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Phase Noise in MIMO Systems: Bayesian
Cramér–Rao Bounds and Soft-Input Estimation

Ali A. Nasir, Student Member, IEEE, Hani Mehrpouyan, Member, IEEE, Robert Schober, Fellow, IEEE, and
Yingbo Hua, Fellow, IEEE

Abstract—This paper addresses the problem of estimating
time varying phase noise caused by imperfect oscillators in
multiple-input multiple-output (MIMO) systems. The estimation
problem is parameterized in detail and based on an equiva-
lent signal model its dimensionality is reduced to minimize the
overhead associated with phase noise estimation. New exact
and closed-form expressions for the Bayesian Cramér–Rao lower
bounds (BCRLBs) and soft-input maximum a posteriori (MAP)
estimators for online, i.e., filtering, and offline, i.e., smoothing,
estimation of phase noise over the length of a frame are derived.
Simulations demonstrate that the proposed MAP estimators’
mean-square error (MSE) performances are very close to the
derived BCRLBs at moderate-to-high signal-to-noise ratios. To
reduce the overhead and complexity associated with tracking the
phase noise processes over the length of a frame, a novel soft-input
extended Kalman filter (EKF) and extended Kalman smoother
(EKS) that use soft statistics of the transmitted symbols given the
current observations are proposed. Numerical results indicate
that by employing the proposed phase tracking approach, the
bit-error rate performance of a MIMO system affected by phase
noise can be significantly improved. In addition, simulation results
indicate that the proposed phase noise estimation scheme allows
for application of higher order modulations and larger numbers
of antennas in MIMO systems that employ imperfect oscillators.

Index Terms—Bayesian Cramér Rao lower bound (BCRLB),
extended Kalman smoother (EKS), maximum-a-posteriori (MAP),
multiple-input multiple-output (MIMO), soft-decision extended
Kalman filter (EKF), Wiener phase noise.

I. INTRODUCTION
A. Motivation and Literature Survey

M ULTIPLE-INPUTmultiple-output (MIMO) technology
can be utilized to enhance the throughput and reliability

of wireless communication links by introducing multiplexing
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and diversity gains to the overall system [1], [2]. As a result,
MIMO systems are an effective means to meet the stringent re-
quirements on today’s wireless communication systems that de-
mand higher spectral efficiencies and throughputs [3]. On the
other hand, phase noise severely deteriorates the performance
of MIMO systems [4]–[12].
Oscillators used in bandpass communication systems suffer

from phase instabilities, which are referred to as oscillator
phase noise [4]–[10]. Phase noise is a time varying process
that changes from symbol to symbol [13]–[15]. Moreover,
the deteriorating effect of phase noise may be more severe in
MIMO systems employing higher order modulations, given
that in MIMO systems, independent oscillators may be used at
each transmit and receive antenna resulting in multiple phase
noise processes that need to be jointly estimated at the MIMO
receiver [8], [10]–[12], [15]. The use of independent oscillators
at each transmit and each receive antenna is well-motivated
in applications where antennas need to be placed far apart
from one another, e.g., in the case of line-of-sight (LoS)
MIMO systems1 [17]. As a result, even though Cramér-Rao
lower bounds (CRLBs) and algorithms for estimation of phase
noise in single-input single-output (SISO) systems have been
extensively and thoroughly studied in [13], [14], [18]–[30],
these results cannot be applied to the case of MIMO systems.
Similarly, phase locked loops, that can be used in SISO systems
for phase noise tracking, cannot be applied in LoS-MIMO
systems where multiple phase noise parameters need to be
tracked simultaneously at the receiver [10].
While in the case of single carrier systems, phase noise results

in a rotation of the signal constellation, for multi carrier systems,
e.g., orthogonal frequency division multiplexing (OFDM) sys-
tems, phase noise results in both a common phase noise error
(CPE) and inter-carrier interference (ICI) [6], [31]–[39]. The
CPE can be compensated by a phase rotation [6], [31], [33].
Moreover, extensive research has been carried out to mitigate
the effect of ICI in OFDM systems [6], [32]. However, as out-
lined in [10], these algorithms are only applicable to SISO and
MIMO systems where all transmit and receive antennas are
equipped with a single oscillator. Thus, they cannot be applied
for tracking multiple phase noise processes at the MIMO re-
ceiver. It is also important to note that compared to single carrier
systems, phase noise is more detrimental to the performance of
OFDM systems, especially as the constellation size and number
of subcarriers increases [40]. Therefore, application of single
carrier systems in very high speed communication links may be

1LoS MIMO has been demonstrated for microwave backhauling, e.g., by Er-
icsson AB [16].

1053-587X/$31.00 © 2013 IEEE
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advantageous. For example, in the case of high speed LoS mi-
crowave backhaul links that connect cellular base stations to the
core network single carrier space division multiplexing (SDM)
is used instead of OFDM [41], [42].
In [15], pilot-aided estimation of phase noise in single car-

rier MIMO systems is investigated, where a Wiener filter is ap-
plied to eliminate the ambiguity in the estimation problem and
to obtain the phase noise values corresponding to each antenna.
However, the scheme in [15] requires that during the transmis-
sion of a pilot symbol from one transmit antenna, the remaining
antennas stay silent, i.e., the other antennas are off. As a result,
this approach is bandwidth inefficient. In addition, [15] does not
provide any means for finding lower bounds, e.g., a Bayesian
Cramér-Rao lower bound (BCRLB), for phase noise estimation
inMIMO systems. In [10], we address the problem of data-aided
joint channel and phase noise estimation in MIMO systems.
However, in [10], the BCRLB for the phase noise estimation
problem is not derived and the proposed hard-decision feedback
algorithm requires frequent transmission of pilot symbols.

