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Testing time symmetry in time series using data compression dictionaries

Matthew B. Kennel*
Institute For Nonlinear Science, University of California, San Diego, La Jolla, California 92093-0402, USA

(Received 21 July 2003; published 14 May 2004; publisher error corrected 20 May 2004)

Time symmetry, often called statistical time reversibility, in a dynamical process means that any segment of
time-series output has the same probability of occurrence in the process as its time reversal. A technique, based
on symbolic dynamics, is proposed to distinguish such symmetrical processes from asymmetrical ones, given
a time-series observation of the otherwise unknown process. Because linear stochastic Gaussian processes, and
static nonlinear transformations of them, are statistically reversible, but nonlinear dynamics such as dissipative
chaos are usually statistically irreversible, a test will separate large classes of hypotheses for the data. A
general-purpose and robust statistical test procedure requires adapting to arbitrary dynamics which may have
significant time correlation of undetermined form. Given a symbolization of the observed time series, the
technology behind adaptive dictionary data compression algorithms offers a suitable estimate of reversibility,
as well as a statistical likelihood test. The data compression methods create approximately independent seg-
ments permitting a simple and direct null test without resampling or surrogate data. We demonstrate the results
on various time-series-reversible and irreversible systems.

DOI: 10.1103/PhysRevE.69.056208 PACS number(s): 05.45.Tp

I. INTRODUCTION

A well-known issue in the analysis of observed data is to
distinguish colored noise produced from a Gaussian linear
process from data produced from nonlinear sources. The
tools of traditional, linear, signal processing and time-series
statistics, power spectra, transfer functions, autoregressive
modeling, etc., often fail in such cases when their assump-
tions are violated; but when these assumptions are fulfilled
they are often provably optimal.

The technique[1–3] most commonly employed for this
task is to generate Monte Carlo simulations of “surrogate
data,” a linear Gaussian noisy data set, with similar charac-
teristics (e.g., power spectrum, autocorrelation, or autore-
gressive coefficients) as the original data and compare the
original and surrogates on some statistic of the user’s choice
which is sensitive to various nonlinear features. This method
is quite general but there are a number of subtle and tricky
technical issues[4–7] which are not always appreciated, and
it may be computationally intensive.

Testing for time asymmetry(e.g., Ref.[8,9] and their ref-
erences) is a useful alternative to surrogate methods for dis-
tinguishing linear noise and static nonlinear transformations
thereof from nonlinear dynamics. This idea relies on the fact
that a stationary linear Gaussian stochastic process is statis-
tically time symmetrical, also often calledtime reversible: the
literal time reverse of the observed series would have the
same probability to be emitted from the source as the ob-
served one[10]. Any fixed static nonlinear transformation of
such a process—includingnonmonotonictransformations
which have proven to be problematic in the surrogate-data
method[7]—stays time reversible. Importantly for this work,
one such transformation is thesymbolizationor discretization
of a continuous state space to a coarse alphabet of a small

number of symbols. Dissipative chaos, by contrast, will pro-
duce a statistically time-irreversible signal as the creation of
information via instability in the time-forward direction is
distinct from the destruction of past state information via
dissipation. The meaning of statistical “irreversibility” used
herein is not exactly the same as the “irreversibility” of
physical processes in the traditional thermodynamic sense.
Herein, we assume that the measured process is already in its
statistically stationary condition, and use “reversibility” in its
statistical sense: and the word “reversible” is a synonym for
“time symmetrical.”

