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Abstract

We examined three generations (grandparents, mothers, and grandchildren) to assess the 

association between grandparents’ educational attainment and their grandchildren’s epigenetic-

based age acceleration and whether the association was mediated by parental educational 

attainment and mothers’ life course health-related factors. Mothers were recruited to the NHLBI 

Growth and Health Study at 9–10 years and followed for 10 years (1987–1998). Mothers were 

then re-contacted three decades later (ages 37–42) to participate in the National Growth and 
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Health Study (NGHS), and health information from their youngest child (i.e., grandchildren; 

N = 241, ages 2–17) was collected, including their saliva samples to calculate epigenetic 

age. Five epigenetic-based age acceleration measures were included in this analysis, including 

four epigenetic clock age accelerations (Horvath, Hannum, GrimAge, and PhenoAge) and 

DunedinPACE. Grandparents reported their highest education during the initial enrollment 

interviews. Parental educational attainment and mothers’ life course health-related factors 

(childhood BMI trajectories, adult cardiovascular health behavioral risk score, and adult c-reactive 

protein) are included as mediators. Grandparents’ education was significantly associated with 

Horvath age acceleration (b = −0.32, SE = 0.14, p = .021). Grandchildren with college-degree 

grandparents showed significantly slower Horvath age accelerations than those without college 

degrees. This association was partially mediated by parental education and mothers’ health-related 

factors, especially adult cardiovascular health behavioral risk score and CRP, but not mothers’ 

childhood BMI trajectory. This ability to conserve the speed of biological aging may have 

considerable consequences in shaping health trajectories across the lifespan.

Keywords

Epigenetic age; intergenerational transmission; life course framework; socioeconomic dis/
advantage

Introduction

Socioeconomic status (SES) is a fundamental cause of health disparities – its impact on 

health is consistent over time despite the remarkable advancements in medical technology 

and efforts to reduce disease risk factors (Link & Phelan, 1995; Phelan et al., 2004). The 

increased understanding of the importance of early life as a sensitive developmental period 

for health across the lifespan (Halfon & Hochstein, 2002) has led to a growing interest in 

integrating the life course frameworks to study the impact of SES on health (Ben-Shlomo 

& Kuh, 2002; Jones et al., 2019). Instead of solely focusing on the role of adult SES (e.g., 

educational attainment or current income), the focus is on the critical role of early life 

socioeconomic context (e.g., parental education or family income growing up) in shaping 

lifespan health trajectories (Cohen et al., 2010). Growing up in a low SES environment 

increases the likelihood of exposure to environmental and psychosocial stressors (Evans, 

2004; Evans et al., 2013), with a potentially permanent shift in health trajectories across the 

lifespan (Miller et al., 2011; Shonkoff et al., 2009; Taylor, 2010). In the past two decades, 

there has been increasing empirical evidence on the direct association between early life 

SES and adult health outcomes (Cohen et al., 2010; Evans, 2016; Milaniak & Jaffee, 2019; 

Steptoe & Zaninotto, 2020). More recently, multiple recommendations suggest exploring 

the intergenerational impact of socioeconomic disadvantage on health (Drake & Liu, 2010; 

Jones et al., 2019). Exposure to early life social disadvantage may not only be consequential 

in shaping one’s health trajectories across the lifespan but may also have a long-lasting 

impact on the offspring’s health. However, there is a lack of empirical efforts to examine 

how exposure to social disadvantage in one generation is translated into compromised 

development and health of the next generation. This analysis examined how grandparents’ 
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educational attainment, a proxy of parents’ early rearing socioeconomic context, can have a 

long-lasting impact on grandchildren’s health outcomes.

Epigenetics is hypothesized to be the primary biological mechanism that links early life 

socioeconomic disadvantage in one generation with compromised health and well-being of 

their offspring (Drake & Liu, 2010; Perez & Lehner, 2019; Scorza et al., 2019). Evidence 

of epigenetic intergenerational transmission in humans comes from studies involving the 

offspring of survivors of traumatic experiences. Exposure to the Holocaust and Tutsi 

genocide affects the methylations of genes responsible for glucocorticoid regulation among 

the survivors and their offspring (Perroud et al., 2014; Yehuda et al., 2016). In addition, the 

Dutch famine impacted the DNA methylation status of the survivors’ offspring, especially 

at genes implicated in growth, development, and cardiometabolic functions (Heijmans et 

al., 2008; Tobi et al., 2009). Exposure to environmental and psychosocial stressors in early 

life can lead to epigenetic changes, including DNA methylation, in gamete cells (Scorza et 

al., 2019). These epigenetic changes that happen long before conception can be manifested 

in their offspring’s epigenetic makeup, given that some DNA methylation can be stably 

heritable through cell divisions and preserved during the maturation of the gamete cells 

(Hur et al., 2017). In this analysis, we were interested in understanding whether exposure 

to a more typical social disadvantage, namely growing up in a low SES environment, 

was associated with differences in the next generation’s epigenetic markers, especially 

epigenetic age. Epigenetic age (also called epigenetic clock) is a novel DNA-methylation-

based marker of aging that reflects an overall estimate of cellular or biological age relative 

to the chronological age (Horvath, 2013; Horvath & Raj, 2018). The epigenetic clocks are 

designed to predict morbidity and mortality (Dhingra et al., 2018; Horvath & Raj, 2018) and 

have been validated across multiple age groups, including pediatric samples (Horvath & Raj, 

2018).