B. Contributions

The results in this paper in combination with the joint channel
and phase noise estimation algorithms in [10], provide a com-
prehensive approach for estimating channels and tracking phase
noise parameters in MIMO systems. More specifically, by fo-
cusing on phase noise estimation, this paper seeks to improve
phase noise tracking accuracy while reducing synchronization
overhead. The contributions of this paper can be summarized as
follows:
• Estimation of phase noise in MIMO systems is parameter-
ized and an equivalent systemmodel is derived. This signal
model is applied to reduce the dimensionality and overhead
associated with phase noise estimation.

• New exact expressions for data-aided (DA) BCRLBs, non-
data-aided (NDA) BCRLBs, and soft-input maximum a
posteriori (MAP) estimators for obtaining multiple phase
noise parameters over the length of a frame in offline, i.e.,
smoothing, and online, i.e., filtering, modes are derived.
2 Simulation results indicate that the mean-square error
(MSE) performances of the proposed MAP estimators are
very close to the derived BCRLBs at moderate-to-high
signal-to-noise ratios (SNRs).

• New soft-input extended Kalman filter (EKF) and ex-
tended Kalman smoother (EKS) algorithms, that exploit
the statistics of the transmitted symbols given the current
observations, are proposed to track the time varying phase
noise over a frame. A complexity analysis is carried out
to show that compared to the proposed MAP estimators
and the algorithm in [10], [15], the proposed soft-input
EKF-EKS can significantly reduce the computational
complexity associated with tracking multiple phase noise
processes in a MIMO system.

• It is demonstrated through extensive simulations that by
employing the proposed soft-input EKF and EKS, the bit-
error rate (BER) performance of a MIMO system in the

2The proposed soft-input estimators do not require the transmission of pilot
symbols.

presence of phase noise can be significantly improved.
These results further indicate that the proposed phase noise
estimation scheme enables the application of higher order
modulations and larger numbers of antennas in MIMO
systems.

C. Organization

The remainder of the paper is organized as follows: In
Section II, the phase noise model and MIMO framework used
throughout the paper are outlined. Section III derives the offline
and online BCRLBs for phase noise estimation, and Section IV
presents the novel soft-input MAP and EKF-EKS based phase
noise estimators. Section V provides numerical and simulation
results that examine the performance of MIMO systems in the
presence of estimated channel coefficients and phase noise.
Finally, Section VI concludes the paper and summarizes its key
findings.

Notations

Superscripts , , and denote the conjugate, the
conjugate transpose, and the transpose operators, respectively.
Bold face small letters, e.g., , are used for vectors, bold face
capital letters, e.g., , are used for matrices, represents
the entry in row and column of , and is used to
denote a sub-matrix consisting of rows to and columns to
of . , , and denote the identity, all
zero, and all one matrices, respectively. is the absolute value
operator, denotes the element-wise absolute value of vector
, ) represents the determinant of matrix , and
is used to denote a diagonal matrix, where the diagonal elements
are given by vector . indicates that matrix is
positive semi-definite. denotes the expected value of the ar-
gument, and and are the real and imaginary parts of a
complex quantity, respectively. and de-
note real and complex Gaussian distributions with mean and
variance , respectively. is used to denote the probability
distribution of . Finally, is a Hes-
sian operator that calculates the second order partial derivative
of function with respect to vector .

II. SYSTEM MODEL

In this paper, a point-to-point MIMO system with
transmit and receive antennas is considered (see Fig. 1).
Each transmit and receive antenna is assumed to be equipped
with an independent oscillator. Frame based transmission is
assumed where the transmitter successively transmits frames of
data symbols. Throughout this paper, indices ,

, and are used to denote transmit
antennas, receive antennas, and the time index, respectively. In
Fig. 1, is the channel coefficient from the th transmit
to the th receive antenna, which is assumed to be known and
constant over the length of a frame, i.e., quasi-static fading
channels are considered. The assumption of known channel
gains is justified since the topic of joint channel and phase noise
estimation using a known training sequence that is transmitted
prior to data transmission is addressed in [10]. Therefore,
in this paper, the main focus is on tracking the time varying
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Fig. 1. System model for a point-to-point MIMO system.

phase noise using the transmitted data symbols3. Note that
the assumption of quasi-static fading is in line with previous
phase noise estimation algorithms in SISO and MIMO systems
in [13]–[15], [18], [43]–[45]. Moreover, this assumption is
reasonable in many practical scenarios, e.g., in LoS MIMO
systems applied in microwave backhaul and satellite commu-
nication links [42], where the channel gains vary much more
slowly than the phase noise process [39].
The vector of discrete-time baseband received signals

at the antennas of the MIMO receiver at time ,
, is given by [10]

(1)

where
• with denoting the

-ary modulated data symbol transmitted from the th
transmit antenna at time and belonging to an alphabet
of size ,

• is an

diagonal matrix,

is an diagonal matrix, and corre-
spond to the th sample of the phase noise process at the
th receive and the th transmit antennas, respectively,

• is the known channel matrix whose th row and
th column entry, , is assumed to be constant over the

length of a frame but to change independently from frame
to frame according to a complex Gaussian distribution, i.e.,

, and

• with denoting
the zero-mean complex additive white Gaussian
noise (AWGN) at the th receive antenna, i.e.,

.
Throughout this paper the AWGN variance, , is assumed to
be known since it can be estimated at the receiver [46]. Fur-
thermore, transmitted symbols at different time instances are
assumed to be statistically independent (uncoded system). By

