UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
FERN: A Unifying Framework For Name Resolution Across Heterogeneous Architectures

Permalink
https://escholarship.org/uc/item/0gp435mi

Authors

Seuvilla, S.
Mahadevan, P.
Garcia-Luna-Aceves, J.).

Publication Date
2014-09-01

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/0gp435mr
https://escholarship.org
http://www.cdlib.org/

FERN: A Unifying Framework For Name Resolution Across Heterogeneous
Architectures

Spencer Sevilla®*, Priya MahadevanP®, J.J. Garcia-Luna-Aceves®"

% University of California at Santa Cruz, Santa Cruz, California 9506/
bPalo Alto Research Center, Palo Alto, California 94304

Abstract

A key problem in all name resolution protocols today is that no one protocol performs well across all network architec-
tures. In addition, DNS, the most widespread solution today, depends on a static and connected network layer and faces
significant challenges in dynamic wireless networks. We introduce FERN (Federated Extensible Resolution of Names),
the first framework designed to enable efficient name resolution across heterogeneous systems operating in dynamic or
static networks. FERN organizes nodes into name resolution groups and allows each group to perform name resolution
independently and in a manner best suited for that group. FERN arranges these name resolution groups into a hierarchy
and allows these groups to communicate efficiently, discover each other’s presence, and resolve each other’s names. We
demonstrate the flexibility and interoperability of FERN by deploying and evaluating it across heterogeneous environ-
ments, including a MANET, an infrastructure-based wireless network, and the Internet. We show that FERN performs

at least as well as DNS, and yet extends name resolution to networks in which DNS is inadequate.

Keywords:

Name Resolution, Service Discovery, Heterogeneous Networks

1. Introduction

Service discovery and name resolution are vital oper-
ations in any network. Users and applications use text-
strings (e.g. URLs), rather than network addresses, to
indicate the content or services they require, and these
names must then be mapped to network addresses before
communication is possible. This requirement applies to
today’s and future networks and the Internet at large.

Unfortunately, current approaches to name resolution
are unable to support this future networking environment
because of two constraints. First, no one protocol has
been devised that works well across all types of networks.
Second, these protocols have not been designed to inter-
operate with one another. For example, consider the case
in which a user accidentally leaves her laptop at home and
wishes to access it from the office. The laptop most likely
uses multicast DNS (mDNS) [1] to name itself on the home
network, but the user has no way of resolving this name
outside of that environment, and cannot discover the lap-
top. As another example, nodes in a MANET may use
a distributed protocol to resolve each other’s names, but
there is no protocol for them to extend this resolution to
the Internet through the domain name system (DNS), de-
spite the presence of a network-layer gateway bridging the
MANET to the Internet.

To address the above limitations of existing name reso-
lution approaches, we introduce the Federated Extensible

*Corresponding author email: spencer@soe.ucsc.edu

Preprint submitted to COMCOM

Resolution of Names (FERN). To our knowledge, FERN
is the first system that provides a low-overhead unifying
framework for different name-discovery protocols to inter-
operate. FERN accomplishes this by organizing nodes into
name resolution groups and allowing each group to per-
form internal name resolution in a manner that works best
for that group. FERN also defines a technique for requests
to propagate across different groups, and organizes these
groups into a hierarchy to support deterministic request-
forwarding and ensure reachability across these different
name resolution groups. Furthermore, FERN performs
these tasks while preserving high scalability and backwards
compatibility, and can be deployed incrementally alongside
existing protocols such as DNS and mDNS.

Section 2 provides an overview of prior work in name
resolution and service discovery for different types of net-
works. Section 3 specifies the operation of FERN within a
group and across groups, and Section 4 examines caching
and forwarding in FERN. Section 5 provides formal proofs
of FERN correctness and operation. Section 6 examines
several different topics related to a real-world FERN de-
ployment, and Section 7 describes our testbed implemen-
tation and provides preliminary results collected with this
system. Section 8 concludes the paper.

2. Related Work

Prior work in name resolution and service discovery can
be loosely divided into client-server systems, peer-to-peer

September 18, 2014

systems, or systems based on overlay networks. Addition-
ally, there exists work on hybrid systems employing more
than one of these architectures and on interoperability be-
tween these systems.

