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ABSTRACT: Fault tree analysis is a traditional and well-established technique for analyzing system design and
robustness. Its purpose is to identify sets of basic events, @ltesbtswhich can cause a giveap level event

e.g., a system malfunction, to occur. In this paper we present an algorithm that eatteetag information,

i.e., finds out possible ordering constraints which are required to hold between basic events in a cut set. The
algorithm is completelyutomatic and has been incorporated into a more general framework, based on model
checking techniques, for automatic fault tree generation and analysis.

1 INTRODUCTION which define the logical relations between events. The

The development of safety critical systems require$Ut Seérepresentation provided by traditional fault tree
to check that the system behaves as expected népalysis is not _structured_. A cut set is S|mply seen
only in nominal situations, but also under certain de-8S & flat collection of basic events, and no informa-

graded situations. Thus, on the one hand, system mo&ﬁo” is provided about their mutual relationship. Al-
els are developed by the design engineers in orddf\ough events are often allowed to happen in any or-
to specify and to analyze the expected behaviour of€"; in general there may hiening constraintsvhich
the system under consideration. On the other hangnforce a particular event to happen before or after
the envisaged system is analyzed by safety speciaﬁnomer_ one. This can happen as a result of a causal-
ists with respect to malfunctions, i.e., unintended be! refation, a functional dependency, or more subtle
haviour. The safety analysis, performed at each stag[;@asor_‘s related to dynamic scenarios where system
of the system development, is intended to identify ehaviour can be affect_ed by, e.g., automatic control
all possible hazards with their relevant causes. TraSySI€mSs or operator actions (Siu 1994).
ditional safety analysis methods include, e.g., Func- In this paper, we are interested automatically
tional Hazard Analysis, Failure Mode and Effect computing ordering information of basic events.
Analysis (FMEAs), and Fault Tree Analysis (FTA) Specifically, given a top level event and a minimal
(Vesely et al. 1981). cut set computed via fault tree analysis, we want to
Fault tree analysis (Vesely et al. 1981), in partic-find out whether there ar@dering constraintsvhich

ular, is a deductive and top-down method to analyzéold between pairs of basic events in the cut set. We
system design and robustness. Roughly speaking, tHll this event ordering analysisie present an al-
FTA process consists in pickingap level evente.g., g_orlthm Wh_lc_h integrates tradlthnal faul_t tree analy-
a system malfunction condition) and identifying all Sis by providing event ordering information for basic
possiblesetsof basic events, calletlit setswhichcan ~ events in a cut set. The algorithm is completaly
cause the top event to occur. Among them, one woul@matic and has been incorporated into a more gen-
like to isolateminimalcut sets, that is, cut sets which €eral framework for automatic fault tree generation and
do not include events that ultimately do not affect theanalysis. The core of our ordering analysis algorithm
occurrence of the top event. The information on cutS based on known procedures famimization(i.e.,

sets is then collected in fault tree which consists computation ominimal cut sefsof boolean functions
of system and component events, connecteddigs (Coudert and Madre 1992; Coudert and Madre 1993;

Manquinho et al. 1998) represented as Binary De-

*This work has been and is being developed within ESACS,P'Slon Diagrams (BDDs) (Bryant 1992). The encod-

an European sponsored project, contract no. G4RD-CT-2000Ng of the problem and some adjustments necessary
00361. See also URhttp: //www.esacs.org/ to deal withinconsistencyare original. The encod-