However, there are open questions regarding how exposure to social disadvantage 

in one generation can be epigenetically transmitted intergenerationally. Most of our 

understanding regarding the mechanisms of epigenetic intergenerational transmission of 

social disadvantage is based on animal studies, primarily focusing on the paternal effects to 

narrow down the transmission via gametes (C. Buss et al., 2017; Perez & Lehner, 2019). 

More recently, there has been growing interest in understanding the role of maternal effects 

on epigenetic transmission of social disadvantage (C. Buss et al., 2017; Scorza et al., 

2019). Exposure to early social disadvantage can create epigenetic alterations in maternal 

germline (oocytes) that can be transmitted to the offspring (Scorza et al., 2019). However, 

intergenerational transmission through maternal effects can occur indirectly through 

maternal health-related consequences of early life social disadvantages (e.g., dysregulation 

of metabolic and immune systems) that alter the oocyte cytoplasm and gestational biological 

environment (C. Buss et al., 2017). For example, early life socioeconomic disadvantage 

increases the likelihood of maternal obesity (Frederick et al., 2014), which can alter oocyte 

cytoplasm during pregnancy and compromise fetal development (Wu et al., 2015).

In addition, maternal exposure to early life adversity is associated with immune system 

programming that biases function toward proinflammatory tendencies (Miller et al., 2011). 

This, combined with unhealthy behaviors, can alter the gestational environment toward 
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elevated stress arousal, including higher prenatal cortisol levels (Claudia Buss et al., 2016) 

and placental corticotrophin-releasing hormone production (Moog et al., 2016), which can 

compromise fetal development. Several studies showed that maternal childhood adversity 

is associated with surrogate measures of intrauterine growth restriction (i.e., preterm birth 

and low birth weight), independent of pregnancy stressors (Margerison-Zilko et al., 2017), 

or as a modifying factor for the effect of prenatal psychological distress on birth outcomes 

(Blackmore et al., 2016). Taken together, these early findings show that early adversity is 

linked to maternal health pregnancy outcomes that may also influence offspring’s epigenetic 

makeup. This indicates that it is crucial to examine the role of life course health-related 

consequences of early life social disadvantages on mothers that may mediate the association 

between maternal early life SES and their offspring’s epigenetic outcomes.

Finally, research on socioeconomic inheritance and mobility in the United States indicated 

a strong association of education, income, and wealth across generations with restricted 

opportunities for upward mobility (Chetty et al., 2014; Torche, 2015). Mothers who grew 

up in low SES families are more likely to have lower education, income, and wealth levels 

than those from high SES families. Thus, the impact of maternal exposure to low SES during 

childhood on their offspring’s epigenetic age may be mediated through the mother’s own 

SES. However, there is a lack of empirical evidence that shows the intergenerational impact 

of cumulative socioeconomic disadvantages on epigenetic age.

The Current Analysis

The NHLBI Growth and Health Study (“Obesity and cardiovascular disease risk factors 

in black and white girls: the NHLBI Growth and Health Study,” 1992; Tomiyama et 

al., 2013) and the follow-up National Growth and Health Study (NGHS) (B. A. Laraia 

et al., 2021) provide a unique opportunity given the availability of information from 

three generations, including grandparents’ SES, parental education, mothers’ life course 

health-related factors, and grandchildren’s epigenetic age. The present analysis examined 

the association between grandparents’ educational attainment and their grandchildren’s 

epigenetic-based age acceleration. Grandparents’ SES represents a proxy for mothers’ 

early rearing experiences and their probability of being exposed to environmental and 

psychosocial stressors. While maternal prenatal information was unavailable, the NHLBI 

Growth and Health Study and NGHS included detailed information regarding maternal 

childhood body mass index (BMI) from age 10 to 19, adult cardiovascular health behavioral 

risk score, and adult inflammation, which are important factors for affecting the maternal 

gestational environment and fetal development (Claudia Buss et al., 2016; Margerison-

Zilko et al., 2017; Moog et al., 2016; Wu et al., 2015). This analysis aimed to examine 

the mediating role of these factors on the association between grandparents’ educational 

attainment and their grandchildren’s epigenetic-based age acceleration. The hypothesized 

mediation model is presented in Figure 1.
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Methods