2.1. Client-Server Systems

The most prominent approach to name resolution to-
day is the DNS[2]. DNS relies on a hierarchy of servers
that must be configured to forward a name-request to
the appropriate server, which then resolves that name-
request to an IP address. Through the use of this hierar-
chy, load-balancing “secondary” servers, and caching, the
DNS provides name resolution for the entire Internet to-
day. However, this scalability comes at a price. First, the
DNS relies completely on these servers: if the authoritative
DNS server for the subdomain example. com is down, over-
loaded, or configured incorrectly, then all DNS lookups for
*.example.com fail and www.example.com is not reach-
able, regardless of the state of the web server itself. Refer
to [3, 4] for recent examples of DNS outages that affected
millions of users. Second, given that the DNS relies on
hosts to configure their IP address with their DNS server
using out-of-band communication, it is a static system that
cannot support dynamic networks. Dynamic DNS [5] seeks
to alleviate these limitations by specifying an UPDATE
record type; however, it still requires that (1) the host
knows the IP address of its authoritative DNS server a
priori, and (2) the host successfully sends an update to
the authoritative server every single time its [P address
changes.

2.2. Peer-to-Peer Systems

Peer-to-peer systems such as mDNS [1], SSDP [6], and
SLP [7] do not require a central server to operate. As a
result, these systems require minimal configuration (hence
the name “Zeroconf”) and are well suited to dynamic en-
vironments where hosts come up, go down, and change
IP addresses frequently, such as home networks configured
with DHCP [8] or AutoIP [9]. Unfortunately, all peer-to-
peer systems currently share a heavy reliance on IP mul-
ticast to propagate both name-requests and service an-
nouncements through the entire network. As a result they
suffer from relatively high latency and cannot scale, which
restricts these protocols to LANs, where internal names
are denoted by the top level domain (TLD) .local.

2.3. Owerlay Networks

Several publications [10, 11, 12, 13, 14, 15] discuss de-
ploying DNS over an overlay network that uses a dis-
tributed hash table (DHT) to reduce the load on individ-
ual servers and thus provide higher scalability and better
fault tolerance. These papers target the traditional DNS
system in the Internet, and thus focus on planet-level scal-
ability. They present mixed results on latency, but note
that DHT's serve to decouple the physical location of an en-
try from its logical location. This architecture helps with

load-balancing, removes hot spots and bottlenecks in the
hierarchy, and creates a system that is orders of magnitude
harder to attack. These benefits are typically achieved by
enforcing a flat namespace, where all records in the system
are stored as equal objects in one giant DHT. Unfortu-
nately, these approaches rely on a network environment in
which the nodes of the overlay are static and available with
high uptime, the topology is connected, and links have
plenty of bandwidth. The performance of DHTs degrades
significantly in dynamic networks as a result of excessive
overhead resulting from topology-independent overlay ad-
dresses, link failures, and node mobility.

2.4. Hybrid Systems

There are a number of hybrid approaches to name reso-
lution that attempt to combine the architectures described
above. SLP, for example, introduced the concept of an op-
tional “Directory Agent” (DA) that nodes in a network
must contact first if it is present. Kozat et. al. [16] bring
this concept to the case of MANETSs by proposing a vir-
tual backbone of “Service Broker Nodes” (SBNs) that form
a dominating set in a MANET and proactively maintain
routes through the MANET to each other. These pro-
posals attempt to increase scalability by only allowing a
select subset of nodes to query the entire network, and re-
quiring that other nodes communicate with their closest
directory node. However, these approaches all share the
same drawback, which is that communication between di-
rectory nodes is unstructured and accomplished by flood-
ing a name request to all other directory nodes, which
scales as poorly as Section 2.2. MDHT [17] addresses this
issue by proposing a hierarchy of DHTS, but cannot scale
to large numbers of records because it requires the top-
level DHT to contain every record in the system.