3In Section V, the effect of imperfectly estimated channels on the perfor-
mance of the proposed estimators and the overall MIMO system is thoroughly
investigated.

arbitrarily selecting as the reference phase value at time
, (1) can be written as

(2)

where and

are and

diagonal matrices, respectively, and

and correspond to themodified phase
noise processes at the th sample at the th transmit and th
receive antennas, respectively.
It can be observed that the system models in (1) and (2) are

equivalent, where (1) describes the received signal at time ,
, in terms of independent phase noise values,

, and (2)

in terms of correlated phase noise values,

, since

. The new parameterization in
(2) eliminates the phase ambiguity, i.e., lack of phase reference,
that is associated with the estimation of the indepen-
dent phase noise parameters in (1) [15]. In fact, due to this phase
ambiguity, it can be shown that the Fisher’s information matrix
for estimation of these independent phase noise param-
eters is singular. According to [47], a singular Fisher’s informa-
tion matrix indicates that there is no unbiased estimator for esti-
mating these phase noise parameters with finite estimation error
variance. However, the proposed equivalent signal model in (2)
eliminates this phase ambiguity while reducing the number of
parameters that need to be estimated. We note that the signal
model in (2) assumes perfect timing and frame synchronization,
which can be achieved by standard synchronization algorithms
[13]–[15], [18], [43]–[45].
The discrete time phase noise model in (2) is motivated by

the results in [6], [15], [18]. More importantly, for free-running
oscillators, it is found that the phase noise process can be mod-
eled as a Wiener process [4], [6], [7], [48]–[50]. Therefore,
and , for and , are given by
[4], [6], [7], [48]–[50]

(3)

where the phase innovations for the th transmit and th re-
ceive antennas, and , respectively, are assumed to
be real white Gaussian processes with

and . Since there is a direct relationship
between the physical properties of the oscillators and the inno-
vation variances at the th transmit and th receive antennas,

and , respectively [4], and , , are as-

sumed to be known at the receiver. Using (1) and (2), for
and for are given by

(4)
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where and

are real white Gaussian processes with

and .

III. BAYESIAN CRAMÉR-RAO LOWER BOUNDS

In order to find benchmarks for the performance of phase
noise estimators over the length of a frame, in this section,
we derive new exact and closed-form expressions for the
DA-BCRLB for offline and online estimation of time varying
phase noise in an MIMO system. Since in most
practical scenarios the transmitted data symbols, , for

, are not known at the receiver, the derived
data-aided bounds represent the highest possible estimation
accuracy that can be achieved for phase noise estimation at a
MIMO receiver based on the signal model in (2). Furthermore,
an expression for the BCRLB for NDA estimation of phase
noise is also obtained and numerically evaluated.

A. Data-Aided BCRLB for Offline Estimation

This subsection describes the detailed derivation of the
DA-BCRLB for offline or smoothing estimation of phase

noise processes, , in a frame

of received signals, , given

. For the offline BCRLB, the whole
frame of received signals, , is assumed to be available at
the receiver and used to estimate the corresponding phase
noise values, where . The accuracy of the
estimation of is lower bounded by the offline DA-BCRLB as
[51], [52]

(5)

where is the vector of estimated phase noise processes
and denotes the offline DA Bayesian information matrix
(BIM) that is given by [52, p. 84],

(6)

In (6), is the

DA-Fisher’s information matrix (FIM) [46],
is the Hessian of the log-likelihood function given and , and

represents the information that is captured

in the probability density function (PDF) of , i.e., .
Theorem: The BIM, in (6), is a symmetric

block tridiagonal matrix that is given by

. . .
...

. . .
. . .

. . .
...

. . .

(7)

where

(8)

is an matrix,
• is the log-likelihood function given ,
• , , are the diag-
onal blocks of the block diagonal matrix

, and

•

, for , can be deter-
mined as shown in (9) at the bottom of this page.

The covariance matrix of given , ,
, and its inverse can also be determined as (for no-

tational simplicity, is denoted by throughout this
paper)

(10)

(11)

In (11),

otherwise.

(9)
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and

Proof: See Appendix A.
The diagonal elements of provide the BCRLB for offline

DA estimation of . Let denote the th diagonal
block matrix of . Using the matrix inversion proposition for
symmetric block tridiagonal matrices in [53, Proposition 3.2],
the block diagonal elements of, , , , can
be calculated as

(12)

where and are matrices, given by

.

By applying (12), the DA-BCRLB can be evaluated by finding
the inverse of only an matrix, ,
instead of a matrix, .

B. Data-Aided BCRLB for Online Estimation

This section evaluates the DA-BCRLB for online estima-
tion of using only the past and current observations,

. It has been shown in [54] that the
online BIM at time index , , can be obtained from the
online BIM at time index , , via the following
recursion

(13)

where
•

,
•

,
•

, and
•

In addition,

can be evaluated via (9), where is the online
DA-FIM at time index for estimating . Assuming no prior
information about , the initial online BIM, , is deter-
mined as [55]

Subsequently, the DA-BCRLB for estimating is given by

(14)

C. Non-Data-Aided BCRLB

The NDA-BCRLB assumes no knowledge of the transmitted
symbols, , , and can be derived by taking into account
the a priori distribution of the transmitted symbols. Thus, to
evaluate the NDA-BCRLB, the likelihood function is
obtained by averaging out the , in (A.1), over the a
priori distribution of . Accordingly, assuming all elements of
are equiprobable, the likelihood function, ,
is given by

(15)

where , for, , denotes the vector of the
th permutation of all possible symbols belonging to alphabet
and . It is clear from (15) that the summation

inside the function cannot be further simplified analyti-
cally. However, following the procedure given in (A.3)–(A.9)
for the DA-BCLRB, we can take the second derivative of

, in (15), with respect to the phase noise
parameters. Consequently, the expected value of the NDA-FIM,

, with respect to is given by
(16) at the bottom of the next page. In (16)

•

,

•

•

,

• ,

• ,

• for
and depend on , for,

,
• ,
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Fig. 2. (a) Online and offline DA-BCRLB versus the number of observations for 2 2 MIMO system with and . (b) NDA-and
DA-BCRLB for 2 2 MIMO system versus SNR evaluated at in a frame of symbols with . (c) Comparison of derived online
and offline NDA-BCRLB results with [23] for , , and .