ing is based on ordering information variables, that isfreesprovide a convenient symbolic representation of
variables which relate pairs of different basic eventsthe combination of events resulting in the occurrence
tracking the information about the mutual order inof the top event. Fault trees are usually represented in
which the two events may or may not occur. a graphical way, structured as a parallel or sequential
Our framework is based on model checking (Clarkecombination of AND/OR gates.
et al. 2000), a well-established method for formally In this paper we are interested in deductive meth-
verifying temporal properties of finite-state concur-ods which can be used to automatically generate fault
rent systems. Model checking has been applied for theees starting from a given system model and top
formal verification of a number of significant safety- level event. In particular, we focus on analysis tech-
critical industrial systems (Holzmann 1997; Larsenniques based on model checking. Model checking
et al. 1997; Cimatti et al. 2002). We have incorpo-(Clarke et al. 2000) is a well-established method for
rated fault tree and ordering analysis functionalitiesformally verifying temporal properties of finite-state
into the model checking tool NuSMV (Cimatti et al. concurrent systems. System specifications are written
2002), a BDD-based symbolic model-checker develas temporal logic formulas, and efficient symbolic al-
oped at ITC-IRST, originated from a re-engineeringgorithms (based on data structures like BDDs (Bryant
and re-implementation of SMV (McMillan 1993). 1992)) are used to traverse the model defined by the
NuSMYV is a well-structured, open, flexible and well- system and check if the specification holds or not. The
documented platform for model checking, and it hasapplication of model checking to fault tree generation
been designed to be robust and close to industrial sysvorks in the following way. Given a system model
tem standards (Cimatti et al. 2000). and a top level event (TLE) to analyze, model check-
This line of research has been carried on insideng techniques can be used to extragtomaticallyall
the ESACS project, an European-Union-sponsoredollections of basic events (calledinimal cut sets
project whose main goals are to define a methodolwhich can trigger the TLE. The generated cut sets are
ogy to improve the safety analysis practice for com-minimal in the sense that only events that are strictly
plex systems development, to set up a shared enviromecessary for the TLE to occur are retained.
ment based on tools supporting the methodology, and |n this paper, we discuss and propose an algorithm
to validate the methodology through its application tofor extending FTA withevent ordering informatian
case studies. The fault tree and ordering analysis fungn traditional FTA, cut sets are simply flat collections
tionalities which we discuss in this paper have beenqj.e, conjunctions) of events which can trigger a given
included in a more general safety analysis platformTE. However, there might be timing constraints en-
which we are developing inside the ESACS projectforcing a particular event to happen before or after
(Bozzano and al. 2003). another one, in order for the TLE to be triggered (i.e.,
Structure of the papelhe rest of the paper is struc- the TLE would not show if the order of the two events

tured as follows. In Section 2 we give a brief overviewwere swapped). Ordering constraints can be due, e.g.,
of the basics of fault tree analysis and we introducd© a causality relation or a functional dependency be-
event ordering analysjsexplaining its significance tween events, or caused by more complex interactions
and its relationship with model checking. In Sectioninvolving the dynamics of the system under consid-
3 we introduce a simple example which we will useeration. Whatever the reason, event ordering analysis
in Section 4, where we present our minimization al-can provide useful information which can be used by
gorithm for ordering analysis and we briefly discussthe design and safety engineers to fully understand the
its integration with fault tree analysis based on modeMlItimate causes of a given system malfunction, so that
checking. Finally, in Section 5 we discuss relatedadequate countermeasures can be taken.
work and draw some conclusions.

3 AN EXAMPLE

2 EVENT ORDERING ANALYSIS We present below an example which we will use in
Fault Tree Analysis (FTA) (Vesely et al. 1981; Section 4 to explain our methodology. The example
Liggesmeyer and Rothfelder 1998; Rae 2000) is a deis deliberately simple for illustration purposes and
ductive, top-down method to analyze system desigrishould not be regarded as modeling a realistic system.
and robustness. It usually involves specifyingop  We refer to (Bozzano and al. 2003) for more meaning-
level even{TLE hereafter) to be analyzed (e.gfal-  ful examples to which the methodology and the algo-
ure statg¢, and identifying all possible sets of basic rithm have been applied. Let us consider the circuit
events (e.g., basi@ults) which may cause that TLE drawn in Figure 1. The circuit is composed of two
to occur. Benefits of FTA include, e.g.: identify pos- JK flip-flops and an OR gate, and it has three input
sible system reliability or safety problems at designbits and one output. In short, a JK flip flop is a (clock
time; assess system reliability or safety during operadriven) logical component with two input bits ('J’ and
tion; identify root causes of equipment failuréault  'K’) and two output bits ('Q’ and '!'Q’, the latter sim-