2.5. Interoperability

A unifying problem of every approach described above
is that every node must be a member of the protocol for
name resolution to occur. This lack of interoperability
means that the two protocols cannot talk to each other,
even though mDNS might be best for home networks and
DNS might be best for the Internet. Currently, support
for multiple protocols is accomplished by designating some
top level domains or TLDs (such as .local) for certain
protocols and having the node generating a request use
the TLD to decide which protocol should be used. A few
approaches [18, 19, 20] have been published on interoper-
ability between multiple resource-discovery protocols, but
these works have been limited to developing higher-layer
application programming interfaces (APIs) that mask im-
plementation differences between protocols that already
share the same basic architecture, such as SSDP and SLP.

Plutarch[21] proposes an architecture for interoperabil-
ity across different network architectures, both for routing
and name resolution. Instead of requiring all networks
to use the same protocol, Plutarch divides networks into

Function Prototype Comments

int (0 = success) joinGroup(args)

args varies as a group-specific parameter

int (0 = success) leaveGroup()

Groups must also support ungraceful departures

int (0 = success) registerName(name)

name is not fully-qualified (i.e. just “printer”)

network_address resolveName(name)

name is not fully-qualified (i.e. just “printer”)

network_address getParent()

assumes the parent group can be reached at this address:udp53

network_address getChild(name)

same as above, but returns (null) if it has no child with this name

int (0 = success) registerChild(name)

name is not fully-qualified (i.e. just “lab_3”)

int (0 = success) deregisterChild(name)

name is not fully-qualified (i.e. just “lab_3”)

Table 1: FERN Name Resolution Group API

contexts and proposes the use of interstitial functions to
translate between contexts, similar to the way network
address translation (NAT) is implemented today. Though
Plutarch provides a model for interfacing radically differ-
ent network architectures, it effectively leaves the imple-
mentation of these interstitial functions “to the reader.”
Plutarch also raises an important question about how the
different contexts become aware of each other: it proposes
using a gossip protocol to disseminate this information,
yet this protocol might cause issues of scalability and co-
herency if the number of separate contexts becomes too
high or if entire contexts exhibit a high degree of mobility.

3. FERN: A Unified Framework For Name Reso-
lution

FERN specifically targets the problem of protocol inter-
operability described in Section 2.5. Rather than propos-
ing one particular name-resolution protocol or architecture
to be used by all networks, FERN proposes a solution
where different groups of nodes may use different name-
resolution protocols and still communicate.

FERN achieves this solution by providing a framework
for interoperability among different name resolution pro-
tocols, such as the ones described in the previous section.
FERN organizes nodes using a common name resolution
scheme into separate Name Resolution Groups (NRGs),
and specifies a protocol for NRG intercommunication.
FERN then organizes the NRGs into a hierarchy. The pri-
mary motivation for organizing nodes into NRGs is to: (a)
separate nodes that use different name resolution schemes;
and (b) reflect the natural groupings that appear in the un-
derlay network (i.e., subnets), logical hierarchy (i.e., org
charts), and users themselves (i.e., social groups). FERN
defines a set of operations that a group must support, but
explicitly does not define the implementation of these op-
erations. FERN assumes that all nodes in an NRG are
able to exchange messages at the application-layer, but
does not assume that all the nodes run a specific network-
level protocol.

3.1. NRG Responsibilities

The first responsibility of a FERN NRG is that every
node in a group must be able to resolve names for which

the group is responsible. Similar to DNS, NRGs are re-
sponsible for names that end in the NRG’s fully-qualified
name. For example, an NRG named lab_3 is responsible
for queries such as printer.lab_3 or johns_pc.lab_3.
To facilitate these responsibilities, NRGs must provide a
way for its members to: (1) register names, (2) resolve
names, (3) join the NRG, and (4) leave the NRG.

