMENT" the schknO'v'/ledge of each schema is a strip \·!hose
components are slotknowledge records. these contain
knowledge about the sizes of the slots, the types of
fillers allowed and the constraints.!;

RECORD SLOTKNOWLEDGE SKNAME SKSIZE 0 SKTY?ECHECKS SKRULES;

COW~ENT'an instance of a schema is a strip whose
components (apart from the first three defined above)
re records of type slot.

each slot has a list of demons, a list of bonds~ anc a
pointer to the part of the schema which contains rules
whose k~ys may start matching when the slot is filled.!;

RECORD SLOT SLOTKNOWLEDGE SLOITRIGS SLOTBONDS;
RECORD BOND BONDINSTl BONDINST2 BONDCRED;

VARS .SLOTNAME;SLOTKNOWLEDGE FNCOMP SKtiAME->SLOTNAME;

FUNCTION SCHSLOTNAMES -SCHEMA;
COMMENT'oroduces the names of slots from a schema!;

MAPLI ST <SCHEMA. SCHKNOWLEDGE .DATAL I ST. BACK. BACK. BACK ,SK~!A!.1E >
END;

FUNCTION MAKENEXTNAME SCHEMA=>W;
. COMMENT'all instances of a schema have names consistin·;;

of the schema name followed by an integer!;
, VARS N; SCHEMA. SCHNUMOF+ 1->N ;N->SCHEMA. SCHNUIAOF;

CON CA TWORD(SCHEI.,·~A. SCHNAlviE, N .NUM WORD)->~·;;
[% il V A R s ! I ' w ' 11 ; 11 %] • p () p V AL ;
END;

-217-

FUNCTION GETNEWINST SCHEMA=>NEW;
_..,..A%% THIS MAKES A NEW INSTANCE OF A SCHEMA.
VARS C;
<I SCHEMA.MAKENEXTNAME, SCHEMA, UNDEF,

APPLISTCSCHEMA.SCHKNOWLEDGE.DATALIST.TL.TL.TL,
C 0 N SS LoT (7& N I L , N I L%)) I> - > NE Y'i ;

CONSCREDNOOE(NE~···J,NIL, NI L,NIL,O. 5,0,0)->C;
C->NEW. INSTCRED ;c,: :CREONOOES->CREDNODES;

NEW->NEW.INSTNAME.VALoF;
NEW::SCHEMA.SCHINSTS->SCHEMA.SCHINSTS;
END;

VARS MAKEINST;GETNE~'IINST FNCOMP ERASE->MAKEINST;.

FUNCTION MAKESCHEMA SCHNAi\·\E L;
VARS SCHEMA SLOTSIZE NA1·:1E N KSTRIP;
4->N;
<I UNDEF, UNDEF, UNDEF,

LOOPIF L.ISLINK
THEN POP L->N AME ;NAMESLOT C N, NA!~~E);

. IF L.ISLINK AND L.HO.ISINTEGER
THEN POP l->SLOTSIZE;
ELSE 1->SLOTSIZE
CLOSE;

CON SSLOTKNOvifLEDGE (NAME, SLOTS I ZE, NIL, NIL) ;
N+1->N;
CLOSE /> ->KSTRIP;

CON SSCHEMAC SCHNAME, KSTR IP, NIL, 0)-> SCHE\\A;
SCHEMA:: SCHEMAS->SCHEMAS;
SCHEMA->SCHNAME. VALOF .;
END;

*** CODE FOR CREATING KEYS FRo!.{ THE ***
*** BOND AND CONDITION SPEC IF ICATIC~NS ***

RECORD EXTRABOND EBSOURCE EBFUN EBGOAL;
RECORD KEYNODE KNBINDING KNCONDS KNGEN KNEXTRAS;
RECORD RULE RULENUM 0 RULEKEY RULEACTION;

FUNCTION UNPACKBONDS L;
COMMENT"this destructively alters 1 substituting two one
way specifications for one two way one!;

.VARS R B;
UNTIL L.NULL

, DO L.HO->B;
IF B.LENGTH=4 _

ENDOO;
END;

THEN ITEMC4,Bl->R;NIL->B.TL.TL.TL;
[;~B.TL. TL.HD, R, B.HD%J-: :L. TL->L. TL;
L.TL.TL->L;

ELSE L.TL->L;
CLOSE;

-218-

FUNCTION COMESFIRST A 8 L;
L RHLOOP;

IF RH=B THEN FALSE;RETURN ELSEIF RH=A THEN TRUE;EXIT;
END RH;
• POPE RR;
END;

FUNCTION GETOROEREDNODES BONOSPECS=>REACHABLE SPECS;
'COMMENT'this takes a list of bond specifications and
ensures that the firstnode in each bond can be reached
from a previously mentioned node. i. e. it
will reorder [[a fun b] [c fun dJ [b fun c] J.
it also returns a list of node names!;

VARS SUSPECT B;
FUNCTION TRYADD B;
VARS X;B.TL.TL.HD->Xt
UNLESS MEMBERCX,REACHABLE)
THEN NCJO IN (REACHABLE, x.:: NIL)-> REACHABLE CLOSE;
END;

POP BONDSPECS->8;[%8 .. HD,B.TL.TL.HO%J->REACHABLE;
NIL->SU SPECT;
(%8,

LCXJPI F BONDSPECS. I SLINK
THEN POP BONDSPECS->8;

IF MEMBERCB.HO,REACHABLE>
THEN B; B. TRY ADD;

SUSPECT RHLOOP;

END RH;

IF MEMBERCRH.HD,REACHABLE>
THEN RH;RH.TRYADD;
REMOVE<RH,SUSPECT)->SUSPECT
CLOSE;

ELSE B::SUSPECT->SUSPECT
CLOSE;

CLOSE%]->SPECS;
UNLESS SUSPECT.NULL
THEN 'INVALID KEY SPECIFICATION. CULPRITS: !.PRSTRING;

SUSPECT. PR;
.POPREADY;

CLOSE;
END;

FUNCTION GETNAMEDNODE W;
COMMENT'assumes global keylist!;

KEYLIST RHLOOP;
IF RH.KNBINDING=W THEN RH;EXIT;
ENDRH;
FALSE;
END;

-219-

-': '·:. -, . . . ' ~ .

