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PHYSICAL REVIEW E 69, 056208(2004)

Testing time symmetry in time series using data compression dictionaries

Matthew B. Kennél
Institute For Nonlinear Science, University of California, San Diego, La Jolla, California 92093-0402, USA
(Received 21 July 2003; published 14 May 2004; publisher error corrected 20 May 2004

Time symmetry, often called statistical time reversibility, in a dynamical process means that any segment of
time-series output has the same probability of occurrence in the process as its time reversal. A technique, based
on symbolic dynamics, is proposed to distinguish such symmetrical processes from asymmetrical ones, given
a time-series observation of the otherwise unknown process. Because linear stochastic Gaussian processes, and
static nonlinear transformations of them, are statistically reversible, but nonlinear dynamics such as dissipative
chaos are usually statistically irreversible, a test will separate large classes of hypotheses for the data. A
general-purpose and robust statistical test procedure requires adapting to arbitrary dynamics which may have
significant time correlation of undetermined form. Given a symbolization of the observed time series, the
technology behind adaptive dictionary data compression algorithms offers a suitable estimate of reversibility,
as well as a statistical likelihood test. The data compression methods create approximately independent seg-
ments permitting a simple and direct null test without resampling or surrogate data. We demonstrate the results
on various time-series-reversible and irreversible systems.

DOI: 10.1103/PhysReVvE.69.056208 PACS nun®)er05.45.Tp

[. INTRODUCTION number of symbols. Dissipative chaos, by contrast, will pro-
) ) ) _duce a statistically time-irreversible signal as the creation of
A well-known issue in the analysis of observed data is toinformation via instability in the time-forward direction is
distinguish colored noise produced from a Gaussian lineagistinct from the destruction of past state information via
process from data produced from nonlinear sources. Theissipation. The meaning of statistical “irreversibility” used
tools of traditional, linear, signal processing and time-serieserein is not exactly the same as the “irreversibility” of
statistics, power spectra, transfer functions, autoregressiyghysical processes in the traditional thermodynamic sense.
modeling, etc., often fail in such cases when their assumpkerein, we assume that the measured process is already in its
tions are violated; but when these assumptions are fulfilledtatistically stationary condition, and use “reversibility” in its
they are often provably optimal. statistical sense: and the word “reversible” is a synonym for
The techniqug1-3] most commonly employed for this “time symmetrical.”
task is to generate Monte Carlo simulations of “surrogate This work does not give an explicit description of the
data,” a linear Gaussian noisy data set, with similar characnull hypothesis”(e.g., a linear Gaussian procgss would
teristics (e.g., power spectrum, autocorrelation, or autore0e done with a parametric estimate for the entire process, i.e.,
gressive coefficienjsas the original data and compare the it iS not feasible to directly evaluate the two likelihoods for
original and surrogates on some statistic of the user’s choicge€ing the observed set in its original orientation and its
which is sensitive to various nonlinear features. This methodMe-réversed orientation. With the usual requirements of sta-
is quite general but there are a number of subtle and trick onarity and the absence of very long time dependence, one

e ~ . . ay empirically estimate the likelihood of reversible dynam-
ftechnlcal issuefd ﬂ which are n(_)t always appreciated, and ics by looking at statistics of short-term segments from the
it may be computationally intensive.

Testing for time asymmetrie.g.. Ref[8.9] and their ref- data set, using ergodicity in the usual way so that a single

: ful al i hods for di long observed data set provides an ensemble. Our goal in-
erencepis a useful alternative to surrogate methods for dis—,,jeg not merely a number quantifying the amount of time
tinguishing linear noise and static nonlinear transformation

. . _ | %symmetry, but a statisticakst procedurewith a null hy-
thereof from nonlinear dynamics. This idea relies on the facbothesis andh value for rejection of the null. The generic
that a stationary linear Gaussian stochastic process is statigshication is that general dynamics, linear or nonlinear,
tically time symmetricalalso often calledime reversiblethe can possess rather arbitrary serial dependence. We want ad-

literal time reverse of the observed series would have thgiona)y 4 general procedure which requires as few assump-
same probability to be emitted from the source as the ob

d 101. Anv fixed ) i » . ¢ tions about the structure of the dynamics as possible. The
served ong10]. Any fixed static nonlinear transformation of ;1 mon theme s to try to construct a test out of sufficiently
such a process—includingmonmonotonictransformations