bit 1 3 0 As mentioned in Section 2, we have implemented
a procedure for performing fault tree analysis in
K 1Q NuSMV. As an aside, we mention that the safety anal-
ysis platform we are developing inside the ESACS
ﬁ out project provides additional features for managing fail-
ure modes. Specifically, fault tree computation starts
with the user assigning a set of failures to the various
JoQ components, which are then automatically inserted
into the original model of the system. The result is an
extended system modhth failure variables (e.g., the
variableFailureMode Of thebit module in Figure 2).
Model checking techniques can then be applied to the
, _ extended NuSMV model (e.g., the model in Figure 2)
ply being the negation of the former). The truth tabletg extractautomaticallyall collections of basic events,
of the JK flip flop is such that whenever 'J’ and 'K’ j.e., allminimal cut setswhich can cause any of the
are low the output signal 'Q’ (which can be either low above TLEs. Cut sets are expressed in ternsetsof
or high) remains unchanged, whenever either 'J’ offailure eventsi.e., pairs consisting of a failure vari-
'K’ is set to high the output 'Q’ is set to, respectively, able and a failure mode. The results of fault tree anal-
one or zero, and, finally, a high signal on both 'J’ andysis for the model in Figure 2 and the CTL formulas
'K’ is used totogglethe current value of 'Q’. Ty, T2, and T; are shown below (hereafter, we shorten
In the circuit drawn in Figure 1, the three input (biti.FailureMode,inverted) With bitiinv). In
bits are set to zero, but they can non-deterministicallflis particular case, exactly one minimal cut set M
fail, at any time and in any order, in which case their'S computed for each formula, Tnote that in general
value is inverted (i.e., it is set to one) forever (noteMOre than one cut set can be computed for a TLE).

that we assumeersistentfailures). Initially, we as-

bit 2

bit3 —— K Q

Figure 1. A simple circuit with two JK flip-flops

: . . . . {bitl_inv, bit3_inv} (M)
sume all signals to be low, i.e., the input bits, the 'Q [bitl inv, bit2.inv, bit3.inv}  (Ms)
outputs of the flip-flops and, consequently, the output {bit27invj} ’ (M5)

of the circuit, are all set to zero. A NuSMV model
of the circuit is shown in Figure 2. It is composed of For M, we have that, in order for the output of the
three modules, one for modeling an input bit, one forcircuit to beforcedto return value one forever (prop-
modeling a JK flip-flop (note that this module sim- erty T,), it is necessary that both the first and the third
ply implements the truth- table of a JK flip-flop) and bit fail. Notice that the output of the circuit can also
the main module, which puts all the components toget stuck at value one as a result of a failure of the
gether and defines the output signal of the circuit. Fofirst bit only. In this case, however, the output of the
simplicity, we have not modeled flip-flop clocks ex- circuit is notforcedto that value, i.e., as the reader
plicitly. We assume that the input values 'J’ and 'Q’ can verify, there exist possible evolutions of the cir-
are transferred to the flip-flop outputs at each NuSMVcuit such that the output can assume value zero. In
transition (i.e., a NuSMV transition can be thought of
as causing a triggering edge of the clock pulse). Top Level Event

Top level events to be used for fault tree analysis
can be expressed in the temporal logic CTL (Emer-
son 1990). Arbitrary CTL formulas can be used to
perform FTA in NuSMV. Some examples are:

AG (out) (T1) . bit‘l . bils
AG((out — AX(lout)) & (fout — AX out)) (Ta) EeiE
EG((out — AX(lout)) & (lout — AX out)) (Ts) N N

‘ bitL_inv ‘ ‘ bit3_inv ‘

The top level event Tis a CTL formula specifying

all the states of the system in which the output of the Figure 3: A Fault Tree for T

circuit isforcedto be set to value orferever, i.e., for

everypossible path (evolution of the system) the out-Figure 3 we show a simple graphical representation
put isglobally set to value one on that path. Similarly, for the fault tree corresponding to, . TThe cut set is
the CTL formula T, is a specification of all the states minimal in the sense that only events that are strictly
such that the output of the circuitfisrcedto oscillate  necessary for the TLE to occur are retained. Similarly,
forever back and forth between the values zero anthinimal cut set M states that all bits must be failed
one. Finally, the CTL formula Jis a specification of in order for the output of the circuit to be forced to
all the states such that there existeepath on which  oscillate forever. Notice that failure of all input bits is
the output igglobally forcedto oscillate forever. not asufficientcondition for oscillation of the circuit.



