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ABSTRACT OF THE DISSERTATION

MINA: A Multinetwork INformation Architecture in Cyber Physical Systems/Internet of
Things Environments

By

Zhijing Qin

Doctor of Philosophy in Networked Systems

University of California, Irvine, 2015

Professor Nalini Venkatasubramanian, Chair

Recent advances in embedded computing, networking, and related information technologies

have made it feasible to create Instrumented Cyber Physical Spaces (ICPSs) that are tech-

nologically cutting-edge and exemplary of highly instrumented spaces of the future. Such

ICPSs integrate a variety of sensing devices to create a digital representation of the evolv-

ing physical world that can then be exploited by applications for a variety of purposes.

The networking landscape of today, especially in Instrumented Cyber Physical Spaces, is

characterized by diverse access technologies including cellular, WiFi, Ethernet, MANETs,

and ZigBee, and properly managing this heterogeneous networking infrastructure is a key

challenge to take full advantage of its many opportunities.

In this thesis, we propose MINA (Multinetwork INformation Architecture), a reflective (self-

observing and adapting) middleware approach to realize and manage dynamic and het-

erogeneous multi-networks in CPS/IoT environments. A novel aspect of MINA is that it

embodies an Observe-Analyze-Adapt (OAA) loop to a) achieve a reasonably accurate, cen-

tralized global view of the multi-network through the design of novel techniques for overlay

structuring, network state collection, b) employ formal methods to perform network state

analysis and answer questions in network management domain such as: which nodes are more

ix



important and should be protected? and c) take advantage of the global view for adapting

multi-network structure by reallocating application flows across networks and proactively

planning and deploying additional network resources. For each step in the OAA loop, we

have proposed, implemented and evaluated several sophisticated methodologies to achieve

certain objectives on the networking simulator platform. To demonstrate the validation of

MINA, we designed, implemented and thoroughly evaluated a set of software over multiple

networks and platforms. The results shows that MINA actually improves the exploitation

of multi-network capabilities.
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Chapter 1

Introduction

In this thesis, we study several research problems to enable the management of multiple net-

works in Cyber Physical System/Internet of Things (CPS/IoT) environments. Technology

advances have created a wide range of computing devices equipped with different sensing,

computing and networking capabilities. Today, consumers can use smart phones to capture

different types of sensor data communicated to the cloud via different network interfaces;

cameras can provide surveillance coverage in a Cyber Physical Space; vehicles can share

road trip information via multiple hop short range communications, etc. Such kind of het-

erogeneity poses significant challenges on efficient and effective network management. This

dissertation tries to identify those challenges and overcomes them accordingly via different

methodologies. In this chapter, we begin by presenting the motivation behind our research

in Sec. 1.1. We then state our thesis problem, research challenges and lay out the scope of

work within the thesis in Sec. 1.2. Finally, we highlight our contributions in Sec. 1.3.

1



1.1 Motivation

Technology advances in sensing, architecture and communication in Cyber Physical Spaces

are creating a rich and complex networking scenario characterized by an increasing number

of pervasive devices equipped with notable computational hardware, multiple communi-

cation interfaces, and diverse sensing capabilities. For instance, today’s personal devices

(smartphones, tablets) are multifunctional sensing, storage, computation, and communi-

cation platforms. They provide multiple connectivities (e.g. UMTS/HSDPA/LTE,IEEE

802.11X, BlueTooth) to support trade-offs between connectivity, bandwidth and economic

costs. They balance connectivity, bandwidth and economic costs by exploiting multiple con-

nectivities (e.g. UMTS/HSDPA/LTE, IEEE 802.11a/b/g/n, BlueTooth).Other examples

include: fixed surveillance cameras or mote devices for environmental sensing; personal-

ized body-area sensing platforms for healthcare;smart vehicles that sense and communicate

with other vehicles and roadside devices; and general-purpose mobile devices for participa-

tory sensing. Such devices utilize heterogeneous, often intermittent networks at the edge

(ZigBee, BlueTooth, PANs, MANETs, IEEE DSRC, mesh) that interface with higher ca-

pacity, relatively fixed backbone networks (e.g wired IP, 3G/4G, WLAN, WiMax, satellite).

Today’s devices can also provide connectivity in a peer-to-peer unplanned manner to create

mobile hotspots and share connectivity with nearby devices. Such diverse capabilities enable

connectivity and communication on a broader scale than ever before, including crowdsens-

ing [42], mobile social networks [72], peer-oriented media sharing [87], lifelogs [56] and so

on [11, 76, 9].

Such multi-network scenarios represent several notable advantages for end consumers, net-

work providers, and network administrators. For instance, users may exploit multiple net-

working opportunities to reliably access remote services and seamlessly share resources. More

pervasive services can be designed and provided generally regardless of the specific network

environment at run time. From a provider perspective, the ability to deploy multiple diverse

2



networks simultaneously increases capacity and facilitates the satisfaction of a larger number

of traffic requests without deployment of additional equipment. Network administrators can

get a unified view above the multiple physical networks and can also better manage the

network through the cooperation of multiple networks.

However, pushing the communication envelope toward the exploitation of any and all avail-

able networks has its challenges, primarily due to the diverse nature of traffic and the dis-

tributed, dynamic nature of the multiple connectivities. First of all, changes, such as those

induced by mobility or newly sensed events, are frequent and can reduce communication re-

liability and information quality in traditional network architectures. Second, Failures, such

as those triggered by a natural disaster, can cause significant loss of connectivities at critical

moments. Third, network resources are provisioned in an isolated (for a single network) and

mission-oriented manner, with little or no visibility for the whole network topology or state.

Our past experiences dealing with heterogeneous networks (within the Irvine Sensorium

infrastructure at UC Irvine [52], disaster response drills with local California agencies [83, 81]

and the RAMP spontaneous networking platform developed at U. of Bologna [12]) have

indicated that changes, such as those induced by mobility or newly sensed events, are frequent

and can reduce communication reliability and information quality in traditional network

architectures. Failures, such as those triggered by a natural disaster, can cause significant

loss of connectivities [28] at critical moments. Often, network resources are provisioned in

an isolated (for a single network) and mission-oriented manner, with little or no visibility

for the whole network topology or state. The exploitation of multi-network resources was

often uncoordinated; static offline network planning strategies are not designed for dynamic

deployment of connectivities when and where they are needed. All of this points towards a

need for a structured approach to multinetwork management.

3



1.2 Thesis Problems, Challenges, and Scope

1.2.1 Problems

In this thesis, we propose MINA (Multi-network INformation Architecture), a middleware

approach that realizes and manages dynamic and heterogeneous multi-networks in pervasive

environments. MINA has a centralized server that collects network information from each

client device and sends hints/commands back after some intelligent analysis to maintain the

effectiveness and robustness of the whole network. More specifically, we aim to solve three

major problems in MINA:

Efficient Topology Management with Heterogenous Networks and Devices through

Network Monitoring. CPS/IoT spaces consist of heterogeneous devices characterized by

mobility and dynamicity. Devices move around incurring potential communication handover

and resulting in changes to routes/paths to the moving nodes. THe MINA server collects

network state information from many stationary and mobile devices using a Convergecast

communication pattern - this requires changes to existing topology management and network

monitoring mechanisms.

Efficient Modeling and Analysis of Multinetwork State Information. Once the

MINA server has network state information from a huge number of devices, one may pose

the question of what can be derived from this collected data? Given the dynamicity of the

networking environments, how quickly should we derive this knowledge? From a scalability

perspective, what does the analysis look like when the scale of the network grows?

Flexible Control and Adaptation on Multinetworks. The ultimate goal of MINA

is to be able to control and adapt the multinetwork cooperatively based onthe specifics

of knowledge that can be derived, to facilitate a broad range of applications executing over

multinetworks. Our final problem is the design of a flexible framework that is able to meet the

4



individual goals of heterogeneous applications given the heterogeneous nature of underlying

infrastructure.

1.2.2 Challenges

There are challenges in each problem mentioned above.

Challenges in Topology Management and Network Monitoring:

• Heterogeneity : Devices in Multinetwork Environments have different computing, sens-

ing and networking capabilities. Some devices have plug-in power supply and huge

storage and high CPU frequency, while others have battery supply and limited storage

and computation capabilities. Similarly some devices have reliable and high speed Eth-

ernet connections, while some have lossy and unreliable wireless connections. Topology

management and network monitoring design policies should take this heterogeneity

into account, by pushing more computation workloads and network traffic aggregation

points to the nodes having stronger capabilities. For less-capable devices such as sen-

sors and smart phones, energy is a critical issue. Proper energy saving policies should

be designed for those kinds of devices.

• Mobility : Mobility of sensors and smart phones cause communication links to go up and

come down between devices and networking infrastructures (e.g. smart phone and wifi

hotspot), devices and devices (e.g. bluetooth connections between two smart phones).

Many mobility management mechanisms exist in infrastructure networks, such as cel-

lular networks, to reduce the negative effect of link disconnection. In mobile ad hoc

networks, self-organized protocols are designed so that a node can always find another

one via message changes over neighbors. However, those solutions do not work well

in multinetwork environments given both infrastructure and ad hoc connections often
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coexist. Different topology management mechanisms may be deployed based on the

availability of underlying networks accordingly. Further, to enable centralized network

information analysis, topology management should be handled by a centralized server.

In this case, additional to be considered include scalability and traffic aggregation.

Challenges in Modeling and Analysis of Information

• Dynamicity : The Multinetwork setting is highly dynamic. Constant movement of

nodes results in frequent disconnections/reconnections of the communication network.

Devices may not be accessible due to battery power depletion or malfunction, and

new devices might be added in by new users or deployed by network administrators.

Application flows start and end at arbitrary times. This level of dynamicity requires

a highly available backend that is capable of quickly capturing and communicating

Multinetwork state so that accurate analysis can be performed, especially from the

temporal perspective. Another challenge here is the determination of which informa-

tion is necessary and which is redundant or can be derived/predicted from existing

information.

• Scalability requirements : Modeling and analysis require resources in terms of CPU,

memory and bandwidth. MINA’s centralized server csn accommodate network state

information from a small size of devices. However, with the increasing number of

devices in Multinetwork, both the changes of state and network information volume

increase as well. It is fatal if there is no specific techniques dealing with scalability

issue. Traditional solutions usually employ distributed clusters to scale the system.

However, this will impose more complexity on both design and implementation.

Challenges in Mutinetwork Control and Adaptation

• Application traffic heterogeneity : Applications running over mutinetworks in CPS/IoT
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environments vary - they include control information from power networks with small

size data (a dozen of bytes) to images captured by road camera networks(megabytes),

from voice data generated by fire alerts with a bursty pattern to video surveillance data

with a flat rate. Application packet sizes and flow patterns have significant impacts on

networking infrastructure, including wireless interference levels, loss rate, congestions,

and inter flow contentions, etc. Taking this heterogeneity awareness into account allows

the MINA server better profile the whole system and make reasonable adaptations back

to the applications.

• Various performance requirements and metrics : Different applications have different

performance requirements or metrics. File transfer applications require higher through-

put; Tele audio applications require less delay; Video streaming applications require

less jitter; Alert massages require low loss rate. Having a good understanding of net-

work infrastructure and application profile, it is critical to take individual application

requirements into account in the control and adaptation step.

1.2.3 Scope

To lend focus, we scope multinetwork management based on the following characteristics in

this dissertation:

Tree-Based Overlay Construction and Path duration modeling : To deal heterogeneity and

mobility of the underlying nodes, we proposed a Tier based architecture in which more

stable and stationary nodes are placed on the upper tier while mobile nodes reside on the

lower tiers. We further attempt to construct and maintain a tree based overlay with the

centralized server as root, to manage the topology without incurring much network traffic

overhead. In addition, we also studied a path duration model so that a mobile node can

predict when a path towards to server is down and up so that it can control its neighbour
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discovery heat beat messages to reduce network traffic overhead further without degrade the

topology management effectiveness.

Formal Method Based Network State Information Analysis : We employed a light weighted,

high level formal language to specify, execute, and reasoning our multinetwork, to deal with

dynamicity and scalability issues. The high level features of the formal method enable us

to analyze multinetwork very quickly regardless of networking cross layer communication

details. More important, the increase of the network scale would not bring more complexity

into the analysis.

Software Defined Networking Based Flow Scheduling : We adopted the novel Software Defined

Networking (SDN) paradigm into Multinetwork control and adaptation. Specifically, we have

a novel SDN controller designed for CPS/IoT environment. It acts like a bridge: it reads

heterogeneous flow patterns from upper layer applications (north bound), matches them

with the heterogeneous network links, it then reroutes the flows (south bound) via proper

network links so that the individual flow requirements can be met.

1.3 Thesis Contributions and Organization

In this dissertation, we address the challenges in Multinetwork Management in CPS/IoT

environments.

A key aspect of MINA is that it implements an Observe-Analyze-Adapt (OAA) loop to guide

the configurations, state management and coordination of the multi-network (Section 3). The

overall OAA flow empowers the multi-network to make communication decisions locally or

higher up in the hierarchy using available knowledge of network status while accounting for

tolerance parameters (timing, accuracy, reliability). In the Observe step (Section 4), we

create and maintain a hierarchical overlay structure that captures the underlying networks’
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dynamic and heterogeneous nature and employ a path duration modelling methodology that

effectively predicts the path duration time in data collection scenarios. The Analyze step

(Section 5) is augmented with a formal methods driven approach that supports both proactive

and semantics-driven “what-if” analysis of the collected network state information. In the

Adapt step, we borrowed the Software Defined Networking philosophy from Data Center

Network to schedule heterogeneous application flows over heterogeneous networks in order

to satisfy each individual flow’s QoS requirements.

We point out that MINA is effectively a reflective middleware system for multi-network man-

agement; the OAA approach inherently embodies computational reflection principles [59].

The reflective feature in MINA is realized through the interaction between the MINA mid-

dleware (the meta-level) and the underlying multi-network environment (the base-level).

MINA observes network state (implementing reification), analyses it to determine what is

adapted and implements adaptations based on application context and observed network

state (implementing reflection). The multi-network state is stored in a DB, as a meta-level

representation of the underlying system state. The reflective approach is also a natural fit

for the growing Software Defined Networking paradigm that aims to manage heterogeneous

networks in an abstract, high-level, and logically centralized way. To the best of our knowl-

edge, MINA is the first system to implement a reflective middleware approach and utilize

on-the-fly, lightweight formal methods in the context of multi-network management.

The dissertation is organized as follows. In Chapter 2, we present existing work on network

management systems and their limitations. We illustrated MINA design philosophy and

architecure in Chapter 3. Chapter 4 is dedicated to presenting our overlay algorithms and

path duration modelling techniques in observe step. In Chapter 5, we describe how we employ

formal methods to perform analysis on multinetwork state information and how we use it to

adapt the network. Chapter 6 shows how the Software Defined Networking techniques can

be utilized in MINA to obtain better performance in terms of individual flow QoS fulfilment.
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We described the details of MINA implementations in Chapter 7. Finally, in Chapter 8, we

conclude the thesis and discuss some interesting future research directions.
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Chapter 2

Related Work

There are bunch of related work in individual network management in the past several years.

Single Network Management The most famous work, which became a mature standard

on Internet management, is Simple Network Management Protocol (SNMP). It is an ap-

plication layer protocol that facilitates the exchange of management information between

network devices. It denes a protocol for communication of queries and responses, and also

set an agent for sending responses within a network [1]. SNMP operates on top of the UDP

or TCP transport protocol and relies on a functioning IP layer to route information. In the

Internet, the Internet Control Message Protocol (ICMP) provides a mechanism to send error

messages when services on routers and hosts are not available.

LNMP [2] is a management architecture for IPv6 based low power wireless personal area

networks [2]. It has an operational architecture that defines three kinds of nodes: end

device, coordinator, and gateway. The coordinator collects network state information from

end device and sends it to the gateway. Then the gateway will forward the information to the

database. It also has information architecture which defines the state information structure

for four layers: physical layer, mac layer, adaptation layer and network layer.
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MeshMan[3] is a network layer agnostic, low overhead solution to network management to

cope with unreliable wireless channels, link and network dynamics in wireless mesh networks.

It combines the concepts of source routing with hierarchical addressing, and provides a native

efficient query interface. Its core parts include: hierarchical addressing, adoption protocol,

and management traffic routing.

SNSP [4] is a sensor network management system designed to be simple and have minimal

impact on memory and network traffic, while remaining open and flexible. It is an application

cooperative management system with two core services: a query system to enable rapid, user-

initiated acquisition of network health and performance data; and a logging system to enable

recording and retrieval of system-generated events.

Hybrid Network Communications: There are also some works focuses on communica-

tion on hybrid networks. MMHC [5] uses mobility/throughput/energy context to manage

connectivity opportunities effectively on wireless and blue tooth hybrid networks. The key

ideas are: i) of exploiting context data to reduce the space of potential candidates for selected

connectivity opportunities and ii) of splitting management operations into a local phase and

a global phase.

RAMP[6] is actually a service framework based on MMHC. It provides simple and wide-

accepted communication abstractions for general purpose application need. Also it enables

a set of services dynamically and temporarily offered by spontaneous network(BT, Wifi)

peers.

UCAN[7] is Hybrid network of 3G and wireless ad hoc network for data delivery. The idea

is 3G station forwards messages for nodes with poor link to proxy nodes with good link, and

the proxy nodes then use ad hoc network to forward the data to the appropriate node.

Industrial Products on Network Management: Recent industrial efforts (e.g., Cisco

Prime Infrastructure [23], HP OpenView [74], and SpiderCloud [88]) aim to address the
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challenges of multi-networking and the integrated synergistic management of heterogeneous

wireless networks. To date, these efforts have focused on exploiting lower-layer features

specific to an access network or network-layer contexts, typically via new Layer 3 proto-

cols [98, 92, 39, 65].

Limitations: For those work on individual network management, the limitation is they only

focus on single network and cannot be applied in multinetwork environment. For those work

on multinetwork communication, they do not provide management functions for the hybrid

network they use. Even in MMHC which claims it has connectivity management, there are

also no concrete functionalities for network management. Industrial products focused on

low-layer features specific to access networks and vendor provided devices. Lack of analysis

and control of the network from global perspective.

For industrial product, these solutions still manage networks in a low level, distributed, and

vendor-specific manner which is error-prone and inefficient. In other words, State-of-the-art

related approaches have not addressed effectively yet the need for effective scalability over

large deployment environments, especially when dealing with global network management

optimization goals in a lightweight and dynamic way.
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Chapter 3

MINA Architecture and OAA Design

Philosophy

In this section, we will describe the motivation and rationale behind the overall management

architecture and system design of the MINA framework. While MINA realizes management

functionalities similar to those of current network management platforms, it specifically fo-

cuses on addressing issues arising from heterogeneous networks in a pervasive computing

environment. For instance, key tasks include performance management, configuration man-

agement, fault analysis and recovery, and network operations and security management.

MINA’s fundamental difference lies in its ability to perform the above tasks while handling

the diversity and dynamic nature of the constituent network platforms.

Tier-Based Architecture and OAA Approach: The underlying systems managed by

MINA are dynamic, heterogeneous and large. To support scalability to large number

of diverse nodes, MINA is designed as a tiered, hierarchical architecture (see Fig. 3.1(a)).