COMMENT"some complex bond specifications are split into
bonds and tests for conditions.i.e. [a spouse =none] is
handled by translating it into something like:

[a spouse bJ and [.equal b none]
·so dummy names Clike "b11) are needed.!;_

VARS DIFFERENT NEXTDUMMYNAME;
EQUAL FNCOMP NOT->OLFFERENT;
GENSYMC "DUMMYNOOE 11)->NEXTDUMMYNAME;

FUNCTION EXTHACTCOND BONDSPEC;
COMMENT" this 1 ooks for a special syfilbol C = or /=) before
the second node and destructively changes the bondspec and
stacks the required condition!;

VARS W LASTBIT FUN;
BONDSPEC. TL. TL->LASTBIT; LASTBIT. HD->~·1;
IF W= 11 =11 THEN EQUAL->FUN
ELSEI F V·J="/= 11 THEN DI FFERENT->FUN
ELSE RETURN
CLOSE;
.NEXTDUMMYNAME->W; [%W%J->BONDSPEC. TL. TL;
[%FUN,W,LASTBIT.TL.HD%J;
END;

FUNCTION GETCONDARG W;
COMMENT'the argue11ents specified in A cond may or may
not be keynodes! ;

VARS X;V'l.GETNAMEDNOOE->X;
IF X THEN X ELSE ~'i CLOSE;
END;

FUNCTION LASTNODE L M;
COMMENT., returns the member of. 1 which occurs last in :n!;

COMMENT.,if no member of 1 occurs in m then this
returns m.hd!;
M. REV-> M;
UNTIL M. TL.NULL OR MEMBERCM.HO,L) DO M. TL->M ENODO;
M.HD;
END;

FUNCTION ADDKEYCOND COND;
COMMENT'cond is turned into a list of keynodese.r other

arguments preceded by a function and stored under the last
named node. keylist is assumed to be global.!;
VARS F L K;
COND.RIG->COND;
IF COND.HD. ISWORD THEN COND.HO. VALOF->F ELSE COND.HD->::
CLOSE;
MAPLISTCCONO.TL,GETCONDARG)->L;

, LASTNODECL,KEYLIST)->K;
CF: :L): :K.KNCONDS->K. KNCONDS;
END;

-220-

FUNCTION ADDKEYBOND BOND NODENAMES;
COMMENT"this takes a bond specification, and uses it to
modify the key appropriately.
a bond specification may contain either a function
or a word for the slotfun!;

VARS KNA KNB A F B;BONO.DL->8->F->A;
UNLESS F. ISFUNC THEN F. VALOF->F CLOSE;
A.GETNAMEONODE->KNA;B.GETNAMEDNODE->KNB;
IF COMESFIRST<A,B,NODENAMES>
THEN IF KNB.KNGEN=UNDEF

THEN CONSPAIR<F,KNA)->KNB.KNGEN
ELSE C 0 N SE XT RA 80 N D (K N A , F , K NB) : : K NB • K NEXT RA S

->KNB.KNEXTRAS
CLOSE;

ELSE CONSEXTRABOND<KNA,F,KNB)::KNA.KNEXTRAS->KNA.KNEXTRAS
CLOSE;
END;

FUNCTION MAKEKEY NODENAMES CONDS BONDS=>KEYLIST;
COMMENT"during the creation of the keynodes we keep their
names in knbindinq!;

MAPLI ST (NODENAMES, CONSKEYNODE< ~~NIL, UNDEF, NI L~~J) ->KEYL I ST;
APPLI ST (CON OS ,ADDKEYCOND);
APPLI ST <BONDS ,ADDKEYBOND< ?~NODENAMES~6J >;
END;

FUNCTION MAKERULE N BONDS CONDS ACTION;
VARS KEYLIST NODENAMES;
MAPLIST<BONDS,RIG)->BONDS;
MAPLIST(BONDS,EXTRACTCOND)<>CONDS->CONDS;
BC)NOS. U NPACKBCJNOS; 8C)N0S. GETCJROEREDNC)OES-> BCJNOS-> NC)0ENA1-~1ES;
MAKEKEY (NODE~·! AMES, CON OS, BONDS> ->KEYLI SI;
CONSRULE<N,KEYLIST,

POPVAL((% 11 LAMBDA 11 , 11 FROZRULE 11 , 11 FROZBONDS",
NoD EN AM E S • 0 L , " ; 11 , ACT I 0 N . 0 L , u EN 0 n , n ; n ~~ J)) ;

END;

FUNCTION TRYFRESHRULE INST F L;
COMMENT'when a new rule is added to a schema, this tries
to match its key ~o all the existing instances in the
appropriate slot
of all instances of the schema!;

APPLI SI< I NST .. F .SLOT BONDS,
LAMBDA B;
STARTKEY< L, INST ,OTHERil'.JST< 8, INSTJ);
END);

END;

-221-

FUNCTION ADDRULE SCHEMA RULE ;
CCHHAENT'for adding rules to schemas so that when an
instance of one of the schemas is created, each slot in it
will be able to look at the corresponding component of

schknowledge to find its initial rules!;
VARS SK L F;RULE.RULEKEY.TL.HD.KNGEN.FRONT->F;
SCHEMA. SCHKNcH~!LEDGE .F->SK;
f %RULE~~]-> L;
L::SK.SKRULES->SK.SKRULES;
APPLI ST (SCHEl~A. SCHI NSTS, TRYFRESHRULE(%F, L~,; >);
END;

OPERATION 4 ==> LHS RHS;
VARS SCHEMA RULE N BONDS CONOS;
NIL->BONDS;NIL->CONOS;POP LHS->N;
POP LHS->SCHEMA;
APPLISTCLHS,LAMBDA L;

IF L.HD= 11 • 11 THEN L.TL::coNDS->CONDS
ELSE L:: BONDS-> BONDS;
CLOSE; END);

MAKERULE<N,BONDS,CONDS,RHS)->RULE;
IF SCHEMA.ISWORD THEN ADDRULE<SCHEMA.VALOF,RULE>
ELSE APPLIST< SCHEMA, VALOF FNCOMP ADDRULE< 3~RULE%J)
CLOSE;
END;