. L independent elements so that the assumptions of classical
which have proven to be problematic in the surrogate-dat

tatistical test procedures hold.
method[7]—stays time reversible. Importantly for this work, b

h : o bolizati di o Daw et al. [9] suggested using the observed frequency of
one such transtormation is tsgmbolizatioror discretization symbolic words formed from nearby symbols as seen in the
of a continuous state space to a coarse alphabet of a sm

rward and reverse directions. For instance, in a binary al-
phabet, if a word length of 5 and a time delay of 1 were
chosen, then one would accumulate the observed frequency
*Electronic address: mkennel@ucsd.edu of 11001, and its time reverse 10011, as the word window
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slid incrementally over the symbolized observed data. Theparsed sequence arises from the same information source
assumption under the null hypothesis of time symmetry isvhich produced the sequence used to train the dictionary, it
that the observed frequencies came from an equiprobablill nearly always take fewer biteand phrasgsthan a pars-
distribution which could be tested with a simple binomial ing using a dictionary trained on a different source. This
test. This would be done for all nonpalindromic pairs of Statement is technically only true asymptotically but in prac-
words of a fixed length, and the results of tests on all worddice exceptions grow exponentially unlikely for mixing
combined. The difficulty comes in serial correlation which Sources. This property concerning the relative entropy was
can make the assumption of independent observations in tgc€ntly used to distinguish and categorize natural languages

binomial test incorrect, and the statistical dependence in thiE0M only representative samples of their tejs], although

combination of results from many pairs. The first was amelhere the slightly different algorithm was used and adaptation

liorated with a decorrelation window and additional correla-.tO the se_con_d sequence continued during its parsing, lower-
ng the discrimination power somewhat.

. . i
tion test, but the second does not have a clear solution. The We use this fact to test for time symmetry by comparing

appropriate word length is also an undesirable free paramy,q compression performance using dictionaries which were
eter. As usual, short words provide a more accurate estim3rained on normal. and time-reversed examples. There are
tion of probabilities(high counts but may improperly aver-  any nossible specific ways one could consider using com-
age over different dynamics which would be more visible yrassion to see if there is a difference, for example, parse a
with longer words. This work proposes a different method,test sequence completely by the two different dictionaries
adapting techniques from data compression, to rectify alhnd see which dictionary emits the fewest phrases, or, per-
these issues. It provides approximately independent quanthaps, looking at the statistical distribution of the lengths of
ties for a statistical test as well as automatic word-lengthyords emitted. The following statistic and test, though, was

selection. powerful in detecting irreversibility, the relatively easy task,
as well as having a good calibration of the null hypothesis
Il ADAPTIVE DICTIONARY-BASED TIME-SYMMETRY un(_jer various dlverge_ instantiations of reversible dynamics,
TESTING which is the more difficult requirement.