The higher levels of the tiered architecture are more stable (i.e. stationary) and resource-

rich, aggregating information from other lower, more mobile and less stable nodes. At the
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heart of the MINA system (Tier 1) is a centralized server that collects and analyzes the

network state information from each device. Stationary, resource-capable nodes (e.g. those

with Ethernet connections like routers, access points, and stationary PCs) are designated

as Tier 2 nodes. Tier 3 typically consists of mobile nodes (e.g. smartphones, laptops, and

tablets) that connect to Tier 2 nodes, either directly or by intermediate relay nodes, via

multiple kinds of wireless radio networks. The MINA multi-tier architecture exploits the

diverse capabilities of the network nodes, more effectively supporting node mobility. In fact,

upper tier nodes assume a larger fraction of the computation and communication workload,

while less capable (and more dynamic) mobile nodes are relegated to lower levels of the tiered

architecture.

(a) (b)
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Figure 3.1: Tier-based Architecture and OAA Paradigm

To capture and support dynamicity, MINA’s design is based on an Observe-Analyze-Adapt

(OAA) approach (see Fig. 3.1(b)). A self-observing, introspecting system monitors the dy-

namically changing multi-network state, analyzes state information streams, and adapts the

multi-network usage and configuration to ensure reliable communication functionality for

the end applications. MINA enforces interactions between nodes in the tier to realize the

OAA management approach.

The Observe step (see Chapter 4 for more details) collects network state information from
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nodes in Tiers 2 and 3. The key objective here is to balance trade-offs between state accuracy

(at the server) and state capture overhead. Accurate state capture requires reliable com-

munication of state information despite dynamic connectivities. We employ reliable overlay

construction mechanisms that exploit the relatively stable nature of Tier 2 nodes for this

purpose. To reduce overhead for state capture, we devise quality-aware data collection pro-

tocols that only communicate state information when required and at granularities dictated

by the applications at hand (e.g. QoS performance of flows). Collected state information is

stored in a state database at the server.

The Analyze step (see Chapter 5) processes state information for the management tasks

at hand (e.g. fault and performance management). While current systems largely rely on

query-driven data analytics executed on the information in the network state DB, MINA in-

troduces a novel approach based on lightweight formal methods to this step. MINA captures

a formal executable specification of the multi-network system and instantiates the formal

model using dynamic state information from the network state DB to conduct a semi-online

reasoning of the current multi-network state for varied analyses. The formal methods ap-

proach captures and represents multi-network information at higher levels of abstraction to

realize tremendous benefits. It simplifies analysis and allows us to conduct “what-if” analy-

sis to suggest to network operators options which improve multi-network execution. It also

allows us to embed higher level context and semantics in a simple manner, creating new

possibilities for adaptations at levels outside of the network. And finally, it allows us to

embed higher level context and semantics in a simple manner, creating new possibilities for

adaptations at levels outside of the network. We will illustrate examples for achievement of

the tasks above in our evaluation via real world case studies (see Chapter 5).

The Adapt step (see Chapter 6) leverages information from the analysis step to adapt the

structure of the multi-network, flow of content, and augment the network with new de-

vices and components through operator intervention. More specifically, MINA adopted the
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Software Defined Networking paradigm from the Data Center Networks and a layered SDN

controller is installed in MINA server, which is tailored for computing in Cyber Physical

System. The primary objective in this step is to schedule flows with various QoS require-

ments above heterogeneous networks so that each individual flow’s QoS requirements can be

fulfilled.

The three steps described above are implemented through simple modules at the MINA

client side (local state capture, local control for adaptations) and more powerful capabilities

(global state assimilation, storage, analysis, logical adaptation etc.) at the MINA server.

Delving into finer details, the MINA workflow can be summarized as follows. MINA’s

centralized server collects, monitors and analyzes state information from each device in

the network. Typically, the centralized server resides on a device managed by a network

administrator, eventually minimizing human operator involvement through formal methods

and autonomous software components. One of the server’s primary tasks is initiation and

coordination of the construction of the overlay network that realizes the tiered/hierarchical

architecture described above. Once the overlay is set up, the MINA server maintains the

overlay and continuously collects network state information in order to actively monitor the

managed environment; every client collaborates sending local state information to the server

along the overlay links. Additionally, Tier 2 nodes (with more computing resources) may

aggregate state information from Tier 3 nodes to reduce messaging overhead and bandwidth

usage during state collection. Collected state persists in a Network state Information

Base (NIB) for later analysis, e.g. to efficiently provision networks for various tasks, detect

possible faults and unexpected behaviors, and apply formal reasoning methods for fault

detection. Based on the results of the analysis, commands and hints for management of

traffic and requests from nearby other devices may be sent to clients. Every client receives

configuration hints or commands in order to (try to) recover from faults or to improve the

overall network performance.

17



In the following Chapters, we will discuss the algorithms deployed in each step in details.

And in Chapter 7, we will demonstrate the implementation of MINA Server, Client and

Network Information Base.
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Chapter 4

Observe:Topology Management and

Network Monitoring

In this chapter, we study how MINA manages the multinetwork topology given network

heterogeneity and mobility. More specifically, the MINA server constructs and maintains a

tree-based overlay network following the tier-based approach (Fig. 3.1(a)) by dynamically

evaluating nodes and placing them at the tier best fitting their capabilities. The overall goal

is to ease the topology management and data collection in multiple heterogeneous networks.

4.1 Problem Description and Motivation:

Our past experiences dealing with heterogeneous networks in controlled instrumented envi-

ronments (within the Irvine Sensorium infrastructure at UC Irvine, disaster response drills

with local California agencies, and the RAMP spontaneous networking platform at U. of

Bologna [13]) have yielded several observations [28]: a) Failures are likely to happen fre-

quently in multi-networks, most of the time without the capability to diagnose the problem
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on the spot, reconfigure computers, swap/recharge batteries, or change cables. b) Current

network deployments (WiFi infrastructures, cellular, etc.) are sensitive to noise. Even lim-

ited network noise can cause a significant drop in information quality especially for rich

media data; in such cases exploiting alternative ad-hoc and spontaneous communication can

be beneficial. c) Changes to the underlying network topology, especially those changes in-

duced by mobility, further reduce reliability. To address these challenges, it is of primary

importance to efficiently and promptly spread state information among nodes in different

networks.

Specifically, this chapter proposes the Tree-based Overlay over Multinetwork, whose main

purpose is to ease the topology management of multiple heterogeneous networks. The MINA

server creates and manages a tree-based overlay to proactively spread management informa-

tion among nodes in inter networking and heterogeneous spontaneous networks; in this way,

it can be exploited to efficiently achieve a global view of network conditions. This allows

MINA to make more effective network management decisions based on the full knowledge of

available nodes and their current connectivity capabilities. As one simple example, MINA

can observe novel communication links or link failures; remote endpoints can take advantage

of this kind of awareness to exploit alternative and more powerful paths as soon as they

become available or avoid sending packets along paths with broken links.

Many research activities have already investigated overlay construction in both wired [58, 19]

and wireless networks [77, 21]. On the one hand, unstructured overlays [58, 45, 57] do not

impose a rigid relation between the overlay topology and where resources or their indices are

stored. In this manner, overlay networks are easier to implement even in dynamic environ-

ments and at the cost of limited scalability. On the other hand, structured overlay networks

[19, 18] impose a structure on the overlay topology by setting routing table entries to fit

certain criteria depending on the respective Distributed Hash Tables (DHTs), which bound

the looking up complexity as O(log n). However, the MINA overlay structure requires new
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features: first of all, packet transmission is always sent to/from the central server, without

any pure peer-to-peer connection between any two arbitrary mobile nodes. Moreover, over-

lay network construction mechanisms should be lightweight to limit resource consumption

on mobile devices. Finally, mobile awareness should be taken into account to promptly and

appropriately reconfigure the overlay network.

In anticipation of a few notable aspects of the proposed solution, we stress that our tree-

based overlay network takes advantage of a hierarchical information architecture and of

an implemented middleware for managing communication in heterogeneous multi-networks.

The overlay network allows nodes to make communication decisions locally (or higher up in

the hierarchy), using available knowledge of network state and taking into account tolerance

parameters (timing, accuracy, reliability). The advantages of the proposed approach and its

strong originality if compared with the state-of-the-art primarily relate to the efficiency over

large deployment environments, especially when dealing with global network management

optimization goals in a lightweight and dynamic way, as better illustrated in the following

sections.

4.2 Tree-based Overlay Guidelines

Creating an overlay on the underlying heterogeneous topology of nodes/links allows us to

maintain the collection topology at low cost, especially when node mobility comes into play.

Note that the overlay approach is based on the RAMP middleware [12], which eases the

task of integrating multiple networks regardless of the underlying heterogeneous link layer

technologies and enables MINA to naturally use RAMP Node UIDs rather than IP addresses

to organize nodes.

Our solution is based on three design criteria/goals for the overlay construction protocol that

determines where nodes and links are positioned in the overlay structure. Lower overhead
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is the first design criteria. Due to the limitation of mobile devices, it is important to make

sure adding new nodes to the overlay incurs a limited overhead by involving only a limited

number of nodes already in the overlay. In fact, the performance of the overlay should not

dramatically change when the number of nodes in the network grows. Secondly, promptness.

The overlay should rapidly react to changes in the underlying network topology (mobile nodes

moving around causes great dynamicity) so that it does not incur large end-to-end delays

on applications running above the overlay. Third, mobility awareness. The created overlay

must accommodate the node mobility and intermittent connectivity that is characteristic

of mobile nodes. We observe that the tree-based overlay structure fits well with mobility

management in the tiered architecture, since it pushes the more dynamic nodes towards the

leaves.

The above three criteria potentially conflict with each other since there is an inherent tradeoff

between these goals. In traditional wireless networks, nodes implement a periodic heartbeat

mechanism to discover changes in network topology, i.e., joining and leaving of neighbors.

Frequent heartbeats make easier the accurate discovery of paths and decrease the end-to-end

delay of data collection, but obviously with higher costs in terms of network resources. Prior

work has explored a broad range of techniques (theoretical analysis [54], machine learning

[30, 32], mobility prediction [64]) to adaptively tune the performance under such tradeoffs

in ad-hoc sensor networks. However, there are several new challenges in supporting such

tradeoffs in the MINA overlay: a) The convergecast pattern for data collection indicates

nodes primarily care about maintaining a path to their parents. In contrast, solutions

developed for MANET routing are intended for communication between two random nodes

and hence are not suitable here. b) In heterogeneous networks, some nodes are stationary

and some are mobile; as a result some links are inherently more stable than others. c) Nodes

in Tier 3 are mobile and resource-limited: to avoid frequent overlay network modifications

and limit their power consumption, they should not perform management tasks.
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Prior to presenting the tree-based overlay construction protocol, we first define notations,

data structures, and message types used in MINA overlay construction. The following func-

tions are defined on a given node with unique identifier UID. Neighbor represents a node

within a one-hop distance from a node UID. IsParentCand is true if the neighbor has of-

fered to be a parent for a node UID (parent candidate). IsParent is true if the neighbor is

currently the parent of this node, whereas IsChild is true if the neighbor is currently a child

of this node. Furthermore, we store a DescendantList where each entry represents the set

of descendants for a specific child of this node. Generation is an integer that is assigned to

each node of the overlay, which is incremented by one from parent to child. The source node

(root) has a generation number 0.

To better understand how the algorithm works, we also list and explain a set of important

messages used in MINA between two possible A and B nodes. Parent Claim Broadcast:

Once A finds a new parent it will broadcast this message to claim itself as a potential parent

of its neighbors. B marks A as a parent candidate when B receives this message. The source

node performs the broadcast by default. Parent Request Unicast: B selects the best parent

(based on some criteria, e.g., lowest generation number as default) among parent candidates,

and sends a parent request message to this selected best parent. Parent Confirm Unicast:

When A receives the parent request message from B, if there is enough space to admit a new

child, A will send a parent confirm message to B. Otherwise A will send a ”parent refuse”

message to B. Parent Request Broadcast: If B loses connectivity with its parent and currently

there are no available parent candidates, it will broadcast a parent request message to find a

new parent candidate. Parent Accept Unicast: when A receives a parent request broadcast

message, if there is enough space to admit a new child, A will send parent accept messages

to B and B will mark A as parent candidate. Descendant Update Unicast: when B admits a

new child, it will send the ID of the new child to its parent; therefore, each node knows all

its descendants.
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During overlay construction, appropriate runtime data structures are initialized and the

overlay construction procedure is initiated. Overlay maintenance executes mechanisms to

handle dynamic changes to the existing overlay, e.g., node mobility or node failure that may

trigger parent re-selection.

4.3 Overlay initialization and maintenance

Initialization is structured into two phases. In the first phase, nodes are iteratively added

into the overlay from source node (root) to leaf nodes. The procedure begins with the source

node broadcasting parent claim messages. Nodes that receive parent claim messages from

parent candidates will respond with parent request messages to the ”‘best parent candidate”;

when the parent confirmation message is received, the parent-child relationship is established

and the node is added into the overlay. This process is repeated until propagated to the leafs

of the tree. The second phase starts when a node has already chosen a parent and advertises

itself to accept new children. When a node admits a new child, it will send a Descendant

Update message to its parent; the parent then adds a record to its DescendantList and

forwards the message to the upper level parent, until the root is reached. Note that a node

only knows the UID of its children and all the descendants of each child; it does not need

to know the exact topology of its descendants in the subtree. Hence, our proposal does not

consume too much memory and bandwidth to maintain a complete topology map in each

overlay node. For example, in Fig. 4.1 Node S only knows that nodes 3, 4, and 5 are below

Node 2 (its children) but does not know in which order. To send a message to Node 5, Node

S only needs to know that the next hop node is Node 2, while the latter only needs to know

that it should forward the message to Node 3, and so on. Moreover, solid lines in Fig. 4.1

indicate handshake procedures including Parent Claim, Parent Request, and Parent Confirm

messages, while dashed lines indicate only Parent Claim messages.
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Once overlay construction is completed, data collection is underway. Because of possible node

mobility and failures, additional mechanisms are required at runtime to dynamically react

to changes in the underlying topology (overlay maintenance). Two key events to address are

parent loss and child join. Every node periodically broadcasts a heartbeat message to its

children. If a node does not receive a heartbeat message from its parent within a timeout,

it will infer that its parent is not reachable anymore and will delete it from the neighborlist.

If the node has other parent candidates, it will send Unicast Parent Request message to the

best candidate; otherwise it will broadcast a parent request until a new parent is determined.

Based on the generation number of the new parent, this node will decide to keep the parent-

child relation with its current children or not (via explicit notice to children). By doing so,

we can avoid the so called routing loop problem.

Child joining/leaving events are handled as follows. When a new child joins the overlay, the

parent will add it into its children list immediately and propagate this information upwards.

To limit the number of upward propagated messages, we exploit the following mechanism:

when a node leaves the old parent and joins a new one, the Descendant Update message is
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propagated only until it reaches the most recent ancestor of the new and the old parents.

When a node receives the Descendant Update message, it will check whether this newly

joined descendant already existed in other DescendantLists or not. If yes, this parent is

the most recent ancestor and stops reporting this information further. Fig. 4.2 depicts the

procedure: at time t1 Node 5 initially has a link to Node 3; when later (at t2) it joins Node

4, it updates its parent from 3 to 4; the descendant update is propagated only until Node 2.

4.4 Optimization

4.4.1 Expected Next Interval Messages

The basic MINA overlay construction and maintenance mechanisms ensure that the source

node can collect information about all nodes and that each node has an accurate image of

its descendants at runtime. In this section, we present our enhancements to the basic MINA

overlay construction process in order to achieve the appropriate delay/overhead tradeoff

in state collection. Recall that parent nodes use heartbeat messages to inform children of

their existence; child nodes use a periodic neighborlist flush function to delete stale parent

connections. On the sender side, increasing the rate of heartbeat messages will reduce end-

to-end delays in data collection; however, the increased rate introduces additional messaging

overhead. At the receiver end, a high neighborlist flush frequency will get rid of old routes;

however, valid routes with longer lifetimes may also be deleted, which can result in increased

collection delays.

To achieve the above goals, we have introduced a dedicated field to the heartbeat message,

Expected Next Interval (ENI), that can provide hints to the recipient on when to expect the

next heartbeat message. Upon receiving a heartbeat, a recipient uses the ENI as a timeout

factor to determine when to flush the neighbour entry. The ENI is incremented/decremented

26



at the sender side based on link dynamicity; the rate of increase/decrease can be tuned, also

dynamically, to meet application requirements (possibly changing at provisioning time). For

example, to support low end-to-end delays as compared to lower overheads, we employ slow

increase and fast decrease functions as follows:

Increase : ENIcurrent = ENIcurrent +Delta;

Decrease : ENIcurrent = Max{ENIcurrent/2, ENIdef};

where the initial value of ENIcurrent is ENIdef . ENI changes are triggered when there are

changes to the set of children (of a parent node). Specifically, we decrease ENI when the

child set changes and increase ENI when the set of children of a parent node is relatively

stable. The rationale is as follows. When a new child joins a parent, there is a reasonable

likelihood that the child is mobile and will hence leave soon, triggering more changes. When

a current child leaves, it is likely that the sender (parent) is mobile and, if so, other children

are likely to leave as well. Fig. 4.3 depicts a simple example where the receiver side uses the

ENI information in the heartbeat to determine ”delete” or ”keep” actions for entries in the

neighborlist.

4.4.2 MINA Overlay Evaluations

We have conducted extensive experiments to evaluate our tree-based construction proto-

col, with and without ENI-based enhancements. By using QualNET[79] as the simulation

platform, we compare the performance of our overlay with more traditional AODV[77] and

DYMO[21] approaches, well recognized and widespread in MANET scenarios. In all our

simulations we have used one fixed node that acts as source (server), 4 fixed nodes that act

as Tier 2 nodes, and several mobile nodes scaling from 8 to 24 as Tier 3 nodes that move
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around by following the random waypoint mobility model with speed ranges [1m/s,2m/s]

and [10m/s,20m/s]. Each mobile node is configured to generate Constant Bit Rate traffic

(periodically sending a 500 byte message to the server), thus emulating network state col-

lection. Each simulation round has a 250s duration. We evaluate our techniques using three

metrics: application end-to-end delay, message overhead, and delivery ratio. For ENI, we

set ENIdef = 7s and Delta = 0.75s/1s; motivations of this parameter settings are in the

following sections.

Results are collected from the simulations under the random way point mobility model with

speed range [10, 20]. Fig. 4.4 shows the heartbeat message overhead and end-to-end delay

comparison between different ENI Delta values. With ENI enabled, the heartbeat message

overheads are greatly reduced (from 70% to 42%) as compared to the basic version of the

overlay protocol; note that the end-to-end delay (with an average deviation of 1.2%) and

delivery ratio (max. deviation of 1.6%) are hardly impacted by ENI modifications, as shown

in Fig. 4.6. If we compare the end-to-end delay between ENI with Delta = 0.75s and

AODV/DYMO, our ENI-based algorithm reduces the message overhead a lot as compared

to both AODV (from 60% to 26%) and DYMO (from 68% to 20%), as shown in Fig. 4.5.

Similar results have been obtained under the same mobility model with lower speed range

[1, 2]. In Fig. 4.7, enabling ENI with Delta = 0.75s can reduce the message overhead by a

range from 53% to 37%, and the range is even higher (78% to 44%) with Delta = 1s. The

end-to-end delay is not changed much (with an average deviation of 5%) and the experienced

delivery ratio is almost the same (with a maximum deviation of 2%) as shown in Fig. 4.9.

Also if we use ENI with Delta = 1s, our overlay construction protocol generates many fewer

messages than AODV and DYMO, as shown in Fig. 4.8. Note that although the MINA

overlay techniques do not explicitly focus on reliable state collection, our solution inherently

achieves high delivery ratios of over 96.5%.