*** SOME MISCELLANEOUS FUNCTIONS •c·k·k

FUNCTION OTHERI NST BOND- I NST;
COMMENT'halfbonds have bondinst2=undef!;

VARS X;BONO.BONDINSTl->X;
IF X=INST THEN BONO.BONDINST2 ELSE X CLOSE;
END; -

VARS WHERESLOTSSTART;4->WHERESLOTSSTART;

FUNCTION I SIN STANCE X;
X. I SSTR I P AND X. I NSTOF. DATAWORD=:t SCHEMA 11

END;

FUNCTION BEFORE A B;
COMJAENT'checks ·whether a was made before b.

the instances in a schema aie in reverse order!;
A.INSTOF.SCHINSTS RHLOOP;

IF RH=B AND RH/=A THEN TRUE;RETURN
ELSEIF RH=A THEN FALSE;EXIT;

END RH;
, .POPERR;

END;

-222-

*** CODE FOR CREATING AND ***
*** MANIPULATING BONDS ***

FUNCTION FILLERS INST SLOTORFUN;
IF SLOTORFUN.ISFUNC THEN INST.SLOTORFUN->SLOTORFUN CLOSE;
MAPLISTCSLOTORFUN.SLOTBONDS,

LAMBDA B;OTHERINST< 8, INST) ;END>;
END;

FUNCTION GETBOND SOURCE FUN GOAL;
SOURCE. FUN. SLOT BONDS RHLOOP;

IF OTHERINSTC RH,SOURCE>=GOAL THEN RH; EXIT;
END RH;
FALSE;
END;

FUNCTION GETIHEBOND SOURCE FUN GOAL;.
GET BOND (SOURCE. KNBI NO ING, FUN, GOAL. KNB I ND I NG);
END;

FUNCTION GETEXTRABONDS K;
A PPL I ST (K. KNE XTRAS, DE STEXTRABOND FNCOM? GEITHEBOND);
END;

FUNCTION GETGEN BONJ K;
VARS B;K.KNGEN->B;
GETTHEBOND CB. BACK, B. FRONT, K);
END;

FUNCTION GETBONDSUSED KEYLIST;
CCH1MENT'this assumes that the nodes in keylist are
correctly bound and returns all the bonds used in matching
the key!;

[16A PPLI ST < KEYLI ST. TL, GETGEN BOND),
APPLI ST< KEYLI ST ,GETEXTRABONDS)56];

END;

FU~lCTION COMMONMEM LL;
VARS COMMON;
FILTLISTCLL.HD,LAMBDA X;

ALLTRUECLL.TL,LAMBDA L;MEMBERCX,L>;END>;
END)->COMMON;

IF COM!t\ON.LENGTH/=1 THEN .POPERR CLOSE;
COMMON. HO;
END;

-223-

FUNCTION COMMONCEIL BONOS;
MAPLIST<BONDS,BONDCRED FNCOMP CEILINGS).COMMONMEM;
END;

FUNCTION ONEFILLERCONSTR BOND OLOBONOS;
'COMMENT'this type of constraint is only added if there
is more than one fLller. if a constraint already exists
it is modified to include the new bond!;

VARS COM C;BONO.BONOCRED->C;
IF OLOBONDS.NULL THEN
ELSEIF OLDBONDS.TL.NULL
THEN ATMOSTONE< [%C,OLOBONOS.HO.BONDCRE0%])
ELSE OLD BONDS. COMMONCEI L->COM; c.:: COM. CONCEI LI NGS

->COM.CONCEILINGS;
COM:: C. CE I L INGS->C. CEILINGS

CLOSE;.
END;

FUNCTION ADDBOND INST FUN BOND;
COMMENT"puts the bond in the slot and adds the constraint
that the instance must be at least as true
as the bond. it also adds the
constraint between the fillers of the slot,where

.q pp l i c a b l e ! ;
VARS SLOT SLOTSIZE OLDBONOS;INST.FUN->SLoT;
SLOT. SLOTSONOS->OLOBONDS;
BCJ!'·JO: :OLOBONDS->SLOT. SLOT BONDS;
~~\OR ECRED < INST. I tJSTC RED,: :NIL, BONO. BONDCRED:: NIL) ;
INST. IN STC)F. SCHKNC)~'lLEOGE. FUN. SKSI ZE-> SLC)TS IZE;
IF SLOTSIZE=l THEN ONEFILLERCONSTR(BOND,OLDBONDS) CLOSE;
COMMENT/assumes new credval=O!;

END;

FUNCTION RETURNBOND INST1 FUN 1 INST2 FUN2=>B;
eo lv\M ENT;' t hi s e i the r re turns an ex i s t i n g bond , or i f
there is none,it makes a new one.
if inst2 isnt an instance fun2 must be undef!;

VARS CREDNODE;
GETBONDC INSTl ,FUN t, INST2)->8;
IF BAND <FUN2=UNOEF OR MEMBERC8,INST2.FUN2.SLOTB00IDSJ)

THEN EXIT;
CON SBOND (II'--IST t ~I NST 2, UNDEF) -> B;
co:.JSC REDNODE (8, NIL, NIL, NIL, 0. 5, 0, 0)->CREDNOOE;

CREONODE: :CREONODES->CREONOOES; CREDNODE-> B. BOHDCRED;
;\DDBONO(INSTl ,FUN 1, 8);
IF FUN2/=Ul'JOEF
ThEN ADDBOND(INST2, FUN2, 8);
CLOSE;
RUNTRIGS(INSTI,FUNl ,INST2);
IF FUN2/=Uf\JOEF
THEI'J RU r··.JTr-?I GS (I NST 2 ,FUN 2, I NST 1) CLOSE;
Et\JD ;

-224-

FUNCTION MAKE BOND;
• RETURN BOND. ERASE;
END;

· VARS LINK;MAKEBOND<%UNDEF%>->LINK;

*** CODE FOR ?v1AKING AND RUNNING JOBS ***'

VARS JOBSRUN TRIGTHRESH;O->JOBSRUN;0.7->TRIGTHRESH;

FUNCTION JOBRULE J;
F ROZV AL (1 , J) ;
END;

