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ABSTRACT: Fault tree analysis is a traditional and well-established technique for analyzing system design and
robustness. Its purpose is to identify sets of basic events, calledcut sets, which can cause a giventop level event,
e.g., a system malfunction, to occur. In this paper we present an algorithm that extractsordering information,
i.e., finds out possible ordering constraints which are required to hold between basic events in a cut set. The
algorithm is completelyautomatic, and has been incorporated into a more general framework, based on model
checking techniques, for automatic fault tree generation and analysis.

1 INTRODUCTION

The development of safety critical systems requires
to check that the system behaves as expected not
only in nominal situations, but also under certain de-
graded situations. Thus, on the one hand, system mod-
els are developed by the design engineers in order
to specify and to analyze the expected behaviour of
the system under consideration. On the other hand,
the envisaged system is analyzed by safety special-
ists with respect to malfunctions, i.e., unintended be-
haviour. The safety analysis, performed at each stage
of the system development, is intended to identify
all possible hazards with their relevant causes. Tra-
ditional safety analysis methods include, e.g., Func-
tional Hazard Analysis, Failure Mode and Effect
Analysis (FMEAs), and Fault Tree Analysis (FTA)
(Vesely et al. 1981).

Fault tree analysis (Vesely et al. 1981), in partic-
ular, is a deductive and top-down method to analyze
system design and robustness. Roughly speaking, the
FTA process consists in picking atop level event(e.g.,
a system malfunction condition) and identifying all
possiblesetsof basic events, calledcut sets, which can
cause the top event to occur. Among them, one would
like to isolateminimalcut sets, that is, cut sets which
do not include events that ultimately do not affect the
occurrence of the top event. The information on cut
sets is then collected in afault tree, which consists
of system and component events, connected bygates
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which define the logical relations between events. The
cut setrepresentation provided by traditional fault tree
analysis is not structured. A cut set is simply seen
as a flat collection of basic events, and no informa-
tion is provided about their mutual relationship. Al-
though events are often allowed to happen in any or-
der, in general there may betiming constraintswhich
enforce a particular event to happen before or after
another one. This can happen as a result of a causal-
ity relation, a functional dependency, or more subtle
reasons related to dynamic scenarios where system
behaviour can be affected by, e.g., automatic control
systems or operator actions (Siu 1994).

In this paper, we are interested inautomatically
computing ordering information of basic events.
Specifically, given a top level event and a minimal
cut set computed via fault tree analysis, we want to
find out whether there areordering constraintswhich
hold between pairs of basic events in the cut set. We
call this event ordering analysis. We present an al-
gorithm which integrates traditional fault tree analy-
sis by providing event ordering information for basic
events in a cut set. The algorithm is completelyau-
tomatic, and has been incorporated into a more gen-
eral framework for automatic fault tree generation and
analysis. The core of our ordering analysis algorithm
is based on known procedures forminimization(i.e.,
computation ofminimal cut sets) of boolean functions
(Coudert and Madre 1992; Coudert and Madre 1993;
Manquinho et al. 1998) represented as Binary De-
cision Diagrams (BDDs) (Bryant 1992). The encod-
ing of the problem and some adjustments necessary
to deal with inconsistencyare original. The encod-



ing is based on ordering information variables, that is,
variables which relate pairs of different basic events,
tracking the information about the mutual order in
which the two events may or may not occur.

Our framework is based on model checking (Clarke
et al. 2000), a well-established method for formally
verifying temporal properties of finite-state concur-
rent systems. Model checking has been applied for the
formal verification of a number of significant safety-
critical industrial systems (Holzmann 1997; Larsen
et al. 1997; Cimatti et al. 2002). We have incorpo-
rated fault tree and ordering analysis functionalities
into the model checking tool NuSMV (Cimatti et al.
2002), a BDD-based symbolic model-checker devel-
oped at ITC-IRST, originated from a re-engineering
and re-implementation of SMV (McMillan 1993).
NuSMV is a well-structured, open, flexible and well-
documented platform for model checking, and it has
been designed to be robust and close to industrial sys-
tem standards (Cimatti et al. 2000).