As a general consideration, whether there is data to exchange among nodes or not, MINA
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always initializes and maintains the overlay for multiple purposes. So, the queue delay (which

is a major part of the end-to-end delay) is unlikely to happen. More specifically, the broadcast

Parent Request message and the ENI-based enhancements can improve the end-to-end delay

further. Fig. 4.5 and Fig. 4.8 show that MINA can provide a very small end-to-end delay

(around 65%) compared to AODV and DYMO (which are on-demand), and with much less

message overhead. We can find that our overlay, without and with ENI (Delta = 0.75s), has

proportional heartbeat message overhead to the number of mobile devices, shown in Fig. 4.4

and Fig. 4.7. More interestingly, we also find that, when enabling ENI with Delta = 1s, the

message overhead is almost constant: the reason is that when Delta exceeds a threshold,

the message sending interval is big enough that, when the node is about to send the next

message, it misses some children changes, and then the ENI continues to increase (which

may lead to inaccurate route and packet loss). Let us conclude this subsection by stating
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that the choice of ENIdef and Delta cannot be arbitrary, since it determines the default

heartbeat rate in the baseline MINA protocol. These values depend on average path duration

time in the multi-network, which is a function of the number of nodes, mobility model, and

transmission ranges. In next section, we will look deeper into this function. Here we estimate

path duration times based on input from simulation scenarios: our measurements yield a

default ENI value of 7s. The Delta factor can serve to further tune the delay/overhead

tradeoff. To compare the overhead of ENI techniques with the basic MINA overlay protocol,

we have tuned the Delta and let it achieve a similar end-to-end delay/delivery performance

with the basic one. This is the methodology with which we have chosen 0.75s and 1s as

the two different Delta values in our experiments. The results from Fig. 4.4 and Fig. 4.7

illustrate these points further.
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4.5 Accurate Modeling on path duration in Converge-

cast Networks

Estimating the path duration time through a simulation scenario is not satisfied in a realistic

scenario. When a node starts to connect to the server, it should be able to estimate when the

current path towards the server will be broken in real time, given the environment settings

including its speed, wireless radio transmission range, node density, etc. Accordingly it will

send the next heart beat message after this estimated time and piggy back this information

as ENI in the current heart beat message.

Specifically, we focus on the many-to-one communication pattern, called convergecast, where

mobile sensors report their sensed values to one or more servers (data sinks) in a periodic or

queried manner. This is exactly how MINA collects network information from each device

via the overlay. In convergecast, either stationary or mobile sensors report their sensing value

to one or more sources in a periodic or queried manner. According to QoS requirements,

most data collection applications set delay as an important evaluation metric, especially

when mobility is considered.

4.5.1 Related Work

The use of convergecast pattern for data collection has increased significantly over the past

years[104][93] and there exists a number of protocols and systems that enable various kinds

of information collection - quality aware raw data collection[48], surveillance video data

collection[94], health monitoring via low power networking[22], etc. These protocols and

systems always set end-to-end delay as one of the most important performance metrics,

especially in cases where the real time and time sensitive applications are running above them

[95]. To better understand how delay occurred and how the delay scales with the number
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of sensor nodes and source nodes, plenty of work has been done both from experimental

observation and theoretical analysis. More specifically, theoretical analysis on network delay

includes mainly three aspects: capacity and delay analysis, path availability modeling and

TDMA-based convergecast scheduling.

Firstly, in the pioneering work [78], Gupta and Kumar discovered that the capacity of a pure

static ad hoc network will be limited as the number of nodes increased. Conducting power

control shown in [6], can achieve a throughput of Θ(
√
n). Adding a relatively small number

base stations[14, 31] or mobile relay nodes [73] to a static ad hoc network can enhance

capacity. Second, if we examine the delay from the routing layer, path availability is a

critical parameter that affects the performance of the protocol in terms of delay. Generally

speaking, the end-to-end delay of a routing protocol in a mobile network mainly consists

of route discovery time, data transmission time, route failure detection and recovery time,

which are all related to the path duration time. Also as a pioneering work, [7] first derived a

link and path availability model for MANET with a random walk-based mobility. In [103],

the authors provided insight into the link and path available time and other availability

properties in a general ad hoc network. Samar and Wicker [84] added the link dynamicity

into the analytical evaluation process. [99] used a two-state Markov model that takes the

node speed and direction changes into consideration. A more recent work [47] used the link

availability model to predict link and route duration time, and derived their link availability

based routing protocol. Third, in a convergecast network people always concern the conflicts

of two children sending data concurrently to their parent. Hence theoretical work usually

focuses on the time slot scheduling to avoid collisions in the link layer and achieve optimal

goals. Due to the ability to provide time bounds, most work used TDMA-based scheduling

algorithms to enable fast and timely delivery of data with the goals of minimizing the time to

complete convergecast, i.e. minimizing the latency [82][41]. In[43], algorithms are proposed

to enable quick convergecast operations with minimum latency while complying with the

ZigBee standard.
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Since theoretical analysis and link layer approaches are not realistic from system imple-

mentation perspective, in this section we try to understand delay from the routing path

availability fold. Previous work considered the path duration probability as the product of

each hop’s duration probability, which is not true in convergecast networks, and they did

not exploit how network scales can affect the path duration. We will now present a novel

model to overcome these limitations.

4.5.2 Models and Assumptions

Network Model

The network consists of N mobile sensor nodes and M static data sources all lying in a 2D unit

square area (of side length 1). The location of the static data sources are fixed, and uniformly

distributed at random over the unit square area. The sensors periodically send data to a

unique sink via stationary nodes. We assume the links between the sink and stationary nodes

are stable. So in the following, we only consider path duration among stationary nodes and

mobile nodes. We will use data source and stationary node interchangeably. The mobile

sensor nodes are distributed uniformly at random in the unit square area at time t=0. At

later times their position and velocities are given by the mobility model described below.

Mobility model

Here we adopt random walk mobility model, which has been proved to be able to maintain

the uniform distribution property[103]. Based on this model, each node’s movement consists

of a sequence of random length intervals called mobility epochs, during which a node moves

at a randomly chosen velocity. A velocity is a vector with two elements: speed and direction.

The speed is a random variable v, which is distributed uniformly between Vmin and Vmax.
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The direction is a random variable θ, which is distributed uniformly between 0 and 2π. We

define the probability density function(PDF) of velocity as:

fv(v, θ) = fv(v)× fv(θ) =
1

2π×(Vmax−Vmin) if v ∈ [Vmin, Vmax] and θ ∈ [0, 2π] ,

0 Otherwise.

(4.1)

Link duration time

If two nodes are within a constant communication range R (all nodes have same the R) of

each other, we assume a bidirectional link exists between them. For simplicity we refer to

bidirectional links as links for rest of this paper. The link between nodes MN1 and MN2 is

on when the distance between nodes MN1 and MN2 is smaller than R and is down when

this distance is bigger than R. The link duration is the interval between two successive on

and down transitions.

Other assumptions

Transmission time scale is much smaller than moving time scale A data collection

system usually generates small data. Both the packet size and transmission time are small.

The speed of mobile nodes in our scenario is low. So In this paper we focus on the link

availability time inside only one epoch denoted as TE. In other words,we assume the speed

of the mobile nodes will not change once initialed. Small volume of data Since we focus on

a small amount of data such as network state information, we ignore the queueing delay in

the routing node. This means that the End-to-End delay mainly consists of route discovery

delay, route failure and recovery delay. Through this way we can obtain a direct correlation

between End-to-End delay and path availability.
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4.5.3 Theoretical analysis

In this section we derive analytical expressions for the path duration time of our convergecast

network scenario. First we will analyze the one hop path availability towards the data source,

which serves as the basis for our further multi-hop cases in the second part.

One hop path duration time

As mentioned above, there are M static data sources uniformly distributed in the unit square

area. Each data source dominates a sub square whose side length is Θ( 1√
M

). We choose one

such sub square to analyze the one hop path duration time. In this sub square, all mobile

nodes send data to the dominator(static data source). So when a mobile sensor node MN is

about to enter a dominated area(on the border), the distance between MN and its dominator

S is r. Based on r, the transmission range R, and the velocity we can analyze the one hop

link duration time of this mobile node. We assume the distance that MN traveled during

the link duration period is l, as in Fig. 4.10. We have:

l(r, θ) = 2
√
R2 − r2 sin2 θ (4.2)

r =
√

(D/2)2 + (D/2− x)2 (4.3)

where D is the side length of the sub square and x is the initial position of MN on the

border. We assume that x is uniformly distributed in [0, D], which means the node can be

at any point of the dominated area border with the same chance.

When MN moves to MN ′, the link is up; while it moves to MN ′′ the link down. So we

obtain the CDF (Cumulative Distribution Function) of the link duration time T, i.e P(T
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≤ t):

F
[1]
t (t) =

∫ D

0

∫ arcsin(R/r)

− arcsin(R/r)

∫ Vmax

V ′min

fv(v, θ)

D
dv dθ dx (4.4)

where V ′min is the minimum required velocity from MN ′ to MN ′′ within time t:

V ′min =
l(r, θ)

t
(4.5)

So the PDF (Probability density function) of T can be obtained:

f
[1]
t (t) =

∂Fx(r, ϕ, )x

∂t
(4.6)

So the expectation of the one hop link duration time in one dominated area is:

E
[1]
t (t) =

∫
f
[1]
t (t)tdt (4.7)

To evaluate the one hop link duration time under different numbers of stationary nodes

(different dominated area size), we need to analyze the average time that a mobile node

move crosses a dominated area whose side length is D. As show in Fig. 4.11,when 0 < θ <
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arctan(D/x),

k1(x, θ) =
x

cos θ
(4.8)

while arctan(D/x) < θ < π
2

k2(x, θ) =
D

cos(π
2
− x)

(4.9)

So assuming Ts as the time that a mobile node spends to cross a square area, the CDF

(Cumulative Distribution Function) of Ts, i.e P(Ts ≤ t):

Fts(t) =


∫ D
0

∫ arcsin(D/x)
0

∫ Vmax
k1
t

fv(v,θ)
D

dv dθ dx∫ D
0

∫ π
2

arcsin(D/x

∫ Vmax
k2
t

fv(v,θ)
D

dv dθ dx

(4.10)

For π
2
< θ < π case, it is the same as we described above. Accordingly,fts(t) and Ets(t) can

be found. Note D is determined by the number of stationary nodes M. The bigger M is, the

more frequently a mobile node crosses a dominated area and the more likely a mobile node

has a one hop link. So given length of the whole epoch, TE, the average one hop duration

time can be got by
E

[1]
t (t)∗TE
Ets(t)

Two hop path duration time

A two hop path contains a one hop link from the stationary node to the relay node, as we

discussed in the previous subsection, and a one hop link from the relay node to the mobile

node. To analyze the link duration between two mobile nodes, relative velocity should be

given first.

relative velocity of mobile nodes

As shown in Fig. 4.12, similar with the concept in [47], the nodes’ movement is centrosym-
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metric. We can assume v1 is parallel to the X-axis without lose of generality. Assume mobile

node MN1 has a velocity(v1, 0), MN2 has a velocity (v2, φ) and their relative velocity is

(vr, θ). Note the angle φ between v1 and v2 is uniformly distributed in [0, π]. vr has a angle

θ, which is uniformly distributed in [0, 2π]. According to the cosine rule, we have:

v2r = v21 + v22 − 2v1v2 cosφ (4.11)

since θ, v1,v2 are independent, the PDF of the joint function is:

fv1,v2,φ(v1, v2, φ) = fv(v1)fv(v2)fφ(φ)

=
1

π(vmax − vmin)2

(4.12)

According to the Jacobian transform, we have

fv1,v2,vr(v1, v2, vr) =
∂φ

∂vr
fv1,v2,φ(v1, v2, φ) (4.13)

where

∂φ

∂vr
=

2vr√
2v21v

2
r + 2v22v

2
r + 2v21v

2
2 − v4r − v41 − v42

(4.14)
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Hence we get the PDF of the magnitude of the relative velocity:

fvr(vr) =

∫ vmax

vmin

∫ vmax

vmin

fv1,v2,vr(v1, v2, vr) dv1 dv2 (4.15)

Fig. 4.14 and Fig. 4.15 show the PDF and CDF of the relative velocity of fv(v, θ) whose

speeds are in the range of [10, 20] and [0, 20], respectively.

Analytical expressions for two hop path duration time In contrast to pure ad hoc

wireless networks, in convergecast the path is established from the source(root) to the mobile

node, like a tree. In the data collection phase, a node always reports its data to its parent

in the tree. So when a two-hop path is about to be established, the distance between the

relay node and the mobile node are exactly the transmission range R, while the distance

between the source node and the relay node may be shorter than R, which means this one

hop link has been on for some time. As shown in Fig. 4.13, when the path S-MN -MN1

is established, the distance between MN and MN1 must be R, while the distance between

S and MN is r < R. Since we assume the mobile nodes are uniformly distributed in the

experimental area, fr(r) = 2r
R2 . We use T ,T1,T2 to denote the duration time of S-MN -MN1,

S-MN , and MN -MN1, respectively. T is bigger than t if and only if T1 and T2 are bigger

than t. So we have:

P{T ≤ t} = 1− P{T1 > t} × P{T2 > t} (4.16)

P{T ≤ t} = 1− (1− P{T1 ≤ t})× (1− P{T2 ≤ t}) (4.17)

We use F [2](t), F1(t) and F2(t) as the Cumulative Distribution Function of T , T1 and T2.
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MN moves to MN ′ as a velocity of (v, θ); total distance is m. So we can get:

F1(t) =

∫ R

0

∫ 2π

0

∫ Vmax

m
t

fv(v, θ)fr(r) dv dθ dr (4.18)

where

m(r, θ) =
√
R2 − r2 sin2 θ − r cos θ (4.19)

so the PDF of T1 is:

f1(t) =
∂F1(t)

∂t
(4.20)

The CDF of T2 is similar with T1. However, because MN and MN1 are mobile nodes, we

need to use relative velocity here. In addition, the start distance between MN and MN1 is

exactly R. So we have:

F2(t) =

∫ 2π

0

∫ Vmax

n
t

frv(v)
1

2π
dv dα (4.21)

where

n(α) = 2R cosα (4.22)

so the PDF of T2 is:

f2(t) =
∂F2(t)

∂t
(4.23)

So the CDF of the two-hop path duration time T can be expressed as:

F
[2]
t (t) = 1− (1− F1(t))× (1− F2(t)) (4.24)
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The PDF is:

f
[2]
t (t) = f1(t)(1− F2(t)) + f2(t)(1− F1(t)) (4.25)

The expectation of two hop path duration time is:

Ē
[2]
t (t) =

∫
f
[2]
t (t)tdt (4.26)

Note there is a big difference between E
[1]
t (t) and Ē

[2]
t (t). When we calculate E

[1]
t (t), the start

position of the mobile node is on the border of the dominated area, while in Ē
[2]
t (t) the start

position is where a mobile node establishes a path towards the source. The reason is that for

one hop path, the link is always on right after the mobile nodes entering the transmission

zone of the stationary node(ignoring the control message exchange time). But for two hop

paths, this is not the case. As shown in Fig. 4.16, there are two main prerequisites that a

Figure 4.16: two hops path in square Figure 4.17: three hops path

mobile node has a two hop path towards to the stationary node: (a). This node crosses the

ring area, [R, 2R] (all nodes have the same transmission range). Note we only consider the

ring area rather than the whole circle area with radius 2R, because we also assume that if

a node moves into the transmission range of the stationary node, it will change its two-hop

path to a one hop path immediately. (b). There is at least one other mobile node in the

shadow area serving as a relay node. We can simply get the probability of a mobile node

crossing the ring area, say Pa, using a similar idea with the one hop case. Now we will show

how to calculate the expectation of the probability that at least one relay node exists in

the shadow area. Let S be the size of the shadow area and P{at least one node existing in

S} = 1− (1−S
1

)N−1 (all nodes are lying in an unit square area), where N is the total number
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of mobile nodes. Note we assume the whole environment area is a unit square area. S is a

function of θ, as depicted in Fig. 4.16:

S(θ) =
2 arccos(2R sin θ−R

R
)

2π
πR2 = R2 arccos(

2R sin θ −R
R

) (4.27)

So given a variable s,P{S ≤ s} = p{Theta > g(s)}, where g(s) is the inverse function of

S(θ). So:

Fs(s) = 1− Fθ(g(s)) = 1−
∫ g(s)

π
6

1

π
dθ (4.28)

fs(s) =
∂Fs(s)

∂s
(4.29)

So the expectation of the probability that at least one node in shadow region,

E ′ =

∫ π∗R2

2

0

[1− (
1− S

1
)N−1]f(s) ds (4.30)

So the expectation of the two-hop path duration time is

E[2] = PaE
′Ē

[2]
t (t) (4.31)

Multihop path duration time

The expectation of n-hop path duration time can be got iteratively from the two-hop path

case. Considering the characteristics of convergecast, a tree-like topology is always built

from the root down to the leaves. In other words, when a node is about to join the tree, its

parent already has a path towards to the root. So at the start of the path availability, each
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relay node has a distance r(≤ R) away from its parent, while the leaf mobile node has a

distance R from its parent (R is the transmission range). Fig. 4.17 shows the case of a three

hop path, and we will briefly describe how a three-hop path duration time can be calculated.

Here we use T [2] and T [3] to denote the duration time of path S −MN −MN1 and path

S−MN−MN1−MN2. Also we use T3 to denote the duration time of link MN1−MN2. We

use F [3](t) and F3(t) as the Cumulative Distribution Function of T [3] and T3. MN1 moves

to MN ′′1 as a velocity of (v, α) and the total distance is n. Similar with (4.21) we have:

F3(t) =

∫ 2π

0

∫ Vmax

n
t

frv(v)
1

2π
dv dθ dr (4.32)

where

n(r, α) = 2R cosα (4.33)

so the PDF of T3 is:

f3(t) =
∂F3(t)

∂t
(4.34)

So the CDF of the three hop path duration time T [3] can be expressed as:

F
[3]
t (t) = 1− (1− F [2]

t (t))× (1− F3(t)) (4.35)

The PDF is:

f
[3]
t (t) = f3(t)(1− F [2]

t (t)) + f
[2]
t (t)(1− F3(t)) (4.36)

The expectation of two hop path duration time is:

Ē
[3]
t (t) =

∫
f
[3]
t (t)tdt (4.37)
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Usually the path hop counts depend on the number of stationary nodes. If stationary

nodes are enough, the dominated area will be covered by the transmission range of the

stationary node and there will be only one hop path. In addition, the path availability will

be dramatically decreased when the hop counts increase in our convergecast scenario. In our

experiment, we only consider paths consisting of at most three hops.

4.5.4 Simulation and Verification

In order to verify the correctness of our model, we compare the results of our theoretical

model described above with the actual simulation results using Qualnet. There is one sta-

tionary central sink having Ethernet connections with M static data sources. N mobile

nodes move around with random way point mobility model (we set the pause time to 0 so

that it is equal to our mobility model). Both mobile and stationary nodes are equipped

with 802.11 interfaces. Each mobile node periodically sends data to the central sink directly

via any of the stationary nodes or through possible relay nodes, according to its position.

Due to the high availability of the Ethernet connections, we only focus on the M stationary

sources and N mobile nodes, which is the exact same scenario we assumed in our theoretical

model. In Qualnet, we modified the built-in AODV routing protocol so that the path dura-

tion time can be calculated with the life time of routing entries in mobile nodes. The average

value will be calculated on all mobile nodes. The simulation terrain is a two-dimensional

space(3000,3000), which represents a square area of 3000m × 3000m. M stationary nodes

and N mobile nodes are randomly deployed in this area. The number of the mobile nodes N

scales from 4 to 40, and the number of stationary nodes M is from 2 to 12, depending on the

simulation scenario. The magnitude of velocity is uniformly distributed in [10m/s,20m/s]

and [1m/s,11m/s], and the direction is uniformly distributed in [0,2π]. In Qualnet, the value

of a random variable only depends on the seed number. For each simulation run we used 25

different seeds and got 25 different results. The average is considered as the result of each

44



run. The transmission range of all nodes is 400m. We used the CBR application protocol

to simulate the data collection process: each packet is 500 bytes long and one packet per

second. The simulation period (TE)is 250 seconds.