• ,

• ,

and
• , , , and are defined in
Appendix A.

Unlike the DA-BCRLB, the expectation in (16) over and
cannot be analytically evaluated and does not result in a

closed-form expression. Thus, to evaluate the offline and on-
line NDA-BCRLBs, the NDA-FIM in (16) needs to be applied
instead of in (12) and (14), respectively, and the re-
sulting expectation is numerically evaluated.

D. Numerical Evaluation of the BCRLB

Fig. 2 plots the derived DA-and NDA-BCRLBs. It is
assumed that the phase noise innovation variances are

, , . Binary phase-shift keying (BPSK)

modulation is used for the data symbols, . A specific
channel,

, is considered for the ease of com-
parison [56]. Finally, Fig. 2 only displays the BCRLB for the
estimation of , . Similar results are obtained for the
remaining phase noise processes.

Fig. 2(a) plots the offline and online DA-BCRLBs for
frame lengths of and a 2 2 MIMO
system with an SNR of . In order to verify
the analytical results, the offline and online DA-BCRLBs are
also evaluated using Monte-Carlo simulations and the results
are plotted in Fig. 2(a), where the BIMs for both cases were
obtained by evaluating the expectation of the Hessian matrix,

, over and , for 1000 Monte-Carlo
simulations and was generated according to the Wiener
process in (3) in each simulation. The results in Fig. 2(a)
validate the analysis in this section since the offline and online
DA-BCRLBs evaluated using the closed-form expressions
in (12) and (14) coincide with the Monte-Carlo simulation
results. Fig. 2(b) plots the NDA-and DA-BCRLB for a 2 2
MIMO system versus SNR ( in a frame of
symbols and ).4Fig. 2(b) shows that the
NDA-BCRLB approaches the DA-BCRLB at medium-to-high
SNRs . Finally, in Fig. 2(c), the derived online
and offline NDA-BCRLBs are compared against the NDA
bounds in [23] for SISO systems ( , ,
and ). Fig. 2(c) shows that for ,
the derived NDA-BCRLBs match with the results in [23].
The results in Fig. 2 also reveal that the minimum and max-

imum values of the offline BCRLB are achieved at the middle

4Since BCRLBs are plotted at , the offline and online results
are identical as shown in Fig. 2(a).

(16)
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Fig. 3. At and . (a) Histogram of . (b) Multivariate Gaussian PDF with mean zero and covariance .

and end-points of a frame, respectively, for any frame length, .
This implies that the best phase noise estimate can be achieved
for the middle symbol within the frame, whereas the estimates
get poorer as one moves to the boundary points. This behavior
is expected since the phase noise for the symbol in the middle
of the frame is followed by the largest number of past and fu-
ture symbols with highly correlated phase noise values. Thus,
by exploiting the observed symbols and correlations, the phase
noise values corresponding to the middle symbol can be esti-
mated with the highest accuracy. This can be observed from the
time dependency of the BCRLB in (6), which is due to the prior
information on the PDF of the phase noise processes. Moreover,
Fig. 2 shows that the online BCRLB decreases with increasing
observation length, , since the longer the length of the obser-
vation sequence the more information is available for estima-
tion of the th symbol’s phase noise. However, this gain in esti-
mation accuracy with increasing reaches an error floor since
the overall estimation performance is ultimately limited by the
AWGN regardless of the number of observation symbols in a
frame.

IV. PHASE NOISE ESTIMATION

In this section, the soft-input MAP and soft-input EKF and
EKS for tracking the phase noise processes are derived. Let us
first establish the soft statistics of the transmitted symbols. Let
, for, , with , denote the

vector of the th permutation of all the possible symbols be-
longing to alphabet . Using Bayes’ rule, the posterior proba-
bility is given by

(17)

where

It is assumed in (17) that and are
independent random processes, i.e.,

and all symbols have identical a
priori probabilities, i.e., , . Let

denote the probability mass
function (PMF) of the th transmitted symbol given the re-
ceived signal. Given , the vector of transmitted symbols,

, can be treated as a random signal and decomposed into
two parts

(18)

where is the mean of the data symbol at
the th sampling instant and denotes the random varia-
tion about with the covariance matrix,

. Since the
distribution of is too complicated to be applied in the de-
sign of the soft-input estimators, here, is modelled as a
zero-mean Gaussian random variable. The simulation results in
Section V-A demonstrate that the performances of the soft-input
MAP estimators derived based on this assumption are close to
the BCRLB. We note that such an assumption/approximation
has been widely applied in the literature, e.g., [57] and refer-
ences therein. Moreover, using (18), the vector of received sig-
nals in (1) can be written as

(19)

where is the mean of the observation vector, , and
denotes the zero-mean random variation about . Be-

cause of the Gaussian assumption, can be modeled as a
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multivariate Gaussian random variable, with mean and
covariance matrix

(20)

Fig. 3(a) depicts the histogram of for 2 sim-
ulation trials, evaluated at and .5

Fig. 3(b) plots the bivariate Gaussian PDF evaluated with mean
zero and covariance , defined in (20), at

. The results in Fig. 3(a) and (b) suggest that the PDF of
can indeed be closely approximated by a Gaussian

distribution.
Remark 1: By exploiting the soft statistics of the transmitted

symbols as detailed above, the soft-input estimation and soft
decoding are performed using the following steps:
Step 1: To perform soft estimation of phase noise processes

at the th instant, , the elements of the PMF in
(17) are obtained based on the phase noise estimate
at the th time instant, i.e., .