This work does not give an explicit description of the
“null hypothesis”(e.g., a linear Gaussian process) as would
be done with a parametric estimate for the entire process, i.e.,
it is not feasible to directly evaluate the two likelihoods for
seeing the observed set in its original orientation and its
time-reversed orientation. With the usual requirements of sta-
tionarity and the absence of very long time dependence, one
may empirically estimate the likelihood of reversible dynam-
ics by looking at statistics of short-term segments from the
data set, using ergodicity in the usual way so that a single
long observed data set provides an ensemble. Our goal in-
cludes not merely a number quantifying the amount of time
asymmetry, but a statisticaltest procedurewith a null hy-
pothesis andp value for rejection of the null. The generic
complication is that general dynamics, linear or nonlinear,
can possess rather arbitrary serial dependence. We want ad-
ditionally a general procedure which requires as few assump-
tions about the structure of the dynamics as possible. The
common theme is to try to construct a test out of sufficiently
independent elements so that the assumptions of classical
statistical test procedures hold.

Daw et al. [9] suggested using the observed frequency of
symbolic words formed from nearby symbols as seen in the
forward and reverse directions. For instance, in a binary al-
phabet, if a word length of 5 and a time delay of 1 were
chosen, then one would accumulate the observed frequency
of 11001, and its time reverse 10011, as the word window*Electronic address: mkennel@ucsd.edu
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slid incrementally over the symbolized observed data. The
assumption under the null hypothesis of time symmetry is
that the observed frequencies came from an equiprobable
distribution which could be tested with a simple binomial
test. This would be done for all nonpalindromic pairs of
words of a fixed length, and the results of tests on all words
combined. The difficulty comes in serial correlation which
can make the assumption of independent observations in the
binomial test incorrect, and the statistical dependence in the
combination of results from many pairs. The first was ame-
liorated with a decorrelation window and additional correla-
tion test, but the second does not have a clear solution. The
appropriate word length is also an undesirable free param-
eter. As usual, short words provide a more accurate estima-
tion of probabilities(high counts) but may improperly aver-
age over different dynamics which would be more visible
with longer words. This work proposes a different method,
adapting techniques from data compression, to rectify all
these issues. It provides approximately independent quanti-
ties for a statistical test as well as automatic word-length
selection.

II. ADAPTIVE DICTIONARY-BASED TIME-SYMMETRY
TESTING

The Lempel-Ziv [11] dictionary compression algorithm
sequentially parses the input symbol sequence from left to
right, at each step finding thelongestsegment in the remain-
ing input which already exists in a dictionary of codewords
[21]. Then a new codeword, consisting of the longest exist-
ing match concatenated with the next subsequent symbol in
the input, is added to the dictionary[12]. An index for the
codeword which was originally located and the subsequent
symbol are emitted. The input pointer is advanced by the
length of the codeword just added plus one. The compressed
output is a sequence of pairs of codeword indices and the
additional symbol:sw1s1dsw2s2d¯ swnsnd. The dictionary is
initialized with A length-one strings, each comprising each
unique symbol in the alphabet of sizeA. Absent a priori
bounds on the maximum size of the integers, the length, in
bits, of the compressed stream is proportional ton log2 n
with n the number of phrases. This compression isuniversal:
the length of the compressed sequence divided by the length
of the input will asymptotically approach the Shannon en-
tropy rate(the best possible compression rate) for almost any
source, meaning that the method is guaranteed to learn char-
acteristics of the source. Frequently occurring sequences
generate longer dictionary entries whose codeword indices
(represented as integers) may be transmitted more compactly
than their plaintexts.

One may parse a new sequence relative to a given fixed
dictionary, for instance, that obtained after compressing an-
other sequence as previously discussed. The longest code-
word in the dictionary which is a prefix of the remaining
input is identified and emitted. The input pointer is advanced
by the length of this codeword. This is like compressing the
latter half of a sequence except that the adaptation(adding
new phrases to the dictionary) is not performed. Fundamen-
tal results in information theory[13,14] imply that when the

parsed sequence arises from the same information source
which produced the sequence used to train the dictionary, it
will nearly always take fewer bits(and phrases) than a pars-
ing using a dictionary trained on a different source. This
statement is technically only true asymptotically but in prac-
tice exceptions grow exponentially unlikely for mixing
sources. This property concerning the relative entropy was
recently used to distinguish and categorize natural languages
from only representative samples of their texts[15], although
there the slightly different algorithm was used and adaptation
to the second sequence continued during its parsing, lower-
ing the discrimination power somewhat.