One Hop Path Duration Time

Setting N = 1 means there is only one mobile node hence only one hop path duration time

is considered. Fig. 4.18 shows that the expectation time from our model is quite similar with

the path duration time from the simulation. Here M (i.e. the numbers of stationary node)

is up to 12, in which case if all stationary nodes are uniformly distributed. There is little

overlap and the total coverage area will be almost the same with the whole experiment area.

In other words, if we have more stationary nodes, the whole experiment area might be fully

covered by the stationary nodes. Hence no matter where the mobile node is, it can always be

connected with a static source node. As a result, the one hop duration time of each mobile

node will be 250 second, which is meaningless for us. In Fig. 4.18 N = 1 (i.e. the number

of mobile node is 1) and the X-axis is the number of the stationary nodes (M) and Y-axis

is the path duration time. We use two different velocity distribution ranges([10, 20], [1, 11])

and the mean error rates between the model value and the experiment value are 9% and 7%,

respectively. The reason is in Qualnet, the transmission range is not an exact circle. Instead

they adopt a physical model, which means a node can send radio frames successfully as long

as its signal strength sensed by the destination exceeds the threshold, to simulate wireless

communication. In addition, from the result we can find that nodes with higher velocity will

have shorter path duration time. In other words, dynamicity will incur poor connectivity.

Two Hop Path Duration Time

We deployed more than one mobile node which means possible two-hop connections are also

considered. Note that in this set of simulations we only consider M up to 6, whose dominated
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area is almost the same with the two hop coverage area.The reason is similar with the one

hop case. The two hop coverage area should be bounded by the dominated area. Although

there are existing three-hop paths, we argue that it can only take place when the three hop

coverage area is smaller than the dominated area. So we only choose M = 4, 5, 6, in which

case the the hop counts are unlikely more than 2. In Fig. 4.19,4.20,4.21, the X-axis is the

number of mobile nodes (N) and Y-axis is the duration time. The results show that the

simulation results are quite consistent with the model results, the average difference rate is

around 5%. An interesting observation from the results is that when M = 4 and M = 5,

if the number of the mobile nodes exceed a threshold, say N = 30, the duration time from

the simulation becomes higher than the one from our model. This is mainly because when

N becomes larger, the opportunity that a node has a multiple-hop (more than two) path

increases, especially when it is out of the two-hop coverage area (the circle with radius of

2R). Because we do not take the multiple-hop paths into consideration when M > 4, the

duration time calculated by our model is less than the simulated one. The multiple-hop path

opportunity indeed exists, but it is very small as we argued above. The situation changed

when M = 6, the mobile nodes are almost covered by the two-hop coverage area. In this

case there is less chance that a node finds a multiple-hop (more than two) path. However,

in simulations more stationary nodes will incur more handover and hence incur less path

duration time, which is why the results derived from our model are slightly bigger than the

simulated one in Fig.4.21.

4.5.5 Three Hop Path Duration Time

We further decreased the number of stationary nodes (M) to 2. Under this scenario, the

dominated area is slightly larger than the circle with radius of 3R and possible three-hop

paths are considered. As described in 4.5.3, the duration time of three-hop paths depends

on the first hop link and the second hop link. While in our experiment during the 250
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second simulation time, a node may be connected directly with the stationary node (one

hop path) or two/three-hop path, according to its position. We argue that although there

may be four/five-hop path existing in 3R circle, its probability is extremely low and hence

can be negligible. Fig. 4.22 shows the results of the path duration time with maximum hop

number of three. The average difference rate is below around 10%. The main reason is that

the three-hop path analysis is more complicated than the two-hop case. In our model, we

assume that the three-hop path can only be established when the third node falls in the ring

area whose radius is between [2R, 3R]. In fact if a node falls into the ring of [R, 2R], it can

also have the opportunity of establishing a three-hop path, which is hard to model.

End to End Delay and the Duration Time

The relation between end-to-end delay and the path duration can be viewed from two parts:

a). In the ideal case, whenever the application on a mobile device sends data, there is always

an available path already established by the routing layer towards the sink. However, the

mobile device usually needs to wait to send application data before the path is established,

which will incur delays. b). Since handover needs time, more stable links are preferred. For

example, two different paths with duration time 5s each will incur bigger delay than a single

path with duration time 10s, due to the handover. So the less dynamic the paths are, the

smaller delay will be achieved. Fig. 4.23 shows our results revealing the correlation between

delay and the path duration time in a convergecast network. The x-axis is the number of

mobile nodes, scaling from 4 to 40. The y-axis on the left is the average End-to-End Delay

of the CBR application while the y-axis on the right is the average path duration time. We

tested three scenarios with different numbers of stationary nodes (M = 4, 5, 6).

As discussed above, more stationary nodes will provide larger coverage areas and network

access opportunities. The results show that the path duration time of M = 6 is longer than

M = 5 and M = 4 and hence leads to the smallest delay. With more mobile nodes, we
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find the path duration time also increased. However, the distribution of end to end delay is

bimodal. With an increasing number of mobile nodes, the delay first increases from N = 4 to

N = 12 and then decreases, and the second local maximum point is reached around N = 32.

The reason is that when the scale of the network is small, the path duration time is quite

short, and with more mobile nodes added, one needs to spend more time on handover and

the newly obtained path availability can not compensate the handover time consumption.

So the end to end delay increases. If mobile nodes continue being added, there are more

network access opportunities which make the handover time be compensated. Thus the delay

decreases. When the network scales to some extent, traffic congestion will happen, which
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incurs data transmission time. As we can observe, the delay increases again around N = 32.

After that the enhanced path availability again dominates the end to end delay. As shown

in Fig. 4.23the delay decreases when N > 32.

From the experiments, one inference is that adding more devices, either stationary or mo-

bile, can improve the link availability in the network while only adding stationary nodes can

decrease the delay. This makes sense since the stationary nodes provide the first hop con-

nections, which are more stable. In reality, the network administrators usually deploy more

stationary routers and access points to improve delay. On the other hand, carefully planning

the scale of mobile nodes can also improve the end to end delay, which requires a more

comprehensive understanding of delay, congestion and link availability. We will investigate

that in the future.
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4.6 Chapter Conclusion and Future Work

This chapter first presents the design, extensions/enhancements, and simulation-based evalu-

ation of the MINA overlay solution. A key aspect is the development of a novel, dynamically

constructed and mobility-aware tree-based overlay structure that can effectively balance

end-to-end data collection delay and overhead.

The encouraging results achieved are stimulating our further research activities along the

path duration modeling direction. We proposed a novel path duration time model for data

collection in convergecast networks. We claim that the probability of the multi-hop path

duration time is not merely a product of each link. Instead, the n-hop path duration time

is always based on its previous n − 1 hop path. We show that network density affects the

path duration time. The results demonstrate that our model can accurately reflect the path

duration time in simulation. We also present analysis on the correlations between end-to-end

delay and the path duration time, which will help to understand the relationship between

delay, path duration time and nodes density in convergecast network. This work can serve as

a guidance of link availability based routing protocol design and link quality aware systems.
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Chapter 5

Analyze: Formal Method Based

Multinetwork Analysis

5.1 Problem Description and Motivations

Network analysis approaches roughly divide into reactive and proactive. Reactive analysis

approaches involve real-time observation of network conditions and adaptation procedures

to account for changes. Reactive analysis is often implemented in various parts of the system

and scattered throughout its components. While this type of analysis may be very optimized

for goals that must be achieved in millisecond or less time, it also often has limitations because

it is tuned to a certain analysis aspect or constrained to a certain part of the system, and

thus, mostly concerned with local network aspects.

Proactive analysis approaches focus on analyzing and optimizing global network conditions

in a predictive manner, anticipating and preventing major negative impacts of changes on

the network. This approach requires a slightly larger timeframe than reactive analysis but

provides an opportunity for adaption in the context of the multi-network. Proactive analysis
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determines the most beneficial changes to the network from a global view on the multi-

network and informs the dynamic adaptation step of the OAA cycle. Because proactive

analysis is done in a separate, dedicated module that accounts for a snapshot multi-network

state, it can also use other contextual information as part of the analysis. For example,

parameters like application-specific requirements, known patterns of network load, or user-

defined goals can inform proactive analysis for managing the multi-network.

The objective of MINA analysis is to ensure that quality-of-service (QoS) requirements of

network flows are satisfied. A network flow is traffic flowing from a source node to one or

more target nodes. For example, a flow may describe imagery flowing from a camera installed

on campus to the campus’ security control center. Or a flow may describe the traffic that

flows from the control center to all cameras in a building to disable power-safe modes on

the cameras. The concept of network flow abstracts from the specific route the packets for

this flow will take. To check satisfaction of flow QoS, we need network state information as

collected in MINA. We employ formal analysis methods to check QoS satisfaction.

The analysis techniques are decoupled with MINA implementation. One or more analysis

tools can be plugged into MINA analysis module, but in this chapter we focus on a formal

method based approach. The proposed analysis methodology performs various “what if”

analyses asking questions such as

• What happens if a node fails? The objective of this analysis is to determine how critical

a node is, not just to one network flow, but to all flows.

• What should we do if we have additional network resource such as mobile routers?

Where should we deploy them most effectively? The objective of the analysis is to

determine where additional nodes would positively impact QoS of all flows.

• What happens if the load of selected flows changes and how can we best mitigate the

effects?

• What happens if the link quality changes due to congestion or interference and how
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can we best mitigate the effects of degraded link quality?

Answers to these questions help to decide how to best utilize network resources or reconfigure

the network to achieve better overall QoS requirements satisfaction. In turn, this will lead

to better network resilience and dependability.

Existing work on network analysis and prediction can be divided into static analysis and

dynamic analysis. Static analysis only exams a snapshot of the the network. In [101], the

authors determine the full network state including Internetwork Operating System bugs of

devices, configuration errors, static/dynamic routing, and so on. They calculate all possible

virtual paths according to the full network state and then compare the virtual paths with

the available physical paths to check reachability. However, due to the large search state

space, this approach is not very efficient. The same problem exists in [67]. The authors pre-

compute routing tables for each state and employ formal methods to model every possible

behavior of the network. [29] provides an effective way to reduce the state space. Both [67]

and [101] only focus on the one time link failure and the network will converge to another

stable state. In dynamic analysis a failure may cause other failures in future states. For

example, a failing node does not only affect the flows going through that node, but also

other flows due to flow rerouting. This is called cascading failures. In [40] the authors

consider statistics of link failures and limited number of cascading failures. Different failures

combinations can lead to loss of connectivity within a network or to severe congestion, as

shown in [71]. They proposed a framework to analyze link availability in the context of link

failures, changes of user behavior and routing. However, most of the cited approaches do not

consider heterogeneous networks and do not study how the flows are affected by failures. In

this chapter, we provide an approach to handle (1) changing heterogeneous network topology

(i.e. node failure, adding backup router, or network reconfiguration), while (2) taking into

consideration how the flows’ QoS performance are affected due to flow redistribution triggered

by changes in the network topology. This approach is based on formal methods. Formal

methods have been used to do network analysis [2], protocol proof [91] and network model
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checking [69]. To our best knowledge, there exist no tool that uses formal methods for the

flow oriented proactive analysis of multinetworks.

To overcome these limitations, we propose to use formal methods for proactive analysis.

Formal methods are a good match for proactive analysis because they apply abstraction to

ensure capture of the system’s dynamic while keeping it abstract enough to allow automated

tools to check critical conditions. For the proactive analysis of multi-networks we use the

formal method Maude [25], an executable specification language. Maude models system

states through user-defined data types and system dynamics through rules. Moreover, not

only the Maude interpreter is very efficient at simulating complex systems, but also provides

efficient built-in search and model checking capabilities (see http://maude.cs.uiuc.edu).

5.2 Formal Method-Based Analysis Methodology

The objective of our analysis is to answer questions such as “what effect does a failing node

have on all network flows” or “if one had more resources to deploy in the network, what

would be the best location for an additional node.” It turns out that underlying all of the

questions listed above is the concept of how critical a node is to the satisfaction of QoS

requirements. We introduce the notion of “Node Criticality Index (NCI).” Nodes with the

highest criticality index have the most negative effect on the overall QoS of flows when they

fail. Thus, these nodes are the first targets when it comes to deploying backup nodes or

relieving a node of high traffic loads. We distinguish our concept of NCI from conventional

node importance measures used in existing work. The simplest node importance measure is

node degree, which is defined as the number of neighbors a node has (see [15]). Closeness-

based measure is another node importance measure that finds the distance center or the

median of a graph. It has application in facility location [46], package delivery [16] and

operations research problems. It is computed by summing up the distances from the current
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node to all remaining nodes. Betweenness is one of the most prominent node importance

measures. It measures the influence of a node over the connection of other nodes by summing

up the fraction of shortest paths between the other nodes that pass through it [17, 35].

However, none of these measures take into account how redistributed flows due to network

changes influence overall QoS. The analysis methodology proposed here addresses that issue.

We use Maude [24] as our underlying formal method tool. Maude is a multiparadigm

executable specification language encompassing both equational logic and rewriting logic.

Maude allows modeling system states through user-defined data types and system dynam-

ics through rewrite rules. The Maude interpreter is very efficient, allowing prototyping of

quite complex test cases. Maude also provides efficient built-in search and model checking

capabilities. Maude sources, executables for several platforms, the manual, a primer, cases

studies, and papers are available from the Maude website http://maude.cs.uiuc.edu.

We formalize the analysis objectives as Maude models and rules. For example, if the analysis

objective is to determine the most critical network node, then we provide a Maude specifi-

cation and a set of rules that simulate in a network that a node fails, reroute affected flows

and simulate QoS of the new network. Iterating this process over all nodes and comparing

the resulting QoS of all flows allows us to determine the most critical node. If the analysis

objective is to choose the best new access point for a wireless node when its access point fails,

then we have a Maude specification and rules that simulates the overall performance for the

different alternate access points. Thus, we generate a Maude specification according to the

reasoning objective (step 3 in Figure 5.1). Information about the specific network topology

and state and the flows is pulled from the MINA database (step 2 in Figure 5.1). We use

the Maude engine to execute the specific analysis (step 4) and store any relevant analysis

results (e.g., node criticality index or hints where new resources should be deployed) in the

database (step 5). This information can be used by network administrators to devise new

network reconfigurations and issue accordingly commands to the multinetwork (step 6).
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Figure 5.1: Workflow in the context of MINA

In the following we present some details about how we model networks and flows and what

the rewriting rules to process network flows and determine QoS look like.

5.2.1 Network and Flow Specification

Information about networks and flows is stored in the MINA database as follows. A network

node is represented by a 3-tuple containing NodeId, neighbor list and weight list. neighbor

list contains all nodes directly linked to the node NodeID. The ith element in weight list

represents the capacity of the link between NodeId and the ith element in the neighbor list.

A flow is represented by an 8-tuple: source, route, destination, flowID, type, throughput,

packetlength and λ. route is the sequence of nodes on the path of the flow from the source

to the destination, type specifies the kind of traffic (e.g., ftp, audio, video, and so on),

packetlength corresponds to the packet length when it is an ethernet packet or the length

of the item sent on a different network, and λ is the mean packet arrival rate of this flow.

Note the product of λ and packetlength is the throughput. In the following, we will show

how we use the information about networks and flows that is stored in the MINA database

to generate a Maude model.

We consider the nodes and links through which a flow goes as tandem queues (see Figure 5.2).
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The tandem queues refer to an arrangement of queues in which the queues are lined up one

after the other: the outgoing traffic of the current queue is the incoming traffic of the next

queue. A node consists of the queue and the network interface (NIC; there is possibly more

than one NIC on a node). Currently we do not consider queue length limitations, or in other

words, we assume there no packets are lost due to limited queues.

Since link propagation delay is extremely small, we only consider delay introduced by queue-

ing and service time in the NIC. Thus, in our abstract model we assume the outgoing packet

of one node to be the incoming packet of the subsequent node. This way, we divide an end-

to-end flow into several sub flows, one for each hop along the path of the flow (see Fig 5.2).

By doing so, we can iteratively propagate the QoS parameter computed in each node and

accumulate the end-to-end QoS for a flow from its source to its destination. In this chapter,

we use delay as an example QoS parameter to illustrate our analysis methodology.

Flow1

queue Nic

subflow1 subflow2 subflow3

Node

Figure 5.2: Network Flow Model

The flow model enables us to get the end-to-end delay by aggregating and propagating the

delay incurred by each node. We use a simple M/M/1 model [89] to calculate the delay

incurred by a single node. The M/M/1 represents the queue in a system having a single

server, where arrivals are determined by a Poisson process and job service times have an

exponential distribution. We denote the Poisson Arrival Distribution with (λ, n), where λ

is the packet mean arrival rate and n is the packet length. The server’s (network interface)

mean service time is denoted by Ts. We use Poisson distribution to describe the flow pattern

mainly because it is widely used to simulate network flow [89] and the Poisson distribution
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has perfect aggregation and partitioning attributes. For example, as shown in Fig 5.3(c), the

Poisson pattern is not changed when a flow goes through a node with exponential service

time. In Fig 5.3(b), flow A and B with mean arrival rate λ1 and λ2 are both the incoming

Poisson flows at one node. After processing, the new aggregated flow is still a Poisson flow

with a mean arrival rate λ1 + λ2. In Fig 5.3(a), a Poisson flow with mean arrival rate λ can

be partitioned into two Poisson flows whose mean arrival rate’s sum is still λ.

λ

(1-p)λ

A

B

λ1+λ2
A

B

(a) Flow Partitioning (b) Flow Aggregation
λ λ λ λ

(c) Tandem Queue with Poisson Flow

Figure 5.3: Key Attributes of Flows with Poisson Arrival

These important features enable us to apply the Possion-based delay calculation in each

processor, regardless of how the flows are distributed in the multinetwork:

Delay = n/(Ts− n)

5.2.2 Rewriting Rules for Analysis

We view the network as a set of nodes and flows. Each flow is a sequence of subflows, one

subflow for each hop along the flow’s path. Nodes and (sub)flows are basic concepts in our

Maude model. We model the network as nodes N and sub flows SF. We also model the QoS

parameters such as delay, throughput, jitter, packet loss and so on. So a network is modeled

in Maude as a structure with the following elements: N(node attributes ), SF(subflow

attributes ), QoS attributes .
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Nodes N are modeled as a collection of attributes. Each attribute is represented as label(value)-

pair. Variables (using capital letters) are used as a place holder for values in structures or

rules. Attributes of nodes are the identity of the node (Nid(N1)), type of NIC (NIC(T))1,

transmission rate Tx(X)), Poison parameters (PoiPara(λ,n)), the number of flows expected

to route through this node (Tot(S)), and the flows that have already arrived (Cur(C)). Thus

a node is represented as N(Nid(N1),NIC(T),Tx(X),PoiPara(λ,n), Tot(S),Cur(C)).