Data and Participants

Data were derived from the National Growth and Health Study (NGHS), a longitudinal 

cohort study focusing on the lifespan development and intergenerational transmission of 

health among a diverse population. The NGHS study is a follow-up to the National Heart, 

Lung, and Blood Institute (NHLBI) Growth and Health Study (1987 to 1997). Details 

on participants’ recruitment and data collection protocol of the original NHLBI Growth 

and Health Study have been provided elsewhere (“Obesity and cardiovascular disease risk 

factors in black and white girls: the NHLBI Growth and Health Study,” 1992; Tomiyama 

et al., 2013) and the follow-up National Growth and Health Study (NGHS) (B. Laraia et 

al., 2023; B. A. Laraia et al., 2021). Briefly, 2,379 Black and white girls (n Black = 1,213) 

ages 9 to 10 were recruited from public and parochial schools (Cincinnati, OH, and Contra 

Costa County, CA) and families enrolled in a health maintenance organization (Washington, 

DC). Parents of these girls reported their highest educational attainment during the baseline 

survey (1987–1988). Information regarding psychosocial, behavioral, and biological factors 

associated with the development of obesity was collected annually for ten consecutive years, 

including girls’ body mass index (BMI).

Almost three decades after being recruited to the NHLBI Growth and Health Study, the 

Contra Costa County participants were re-contacted to enroll in the NGHS. Inclusion criteria 

to participate in NGHS include: 1) participated in the NHLBI Growth and Health Study, 

2) not being pregnant at the time of recruitment, and 3) resided in the United States 

and not currently incarcerated. There were 883 eligible NHLBI Growth and Health Study 

participants from Contra Costa County. The NHLBI Growth and Health Study participants 

from Contra Costa County showed similar sociodemographic characteristics relative to the 

rest of the participants from other study sites (see Supplemental Material 1), including racial 

composition (χ2 [df = 1] = 1.08, p = .31), highest parental education level (χ2 [df = 1] = 

3.72, p = .06), and childhood family income (χ2 [df = 1] = 2.50, p = .12). Among eligible 

Contra Costa participants, 624 (n Black = 307) enrolled in the NGHS (retention rate = 70%). 

Women who did not enroll in NGHS were more likely to be Black (χ2 [df = 1] = 4.76, p = 

.03), less likely to have parents with a college degree (χ2 [df = 1] = 7.00, p = < .01), and 

more likely to have lower childhood income (χ2 [df = 1] = 9.55, p = < .01).

The women in NGHS were in their early midlife (36–43 years) when enrolled in the NGHS, 

and almost three-fourths reported having at least one biological child (73.7%; M number of 

children = 1.51. SD = 1.25). Participants’ youngest (most recently born) children, ages 2 to 

17, were recruited to the study to examine the intergenerational transmission of stress and 

health (N = 553; enrollment rate = 86%). Women with and without biological children in 

NGHS showed similar sociodemographic characteristics based on race (χ2 [df = 1] = 0.45, 

p = .52), highest education (χ2 [df = 1] = 0.94, p = .35), household income (χ2 [df = 1] = 

3.76, p = .06). As expected, women with biological children were more likely to be married 

(χ2 [df = 1] = 31.54, p = < .001).

Data collection protocol in NGHS includes completing baseline questionnaires, home visits 

for anthropometric measurements and saliva sampling, LabCorp visits to draw blood, and a 
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3-day food and physical activity diary. Fasting blood samples were collected from mothers 

during the LabCorp blood draw visit at UC Berkeley. Blood was collected into a green-top 

(heparin) tube and assayed at the nearest LabCorps clinic. The blood was spun within one 

hour of drawing. Children’s saliva samples were collected during in-home visits by trained 

staff using Oragene DNA Collection Kits (OG-500, or OG-575 with a swab for younger 

children). Specimens were stored at UC Berkeley until further assessment.

The analytic sample of the current analysis includes children with data on epigenetic age 

(see Figure 1). Of 533 enrolled children, 246 provided saliva samples for epigenetic-based 

age acceleration measures. Five children were excluded from the analytic sample due to 

missing data on epigenetic-based age acceleration measures. The final analytic sample 

includes 241 children (52.7% female; Mage = 8.23, SDage = 4.01, rangeage = 2–17) with 

available epigenetic-based age acceleration information. The information included in this 

analysis came from three generations (see Figure 2), the parents of the girls in the original 

NHLBI Growth and Health Study (referred to as grandparents/F0), the original girls/women 

participants of NGHS (referred to as mothers/F1), and the children of the NGHS women 

participants (refer as grandchildren).

Measures

Grandparents’ Educational Attainment—Demographic and household information 

was obtained from the girls’ parents during the baseline survey of the NHLBI Growth 

and Health Study (1987–1988), including parental highest education. We refer to this 

information as grandparents’ educational attainment in this analysis. Grandparents’ highest 

education was grouped into three categories, high school degree or less, some college, 

and college degree or higher. For the current analysis, the grandparents’ education was 

dichotomized into no college degree and a college degree or higher.