We use this fact to test for time symmetry by comparing
the compression performance using dictionaries which were
trained on normal, and time-reversed, examples. There are
many possible specific ways one could consider using com-
pression to see if there is a difference, for example, parse a
test sequence completely by the two different dictionaries
and see which dictionary emits the fewest phrases, or, per-
haps, looking at the statistical distribution of the lengths of
words emitted. The following statistic and test, though, was
powerful in detecting irreversibility, the relatively easy task,
as well as having a good calibration of the null hypothesis
under various diverse instantiations of reversible dynamics,
which is the more difficult requirement.

Consider for a moment the generic problem of sequen-
tially parsing a sequenceS with respect totwo dictionaries
D1,D2 simultaneously. At each step, there is a longest match-
ing codeword for each individual dictionary. Of those two,
either the first dictionary provides the longest match, or the
second does, or the lengths are tied(both dictionaries pro-
vide the same codeword). The input is advanced by the
length of the longest match. We define our notation as fol-
lows: n1=C1sSuD1,D2d is the count of number of times the
first dictionary(D1) provided the codeword, and similarly for
n2=C2sSuD1,D2d; accumulating the counts the second was
the best match. The number of ties is discarded. The two
countsC1 andC2 are computed simultaneously for identical
arguments. For our purposes, no actual literal compressed
output is necessary, merely the accumulation of these counts.
The key notion is that since dictionary-based universal com-
pression attempts to make approximately independent code-
words, the “observation” of a parsed phrase is as if it were
nearly an independent event in a renewal-type process. This
assumption of independence(which will be tested empiri-
cally) justifies simple classical statistical tests.

Specializing to the problem at hand, the key idea is to
parse a test sequence with respect to dictionaries which were
constructed on either forward or backward versions of a dif-
ferent training sequence. If the data are reversible, then either
of those dictionaries is as good as the other, statistically, in
providing longest matches and hence, on average gives as
good compression as the other. Moreover, the assumption is
that in time symmetry the distribution of “which dictionary
provides a superior match here” is an independent Bernoulli
binary random variable with equal probability, and thus the
accumulated counts would be distributed like Poisson ran-
dom variables.

Divide the input sequenceS into its two contiguous halves
sS1 andS2d, create literal time-reversed versions of them
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sR1 andR2d, and create four dictionaries
sDS1,DS2,DR1,andDR2d using the Lempel-Ziv construction
as before. Parse each of the four sequences with respect to
the the two dictionaries trained on the other half of the data.
Accumulate the total number of same-direction(ns) matches,

ns = C1sS2uDS1,DR1d + C1sR2uDR1,DS1d + C1sS1uDS2,DR2d

+ C1sR1uDR2,DS2d, s1d

and different-directionsndd matches,

nd = C2sS2uDS1,DR1d + C2sR2uDR1,DS1d + C2sS1uDS2,DR2d

+ C2sR1uDR2,DS2d. s2d

With n=ns+nd, define the time-symmetry statistic

û =
ns − nd

n
. s3d

Under the null hypothesis,û→0 asn→`. For nù25, the
null distribution of

zsû,nd = n1/2Sû −
1

2n
sgnsûdD s4d

is well approximated by a zero-mean unit-variance Gaussian
[16], with an associated upper tail probabilitypszd
= 1

2erfcsz/Î2d. For smallern the exact binomial tail probabil-
ity should be used. When the sequence comes from an irre-
versible source, there will typically be a larger fraction of

same-direction matches, hence positiveû. Observingû.0
with correspondingpszd,a implies a rejection of time sym-
metry with the given level of significance. This test is one
sided since irreversibility should[17] increasens relative to
nd.