Each subflow is modeled as a collection of attributes: identity of the parent flow Par(F1),

the identity of the subflow Sub(S1), the identify of the source node of this subflow Src(N1)

and its NIC type (SrcNIC(T)), and identity of the destination node of this subflow Dest(N2),

the poison parameters PoiPara(λin,n) for this subflow. and the incoming and outgoing QoS

characteristics of this subflow. Since the examples in this chapter only explore delay, we will

only model incoming and outgoing delay (Delayin(DIN) and Delayout(DOUT)). Finally, we

add a boolean flag to indicate whether the subflow was already processed by a rule (Pro-

c(B)). Thus a subflow is represented as SF(Par(F1), Sub(SUB1),Src(N1), SrcNIC(T),

Dest(N2), PoiPara(λin,nin), Proc(B), Delayin(DIN), DelayOut(DOUT)).

We have three main Maude rules that describe propagation of QoS characteristics of flows

in the multinetwork: a) flow accumulation, b) flow processing, and c) flow propagation.

• flow accumulation: This rule is collecting all the sublows at one processor. The idea

is that when multiple Poisson flows come into a processor, we aggregate the λ and n

value for all flows to calculate the overall delay they have suffered given the service

1For simplicity and because of space limitation, we present our rules with one NIC per node.
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capacity of this processor (the capacity/transmission rate of the network interface).

crl N(Nid(N1), NIC(T), PoiPara(λ,n), Cur(C), . . .)

SF(Src(N1), SrcNIC(T), PoiPara(λin,nin),

Proc(false), ...)

=> N(Nid(N1), NIC(T), PoiPara(λ
′
,n
′
), Cur(C1), . . .)

SF(Src(N1), SrcNIC(T), PoiPara(λin,nin),

Proc(true),...)

if C1 := C + 1

λ
′
:= λin + λ

n
′
:= ( λin *nin + λ * n)/(λin + λ).

Once the number of the accumulated flows reaches a predefined amount (indicated in

processor by the value of attribute total), the flow processing rule will be triggered.

• flow processing: Once all incoming flows are accumulated, the node has a complete set

of values of λ and n, and hence is able to calculate the new delay it incurred via the

following rule. The new delay is added to the existing delay. Although we only focus

on delay, we could similarly calculate other QoS attributes (e.g. jitter, packet loss,
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etc).

crl N(Nid(N1), Tx(X), PoiPara(λ,n), . . .)

SF(PoiPara(λin,nin), Delayin(DIN)

DelayOut(UNKNOWN), . . .)

=> N(Nid(N1), Tx(X), PoiPara(λ,n), . . .)

SF(PoiPara(λin,nin), Delayin(DIN)

DelayOut(DOUT), . . .)

if ( X - λ * n ) > 0

DOUT := nin / ( X - λ * n ) + DIN

• flow propagation Once the outgoing flow is generated by the node via the flow processing

rule, it will be passed into the next node as an incoming flow. This way, the delay

value can be propagated from the source to the destination.

rl SF(Par(F1), Sub(S1), Src(N1), Dest(N2),

Delayout(DOUT), . . .)

SF(Par(F1), Sub(S2), Src(N2), Dest(N3),

Delayin(UNKNOWN), . . .)

=> SF(Par(F1), Sub(S1), Src(N1), Dest(N2),

Delayout(DOUT), . . .)

SF(Par(F1), Sub(S2), Src(N2), Dest(N3),

Delayin(DOUT), . . .)

5.2.3 Preliminary Validation

We performed a preliminary experiment to validate our Maude model. For this, we used

the example network and flows shown in Fig 5.4(a) and Fig 5.4(b) as our test scenario. The

61



example network has 30 nodes connected via links with different capacities (i.e. Ethernet

100Mbps, WiFi 10Mbps, BlueTooth 2Mbps), and 8 flows are specified with different arrival

rate and packet lengths. Flow has two types: web/ftp (type 1) and audio/video (type

2). We compare end-to-end delays of flows calculated by Maude with those computed by

Qualnet simulator where Qualnet models the same network and flows. In Qualnet, we

use point-to-point links to simulate the links in Fig 5.4(a) and we use constant bit rate

applications to simulate the flows in Fig 5.4(b). The results of simulating end-to-end delay
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(a) network
route flowid type TP Item length 

(Mbits)

Arrival

num (/s)

1,2,25 1 1 0.8 0.0016 500

1,5,26 2 1 0.8 0.002 400

19,7,3,11 3 1 0.8 0.0016 500

21,3,4,13 4 1 0.48 0.0016 300

1,6,10 5 2 0.48 0.0016 300

24,21,11,17,14 6 2 0.4 0.002 200

23,26,5,2,6,10 7 2 0.4 0.002 200

26,5,7,12,16 8 2 0.24 0.0008 300

(b) Flows

Figure 5.4: Preliminary Experimental Settings

(see Fig 5.6) show that the delays obtained for each flow (x-axis of Fig 5.6) by Maude are
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quite consistent with those determined by Qualnet, with an average error of less than 9%.

Note that the objective of our formal model is not to have the exact same results as Qualnet,

but rather achieve enough accuracy so that our prediction results will be viable, while at

the same time our analysis method will be more efficient due to its abstraction level. We

intend to determine with our formal methods analysis the trends of the delay performance

in heterogeneous multinetworks and various kinds of flows. The preliminary experiment

has validated our methodology. Next we further show that our methodology can provide

solutions for three different case studies.

5.3 Evaluations:

We present three use cases to evaluate our what-if analysis tool. Each use case differs in

its objective to adapt a multinetwork in the face of network failures. All use cases have

application QoS requirements that must be satisfied. Different “what if” questions will

provide guidance on how to best achieve QoS requirements. To compare the effectiveness of

our formal method-based analysis approach with other approaches, we apply conventional

strategies in each of the three use cases. We see that our analysis results suggest different

adaptations than conventional analysis methods. We compare the suggested adaptation

strategies from our analysis and conventional strategies by simulating the resulting networks

to assess how well the adaptation strategy satisfies QoS requirements. We see that our

analysis methodology provide superior guidance compared with conventional strategies.

5.3.1 Node Criticality Index

Node Criticality Index (NCI) is an indicator of how important a node is. Generally the

importance of a node can be measured by the impact of a node’s failure on other nodes or
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network traffic. In this case study, we measure how end-to-end delays of flows are affected

given a node failure. The node whose failure will cause the biggest end-to-end delay is

the most important node. Traditional Node Critical Index approaches only focus on static

attributes, e.g. node degree [15], centrality [46, 16], or workload/betweeness [17, 35]. These

traditional measures are not taking into account the affect that a node failure will have on

the flows that go through the failing node, and thus, the impact a failing node has on other

flows due to contention caused by the redistribution of flows.

Our “what-if” analysis methodology and tool assumes that each node fails, one at a time,

and generates a new network and new paths for the flows (using the Dijkstra algorithm to

redistribute the flow, which is widely employed in routing protocols). We restrict failing of

nodes to those nodes that are not source or destination of a flow. The reason is that if we

would let those nodes fail, then we would not only change the paths of flows, we would also

change the set of flows. And this would not allow us to compare the end-to-end delay results

we generate for one node failing at a time. There are also nodes that are on the critical path

of flow, meaning if these nodes fail, there is no longer a path between source and destination

of at least one flow. Again, we assume these nodes do not fail so that we can consider the

impact of a node failing under the same traffic load or set of flows. Thus, in summary, our

analysis lets one node at a time fail—for those nodes that are not source, destination or

critical path nodes—and compares the impact of a node’s failure on all flows to compute

which one has the most negative influence when failing. That node is deemed to be the most

critical node.

In the following we refer to nodes that we do not let fail as critical nodes and those that we

let fail as part of the analysis as measurable nodes. We are using the network and flows from

Figure 5.4. The left table in Figure 5.5 below summarizes the average end-to-end delays on

all eight flows in terms of the delay increase/decrease multiplication factor. The criticality

rating is derived from the average multiplication factor, rating the most critical node to
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be the one with the biggest positive multiplication factor. We only show the top six most

important nodes as determined by our Maude analysis (left table) or as determined using

traditional approaches based on degree and workload (right table). For example, when node

Failed Node Ave Rank

Node 2 4.2 2

Node 3 4.4 1

Node 4 1.4 5

Node 5 1.1 6

Node 6 1.6 4

Node 7 1.9 3

Importance Ranking by 

Degree and load

node degree load Rank

5 6 1.44 1

3 6 1.28 2

7 6 1.04 3

4 6 0.48 4

2 5 1.2 5

6 5 0.88 6

Figure 5.5: Node Importance Ranking: Maude Based Results (left) vs. Degree/Workload
Based Results (right)

2 fails, the average end-to-end delay on all flows will be increased by 4.2 times, and when

node 3 fails, then the multiplication factor is 4.4. In comparison, we get a different ranking

with the traditional approach as shown in the right table of Figure 5.5.

To determine which analysis method delivers a better quality answer to the question “which

node is the most important node?”, we devised another experiment. The two most important

nodes according to the “what-if” Maude analysis are node 3 and node 2 (labelled Maude

Group in Fig 5.7), while traditional degree and workload-based analysis (labelled MaxDe-

gree Group in Fig. 5.7) determine node 5 and node 3 to be the most critical ones. The

next experiment assumes that the network administrator followed either the Maude analysis

results of the MaxDegree analysis results and backed up those two most important nodes.

Thus, it is very unlikely for those nodes to fail, but the remaining 16 nodes can still fail.

For each group we model the networks in Qualnet and let the 16 nodes each fail for 300s.

This means, there is a 4800s long experiment in Qualnet of each group (Maude Group and

MaxDegree Group). The two 4800s experiments have the same original flow configuration.

65



In addition, we run another experiment of 4800s without any node failures. We compare

the end-to-end delay of the Maude Group and MaxDegree Group with the original network

and flows (without any failure), to see how much increase in flow delay we get for either

group. Fig 5.7 shows that if we protect the two modes selected by our “what-if” analysis

tool, the average delay increase percentage is smaller (i.e., 25%) than if we protected the

nodes chosen by a MaxDegree-based analysis (i.e., 34%)(Although some flows in MaxDegree

group do not incur extra delay, i.e. 2, 6, 8). Thus, our “what-if” analysis is able to provide

a more accurate NCI for this scenario.
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Figure 5.6: Preliminary Experimental Results
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Figure 5.7: Delay increase (in %) for the two
analysis approaches

5.3.2 Adding an Additional Router

If one has limited resources available, it becomes a challenge to place them in the network

in a way that ensures best use of the resource’s capabilities. This is a common problem for

network planning and administration. For example, if we have only one extra node which

happens to be a router, where should we put it so that the overall end-to-end delay for all

flows will be improved most? Traditional approaches usually put the extra router next to the

66



node with the biggest workload. However, adding a new router will cause flow redistribution

which will in turn impact the end-to-end delay of all flows. This aspect is usually not taken

into consideration in traditional approaches. In our MINA architecture, wireless routers are

in Tier 2 (Tier 1 is the centralized server and Tier 3 contains the mobile nodes), hence we

determine that there are six tier two nodes (nodes 2-7) in Fig 5.4(a) that can be further

supported by an additional router. Placing an additional router next to a node we assume

that this router will have the exact same neighbors and links as that node. However, adding

such extra router into the network means that the network changes and thus, flow routes will

change too. Our “what-if” analysis tool examines end-to-end delay of each flow for possible

position of the additional router and compares the results to determine the optimal placing

of the additional router. We use again the network in Fig 5.4(a) and the flows in Fig 5.4(b)

with exception of the differences indicated in Fig 5.10.

Flow 

ID

Ave Delay 

Inc.

Rank

2 98.71% 1

3 99.25% 2

5 99.61% 4

6 99.50% 3

7 99.99% 5

Figure 5.8: Best Position for additional router:
Ranking by Maude analysis.

Node Contention

link

Flow 

ID

Load Load 

sum

Rank

2 2-25 1 0.8 1.2 2
2-28 9 0.4

3 3-11 3 0.8 1.28 1
3-21 21 0.48

5 5-26 2 0.8 1.04 3
5-26 8 0.24

6 6-10 5 0.48 0.88 5
6-10 7 0.4

7 7-3 3 0.8 1.04 3
7-5 8 0.24

Figure 5.9: Best Position for additional router:
Ranking by Workload-based analysis.

In Fig 5.8 we can see that when adding the extra router next to node 2, then the average end-

to-end delay on all flows is 98.71% of the one without extra router. Thus this position has the

best end-to-end delay improvement, according to our “what-if” analysis. In comparison, if

traditional workload-based approach is used, the best position is node 3, as shown in Fig 5.9.

Note: Node 4 is not in the Fig 5.9, because in order to do load balancing, nodes need to

have at least two flows, and Node 4 only has one.
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route flowid type TP Itemlength Arrival num

13,4,3,21 4 1 0.48 0.0016 300

16,12,7,5,26 8 2 0.24 0.0008 300

1,2,28 9 2 0.4 0.0008 500

Figure 5.10: Flows in Case 2

Next we deploy the extra router next to nodes 2 and 3, respectively, and use Qualnet to

test end-to-end delay improvement. The results show that the average delay decrease rate

over all flows is 1.43% if we position the extra router next to node 2, while it is 0.01% if we

position it next to node 3. Hence we can conclude that if we only have one extra router,

node 2 is the better position to place, which is consistent with Maude “what-if” analysis.

5.3.3 Network Reconfiguration

Mobile devices usually have more than one WiFi hotspot with which to associate. Properly

selecting an access point is good for network resource utilization and application performance.

We use again the network and flows as in Fig 5.4. If node 2 is down, node 25 and node 28 need

to re-associate with either node 6 or node 5. Hence we have four network reconfiguration

plans as determined by the possible combinations for node 25 and 28 re-associating with

node 5 or 6. One of the four network reconfigurations and the new routes for flows are

shown in Fig 5.11. We refer to NW1 where both node 25 and node 28 re-associate with node

6 (25-6;28-6). NW2 is the network where node 25 re-associates with node 6 and node 28

re-associates with node 5 (25-6;28-5). NW3 is (25-5;28-5) and NW4 is (25-5;28-6).

The “what-if” analysis tool calculated the end-to-end delay of flows for all four reconfigura-

tions (see Fig 5.12). The results of the Maude analysis show that NW2 and NW4 will have

less delay degradation compared with the one in original network (node 2 is on). However,

if we use traditional load balance-based approach (called LoadBalance), NW3 and NW4 are
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NW1100Mbps
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2Mbps
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29

Route flowid type

1,6,25 1 1
1,5,26 2 1
1,6,10 5 2
23,26,5,1,6,10 7 2
16,12,7,5,26 8 2
1,6,28 9 2

Figure 5.11: One Possible Network Reconfiguration when Node 2 goes down

the better choice, as shown in fig 5.13.

Network

Config

Avg Delay 

Increase

Rank

NW1 54.0502% 3

NW2 27.6939% 1

NW3 65.6767% 4

NW4 28.5294% 2

Figure 5.12: Best Reconfiguration Ranking us-
ing Maude

Network

config.

Node6 

load:

Node5 

load:

Delta Rank

NW1 2.26 1.04 1.22 4

NW2 2.16 1.14 1.02 3

NW3 1.36 1.94 0.58 2

NW4 1.46 1.84 0.38 1

Figure 5.13: Best Reconfiguration Ranking by
Workload

We then put these four resulting configurations into Qualnet to get the average end-to-end

delay over all flows. As Fig 5.14 shows, Maude results are quite consistent with Qualnet

results. I.e., Qualnet would prefer NW2 and NW4 over NW1 and NW 3, so does Maude.

LoadBalance would prefer NW 4 and NW 3 over NW 1 and NW 2. Note the end-to-

end delay generated by Qualnet is not exactly the same as the one generated by Maude

“what-if” analysis tool. However, the trends and the relationship among different network

configurations are quite similar.

Note we use Qualnet as benchmark because it is a well known network simulator that can
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Figure 5.14: Verification by Qualnet

accurately describe the network behaviors across multiple layers. However, we cannot use

Qualnet to replace “what-if” analysis tools. Maude is a high-level language providing con-

ceptual abstractions. The three rules in our tools are the basic elements derived from the flow

and queue models. Once these basic elements are in place, it is easy to set up and carry out

analysis on various network without any further configuration. Network simulators usually

need to simulate the packet/frame behaviors in all layers, which is more time-consuming.

Moreover, having a human setting up these networks in Qualnet requires time and intro-

duces the potential of misconfiguration by the human. In addition, increasing packet number

means more calculation and time while our formal-method based tools scales up nicely due

to abstraction. In Fig 5.15, we take the “No additional routers” scenario from case 2 and

the “No failure happened” scenario from case 3 as examples to illustrate the efficiency and

scalability of our Maude based “what-if” analysis tool. Maude only use 27ms and 11ms

in two scenarios, respectively. Qualnet uses much more time in our experiments. Even if

we only look at the time consumption in one second-this is the time used to simulate the

same data amount with Maude, Qualnet still consumes more time. When we increased the

number of packets by a factor of 10, then the time consumed by Maude is constant while

it increases in Qualnet. Hence we argue that our formal language based “what-if” analysis
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tools have better scalability.

Maude Qualnet Qualnet with 10 

times packets

Case2:

bp0

rewrites: 481 in 

(27ms real) 

20.4160s/300s 

=68ms/1s

24.2847s/300s

Case3: 

nw0

rewrites: 295 in 

(11ms real)

12.9815s/300s 

=43ms/1s

14.8934s/300s

Figure 5.15: Time consumed by Maude and Qualnet

5.4 Chapter Conclusion and Future Work

Traditional network analysis approaches mainly focus on faults and security problems in

wired, homogeneous networks where nodes have enough capabilities and links are stable. In

addition, those techniques do not take into consideration how changes to the network trigger

flow redistribution that potentially impacts QoS of all flows.

In this chapter, we proposed and evaluated a novel what-if analysis tool based on the formal

language Maude. We modeled heterogeneous networks in Maude using a general flow and

queue model and provided rules that compute how end-to-end delay in the network. Using

these models, we can evaluate various kinds of network changes (i.e. failures, backup and

reconfigurations) and determine improved network configurations. For example, we can

determine what is the best position for additional resources or which nodes are most critical

when it comes to failures. Experiments from three case studies have shown that our tool

outperforms traditional approaches. The what-if analysis tool could be extended to adopt

more QoS example parameters and heterogeneous applications in the future. Another area

of future work is to investigate flow models for other types of traffic and formalize those in

Maude. This would allow us to handle network traffic more comprehensively.
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Chapter 6

Adapt: Software Defined Networking

Based Flow Scheduling

In this chapter we study how MINA control and adapt the heterogeneous applications over

IoT Multinetworks, according to the network state information collected and processed in the

last two steps. Given the heterogeneity of IoT Multinetworks, it is challenging to coordinate

and optimize the use of the heterogeneous resources with the goal of satisfying as many tasks

as possible.

6.1 Problem Description and Motivations:

The MINA multi-networks are fundamentally heterogeneous;they are often derived from the

integration of already independently deployed CPS/IoT sub-networks, characterized by very

heterogeneous devices and connectivity capabilities.

This heterogeneity poses novel challenging issues for both academic and industrial researchers,

especially in order to synergically exploit the heterogeneous network resources dynamically
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available in an open CPS/IoT deployment scenario. The heterogeneous network and device

resources create opportunities for a wide range of applications (semantic tasks) with varying

service requirements to execute concurrently. The envisioned classes of tasks may include:

1. simple point-to-point client-server applications that require real-time, dependable, and

high quality message exchange - e.g., real time information about the road/vehicle

status from end devices (highway camera or vehicle) to the data center, e.g., ”locate

yellow sedan in I-5 highway” or ”determine poor road conditions along my path of

transit”. Such applications require low latencies and reliable delivery of information;

2. monitoring applications that collect data periodically from a multitude of data sources,

such as in the case of recharging site, monitoring for global state awareness and op-

timization. A sample query might be ”get availability of recharging sites and traffic

statistics on vehicles that have been charged there”. In this case, there is no strict

requirement on latency (at least within one polling period) and on message loss, but a

relatively significant number of updates from traffic, often generated in a very asym-

metric way;

3. opportunistic exchange of local monitoring/personal data, especially between moving

vehicles or between vehicles and Internet access points on the the way, e.g., ”audio chat

among cars in a fleet”. In this case, due to the interactions between multiple parties,

a lower jitter is required, while throughput might be less important.