MODULE bit(input)
VAR
out : boolean;
FailureMode : {no_failure,inverted};

ASSIGN
init(FailureMode) :
next (FailureMode) :

no_failure;
case

FailureMode = no_failure : {no_failure,inverted};
FailureMode = inverted : inverted;
esac;
out := case
FailureMode = no_failure : input;
FailureMode = inverted : l!input;
esac;
MODULE ££f(J,K) MODULE main
VAR VAR
Q : boolean; bitl : bit(0);
bit2 : bit(0);
ASSIGN bit3 : bit(0);
init(Q) := 0; ff1 : ff(bitl.out,bit2.out);
next(Q) := case £f£2 : ff(bit2.out,bit3.out);
1J & 'K : Q; out : boolean;
1J& K : O0;
J & 'K : 1; ASSIGN
J & K : 'Q; out := ff1.Q | £ff2.Q;

esac;

Figure 2: A NuSMV model for the circuit in Figure 1

In fact, there are som@ming constraintsvhich must  andj in MCS (i # j), we introduce a new ordering
be satisfied in order for the circuit to show this oscil- variableorder_var name;; in the NuSMV model SM,
lating behaviour. Extracting information about theseto keep track of the mutual order in which the two
timing constraints is exactly the purpose of tirder-  failure events may happen. In order to give a com-

ing analysiswhich is described in the next section.  Plete encoding for ordering information, we thus need
a total of;n(n — 1) ordering variables. We call the re-

4 THE MINIMIZATION ALGORITHM sulting modebrdering information modglOIM here-

: : . : : fter). The NuSMV skeleton for defining an order-
In this section we explain in detail our algorithm for & : . g s
event ordering analysis. Specifically, we describe 419 variable is shown in Figure 4. The skeleton is in-

procedure which takes in input a system model (e_g_stantlated each time with different actual parameters

the NuSMV model in Figure 2) and a cut set, and iS]_“or failure variables and failure modes. Every order-

able to extract event ordering information. The core!"Y variable can assume one among the three values

of the algorithm is based on procedures for Comput_{before,after,simult}, the intuition being that the

: P : first event happens before, after, or at the same time
glr?dp&ggrérq%ggntg%ngogfoeiltr; ftlﬁlgcg%g_gggggigpyvith the second one (note that the notion of simulta-
resentation for boolean functions, which is used ex/1€0USNess is relative to the granularity of the NuSMV
tensively in NUSMV. The algorithm is made up of a step e.g., one clock pulse for the circuit in Figure 1).

number of different phases, which are detailed below/\" auxiliary variable definition (which may assume
' the additional valueinknown) is necessary in order

0) Pick a minimal cut set.A prerequisite of our pro- to code the fact that the value of a given variable is

cedure is having a system model SM and a top leveftill unknown during the computation (theiknown
event TLE at hand. Then, as explained in Section 3value will be eventually overwritten, because all fail-
' ! ure events in MCS are forced to occur, see below).

we run NuSMV on SM and TLE, and we get a col-
lection of minimal cut sets. Assuming the collection 2) Re-run NuSMV on the ordering information

is not empty, we pick one MCS. The purpose of theyogel. In this phase NuSMV is re-run on the OIM,
ordering analysis algorithm is to extract ordering con-yith the same TLE, in order to track the informa-
straint information from MCS. tion captured by the ordering variables. The analy-
1) Generate the ordering information model.As-  sis is specialized to the given MCS, i.e., the formula
suming MCS is composed of a set af failure provided to NuSMV for the analysis forces the fail-
events, sayfmi,var_namei), ..., (fmy,var_name,), ure events contained in MCar{d only themto oc-

for each pair of distinct failure events with indexes cur. The result is a BDD representing all the different



