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Change Detection Techniques for ERS-1 SAR Data 
Eric J. M. Rignot, Member, IEEE, and Jakob J. van Zyl, Member, IEEE 

AbstractSeveral techniques for detecting temporal changes in 
satellite synthetic aperture radar ( S A R )  imagery are compared 
using both theoretical predictions and spaceborne S A R  data 
collected by the European first Remote Sensing Satellite, ERS- 
1. In a first set of techniques, changes are detected based on 
differences in the magnitude of the signal intensity between two 
dates. Ratioing of the multidate radar intensities is shown to be 
better adapted to the statistical characteristics of S A R  data than 
subtracting, and works best when the number of looks is large. 
In a second set of techniques, changes are detected based on 
estimates of the temporal decorrelation of speckle. This method 
works best with one-look complex amplitude data, but can also 
be used with intensity data provided that the number of looks 
is small. The two techniques, ratioing of the signal intensity and 
decorrelation of speckle, are compared using actual S A R  data 
collected by ERS-1. The results illustrate the viability as well as 
the complementary character of these techniques for detecting 
changes in the structural and dielectric properties of remotely 
sensed surfaces. Finally, change detection using the ratio method 
is applied to mosaics of repeat-pass S A R  imagery to illustrate 
the potential of this method for monitoring applications at the 
regional scale. 

I. INTRODUCTION 

ETECTING temporal changes in the state of remotely D sensed natural surfaces by observing them at different 
times is one of the most important applications of Earth- 
orbiting satellite sensors because they can provide multidate 
digital imagery with consistent image quality, at short inter- 
vals, on a global scale, and during complete seasonal cycles. 
A lot of experience has already been accumulated in exploring 
change detection techniques for visible and near infrared 
data collected by Landsat [l]. In the case of spaceborne 
synthetic aperture radar (SAR) imagery, change detection 
techniques have been developed for the temporal tracking of 
multiyear sea-ice floes using Seasat SAR observations [2], and 
rainfall events have been detected based on spatial radiometric 
variations in multidate Seasat SAR imagery [3]. Seasat SAR, 
however, did not provide calibrated radar measurements, and 
multidate observations were produced in limited quantity 
due to the short duration of the mission. Change detection 
techniques for spaceborne SAR data have not yet been fully 
explored. 

With the launch of the European Space Agency (ESA) first 
Earth Remote Sensing Satellite (ERS-1) in July 1991, the 
Japanese first Earth Resources Satellite (J-ERS-1) in February 
1992, and the Canadian RADARSAT in 1995, multidate SAR 
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data are now generated and archived on a regular basis, at 
short intervals, over the entire planet, and for many years to 
come. This new generation of SAR sensors is characterized by 
an enhanced image quality (in particular a stable and reliable 
calibration of the data), and a significant increase in data 
volume, data rates, and duration of the mission. As a conse- 
quence, there is an important need for developing automated 
procedures of change detection for SAR data that can help 
human interpretors or subsequent computer algorithms analyze 
the data and relate the observed changes in radar backscatter 
with changes in the structural and dielectric properties of the 
remotely sensed areas. 

Change detection techniques for SAR data can be divided 
into several categories, each corresponding to different image 
quality requirements. In a first category, changes are detected 
based on the temporal tracking of objects or stable image fea- 
tures of recognizable geometrical shape. Absolute calibration 
of the data is not required, but the data must be rectified from 
geometric distortions due to differences in imaging geome- 
try or SAR processing parameters, and the accurate spatial 
registration of the multidate data is essential. Applications 
include sea-ice monitoring and motion tracking, monitoring of 
glaciers, landslides, and oceanic features. In a second category, 
changes are detected based on temporal differences in radar 
backscatter. The requirements are a stable calibration accuracy 
of the data, and an accurate spatial registration of the multidate 
data. Typical applications include monitoring of crops, vol- 
canic activity, snow extent and conditions, glacial melt, soil 
moisture, and vegetation water content [4]. Finally, change 
detection techniques may be applied to data collected by more 
than just one sensor, for example, combining Seasat SAR data 
collected in 1978 with J-ERS-1 SAR data collected in 1992. 

In this paper, we limit ourselves to the study of SAR-specific 
change detection techniques based on detecting changes in 
radar backscatter from land surfaces using repeat-pass im- 
agery. Two sets of techniques adapted to the statistical char- 
acteristics of SAR data are presented and compared using 
both theoretical predictions and actual data collected by ERS-1 
SAR. The paper is organized as follows. Section I1 presents the 
ERS-1 mission, and summarizes the characteristics of repeat- 
pass ERS-1 SAR imagery, their calibration, and their regis- 
tration. Knowledge of these images characteristics strongly 
influences the selection of candidate change detection tech- 
niques. Section 111 presents change detection techniques based 
on differencing of the multidate radar intensities. Section IV 
discusses change detection techniques based on the temporal 
decorrelation of speckle. Section V shows several examples 
of change detection applications using ERS-1 SAR, and con- 
clusions are given in Section VI. 

0196-2892/93$03.00 0 1993 IEEE 
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11. REPEAT-PASS ERS-1 IMAGERY 

ERS-1 currently follows a sun-synchronous orbit with an 
orbital inclination of 97", and had a 3-day repeat cycle from 
August to December 1991 during the commissioning phase, 
followed by a 35-day repeat cycle during the multidisciplinary 
phase started in January 1992. ERS-1 operates a SAR instru- 
ment at C-band frequency (A = 5.7 cm), W-polarization (that 
is, vertical transmit and vertical receive polarization), 23" look 
angle, 100-km swath width, and with a spatial resolution better 
than 30 m [5]. As ERS-1 does not carry an on-board SAR data 
recorder, S A R  data are only acquired in view of an Earth- 
based receiving station. The ERS-1 SAR data presented in 
this paper are from NASA's Alaska SAR Facility (ASF), at 
the University of Alaska, Fairbanks, AK [6]. 