While opportunities for new classes of applications are created in this heterogeneous setting,

new challenges are introduced. The first issue involves shared provisioning of network and

sensor resources across applications for efficiency. In the heterogeneous IoT setting, different

user-defined tasks may run simultaneously – given the shared space they operate in, they

often share the same sensing/networking resources, with differentiated quality requirements

in terms of reliability (packet loss), latency, jitter, and bandwidth. Given the randomized
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nature of which IoT tasks are required, these applications are often developed, deployed, and

triggered in an uncoordinated manner. Optimizing sharing of sensing and communication

resources and coordinating messaging in this context is challenging.

The above challenges push for another module in MINA enabling effective resource provi-

sioning in the IoT Multinetworks environment, to accomplish heterogeneous IoT tasks

with various requirements. In particular, MINA achieves a reasonably accurate, centralized

global view of the currently available multi-network environment and takes advantage of

this global view for adapting it, e.g., by reallocating application flows across paths. More

importantly, MINA adopts state-of-the-art Software-Defined Networking (SDN) technolo-

gies to achieve flexible resource matching and efficient flow control in industrial deployment

environments. To this purpose, we propose a novel IoT multinetwork controller, based on a

layered architecture, that makes easier to flexibly and dynamically exploit IoT networking

capabilities for different IoT tasks described by abstract semantics. Moreover, we modify

and exploit the Network Calculus to model the available IoT multi-network and we propose

a genetic algorithm to optimize its exploitation through differentiated dynamic management

of heterogeneous application flows.

The benefits of employing SDN techniques in IoT environments is becoming recognized

in multiple domains beyond the smart transportation setting discussed earlier by both re-

searchers and industry practitioners. For example, [90] developed a robust control and com-

munication platform using SDNs in a smart grid setting. Similar efforts have been explored

in the smart home domain where IoT devices are extremely heterogeneous, ranging from

traditional smartphones and tablets, to home equipment and appliances with enhanced ca-

pabilities. Recent efforts include a home network slicing mechanism [102] to enable multiple

service providers to share a common infrastructure, and supporting verifying policies and

business models for cost sharing in the smart home environment. At a lower device level, [66]

employs SDN techniques to support policies to manage Wireless Sensor Networks. In sum-
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mary, while there is significant interest in managing IoT environments, many of the efforts

in this direction are isolated to specific domains, or a specific system layer. The proposed

work employs a layered SDN methodology to bridge the semantic gap between abstract IoT

task descriptions and low level network/device specifications.

In this chapter, we will first show the key differences between SDN techniques in traditional

Data Center Networks (DCNs) and in IoT environments, and give our vision of a layered

SDN controller in IoT settings (Section 6.2). In Section 6.3 and 6.4, we illustrate how

to utilize the layered view to match proper resources with low level specification to tasks

with high level semantics. We introduce and modify the Network Calculus technique to

accurately estimate the flow QoS performance under heterogeneous links. A novel multiple-

QoS-constraints flow scheduling algorithm is proposed in Section 6.5, and we have verified

it in Section 6.6. Conclusive remarks are given in Section 6.7.

6.2 Controller Architecture

Given the heterogeneity of IoT Multinetworks, it is challenging to coordinate and optimize

the use of the heterogeneous resources with the goal of satisfying as many tasks as possible.

We conjecture that the SDN paradigm is a good candidate to solve the resource management

needs of IoT environments for multiple reasons:

• SDN allows for a clear separation of concerns between services in the control plane (that

makes decisions about how traffic is managed) and the data plane (actual mechanisms

for forwarding traffic to desired destinations). The decoupling encourages abstractions

of low-level network functionalities into higher level services and consequently simplifies

the task of network administrators;

• SDN mechanisms aim to provide a balance between the degree of centralized con-

75



trol/coordination through the presence of an explicit SDN controller and decentralized

operations through flow-based routing and rescheduling within the network compo-

nents; this balance is realized via interactions between controllers and controlled de-

vices.

However, the current realization of SDN technologies are still far from addressing the het-

erogeneous and dynamic needs of IoT Multinetworks. The popular use of SDN technologies

today is in DCNs [27][8], where the focus is on the collection of specific network statistics

(e.g., bandwidth consumption) from nodes networked via fast interconnections within the

datacenter. In contrast, a typical IoT Multinetworks setting gathers state information from

devices distributed over a more loosely coupled (and possibly wide area) network. Second,

performance metrics of interest in IoT Multinetworks go beyond bandwidth consumption;

with more heterogeneous and time-sensitive traffic as it is the case in IoT Multinetworks, it

is equally important to reduce the collection overhead and to keep the effectiveness of the

overall data needs. Unlike the case of DCNs, whose network requirements primarily revolve

around link utilization and throughput, IoT Multinetworks settings present additional timing

related needs - such as delay, jitter, packet loss, and throughput. Third, unlike the situation

in a DCN, link and node capabilities in IoT Multinetworks are very heterogeneous and the

application requirements are also different. This implies that the single objective optimiza-

tion techniques in DCN flow scheduling, such as bin packing [27] and simulated annealing

[8], are not directly applicable in IoT Multinetworks. Finally, the nature of interactions in

current realizations of SDN (e.g., OpenFlow [68]) is limited to south-bound, i.e., lower layer

interactions between controller and devices such as switches. The so-called north-bound in-

teractions between applications/service and controller have received much less attention and

are not standardized [70]. Although there are proposals [96, 49] that advocate the use of

a network configuration language to express policies such as ”ban a device if its usage over

the last five days exceeds 10 GB”, these policies still focus on lower layer parameters of the
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network stack.

More recently, SDN techniques are being applied to wireless networks. OpenRadio [10]

suggests the idea of decoupling the control plane from the data plane to support ease of

migration for users from one type of network to another easily, in PHY and MAC lay-

ers. CellSDN [63] enables policies for cellular applications that are dictated by subscriber

needs, instead of physical locations - providing finer control of network flows than previ-

ously possible. The OpenWireless [85] prototype supports seamless handover between WiFi

and WiMax networks when video data is streamed, using OpenFlow controllers. The wire-

less SDN solution provides the necessary building blocks for managing IoT Multinetworks,

but they are not sufficient. The south-bound approach retains its focus on connecting to

a specific lower-level access network; its application to IoT Multinetworks must support

mechanisms that abstract out the network heterogeneity. Furthermore, the framework must

support north-bound, higher layer interactions, i.e., to the heterogeneous applications and

their requirements.

In this chapter, we propose a novel IoT Multinetworks controller architecture to over-

come these limitations. As shown in Fig. 6.1, the data collection component collects net-

work/device information from the IoT Multinetworks environment and stores it into databases.

This information is then utilized by the layered components in the left side. The controller

also exposes the Admin/Analyst APIs, which enable the control processes to be governed

not only by the controller itself but also by humans or external programs. Note that while

the controller is logically centralized, to improve scalability it can be instantiated multiple

times in different locations, e.g., in a per-domain per-service fashion.

We argued that the concept of an abstraction level is fundamental to our vision of IoT Multi-

networks since it allows to make use of the heterogeneous multinetwork resources in a flexible

manner. As shown in Fig. 6.2, tasks are the highest level of abstractions in IoT Multinet-

works that define what is required; this leaves open the choice of what applications/services,
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Figure 6.2: Layering in the IoT controller

devices and communication networks should be exploited to accomplish the required task. A

simple example might be to determine how many vehicles currently there are in a recharging

station. Services are concrete software/hardware entities that help in the realization of a

task. A task may be realized by a single service (capture video from recharging station) or

a workflow of services that together realize the task (capture video and count vehicles). A

task/service mapping specifies which devices and applications should be used to complete

the task. The lower level Flow and Network layers decide which networks should be used

for application flows and how application flows should be routed across the network. These

decisions will be sent out to the corresponding devices via the communication and control

layer.

Such a layered view has benefits since it hides the details of lower layers (network/devices)

so that tasks can be accomplished in a more flexible way. Furthermore, the separate ab-

straction levels allow dedicated algorithms to be designated to a certain layer for improved

performance. For example, consider a specific instance of a smart space IoT setting (as

described earlier). Example tasks here might be ”Locate Cab 001 in I-5 free way section

107” or ”Alert all vehicles about accident in I-5 free way section 107”. Once such a task

is submitted to the controller from a requesting node, the controller components process it

through a series of steps:

• The task-resource matching component of the controller maps the task request onto

the existing resources in the multinetwork. For example, for the first task (”Locate
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Cab 001 in I-5 free way”), this component will determine a set of available resources in

that location (”I-5 free way section 107”). Then it will filter out resources from this set

by checking whether they have the capability of locating and tracking vehicles. The

information about the various capabilities of resources and what services they provide

is stored in the device and service DB. For example, some resources such as cameras

and mesh routers might qualify because they are adverstised to have such capabilities.

The result of the task-resource matching component is a set resource solutions, where

each resource solution is a set of resources whose combined capabilities could solve the

task at hand. The task-resource matching component then further refines each of the

resource solution. In our example of locating and tracking vehicles, for the solution

that consists of a road camera and a server for image processing, the refinement yields

that the video stream coming from the raod camera is sent to the server and it also

determines the image processing techniques that will be employed at the server side.

These instantiated resource solution, or solution for short, can be filtered by automated

policies at the controller or via a human in the loop (i.e., a network operator) - this will

decide which solution the controller will adopt and further optimize it (Section 6.3).

• Once a solution is selected, the service solution specification component of the con-

troller maps the characteristics of the devices and services involved in that solution to

specific requirements for devices, networks, and application constraints (e.g., minimum

throughput). For example, the solution that uses a road camera to locate and track

vehicles will imply certain data rate and delay requirements of the video surveillance

service, given the video frame resolution, codec, and receiver’s buffer (Section 6.4).

• The Flow Scheduling component takes these requirements and schedules flows that

satisfy them. Scheduling and coordination of the resources in IoT Multinetworks are

complex due to the heterogeneity of the networks and various QoS requirements of

flows. We propose to use a logically centralized management and coordination compo-
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nent (the flow scheduling algorithm is described in details in Section 6.5).

• Finally the controller triggers the necessary communications in the IoT Multinetworks,

e.g., a command like ”routing the video data sent from Camera 001 via Ethernet” will

be sent to the devices along the path.

6.3 Resourcing Matching

As discussed in the previous section, assigning heterogeneous network or device resources

to heterogeneous IoT tasks is challenging. The major reason is that IoT tasks are usually

depicted in an abstract manner and they are independent of the underlying network and

device resources specifications. Thus a bridge between high level task descriptions and low

level resource specifications is needed.

We employ a semantic modelling approach to provide such bridge. We use semantic tech-

nology (ontologies and rules) to describe (a) characteristics and capabilities of network and

device resources as well as services and (b) IoT tasks as hierarchical semantic tasks de-

scriptions where high-level tasks are refined through sequences or alternatives of low-level

tasks. For example, mesh routers are captures as resources that have the cabability to lo-

cate, match, and track. Similarly, wireless devices in cars can be identified by mesh routers

and than tracked. By way of example, here is a generic task description for ”LocateAnd-

Track(Vehicle,Location)” defined through the following task plan template:
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LocateAndTrack(Vehicle,Location)=

FindLocationResources(in:Location,neededCap:LocationCapability,

out:res:SetOf(LocationResources));

Match(in:Vehicle, SetOf(LocationResources), neededCap:Tracking,

out:SetOf(LocationAndMatchingResources))

For all Res in SetOf(LocationAndTrackingResources) Do

If Res = Camera then

TrackUsingVisualMeans(in:Res,neededCap: CameraTracking,

out:TrackingData)

ElseIf Res = MeshRouter then

TrackUsingDigitalMeans(in:Res,neededCap: DigitalTracking,

out:TrackingData)

Semantic task descriptions are hierarchical and task parameters are fully typed in terms of

ontological concepts. At the lowest level of the task hierarchy are so-called primitive tasks.

Primitive tasks are not decomposed any further, rather they are described in terms of a

capability that is needed in order to perform the primitive task. In the above example, the

locate and track task is decomposed into three subtasks: find location resource, match, ad

tracking using either visual or digital means. Each of the subtasks has certain capabilities

that a resource must have in order to be considered a possible solution. Through these

capabilities, the high-level IoT task description is connected to the lower-level devices, net-

works and services. The requirements on the capabilities are hard constraints that must be

satisfied. Semantic task descriptions can also have additional soft constraints. For exmple,

there might be a desire to have high resolution cameras to yield better identification, but a

medium resolution camera might also suffice.

Using the database of semantic descriptions of networks, devices and services, our analyzer

can match resources to a given task. It is important to note that the analyzer does not depend

on the capabilities needed or provided: it is agnostic to the specific domain to which it is

applied. The analyzer only assumes that there is a task plan structure with complex tasks

refined to primitive tasks specifying required capabilities, while for resources it is assumed

that they specify what capabilities they provide.

We have used this approach successfully in other projects [34, 33]. These projects had the
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focus to determine the interoperability of various live or simulated military training systems,

from F18 fighters to complex simulation systems that are employed in large, joined military

trainings [38, 37, 36].

Task plan templates are stored in the task knowledge base (task KB) and resource descrip-

tions are stored in the resource knowledge base (resource KB). Having those two knowledge

bases, users or controllers can match the task onto the appropriate taskplan template and

submit it to the analyzer. The analyzer imports knowledge from both KBs and tries to

find resources that have the required capabilities for the tasks. If such resources exist, the

analyzer returns one or more solution taskplans with resources assigned to tasks, ranking

solutions according to constraint satisfaction.

6.4 Service Solution Specification

Once a solution is selected, the service solution specification component maps the charac-

teristics of the devices and services involved in that solution to specific requirements for

devices, networks, and application constraints. As an instance, Use video surveillance is

selected to accomplish task Locate Cab 001 in I-5 highway - detailed parameters such as

video resolution( 640*800), Frame rate (30fps), Codec(H.264), Client Buffer(100kbytes)are

specified. These service requirements are then translated into network and resource require-

ments: Data Rate of at least 0.7Mbps, Delay less than 1s and Loss Rate less than 5%. The

information needed to determine whether the desired data rates and delays are possible is

obtained from a Network Information Base (or Network DB) that contains the state of the

networks in the space.
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6.5 Flow Scheduling

The centralized flow scheduling component in our layered controller can access the network

state information of each link and node that is provided by the MINA global network state

information view. In addition, all flows are registered in the controller hence the specifications

of the flows such as QoS requirements, packet size, and packet rate are known a-priori by the

flow scheduling component. One of the key modules in flow scheduling components is the

network model, which takes the network state information and flow specification as input

and calculates analytical results of the end-to-end performance of each flow before they are

actually admitted into the networks. Finding paths for a flow with even two constraints is

NP-complete [97], hence here we propose a heuristic algorithm to solve this problem. Every

time the algorithm picks up a heuristic solution, it calls the network model to verify if the

solution is feasible or not (i.e., if QoS requirements of flows are fulfilled or not). If not, the

heuristic algorithm continues to the next iteration until it finds one feasible solution or a

predefined iteration time is reached.

6.5.1 Network Calculus-Based Model

Generally, there are two methodologies in analysing QoS in communication networks, one

is Queueing Theory [44] and the other is Network Calculus [61]. Queueing Theory is the

general mathematical study of queues; it models communication requests or packets as dis-

crete items which could be buffered in a queue and wait for services provided by the server.

It has played a fundamental role in modeling, analyzing, and dimensioning communication

networks [55]. Initially Queueing Theory was derived from modeling the telephone network.

However, unique customer and service characteristics and requirements in such packet-switch

networks often make its adoption difficult [55]. Hence more analytical techniques are devel-

oped in packet-switched networks. Network Calculus is a technique dealing with queueing
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type problems encountered in modern packet-switched computer networks. Its focus is on

performance guarantees, modeling the arrival traffic, service capability, and departure traffic

as curves. The curves in Fig. 6.3 represent the data volume that arrived (A(t)), was served

(S(t)) and departed (D(t)) on a node (system) in a time interval [0,t).

bits

times

D(t)

S(t)

Max Delay 

A(t)

Figure 6.3: System with Service S(t) = R[t−
T ]+, arrive curve A(t) and departure curve
D(t)

video

audio

Figure 6.4: Initial Validation Sce-
nario

In this paper we assume that each node has a constant capacity R and can provide a service

curve S(t) = R[t − T ]+, as shown in Fig. 6.3, where R is the capacity (transmission rate),

[x]+ = max{0, x}, and T is the transmission delay, which is the time between the first bit

of the packet entering the queue and the last bit getting out of the transmitter. Obviously,

T depends on R, the length of this packet, and the amount of data in front of this packet

when it hits the queue. The core part of this technique is the use of min-plus convolution

on arrival and service curves, to generate a departure curve:

D(t) = A(t)⊗ S(t) (6.1)

which means:

D(t) ≥ inf
s≤t

(A(s) + S(t− s)) (6.2)

There are two properties enabling Network Calculus to model multiple flows in complex

networks:
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a) if there is more than one flow going through a node, all flows share the same transmission

service. Here we assume each intermediate node has a FIFO scheduler, in which packets are

served in a sequence as they arrived. Flow i will have a leftover service curve:

Si =
θi

Σj 6=iθj
R[t− T ]+ (6.3)

where R is the capacity of the downlink of this node (transmission rate), and θ is the weight

of each flow (i.e., data rate= rl);

b) in a multi-hop path, the departure curve of current hop is the arrival curve of the next hop

as shown in Fig. 6.5, and a combination service curve along the path S(t) can be obtained

by iteratively adding each node’s service curve using the associative operation in min-plus

convolution.

S(t) = S1 ⊗ S2 ⊗ ...⊗ Sn (6.4)

A1(t)
S1(t) S2(t)

D1(t)=A2(t) D2(t)

A1(t)
S(t)

D2(t)

Figure 6.5: Association of service curve

However, Network Calculus originally can only provide an upper bound on the delay for

the whole time scale: it is not possible to dig into the fine grained characteristics of the

traffic, such as jitter. Hence we slightly modified classic Network Calculus by examining the

traffic as a set of discrete points, rather than a curve, where each point represents a packet.