FUNCTION JO BBONDS J.;
FRO ZV AL (2 , J) ;
END;

VARS JOBLIST;NIL.:...>JOBLIST;

FUNCTION CHECKBONDVALS JOB;
COr/fAENT"this either returns true or puts the job in e. list
on the crednode of an implausible bond!;

VAf.~S CRED;
JOB.JOBBONDS RHLOOP;

RH.BONDCRED->CRED;
IF CRED.CREDVAL=<TRIGTHRESH
THEN JoB: :CRED.CREDJOBS->CRED.CREOJOBS; FALSE;
EXIT;

END RH;
TRUE;
END;

FU>1CTION ADDJOB J;
i\JCJOIN< JOBLI ST, J.: :NIL)->JOBLI ST;
END;

FUNCTION F?UNJOB J;
J .APPLY; 1 +JOBSRUN->JOSSRUN;
EHD;

F(E,JCTION TRYOORMANT JOB JOB;
IF JOB.CH2CKBONDVALS THEN JOB.ADDJOB CLOSE;

' END;

FU>TCTION TRYACTIVEJOB JOB;
CClWAENT'assumes that the job has been removed fro~ jojlist!;

IF JOB .CHECKBONDVALS THEN JOB. APPLY; 1 +JOBSRUN->JOBSRU~·I;
CL() SE:; ~

END;

-225-

FUNCTION TRYJOB J;
J.TRYACTIVEJOB;REMOVE(J,JOBLIST)->JOBLIST;
END;

FUNCTION TRYALLJOBS;
VARS L;JOBLIST->L;NIL->JOBLLST;
APPLI ST CL, TRY ACTI VEJOB);
END;

FUNCTION TRYJOBN N;
ITEM<N, JOBLIST). TRY JOB;
END;

i

FUNCTION ADDSAMEF ILLERJOB T INST FUN FILLER;
COMMENT'this adds the job to infer the appropriate bond
when a samefiller demon is activated.jobs are assumed to
be closures o~ functions with frozrule and frozbonds as
their first two formal parameters,so the function
sfenviron is provided!;

FUNCTION SFENVIRON FROZRULE FROZBONOS BONDSPEC;
INFER< BONOSPEC) ;
END;

SFENV IRON (~~T. SF RULE, GET BOND C I NST, FUN, FILLER)_: :T. SF BONDS,
[~&T. SFOTHER INST .. CONSR EF,

T. SFOTHERFUN. CON SREF, FI LLE:R. COIJSREF ~6] ~~). ADDJOB;
COMMENT'the function that interprets hondspecs expects

words or references!;
END;

FUNCTION ADDRULEJOB RULE;
COl·~MENT'assumes that the key will be bound!;

VARS KEY;RULE.RULEKEY->KEY;
RULE. RULE ACT I ONC ~;RULE, KEY. GETBONOSUSED,

APPLISTCKEY ,KNBINDING)~~) .ADDJOB;
END;

-226-

*** CODE FOR MAKING AND TRIGGERING DEMONS ***.

RECORD EBTRIG EBTGOAL EBTREM EBTBINDINGS;

C01AMENT" ebtrig records are used as demons whi eh
wait for extra bonds, i.e. ones not used to
generate candidate bindings for the next keynode!
"these records sit on a slot in one instance and
wait for a bond to another particular :instance
{ ebtgoal). the remaining extra· bond needed from the
instance are held in ebtrem, and the bindings of
previous keynodes in ebtbindings.!;

VARS ISKEYNODE;
SAMEDAT AC ;~coNSKEYNODE (NIL, NIL, NIL, NIL)J6)->I SKEYNODE;

FUNCTION CHECKCOND COND;
COMMENT"assumes cond is a list of keynodes
words or integers preceded by a function!;

VARS FUN;COND.HD->FUN;
COND. TL RHLOOP;

IF RH.ISKEYNODE THEN RH.KNBINOING ELSE Rh CLOSE;
ENDRH;.FUN;
END;

FUNCTION CHECKCONOS KEYNODE;
ALLTHUECKEYNODE.KNCONDS,CHECKCONO);
END;

FUNCTION EBPRESENT EB;
CC)i~11¥{EI'lT~checks thnt an extra bond is present asstJming that
the keynodes have the right bindings!;
COMM.ENT"information -?bout the required extra bonds
is kept in a k~ynode·in an extrabond record. the
keynode is in ebsource, and ebgoal co~tains another
keynode. the extra bond must be between the instances
bound to these two key nodes, and should be in the
ebfun slot of the ebsource instance!;

, GET BOND C E B. EBSOU RCE. KN B I NO I r~G '; E B. EBFUr'.;, 2:8 .E RGOAL. K:--IBI ~·;J I:·~G > ;
END;

-227-

FUNCTION CHECK~ A'TRABONDS EXTRAS 8 INDI NGS;
COMMENT'tests whether all the extras are present.if not it
leaves a demon on the appropriate slot!;

VARS EB SLOT;
IF EXTRAS.NULL THEN TRUE
ELSEIF EXTRAS.HD.EBPRESENT
THEN CHECKEXTRABONDS< EXTRAS.TL, BINDINGS)
ELSE EXTRAS.HD->EB;

CLOSE;
END;

(EB. E BFUN) (EB. EBSOU RCE. KNBI NO I NG>->SLOT;
CONSEBTRI GC EB. EBGOAL .. KNBINDING, EXTRAS. TL, BINDINGS)
::SLOT. SLOTTR I GS->SLOT. SLOTTR I GS;
FALSE;

FUNCTION CANBIND INST KEY~.lODE BINDINGS;
MEMBER< INST ,BINDINGS) .NOT AND :
(INST ->KEYNODE. KNBIND ING; KEYNODE. CHECKCONDS) AND
CHECKEXTRABONDS<KEYNODE.KNEXTRAS,BINOINGS);
END;

FUNCTION TRYTOBIND REMKEY RULE BINDINGS;
COMMENT'this attempts to bind the rernainiT~:.J keynoc.fes.
it generates candidate instr1nces for :::! keynode by looki!Jg
at the instances filling the slot specified by the knbond
in kngen. it also leaves a demon on this slot in case core
fillers turn up lAter!;