During the 1991 commissioning phase, ERS-1 followed 
very accurate satellite orbits, with a 3-day repeat cycle which 
for some parts of the world, including Alaska, provided exact 
repeat coverage every 3 days. Within the ASF receiving station 
mask, ERS-1 overflew the same areas, at the same time of the 
day, with the same imaging geometry. The incidence angle of 
the radar signal onto the remotely sensed area was repeated 
within fractions of a degree, and the geometric distorsions and 
radiometric, calibration errors introduced in the imagery due 
to topographic variations were also exactly repeated. Repeat- 
pass slant-range ERS-1 SAR images are therefore directly 
usable for change detection and monitoring applications, and 
there is no need for geometric rectification of the data and 
for projections and resampling to a common Earth-fixed grid. 
Registration of multidate repeat-pass slant-range images is 
a straightforward process limited to the determination of an 
azimuth shift (due to a different processing start time for the 
first range line, and slight differences in time of overpass of the 
satellite between two passes), and a residual slant-range shift 
(due to differences in SAR processing parameters and slight 
changes in the trajectory of the satellite), typically about 1 
or 2 pixel elements, Le., 30 m. To determine this pixel offset 
with subpixel accuracy, we compute the correlation peak of the 
signal intensity between the two SAR images. This method is 
reliable even in the presence of large changes in the signal 
intensity because numerous and stable textural features are 
always present in the imagery. 

Mosaicking of SAR data acquired along the same flight 
line or transect is more difficult because the data are corrupted 
by geometric distortions that vary along track due to relative 
changes in altitude, Earth velocity, and attitude of the ERS- 
1 satellite. The azimuth pixel spacing is higher in near-range 
by 0.04% and 0.11% due to differential Earth circumference 
and velocity, respectively. The slant-range pixel spacing varies 
between 12.493 and 12.507 m between the first and last 
record [7]. Since consecutive images along track are processed 
with slightly different processing parameters, the geometric 
distortions in their overlapping segments are not identical. 
Typically, two consecutive images overlap by 134 lines (over 
a total of 1024 lines), and the correlation peak varies by about 
f0 .25 pixels in slant-range, as a result of differential geometric 
distortions. We computed the correlation peak of the signal 
intensity at midrange as a compromise, but registration errors 

are visible at the transition boundary between two scenes. 
These registration errors are difficult to identify by a human 
eye from a S A R  image display, but they appear distinctly in 
change detection maps because the process of change detection 
is sensitive to subpixel registration errors, which are difficult 
to avoid in mountainous terrain where large transitions in 
pixel brightness occur within a single pixel and geometric 
distorsions are important. 

One of the most important characteristics of ERS-1 SAR 
is the stability of its radar gain. The standard error of the 
radar gain is currently less than 0.4 dB according to ESA's 
active external calibration devices [8], and in good agreement 
with the predicted stability of 0.33 dB measured during 
ground testing [5]. The remarkable stability of ERS-1 radar 
gain, combined with the great accuracy of its repeat-orbit 
cycle and its short revisit interval, render ERS-1 repeat-pass 
SAR imagery very suitable to change detection applications. 
Since the calibration factors (that is, absolute radar gain, and 
antenna pattern removal) are already included in the ASF/SAR 
processor [9], no calibration work was required in this study. 

In the next sections, we describe and compare several 
change detection techniques for ERS-1 repeat-pass SAR data. 

111. CHANGE DETECTION USING THE DIFFERENCE 

Differencing and ratioing are well-known techniques for 
change detection [l]. In differencing, changes in radar 
backscatter are measured by subtracting the intensity values, 
pixel per pixel, between two dates; in ratioing, changes are 
measured by dividing the intensity values, pixel per pixel, and 
are conveniently expressed in decibels (that is, taking ten times 
the logarithm in base ten of the ratio of the intensities). In this 
section, the two methods are compared based on their statistics 
and probability of error. 

The multilook SAR intensities are assumed to be gamma 
distributed as 

where (Io) is the mean intensity of an homogeneous region 
at time to, and N is the equivalent number of looks of the 
SAR data. Since a premise of change detection is that radar 
intensities do change between time t o  and t l ,  the intensities IO 
and 11 acquired, respectively, at times t o  and tl over the same 
resolution cell are assumed to be mathematically independent. 
The joint distribution of 10 and I1 is therefore the product of 
their marginal distributions given in (1). 

The distribution of the difference (d = I1 - lo) of the signal 
intensities is derived after a change in variables by integrating 
the joint distribution over Io, leading to [lo] 

( N  - 1 + j)! 
j ! ( N - 1 - j ) !  

j=N--l 

X 

j=O 
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The mean of the difference and the mean of the square 
difference are 

(3) 

(n - j + l ) (n  - j)(n - 1 + j ) !  
j ! (n  - l ) !  