VAR
ORDER_VAR_NAME_AUX :
ORDER_VAR_NAME : {BEFORE, AFTER, SIMULT};

ASSIGN
init (ORDER_VAR_NAME_AUX) := UNKNOWN;
next (ORDER_VAR_NAME_AUX) := case

ORDER_VAR_NAME_AUX = UNKNOWN : case

{UNKNOWN, BEFORE, AFTER, SIMULT};

(VAR_NAME_1 = FM_1 & VAR_NAME_2 = NO_FAILURE) : BEFORE;
(VAR_NAME_1 = NO_FAILURE & VAR_NAME_2 = FM_2) : AFTER;
(VAR_NAME_1 = FM_1 & VAR_NAME_2 = FM_2) : SIMULT;
1 : UNKNOWN;
esac;

1 : ORDER_VAR_NAME_AUX;

esac;
ORDER_VAR_NAME := case
ORDER_VAR_NAME_AUX = UNKNOWN :

SIMULT;

-- does not matter

1 : ORDER_VAR_NAME_AUX;

esac;

Figure 4: NuSMV code skeleton for ordering variable definition

configurations (including system variables and order{and with a little adjustment explained in phase 4.3
ing variables) which can cause TLE in presence obelow) we can ensure that the minimization algo-
the failure events in MCS. For instance, consider thejthm (see phase 4.2) works properly. Intuitively, the

NuSMV model, the top level event;Tand the rele-

minimization algorithm works by picking variables

vant minimal cut set M described in Section 3. The \whose value isrrelevant (in the sense that they can

minimal cut set and the top level event are combine

together, yielding the CTL formula

((AG (out) — AX (lout)) & (lout — AX out)) &
bitl_inv & bit2_inv &bit3_inv

Ghssume any among the possitdgal values). There-

fore, phase 4.1 is necessary to give the minimization
algorithm enough information to correctly recognize
which variables are irrelevant and which are not.

4.2. Compute prime implicants. We simply run

NuSMV is fed with this formula in order to generate the standard algorithm for computimgrime impli-

a BDD representing all states causingbecause of
the failure events in M This BDD also includes the
information about ordering variables.

3) Abstract away non-ordering variables. In this

phase we simply abstract away variables other tha
ordering ones. The result is still a BDD representing

all the possible failure event orderings.
4) Extract ordering constraints. This phase contains

the core of the minimization algorithm, and is com-

posed of three interrelated sub-phases.
4.1. Add inconsistent configurations.The order-

cants of a boolean function (Coudert and Madre
1993) on the BDD resulting after phase 4.1. For in-
stance, for the top level event &nd cut set M this
phase computes 16 prime implicants. An example of
Rrime implicant is the following (it represents the tim-
Ing constraint enforcing the first bit to fail before the
second one and the second one before the third one):

p0) ————————

bit2_inv
bit3_inv

*xbeforex*x*
*xbeforex*

bitl_inv
bit2_inv

4.3. Run simplification subroutine. The purpose of

ing variable encoding described in point 1 above isthis phase is to cuiconsistentesults andubsumed
redundant in the following sense. Consider, e.g., thre.e., logically implied) results from the output of

variablesv;;, v;;, andwv;, representing the order in
which failure events and; (5 andk, ¢« and k) oc-
cur. Clearly, if, say,v;; andv;, are both set to the
value before, for transitivity also v;, will be (nec-
essarily) set tmwefore. In other words, the encod-
ing allows forinconsistentonfigurations which will

phase 4.2. Inconsistent results can arise as a side ef-
fect of phase 4.1, and must be discarded after the min-
imization phase, whereas the purpose of the simplifi-
cation subroutine is to retain onfginimalresults. For

the top level event Jand cut set M, the previously
generated 16 implicants are reduced to 3 after the sim-

never be the result of the model checking analysigplification phase. For instance, the prime implicamt

(e.g., (before,before,after) in the previous exam-

is discarded because it is subsumed by prime impli-

ple). During this phase we extend the BDD resultingcantp2 (see below).