III. PERFORMANCE ON VARIOUS DATA SETS

The quality of any statistical test is governed by two is-
sues: how close the actual distribution matches the assumed
null distribution with data from the null class, and how well
the test is able to detect violations of that null. In particular,
the null hypothesis of the time-symmetry test is flagrantly
composite, encompassing a wide variety of reversible sym-
bol streams. The justification for the test procedure is intu-
itively appealing—that compression automatically yields in-
dependent segments—but admittedly not rigorously proven.
The success of this assertion is tested empirically by com-
puting the statistic on ensembles of data sets taken from in-
puts known to be statistically reversible. Take an ensemble of

M data sets from a reversible data class and computeûk and
pk=pszkd for k=1, . . . ,M. If the data are reversible and the
test assumptions are fulfilled, thepk ought to be as if drawn
from the uniform distribution onf0,1g, or equivalently, the
empirical cumulative distribution ofpk, Cspkd, ought to con-
verge with increasingM to a straight line, plottingCspkd
versuspk. Similarly, over ensembles the standard deviation
of z ought to tend towards one in the null class.

We first demonstrate on seemingly trivial data, white in-
dependent symbols. Figure 1 shows results of Monte Carlo
simulations on these data. As expected, there is no indication
of time asymmetry inu or z, and the standard deviation ofz
under the null is close to unity.

Next, we consider time-symmetrical dynamical data.
These were generated from samples of the logistic map,
xn+1=1−axn

2 in a generic chaotic regime(a=1.8). By itself xi
is certainly time-asymmetrical chaotic dynamics. We take
two independent samples of lengthN from the map,xi;1,xi;2,
and form the mixture

FIG. 1. (Color online) Summary statistics for white equiproba-
ble symbols. There were 200 data sets drawn for each data set size,
N=200,2500,25 000(red circle, blue diamond, black square), and

the reversibility statisticsu andz were evaluated for each. Top:kûl,
the ensemble average(arb. units), and its standard deviation. Bot-
tom: kzl (arb. units), and its standard deviation.

FIG. 2. (Color online) Top: summary statistics for a reversible
mixture of logistic map dynamics. Symbolization was by equal-
probability bins with uAu from 2 to 6. There were 200 data sets
drawn for each data set size,N=200,2500,25 000(red circle, blue
diamond, black square), and the reversibility statisticsu andz were

evaluated for each. Top:kûl, the ensemble average(arb. units), and
its standard deviation. Bottom:kzl (arb. units) and its standard de-
viation. x axis is the size of the alphabet.
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yi = xi;1 + axN−i;2. s5d

When a=1 the time seriesyi is statistically reversible by
construction; lower values ofa give increasingly irreversible
data. Figure 2 shows results over ensembles ofM =200
samples of the reversible time series, each symbolized with
varying small alphabets with equal-probability histograms.
The statistic shows no time asymmetry, and the distribution
of pk is statistically close to uniform(see Table I), which is
desirable for a correct null test.

Figure 3 shows a sample of a time series and its power
spectrum from an arbitrarily constructed linear, Gaussian,
and hence time-symmetrical[10], stochastic process. The top
panel of Fig. 4 shows summary results on ensembles mea-
suring reversibility on sample time series of varying size,
analogously to Fig. 2. For the larger data sets the standard
deviation ofz is near unity and distribution ofpk is uniform,
but for the shortest data sets,N=250, the standard deviation
of z is less than 1, i.e., there is somewhat of a central ten-

dency in thepk. What is happening here is that the training
sets are so short(each 125 symbols) that the dictionary built
from observations is not sufficiently good to remove visible
correlation. This is not unexpected as dictionary compression
learns with increasing data. The total number of phrase
matchesn=ns+nd used in the statistic is very small, even
being as low as 10–20 for some of the samples. Neverthe-
less, the test is only slightly conservative, and data from
system would not be characterized incorrectly as irreversible.
The lower panel shows results on the square of the same
process. The stochastic time series, which has mean zero, is

FIG. 3. (Color online) Top: sample time series from a discrete
linear Gaussian process, constructed by a bandpass filter of an in-
dependent random Gaussian process.y axis is signal value(arb.
units), x axis is sample number in integer-valued time. Bottom:
power spectral density vs frequency(in units of the sampling
frequency).