Step 2: Soft decoding is carried out by evaluating in
(17), , using the phase noise estimate at the th
time instant, i.e., . Subsequently, the
decoded symbol, , is given by the permutation,
, that maximizes the posterior probability .

Step 3: Steps 1 and 2 are repeated for all symbols in the
frame.

A. Soft-Input MAP Phase Noise Estimation

In this subsection, offline and online soft-input MAP estima-
tors for tracking phase noise over a frame are derived.
1) Offline MAP: The offline soft-input MAP estimator esti-

mates phase noise values, , by employing all the re-
ceived data symbols in a frame, . Thus, the offline soft-input

MAP estimate of , , maximizes the of the posterior
PDF

(21)

5The histogram of the real part of is plotted only because similar
results are obtained for the imaginary part of .

Since the first term inside the summation in (21) and
are independent of , the offline soft-input MAP estimate of
is given by

(22)

In order to reduce the computational complexity of the exhaus-
tive search in (22), alternating projection (AP) can be used to
reduce the -dimensional exhaustive search into a series of
one-dimensional searches [58]. Note that AP is not guaranteed
to converge to the true estimates and is dependent on the initial-
ization. Thus, to achieve proper initialization, is initialized
by , for , since the overall matrix of channel
gains and phase noise processes is jointly estimated at the be-
ginning of each frame [10].
2) Online MAP: The online soft-input MAP estimate

of the phase noise vector at time , , maxi-
mizes the of the posterior PDF at the th symbol, i.e.,

, and can be determined as

(23)

Similar to the offline MAP estimator, AP can be applied to re-
duce the -dimensional exhaustive search in (23).
Remark 2: Due to their high computational complexities, the

proposed soft-input MAP estimators may be difficult to imple-
ment in practice. Nevertheless, they are derived and applied in
this paper to illustrate that there exist estimators with MSE per-
formances that are very close to the derived BCRLBs. Thus,
these tight bounds are validated and can also serve as bounds for
practical estimators. Moreover, the derivation of a closed-form
soft-input MAP estimator is topic of future research.

B. Soft-Input Extended Kalman Filter and Smoother

This subsection presents an EKF and EKS for estimating
phase noise processes over the entire frame. Unlike the results in
[10], where hard decisions of the previous symbols are used to
obtain the current symbol’s phase noise values, here, a soft-input
EKF is derived to estimate current symbol’s phase noise. More-
over, a new soft-input EKS that further refines the phase noise
estimates over the frame is proposed.
The state and observation equation for the soft-input EKF are

given by

(24)
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and (19), respectively. In (24), . Since the
observation in (19) is a non-linear function of the unknown
state vector , the EKF is used instead of a standard Kalman
filter [46]. Thus, the Jacobian matrix evaluated at

, , is determined by computing the first order
partial derivative of , defined in (19), with respect to the
state vector as

(25)

(26)

where , for

, , for , and

and are defined in Appendix A. Using (17)–(20)
and (25), the remaining equations for the soft-input EKF are
obtained as

(27)

(28)

(29)

(30)

(31)

where
• ,

• ,

•

is the predicted state
vector at the th symbol,

•

• is the Kalman gain matrix,
• is the EKF error covariance matrix, and
• depends on , , in (17), which is evaluated at

.
Before starting the EKF recursion (25)–(31), and

should be initialized with appropriate values. Here,
the EKF is initialized with and is
initialized with the covariance of the phase noise processes
at time , , defined in (10). This choice of initialization is
justified since the phase noise estimates are assumed to be
obtained via a training sequence prior to data transmission via
the algorithm in [10].

The estimates obtained via the proposed soft-input EKF
can be refined using a soft-input EKS, which estimates ,
i.e., the estimate of given the observations and soft data
symbol statistics of the whole frame [26]. In this approach, the
proposed soft-input EKF is first applied symbol-by-symbol in
the forward direction as shown in (25)–(31). Next, the proposed
soft-input EKS refines the estimates, , via the following
backward-recursive equations, for ,

(32)

(33)

where and is the
EKS error covariance matrix.

C. Complexity Analysis

In this paper, computational complexity is defined as the
number of complex additions plus multiplications required
to obtain the phase noise estimates, , in the th symbol
interval6. Throughout this subsection the superscripts
and are used to denote the number of multiplications and
additions required by each algorithm, respectively. The com-
putational complexity of the online MAP algorithm, denoted
by , can be determined as

(34a)

(34b)

where denotes the number of alternating projection cycles
used, and denotes the step size used for the exhaustive search
in (23). Similarly, the computational complexity of the proposed
offline MAP algorithm, denoted by

, can be also calculated as

(35a)

6In this paper, finding the inverse of an matrix is assumed to require
arithmetic operations [59].
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(35b)

Furthermore, the complexity of the proposed soft-input EKF
algorithm, , can be written as

(36a)

(36b)

Finally, the computational complexity of the proposed
soft-input EKF-EKS algorithm,

, can be written as

(37a)

(37b)

Remark 3: In Table I, the computational complexity of the
proposed online MAP, offline MAP, soft-input EKF, soft-input
EKF-EKS, and the algorithms in [10] and [15], denoted by