E(d2) =- 

where E ( x )  denotes the expected value of the random variable 
x. The distribution of the difference given in (2) depends 
on both the relative change ( ( l 1 ) / ( 1 0 ) ) ,  and on a reference 
intensity level, Le., either (lo) or (11). As a consequence, 
changes will not be detected in the same fashion in high 
intensity regions compared to low intensity regions, which 
is not a desired effect. When the intensities (10) and ( 1 1 )  

are multiplied by a constant factor a, (3) shows that both 
(E(d ) )2  and E ( d 2 )  are multiplied by a2 ,  which means that 
the variance of the distribution of the difference increases with 
the intensity level. Since the probability of error in detecting 
changes increases with the variance of the distribution, this 
result shows that the difference method will produce more 
errors in the high intensity regions of the image than in the 
low intensity regions, so that the difference method is not 
adapted to the statistics of SAR images. 

Similarly, the distribution of the ratio (T = 11/10) is derived 
after a change in variables by integrating the joint distribution 
over IO leading to [lo]-[I21 

where F = ( l 1 ) / ( 1 0 ) .  The mean and standard deviation of the 
ratio are 

n -  E(T) =-T 
n - 1  

n(2n - 1)e 
(n  - 1)"n - 2 ) '  

u(r )  = 

In contrast to the distribution of the difference, the distribution 
of the ratio given in (4) only depends on the relative change F 
in average intensity between two dates, and detecting changes 
in the SAR imagery does not depend on the intensity level of 
the pixels. To evaluate in a more quantitative fashion the error 
produced by the ratio method, we now compute its probability 
of error as a function of the change in radar intensity between 
two dates. 

If we assume a threshold TO to decide on whether to 
classify a given change in radar backscatter between class 
A characterized by a change T A  = (I~)/(lo) or class B 
characterized by a change TE = (IB)/(~o) (Le., T > TO is 
classified as class B, and T 5 TO is classified as class A, and 
assuming T B  > TA),  the class A probability of error is given by 

00 

PEA = lo P ( T / T A ) d T  (6) 

50 

40 

- 30 v. 

a 20 

10 

0 

Y 

w 

Fig 1. Probability of error (in %) of the ratio method versus the change in 
radar backscatter AVO (in decibels) between the two dates, for a number of 
looks N varying between 1 and 256. 

and the class B probability of error by 

PEB = lro ~ ( T / T B ) ~ T .  (7) 

Assuming equal a priori probabilities for classes A and B, the 
threshold decision is found using 

P ( r O / r A )  = p ( T O / T B )  (8) 

To = d7i-G (9) 

leading to 

which is independent of the number of looks N .  The total 
probability of error is 

(10) 
1 
2 

P E  = - (PEA + PEB)  

which is found to be equal to 

P E  = 1 /2  - f ( X )  + f ( l / x )  

XN 

(11) 

where 

f ( x )  = 2  ( N  - 1)!(1+ X)2N-1 
j=N-1  

( 1  + X ) j ]  (12) 
(2N - j - 2)!  

. [  ( N - j - l ) !  
j=O 

and X = d x .  A plot of P E  as a function of the change 
in radar backscatter intensity, Ano = 20 loglo(X), expressed 
in decibels, is shown in Fig. 1 for different values of N .  The 
results show that P E  decreases slowly with an increasing 
number of looks N .  To detect changes in radar intensity less 
than 2 dB with a confidence level better than 90% (that is PE = 
10 %), N must be greater than 64 looks, which means a large 
number of independent SAR samples. Detecting changes in 
radar backscatter of the order of one decibel requires a number 
of looks larger than a hundred. Hence, the ratio method is 
quite sensitive to the presence of image speckle in the sense 
that speckle patterns that are difficult to detect by a human 
eye in SAR images when the number of looks is large will 
still be visible in ratio images. 
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Another important reason for selecting the ratio method 
instead of the difference method is that the ratio method 
is very robust to calibration errors whereas the difference 
method is not. Radiometric errors are usually introduced in 
the imagery during SAR processing by assuming a flat Earth 
model, resulting in two errors: 1) an error in the computation of 
the scattering element size due to errors in the true incidence 
angle of the electromagnetic signal onto the surface; and 2) 
an error in the antenna pattern removal due to errors in the 
true depression angle of the signal onto the reflecting surface 
[13]. Both errors are multiplicative factors to the total radar 
intensity. These factors are eliminated when computing the 
ratio image because calibration errors are exactly reproduced 
in repeat-pass imagery. In contrast, in the difference method, 
radiometric errors directly modulate the difference of the radar 
intensities, typically yielding higher changes in very hilly 
terrain (e.g., slopes facing the radar) than in rather flat areas 
for the same type of surface, which is not a desired effect. 

In most applications, it is necessary to threshold the ratio 
image to identify image pixels that change by more than fz 
dB, where z is a real number. Selecting threshold values 
depends on the application and on the nature and magnitude 
of the expected changes, and can generally be viewed as 
an optimization problem with a number of constraints. We 
will not address this topic in this paper. Given threshold 
values, image pixels are classified into classes, each of which 
corresponds to a well defined change in magnitude of the 
radar intensity. Equation (9) shows that an optimum threshold 
for classifying a pixel into class A or class B is given in 
decibels by T = ~(lO1oglO(TA) + lolOglo(TB)), independent 
of the number of looks N, because this operation corresponds 
to a maximum likelihood classification of the ratio image 
into a number of classes of changes. To improve the results, 
one possibility is to include the a priori probabilities of the 
classes in the classification process and perform a maximum a 
posteriori classification of the data. An example of maximum 
a posteriori (MAP) classifier for change detection applications 
was proposed in [ 121. The a priori distribution of the classes is 
modeled using a Markov random field, and is combined with 
the a priori distribution of the ratios (4) to yield an expression 
for the a posteriori distribution of the classes given the ratios 
over the entire image array. Bayes' optimal classification of 
the ratio image maximizes the a posteriori distribution of the 
classes over the entire scene. Although the exact solution to 
this optimization problem is extremely difficult to compute, 
approximate solutions can be obtained. Several techniques are 
possible, depending on computational cost versus quality of 
the solution, as discussed in [12], [14]. An example of MAP 
classification using ERS-1 SAR data is given in Section V. 