Consider for a moment the generic problem of sequen-

The Lempel-Ziv[11] dictionary compression algorithm tially parsing a sequenc® with respect tatwo dictionaries
sequentially parses the input symbol sequence from left t®,,D, simultaneously. At each step, there is a longest match-
right, at each step finding tHengestsegment in the remain- ing codeword for each individual dictionary. Of those two,
ing input which already exists in a dictionary of codewordseither the first dictionary provides the longest match, or the
[21]. Then a new codeword, consisting of the longest existsecond does, or the lengths are tigdth dictionaries pro-
ing match concatenated with the next subsequent symbol ivide the same codewordThe input is advanced by the
the input, is added to the dictionaf§2]. An index for the length of the longest match. We define our notation as fol-
codeword which was originally located and the subsequenbws: n;=C4(S|D1,D,) is the count of number of times the
symbol are emitted. The input pointer is advanced by thdirst dictionary(D,) provided the codeword, and similarly for
length of the codeword just added plus one. The compressas,=C,(S|D,,D,); accumulating the counts the second was
output is a sequence of pairs of codeword indices and thehe best match. The number of ties is discarded. The two
additional symbol:(w;s;)(W,s,)- -+ (W,s,). The dictionary is  countsC,; andC, are computed simultaneously for identical
initialized with A length-one strings, each comprising eacharguments. For our purposes, no actual literal compressed
unique symbol in the alphabet of siZe Absenta priori output is necessary, merely the accumulation of these counts.
bounds on the maximum size of the integers, the length, iThe key notion is that since dictionary-based universal com-
bits, of the compressed stream is proportionalnttmg, n pression attempts to make approximately independent code-
with n the number of phrases. This compressiounrizversal ~ words, the “observation” of a parsed phrase is as if it were
the length of the compressed sequence divided by the lengtfearly an independent event in a renewal-type process. This
of the input will asymptotically approach the Shannon en-assumption of independenc¢ahich will be tested empiri-
tropy rate(the best possible compression ydtg almost any  cally) justifies simple classical statistical tests.
source, meaning that the method is guaranteed to learn char- Specializing to the problem at hand, the key idea is to
acteristics of the source. Frequently occurring sequencesarse a test sequence with respect to dictionaries which were
generate longer dictionary entries whose codeword indicesonstructed on either forward or backward versions of a dif-
(represented as integgrsay be transmitted more compactly ferent training sequence. If the data are reversible, then either
than their plaintexts. of those dictionaries is as good as the other, statistically, in

One may parse a new sequence relative to a given fixedroviding longest matches and hence, on average gives as
dictionary, for instance, that obtained after compressing angood compression as the other. Moreover, the assumption is
other sequence as previously discussed. The longest cod#at in time symmetry the distribution of “which dictionary
word in the dictionary which is a prefix of the remaining provides a superior match here” is an independent Bernoulli
input is identified and emitted. The input pointer is advancechinary random variable with equal probability, and thus the
by the length of this codeword. This is like compressing theaccumulated counts would be distributed like Poisson ran-
latter half of a sequence except that the adaptataiding  dom variables.
new phrases to the dictiongris not performed. Fundamen- Divide the input sequencginto its two contiguous halves
tal results in information theorfl3,14 imply that when the (S, andS,), create literal time-reversed versions of them
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FIG. 1. (Color onling Summary statistics for white equiproba- FIG. 2. (Color onling Top: summary statistics for a reversible

ble symbols. There were 200 data sets drawn for each data set sizajxture of logistic map dynamics. Symbolization was by equal-
N=200, 2500, 25 00@red circle, blue diamond, black squarand  probability bins with|A| from 2 to 6. There were 200 data sets
the reversibility statistic# andz were evaluated for each. Tof#, ~ drawn for each data set siZé=200,2500, 25 00Qred circle, blue
the ensemble averagarb. units, and its standard deviation. Bot- diamond, black squayeand the reversibility statistiog andz were
tom: (2) (arb. unity, and its standard deviation. evaluated for each. Tog®), the ensemble averagarb. unitg, and

its standard deviation. Botton{z) (arb. unity and its standard de-

(R, andRy), and create four dictionaries viation. x axis is the size of the alphabet.

(Dg,Dg,Dgi,andDgy) using the Lempel-Ziv construction

as before. Parse each of the four sequences with respect to ||| PERFORMANCE ON VARIOUS DATA SETS

the the two dictionaries trained on the other half of the data.

Accumulate the total number of same-direct{og) matches, The quality of any statistical test is governed by two is-

_ sues: how close the actual distribution matches the assumed
N = C1(S| D1, Drer) + C1(RelDra, D) + C1(Si|Dso, Do) null distribution with data from the null class, and how well

+ C4(Ry|Dg2, D), (1) the testis able to detect violations of that null. In particular,

) o the null hypothesis of the time-symmetry test is flagrantly

and different-directior{ng) matches, composite, encompassing a wide variety of reversible sym-
bol streams. The justification for the test procedure is intu-

Ny = C(S,|Dsy, D) + Co(Ro|Dr1, D) + Co(S|D g, Do) itively appealing—that compression automatically yields in-
+ Cy(Ry|Dgy,Dg). (2) dependent segments—but admittedly not rigorously proven.
The success of this assertion is tested empirically by com-
With n=n¢+ngy, define the time-symmetry statistic puting the statistic on ensembles of data sets taken from in-
puts known to be statistically reversible. Take an ensemble of