, , , , , and ,
respectively, for 2 2, 4 4, and 8 8 MIMO systems are
compared against one another. In this comparison, is
evaluated via [10, Eq. (41)], is evaluated via [15, Eq.
(32)], and , , , and are
evaluated by (34), (35), (36) and (37), respectively. As indi-
cated in Section V, to ensure that the MAP estimator’s MSE is
close to the CRLB, we set the step size and
in (34a), and in (35). Table I shows that the pro-
posed soft-input EKF and EKF-EKS are computationally more
efficient than the algorithms in [10], [15], and the proposed
online and offline MAP estimators. For example, for a 4 4
MIMO system, the proposed soft-input EKF-EKS algorithm

TABLE I
COMPUTATIONAL COMPLEXITY OF MAP, EKF, EKF-EKS, AND THE

ALGORITHMS IN [10] AND [15] FOR DIFFERENT NUMBERS OF ANTENNAS

is 3.0 , 1.2 , and 1.0 times less complex than
the proposed offline MAP estimator in (22), the algorithm in
[10], and the scheme in [15], respectively. This advantage
with respect to the MAP estimator is expected since the MAP
estimator requires an expensive exhaustive search to obtain
the phase noise estimates. In addition, the proposed EKF-EKS
approach is less complex than the phase tracking algorithm in
[10], [15], since it tracks fewer phase noise processes at every
time instant .

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the proposed
estimators and compare it with the BCRLB. Subsequently, the
BER of a MIMO system employing the proposed phase noise
tracking scheme is investigated. Here, the MIMO channel
gains, , and phase noise parameters at the beginning of each
frame are obtained using the algorithm in [10], where a total of
2 and 4 symbols are used for training for 2 2 and 4 4 MIMO
systems, respectively. Throughout this section it is assumed
that , and . The MIMO
channel matrix is generated as a sum of line-of-sight (LoS)
and non-line-of-sight (NLoS) components such that the overall
channel matrix, , is given by [17]

(38)

where denotes the Rician factor [60, p.52].7 The elements
of are generated according to the model in [17] and the
elements of are modeled as independent and identically
distributed complex Gaussian random variables with .
Given that the estimation ranges of the proposed soft-input
MAP and EKF estimators are limited to , the phase
unwrapping algorithm in [18] is applied here, where phase
noise estimates for prior symbols are used in combination with
the phase noise variance to unwrap the estimate for the current
symbol. To evaluate the average BER performance, a minimum
of Monte-Carlo trials are used, where 200 symbols in a
frame are transmitted from each antenna per trial. The soft-input
estimation and decoding are carried out according to Steps 1–3
in Remark 1. The MSE and BER performances of the proposed
estimators and the overall MIMO system, respectively, are
presented in Sections V-A and V-B.

A. Estimation Performance

Unless otherwise specified, only in this subsection, a
channel realization,

, drawn from
the model in (38) for a 2 2 MIMO system, is used for all

7Note that and result in pure NLoS and LoS of
channels, respectively [17].
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Fig. 4. Phase noise estimation MSEs and BCRLB versus observation index,
, for a 2 2 MIMO system with , , and

.

simulations as in [56], [61], while the AWGN and phase
noise values change independently from symbol to symbol.
BPSK modulation is used for the data symbols. The step size

and are selected to ensure that the MSE of
the proposed soft-input online and offline MAP estimators is
close to the DA-BCRLB. The remaining sets of parameters for
this subsection are selected to be the same as that for Fig. 2.
Only the MSE for the estimation of , is presented,
since similar results are obtained for the remaining phase noise
processes.
Fig. 4 plots the DA-BCRLBs and the offline and online

phase noise estimation MSEs for the proposed estimators
versus time index , for , ,
and . The results in Fig. 4 indicate that the
performances of the proposed online and offline MAP esti-
mators are close to their respective BCRLBs while the MSEs
of the proposed soft-input EKF and EKF-EKS estimators are
slightly higher than their MAP counterparts. As indicated in
more detail in Fig. 6 below, this result is expected given that
unlike the soft-input MAP estimators, the proposed soft-input
EKF and EKF-EKS algorithms both apply the phase noise
estimates at the previous time instant and a Taylor series ap-
proximation to linearize the observation equations. In addition,
Fig. 4 illustrates that the proposed offline MAP and EKF-EKS
estimators’ MSEs are lower than the online DA-BCRLB. This
result is justifiable, given that both estimators in offline mode
take advantage of past and future observation symbols over the
entire frame to estimate highly correlated phase noise values.
Therefore, the online BCRLB and the performance of the online
MAP and EKF estimators exhibit higher MSE values when
compared to their offline counterparts. In light of this finding,
it is important to note that as shown in Table I the proposed
online estimators have lower computational complexities and
delay than the offline estimators.
Fig. 5 plots the MSE performances of the proposed MAP

estimators against the DA-BCRLBs as functions of the SNR
for phase noise variances . Fig. 5 il-
lustrates that at low SNR, the BCRLB is more dependent on

Fig. 5. Online MAP estimator’s MSE and DA-BCRLB versus SNR for a 2 2
MIMO system with and .