Grandchildren’s Epigenetic-Based Age Acceleration—DNA methylation analyses 

with saliva samples were performed at the Semel Institute UCLA Neurosciences Genomics 

Core (UNGC) using the Illumina Infinium Methylation EPIC BeadChip. All the saliva 

samples from all the participants in the NGHS study (including grandchildren and mothers) 

was analyzed together. Genomic DNA was isolated using temperature denaturation and 

subjected to bisulfite conversion, PCR amplification, and DNA sequencing (EZ DNA 

Methylation-Gold Kit, Zymo Research). Epigenetic clocks were calculated using the 

Horvath’s online calculator https://dnamage.genetics.ucla.edu/, in which missing CpGs were 

automatically imputed and BMIQ method (Teschendorff et al., 2013) was used to normalize 

the data.

Four epigenetic clocks were included in this analysis: Horvath (Horvath, 2013), Hannum 

(Hannum et al., 2013), GrimAge (Lu et al., 2019), and PhenoAge (Levine et al., 2018). 

The Horvath and Hannum epigenetic clocks were derived from DNA methylation analysis 

of chronological age, while the GrimAge and PhenoAge clocks were developed from 

DNA methylation analysis of mortality risk. Recent studies have utilized these clocks to 

examine epigenetic age among pediatric samples (Etzel et al., 2022; Raffington et al., 

2021). Details regarding criterion, interpretation, and discovery sample for each epigenetic 
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clock have been summarized elsewhere (Raffington & Belsky, 2022). Epigenetic clock age 

acceleration was calculated by regressing the chronological age on epigenetic clocks and 

keeping the residuals from the model. Positive values represent higher epigenetic age than 

chronological age (i.e., accelerated aging) and vice versa. In addition, this analysis included 

DunedinPACE, which used within-individual decline across 19 biological indicators of 

organ-system integrity as the predicted phenotype (Belsky et al., 2022). DunedinPACE 

score represents years of biological aging occurring per 12 months of chronological time 

(Belsky et al., 2022). A recent study involving pediatric samples has used saliva-based 

DunedinPACE to measure the pace of aging (Perret et al., 2023). DunedinPACE scores 

were calculated using an R package available on GitHub (https://github.com/danbelsky/

DunedinPACE/). We computed cell-count residuals of all measures of epigenetic-based age 

accelerations by regressing each outcome on the mixtures of buccal epithelial cells and 

white blood cells estimated using the EpiDISH package in R (Zheng et al., 2018). To ensure 

that all outcomes are on the same scale, epigenetic-based age acceleration measures were 

z-transformed.

Parental Education and Life Course Health-Related Mediators—Parental SES was 

based on their highest formal educational attainment. When mother and father’s education 

were available, we used the highest education among them. Mothers’ life course health-

related mediators include mothers’ childhood Body Mass Index (BMI) trajectories, adult 

cardiovascular health behavioral risk score, and adult c-reactive protein (CRP). During the 

ten years of the NHLBI Growth and Health Study, data on girls’ BMI (kg/m2) was collected 

annually. Information regarding parental highest educational attainment (high school or 

less, some college, or college degree and higher) was collected during the follow-up study. 

Parental highest education was dichotomized into no college degree versus college degree 

and higher. Furthermore, mothers’ adult cardiovascular health behavioral risk score was the 

sum of Life’s Simple seven behavioral factors, including physical activity, diet quality, 

BMI, and smoking behavior. Each behavioral factor was rated as either poor (scored as 

0), intermediate (scored as 1), or ideal (scored as 2) based on the predefined criteria 

(possible range = 0–8; a higher score represents better health behavior) (Unger et al., 

2014). Finally, the mothers’ adult CRP was assayed from fasting blood specimens using an 

Immunochemiluminometric assay (ICMA) on the Integra 800. The intra-assay coefficient of 

variability (CV) was 1.3%, and the inter-assay CV was 3.1%. Due to normality concerns, the 

raw CRP values were transformed by natural log (ln).

Analytic Strategy—Analyses were divided into two parts. First, the association between 

grandparents’ education and grandchildren’s epigenetic age acceleration was examined 

using linear regression analysis, adjusted for grandchildren’s age (years) and sex (0 = 

male, 1 = female). Grandchildren’s BMI (kg/m2), mother’s childhood family structure (0 

= single parent, 1 = two parents), and mother’s current marital status (0 = others, 1 = 

currently married) were then added as an additional covariate in the fully adjusted model. 