This line of research has been carried on inside
the ESACS project, an European-Union-sponsored
project whose main goals are to define a methodol-
ogy to improve the safety analysis practice for com-
plex systems development, to set up a shared environ-
ment based on tools supporting the methodology, and
to validate the methodology through its application to
case studies. The fault tree and ordering analysis func-
tionalities which we discuss in this paper have been
included in a more general safety analysis platform
which we are developing inside the ESACS project
(Bozzano and al. 2003).

Structure of the paper.The rest of the paper is struc-
tured as follows. In Section 2 we give a brief overview
of the basics of fault tree analysis and we introduce
event ordering analysis, explaining its significance
and its relationship with model checking. In Section
3 we introduce a simple example which we will use
in Section 4, where we present our minimization al-
gorithm for ordering analysis and we briefly discuss
its integration with fault tree analysis based on model
checking. Finally, in Section 5 we discuss related
work and draw some conclusions.

2 EVENT ORDERING ANALYSIS
Fault Tree Analysis (FTA) (Vesely et al. 1981;
Liggesmeyer and Rothfelder 1998; Rae 2000) is a de-
ductive, top-down method to analyze system design
and robustness. It usually involves specifying atop
level event(TLE hereafter) to be analyzed (e.g., afail-
ure state), and identifying all possible sets of basic
events (e.g., basicfaults) which may cause that TLE
to occur. Benefits of FTA include, e.g.: identify pos-
sible system reliability or safety problems at design
time; assess system reliability or safety during opera-
tion; identify root causes of equipment failures.Fault

treesprovide a convenient symbolic representation of
the combination of events resulting in the occurrence
of the top event. Fault trees are usually represented in
a graphical way, structured as a parallel or sequential
combination of AND/OR gates.

In this paper we are interested in deductive meth-
ods which can be used to automatically generate fault
trees starting from a given system model and top
level event. In particular, we focus on analysis tech-
niques based on model checking. Model checking
(Clarke et al. 2000) is a well-established method for
formally verifying temporal properties of finite-state
concurrent systems. System specifications are written
as temporal logic formulas, and efficient symbolic al-
gorithms (based on data structures like BDDs (Bryant
1992)) are used to traverse the model defined by the
system and check if the specification holds or not. The
application of model checking to fault tree generation
works in the following way. Given a system model
and a top level event (TLE) to analyze, model check-
ing techniques can be used to extractautomaticallyall
collections of basic events (calledminimal cut sets)
which can trigger the TLE. The generated cut sets are
minimal in the sense that only events that are strictly
necessary for the TLE to occur are retained.

In this paper, we discuss and propose an algorithm
for extending FTA withevent ordering information.
In traditional FTA, cut sets are simply flat collections
(i.e, conjunctions) of events which can trigger a given
TLE. However, there might be timing constraints en-
forcing a particular event to happen before or after
another one, in order for the TLE to be triggered (i.e.,
the TLE would not show if the order of the two events
were swapped). Ordering constraints can be due, e.g.,
to a causality relation or a functional dependency be-
tween events, or caused by more complex interactions
involving the dynamics of the system under consid-
eration. Whatever the reason, event ordering analysis
can provide useful information which can be used by
the design and safety engineers to fully understand the
ultimate causes of a given system malfunction, so that
adequate countermeasures can be taken.

3 AN EXAMPLE

We present below an example which we will use in
Section 4 to explain our methodology. The example
is deliberately simple for illustration purposes and
should not be regarded as modeling a realistic system.
We refer to (Bozzano and al. 2003) for more meaning-
ful examples to which the methodology and the algo-
rithm have been applied. Let us consider the circuit
drawn in Figure 1. The circuit is composed of two
JK flip-flops and an OR gate, and it has three input
bits and one output. In short, a JK flip flop is a (clock
driven) logical component with two input bits (’J’ and
’K’) and two output bits (’Q’ and ’!Q’, the latter sim-
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Figure 1: A simple circuit with two JK flip-flops

ply being the negation of the former). The truth table
of the JK flip flop is such that whenever ’J’ and ’K’
are low the output signal ’Q’ (which can be either low
or high) remains unchanged, whenever either ’J’ or
’K’ is set to high the output ’Q’ is set to, respectively,
one or zero, and, finally, a high signal on both ’J’ and
’K’ is used totogglethe current value of ’Q’.