Other techniques have been proposed to detect changes in 
digital satellite imagery, including multidate classification of 
the data, and principal component analysis [l]. Results ob- 
tained with Landsat data indicate that these more sophisticated 
techniques do not perform better than a simple differencing of 
the images. We did not test them on SAR data. In the next 
section, we will present a novel SAR-specific change detection 
technique based on the temporal decorrelation of speckle. In 
principle, temporal decorrelation of speckle may arise even 

when no changes in the radar intensity are detected, so that 
this change detection technique may detect small changes in 
radar backscatter that could not be detected using the ratio 
because of limitations imposed by image speckle (Fig. 1) or 
by the radar gain stability. 

IV. CHANGE DETECTION USING 
THE DECORRELATION OF SPECKLE 

According to the random walk model of speckle [15], 
decorrelation of speckle may arise from a redistribution of the 
scatterers within a resolution cell, either as a result of random 
displacements of the scatterers due to external disturbances, or 
because the scatterers change totally in nature and distribution 
between the two dates. Hence, the temporal decorrelation 
of speckle provides information about possible changes in 
the surface structural and dielectric properties. The detected 
changes are independent of the calibration accuracy of the 
data. 

The decorrelation of speckle is not measured directly by 
SAR, because there are other sources of signal decorrelation in 
repeat-pass SAR imagery. These sources are: 1) a decorrelation 
due to thermal noise; 2) a spatial baseline decorrelation; and 
3) a temporal decorrelation of speckle [16] . The total corre- 
lation coefficient is modeled as the product of the correlation 
coefficients from these independent sources of decorrelation as 

P a  = Pn PB P s  

where 

SNR is the signal-to-noise ratio, B is the antenna baseline 
separation (assumed to be in the horizontal direction), R, 
is the spatial resolution in azimuth, t9 is the look angle, 
X is the radar wavelength, R is the range distance to the 
radar, pa is the magnitude correlation coefficient of the SAR 
complex amplitudes (that is, amplitudes and phases of the 
signal expressed as complex numbers), pn is the thermal 
noise decorrelation coefficient, PB is the spatial baseline 
decorrelation coefficient, and ps is the temporal decorrelation 
of speckle. Knowing the thermal noise power level, and the 
antenna baseline separation between repeat-passes, one can 
estimate ps from pa. In the case of ERS-1 SAR,  R, = 30 
m, X = 5.7 cm, t9 = 23", and R = 830 km so that the 
effect of the spatial baseline decorrelation is significant when 
B 2 460 m (that is, p~ 5 0.5). The effect of thermal noise is 
significant for SNRS 1 dB (for which pn 5 0.6), which means 
radar intensities close to the system noise floor. Equation (14) 
shows that p~ does not vary significantly within a SAR scene, 
because R and cos(8) vary by 10% and 5% across swath, 
respectively, and R, and X are constant. Hence, if a large 
value of pa is detected in an area of large SNR, that value 
will set a lower limit on p ~ ,  and practically insure that the 
effect of the spatial baseline decorrelation can be ignored in 
the analysis of spatial changes in pa. 
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We estimate the temporal decorrelation of the signal using 

where 00 and 01 are the S A R  complex amplitudes measured, 
respectively, at time t o  and tl .  A large number of samples 
is required to obtain an accurate estimate of pa because of 
speckle. When speckle is highly correlated between the two 
dates, the variance to mean square ratio of the estimate of the 
spatial correlation of one-look complex amplitudes is given 
in [14]. In this study, we used one-look S A R  complex data, 
4096 pixels in range by 12 000 pixels in azimuth, and added 
the different terms required to estimate the local averages in 
Equation (15) by taking 4 pixels in range and 20 pixels in 
azimuth to obtain an 80-looks image of pa that is 512 pixels 
by 600 pixels in size with nearly square pixels. As neighboring 
pixel samples are not rigorously independent because pixel 
spacing is usually selected equal to half the width of the radar 
impulse response, the effective number of looks N is only 55 
when estimated correctly using the equation 

where N ,  and N, are, respectively, the number of pixel 
samples in azimuth and in range, p u o ( i , j )  is the spatial 
correlation coefficient of the single-look complex data acquired 
at time t o ,  i is the displacement in pixel in azimuth, and j is 
the displacement in pixel in range. When N = 55, the variance 
to mean square ratio of pa varies between 13% for I pa I= 0.2 
and 2% for I pa I= 0.9, which is reasonably low. Note that 
pa is independent of spatial variations in radar backscatter 
cross-section of the surface as discussed in [14]. 