VARS I0JST KEYNODE GENBOND SOUF?CEINST GENSLOT;
IF REMKEY .NULL THEN RULE.ADORULEJOB;EXIT;
COMMENT'\';hen a match succeeds a job is made!;

REMKEY .. HC)->KEYNOOE;KEYNODE.KNGEN->GEN130ND;
GENBOND.BACK.KNBINOING->SOURCEINST;
(GENBON D. FRONT) (SOU RC EI N ST) -> GEN SLOT;
BINOINGS::GENSLOT.SLOTIRIGS->GENSLOT.SLOTTRIGS;
C01v~j\\ENT"bindinas is a list whose last element is 3

rule.implementing demons this way is econo~ical
because descendants of a demon can be have orre new
binding and a pointer back to the smaller demon
i.e. the tail of a demon is its parent!;

GENSLOT.SLOTBONDS RHLOOP;
OTHERINST(RH,SOURCEINST)->INST;
IF.CANBINDCINST,KEYNODE,BINDINGS)
THEN T RYTO 8 I NO C REMKEY. TL, RULE, I ?·J ST:: BI !··JD IN GS)
CLOSE;

END RH;
END;

-228-

FUNCTION REBIND BINDINGS=>RULE REl·~KEY; ·
CCHI.MENT'used for rebinding keynodes when a demon fires.
remkey will be the nodes not yet bound!;

VARS X;
HENOOFBINDINGS 11 ,BINDINGS.DL->RULE;
RULE.RULEKEY->REMKEY;
UNTIL (->X; X="ENOOFBINOINGSn)
DO X->REMKEY.HO.KNBINOING;REMKEY.TL->REMKEY;
ENDOO; ..
END;

FUNCTION STARTKEY RULELIST STARTINST NEWINST;
COMMENT'rulelist is a list of the rules whose keys
can start matching when a filler (newinst) is put
in the appropriate slot of nn instance <startinst>.
if binding the instances to the keynodes violAtes
a condition in the key, the match fnils before
calling trytobind. so no demons are s~t up unless
at least two instances and a bond between them
fits the key. this avoids many demons.!;

VARS RULE KEYLIST;
RULELIST.HO->RULE;RULE.RULEKEY->KEYLIST;
IF CANBINDCSTARTINST,KEYLIST.HD,RULELIST)
AND C.t\N BIND< NEvv INST 7 KEYLI ST. TL. HO, START I NST:: RULELI ST)
THEN TRYTOBINDCKEYLIST.TL.TL,RULE,

NEW INST:: (STARTINST:: RULELI ST))
CLOSE;
END;

FUNCTION GBCONTINUE l\fE}VINST BINDINGS;
CO MM ENT' c a 11 ed when a ne \v i n s tan c e f i 11 s · a s l o t
which has a demon on it!;

VARS NEWBINDINGS REMKEY RULE;BINDINGS.REBIND->REMK~Y->RULE;
NEWINST::BINDINGS->NEWBINOINGS;
IF CANBIND<NEWINST,REMKEY.HD,BINDINGS>
THEN TRYTOBIND< REMKEY. TL,RULE,NE~BINDINGS)
CLOSE;
END;

FUNCTION EBCONTINUE REMEB BINDINGS;
COh~MENT' ea 11 ed when the required instance fills .:1

slot which has a demon waiting for an ~xtra bond.!;
VARS REMKEY RULE;BINDINGS.REBIND->REMKEY->RULE;
IF CHECKEXTRABONOS(RE;v\EB, BINDINGS)
THEN TRYTOBIND< REl·!KEY ,RULE, BINDINGS)
CLOSE; .
END;

-229-

FUNCTION RUNT RIGS ST.\RTINST FUN NEWINST ;.
C01~MENT'demons are of tvJo kinds. one is looking for a
candidate for the next keynode and is represented by a
list of the bindings so far sitting on the slot from which
the next knbinding will have to be generated! 'the other
is looking for an extra bond involving the last bound
keynode and is represented by an ebtrig record containing
the goal instance, the remaining extrabonds in the last
bound keynode, and the bindings. the record sits on the
appropriate slot of the bo~ds source instance.! 'in both
cases the bindings list has the rule as last item! ·
'finally, the rules in the schemq need to be examined in
case any key matches start with the new bond!;
VARS SLOT;STARTINST.FUN->SLOT;

APP LIST C SLOT. SLOTKNCW/LEDGE. SKt?ULES,
STARTKEY C %START I NST, NE~·~ I t··.JST~~J);

APP LIST C SLOT. SLOTTR I GS,
LAMBDA T;

END;

IF T.ISLIST THEN GBCONTINUECNtWINST,T)
ELSEIF ·r.DATAWORD="SAMEFILLER"
THEr·I ADDSAMEFI LLERJOB (T, STARTINST, FUN, NE~·f INST)
ELSE IF T. EBTGOAL=NE~'HNST
THEN REMOVE (T, SLOT. SLOTTR I GS) ->SLOT. SLOIT RIGS;

EBCONT I NUE (T. E BTREM, T. EBTB IND I ~··.fGS)
CLOSE;
END);

-230-

.._" CODE FOR MAKING CONSTRAINTS ***
*** (MOSTLY LISTED IN PUPPET PROGRAM) ***

RECORD CONSTR CONVIOL 0 HYPLENGTH 0 OLDCONVIOL 0
CONFLOORS CONCEILINGS;

COMMENT/ constraints have been given extra fields
compared with the puppet p~ogram. the fields
conceilings and confloors are used to hold lists
of the nodes whose supposition values may be
held down or held up by the constraint!;

FUNCTION INFERCONSTR L B;
RETURNCONSTR< 8-: :NIL,L, 1 -L.LENGTH>;
END;

FUNCTION DENYCONSTR L B;
RETURNCONSTR< NIL, B:: L, C-L. LENGTH>);
END;

FUNCTION NOTALLCCH'~STR L i
RETURNCON SIR (NIL, L, 1--._ L. LENGTr-0;
END;

-231-

*** CODE FOR THE FUNCTIONS USED IN ***
*** THE ACTION PARTS OF RULES ***

RECORD SAMEFILLER SFRULE SFBONOS SFOTHERINST SFOTHERFUN;