9= Ns™ nd, (3) M data sets from a reversible data class and com@uéad
n p=p(z) for k=1,... M. If the data are reversible and the

A test assumptions are fulfilled, thpg ought to be as if drawn
Under the null hypothesis#—0 asn—o. Forn=25, the  from the uniform distribution o0, 1], or equivalently, the

null distribution of empirical cumulative distribution afy, C(p,), ought to con-
X 1 A verge with increasingVl to a straight line, plottingC(p,)
z(6,n) = n1’2<0— —sgr(&)) (4)  versusp,. Similarly, over ensembles the standard deviation
2n of z ought to tend towards one in the null class.

: . . : . We first demonstrate on seemingly trivial data, white in-
s well approxmated by a zero-mean unit-variance G""us’s'aaependent symbols. Figure 1 shows results of Monte Carlo
[116]' W'th— an associated - upper ,ta'l probgbﬂnp(z)' simulations on these data. As expected, there is no indication
=5erfo(z/v2). For smallem the exact binomial tail probabil- ¢ time asymmetry ind or z, and the standard deviation of

ity should be used. When the sequence comes from an irngjder the null is close to unity.

versible source, there will typically bg a larger fraAction of  Next, we consider time-symmetrical dynamical data.
same-direction matches, hence positiieObserving¢>0  These were generated from samples of the logistic map,
with corresponding)(z) < « implies a rejection of time sym- xn+1:1—axﬁ in a generic chaotic regim@=1.8). By itself x;
metry with the given level of significance. This test is oneis certainly time-asymmetrical chaotic dynamics. We take
sided since irreversibility shoulfl7] increasen, relative to  two independent samples of lendthfrom the mapx;.;,X;.»,

Ng. and form the mixture
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TABLE |. For the ensembles in Fig. 2. Kolmogorov-Smirnov 2r
testp values comparing the observed distributionppfto the uni- |
form distribution in [0,1]. Only the values forA=3 and N & %
=250,2500 appear to be significant. These apparent rejections are* of % % % %J %
spurious and disappear in a different ensemble, being 0.175 and & % %

0.713, respectively. There is no significant evidence thapghere

distributed nonuniformly, showing a good calibration of the statistic )
under this instantiation of the null hypothesis.

Alphabet N=250 N=2500 N=25 000
2 0.218 0.457 0.0569 .
3 0.00335 0.0103 0.645 o % %% % % % %
4 0.0326 0.522 0.303 ~ 4l
5 0.332 0.349 0.386 R . . , |
6 0.0383 0.148 0.407 2 3 4 5 6

Alphabet

FIG. 4. (Color onling Summary statistics for linear Gaussian
Yi = X1t aXn-iz- (5 process, and square of that process. Tap(arb. unit$ + standard
deviation forN=250,2500,25 000 on linear process. Bottaz):
When a=1 the time seriey; is statistically reversible by (arb. unity + standard deviation for square of that process, i.e., a
construction; lower values af give increasingly irreversible nonmonotonic static nonlinear transformation of a reversible
data. Figure 2 shows results over ensemblesMof200  process.
samples of the reversible time series, each symbolized with
varying small alphabets with equal-probability histograms.dency in thep,. What is happening here is that the training
The statistic shows no time asymmetry, and the distributiorsets are so sho(each 125 symbojghat the dictionary built
of p, is statistically close to uniforngsee Table), which is  from observations is not sufficiently good to remove visible
desirable for a correct null test. correlation. This is not unexpected as dictionary compression
Figure 3 shows a sample of a time series and its powelearns with increasing data. The total number of phrase
spectrum from an arbitrarily constructed linear, Gaussianfnatchesn=ns+ny used in the statistic is very small, even
and hence time-symmetricglQ], stochastic process. The top being as low as 10-20 for some of the samples. Neverthe-
panel of Fig. 4 shows summary results on ensembles medess, the test is only slightly conservative, and data from
suring reversibility on sample time series of varying size,system would not be characterized incorrectly as irreversible.
analogously to Fig. 2. For the larger data sets the standarihe lower panel shows results on the square of the same
deviation ofz is near unity and distribution gf, is uniform,  process. The stochastic time series, which has mean zero, is
but for the shortest data setd=250, the standard deviation