Second, multilevel structural equation modeling (MSEM) was utilized to formally examine 

the mediating role of mother’s educational attainment and life course health-related factors, 

including childhood BMI trajectories, adult cardiovascular health behavioral risk score, and 

adult c-reactive protein (CRP). Our mediators comprised information from multiple levels of 
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analysis. In this analysis, mothers’ longitudinal childhood BMI from age 9–19 was nested 

within people, resulting in two levels of analysis (within- and between-person). Thus, we 

examined our mediational hypotheses using the multilevel structural equation modeling 

(MSEM) framework. MSEM framework combines the benefits of multilevel modeling and 

structural equation modeling in which nested data are partitioned into within- and between-

person components while simultaneously testing path models such as our hypotheses. The 

full hypothesized mediation model is presented in Figure S2.

Required pre-analysis steps were performed before running the hypothesized models, 

including extensive data assessment, cleaning, and missing data examination (Surachman et 

al., 2019). Data were inspected for the potential univariate (through standardized scores, |z| 

≥ 3.30) and multivariate (Mahalanobis Distance p < .001 and Studentized Deleted Residual 

greater than ± 4.00) outliers. We retained all the data as there was no evidence of severe 

or multivariate outliers. Missing data are minimal in the data set (see Table 1). Most of 

the missing data are related to information regarding mothers’ childhood BMI and mothers’ 

adult CRP.

We examined our mediational hypotheses by fitting the hypothesized model see Figure 2). 

Mothers’ childhood BMI trajectory was analyzed by fitting the random BMI trajectory slope 

based on the association between study wave and BMI at the within-person level. This 

slope represents the changes in BMI as the study progressed from baseline to wave 10. 

The random BMI trajectory slope was modeled at the between-level as a latent variable 

representing mothers’ latent childhood BMI trajectory. The full mediation model was tested 

at the between-person level, focusing on the mediating roles of latent mothers’ childhood 

BMI trajectory, education level, adult cardiovascular health behavioral risk score, and adult 

CRP on the association between grandparents’ educational attainment and grandchildren’s 

epigenetic age acceleration. Grandparents’ educational attainment was hypothesized to be 

directly associated with parental educational attainment and mothers’ latent childhood 

BMI trajectory. In turn, both parental educational attainment and latent childhood BMI 

trajectory were hypothesized to be associated with mothers’ adult cardiovascular health 

behavior risk score. Both latent childhood BMI trajectory and mothers’ adult cardiovascular 

health behavior risk score were hypothesized to be associated with mothers’ adult CRP. 

Finally, grandparents’ educational attainment and all the mediators were hypothesized to 

be associated with grandchildren’s epigenetic age acceleration. Indirect effects and their 

associated statistical significance were tested using the MODEL INDIRECT command 

(Mehta & Neale, 2005). For the full mediation model, there were 8 possible indirect effects, 

including: 1) Grandparents’ educational attainment → parental educational attainment → 
grandchildren’s epigenetic age acceleration; 2) Grandparents’ educational attainment → 
parental educational attainment → mothers’ adult cardiovascular behavioral risk score → 
grandchildren’s epigenetic age acceleration; 3) Grandparents’ educational attainment → 
parental educational attainment → mothers’ adult CRP → grandchildren’s epigenetic age 

acceleration; 4) Grandparents’ educational attainment → parental educational attainment 

→ mothers’ adult cardiovascular behavioral risk score → mothers’ adult CRP → 
grandchildren’s epigenetic age acceleration; 5) Grandparents’ educational attainment → 
mothers’ latent childhood BMI trajectory → grandchildren epigenetic age acceleration; 

6) Grandparents’ educational attainment → mothers’ latent childhood BMI trajectory 
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→ mothers’ adult cardiovascular behavioral risk score → grandchildren epigenetic age 

acceleration; 7) Grandparents’ educational attainment → mothers’ latent childhood BMI 

trajectory → mothers’ adult CRP → grandchildren epigenetic age acceleration; 8) 

Grandparents’ educational attainment → mothers’ latent childhood BMI trajectory → 
mothers’ adult cardiovascular behavioral risk score → mothers’ adult CRP → grandchildren 

epigenetic age acceleration.

The accuracy and fit of the models were assessed using multiple criteria, including 

various fit indices to determine the overall goodness of fit, evaluating whether there 

were specific areas of strain in the solution, and examining the magnitude, significance, 

and interpretability of the model’s parameter estimates (Mehta & Neale, 2005). The full 

hypothesized mediational model was then modified by removing the non-significant paths. 

All analyses were conducted using MPlus version 8.8 (Muthén & Muthén, 1998–2017). 

Throughout the analysis, we used the maximum likelihood estimation with robust standard 

errors to deal with missing data.