FUNCTION ADDANDTRYSFDEMON INST FUN TOTHERINST OTHERFUN;
COMMENT"this adds a samefiller demon to a slot and also

runs the demon on all existing fillers!;
VARS T S;INST.FUN->S;
CON SSAi·;~EFI LLER< FROZRU LE, FROZBONDS, TOT HE RI NST, OTHERFUN)-> T;
T:: S. SLOTTR I GS->S. SLOTT RIGS;
APPFILLERS<INST,S,

LAM.BDA FILLER ;A DDSAMEFI LlERJOB(T, INST, FUN ,FILLER);
END);

END;

FUNCTION SAMEFILLER INSTA SFA INSTB SFB;
COlS'~~ ENT' this assumes it is called in the a et ion part

of a rule!;
UNLESS INSTA. ISINSTANCE AND INSTB. ISINSTANCE T;-IEN EXIT;
ADDANDT F?YSFDEMON (IN STA, SFA, I NSTB, SFB) ;
ADDANDT f?YSFDEMON C I i'J STB, SF B, I NST A, SFA) ;
END;

FUNCTION EVALSPEC X;
IF X. IS~'fOF?D THEN X. VALOF
ELSEIF X.OATAWORD="REF" THEN X.CONT
ELSE .POPERR CLOSE;
END;

FUNCTION CASHSPEC L;
COMMENT"takes a bond specification And returns false,

or true and the bond!;
V AR S X IN ST 1 IN ST ~ SF 1 SF 2;
EVALSPEC (POP L) ->I I·~ ST 1 ;
UNLESS INSTl.ISINSTANCE THEN O;EXIT;
EVALSPEC(POP L)->SFl;POP L ->X;
IF X= 11 =11 THEN POP L->INST2 ELSE X.EVALSPEC->Il·~ST2 CLOSE;
I F IN ST 2 • I SIN ST AI ,f C E
THEN IF L. I SL IN!< THE'·f L .HD. EVALSPEC->SF2;

ELSE SFl. INVERSE->SF2 CLOSE
ELSE UNDEF->SF2
CLOSE;
RETUiiNBOND< INST I., SF I, INST2, SF2) ;TRUE
END;·

FUNCTION CLAIM LIST ?REF;
VARS CRED;LIST.CASrlSPEC.ERASE'.BONDCRED->CRE::J;
PREF+CRED.CREDPREF->CRED.CREDPREF;
END;

:....232-

FUNCTION MAKESOFTCONSTR FLIST CLIST N PENALTYt
VARS PE~:NODE C;
IF PENALTY
THEN CONSCF?EDNODE (UNDEF, NIL, NIL, NIL, 0, 0, -PE;'-IALTY}

-> P E~'JNC)OE;
PENNOOE:: :CREDNODES;PENNOOE::FLIST->FLIST;

CLOSE;
RETURNCONSTRCFLIST,CLIST,N}->C;
IF PENALTY THEN C->PENNOOE.CREDOBJ·CLOSE;
END;

FUNCTION SOFTINFERBOND 8 PENALTY;
VARS CLIST C;
MAPLIST<FROZBONDS,BONDCRED>->CLIST;
MAKESOFTCONSTR<B.BONDCREO::NIL,CLIST, 1-CLIST.LENGTn,

PENALTY)?
END;

FUNCTION SOFTDENYBOND 8 PENALTY;
VARS CLIST C;

1

8. BONDCRED: :MAPLI ST (F ROZBONDS, BONDC RED:) ->CLI ST;
MAKESOFTCON ST R (NIL, CL I ST, 0-CL I ST. LENGTH, P E'J AL TY};
END;

FUNCTION SOFTCONTRADICTION PENALTY;
VARS CLIST C;
MAPLI ST C F RC)Z8C)NOS, BC)NOCREO) ->CL I ST;
rAAKESOFTCONSTRC NIL, CL I ST, 1-CL I ST. LENGTii,? ::~J ALTY);
END;

FUNCVAR CONTRAD I CTI Ol\I SOFTCONTRAD ICTI 0\ C)~05~);

COMMENT-'there are several formats for inferring or de~ying
a bond.the bond,or its instences and functions, o~ a list

of them, can all be used!;

FUNCTION SOFTINFER4 P;
SOFT INFER BOND<. RETU l~N BOND, P);
END;

FUNCTION SOFT DENY 4 P;
SOFTDENYBONDC • RETURN BOND, P);
END;

FUNCTION SOFT IN FER L PEN; .
IF L. CA.SHSPEC THEN PEN. SOFTINFERBOND CLOSE;
END;

FUNCTION SOFTDENY L PEN;
IF L. CASHSPEC THEN PEN. SOFTCEI\iYBO!-JD CLos::;
END;

VARS INFER DENY INFEi~BOND DENYE.ONO INFE:R4 DENY4;
SOFT INFER C)'sO~~)-> INFER; SOFTDENY. C 5~0~s) -> r:;::;\;y;
SOFT I NF ER4(5~0~s) ->I l'·fFE R4 ;SoFTDEf-IY4 C %0~~)- >D~NY4;
SOFT I NF EF?DOND (5s0~~)- >INFER BOND; SOFTDENY so:.JD C 5~07~) -> J:::<Y 2~1 ~<);

-23)-

'~ CODE FOR RUNNING RELAXATION *
*** (MOSTLY LISTED IN PUPPET PROGRAM) -***

FUNCTION UPFORCE C=>SUM;
COMMENT"this computes the total force on c due to

constraints!;
COMMENT"more efficient the1n the separate funct.ions
used in the puppet program!;

VARS V;O->SUM; .
C.CEILINGS RHLOOP;

RH. CONV I OL- >V;
IF V>O THEN SUM-V /RH. HYPLENGfH->SUM CLOSE;·

END RH;
C.FLOORS RHLOOP;

RH .. CO NV I 0 L- >V ;
IF V>O THEN SUM+V/RH.HYPLENGTH->SUM CLOSE;

-ENDRH; I

END;

· FUNCTION RUNMORE STEPS;
STEPS<•~ .MOVE;. TRYALLJOBS;CREDNODES. REV. SHCWiCREOS;*>;
CREDNODES. REV. SHOWNAMES;

"END;

0. 2-> PCOE FF;
0.5->DCOEFF;
0 • 5 -> FC 0 E FF ;
0.05->HCOEFF;

f-UNCTION SEITLE CLEARROUNOS;
COMMENT'after eAch round of relaxation this shows the
number of dormant jobs
aroused,and the number of jobs run and stored
by a tryalljobs,and the number
of new jobs created by those run!;

VARS N TOTAL ROUSED MAOE;O->N;JOBLIST.LENGTH->MADE;

ROUSED RUN STORED MADE
! • P RSTR ING;
UNTIL N=CLEARROUNDS
DO .MOVE?