Fig. 6. EKF’s MSEs and the DA-BCRLB versus SNR for a 2 2 MIMO
system with and .

the variance of the phase noise process, where it is lower for a
lower phase noise variance, e.g., compared to

. However, at high SNR, the two curves ap-
proach each other. This can be explained by the inherent struc-
ture of the DA-BCRLBs in (12) and (14), where at low SNR,
they are more dependent on the a priori distribution of ,
i.e., the state model. As a result, a lower phase noise variance
results in lower BCRLBs, whereas at high SNR, the observa-
tions are trusted more and the BCRLBs are dominated by the
variance of the AWGN process. It should be further noted that
the MSEs of the proposed soft-input MAP estimators are close
to the derived DA-BCRLBs at medium-to-high SNRs, for dif-
ferent phase noise variances.
Fig. 6 plots the MSE performance of the proposed soft-input

EKF estimator and the DA-BCRLB as a function of SNR for
phase noise variances at time instant

. In this case, independent Rayleigh fading chan-
nels, i.e., , are generated for each frame. Note
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that as discussed above and illustrated in Fig. 4, the EKF and
EKF-EKS algorithms’ MSEs overlap one another when esti-
mating the phase noise process corresponding to the last symbol
in a frame, i.e., for . In order to find an even tighter lower
bound on the performance of the proposed soft-input EKF, its
MSE in the data-aided mode is also plotted in this figure.8. It can
be seen from Fig. 6 that theMSE of the proposed soft-input EKF
is close to that of the DA-EKF for the whole range of SNR. In
addition, this figure indicates that the MSE of this estimator ex-
hibits an error floor at high SNR, which is directly related to the
variance of the phase noise process. This error floor is caused
by the soft-input EKF algorithm’s structure in (30), where the
estimates of the phase noise processes at the th symbol interval
depend on the phase noise estimates obtained at the th
time instant. Therefore, even when operating in the data-aided
mode and in the absence of AWGN, i.e., , the estima-
tion accuracy of the proposed EKF estimator is limited by the
variance of the phase noise innovations. This error floor can be
also attributed to the fact that the EKF is not an optimal min-
imum mean square filter due to the application of a first order
Taylor series approximation to linearize the observation model
[46].

B. MIMO System Performance

In this section, the BER of an uncoded MIMO system versus
SNR per symbol for different phase noise variances, different
numbers of antennas, and various modulation schemes is inves-
tigated and is compared against that of [10] and [15]. Moreover,
the BER of aMIMO system with perfect knowledge of channels
and phase noise values is also evaluated and used as a bench-
mark. The received signals are decoded using the soft-decoding
approach described in Remark 1. The frame length is set to

symbols. Since the scheme in [15] requires transmission of
orthogonal pilot symbols to obtain its BER plots, 20 and 40 pi-
lots are transmitted for 2 2 and 4 4 MIMO systems, respec-
tively. Furthermore, in [15], using orthogonal pilot symbols, the
sum phase noise processes, i.e., , are
estimated. Different channels are generated for each frame. Un-
less otherwise specified, is set to in this section, which
corresponds to Rayleigh fading channels. Finally, the BER for
the proposed MAP estimator is not investigated due to its high
complexity as shown in Section IV-C.
Fig. 7 plots the BER of a 2 2 MIMO system using BPSK

modulation for phase noise variances .
This figure illustrates that when using the proposed soft-input
EKF-EKS estimator the BER of a MIMO system is only 3 dB
away from the ideal case of perfect channel and phase noise
knowledge. Note that this benchmark plot is independent of the
phase noise variance since it is based on the exact knowledge of
the phase noise values. The results in Fig. 7 also indicates that at
high SNR the overall system suffers from an error floor9, which
is due to the limitation of the proposed soft-input EKF-EKS al-
gorithm, see Fig. 6. However, when compared to the algorithms
in [10], [15], the proposed receiver’s error floor appears at

8For the DA-EKF, in (29) and

in (30).
9In Fig. 7, the error floor for the BER plot for phase noise variance of

, appears at higher SNRs, e.g., .

Fig. 7. BER of a 2 2 MIMO system for phase noise variances,
, Rayleigh fading and BPSK modulation.

Fig. 8. BER of a 2 2 MIMO system for QPSK and 16QAM modulations for
Rayleigh fading and .

considerably lower BER values. For example, to achieve a BER
of 1.4 for a phase noise variance of ,
the soft-input EKF-EKS achieves an 18 dB performance gain
compared to [10], [15]. This gain is achieved while reducing
synchronization overhead.
Fig. 8 depicts the BER performance of a 2 2 MIMO system

for higher order modulations, e.g., quadrature phase-shift
keying (QPSK) and 16-QAM, for phase noise variance

. This figure shows that the BER of a MIMO
system employing the proposed soft-input EKF-EKS estimator
is close to the benchmark curve, with a performance gap of
approximately 2 dB for QPSK and 16-QAM at moderate SNR
values. Moreover, the results in Fig. 8 indicate that compared
to the algorithm in [15], the proposed soft-input EKF-EKS
receiver can support higher order modulations, which can
enhance the capacity and throughput of MIMO systems to a
great extent.
As the number of antennas in a MIMO system increases, a

larger number of phase noise processes need to be tracked by
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Fig. 9. BER of a MIMO system for different and values, for BPSK
modulation, Rayleigh fading, and .