Disadvantages of the decorrelation technique are the volume 
of data to be manipulated, the computational cost, and the 
difficulty to generate one-look complex amplitude S A R  data 
products for a large community of users as these data are 
intermediate products that are not saved after S A R  processing. 
An alternative is to consider the decorrelation of the signal 
intensity I =I a l 2  between two dates. The correlation 
coefficient of the intensity, noted P I ,  is estimated using 

The phase of the radar return is not used. In the absence of 
a textural modulation of the SAR signal due to the natural 
spatial variability of the radar backscatter cross section of the 
reflecting surface 

P I  =I Pa l 2  (18) 

using a fundamental property of circular symmetric Gaussian 
processes. Equation (18) shows that taking the square root of 
PI  yields an estimate of 1 pa 1. This equality does not hold, 
however, if textural variations of the radar backscatter from 
the surface are present and the number of looks is much larger 
than one. This effect is explained using a simple multiplicative 
model of the S A R  intensity 

I; = (Ii) T; Si , i  E ( 0 , l )  (19) 

TABLE I 
PRECIPITATION RATES AND AIR TEWERATURES 

(MINIMUM-MAXIMUM) RECORDED AT KING SALMON AIRPORT 
(58.4'N, 156.4OW, 20 m elev.) BETWEEN 09/18 AND 09/26 

where T; is a normalized ((Ti) = 1) texture random variable 
that modulates the mean intensity return (Ii) of an homoge- 
neous area at time ti, and Si is a normalized ( (S i )  = 1) speckle 
random variable with a mean squared to variance ratio equal 
to the equivalent number of looks N of the data. Using (18) 
and (19), we obtain 

assuming that TO and TI have the same variance a$. When 
texture is not present, o$ is zero, and PI =( pa 1 2 .  When 
texture is present, and the number of looks N is very large, 
PI = p ~ ,  and texture dominates the correlation of the signal, 
which is not surprising since image speckle is not a dominant 
source of spatial variability of the signal for large N .  As 
a consequence, the temporal decorrelation of speckle from 
intensity data can only be detected for N small, in practice 
with N less than 4. Examples are shown in the next section. 

V. EXAMPLES USING ERS-1 S A R  DATA 

Several examples are shown in this section using multidate 
data from ERS-1 SAR. The objective here is not to interpret 
physically the observed changes in radar backscatter but to 
illustrate the use of change detection techniques with actual 
spacebome SAR data. Understanding the reasons for detected 
changes is a topic of ongoing research. 

Fig. 2(a) shows a SAR intensity image acquired by ERS- 
1 at a center location of 58.4'N, and 155.OoW, within the 
Katmai National Park and Preserve, Alaska, on September 20, 
1991 at 21:26 GMT (that is, 1:26 pm Alaska daylight time), 
Rev. # (revolution number) 943. The north direction is to the 
bottom in the figure, with ERS-1 flying from bottom to top 
(descending pass), looking to its right. The same 50 km by 
50 km scene was imaged six days later on September 26, 
1991 (Rev. # 1029), at the same time of the day. Weather data 
collected at King Salmon Airport (58.4'N, 156.4OW, 20 m 
elevation), 81 km west of the center of the scene, are shown in 
Table I. Air temperatures did not change significantly between 
the two dates and remained at about +9"C. Rain occurred 
one day prior to the imaging of the first scene, and one day 
prior to the imaging of the second scene. Extrapolation of 
these weather conditions indicate that air temperatures were 
probably below zero in mountainous areas above 900 m based 
on a dry lapse adiabatic rate of loC/10O m, and local rain 
storms probably covered the mountain tops with snow. We 
do not have weather data and surface observations within the 
scene itself. 

An image of the magnitude of the complex correlation 
coefficient pa is shown in Fig. 2(d) overlaid on the S A R  image. 
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(a) 

901 

(4 (d) 
Fig. 2. ERS-1 SAR scene acquired near Mount Katmai, Alaska, at a center location of 58.4'N, and 155.0°W. The image is 50 km by 50 km in size. The north 
direction is to the bottom in the figure, with ERS-1 flying from bottom to top (descending pass), looking to its right. From left to right, starting from the top: (a) 
Amplitude image (80-look) acquired on September 20, 1991 (Rev. ti 943), 0 ESA, 1991; (b) Correlation coefficient fi of one-look intensity data between 0 
and 1; (c) Ratio image Aao between -2 and +2 dB; (d) Correlation coefficient pa  of one-look complex amplitude data between 0 and 1. (bHd)  are overlaid 
on the SAR image, which means that the amplitude of the SAR signal is used as a saturation factor between 0.5 and 1.0 on the red, blue, and green channels. 

We overlaid the results of the change detection algorithms 
on the S A R  data because topographic variations are totally 
eliminated in the change detection maps as predicted from the 
near perfect repeat-pass of ERS-1 over the same areas, and 
areas of change are difficult to position in the SAR imagery 
by a human interpreter without identifiable reference points. 
To construct this data overlay, we modulated the saturation of 
the red, green, and blue channels by a factor between 0.5 and 
l., depending on the magnitude of the S A R  signal. In many 

areas of Fig. 2(d), speckle is highly correlated between the two 
dates. The maximum value of p a  is 0.964 in an area of high 
SNR, indicating that p~ 2 0.964 and does not significantly 
modulate the results. Low values of pa are seen in valley 
bottoms in the lower right portion of the figure, and in nearly 
all mountain tops which include active volcanoes. Correlation 
of speckle decreases markedly above a certain altitude, perhaps 
revealing the contours of the tree line, of the snow line, or 
both. The ratio image shown in Fig. 2(c) reveals changes in 
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TABLE I1 
PRECIPITATION RATES AND AIR TEMPERATURES 