of z is less than 1, i.e., there is somewhat of a central ten- 40 ‘ ' ' ‘ ' '
35+ / g
e 1 ,
€ 30+ ‘
> ¥
2 ,
8 250 —
] 6 20t :
> +H
A
. ) ; ; N 150 E
0 200 400 600 800 1000
sample 10l |
0
5t ,
o_
$-20 ok
g
© -40+ _5 . . . . . |
a 0.99 0.98 0.95 0.90 0.80 0.50
o
6%, 02 04 0.6 08 1
' " Frequency ' FIG. 5. (Color onling Time-asymmetry statistic on M =200

sets of points from a mixture of logistic map time series. Xfaxis
FIG. 3. (Color online Top: sample time series from a discrete shows the mixing coefficient («=1 is reversiblg andy axis is(z)
linear Gaussian process, constructed by a bandpass filter of an ifarb. unitg with bars displaying the sample standard deviation on
dependent random Gaussian processxis is signal valugarb. the ensemble. Curves from bottom to top shidw?250, N=2500,
units), x axis is sample number in integer-valued time. Bottom: N=25 000. Each data set was partitionedAat3 with equal prob-
power spectral density vs frequengin units of the sampling ability histograms.
frequency.
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14 6r
12t . 5¢
10f al
8r : 3r
5 6
2 6 1 2 2
\ \%
4+ 1F
2r . of
of . -1t
-2 ' 2l : - : ; ; :
2 3 4 5 6 1 0.5 0.4 0.3 0.2 0.1 0
A Mixing fraction
FIG. 6. (Color onling Time-asymmetry statistic on M=200 301
sets of points of siz&=2500 from a mixture of logistic map time
series. Thex axis shows the symbolization alphalfeaindy axis is 25
(2) (arb. unitg with bars displaying the sample standard deviation
on the ensemble. Curves from bottom to top show o0l
=0.99,0.98,0.95,0.90,0.80.
. . L & 15}
squared, and then symbolized with equal probability histo- 4
grams. This is still a statistically time-symmetrical data set @ )
and thus in the null class. Surrogate data methods to detect
nonlinearity typically can cope with only monotonic trans- sl
formations of the observed variable, as they typically esti-
mate the transformation to a Gaussian marginal distribution. il
As squaring is a nonmonotonic transformation, these data
would reject the null with this sort of surrogate data method, sl , , , , , .
but here the reversibility test correctly recognizes the data as 1 0.5 0.4 0.3 0.2 0.1 0

being in the null class. The bottom panel of Fig. 4 shows no

trend inz and standard deviation of unity across most param
eters and data set sizes.

When examining data for signs of irreversibility it is often
illuminating to plotz instead off as statistical significance
can be seen easily with largerFigure 5 shows the detection
of statistically significant reversibility with the mixture of

08x"+02x°
o n

|
N
T

500 1000 1500 2000 2500

o

0 500 1000 1500 2000 2500
sample number

FIG. 7. (Color onling Sample of irreversible Lorenz mixture
time series withw=0.2 (top); sample of symmetrical surrogate data
set(bottom). y axes are the signal valyarb. unit§ andx axes are
discrete time.

Mixing fraction
" FIG. 8. (Color onling y axis: average statistic(arb. unit3. x
axis: mixing coefficientr as per Eq(6), averaged over 200 replicas
of size N=2500 (top) and N=25 000 (bottom). Curves are forA
=2,3,4,5(blue circles, red stars, green diamonds, black squares

forward and backwards logistic maps, E§). As expected,
power to detect irreversibility increases with sample size and
the degree of irreversibility. Figure 6 shows the effect of
changing alphabets: with significant irreversibility, increas-
ing alphabet size improved detecting it, but if irreversibility
were minimal, the alphabet size was unimportant.