In the circuit drawn in Figure 1, the three input
bits are set to zero, but they can non-deterministically
fail, at any time and in any order, in which case their
value is inverted (i.e., it is set to one) forever (note
that we assumepersistentfailures). Initially, we as-
sume all signals to be low, i.e., the input bits, the ’Q’
outputs of the flip-flops and, consequently, the output
of the circuit, are all set to zero. A NuSMV model
of the circuit is shown in Figure 2. It is composed of
three modules, one for modeling an input bit, one for
modeling a JK flip-flop (note that this module sim-
ply implements the truth- table of a JK flip-flop) and
the main module, which puts all the components to-
gether and defines the output signal of the circuit. For
simplicity, we have not modeled flip-flop clocks ex-
plicitly. We assume that the input values ’J’ and ’Q’
are transferred to the flip-flop outputs at each NuSMV
transition (i.e., a NuSMV transition can be thought of
as causing a triggering edge of the clock pulse).

Top level events to be used for fault tree analysis
can be expressed in the temporal logic CTL (Emer-
son 1990). Arbitrary CTL formulas can be used to
perform FTA in NuSMV. Some examples are:

AG(out) (T1)
AG((out→ AX(!out)) & (!out → AX out)) (T2)
EG((out→ AX(!out)) & (!out → AX out)) (T3)

The top level event T1 is a CTL formula specifying
all the states of the system in which the output of the
circuit is forcedto be set to value oneforever, i.e., for
everypossible path (evolution of the system) the out-
put isgloballyset to value one on that path. Similarly,
the CTL formula T2 is a specification of all the states
such that the output of the circuit isforcedto oscillate
forever back and forth between the values zero and
one. Finally, the CTL formula T3 is a specification of
all the states such that there existsonepath on which
the output isglobally forcedto oscillate forever.

As mentioned in Section 2, we have implemented
a procedure for performing fault tree analysis in
NuSMV. As an aside, we mention that the safety anal-
ysis platform we are developing inside the ESACS
project provides additional features for managing fail-
ure modes. Specifically, fault tree computation starts
with the user assigning a set of failures to the various
components, which are then automatically inserted
into the original model of the system. The result is an
extended system modelwith failure variables (e.g., the
variableFailureMode of thebit module in Figure 2).
Model checking techniques can then be applied to the
extended NuSMV model (e.g., the model in Figure 2)
to extractautomaticallyall collections of basic events,
i.e., all minimal cut sets, which can cause any of the
above TLEs. Cut sets are expressed in terms ofsetsof
failure events, i.e., pairs consisting of a failure vari-
able and a failure mode. The results of fault tree anal-
ysis for the model in Figure 2 and the CTL formulas
T1, T2, and T3 are shown below (hereafter, we shorten
(biti.FailureMode,inverted) with biti inv). In
this particular case, exactly one minimal cut set Mi

is computed for each formula Ti (note that in general
more than one cut set can be computed for a TLE).

{bit1 inv, bit3 inv} (M1)
{bit1 inv, bit2 inv, bit3 inv} (M2)
{bit2 inv} (M3)

For M1, we have that, in order for the output of the
circuit to beforcedto return value one forever (prop-
erty T1), it is necessary that both the first and the third
bit fail. Notice that the output of the circuit can also
get stuck at value one as a result of a failure of the
first bit only. In this case, however, the output of the
circuit is not forced to that value, i.e., as the reader
can verify, there exist possible evolutions of the cir-
cuit such that the output can assume value zero. In

bit1 bit3
inverted inverted

Top Level Event

bit3 invbit1 inv

Figure 3: A Fault Tree for T1

Figure 3 we show a simple graphical representation
for the fault tree corresponding to T1. The cut set is
minimal in the sense that only events that are strictly
necessary for the TLE to occur are retained. Similarly,
minimal cut set M2 states that all bits must be failed
in order for the output of the circuit to be forced to
oscillate forever. Notice that failure of all input bits is
not asufficientcondition for oscillation of the circuit.