FIG. 4. (Color online) Summary statistics for linear Gaussian
process, and square of that process. Top:kzl (arb. units) ± standard
deviation forN=250,2500,25 000 on linear process. Bottom:kzl
(arb. units) ± standard deviation for square of that process, i.e., a
nonmonotonic static nonlinear transformation of a reversible
process.

FIG. 5. (Color online) Time-asymmetry statisticz on M =200
sets of points from a mixture of logistic map time series. Thex axis
shows the mixing coefficienta (a=1 is reversible) andy axis iskzl
(arb. units) with bars displaying the sample standard deviation on
the ensemble. Curves from bottom to top showN=250, N=2500,
N=25 000. Each data set was partitioned atA=3 with equal prob-
ability histograms.

TABLE I. For the ensembles in Fig. 2. Kolmogorov-Smirnov
test p values comparing the observed distribution ofpk to the uni-
form distribution in f0,1g. Only the values forA=3 and N
=250,2500 appear to be significant. These apparent rejections are
spurious and disappear in a different ensemble, being 0.175 and
0.713, respectively. There is no significant evidence that thepk are
distributed nonuniformly, showing a good calibration of the statistic
under this instantiation of the null hypothesis.

Alphabet N=250 N=2500 N=25 000

2 0.218 0.457 0.0569

3 0.00335 0.0103 0.645

4 0.0326 0.522 0.303

5 0.332 0.349 0.386

6 0.0383 0.148 0.407
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squared, and then symbolized with equal probability histo-
grams. This is still a statistically time-symmetrical data set
and thus in the null class. Surrogate data methods to detect
nonlinearity typically can cope with only monotonic trans-
formations of the observed variable, as they typically esti-
mate the transformation to a Gaussian marginal distribution.
As squaring is a nonmonotonic transformation, these data
would reject the null with this sort of surrogate data method,
but here the reversibility test correctly recognizes the data as
being in the null class. The bottom panel of Fig. 4 shows no
trend inz and standard deviation of unity across most param-
eters and data set sizes.

When examining data for signs of irreversibility it is often
illuminating to plot z instead ofu as statistical significance
can be seen easily with largerz. Figure 5 shows the detection
of statistically significant reversibility with the mixture of forward and backwards logistic maps, Eq.(5). As expected,

power to detect irreversibility increases with sample size and
the degree of irreversibility. Figure 6 shows the effect of
changing alphabets: with significant irreversibility, increas-
ing alphabet size improved detecting it, but if irreversibility
were minimal, the alphabet size was unimportant.

Now on to a more complicated system, the “Lorenz 1984”
attractor: a tiny geophysical model with attractor dimension
d<2.5 [18]. The model isdx/dt=−y2−z2−asx−Fd ,dy/dt
=xy−bxz−y+1,dz/dt=bxy+xz−z,a=1/4,b=4,F=8. The
x coordinate is sampled rather finely, everydt=0.08. To
these samples were added white Gaussian noise of amplitude
5% of its standard deviation. There is substantial nontrivial
autocorrelation of an arbitrary form. The sets tested for re-
versibility are mixtures of the dynamical data with surrogate
data with identical power spectrum created in the ordinary
way, by randomizing the phases of the discrete frequency-
space representation and untransforming. Since that process
by itself produces data with a typically Gaussian marginal
density, the dynamical data[xstd sampled from the Lorenz
model] are prewarped to have a Gaussian density as well.