Results

Mothers’ and grandchildren’s characteristics based on grandparents’ educational attainment 

are shown in Table 1. Grandchildren’s age, sex, and BMI did not differ between 

grandparents’ education groups. Mothers with lower parental education (i.e., grandparent’s 

education = no college degree) tend to self-identify as Black. They are less likely to earn 

a college degree and marry or live with a partner. Mothers with lower parental education 

showed similar BMI compared to those with higher parental education when recruited to 

the study as girls. Significant differences in mothers’ childhood BMI based on grandparents’ 

education were evident during middle to late adolescence when they were around 15 to 19 

years old (see Table 1). In addition, mothers with lower parental education had worse adult 

cardiovascular health behavioral risk score but not c-reactive protein (CRP).

Grandparents’ Education and Grandchildren’s Epigenetic Age Acceleration

Adjusted for grandchildren’s age and sex, grandparents’ education was significantly 

associated with Horvath age acceleration (b = −0.33, SE = 0.13, p = .012). However, 

grandparents’ educational attainment was not associated with grandchildren’s Hannum (b 
= −0.21, SE = 0.14, p = .14), GrimAge (b = −0.15, SE = 0.14, p = .27), and PhenoAge 

(b = −0.18, SE = 0.14, p = .20) age accelerations, as well as DunedinPACE (b = 0.16, SE 
= 0.13, p = .23). Grandchildren with college degree grandparents showed slower Horvath 

age acceleration, relative to those with lower grandparents’ education. The associations 

between grandparents’ education and Horvath age acceleration remained significant in the 

fully adjusted model (Figure 2; b = −0.32, SE = 0.14, p = .021). Full results from regression 

analyses are presented in Supplemental Material 3.

Results from Mediation Analyses

Mediation analyses were conducted to formally examine whether parental educational 

attainment and life course health-related factors mediated the association between 

grandparents’ education and grandchildren’s epigenetic age acceleration. We only conducted 
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mediation analyses with the Horvath age acceleration measures since grandparents’ 

education was not significantly associated with other epigenetic-based age acceleration 

measures. The hypothesized mediation model was mostly supported when looking at 

parental education and life course health-related factors’ role in the association between 

grandparents’ education and grandchildren’s Horvath age acceleration (described below).

Grandparents’ Education, Parental Education and Life Course Health-Related Factors, and 
Horvath Epigenetic Age Acceleration

To test the hypothesized mediation model, we fitted the full mediation model (Figure 1). 

Most of the paths in the hypothesized model were statistically significant (see Supplemental 

Material 4). The hypothesized model was simplified by excluding the non-significant 

paths. We refer to the modified model as the final model. The final model showed a 

better fit than the full hypothesized model (Hypothesized model: AIC = 23566.89, BIC 
= 23757.74, Adj. BIC = 23652.89; Final model: AIC = 23564.82, BIC = 23732.53, Adj. 

BIC = 23640.39). The results from the final model are presented in Figure 4A. In the final 

model, grandparents’ educational attainment was associated with both parental educational 

attainment (Est = 0.35 SE = 0.07, p < .001) and mothers’ childhood latent BMI trajectory 

(Est = −0.16, SE = 0.07, p = .014). Higher grandparents’ educational attainment was 

associated with higher parental educational attainment and slower childhood BMI increase 

from ages 9 to 19. In turn, higher parental educational attainment (Est = 1.38, SE = 

0.24, p < .001) and slower BMI trajectory (Est = −0.88, SE = 0.30, p = .003) were 

significantly associated with better adult cardiovascular health behavioral score. Slower 

mothers’ childhood BMI trajectory was also associated with lower mothers’ adult CRP 

(Est = 0.86, SE = 0.17, p < .001). Similarly, better mothers’ adult cardiovascular health 

behavioral score was associated with lower mothers’ adult CRP (Est = −0.18, SE = 0.04, 

p < .001). Finally, mothers’ adult CRP was significantly associated with grandchildren’s 

Horvath age acceleration (Est = 0.16, SE = 0.05, p = .003). Lower mothers’ adult CRP 

was associated with slower Horvath accelerated biological age. The association between 

grandparents’ education and Horvath age acceleration remained significant in the final 

mediation model (Est = −0.29, SE = 0.13, p = .023; Figure 3A). The total indirect effect, 

including all four mediators, was significant (Est = −0.04, SE = 0.02, p = .028; Figure 4B). 

The only significant indirect effect of grandparents’ education on grandchildren’s Horvath 

age acceleration was through parental education, adult cardiovascular health behavioral risk 

score, and adult CRP (Est = −0.013, SE = 0.006, p = .036; Figure 4B). Covariates added to 

the model include grandchildren’s age, sex, BMI, mother’s childhood family structure, and 

mother’s marital status.

Discussion

This analysis was among the first to examine the impact of maternal early life SES on their 

offspring’s (ages 2–17) epigenetic marker, specifically epigenetic-based age acceleration. 