MODULE bit(input)
VAR

out : boolean;
FailureMode : {no_failure,inverted};

ASSIGN
init(FailureMode) := no_failure;
next(FailureMode) := case

FailureMode = no_failure : {no_failure,inverted};
FailureMode = inverted : inverted;

esac;
out := case

FailureMode = no_failure : input;
FailureMode = inverted : !input;

esac;

MODULE ff(J,K) MODULE main
VAR VAR

Q : boolean; bit1 : bit(0);
bit2 : bit(0);

ASSIGN bit3 : bit(0);
init(Q) := 0; ff1 : ff(bit1.out,bit2.out);
next(Q) := case ff2 : ff(bit2.out,bit3.out);

!J & !K : Q; out : boolean;
!J & K : 0;
J & !K : 1; ASSIGN
J & K : !Q; out := ff1.Q | ff2.Q;

esac;

Figure 2: A NuSMV model for the circuit in Figure 1

In fact, there are sometiming constraintswhich must
be satisfied in order for the circuit to show this oscil-
lating behaviour. Extracting information about these
timing constraints is exactly the purpose of theorder-
ing analysiswhich is described in the next section.

4 THE MINIMIZATION ALGORITHM
In this section we explain in detail our algorithm for
event ordering analysis. Specifically, we describe a
procedure which takes in input a system model (e.g.,
the NuSMV model in Figure 2) and a cut set, and is
able to extract event ordering information. The core
of the algorithm is based on procedures for comput-
ing prime implicantsof boolean functions (Coudert
and Madre 1993), and exploits the BDD-based rep-
resentation for boolean functions, which is used ex-
tensively in NuSMV. The algorithm is made up of a
number of different phases, which are detailed below.

0) Pick a minimal cut set.A prerequisite of our pro-
cedure is having a system model SM and a top level
event TLE at hand. Then, as explained in Section 3,
we run NuSMV on SM and TLE, and we get a col-
lection of minimal cut sets. Assuming the collection
is not empty, we pick one MCS. The purpose of the
ordering analysis algorithm is to extract ordering con-
straint information from MCS.
1) Generate the ordering information model.As-
suming MCS is composed of a set ofn failure
events, say(fm1, var name1), . . . , (fmn, var namen),
for each pair of distinct failure events with indexesi

andj in MCS (i 6= j), we introduce a new ordering
variableorder var nameij in the NuSMV model SM,
to keep track of the mutual order in which the two
failure events may happen. In order to give a com-
plete encoding for ordering information, we thus need
a total of1

2
n(n− 1) ordering variables. We call the re-

sulting modelordering information model(OIM here-
after). The NuSMV skeleton for defining an order-
ing variable is shown in Figure 4. The skeleton is in-
stantiated each time with different actual parameters
for failure variables and failure modes. Every order-
ing variable can assume one among the three values
{before,after,simult}, the intuition being that the
first event happens before, after, or at the same time
with the second one (note that the notion of simulta-
neousness is relative to the granularity of the NuSMV
step, e.g., one clock pulse for the circuit in Figure 1).
An auxiliary variable definition (which may assume
the additional valueunknown) is necessary in order
to code the fact that the value of a given variable is
still unknown during the computation (theunknown
value will be eventually overwritten, because all fail-
ure events in MCS are forced to occur, see below).

2) Re-run NuSMV on the ordering information
model. In this phase NuSMV is re-run on the OIM,
with the same TLE, in order to track the informa-
tion captured by the ordering variables. The analy-
sis is specialized to the given MCS, i.e., the formula
provided to NuSMV for the analysis forces the fail-
ure events contained in MCS (and only them) to oc-
cur. The result is a BDD representing all the different



VAR
ORDER_VAR_NAME_AUX : {UNKNOWN, BEFORE, AFTER, SIMULT};
ORDER_VAR_NAME : {BEFORE, AFTER, SIMULT};

ASSIGN
init(ORDER_VAR_NAME_AUX) := UNKNOWN;
next(ORDER_VAR_NAME_AUX) := case

ORDER_VAR_NAME_AUX = UNKNOWN : case
(VAR_NAME_1 = FM_1 & VAR_NAME_2 = NO_FAILURE) : BEFORE;
(VAR_NAME_1 = NO_FAILURE & VAR_NAME_2 = FM_2) : AFTER;
(VAR_NAME_1 = FM_1 & VAR_NAME_2 = FM_2) : SIMULT;
1 : UNKNOWN;
esac;