FIG. 6. (Color online) Time-asymmetry statisticz on M =200
sets of points of sizeN=2500 from a mixture of logistic map time
series. Thex axis shows the symbolization alphabetA andy axis is
kzl (arb. units) with bars displaying the sample standard deviation
on the ensemble. Curves from bottom to top showa
=0.99,0.98,0.95,0.90,0.80.

FIG. 7. (Color online) Sample of irreversible Lorenz mixture
time series witha=0.2 (top); sample of symmetrical surrogate data
set(bottom). y axes are the signal value(arb. units) andx axes are
discrete time.

FIG. 8. (Color online) y axis: averagez statistic(arb. units). x
axis: mixing coefficienta as per Eq.(6), averaged over 200 replicas
of size N=2500 (top) and N=25 000 (bottom). Curves are forA
=2,3,4,5(blue circles, red stars, green diamonds, black squares).
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The Gaussianized dynamical data are used both for the mix-
ture and as the input for the surrogate to make the procedure
the fairest. The mixture data sets, parametrized bya, are

yi = s1 − adxi
L + axi

S, s6d

with xL the Gaussianized, noised, Lorenz series, andxS one
of its surrogates. Figure 7 illustrates two example time se-
ries: a mixturesa=0.2d and a symmetrical surrogate. Figure
8 shows the increasing detection of significant reversibility
with decreasinga. Note that fora=1 (all surrogate), the
averagez statistic(like u, not shown) is zero with unit stan-
dard deviation, meaning that it is consistent with the as-

sumed null distribution, as expected. Also,A=2 consistently
permits no clear detection of irreversibility, which may re-
flect a particular symmetry in the system.

IV. EXPERIMENTAL EXAMPLE

We apply the reversibility tests to data from two combus-
tion engines, one spark ignition, the other a Diesel cycle. The
observed time series is the total heat released per cycle mea-
sured in a single fixed cylinder. The experimental apparatus
maintained a constant speed and hence periodicity of engine.
Fluctuations in the heat released may reflect turbulence in the
cylinder, variations in air-fuel ratio due to residual gas ef-

FIG. 9. (Color online) Time-
return plots for spark-ignition data
at four conditions of exhaust gas
recirculation (EGF). x axis, heat
released at cyclen (arb. units); y
axis, heat released at cyclen+1
(arb. units). Upper left to lower
right, EGR s%d
=0,16.0,22.2,24.7.

FIG. 10. (Color online) Time-return plots for spark-ignition data
at four conditions of exhaust gas residual fraction(ERF). x axis,
heat released at cyclen (arb. units); y axis, heat released at cycle
n+1 (arb. units). Upper left to lower right, ERFs%d=0,35,45,50.

FIG. 11. (Color online) Time-asymmetry statistic for a time se-
ries of heat releases from a spark-ignition internal combustion en-
gine.x axis, exhaust gas recirculations%d; y axis, reversibility sta-
tistic (arb. units).
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fects, variation in intake air dynamics, among other reasons.
For the spark-ignition engine, the input air-fuel ratio was
maintained in stoichiometric conditions, but the proportion
of exhaust gas recirculation(EGR) was altered for various
runs and was the principal experimental parameter. Figure 9
shows time-return plots of example data in various condi-
tions of EGR. For the Diesel data, the fraction of residual gas
remaining from one combustion cycle to the next was esti-
mated with changes in experimental parameters and is the
effective experimental parameter. Figure 10 shows some
time-return plots.