IF JOBLIST. I SLINK THEN 0->N ELSE N+ 1->N CLOSE;
JOBLI ST. LE!··IGTH->TOT AL; TOTAL-\LADE->ROU SED;
0->JO BSRUN i
• TF?YA U_JOBS;
JOBLI ST. !...Et-!GTH->MADE;
Ir··fTPR <ROUSED., 3); I NTPR C JOBSRUN, 4);
I NTPf~ C ToT P.L-J OB SHUN, 4) ;

INTPR<1.-1ADE, 4);
1 • r·r L;

-234-

BIBLIOGRAPHY

Adler M.R. (1976)
Recognition of peanuts cartoons.
In Proc. A.I.S.B. Summer Conf. July 1970. pp 1-13.

Amarel S. (1968)
On representations of problems of reasoning about
actions.
In Machine Intelligence 3.
Ed. Michie, pp 131-172.
Edinburgh University Press, Edinburgh ..

Ambler A.P., Barrow H.G., Brown C.M., Burstall R.M. &
Popplestone R.J. (1975)
A versatile system for computer controlled assembly.
Artificial Intelligence 6, pp 129-15~.

B a rr o vr H. G. , Am b 1 er A • P • & 8 u r s t a .11 R. M • (1 9 7 2)
Some techniques for recognising structures in pictures •.
In Frontiers of Pattern Recognition.
Ed WatAnabe pp 1-29.
Academic Press, New York.

Barrow H.G 8. Tenenbaum J.M. (1976)
MSYS: A system for reasoning about scenes.
A .. I. Center. Stanford Research Institute.

Bertlett F.C. (1932)
RemeGbering: A study in experimental and social
psychology
Cambridge University Press, Cambridge.

Er a dy J • ',\ • & ~·J e i 1 in g a B. J • (l 9 7 6)
Seeino a oattern as a character.
In Proc. ~.I.S.B. Summer Conference.
University of Edinburgh, Edinburgh.

B ro n C. 6. K er bo s c h J. (19 7 3)
Algorithm 457. Finding all cliques of an undirected

' (I •) qra pn i~ •

Comm.Assoc.Comp.Mach. 16, No 9.

Burstell R.l.i., Collins J.S. & Popplestone R.J~ (i971)
Progr2;1ming in POP-2.
Ec!inb·~:rgh University Press, Edinburgh.

Clowes /.J:.s. <1969)
Pictori~l relationships- a syntactic arproach.
In M a chine In t e 11 i g en c e 4.
Ed. ~eltzer and ~ichie, pp 361-383.
Edinblirgh University Press, Edinburgh.

-235-

C 1 o \•I e s ;,~ • B • < 1 9 7 1)
On seeing thinqs.
Artificial Intelligence, 2, pp 79-112.

Davis L.S. & Rosenfeld A. (1976)
Applications of relaxation labelling,
2: Spring-lo8ded template matching.
Technical Report 440.
Computer Science Center, University of Maryland.

Dreyfus H.L. (1972)
What computers can't do.
Harper & Row, New York.

Ouda (1 970)
Sone current techniques for scene analysis.
Technical Note 46 ,
A.I. Center, Stanford Research Institute.

Erman L.D. & Lesser, V.R. (1975)
A multi-level organisation for problem solving using
many diverse cooperating sources of knowledge.
In Proc. 4th Inter.Joint.Conf. on Artificial Intelliaence.
pp 433-490. -'

Fikes R.E. (1970)
REF-ARF: A system for solving problems stated
as procedures.
Artificial Intelligence pp 27-120

Freuder E. (1976)
Synthesizing constraint expressions.
M.I.T. A.I. Memo 378

Garfinkel R.S. & Nemhauser G.L. (1972)
Integer Programming
Wiley: New York

Gomory R.E. (1958)
An algorithm for integer solutions to linear progra~s.
Bull.Amer.Math~Soc. 64, pp 275-278.

Gr 8 oe G. H. (1 97 3)
M~del-based (intermediate level) computer vision.
StAnford A.I.Memo AIM-201
Computer Science Dept. Stanford University.

Guzmgn A. (1968)
Decomposition of a visual scene into three-dimensio~2l bodies.
A.F.I.?.S. Proc. Fall Joint Comp.Conf. 33, pp 291-304.

-236-

Guzman A. (1971)

I

Analysis of curved line drawings using context and
qlobal information.
in Machine Intellioence 6.
Ed. Meltzer & Michfe, pp 325-376.
Edinburgh University Press, Edinburgh.

Hart D., Nilsson N. & Rnphael B. (1968)
A formal basis for the heuristic determination of
minimum cost paths.
IEEE Transactions.Sys.Sci. and Cybernetics.
Vol SSC-4 No 2 pp 100-107.

Hebb D~ 0. (1949)
The Oraanisation of Behaviour.
Wiley,J New York.

· Hew i t t C • (1 9 7 2)
Description and theoretical analysis <usinq schemata)
of PLANNER.
Ph 0 thesis, M.I.T. AI Lab. AI-TR-258.

Hilbert D. & Cohn-Vossen S. (1952)
Geometry and the imagination.
Chelsea, New York.

Hochberg J. (1968)
In the mind's eye.
In Contemporary theory and research in visual
perception. Ed. Haber

Huffman O.A. (1971)
Imoossible objects as nonsense sentences.
I n · M a c h in e In t e.ll i g en c e 6 •
Ed. ~eltzer and Michie, pp 295-323.
Edinburgh University Press, Edinburgh.

Jul es z B. (1971)
Foundations of cyclopean perception.
University of Chicago Press, Chicago.