Fig. 10. BER of a 2 2 MIMO system as a function of the Rician factor, ,
for BPSK modulation, , and .

the proposed EKF-EKS estimator, which in turn can negatively
affect its performance. Thus, in Fig. 9, we compare the BER per-
formances of 2 2 and 4 4 MIMO systems in the presence of
phase noise. In this setup, BPSK modulation is applied and the
phase noise variance is set to . Fig. 9 shows that
compared to the ideal scenario, the BER of the proposed soft-
input EKF-EKS receiver is only 3 and 4 dB higher in the low-to-
moderate SNR region for 2 2 and 4 4 MIMO systems, re-
spectively. Moreover, the proposed soft-input EKF-EKS esti-
mator outperforms the phase tracking approach in [15] and [10]
by large margins.
Fig. 10 illustrates the BER of a 2 2 MIMO system as a

function of Rician factor, , for . Here, BPSK
modulation is employed and the phase noise variance is set
to . As anticipated, this figure indicates that
the BER of a MIMO system decreases as the Rician factor in-
creases due to a stronger LoS or deterministic channel compo-

nent. Fig. 10 also shows that the BER of a MIMO system em-
ploying the proposed soft-input EKF-EKS receiver is just two
times higher than the benchmark BER and that performance
gap remains constant for different values of Rician factor. How-
ever, the performance gap between the BER for the algorithm
in [15] and the benchmark scheme increases with increasing Ri-
cian factor. Fig. 10 also demonstrates that for a Rician factor of

, the BER for the proposed soft-input EKF-EKS receiver
is approximately 15.7 and 2.8 times lower than that of the algo-
rithms in [15] and [10], respectively.

VI. CONCLUSIONS

In this paper a new signal model for the estimation of the
phase noise in MIMO systems is outlined and new exact ex-
pressions for the online and offline DA- and NDA-BCRLBs
and soft-input MAP estimators for the estimation of phase noise
are derived. Numerical results demonstrate that the proposed
MAP estimators’ MSE performances are close to the derived
BCRLBs at moderate-to-high SNRs. Next, a novel soft-input
EKF-EKS based estimator is proposed. Extensive simulations
indicate that over a wide range of SNR values the BER per-
formance of a MIMO system using the proposed soft-input
EKF-EKS estimator is only slightly higher than the BER of
the idealistic scenario, i.e., when assuming perfect channel
and phase noise knowledge at the receiver. Moreover, results
show that the proposed soft-input EKF-EKS estimator enables
application of higher order modulations and larger numbers of
antennas, which can in turn improve the bandwidth efficiency
of wireless systems.
Although the proposed scheme cannot be directly applied to

frequency selective channels, the principles and methodologies
proposed here can be used to develop multiple phase noise esti-
mation algorithms for such channels, e.g., using OFDM and or-
thogonal frequency division multiple access (OFDMA). Similar
to single carrier systems, OFDM and OFDMA systems may be
affected by multiple multiplicative phase noise processes [36],
i.e., common phase errors. Thus, the proposed algorithms can
be applied to such systems.10

APPENDIX A
DERIVATION OF BIM

In this appendix, a closed-form expression for the BIM, in
(6), is derived.

A. Derivation of

Given the signal model in (2) and the assumptions in
Section II, the log-likelihood function, , is

(A.1)

10Addressing this specific problem is beyond the scope of this paper and is
the subject of future work.
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To determine , a

closed-form expression for

is obtained for . Using (A.1),

can be expressed as

(A.2)

In order to determine the Hessian ma-
trix, , the derivatives,

, , , , ,

, and , for ,

, , and , are
calculated as

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

where
• is an matrix with

, , and zeros elsewhere,

• is an matrix with

, , and zeros elsewhere,

• is an matrix with

, , and zeros elsewhere

else, and

• is an matrix with

, , and zeros elsewhere.

In order to evaluate the expectation of the Hessian matrix,
, over and ,

the PDF of , which depends on the distribution of
needs to be determined. Based on the assumptions in

Section II, in (1), and at any time instant , for
and , are uniformly indepen-

dently and identically distributed over the range 11.
In addition, the PDFs of and

are given by the convolution

of the PDFs of and ,
respectively,12 which are straightforwardly determined to be
triangular PDFs in the range of . Moreover, given the
signal model in (2), the PDFs of and , , ,
can be equivalently wrapped, resulting in uniform PDFs over

for and , , .
Using (2), (A.3)–(A.9), and the statistics of and ,

the expectation of the th row and th column element of the
Hessian matrix with respect to
and , , can be determined as

(A.10)

(A.11)

11Assuming no prior information about phase noise values at time instant
, and , , can assume any value between and

with equal probability.
12The PDF of the sum of two statistically independent random variables is

given by the convolution of their individual PDFs [62].
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(A.12)

(A.13)

where in (A.12) and (A.13), is an matrix
with all elements equal to 0 except its th diagonal element,

. In addition, the last equality in (A.11) follows

since .

Using similar steps as in (A.13), we can obtain
, for , , and
, and , for ,

, and . Finally, using the above results,
the entries of can be
obtained as given in (9) in Section III-A.

B. Derivation of

According to the Wiener phase noise model in (4),
can be expanded as

(A.14)

Moreover, is given by

(A.15)

Based on (A.14) and (A.15), the matrix
can be written as

(A.16)

Assuming no prior information about ,

. Thus, (A.16) can
be rewritten as

(A.17)
Based on the definition of the Hessian operator, the
matrices, , for ,

are zero everywhere except from the th to the
th row and the th to the th column. The

non-zero elements of , for
, are given by (A.18) at the bottom of this page. Note

that (A.18) follows from the definition of in
(A.15). Let us define

. The entries of the matrix, ,
for , , ,
and can be determined as

(A.19a)

(A.19b)

(A.18)
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(A.21)

(A.22)

(A.23)

(A.19c)

In (A.19), can be calculated by applying the matrix inver-
sion Lemma in [55], as shown in (10). Using (A.18) and (A.19),
we also have

(A.20)

Applying similar steps as above, the remaining non-zero ele-
ments of , for ,
are given by (A.21)–(A.23) at the top of the page. Consequently,
using (A.20)–(A.23), can be obtained as

. . .
...

. . .
. . .

. . .
...

. . .

(A.24)

Finally, using (6), (9), and (A.24), the BIM can be derived in
closed-form as shown in (7) in Section III-A.
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