Utilizing the information collected from three-generation (grandparents’ education, parental 

education, and life course health-related factors, and grandchildren’s epigenetic age), we 

found that grandparents’ educational attainment, a proxy of socioeconomic context of 

maternal early rearing, was significantly associated with grandchildren’s epigenetic clock 
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age acceleration, especially Horvath age acceleration. Adjusted for sex and age, we found 

that grandchildren whose grandparents achieved a college degree showed slower biological 

age acceleration based on Horvath age acceleration measures. This significant association 

remained even after the adjustment for grandchildren’s BMI, mothers’ childhood family 

structure, and mothers’ current marital status.

This analysis adds to the increasing number of empirical studies examining epigenetic age 

among children and adolescents. However, previous studies primarily focused on the impact 

of concurrent early life social disadvantage on accelerated biological age, including lower 

family and neighborhood SES (Raffington et al., 2021), early threat-related experiences 

(Sumner et al., 2019), and cumulative adverse childhood experiences (Tang et al., 2020). 

This analysis adds to the critical role of parental early life socioeconomic experience in 

shaping children’s biological age. Our findings suggest that intergenerational socioeconomic 

advantage (i.e., higher grandparent education) might help slow down the biological age 

acceleration in early life. This ability to conserve the speed of biological aging may have 

considerable consequences in shaping health trajectories across the lifespan, especially in 

adulthood. However, more studies are needed to examine this hypothesis.

Understanding the biological and psychosocial pathways that might explain our findings is 

critical. We examined whether the association between grandparents’ educational attainment 

and grandchildren’s epigenetic age acceleration was mediated by parental educational 

attainment and life course health-related factors, including childhood BMI trajectories (age 

9–19), adult cardiovascular health behavioral risk score, and adult inflammation (CRP). We 

found that while these factors did not fully explain the association between grandparents’ 

educational attainment and grandchildren’s epigenetic age acceleration, they were important 

mediators that explained 14.5% of the association between grandparents’ educational 

attainment and grandchildren’s Horvath age acceleration.

These findings raise multiple important points regarding the mechanisms of 

intergenerational transmission of social disadvantage and health through maternal factors. 

Our analysis found a moderate association between grandparents’ and parental educational 

attainment. More importantly, we showed that these intergenerational SES contexts were 

associated with maternal health-related factors that may be associated with the epigenetic 

age of the grandchildren. First, we showed that grandparents’ education was associated 

with mothers’ BMI trajectories from age 9 to 19. This finding corroborates previous 

findings on the association between lower childhood SES and a higher probability of 

obesity (Frederick et al., 2014). In turn, we showed that steeper BMI trajectories were 

associated with two crucial maternal health-related factors in adulthood, adult cardiovascular 

health behavioral risk score and CRP. Other studies have shown similar results on the 

critical role of childhood BMI trajectories in shaping adult health outcomes, especially adult 

inflammation (Goosby et al., 2016). While we did not find a significant association between 

parental educational attainment and adult CRP, we showed that parental education was 

significantly associated with adult cardiovascular health behavioral risk score that, in turn, 

linked to CRP. Finally, we showed that mothers’ adult CRP was directly associated with 

grandchildren’s Horvath age acceleration. Together, these findings suggest that accumulating 
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SES advantages and disadvantages across generations may play a critical role in the 

intergenerational transmission of health.

The mechanisms for the transmission of grandparent SES to offspring epigenetics are 

unknown. While we showed that mothers’ adult CRP correlated with their offspring’s 

epigenetic age, this does not explain the mechanism of how DNA methylation is transmitted 

from mothers to their children. Here, we can only speculate. There could be direct 

transmission across generations of methylation patterns that are measured in the epigenetic 

clock composites. A likely pathway could be through fetal programming during the mother’s 

pregnancy that influenced offspring epigenetics. Another hypothesis is that mothers’ early 

life exposure to socioeconomic disadvantage is associated with the programming of the 

mother’s immune system, leading to pro-inflammatory tendencies. Maternal dysregulation 

of the immune system can directly impact the pregnancy environment and, eventually, the 

offspring’s health outcomes. Furthermore, our findings show that lower early life SES was 

also associated with a higher risk of obesity and unhealthy behavior. These factors can 

also lead to chronic low-grade inflammation in adulthood, alter the biological environment 

during pregnancy, and compromise fetal development.