In all cases, the data were symbolized with equal-weight
histograms of varying small alphabets. The reversibility re-
sults for the spark ignition data are shown in Fig. 11. There is
a clear trend toward highly statistically significant irrevers-
ibility with EGR above 15%. Despite a large amount of
noise, some form of deterministic nonlinear dynamics is a
plausible explanation for the cycle-to-cycle variability. This
is consistent with previous observations[9,20] where very
similar irreversibility and bifurcations were observed with
changing input air-fuel ratios. Diesel reversibility data are
shown in Fig. 12. By contrast here, there is no statistically
significant evidence of irreversibility over the entire param-
eter range, and thus one may conclude that the data could
likely be generated by an effectively high-dimensional linear
stochastic process.(Symmetrical low-dimensional chaos is
unlikely given the high apparent noise level.) Physically
what is most likely is that this dynamics is dominated by
sufficiently high-dimensional turbulent fluctuations that glo-
bally averaged quantities such as the one considered here are
effectively indistinguishable from linear processes by some
kind of central limit theorem effect.

V. REVERSIBILITY AND PRESENTATION OF
PROCESSES

We demonstrate an interesting and somewhat surprising
phenomenon by looking at two simple symbolic dynamical

systems, both first order Markov chains on a ternary alpha-
bet. A first-order Markov chain on discrete symbols can be
represented by a transition matrixMij for the transition prob-
ability from statei to j . Assuming that it is irreducible, its
stationary probabilitym is the left eigenvector with unit ei-
genvalue,m=mM. The transition matrices are

M 1 = 3 0 1/3 2/3

1/5 4/5 0

1/10 0 9/10
4, M 2 = 3 0 1/3 2/3

1/4 0 3/4

2/10 0 8/10
4

The transition matrices here were chosen arbitrarily; the only
substantial difference between the systems is thatM 1 is sta-
tistically time-symmetrical andM 2 is not. A Markov chain is
time symmetrical if and only if the matrixQij =miMij is sym-
metric, i.e.,Qij =Qji .

Consider the symbolic process where the index of the new
state(in the ternary alphabet) is emitted for each transition.
As expected, the distinction between the two chains is re-
flected in the empirical reversibility statistic. Ensembles of
data from chainM 1 accept the null, and those fromM 2 em-
phatically reject the null(see Table II).

FIG. 12. (Color online) Time-asymmetry statistic for a time se-
ries of heat releases from a Diesel-cycle internal combustion en-
gine. x axis, residual gas fractions%d; y axis, reversibliity statisic
(arb. units).

TABLE II. Reversibility statistics on ensembles of size 200 of
ternaryA=3 symbols from Markov chains.M 1 is symmetrical, and
the results are consistent with the null distribution(though the vari-
ance is a bit too small forN=250). Data from the irreversibleM 2

emphatically reject the null, shown by substantialkul ,kzl and the
count of rejections at thep,0.01 level out of the ensemble of 200
data sets.

System kul±su kzl±sz Rejections

M 1, N=250 0.0022±0.107 0.017±0.65 0

M 1, N=2500 −0.0022±0.049 −0.035±0.89 2

M 1, N=25000 −0.00092±0.020 0.045±0.96 0

M 2, N=250 0.26±0.150 2.15±1.22 90

M 2, N=2500 0.40±0.055 8.89±1.26 200

M 2, N=25000 0.53±0.021 31.7±1.24 200

TABLE III. As in Table II, except that now the alphabet isA
=2, with a zero symbol emitted when the first allowable transition
from each state is taken and a one when the other transition is taken.
What was reversible in the explicit Markov representationsM 1d
now shows increasing evidence of irreversibility, whereas the pre-
viously patently irreversible processM 2 is now apparently
reversible.

System kul±su kzl±sz Rejections

M 1, N=250 0.0073±0.109 0.033±0.68 0

M 1, N=2500 0.019±0.051 0.34±0.92 4

M 1, N=25000 0.059±0.022 2.86±1.08 139

M 2, N=250 0.0052±0.11 0.034±0.81 0

M 2, N=2500 −0.0069±0.050 −0.011±0.96 3

M 2, N=25000 0.00023±0.018 0.013±1.01 1
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Now consider a hidden Markov-chain presentation of this
same process. At each time step, instead of emitting the in-
dex of the new state, emit a zero or a one, depending on
which transition of nonzero probability has taken place. In
the language of theoretical symbolic dynamics[19], the
explicit-state version is a presentation of a “vertex shift,” as
a symbol is emitted corresponding to each new vertex of the
transition graph which is visited, and hence explicitly a shift
of finite type (with memory 1) on a three-symbol alphabet.
The implicit-state version is a sofic shift with an associated
graph and labeling: a distinct binary symbol is emitted de-
pending on which edge is taken on the transition.(These
particular shifts are also of finite type, but not all sofic shifts
are finite type).