(68.18'N, -150.06'W, 108 m elev.) BETWEEN 09/03 AND 09/11 

in Fig. 3(c) indicates a large increase in radar backscatter over 
the glaciers and mountain tops. The correlation coefficient of 
speckle computed from one-look intensity data is shown in 
Fig. 3(b), and is in good agreement with the results shown 
in Fig. 3(d), indicating that the decorrelation of speckle can 
be studied using one-look intensity data. Fig. 3(e) shows an 
image of the decorrelation of speckle computed using 4-look 
intensity SAR data. The effect of texture is more pronounced, 

(MINIMUM-MAXIMUM) RECORDED AT TALKEETNA AIRPORT 

radar backscatter larger than 2 dB in mountain tops and valley 
bottoms. In general, changes in uo are detected in areas where 
pa is low; and, no changes in 00 are found where pa is high. 
Both methods reveal important changes in the physical and 
electrical properties of the surface at the higher elevations, yet 
the decorrelation of speckle detects changes in the lower right 
portion of the figure that cannot be identified in the ratio image. 
The correlation of speckle computed using one-look S A R  
intensity data and 4 pixels in range by 20 pixels in azimuth, is 
shown in Fig. 2(b), revealing a good correspondence between 
fi and pa, although the contrast between regions is better in 
Fig. 2(b). Image features such as ridge tops and slopes facing 
the radar yield erroneously large values of fi in Fig. 2(b), 
because of texture. 

Another example is shown in Fig. 3(a) with a scene acquired 
acquired at the foot of Mount McKinley, at a center location 
of 62.7' N and -150.3' W. The Iokotsina glacier (upper left 
corner in the figure) and the Ruth glacier (top center in the 
figure) are identified with small arrows in the figure. This 
image was acquired during an ascending pass of ERS-1 (which 
is also a night-time pass) on September 5, 1991 (Rev. # 720). 
The north direction is to the top in the figure, with ERS- 
1 flying from bottom to top, looking to its right. The same 
scene was imaged 6 days later on September 11, 1991 (Rev. # 
806). Weather data collected at Talkeetna Airport, (62.18' N, - 
150.06'W, 108 m altitude), 62 km south of the center of the 50 
km by 50 km scene, indicate precipitation events between the 
times of imaging of the two scenes, and no precipitation prior 
to the imaging of the first scene (Table 11). Air temperatures 
at night remained close to O°C the whole period, suggesting 
freezing conditions at elevations higher than 200 m. Air- 
temperatures during the day were warmer at Talkeetna Airport, 
but probably below O'C above 1200 m. The higher portions of 
the glaciers seen in the top part of Fig. 3(a) are at elevations 
higher than 2000 m. 

The complex correlation map shown in Fig. 3(d) indicate 
a large correlation of speckle between the two dates, even at 
the higher elevations. Correlation of speckle is low over the 
glaciers. Random motion of scatterers within one resolution 
cell results in a complete decorrelation of speckle after rms 
motion of 2-3 cm at C-band [16]. However, glacier motion 
may more likely result in a nearly uniform translation of all 
scatterers within a resolution cell instead, which would result 
in total decorrelation if the displacements are of the order of 
one resolution cell or 30 m. Glaciers do not move at such 
high rates in this region, and the decorrelation of speckle is 
probably due to changes in their surface physical and electrical 
properties. This is confirmed by examining the changes in 
radar backscatter over these same areas. The ratio image shown 

and the contrast between regions where speckle is correlated 
and those where speckle is decorrelated is reduced. Yet, areas 
where speckle is highly correlated are still visible, illustrating 
that 4-look intensity data can provide information about the 
degree of correlation of speckle. This result is of interest to 
SAR interferometry studies because it shows that multilook 
SAR intensity data could be used to select image pairs for 
which speckle is highly correlated and interferometric mapping 
is possible, before correlating and analyzing one-look SAR 
complex amplitude data, thereby offering a large data volume 
reduction in processing of the data. 

In principle, when the structural and dielectric properties 
of the reflecting surface change, the correlation of speckle 
decreases, and the intensity of the radar returns changes. 
As mentioned earlier, there can also be areas where speckle 
decorrelates, yet no change in radar backscatter is detected by 
the SAR system. As an example of practical situation, a forest 
under varying wind conditions could undergo no change in 
radar intensity if the soil and vegetation moisture conditions 
are unchanged, yet temporal decorrelation of speckle could 
arise from a random motion of branches which efficiently 
scatter the radar signals at C-band frequency. Surprisingly, 
we also detected areas where speckle is highly correlated but 
the radar intensity changes by several decibels. One such area 
is identified in Fig. 3(a) with a white circle, with changes in 
radar backscatter larger than 2 dB and a correlation coefficient 
Pa larger than 0.8. A close inspection of both Figs. 3 and 4 
reveal that other areas exist where a significant change in radar 
backscatter is detected and yet pa is greater than 0.5 (height 
information can still be retrieved when pa M 0.5 according 
to [16]). A value of pa greater than 0.8 suggests that the 
distribution of scatterers within each resolution cell has not 
changed, while a 2 dB change in radar backscatter indicates 
that the scattering properties of the scatterers have been 
modified. We do not have surface observations within those 
areas to help propose a definite explanation. One practical 
surface that could result in such scattering properties could be 
a recently burned forest. Scattering is there dominated by tree- 
trunk/ground interactions (the branches have been burnt), and 
a change in the ground moisture conditions andlor in the tree- 
trunk water content would change the magnitude of the radar 
returns without any detectable change in the distributions of 
the scatterers (i.e., the tree trunks), hence resulting in highly 
correlated speckle. 