Study strengths and limitations

The growing rates of socioeconomic inequality and the persistent health disparities 

in the United States require a better understanding of the intergenerational impact 

of socioeconomic disadvantage on health. This analysis took advantage of the multi-

generation design provided by the NHLBI Growth and Health Study and the follow-up 

National Growth and Health Study (NGHS). The historic and follow-up study’s combined 

information provided a unique opportunity to examine an important question regarding 

the association between maternal early life SES and their offspring’s epigenetic age. In 

addition, we took advantage of the longitudinal information from the historical data of the 

NHLBI Growth and Health Study, specifically focusing on BMI trajectories throughout 

the teenage years. We utilized advanced statistical modeling, namely multilevel structural 

equation modeling, to simultaneously examine the pathways from grandparents’ educational 

attainment to grandchildren’s epigenetic age through maternal socioeconomic and life 

course health-related factors. In light of these strengths, this analysis also has several 

limitations. While these studies included a diverse sample, they were recruited from the Bay 

Area, CA. Hence, the generalizability of these findings is limited. However, we showed that 

the Contra Costa County participants in NGHS showed similar childhood sociodemographic 

characteristics to the rest of the NHLBI Growth and Health Study participants from 

other study sites. Being a longitudinal cohort study, there were missing values among 

various measures. We addressed missing values through our analytical methods using 

robust maximum likelihood estimation with robust standard errors, which allowed us 

to retain the entire sample. Furthermore, we cannot differentiate maternal and paternal 

grandparents’ educational attainment in this analysis. Future studies should prioritize 

replicating this study by dissecting the different pathways from maternal and paternal 

grandparents’ education. In addition, our indicator of SES was limited to educational 

attainment, and future analyses should attempt to include other indicators of socioeconomic 

factors, including income, wealth, and subjective social status. Finally, the transmission of 
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the socioeconomic disadvantage process is highly likely influenced by the structural factors 

known as crucial social determinants of health, such as residential segregation and systemic 

racism. Future investigation should attempt to test the role of these factors on the epigenetic 

intergenerational transmission of disadvantage.

Conclusion

In this analysis, we examined three generations (grandparents, mothers, and grandchildren) 

to assess the association between grandparents’ educational attainment and their children’s 

epigenetic age and whether the association was mediated by parental educational attainment 

and life course health-related factors. Grandchildren with college-educated grandparents 

showed significantly slower epigenetic clock age acceleration than those without college 

degrees. The association between grandparents’ education level and grandchildren’s 

age acceleration, especially Horvath age acceleration, was partially mediated by 

parental socioeconomic and health-related factors, especially parental education, mothers’ 

adult cardiovascular health behavioral risk score, and mothers’ CRP levels, but not 

mothers’ childhood BMI trajectory. This analysis provides evidence that intergenerational 

socioeconomic advantages can slow down the biological age acceleration in early life. This 

ability to conserve the speed of biological aging may have considerable consequences in 

shaping health trajectories across the lifespan.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Selection of the analytic sample in this analysis. Out of 533 grandchildren recruited to 

participate in the follow-up NGHS study, 287 did not provide saliva samples due to not 

being the youngest or not returning samples, resulting in 246 youngest grandchildren who 

provided saliva samples. The final analytic sample include 241 grandchildren with available 

epigenetic-based age acceleration measures.
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Fig. 2. 
Variables included in the current analysis came from the National Growth and Health 

Study 1 (1987–1997) and the follow-up National Growth and Health Study 2 (2016). 

The combined information resulted in data from three-generation, including grandparents 

(F0), mothers (F1), and grandchildren (F2). The gray line represents the main goal of the 

current analysis, to examine the association between grandparents’ educational attainment 

as a socioeconomic context of mothers’ early rearing on grandchildren’s epigenetic-based 

age acceleration. The black lines represent the hypothesized mediational model of the 

pathways from grandparents’ education to grandchildren’s epigenetic age through parental 

education and mothers’ life course health-related factors (childhood BMI trajectories, adult 

cardiovascular health behavioral risk score, and adult inflammation).
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Fig. 3. 
The association between grandparents’ education and epigenetic-based age acceleration 

measures (z-tranformed). In Model 1, grandchildren’s age (years) and sex (0 = male, 1 

= female) were included as covariates. In Model 2, the grandchildren’s body mass index 

(BMI; kg/m2), mother’s childhood family structure (0 = single parent, 1 = two parents), 

and mother’s current marital status (0 = others, 1 = currently married) were added as an 

additional covariate. Having grandparents with college degrees was associated with slower 

Horvath age acceleration in both minimally adjusted and full models.
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Fig. 4A. 
The final model from the mediation analysis using multilevel structural equation modeling 

testing the mediating role of parental education and life course health-related factors on the 

association between grandparents’ education and grandchildren’s Horvath age acceleration. 

The circle represents a latent variable. Solid lines represent significant paths. S1 represents 

the random slope of the association between the study wave and mothers’ childhood BMI. 

At the between-person, S1 represents the latent mothers’ childhood BMI trajectory from age 

9 to 19. Covariates added to the model include grandchildren’s age, sex, BMI, mother’s 

childhood family structure, and mother’s marital status.
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Fig. 4B. 
Indirect effects from the final MSEM model. The total indirect effect was significant (Est = 

−0.04, SE = 0.02, p = .028), and the indirect path through parental education, mothers’ adult 

health behavior, and adult CRP was also significant (Est = −0.013, SE = 0.006, p = .036).
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