1 : ORDER_VAR_NAME_AUX;
esac;

ORDER_VAR_NAME := case
ORDER_VAR_NAME_AUX = UNKNOWN : SIMULT; -- does not matter
1 : ORDER_VAR_NAME_AUX;
esac;

Figure 4: NuSMV code skeleton for ordering variable definition

configurations (including system variables and order-
ing variables) which can cause TLE in presence of
the failure events in MCS. For instance, consider the
NuSMV model, the top level event T2, and the rele-
vant minimal cut set M2 described in Section 3. The
minimal cut set and the top level event are combined
together, yielding the CTL formula

((AG (out)→ AX (!out)) & (!out→ AX out)) &
bit1 inv & bit2 inv &bit3 inv

NuSMV is fed with this formula in order to generate
a BDD representing all states causing T2 because of
the failure events in M2. This BDD also includes the
information about ordering variables.
3) Abstract away non-ordering variables. In this
phase we simply abstract away variables other than
ordering ones. The result is still a BDD representing
all the possible failure event orderings.
4) Extract ordering constraints. This phase contains
the core of the minimization algorithm, and is com-
posed of three interrelated sub-phases.

4.1. Add inconsistent configurations.The order-
ing variable encoding described in point 1 above is
redundant in the following sense. Consider, e.g., three
variablesvij, vjk, andvik, representing the order in
which failure eventsi and j (j and k, i and k) oc-
cur. Clearly, if, say,vij and vjk are both set to the
value before, for transitivity also vik will be (nec-
essarily) set tobefore. In other words, the encod-
ing allows for inconsistentconfigurations which will
never be the result of the model checking analysis
(e.g., 〈before,before,after〉 in the previous exam-
ple). During this phase we extend the BDD resulting
from phase 3 with a BDD representing such incon-
sistent configurations (i.e., we consider their disjunc-
tion). This amounts to admitting inconsistent config-
urations as if they were perfectly legal. In this way

(and with a little adjustment explained in phase 4.3
below) we can ensure that the minimization algo-
rithm (see phase 4.2) works properly. Intuitively, the
minimization algorithm works by picking variables
whose value isirrelevant (in the sense that they can
assume any among the possiblelegal values). There-
fore, phase 4.1 is necessary to give the minimization
algorithm enough information to correctly recognize
which variables are irrelevant and which are not.

4.2. Compute prime implicants.We simply run
the standard algorithm for computingprime impli-
cants of a boolean function (Coudert and Madre
1993) on the BDD resulting after phase 4.1. For in-
stance, for the top level event T2 and cut set M2 this
phase computes 16 prime implicants. An example of
prime implicant is the following (it represents the tim-
ing constraint enforcing the first bit to fail before the
second one and the second one before the third one):

p0) -------------------------
bit1_inv **before** bit2_inv
bit2_inv **before** bit3_inv

4.3. Run simplification subroutine.The purpose of
this phase is to cutinconsistentresults andsubsumed
(i.e., logically implied) results from the output of
phase 4.2. Inconsistent results can arise as a side ef-
fect of phase 4.1, and must be discarded after the min-
imization phase, whereas the purpose of the simplifi-
cation subroutine is to retain onlyminimalresults. For
the top level event T2 and cut set M2, the previously
generated 16 implicants are reduced to 3 after the sim-
plification phase. For instance, the prime implicantp0
is discarded because it is subsumed by prime impli-
cantp2 (see below).