These first examples illustrate the practicality of ERS- 
1 repeat-pass SAR data for change detection applications, 
and demonstrate that numerous changes in the surface struc- 
tural and electrical properties can be detected using the ratio 
method or the method based on the decorrelation of speckle. 
Comparison of these different change detection techniques 
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(c) id) 

Fig. 3. ERS-1 SAR scene acquired near Mount McKinley, Alaska, at a center location of 63.4'N, and -150.3OW. The image is 50 km by 50 km in size. 
The upper left arrow locates the Iokotsina glacier, and the other arrow locates the Ruth glacier. The north direction is to the top in the figure, with ERS-1 
flying from bottom to top (ascending pass), looking to its right. From left to right, starting from top (a) Amplitude image (80-looks) acquired on September 
5, 1991 (Rev. ## 720), 0 ESA, 1991; (b) Correlation coefficient fi of one-look intensity data between 0 and 1; (c) Ratio image ACTO between -2 and 
+2 dB; (d) Correlation coefficient pa  of one-look complex amplitude data between 0 and 1; (b) through ( e )  are overlaid on the SAR amplitude image. A 
white circle on (c) highlights an area where pa % 0.8 and ACTO 2 2 dB. (Continued on next page.) 

reveals that they do not necessarily reveal the same type of 
changes in the surface properties under the same environment, 
illustrating their complementary character. The decorrelation 
method indicates whether the position of the scatterers has 
been altered or totally changed from one day to another, 
but provides no indication on the magnitude of the corre- 
sponding change in radar backscatter. In contrast, the ratio 

method directly measures the magnitude of the change in radar 
backscatter but does not provide information about possible 
changes in the nature of the scatterers and is limited by 
image speckle and the stability of the radar gain. The two 
techniques complete each other and help reduce the number 
of possibilities of physical interpretation of the observed 
changes. 
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(e )  
Fig. 3. (Continued.) (e) Correlation coefficient fi of 4-look intensity data 

between 0 and 1. 

In the next two examples, we examine larger changes in the 
surface structural and electrical properties detected using the 
ratio method. We did not analyze the decorrelation of speckle 
in these examples because image speckle is not expected 
to remain correlated in areas of large changes separated by 
several weeks. 

Figs. 4(a) and (b) show intensity images acquired by ERS-1 
S A R  over the Bonanza Creek Experimental Forest (BCEF), 
near Fairbanks, AK, at a center location of 64.8"N and 
147.9"W, respectively, on April 25, 1992 (Rev. # 4067), and 
on May 30, 1992 (Rev. # 4568). These data are separated 
by 35 days and were acquired during the 35-day repeat- 
cycle multidisciplinary phase of ERS-1 during a descending 
pass of ERS-1 at about 1:OO pm Alaska daylight time. The 
north direction is to the bottom in the figure, with ERS-1 
flying from bottom to top, looking to its right. The scene 
comprises a mixture of various types of tree species intermixed 
with treeless areas of short vegetation of shrubs and sedges 
on a moss layer (see [17] for more details). The Tanana 
River is visible going across the center of the scene from 
east to west, corresponding to low pixel brightness values. 
Weather data collected at this site by the people from the 
Institute of Northern Forestry in Fairbanks, Alaska, reveal air 
temperatures of about f4.8"C during the day, and -8.5"C at 
night, and a soil in the process of thawing (Tsoil = -0.loC 
during the day) on Apr. 25, 1992. Air-temperatures were warm 
(T = +19.0°C) with thawed soil (Tsoil = +l.O°C during the 
day and above zero at night) on May 30, 1992. Changes in 
radar backscatter larger than 6 dB are detected in the imagery. 
The color coded ratio image shown in Fig. 4(c) shows areas 
where the radar backscatter increased by more than 3 dB 
(yellow), decreased by 3 dB (red), or did not change by more 

than 3 dB (blue), overlaid on the SAR image acquired in April. 
Comparison of the observed changes in radar backscatter with 
vegetation types reveals that areas colored yellow in Fig. 4(c) 
are treeless areas (apart from a few points along the river), 
areas colored red correspond to the river (the disappearance 
of the rough water ice probably caused the observed decrease 
in radar backscatter values) and in smaller areas of standing 
water, and areas colored blue are the forests. For reasons 
explained earlier on in this paper, the color ratio image shown 
in Fig. 4(c) is also a maximum likelihood classification map of 
the area into three classes of changes since the color coding 
is reduced to three colors only. Fig. 4(d) is an illustration 
of subsequent improvements in classification quality that can 
be obtained using a maximum a posteriori classifier [12]. 
The ratio image was classified into three classes of change 
(AUO 2 f 3  dB, Aao 5 -3 dB, and I Auo (< 3 dB), and 
the results are using the same color coding as in Fig. 4(c). 
The different areas outlined in Fig. 4(c) are better defined in 
Fig. 4(d). This result indicates that a maximum a posteriori 
classifier provides a worthwhile improvement in segmentation 
quality for change detection applications compared to a simple 
thresholding of the ratioed data, which is consistent with the 
fact that ratio images are very sensitive to image speckle. 