It assumes that the profile of each flow (e.g., packet length and sending time) is known at

each sender, and each packet is served by the service curve S(t) with a constant capacity
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R and a delay T . At the time of a packet arrives, we examine the current queue state in

terms of how many packets are there in the queue and what are the lengths. The delay

T is the transmission time of all packets that are already in the queue. Hence the total

delay of a packet consists two parts: one is T and the other is the transmission (service)

time of the packet itself. In this way, we can get an approximate end-to-end delay for each

packet. To be consistent with our experiment platform (Qualnet), we defined the jitter as the

difference between two successive packet arrival intervals, as specified in [20]. In this paper,

we examine three QoS parameters: delay, throughput, and jitter. For each flow, we profile it

with correct set of points at the sender side to plot the curve. Once we get the arrival curve

D(t) of flow i at the destination node by the modified Network Calculus model, we compare

it with flow i’s initial arrival curve A(t). Each point (packet) suffers from a delay and have

a final arrival time. The average delay, average jitter, and total throughput for each flow

can be calculated accordingly. In our initial validation scenario, we have a two-hop network

consisting of one video server and one audio server, one router and 5 clients. Each server

connects to the router via a 100Mbps Ethernet link while each client connects to the router

via a 2Mbps 802.11b wireless link. Each server provides either a video streaming service or

a Skype voice service to one of the clients, as shown in Fig. 6.4. The video streaming and

Skype voice services are based on real traces collected by the Arizona University [5] and the

Polytechnic University of Turin [3]. We tested this initial validation scenario via Qualnet

simulator and found the results are consistent with our Network Calculus based model, as

shown in Fig. 6.6: the average error rate of the delay, jitter, and throughput are 0.05, 0.08,

and 0.03 respectively.
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Figure 6.6: Initial Validation Results

6.5.2 Genetic Algorithm-based Multi Constraints Flow Schedul-

ing

Multiple constraints often make the routing problem intractable [62]. For example, finding

a feasible path with two independent path constraints is NP-complete [97]. Traditional flow

schedulers in DCNs employs heuristic algorithms such as bin packing [27] and simulated

annealing [8]; however, these algorithms have good performance when the constraints are

only the link utilization and cost in wired networks, but cannot work well under multiple

QoS constraints in heterogeneous networks.

Genetic Algorithms (GAs) are adaptive heuristic search algorithms based on the evolutionary

ideas of natural selection and genetics. In searching a large state-space, multi-modal state-

space, or n-dimensional surface, a genetic algorithm may offer significant benefits over typical

search of optimization techniques, e.g., linear programming, depth-first, and breath-first. In

particular, a communication path in a network perfectly matches with the chromosome

concept in GAs: nodes are the genes, mutation and crossover can be done by replacing a

sub-path and exchanging sub-paths between two paths, and the fitness value is the QoS
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performance of the flow going through this path.

Many GA-based routing protocols with multiple QoS constraints have been proposed in

the past decade, e.g., [62, 100, 60]. However, we argue that our approaches have made

the following key contributions in the IoT settings: a) existing approaches only examined

single flow performance, while multiple flows with different QoS requirements coexist in an

IoT environment. Since the inter flow interference can greatly affect the end-to-end flow

performance, our approach takes this effect into consideration; b) heterogeneous network

capacity is one of the key characteristics in IoT environments, and thus our approach schedule

the flows over links with difference capacity.

Problem statement

Given a directed graph G < V,E >, where V is the set of nodes and E is the set of links, each

link (u, v) ∈ E has a capacity Ru,v, which is equivalent with the transmission rate of node

u. F is the set of flows and each flow fi ∈ F has several parameters: source s, destination

d, start time t0 and arrival curve Ai(t). In IoT settings, each flow has a QoS requirements

vector Qi =< w1, w2, wm >, where each element indicates one QoS parameter requirement.

In this paper we use the vector < wd, wj, wt >, which states the requirements for delay,

jitter, and throughput respectively. The problem is to find a path p from source node to

destination node for each flow, such that:

Xi(p) ` Qi, for each flowfi ⇐⇒ (6.5)

xd ≤ wd and xj ≤ wj and xt ≥ wt, for each flowfi (6.6)

where Xi(p) =< xd, xj, xt > is a vector in which each element represents the end-to-end

delay, jitter, and throughput of flow fi when using path p respectively.
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Data structures and Procedures

Chromosome Structure and Initialization. A chromosome represents a path, which is a list

containing nodes (genes) from source s to destination d. Each flow fi eventually has one

chromosome. No duplicated genes are allowed in a single chromosome which means no loops

in the path. Two initial chromosomes for each flow are set by using Dijkstra’s algorithm and

the second shortest path between source s and destination d.

Fitness Value. We use the following equation to calculate the fitness value for each chromo-

some (path):

[α
xd − wd
wd

+ β
xj − wj
wj

+ γ
wt − xt
wt

]+ (6.7)

where < xd, xj, xt >= Xi(p) is the flow end-to-end performance on delay, jitter, and through-

put by using path p respectively. We employed the techniques described in Section 6.5.1

to get the fitness value. α, β, γ are the weight factors of the QoS parameter, which only

depends on the flow. Here [x]+ = max{0, x}. Apparently, a path with fitness value 0 is a

feasible path. We rank individuals by fitness value, the smaller the fitness value, the higher

it is ranked.

Crossover. For each flow, we choose the most two top ranked chromosomes (i.e., the shortest

and the second shortest paths on the first iteration) with common genes as the parents (if

they do not have common genes, we skip crossover in this iteration). A single point crossover

at the common genes are performed to generate new offspring. For example, we use path

s, a, b, c, d and s, e, b, d to generate two children: s, a, b, d and s, e, b, c, d by performing the

crossover at the common gene b. Those four chromosomes are served as input of Mutation

procedure.

Mutation. Given a path s, a, b, c, d, we choose a bottleneck node, say node b. Among the
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neighbours of its last hop, node a, we randomly choose another node x which can reach the

destination node d. Hence we can get a mutation path s, a, x, .., d. Here we determine the

bottleneck node as the one incurring the largest delay along the path. For each flow, the

mutation procedure takes four chromosomes as input and generates four new chromosomes.

Those eight chromosomes will be ranked based on their fitness values.

Acceptance and Replacement. The outputs of mutation are eight ranked chromosomes (paths)

for each flow, and the top two chromosomes will replace the current two chromosome parents

of the current round of iteration. The new chromosome parents will be the input of the

Crossover procedure for the next iteration.

Termination. The algorithm will iteratively run until each flow has a feasible path (with

fitness value 0) or the predefined generation size is achieved. In our experiments, we set the

generation size to 10.

6.6 Customized Simulation Platform and Evaluation

We have implemented a prototype of the proposed controller on top of the Qualnet simu-

lation platform [79]. Qualnet provides a comprehensive environment for designing network

protocols, and it enables creating and animating different network scenarios, under which the

performance of the protocols can be analysed. We customized Qualnet with SDN features

by injecting a OpenFlow-like protocol in IP layer. In every network scenario, there is only

one node serving as the controller and the remaining nodes are all controlled devices. While

achieved performance results already demonstrate the feasibility of the proposed approach,

in the future we intend to further investigate our solution by extending the simulated envi-

ronment considering the case of an actual vehicular scenario served by multiple controllers.

In Fig. 6.7, we illustrate the operation flow of how this protocol works in a software defined
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manner:

1. service or application requirements, network topology, and device properties are regis-

tered to the controller and stored in the database;

2. the controller translates service requirements into network QoS requirements. Prepro-

cessing and analysis is performed if necessary;

3. the controller exploits the algorithm described in Section 6.5.2 to schedule flows, in

order to fulfill QoS requirements;

4. the controller sends flow entries to controlled devices in charge of routing flows. A flow

entry contains information such as source/destination IP address/port, IP address of

next hop, and the new destination IP address;

5. controlled devices receive flow entries from the controller;

6. controlled devices identify each flow going through (by source/destination IP ad-

dress/port), and check whether there is an entry for this flow, then do actions de-

termined by IP address of next hop and the new destination IP address.
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Figure 6.7: Operational Flow Diagram
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Note that one of the important differences between SDN in IoT environments and in DCNs

is that in IoT end devices usually have multiple network interfaces and horizontal/vertical

handovers often happen. Hence, once the intermediate device reroutes a flow, it should not

only change the next hop, but also the destination IP address. For example, in Fig. 6.7 when

Device 1 reroutes a flow destined to Device 4 from 1-2-4 to 1-3-4, it should not only change

the next hop from Device 2 to Device 3, but also change the destination IP address from

WiFi interface address to Bluetooth interface address of Device 4. Of course, this procedure

requires a more secure mechanism operated in the intermediate device, which is one of our

future work directions.

In this section, we evaluate our GA-based flow scheduling methodology and compare it with

other two common scheduling algorithms used in SDN world: bin packing and load balance.

The former tries to maximize the link utilization, which means it tries to accommodate as

many flows as possible into a single link. Instead, the latter assigns flows into a link so

that the total amount of the flows are proportional to the capacity of the link. In order to

have reasonable results, we exploit a real deployed smart campus network topology [4]. This

topology is quite similar to actual application cases where vehicles with wireless connectivity

exploit either LTE or WiFi road side units to receive data from servers. The topology

consists of 3 data servers, 3 edge switches (each server has a 1Gbps Ethernet link to one

single edge switch), 2 core routers(each edge switch has one 10Gbps Ethernet link to every

core router), and 15 access points (each access point has one 100Mbps Ethernet Link to every

core router) with 45 end devices. There are three types of access points: WiFi, Femtocell

and Bluetooth, with data rates 10Mbps, 2Mbps, and 1Mbps respectively (end devices have

direct connection with access points). A SDN controller is connected to the network with

the layered functionalities. Each device has three network interfaces, at each time instance

only one interface can be used; however, vertical handover could be performed if necessary.

Each of the three data servers provides either file sharing, tele audio, or video streaming

services. We assign each of the 45 end devices a service, randomly chosen from 16 file
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sharing services, 11 tele audio services, and 7 video streaming services. File sharing flows

are modeled by sending Constant Bit Rate with packet length uniformly distributed in [100,

1000] bytes with period T, the latter uniformly distributed in [0.01, 0.1] seconds. Tele audio

and video streaming flows are from real traffic traces [5, 3].
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In our GA-based flow scheduling algorithm, we initially choose two paths for each flow as

parents. Under this specific network topology, we choose the path generated by load balance

algorithm as one of the parents; then, we determine the other parent by exchanging the

current core route with the alternative one (we have two core routers). We argue that the

file sharing service requires large throughput, the tele audio service requires low delay, while

the video streaming service requires low jitter. Since QoS requirements wd, wj, wt mentioned
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in Section 6.5.2 highly depend on the user experience, audio/video codec and buffer size

in the end devices, etc, we do not set any particular QoS requirement in this simulation

based experiment. Instead, we try to optimize the QoS performance (maximize throughput,

minimize delay and jitter) in a predefined amount of generations (we set 10 generations here).

Hence we slightly change the fitness value in equation (6.7) with αxd + βxj + γ(10000/xt):

for file sharing flows (α, β, γ) = (0, 0, 1), for tele audio flows (α, β, γ) = (1, 0, 0), and for

video streaming flows (α, β, γ) = (0, 1, 0).

We have totally 45 flows (each of 45 end devices has one flow): flows 1-21 are file sharing,

flows 22-36 are tele audio, and flows 37-45 are video streaming. Fig. 6.8 shows the Flow

Throughput comparison. For file sharing flows, the load balance algorithm outperforms

the bin packing algorithm, while our proposed algorithm has an average 8% throughput

increase if compared with the load balance algorithm. The reason is in wireless links when

link utilization exceeds a threshold, the packet drop rate increases dramatically, as indicated

in [80]. Fig. 6.9 shows that for tele audio flows, our proposed algorithm can improve the

end-to-end delay performance by 51% and 71%, compared to load balance and bin packing

algorithm respectively. However, the other two types of flows suffer approximately the same

delay experience under these three algorithms. We argue the reason is tele audio flows have

bursty traffic patterns; it might not have big data volume, but if two flows are scheduled with

similar busty pattern in the same link, a large delay occurs. That is why tele audio flows have

poor delay performance under bin packing and load balance algorithms. Fig. 6.10 shows that

video streaming flows have an average 32% and 67% less jitter with our proposed algorithm

than the other two algorithms. Two observations can be obtained here: a) video streaming

flows have a better overall jitter performance than tele audio ones; b) our proposed algorithm

has almost the same throughput and delay performance on video streaming flows, compared

with the other two algorithms. The reason is video streaming flows have variable packet

length, but almost constant inter packet interval. Hence if the interfered flows also have a

stable inter packet interval, the jitter should be low. In fact, our proposed algorithm schedules
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more video streaming flows with flow sharing flows (more stable inter packet interval) than

tele audio flows (variable inter packet interval).

Extra flow entry messages overhead exists in the beginning of the experiments. Since we

assume that we perform a one time flow scheduling and flows are stable once they are initial-

ized, we do not examine how the extra message overhead affects the network performance.

However, enabling online scheduling with dynamic flow admission is also one of our future

work directions.

6.7 Chapter Conclusion and Future Work

In this chapter, we have presented an original SDN controller design in IoT Multinetworks

whose central, novel feature is the layered architecture that enable flexible, effective, and

efficient management on task, flow, network, and resources. We gave a novel vision on

tasks and resources in IoT environments, and illustrated how we bridge the gap between

abstract high level tasks and specific low level network/device resources. A variant of Net-

work Calculus model is developed to accurately estimate the end-to-end flow performance

in IoT Multinetworks, which is further serving as fundamentals of a novel multi-constraints

flow scheduling algorithm under heterogeneous traffic pattern and network links. Simulation

based validations have shown that our proposed flow scheduling algorithm has better per-

formance when compared with existing ones. We are currently in the process of integrating

this layered controller design with our MINA software stack, in a large IoT electrical vehic-

ular network testbed [1] and developing more secure, sophisticated tools to assist on-the-fly

resource provisioning and network control.

What we have realized is that the layered controller design is critical to the management of

heterogeneous IoT Multinetworks. Techniques applied at each layer could be different - in
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our design, the semantic modeling approach performs resource matching and the GA-based

algorithm schedules flows. Those techniques can be viewed as plug-ins and can be adjusted

or replaced in different IoT scenarios. We strongly believe that our novel layered controller

architecture that inherently supports heterogeneity and flexibility is of primary importance

to efficiently manage IoT Multinetworks.
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Chapter 7

System Implementation and

Evaluation

In this Chapter we will illustrate how we design and implement the prototype of our Multi-

network management system. We have a server software stack on Linux OS while a client

software stack on both Linux OS and Android OS. In the following subsections we focus

more on the most important modules inside server and client stack, as mentioned in Chap-

ter 3. MINA is built on top of the RAMP middleware ( [12] [13]) to support low level

communication that MINA needs.And MINA applied the OAA loop to collect network state

information from managed devices to a centralized data base where analysis will be per-

formed. adaptation and configurations then can be made according to the analysis results.

A network management system typically contains a Management Information Base (MIB)

that describes the data structures and schemas that the network state information relies

on. The network state information is converted to specific format and record after inserted

into the data base and served as the results of queries issued by a management station. In

the following Sections we first introduce our information model used to maintain the state
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information to the Server.

7.1 Network state Information Base

In MINA, we have designed an Object-oriented Network state Information Base (NIB)

[53]that is used by both the Server and Client software stack. Each managed device gathers

local network information and report it own instance of the Network state Information Base

in order to answer possible queries from the Server.

The most relevant Classes involved in our NIB, also depicted in Figure 7.1 as a UML Class

diagram, are the following:

• Node

• NetworkInterfaceCard

• Network

• Neighbor

• Link

Node is the entry-point Class of our NIB. It models a managed device and it is used as

starting point for navigating through the entire graph. Every Node is distinguished by a

UID (Unique IDentifier), an Integer that is generated locally by the RAMP Dispatcher as

the hashCode of the MAC address of the Node itself. Considering, however, that each node

may have more than one NetworkInterfaceCard (see below) - and, thus, more than one MAC

address - Dispatcher chooses one of the available MACs in a deterministic way. A MAC is

a 6-byte address that is unique for each Network Interface Card (NIC) by factory and, thus,
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Figure 7.1: Network state Information Base (NIB)
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guarantees that each Node has it own unique identifier. The enumeration Tier describes

which Tier (in the overlay network) the Node belongs to, whereas position gives a textual

representation of the Node’s position (either symbolic or physical). For the monitoring

purposes, batteryLevel, cpuUtilization, and memUtilization represent the percentage

of battery available (important especially for mobile devices), and the percentage of CPU

and RAM utilized by running processes, respectively. Each Node has a 1-to-N association

with Neighbor and NetworkInterfaceCard (see below).

NetworkInterfaceCard models one network interface card available locally for this Node. It

is characterized by an address (IP address), a macAddress, a nicName, a nicStatus, and

signalStrength. The enumeration nicStatus refers to the actual status of the network

interface (it can be either ON or OFF), whereas signalStrength shows the percentage

quality of the wireless link (as reported by the Ubuntu NetworkManager [26] or BlueZ

Bluetooth protocol stack [50]). The meaning of this attribute strictly depends upon the

network type the interface is connected to. For example, it does not apply when considering

an 802.11 WiFi Ad-hoc network. Each NetworkInterfaceCard is associated (if nicStatus is

ON) with a Network (see below).

Network represents a network available in the managed Multinetwork environment. Each

Network has a networkName and a networkType. For example, in case of an 802.11 WiFi

network, networkName is the Extended Service Set Identification (ESSID) of the network

itself, whereas in case of a Bluetooth Piconet it is the MAC address of the Group ad-

hoc Network (GN) device. The enumeration networkType defines the network type of the

modeled network.

Neighbor is a one-hop distance device reachable from this Node. UID is the identifier of the

Neighbor (that can be used as key to find the relative Node instance). Each neighbor has a

1-to-N association with Link (see below).
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Link models a physical link with a Neighbor in order to collect network information. Each

Link is characterized by an address (IP address) and some metrics that model the channel

from the network perspective (e.g., bandwidth, delay, and lossRate).
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Figure 7.2: Software Stack in MINA

7.2 Server-side Software Stack

We describe the finer details about the Server side software stack [53] of our Multinetwork

management system. The description will follow the general architecture that we showed in

Chapter 3. Fig. 7.2(a) shows the overall architecture of the server-side software stack. In

the following paragraphs we provide detailed descriptions on each module.

7.2.1 Connection Handler

Connection Handler is the lowest layer component in our architecture. It creates an abstrac-

tion layer that hides TCP/IP mechanism details to the upper layers and handles incoming

connections from the lower tiers nodes. At the same time, it allows the Server to commu-

nicate with client nodes. In a nutshell, this component provides some communication APIs
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to the upper layer components, simplifying the implementation of the application protocols

for the state collection and query dissemination.

7.2.2 Overlay Manager

Overlay manager belongs to the second layer of the Server architecture and is responsible

for creating (Overlay creation) and maintaining (Overlay maintenance) the overlay net-

work that enables devices and Server to communicate with each other. The main goal of

this component is to maintain a global picture of the Multinetwork topology. One Thread

continuously listens on port 7001 UDP for incoming OverlayMessage (or subclasses) mes-

sages that allow to coordinate the Server with Tier 2 nodes in order to initially construct

and maintain the overlay network at runtime. Each incoming packet is processed by the

handleOverlayMessage(OverlayMessage overlayMessage) method.

7.2.3 Adapter

Adapter enables connection multiplexing and demultiplexing, allowing upper layer compo-

nents to send and receive packets possibly sharing the same physical connection (connection

pooling). As the Overlay manager, it is a second layer component and cooperates with it in

order to correctly route messages in the overlay network. This component has two tasks to

accomplish: on the one hand, it receives messages from the upper layer components, adapts

them to the dissemination protocol, and route them towards the destination component at

the client nodes.

On the other hand, Message receiver listens for incoming packets from the Connection han-

dler and dispatches them to the local destination component depending on the message

type. One Thread continuously listens on port 7002 UDP for incoming ManagementMessage
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(or subclasses) messages and dispatches them to the upper layer components accordingly.

The dispatching mechanism has been implemented following to the Observer pattern. The

Adapter uses a Hashtable, dispatchTable, that allows to register a message consumer for

each class type that extends ManagementMessage. In this way, each message consumer will

receive only the type of messages which it is registered for. Every time a ManagementMessage

is received, this method searches into the dispatchTable for a registered consumer and, if

exists, invokes its callback method consumeMessage. This technique allows to create a

dynamic and extensible dispatching mechanism that is loosely-coupled with the upper layer

components and, thus, allows to create and integrate other components in the future without

modifying the Adapter.