from phase 3 with a BDD representing such incon-

5) Show results.The final output consists of the

sistent configurations (i.e., we consider their disjunc-collection of prime implicants resulting after phase 4.
tion). This amounts to admitting inconsistent config-For the top level event;Tand cut set M, NuSMV
urations as if they were perfectly legal. In this way outputs the following three prime implicants:



pL) p2) p3)
Figure 5: Prime implicants as precedence graphs

pl) ———————— 4.1 Ordering and fault tree analysis

We conclude this section with a brief explanation
about how the minimization algorithm can be inte-
grated with fault tree analysis. A system model is as-

p2) ————————mm—— -
bit2_inv **beforexx Dbitl_inv
bit3_inv **beforexx Dbitl_inv

) . sumed to be given. The verification process consists
bitl inv **beforex* bit3 inv of the following phases. First of all, a top level event
bit2_inv **beforex* bit3_inv to analyze is chosen (clearly, the analysis can be re-

peated for different top level events). Then, we run the

minimization algorithm of (Coudert and Madre 1993)

to compute theninimal cut set®f basic events caus-
Each prime implicant is a list of ordering constraintsing TLE. Finally, for each cut set we generate an or-
between failure events, and represents a different allering information model and we perform the order-
ternative (i.e., a different ordering possibly causinging analysis. The output is a fault tree for TLE, where
the TLE). Each list of failure events represents aeach cut set in the tree is equipped with ordering in-
precedence graptshowing which failure event must formation (that is, a precedence graph).
happen before which, for a given prime implicant. - For the example of Section 3, the analysis can pro-
The output might be drawn in a more suggestive Wayceed in the following way. First, a top level event is
as shown in Figure 5. Each node in the graph congnosen (e.g., T T,, or T;) and NuSMV is run to per-
tains one or more failure events (an indedenotes  form fault tree analysis. The result is a collection of
failure eventbiti_inv), which are supposed to hap- minimal cut sets of failure events. For each cut set,
pen simultaneously, whereas each arrow representsiidering analysis is performed on a suitable order-
beforerelation between two (sets of) failure events. jng information model. The results show that: for T

there are no timing constraints (all orderings between

The precedence graphs shown in Figure 5 represegfe two failure events are possible); for, The output
the ordering information which has been obtained byof NuSMV is shown in Figure 5; finally, Tonly in-

running our algorithm on the model, top level eventgjydes one basic event, hence it is useless to perform
T, and minimal cut set Mdescribed in Section 3. As  grgering information analysis on it.

discussed in Section 3, the CTL formulai$ a speci-

ficgti_on of all the states such that the output of the cir-5 CONCLUSIONS AND RELATED WORK

cuit is forcedto oscillate forever between the values _ _ _
zero and one, whereas minimal cut set$ows that In this paper we have presented an algorithm which
all three input bits of the circuit must fail in order for improves the results given by traditional fault tree
such a behaviour to be observable. The ordering anagnalysis (Vesely et al. 1981). In particular, our algo-
ysis results give us further information about this os-fithm performs what we calevent ordering analy-
cillating phenomenon, i.e, show that some furttiver ~ Sis This analysis can be conveniently used to extract
ing constraintsbetween the failure events must hold Possible ordering constraints holding between basic
as well. In particular, one of the orderings shown in€vents in a given cut set, thus providing a deeper in-
Figure 5 must hold: either the first and the seconcsight into the causes of system malfunction and sup-
bit must fail simultaneously (and the third one at anypPorting the reliability and safety analysis process. Al-
time, including simultaneously with the other two), though very simple, the example in Section 3 shows
or the second and third bit must fail before the firstthe importance and significance of event ordering in-
(the order between the former two bits is left unspeciformation. It also suggests that timing constraints can
fied), or the first and second must fail before the thirdarise very naturally in industrial systems.