Now on to a more complicated system, the “Lorenz 1984”
attractor: a tiny geophysical model with attractor dimension
d=2.5[18]. The model isdx/dt=-y?-z>-a(x—F),dy/dt
=xy—bxz-y+1,dz/dt=bxy+xz-z,a=1/4 ,b=4,F=8. The
x coordinate is sampled rather finely, evefy=0.08. To
these samples were added white Gaussian noise of amplitude
5% of its standard deviation. There is substantial nontrivial
autocorrelation of an arbitrary form. The sets tested for re-
versibility are mixtures of the dynamical data with surrogate
data with identical power spectrum created in the ordinary
way, by randomizing the phases of the discrete frequency-
space representation and untransforming. Since that process
by itself produces data with a typically Gaussian marginal
density, the dynamical datx(t) sampled from the Lorenz
model are prewarped to have a Gaussian density as well.
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400 400
300 300 o
- 200 ) R - 200
& B 3
© 100 © 100
0 0 FIG. 9. (Color onling Time-
100 100 return plots for spark-ignition data
100 200 300 400 0 100 200 300 400 at four conditions of exhaust gas
n Q, recirculation (EGP. x axis, heat

released at cycla (arb. unitg; y
axis, heat released at cyctet1
(arb. unity. Upper left to lower
right, EGR (%)
=0,16.0,22.2,24.7.

100 2(5)0 300 400 0 100 2000 300 400

The Gaussianized dynamical data are used both for the mixsumed null distribution, as expected. Algos2 consistently
ture and as the input for the surrogate to make the procedugermits no clear detection of irreversibility, which may re-
the fairest. The mixture data sets, parametrizedvpgire flect a particular symmetry in the system.

yi=(1-a)x +ax, (6)
IV. EXPERIMENTAL EXAMPLE

N . . .
with x- the Gaussianized, noised, Lorenz series, ghdne We apply the reversibility tests to data from two combus-

of its surrogates. Figure 7 illustrates two example time Seyjoy engines, one spark ignition, the other a Diesel cycle. The
ries: a mixture(e=0.2) and a symmetrical surrogate. Figure ohqerved time series is the total heat released per cycle mea-
8 _shows the increasing detection of significant reversibilityg,red in a single fixed cylinder. The experimental apparatus
with decreasinge. Note that fora=1 (all surrogat, the  aintained a constant speed and hence periodicity of engine.

averagez statistic(like 6, not shown is zero with unit stan- g cyations in the heat released may reflect turbulence in the
dard deviation, meaning that it is consistent with the as¢yjinder, variations in air-fuel ratio due to residual gas ef-

300 300 14
© A=2
250 250 7 A3
. . e - A=d
o 200 o 200 A5
10}
150 150
8,
100 100
700 150 200 250 300 700 150 200 250 300
On Qn N 6
300 300
4_
250 250
- - ol
T T
o 200 o 200 )
150 150 or
100 100 = : : : ‘ : )
700 150 200 250 300 700 150 200 250 300 0 5 10 15 20 25 30
Q, Q, EGR (%)

FIG. 10. (Color online Time-return plots for spark-ignition data FIG. 11. (Color onling Time-asymmetry statistic for a time se-
at four conditions of exhaust gas residual fracti®@RF). x axis, ries of heat releases from a spark-ignition internal combustion en-
heat released at cycle (arb. unity; y axis, heat released at cycle gine.x axis, exhaust gas recirculatig®o); y axis, reversibility sta-
n+1 (arb. unity. Upper left to lower right, ERF%)=0,35,45,50. tistic (arb. units.
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r TABLE Il. Reversibility statistics on ensembles of size 200 of
] ternaryA=3 symbols from Markov chaind/ ; is symmetrical, and
the results are consistent with the null distributigimough the vari-
ance is a bit too small foN=250). Data from the irreversibl®1,
emphatically reject the null, shown by substantié),(z) and the
count of rejections at thp<<0.01 level out of the ensemble of 200

= data sets.
N 05 A |
| System (Ot oy (Dto, Rejections
&

NeoR’

0.4f
0.3 M, N=250 0.0022+0.107 0.017+0.65 0
- M, N=2500 -0.0022+0.049 -0.035+0.89 2
' M4, N=25000 -0.00092+0.020 0.045+0.96 0