Kan t I. (1781)
Critique of pure reason.
(1Aany editions).

?,; A c k v1 or t h A • K • (1 9 7 5)
Consistency in networks of relations.
Technical report 75-3.
Department of Computer Science, University of British
Columbia, Vancouver.

-237-

Mackworth A.K. (1977)
How to see a simple world.
In Machine Intelligence 8.
Ed Elcock & Michie,.
Ellis Horwood Ltd., Chichester.

Marr D. (1975)
Analysing Natural Images.
M.I.T. A.I. Memo 334

Marr D. (1976)
Early processing of visual information.
Phil.Trans.Roy.Soc. B. 275 pp 483-524

M a rr D. < 1 9 77)
Representing Visual Information.
M.I.T. A.I.Memo 415

;:\arr D •. ~ Poggio T. (1976)
Cooperative computation of stereo disparity.
r.i.I.T. A.I. Memo 364.

Marx K. C 1 883)
Cepital. Vol I.
Translated from the 1883 edition, Ed. Engels.
Lawrence & Wishart, London 1970.

~/ i n s k y !.\ • L • (1 9 7 5)
A framework for representing knowledge.
In The psychology of computer vision.
Ed. ~inston P.H. pp 211-2]7.
~cGraw-Hill, New York.

Minsky M. L .. & Papert S. (1969)
Perceptrons: An int~oduction to computotional
geometry.
M.J .• T. ·Press, Cambridge, Mass.

i'f.insky r.\. L. & Papert S. (1972)
Progress Report.
M.I.T. A.I. Memo 252.
Cflmbridge, i,lass.

Ne. r as i fi1 ha n R. (1 9 66)
Synt2x-directed interpretation of classes of pictures.
In Comm~ Assoc. Comp. Mach. 9.

t'I 2 v on D • (I 9 7 7)
Forest before trees: The precedence of global
features in visuAl perception.
Cognitive Psychology 9, pp 403-411.

-238-

Neisser U. (1967)
Cognitive Psychology.
Appleton Century Crofts, New York.

N i 1 ss on t'J. J. (l97 1)
Proble~-solving in artificial intelligence.
McGraw-Hill, New York.

P a u 1 J • L. C 1 9 77)
An image interpretation system.
D.Phil. thesis. Sussex University.

Perkins O.N. (1976)
How good a bet is good form?
Perception 5, pp 393-406.

Pi age t J. (19 54)
The construction of reality in the child.
Basic Soaks, New York.

Pierre D.A. C 1969)
Optimi sation theory with arplications.
John Wiley & Sons Inc, New York.

Roberts L.G. (1965)
Machine perception of 3-D solids.
In Cp~i ct-31 and electro-optical information processing.
Ed. TiQpett et al pp 159-197.

Rosenfel:J A., Hummel R.A. & Zucker S.W. (1975)
Scene labelling by relaxation oper~tions.
Technical Report TR-379.
Computer Science Center, University of Maryland.

Rosenfeld A~, Hummel R.A. & Zucker S.W. (1976)
Scene labelling by relaxation operations.·
I.E.E.E. Trans. SMC-6 420.

Selfridoe o.G. & Neisser U. C 1960)
Pattern recognition by machine.
Scientific American 203 CAug) pp 60~68.

Shirai Y. (1973)
A context sensitive line finder for recognition of
oolyhe::'ra.
~rtificial Intelligence 4 pp 95-120.

Slom?ln A. (1971)
Interactions between philosoph~_and artificial
intelligence: The role of intuition and non-logical
reasoning in intelligence.
Artificial Intelligence 2, pp 209-225.

-239-

Sloman A., Owen D., Hinton G. & O'Gorman F. (19.77)
Popeye's progress through a picture.
Unpublished manuscript. ·
Cognitive Studies Prograome, Sussex University.

Sloman A.·& Hardy S. (1976)
Giving a computer Gestalt experiences.
In Proc A.I.S.B;. Summer Conference, pp 242-255.

Sta llman R. M. & Sussman G.J. (1976)
Forward reasoning and dependency - directed
backtrackino in a system for computer-aided circuit
analysis • ..,.
M.I.T. A.I. Memo 380.

Sussman G.J. & McDermott D. (1972)
Why conniving is better than planninp.
M.I.T. A.I. Memo 255 A.

Turner K.J. C 1974)
Computer perception of curved objects using a television
camera.
Ph 0 Thesis, University of Edinburgh.

Waltz D.L. (1972)
Generating semantic descriptions from drawings of
scenes with shAdows.
MAC AI -TR-27 1.
M.I.T. Cambridge Mass.

Weisenbaum J. C 1976)
"Computer thought and human reason".
W.H. Freeman, San Francisco.

Willsha0.D.J. & Longuet-Higgins H.C& (1969)
Associative memory models.
In Machine Intelligence 5.
Ed Meltzer & Michie, pp 351-359.
Edinburgh University Press Edinburgh.

Winston P.H. (1970)
Learning structural descriptions from examples.
MAC AI-TR-76, M.I.T. Cambridge, Mass.

W i n s ton P • H. C 1 9 7 2)
The M.I.T. Robot.
I n [;~a chin e I n t e 11 i g en c e 7 •
Ed 1\~el t zer & Mi chi e, rP 431-462.
Edinburgh University Press, Edinburgh.

Winston P.H. (t977)
Artificial Intelligence.
Addison ~esley: New York

-240-

Woods W.A. et al (1976)
Speech understanding systems ~ final technical
progress report. PBN Report No 3438 Vols 1-5
Bolt Beranek & NevJman Inc. : Cambridge, Mass.

~·J oo d s W • A • (1 9 J 7)
Shortfall and density scoring strategies for speech
understanding control. ·
In ?roe 5th Inter.Joint,Conf. on Artifici~l Intelligence.
pp 18-26.
Available from Carnegie Mellon Oniversity.

Yekimovsky Y. & Feldman J. ·(1973)
A semantics-based dec1sion theory region analyser.
Proc. 3rd IJCAI- pp580-588.

Zucker S.W. (1976)
Relaxation labelling and the reduction of local
ambiguities.
Technical report 451.
Computer Science Dept. University of Maryland.

-241-