(again, the order between the former two bits is left As explained in the paper, our algorithm for or-
unspecified). A possible ordering whichrisled out  dering analysis is based on classical procedures for
by the results of our ordering analysis is the one inminimizationof boolean functionsspecifically on the
which the three bits fail in the following order: the implicit-search procedure described in (Coudert and
first bit, then the third one, and finally the second oneMadre 1992; Coudert and Madre 1993), which is



based on Binary Decision Diagrams (BDDs) (Bryantboth safety and liveness properties). Current work is
1992). This choice was quite natural, given that thefocusing on a number of improvements and exten-
NuSMV model checker makes a pervasive use osions in order to make the methodology competitive
BDD data structures. For alternative explicit-searchwith existing approaches and usable in realistic sce-
and SAT-based techniques for computation of primenarios. First of all, there are some improvements at
implicants, see (Manquinho et al. 1998). The resultgshe modeling level. The NuSMV models used so far
computed by the algorithm may differ depending onare discrete, finite-state transition models. In order to
the exact order in which ordering variables are cho-allow for more realistic models, we are considering an
sen in the minimization step. This a consequence oéxtension of NuSMV with hybrid dynamics, along the

the non-determinism which is inherent in the primelines of (Henzinger 1996; Henzinger et al. 1997). This
implicant computation (Coudert and Madre 1993).would allow both to model more complex variable dy-

However, we conjecture that the minimization proce-namics, and also a more realistic modeling of time
dure enjoys someptimality properties which we are (currently, time is modeled by an abstract transition
studying as part of our future work. step). Furthermore, we need to extend our framework

A large amount of work has been done in the area ofn order to deal withprobabilistic assessment. Al-

probabilistic safety assessment (PSA) and in particuthough not illustrated in this paper, associating prob-

lar ondynamic reliability(Siu 1994). Dynamic relia- abilistic estimates to basic events and evaluating the
bility is concerned with extending the classical eventesulting fault trees is straightforward. However, more

or fault tree approaches to PSA by taking into consid VOrk needs to be done in order to support more com-
eration the mutual interactions between the hardwarB/€X probabilistic dynamics (see, e.g., (Devooght and
components of a plant and the physical evolution ofoMidtS 1994)). Also, we want to overcome the current
its process variables (Marseguerra et al. 1998). Eximitation to permanent failures. _

amples of scenarios which dynamic reliability tries Ve also mention (Manian etal. 1998; Sullivan etal.
to take into consideration are, e.g., human interven1999), which describe DIFTree, a methodology sup-
tion, expert judgment, the role of control/protection POrting (however, still at the manual level) fault tree
systems, the so-called failures demandi.e., failure construction and allowing for d_|fferent kinds of anal_y-
of a component to intervene), and also the ordering of€S Of sub-trees (e.g., Markovian or Monte Carlo sim-
events during accident propagation (Senni, Semenzg,latlon_for dynamic ones, and BDD-based evaluation
and Galvagni 1991; Cacciabue and Cojazzi 1994for static ones). The notation the authors use for non-
Cacciabue and Cojazzi 1995). Different approachefogical (dynamic) gates of fault trees and the support
to dynamic reliability include, e.g., state transitionsOr Sample probabilistic distributions could be nice
or Markov models (Aldemir 1987; Papazoglou 1994),features to be integrated in our framework. _
the dynamic event tree methodology (Cojazzi et al. Finally, the line of research concerning ordering
1992), and direct simulation via Monte Carlo anal-analysis has been carried out inside the ESACS
ysis (Smidts and Devooght 1992; Marseguerra et alProject. As a contribution to the project, we are de-
1998). The work which is probably closer to ours isVveloping an integrated platform providing the safety
(Cojazzi et al. 1992), which describes dynamic evenengdineers with tools for the specification, analysis
trees as a convenient means to represent the timir@d validation of complex systems. Formal verifica-
and order of intervention of a plant sub-systems andion functionalities of the platform are based on model
their eventual failures. With respect to the classifica-checking, and in particular on NuSMV(Cimatti et al.
tion the authors propose, our approach can supgport 2002). In this paper we have focused only on the as-
mu|taneou§ai|ures’ Whereas’ at the moment, we arepects related to the minimization procedure. We refer

working under the hypothesis gfersistentfailures ~the reader to (Bozzano and al. 2003), where a more
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