5) Show results.The final output consists of the
collection of prime implicants resulting after phase 4.
For the top level event T2 and cut set M2, NuSMV
outputs the following three prime implicants:
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Figure 5: Prime implicants as precedence graphs

p1) -------------------------
bit1_inv **simult** bit2_inv

p2) -------------------------
bit2_inv **before** bit1_inv
bit3_inv **before** bit1_inv

p3) -------------------------
bit1_inv **before** bit3_inv
bit2_inv **before** bit3_inv

Each prime implicant is a list of ordering constraints
between failure events, and represents a different al-
ternative (i.e., a different ordering possibly causing
the TLE). Each list of failure events represents a
precedence graph, showing which failure event must
happen before which, for a given prime implicant.
The output might be drawn in a more suggestive way,
as shown in Figure 5. Each node in the graph con-
tains one or more failure events (an indexi denotes
failure eventbiti inv), which are supposed to hap-
pen simultaneously, whereas each arrow represents a
beforerelation between two (sets of) failure events.

The precedence graphs shown in Figure 5 represent
the ordering information which has been obtained by
running our algorithm on the model, top level event
T2 and minimal cut set M2 described in Section 3. As
discussed in Section 3, the CTL formula T2 is a speci-
fication of all the states such that the output of the cir-
cuit is forced to oscillate forever between the values
zero and one, whereas minimal cut set M2 shows that
all three input bits of the circuit must fail in order for
such a behaviour to be observable. The ordering anal-
ysis results give us further information about this os-
cillating phenomenon, i.e, show that some furthertim-
ing constraintsbetween the failure events must hold
as well. In particular, one of the orderings shown in
Figure 5 must hold: either the first and the second
bit must fail simultaneously (and the third one at any
time, including simultaneously with the other two),
or the second and third bit must fail before the first
(the order between the former two bits is left unspeci-
fied), or the first and second must fail before the third
(again, the order between the former two bits is left
unspecified). A possible ordering which isruled out
by the results of our ordering analysis is the one in
which the three bits fail in the following order: the
first bit, then the third one, and finally the second one.

4.1 Ordering and fault tree analysis

We conclude this section with a brief explanation
about how the minimization algorithm can be inte-
grated with fault tree analysis. A system model is as-
sumed to be given. The verification process consists
of the following phases. First of all, a top level event
to analyze is chosen (clearly, the analysis can be re-
peated for different top level events). Then, we run the
minimization algorithm of (Coudert and Madre 1993)
to compute theminimal cut setsof basic events caus-
ing TLE. Finally, for each cut set we generate an or-
dering information model and we perform the order-
ing analysis. The output is a fault tree for TLE, where
each cut set in the tree is equipped with ordering in-
formation (that is, a precedence graph).

For the example of Section 3, the analysis can pro-
ceed in the following way. First, a top level event is
chosen (e.g., T1, T2, or T3) and NuSMV is run to per-
form fault tree analysis. The result is a collection of
minimal cut sets of failure events. For each cut set,
ordering analysis is performed on a suitable order-
ing information model. The results show that: for T1

there are no timing constraints (all orderings between
the two failure events are possible); for T2, the output
of NuSMV is shown in Figure 5; finally, T3 only in-
cludes one basic event, hence it is useless to perform
ordering information analysis on it.

5 CONCLUSIONS AND RELATED WORK

In this paper we have presented an algorithm which
improves the results given by traditional fault tree
analysis (Vesely et al. 1981). In particular, our algo-
rithm performs what we callevent ordering analy-
sis. This analysis can be conveniently used to extract
possible ordering constraints holding between basic
events in a given cut set, thus providing a deeper in-
sight into the causes of system malfunction and sup-
porting the reliability and safety analysis process. Al-
though very simple, the example in Section 3 shows
the importance and significance of event ordering in-
formation. It also suggests that timing constraints can
arise very naturally in industrial systems.

As explained in the paper, our algorithm for or-
dering analysis is based on classical procedures for
minimizationof boolean functions, specifically on the
implicit-search procedure described in (Coudert and
Madre 1992; Coudert and Madre 1993), which is



based on Binary Decision Diagrams (BDDs) (Bryant
1992). This choice was quite natural, given that the
NuSMV model checker makes a pervasive use of
BDD data structures. For alternative explicit-search
and SAT-based techniques for computation of prime
implicants, see (Manquinho et al. 1998). The results
computed by the algorithm may differ depending on
the exact order in which ordering variables are cho-
sen in the minimization step. This a consequence of
the non-determinism which is inherent in the prime
implicant computation (Coudert and Madre 1993).
However, we conjecture that the minimization proce-
dure enjoys someoptimalityproperties which we are
studying as part of our future work.