7.2.4 State Manager

State manager is one of the core components of the entire system. State receiver collects

state information from the Tier 2 and Tier 3 devices, and stores them in the database. It

registers itself at the Adapter as a message consumer for the NodeStateUpdate (a subclass of

ManagementMessage) messages that are sent from every managed devices in order to update

the Network state Information Base (NIB). As previously discussed, one of the techniques

that we apply in order to reduce the overall overhead introduced by the state collection

process is the message aggregation. In this specific case we refer to an aggregated message

as a NodeStateUpdate that carries information sent from several nodes as a unique payload.

Each NodeStateUpdate message may contain several PartialInfo objects that represent a

partial state information regarding a specific Node in the overlay network. It would be, in

fact, too much expensive (in terms of resource consumption) if each managed node sent a

complete image of its local NIB every time that it needs to update the Server. Instead, only

the information that has actually changed is forwarded to the Server, according to the poli-

cies that we are going to describe in Section 7.3.2. The boolean flag aggregatedUpdate of
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NodeStateUpdate allows to distinguish at runtime if a message contains aggregated updates

or not. If yes, upon reception, the infoSourceNodeUID field of each PartialInfo is used in

order for the Server to understand which Node the partial information is referred to and to

update its database accordingly. Otherwise, we can assume that the partial information is re-

ferred to the message sender, that is the sourceNodeUID inherited from ManagementMessage.

Each managed device is modeled at the Server side as an instance of the Node Class (de-

scribed in subsection 7.1) and is persisted (and updated) into the Network state Information

Database through the static method updateNode of the Persistence manager (see below).

7.2.5 Persistence Manager

Persistence manager cooperates with the State manager in order to persist, into the Net-

work state Information Database, the state information received at runtime by the managed

devices. As mentioned in the previous paragraph, in the Java Object-oriented environment,

each managed device is modeled as an instance of the Class Node with its associations, as

described in Figure 7.1. In order to interact with the Relational environment typical of a

database, we use the services offered by Java Persistence API (JPA) [75] that allow to auto-

matically map a Class and its associations into specific tables of a database, depending on

the cardinality of the associations themselves.

7.3 Client-side Components:

The description of Client software stack will follow the general architecture that we showed

inChapter 3. The client-side software stack is responsible for collecting local network state in-

formation on the managed devices and forwarding it to the server counterpart (see Fig. 7.2(b)).

From an implementation perspective, the client- and server-side stacks present many simi-
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larities; we focus here on only key client-side components.

7.3.1 Connectivity Manager

Connectivity manager represents the lowest layer component in the client side architecture

and is responsible to interact with the TCP/IP stack, creating an abstraction layer to the up-

per components. Each device is supposed to have more than one network interface and this

component hides the heterogeneity providing a common API for communicating with neigh-

bor nodes, regardless the specific kind of physical link used. In order to make a node able

to communicate over heterogeneous links, it is first necessary to establish a physical connec-

tion to an available wireless connector (e.g., 802.11 AP/Ad-hoc, Bluetooth). To accomplish

this step, Connectivity manager is able to dynamically discover new network opportunities

(either Infrastructure or Ad-hoc) and tries to connect to them according to a given policy

(e.g., choosing the connector with best signal quality). Using a Linux-based machine, for

example, it is possible to automatically discovery wireless networks and configure compatible

network interfaces accordingly. The Linux Wireless Extension [51] provides some tools (e.g.,

iwlist scan, and iwconfig) that have been used to automatically configure the network

interface cards available on the node, if not manually configured by the user. To accomplish

the same task for Bluetooth interfaces, we have used the tools provided by the Linux BlueZ

Stack (e.g., hciconfig) [50]. In the specific case of Bluetooth devices, we leverage on the

Bluetooth Network Encapsulation Protocol (BNEP) [86] that allows to encapsulate packets

from various networking protocols and transport them directly over the Bluetooth Logical

Link Control and Adaptation Layer Protocol (L2CAP). In this way it is possible to create

a Personal Area Network (PAN) that allows to send and receive IP packets over Bluetooth,

hiding the details of physical and link layers. Most of this component is based on RAMP [12]

Core API and exposes the primitives to send and receive messages from the managed devices

in the overlay network.
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7.3.2 State Manager

State manager is one of the key components at the Client side because it is responsible

for collecting local state information (filling its own instance of the NIB) and forwarding

them to the Server. The most challenging part for this component is to calibrate the state

forwarding policies (e.g., update frequency and data accuracy) in order to achieve a tradeoff

between state accuracy collected at the Server and bandwidth consumption (i.e., fine-grained

or coarse-grained state collection). It is clear that would be too much expensive in terms

of bandwidth utilization and energy consumption (especially for battery-powered devices)

if every managed device sent a complete image of its NIB every time that even a single

property changed. Thus, the first optimization that we have introduced is the opportunity,

for each Client, to send a set of PartialInfo messages that contains only the differential

information about the state properties that have actually changed. Regarding the policies

that we have used in order to forward the state updates to the Server, we argue that there

are three different potential ways that we can adopt:

• Push

• Pull

• Push with error margin (tolerance)

With the Push policy, every state update is immediately sent to the Server, using the appro-

priate method of the Adapter component, as soon as a change in the local NIB is detected.

On the other hand, with the Pull policy, a state update is forwarded only when explicitly

requested by the Server (e.g., with a Query message). These two policies are completely an-

tithetical: the former allows to have an always up-to-date fine-grained global picture of the

Multinetwork environment at the Server side, at the expense of a great bandwidth utilization

and energy consumption. The latter, instead, is the optimal solution if the objective is only
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to minimize the resource utilization. However, in our case, it does not allow to achieve some

of the most important objectives in terms of monitoring and timely fault detection because

the Server may not be aware of what is happening in the managed environment. Thus, we

have proposed the third policy that is an hybrid between the first two and aims to achieve

a reasonable tradeoff between resource consumption and state accuracy. Each node period-

ically refreshes its own instance of the NIB and automatically forwards a NodeStateUpdate

message to the Server only if the new collected values exceed the error margin (expressed in

percentage). In general, the update is not forwarded to the Server if the new collected value

falls into a tolerance range, as expressed by 7.1, that can be tuned in order to achieve better

performance:

V alueold −%error ≤ V aluenew ≤ V alueold + %error (7.1)

where V aluenew is the new collected value of a NIB property, V alueold is the corresponding

previous value, and %error is the percentage error tolerated. In this way, depending on %error,

it is possible to control how many updates are actually forwarded to the server. If %error

is 0, the policy becomes equivalent to the Push one because no error is tolerated and every

update is forwarded to the server. On the other hand, if %error → ∞, the policy becomes

equivalent to the Pull one because every new updated value falls into the tolerance range.

Thus, tuning %error, it possible to achieve the desired accuracy of the network state infor-

mation persisted into the Network state Information Database. The forwarding policy can

be modified at runtime locally by the Client itself depending on current resource utilization

(e.g., bandwidth, power level) or after receiving a configuration command by the Server in

order to configure the managed devices to achieve a global goal. By delving into finer de-

tails, the State manager is composed by some Thread of the LocalStateCollector Class;

each Thread is responsible for updating specific objects of the local NIB. There are several

parameters that affect the state collection process and can be combined in order to real-

107



ize one of the aforementioned forwarding policies. collectionPeriod, for example, defines

the state collection frequency (how often the collectLocalState() method is executed),

whereas errorPercentage defines the %error described in the previous paragraphs. Finally,

the boolean flag autoSendStateUpdateToServer allows to choose between the Push and

Pull forwarding policy. If the flag is true, the LocalStateCollector realizes the Push pol-

icy; in this case, tuning collectionPeriod and errorPercentage, it is possible to reduce

the forwarding overhead, realizing the hybrid policy described before.

One important feature that characterizes only the Client software stack deployed on Tier

2 nodes is the message aggregation. In order to reduce the transmission overhead between

these nodes and the Server, some update messages can be aggregated and transmitted as a

unique NodeStateUpdate message. In this way, the transmission overhead can be reduced in

terms of packets sent and average packet size. Therefore, it is possible to reduce the resource

consumption both in terms of bandwidth and energy consumption. The main drawback of

message aggregation is that it usually introduces a delay between the message sending and

receiving time at the Server. This is because the LocalStateCollector stores the messages

received from Tier 3 nodes in a queue and sends them only after a timeout expires or the

queue itself reaches its capacity limit. In order to control the message aggregation, two

parameters have been defined for the local state collection: maxLocalAggregationTime and

maxLocalAggregationSize. The former defines how long LocalStateCollector waits for

further messages from Tier 3 nodes (to aggregate them) before than actually forwarding

them to the Server, whereas the latter defines the aggregation queue capacity.

7.4 System Validation

We have implemented a Java-based prototype of the MINA server and client - the initial

implementation uses, on the server side, an Intel Core Duo 2.93 GHz, 4G RAM, Windows
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7 with a MySQL 5.1 database as NIB and and Intel Core Duo 1.83GHz, 1G RAM, Ubuntu

10.04 for the client. The MINA client is also being currently ported to Android and MacOS

platforms. In the following subsections, we will show 1) how does MINA improve the appli-

cation performance by promptly switching networks? 2) how does the forwarding policies

affect the data collection efficiency?

7.4.1 Rapid Network Switching

To evaluate the feasibility and value of rapid real-time rerouting in MINA on multiple phys-

ical networks, we deployed MINA in lab multi-network testbed and conducted experiments.

Consider a setting with two multi-network paths between source S and destination R. One

path uses Ethernet and IEEE 802.11g links; the other has a BlueTooth link in place of IEEE

802.11g. With the IEEE 802.11g link deactivated, we send packets (20 packets per second,

100B each) from S to R. Abrupt IEEE 802.11g link disruption makes the path unavailable,

affecting service provisioning in the basic case without MINA. Instead, with MINA and

the support of the Observe step, S quickly switches towards the alternative path (Adapt

step). Packet delivery shows a regular trend briefly after path disruption even if the lower

performance of Bluetooth 2.1 connectivity increases inter-packet arrival interval variability.

Without MINA, S has to reactively find alternative paths by sending a broadcast discovery

message and waiting for replies, resulting in greater packet delivery delay (Fig 7.3). (note

that packets from #14 to #27 are delayed and jointly sent in a burst fashion after alterna-

tive path discovery). Without MINA, node X spends 150ms to perceive link failure, i.e. the

timeout of the TCP connect phase. This only takes 35ms with MINA. Moreover, without

MINA, there is an additional delay of 300ms due to alternative path reactive discovery. As

an additional scenario, we experimented with the activation of a Web server on node R ac-

cessed from a browser on node S. S takes advantage of the availability of multiple paths by

concurrently dispatching multiple requests towards different paths. In particular, we tested
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our solution when accessing an HTML page with 15 pictures (page size 5MB); performance

management reduced page rendering time by 28% from 2.9 to 2.1s.
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Figure 7.3: Path switch

7.4.2 Forwarding Policies

Another important feature of the system that we have evaluated is related to the state

forwarding policies. In particular we are interested to show the difference between the pure

Push and Push with error margin forwarding policies. Fig 7.4 depicts the three-node test

bed that we have installed for our tests. Node A (MacBook Pro with Intel Core i7 2.7 GHz

CPU and 8GB of RAM on Mac OS X 10.7.3) runs the Server software stack, whereas Node

B and C (Lenovo ThinkPad X61 with Intel Core 2 Duo T7300 2.0 GHz CPU and 1 GB RAM

on Ubuntu Linux 10.04 LTS) run the Client software stack Each node is equipped with IEEE

802.11b/g WiFi and Bluetooth network interfaces. The overlay network has been configured

in a static way (using Java System Properties to define the relationship between nodes) [53].

Figure 7.6 underlines the effectiveness of the Push with error margin forwarding policy in

function of the % error range (setting the % error range to 0 actually corresponds to the pure

Push forwarding policy).As it is possible to notice, the “filtering” introduced by the error
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range is almost negligible if message aggregation is enabled, whereas it can strongly reduce

the number of received message by the Server if not. In the first case, Node B aggregates

messages and forward them as a unique NodeStateUpdate message. Thus, regardless the

% error range, the number of received messages by the Server is quite constant (what is

actually changing is the aggregation ratio, that is inversely proportional to the % error

range). However, there is still a non-negligible difference given by the aggregation mechanism

for lower values of the % error range. The impact of this policy is more evident if not

considering message aggregation. In this case, the higher the % error range, the lower is

the actual number of received messages. We argue that message aggregation gives a higher

level of determinism to our forwarding mechanism, making the state collection process more

periodical. This behavior is also confirmed by the graph plotted in Figure 7.8 which shows

the inter-message receiving time, that is calculated as the time period that occurs at Server

side between two consecutive receptions of a NodeStateUpdate message. Considering a 10

seconds aggregation timeout, it is possible to notice that each single message is received at

least every 10 seconds (aggregation enabled), with the inter-message receiving time increasing

proportionally to the % error range. This behavior would make easier to implement a

scheduling algorithm that allows to collect information from several Tier 2 nodes in different

moments, reducing the chances of collisions at the physical layer and, thus, improving the

overall performance of the network. On the contrary, if aggregation is not enabled, it is more
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difficult to schedule the collection process from Tier 2 nodes because the global behavior of

the system is more unpredictable. On the one hand, the Push with error margin forwarding

policy allows to reduce the state collection overhead because it limits the number of messages

that are actually forwarded to the Server. On the other hand, as we stated before, it affects

the accuracy of state information persisted into the Server database. However, Figure 7.9
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shows that, even with a 40% error range, the accuracy of information stored at Server side

is still above the 90%. We have calculated the accuracy percentage as the ratio between the

values stored into the database and the corresponding values collected from the managed

devices. Finally, we are going to show how the Push with error margin forwarding policy

significantly reduce the bandwidth utilization and how leveraging on heterogenous networks

allows to balance the traffic load over the networks themselves. Figure 7.10 highlights the

aforementioned behavior comparing the bandwidth utilization calculated over the WiFi link

between interface 1 and 2 in Figure 7.4. As stated before, we have run two different rounds
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of tests that differ by the wireless technology used to connect Node B and C. In both cases,

as it is possible to see in Figure 7.10, the Push with error margin forwarding policy allows

to reduce the bandwidth utilization increasing the % error range. Furthermore, for lower

values of the % error range (i.e., when network traffic is high), using heterogeneous networks

allows to significantly decrease the bandwidth utilization of the WiFi network because part

of the traffic is transmitted over the Bluetooth link. For higher values of the % error range

(i.e., when network traffic is low), as expected, using heterogeneous links is not so useful

anymore in terms of bandwidth utilization but has still a positive impact on other metrics

(e.g., interference and collisions, energy consumption, etc.).
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Chapter 8

Conclusion and Future work

In this chapter, we first conclude our research contributions on multinetwork management

in CPS/IoT environment. Then we identify and present several open areas that have not

been touched or completely solved in this dissertation.

8.1 Conclusion

In this thesis, we have presented the MINA multi-network management framework whose

primary goal is to organize heterogeneous devices over different networks, analyze network

state information and hence provide control and adaptations for heterogeneous application

flows with different QoS requirements. Its central, novel feature is the use of a reflective

OAA approach. In this loop, we did 1) Efficient Topology Management on Heterogenous

Devices and Network Monitoring in Convergecast; 2)Formal Method Based Multinetwork

Analysis. 3) Software Defined Networking Based Flow Scheduling

For Efficient Topology Management, we presents the design, extensions/enhancements, and

simulation-based evaluation of the MINA overlay network solution. The key aspect of
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the MINA overlay approach is the development of a novel, dynamically constructed, and

mobility-aware tree-based overlay structure that can effectively balance end-to-end data col-

lection delay and overhead. The encouraging results achieved are stimulating our further

research activities along the path duration modelling direction. We proposed a novel path

duration time model for data collection in convergecast network. We claim that the proba-

bility of the multi-hop path duration time is not merely a product of each link, instead, the

n-hop path duration time always based on its previous n − 1 hop path. Besides, we show

that how network density affects the path duration time. The results demonstrate that our

model can accurately reflect the path duration time in simulation. We also give the analysis

on the correlations between end-to-end delay and the path duration time, which will help

to understand the relationship between delay, path duration time and nodes density in con-

vergecast network. This work can be served as a guidance of link availability based routing

protocol design and link quality aware system.

For Formal Method Based Multinetwork Analysis, we proposed and evaluated a novel what-if

analysis tool based on the formal language Maude. We modeled heterogeneous networks in

Maude using a general flow and queue model and provided rules that compute how end-to-end

delay in the network. Using these models, we can evaluate various kinds of network changes

(i.e. failures, backup and reconfigurations) and determine improved network configurations.

For example, we can determine what is the best position for additional resources or which

nodes are most critical when it comes to failures. Experiments from three case studies

have shown that our tool outperforms traditional approaches. The what-if analysis tool

could be extended to adopt more QoS example parameters and heterogeneous applications

in the future. Another area of future work is to investigate flow models for other types of

traffic and formalize those in Maude. This would allow us to handle network traffic more

comprehensively.

For Software Defined Networking Based Flow Scheduling, we have presented an original SDN
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controller design in IoT Multinetworks whose central, novel feature is the layered architecture

that enable flexible, effective, and efficient management on task, flow, network, and resources.

We gave a novel vision on tasks and resources in IoT environments, and illustrated how

we bridge the gap between abstract high level tasks and specific low level network/device

resources. A variant of Network Calculus model is developed to accurately estimate the end-

to-end flow performance in IoT Multinetworks, which is further serving as fundamentals of

a novel multi-constraints flow scheduling algorithm under heterogeneous traffic pattern and

network links. Simulation based validations have shown that our proposed flow scheduling

algorithm has better performance when compared with existing ones.

Finally, We point out that MINA is effectively a reflective middleware system for multi-

network management; the OAA approach inherently embodies computational reflection prin-

ciples [59]. The reflective feature in MINA is realized through the interaction between the

MINA middleware (the meta-level) and the underlying multi-network environment (the base-

level). MINA observes network state (implementing reification), analyses it to determine

what is adapted and implements adaptations based on application context and observed

network state (implementing reflection). The multi-network state is stored in a DB, as a

meta-level representation of the underlying system state. The reflective approach is also a

natural fit for the growing Software Defined Networking paradigm that aims to manage het-

erogeneous networks in an abstract, high-level, and logically centralized way. To the best of

our knowledge, MINA is the first system to implement a reflective middleware approach and

utilize on-the-fly, lightweight formal methods in the context of multi-network management.

8.2 Future Work

We identify a few open research directions listed below. The directions either extend our

research in multinetwork management or study new problems involved with network analysis
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and actuation.

• There are plenty of work on sensor data collection mechanisms in the literature. How-

ever, network state information collection has its own characteristics: a) network state

information is the meta data of its carriers–the network, hence analysing the data con-

tent can lead to improve its non functional requirements. Utilizing the knowledge of

the network state information to adapt the collection overlay is an interesting prob-

lem. b). we proposed a path duration model in covergecast networks, which can be a

guide of designing advanced collected data routing protocols. Path predictable routing

protocol in convergecast is another interesting open problem,

• In this thesis we employed a formal method based approach to analyze the network

state information. Potential machine learning based analysis tools can be used here

as well to perform more sophisticated proactive or reactive analysis. For example, by

observing the 802.11 signal strength, it can predict the bandwidth of nearby bluetooth

network since 802.11 radio can be interfered with the bluetooth radio.

• Employing SDN paradigm in IoT network management is new. In this thesis we only

show how to reschedule flows using SDN paradigm. In fact there are more tasks we

can do. For example, SDN based fault detect and recovery, malicious detection via

global information analysis, etc
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