0.t
. , , , , M, N=250 0.26+0.150  2.15+1.22 90
0 0.1 0.2 0.3 0.4 05 M,, N=2500 0.40+0.055 8.89+1.26 200

Residual Fraction (%)

M,, N=25000 0.53+0.021 31.7+1.24 200

FIG. 12. (Color onling Time-asymmetry statistic for a time se-
ries of heat releases from a Diesel-cycle internal combustion en-
gine. x axis, residual gas fractio(®o); y axis, reversibliity statisic ~ systems, both first order Markov chains on a ternary alpha-
(arb. units. bet. A first-order Markov chain on discrete symbols can be

represented by a transition matik; for the transition prob-

fects, variation in intake air dynamics, among other reasongbility from statei to j. Assuming that it is irreducible, its
For the spark-ignition engine, the input air-fuel ratio wasstationary probabilityu is the left eigenvector with unit ei-
maintained in stoichiometric conditions, but the proportiongenvalue u=uM. The transition matrices are
of exhaust gas recirculatiofEGR) was altered for various
runs and was the principal experimental parameter. Figure 9 0 13 23 0 13 23
shows time-return plots of example data in various condi- M;=|1/5 4/5 0 |, M,=| 14 0 3/4
tions of EGR. For the Diesel data, the fraction of residual gas 110 0 9/10 2/10 0 8/10
remaining from one combustion cycle to the next was esti-

mated with changes in experimental parameters and is thehe transition matrices here were chosen arbitrarily; the only
effective experimental parameter. Figure 10 shows someypstantial difference between the systems is thais sta-
time-return plots. tistically time-symmetrical and1, is not. A Markov chain is

In all cases, the data were symbolized with equal-weightime symmetrical if and only if the matrigy; = wM;; is sym-
histograms of varying small alphabets. The reversibility re-metric, i.e.,Q;=Q;.
sults for the spark ignition data are shown in Fig. 11. There is  Consider the symbolic process where the index of the new
a clear trend toward highly statistically significant irrevers-state(in the ternary alphabgts emitted for each transition.
ibility with EGR above 15%. Despite a large amount of As expected, the distinction between the two chains is re-
noise, some form of deterministic nonlinear dynamics is &lected in the empirical reversibility statistic. Ensembles of
plausible explanation for the cycle-to-cycle variability. This data from chairM, accept the null, and those froh, em-
is consistent with previous observatio[&20 where very phatically reject the nulisee Table I).
similar irreversibility and bifurcations were observed with
changing input air-fuel ratios. Diesel reversibility data are a1 As in Table II, except that now the alphabet As
S_hov_v_n In F'g: 12. By CF’”traSt _hg_re, there is no _Statlstlcallyzz, with a zero symbol emitted when the first allowable transition
significant evidence of irreversibility over the entire param-om, each state is taken and a one when the other transition is taken.
eter range, and thus one may conclude that the data cOu{gihat was reversible in the explicit Markov representatity)
likely be generated by an effectively high-dimensional linearnow shows increasing evidence of irreversibility, whereas the pre-
stochastic pI’OCQS$Symmetl’ica| low-dimensional chaos is Vious|y patenﬂy irreversible procest is now apparenﬂy
unlikely given the high apparent noise leyeRhysically reversible.
what is most likely is that this dynamics is dominated by

sufficiently high-dimensional turbulent fluctuations that glo- system (O)+a, (D*o, Rejections
bally averaged quantities such as the one considered here are
effectively indistinguishable from linear processes by soméf1, N=250 0.0073+0.109  0.033+0.68 0
kind of central limit theorem effect. M1, N=2500 0.019+0.051 0.34£0.92 4
M, N=25000 0.059+0.022 2.86+1.08 139
V. REVERSIBILITY AND PRESENTATION OF
PROCESSES M,, N=250 0.0052+0.11 0.034+0.81 0
M,, N=2500 -0.0069+0.050 -0.011+0.96
We demonstrate an interesting and somewhat surprising, N=25000  0.00023+0.018  0.013+1.01 1