Finally, the last example illustrates the potential of the 
ratio method for detecting changes in radar backscatter at 
the regional scale. We mosaicked together three S A R  images 
collected during a descending pass of ERS-1 that intercepted 
with the city of Tanana, 200 km west of Fairbanks, AK. One 
transect was acquired on September 29, 1991 (Rev. # 1072), 
while the other was acquired 18 days later, on October 17, 
1991 (Rev. # 1330). The mosaic shown in Fig. 5(a) is 100 
km by 400 km in size. The north direction is to the top, with 
ERS-1 flying from top to bottom, looking to its right. As in 
the previous cases, radiometric distortions due to topography 
are exactly eliminated in the ratio image, due to the good 
registration of the data, and the exact repeat-pass of ERS- 
1 SAR (a small radiometric modulation of the ratio image 
was introduced using the amplitude data from one of the 
SAR transect to help reference areas of change in the radar 
imagery, and are not due to registration errors, as in all the 
examples shown in this paper). Air temperatures recorded at 
Tanana Airport (located in the top portion of the figure at 
65O.ON and 15lo.2W) during that period went from f5"C 
to -9°C. Similar values were reported at Lake Minchumina 
Airport (located at 63.54"N, 152.16"C, 213-m elevation). 
These changes in radar backscatter have been interpreted as 
resulting from a decrease in the dielectric constant of the soil 
and vegetation with freezing, which results in a decrease in 
radar backscatter of the soil and vegetation of approximately 
3 dB, nearly independent of landscape, except for areas of 
standing water (where radar backscatter values may either 
increase or decrease), and areas that are already in frozen 
conditions such as high mountain tops where subzero air- 
temperatures are recorded much earlier in the season [18], 
[19]. Areas colored red in the ratio image shown in Fig. 
5(b) correspond to areas where the landscape (Le., the soil 
and vegetation as a single medium) is frozen, whereas areas 
colored blue froze earlier (case of the mountain range present 
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(4 (d ) 

Fig. 4. (a) ERS-1 SAR image of the Bonanza Creek Experimental Forest at 
a center location of 64.8ON and 147.9OW acquired on April 25, 1992 during 
the 35-day repeat cycle. The image is 19.2 km by 19.2 km in size. The north 
direction is to the bottom in the figure, with ERS-1 flying from bottom to 
top, looking to its right, O ESA 1992. @) ERS-1 SAR image of the same 
area acquired 35 days later on May 30, 1992, 0 ESA 1992. (c) Ratio image 
Aao between -6 and +6 dB, overlaid on the SAR amplitude data of Fig. 
4(a). (d) Classification map of the ratio image of Fig. 4(c) using a maximum 
a posteriori classifier. Pixels colored yellow correspond to Aao 2 $3 dB, 
pixels colored red correspond to Aao 5 -3 dB, and pixels colored blue 
correspond to I AUO < 3dB I. The classification map is overlaid on the 
S A R  amplitude data of Fig. 4(a). The saturation factor for the S A R  overlay 
is between 0.5 and 1.2. 

in the upper portion of the image in Fig. 5(a)), or did not (a) (b) 

freeze (case of the areas in the lower portion of the image in 
~ i ~ .  s ( ~ ) )  because air temperatures were not cold enough yet 
to yield a complete freezing of the soil and vegetation. The 
radar backscatter from the Tanana River and Lake Minchumina 

Fig. 5 .  Mosaic of three ERS-I SAR images acquired near the city of Tanana, 
AK (65.10'N and -152.06OW), during the ERS-1 commissioning phase. Each 
image mosaic is approximately 100 km by 400 km in size. The north direction 
is to the top in the figure, with ERS-1 flying from top to bottom, looking to 
its right. (a) Transect acquired on September 29, 1991 (Rev # 1072) during 

increased with freezing because of the formation of a rough 
icelwater interface with freezing. 

a descending pass of ERS-1 o ESA-1991. (b) Ratio of the SAR intensities 
measured between September 29, 1991 (Rev. # 1072) and October 17, 1991 
(Rev. # 1330) between -4 and +4 dB, and overlaid on the SAR amplitude data. 

VI. CONCLUSIONS 
Several techniques for change detection have been presented 

and compared based on their probability of error and on 
results obtained using repeat-pass ERS-1 SAR data. The 
method based on the temporal decorrelation of speckle works 
best with one-look SAR complex amplitude data, but can 
also be used with multilook intensity data provided that the 
number of looks is small. Ratioing of the radar intensities 
works best with multilook intensity data. Areas of change 
identified by both methods under the same environment do 
not always agree. For instance, speckle may remain highly 
correlated although significant changes in radar backscatter 

are detected. The decorrelation method helps detects changes 
in the position of the scatterers whereas the ratio method 
provides information about the magnitude of the observed 
changes. Both methods combined enhance our characterization 
of the observed changes. For instance, if we know that the 
position of the scatterers is unchanged, then any change in 
radar backscatter will be related to changes in the electrical 
properties of the surface and not its structure. Indeed, if both 
position and scattering properties of the scatterers change, the 
interpretation is more difficult, but the large complementarity 
of these two techniques justifies that both of them should be 
used in detailed monitoring studies. The initial results shown 
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in this paper illustrate the great potential of ERS-1 for change 
detection applications. Much work remains to be done to 
interpret the observed changes in terms of changes of specific 
parameters controlling the structure and dielectric properties 
of the landscape, such as surface roughness, biomass, soil 
and vegetation moisture conditions, or snow depth and water 
equivalent to mention a few. Although the radar backscatter 
from natural surfaces depends on all these parameters, plus 
topography, it is also clear that under certain environmental 
conditions and over certain time scales, several of these 
variables may change slowly with time, if at all, so that 
temporal changes in radar backscatter could be directly related 
to changes in only one or two parameters. A n  example is 
the monitoring of freeze-thaw transitions along north-south 
Alaskan transects using ERS-1 SAR data, independent of 
topography and vegetation types [19]. 
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