A large amount of work has been done in the area of
probabilistic safety assessment (PSA) and in particu-
lar ondynamic reliability(Siu 1994). Dynamic relia-
bility is concerned with extending the classical event
or fault tree approaches to PSA by taking into consid-
eration the mutual interactions between the hardware
components of a plant and the physical evolution of
its process variables (Marseguerra et al. 1998). Ex-
amples of scenarios which dynamic reliability tries
to take into consideration are, e.g., human interven-
tion, expert judgment, the role of control/protection
systems, the so-called failureson demand(i.e., failure
of a component to intervene), and also the ordering of
events during accident propagation (Senni, Semenza,
and Galvagni 1991; Cacciabue and Cojazzi 1994;
Cacciabue and Cojazzi 1995). Different approaches
to dynamic reliability include, e.g., state transitions
or Markov models (Aldemir 1987; Papazoglou 1994),
the dynamic event tree methodology (Cojazzi et al.
1992), and direct simulation via Monte Carlo anal-
ysis (Smidts and Devooght 1992; Marseguerra et al.
1998). The work which is probably closer to ours is
(Cojazzi et al. 1992), which describes dynamic event
trees as a convenient means to represent the timing
and order of intervention of a plant sub-systems and
their eventual failures. With respect to the classifica-
tion the authors propose, our approach can supportsi-
multaneousfailures, whereas, at the moment, we are
working under the hypothesis ofpersistentfailures
(i.e., no repair is possible).

The most notable difference between our approach
and the works on dynamic reliability mentioned
above is that we presentautomatictechniques, based
on model checking, for both fault tree generation
and ordering analysis, whereas traditional works on
dynamic reliability rely on manual analysis (e.g.,
Markovian analysis (Papazoglou 1994)) or simula-
tion (e.g., Monte Carlo simulation (Marseguerra et al.
1998), the TRETA package of (Cojazzi et al. 1992)).
Automation is clearly a point in favour of our frame-
work. Furthermore, we support automatic verification
of arbitrary temporal CTL properties (in particular,

both safety and liveness properties). Current work is
focusing on a number of improvements and exten-
sions in order to make the methodology competitive
with existing approaches and usable in realistic sce-
narios. First of all, there are some improvements at
the modeling level. The NuSMV models used so far
are discrete, finite-state transition models. In order to
allow for more realistic models, we are considering an
extension of NuSMV with hybrid dynamics, along the
lines of (Henzinger 1996; Henzinger et al. 1997). This
would allow both to model more complex variable dy-
namics, and also a more realistic modeling of time
(currently, time is modeled by an abstract transition
step). Furthermore, we need to extend our framework
in order to deal withprobabilistic assessment. Al-
though not illustrated in this paper, associating prob-
abilistic estimates to basic events and evaluating the
resulting fault trees is straightforward. However, more
work needs to be done in order to support more com-
plex probabilistic dynamics (see, e.g., (Devooght and
Smidts 1994)). Also, we want to overcome the current
limitation to permanent failures.

We also mention (Manian et al. 1998; Sullivan et al.
1999), which describe DIFTree, a methodology sup-
porting (however, still at the manual level) fault tree
construction and allowing for different kinds of analy-
ses of sub-trees (e.g., Markovian or Monte Carlo sim-
ulation for dynamic ones, and BDD-based evaluation
for static ones). The notation the authors use for non-
logical (dynamic) gates of fault trees and the support
for sample probabilistic distributions could be nice
features to be integrated in our framework.

Finally, the line of research concerning ordering
analysis has been carried out inside the ESACS
project. As a contribution to the project, we are de-
veloping an integrated platform providing the safety
engineers with tools for the specification, analysis
and validation of complex systems. Formal verifica-
tion functionalities of the platform are based on model
checking, and in particular on NuSMV(Cimatti et al.
2002). In this paper we have focused only on the as-
pects related to the minimization procedure. We refer
the reader to (Bozzano and al. 2003), where a more
detailed description of the project goals, the ESACS
methodology, and more realistic examples to which
the methodology has been applied can be found.
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