The Shannon entropy rates fhSsM 1d
<0.5623 bits/symbol,hSsM 2d<0.7602 bit/symbolg of the
two representations are identical, as there is the same amount
of uncertainty about the next state and the same invariant
density. Moreover, their topological entropies(1 bit/sym) and
minimum periods are also all identical, implying an “almost
conjugacy” between them(Ref. [19], Chap. 9). Roughly, this
means that bi-infinite sequences in the shift spaces may be
mapped one-to-one into each other except for sequences of
vanishing probability.

Despite the topological equivalence, the presence or ab-
sence of probabilistic reversibility in the symbolic sequences
becomes reversed by the change in presentation. Table III
shows the evidence. The Markov process describedM 1,
which isprima faciereversible in the explicit representation,
now shows increasing statistical evidence of irreversibility
with larger data set sizes in the implicit-state presentation.
M 2, which was patently irreversible explicitly, now shows no
evidence for irreversibility whatsoever. One conclusion is
that reversibility or irreversibility depends on the nature of
the observed variable: although invariant tostatic functional
transformations of an observable, it is not invariant to a
change from an explicit to hidden Markov chain. In this case,
the transformation from explicit to hidden Markov represen-
tation would require successivepairs of observed states in
successive times(a sliding-block code) in order to generate
the 0/1 symbol of the hidden version time series, i.e., the
transformation is not a static function of the current state. In
continuous space, there could be an analogous effect: for
example, the time series formed from successive differences
of a reversible—but non-Gaussian—process could display
irreversibility. Another conclusion is that topological equiva-
lences of the shift spaces generated by the symbolic pro-

cesses do not necessarily carry over to probabilistic metric
quantities such as statistical irreversibility as considered
here.

VI. CONCLUSIONS

We have demonstrated a statistic to distinguish between
statistically time-symmetrical and time-asymmetrical data-
generating processes from an observation of their output, a
sufficiently long data set. The data must be symbols of a
discrete alphabet, preferably of rather small size—this sym-
bolization could be from a discretization of a continuous
valued process. Dictionary-based data compression methods
provide the inspiration and technology for a scheme which
will adaptively and automatically account for generic forms
of dependence. This justifies a classical direct null test.
Given the symbol stream, there are no free parameters.

There is one minor caveat. If the entropy of the input
symbols isextremelylow, for instance, very long repeats of
identical symbols(say by symbolizing a very oversampled
data set), then the statistical calibration of the null may be
imperfect. The dictionary compression procedure is known
to be suboptimal for those systems: the codelength per sym-
bol of the compressed output would be well above its true
entropy rate. The algorithm appends only one symbol at a
time to each dictionary entry to form new dictionary entries,
thus the phrases it finds are not sufficiently long to have
excellent compression. For our purposes the successive
matches would not be quite as independent as they should
be, and the calibration of the null distribution is imperfect,
e.g., the standard deviation(over ensembles) of z may be
larger or smaller than one. It does take rather extreme data
for this to be an issue, and it is nearly always simple to
rectify by using different symbolization or by undersampling
the input data set appropriately. Time reversibility will not be
influenced by such a change. A typical rule of thumb may be
to be suspicious of data whose entropy rate is less than one-
tenth the maximum, i.e., log2sAd bits per iteration.

Complete source code in C11 for the algorithm is avail-
able in the EPAPS archive accompanying this manuscript
[22].
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