phenomenon by looking at two simple symbolic dynamical
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Now consider a hidden Markov-chain presentation of thiscesses do not necessarily carry over to probabilistic metric
same process. At each time step, instead of emitting the irguantities such as statistical irreversibility as considered
dex of the new state, emit a zero or a one, depending ORhere.
which transition of nonzero probability has taken place. In
the language of theoretical symbolic dynami9], the
explicit-state version is a presentation of a “vertex shift,” as
a symbol is emitted corresponding to each new vertex of the We have demonstrated a statistic to distinguish between
transition graph which is visited, and hence explicitly a shiftstatistically time-symmetrical and time-asymmetrical data-
of finite type (with memory 3 on a three-symbol alphabet. generating processes from an observation of their output, a
The implicit-state version is a sofic shift with an associatedsufficiently long data set. The data must be symbols of a
graph and labeling: a distinct binary symbol is emitted de-discrete alphabet, preferably of rather small size—this sym-
pending on which edge is taken on the transitiohhese holization could be from a discretization of a continuous
particular shifts are also of finite type, but not all sofic shiftsvalued process. Dictionary-based data compression methods
are finite typg. provide the inspiration and technology for a scheme which

The Shannon entropy rates [hgMy)  will adaptively and automatically account for generic forms
~0.5623 bits/symbohg(M,) =0.7602 bit/symbdl of the of dependence. This justifies a classical direct null test.
two representations are identical, as there is the same amou@iven the symbol stream, there are no free parameters.
of uncertainty about the next state and the same invariant There is one minor caveat. If the entropy of the input
density. Moreover, their topological entropidsbit/sym) and  symbols isextremelylow, for instance, very long repeats of
minimum periods are also all identical, implying an “almostidentical symbolgsay by symbolizing a very oversampled
conjugacy” between thertRef. [19], Chap. 9. Roughly, this  data set, then the statistical calibration of the null may be
means that bi-infinite sequences in the shift spaces may bmperfect. The dictionary compression procedure is known
mapped one-to-one into each other except for sequences taf be suboptimal for those systems: the codelength per sym-
vanishing probability. bol of the compressed output would be well above its true

Despite the topological equivalence, the presence or alentropy rate. The algorithm appends only one symbol at a
sence of probabilistic reversibility in the symbolic sequencegime to each dictionary entry to form new dictionary entries,
becomes reversed by the change in presentation. Table llhus the phrases it finds are not sufficiently long to have
shows the evidence. The Markov process described  excellent compression. For our purposes the successive
which is prima faciereversible in the explicit representation, matches would not be quite as independent as they should
now shows increasing statistical evidence of irreversibilitybe, and the calibration of the null distribution is imperfect,
with larger data set sizes in the implicit-state presentatione.g., the standard deviatigimver ensemblgsof z may be
M, which was patently irreversible explicitly, now shows no larger or smaller than one. It does take rather extreme data
evidence for irreversibility whatsoever. One conclusion isfor this to be an issue, and it is nearly always simple to
that reversibility or irreversibility depends on the nature ofrectify by using different symbolization or by undersampling
the observed variable: although invariantstatic functional  the input data set appropriately. Time reversibility will not be
transformations of an observable, it is not invariant to ainfluenced by such a change. A typical rule of thumb may be
change from an explicit to hidden Markov chain. In this casefo be suspicious of data whose entropy rate is less than one-
the transformation from explicit to hidden Markov represen-tenth the maximum, i.e., 1g¢A) bits per iteration.
tation would require successiyeirs of observed states in Complete source code in4C+ for the algorithm is avail-
successive time@ sliding-block codgin order to generate able in the EPAPS archive accompanying this manuscript
the 0/1 symbol of the hidden version time series, i.e., thg22].
transformation is not a static function of the current state. In
continuous space, there could be an analogous effect: for ACKNOWLEDGMENTS
example, the time series formed from successive differences
of a reversible—but non-Gaussian—process could display The author wishes to thank C. E. A. Finney and R. M.
irreversibility. Another conclusion is that topological equiva- Wagner for making available the combustion engine data
lences of the shift spaces generated by the symbolic presets.
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