The second responsibility of a FERN NRG is that it
must forward queries for which it is not responsible. This
requirement is accomplished by organizing the NRGs into
a naming hierarchy and allowing NRGs themselves to be
members of another NRG. In this situation, the children of
an NRG are its members, and the parent of an NRG is the
NRG of which it is a member. This relationship is denoted
using the same dot-notation as in DNS. For example, an
NRG with the name lab_3.parc.usa is a member of the
NRG parc.usa, which is itself a member of usa. For clar-
ification and brevity, in the remainder of this paper, the
shortname of this NRG is lab_3, whereas its fullname is
lab_3.parc.usa. This child-parent relationship between
NRGs creates a name resolution tree (NRT) as in the DNS,
with the root NRG “/” at the top, and this tree powers
the forwarding of requests among NRGs. Though the NRG
lab_3.parc.usa in our example is not responsible for the
query x.ccrg.ucsc.usa, it can forward the request up the
NRT to usa, and then down to ccrg. Furthermore, 1ab_3
can perform this task without knowing the network ad-
dress of ccrg itself; all NRG lab_3 needs to know is how
to contact its children NRGs and parent NRG. We express
FERN programmatically as a pseudocode API in Table 1,
and formally define the set of rules in List 1.

3.2. NRG Communication

For the sake of interoperability with DNS, we have cho-
sen to use the traditional DNS record format (A, CNAME,
..) and port (UDP 53). This choice means that to sup-
port request-forwarding along a branch in the NRT, all an
NRG has to store is the network address of the other NRG.
This results in an exceedingly simple interstitial function,
and means that inter-group resolution through the entire
hierarchy can be supported by simple recursion.
Figure 1 shows an example of request forwarding in
FERN. Here, the NRG example uses a server, subgroupl

List 1: FERN NRG Rules

1. NRG X has at most one parent NRG Y in the FERN
NRT, and fullnamex = shortnamex.fullnamey .

2. NRG X can have several child NRGs in the FERN
NRT, and each of these children has the full name
childname. fullnamex .

3. NRG X must be able to communicate with its parent
and children NRGs in the FERN NRT.

4. NRG X must know the addresses of all its ancestor
NRGs in the FERN NRT.

5. NRG X is responsible for directly answering all
queries that end in fullnamex.

6. NRG X must forward queries to the best match of
NRG possible, adhering to the caching rules in List
2.

7. NRG X must return an error for a query that it can-
not answer or forward.

uses request-flooding, subgroup2 uses a DHT, and a
smartphone in subgroupl wants the address of the printer
in subgroup2. First, the request is flooded through
subgroupl until it reaches a node that can communicate
with example. Next, the interstitial function of FERN
is used to forward the request up to example, and then
again to forward the request down to subgroup2. Lastly,
subgroup2 uses its DHT to resolve the address of the
printer. This behavior is contrasted with Figure 2, which
shows the same name resolved iteratively in DNS. As Fig-
ure 2 illustrates, DNS requires that (1) each name group
be supported by an authoritative name server, (2) resolu-
tion starts at the root server and descends the NRT, and
(3) servers support iterative resolution, where the resolver
communicates with each name-server in turn.

3.8. Internal Group Policies

The FERN architecture places no constraints on the
number of services or names an individual node may regis-
ter, the nature of these services, or the number of NRGs of
which a node may be a member simultaneously. It is left
to individual NRGs to implement and enforce rules such as
restricting group membership to certain nodes or restrict-
ing the names that a particular node may register. NRGs
may choose to adopt and enforce certain naming conven-
tions (similar to the mDNS service registry), and these
conventions may even standardize across different NRGs;
however, this process is outside the scope of FERN.

FERN treats group security the same way. NRGs may
choose to use encryption, MAC addresses, or other out-
of-band information to authenticate, authorize, and verify
their members and names. They may also decide to use
name resolution to enforce other security policies, such as
only allowing certain nodes to resolve the address of cer-
tain services. However, the administration and implemen-
tation of these policies are left to the individual NRG, not

example

subgroupl.example subgroup2.example
Figure 1: Request-Forwarding Across Groups

example

subgroupl.example

subgroup2.example

Figure 2: Request-Forwarding In DNS

the entire framework.

8.4. Group Size

FERN also places no explicit limits on the size of an
NRG; this applies to both the number of nodes in an NRG
and the physical distance between nodes. However, all
NRGs must conform to the rules outlined in Section 3.1
and List 1. These rules may create an implicit, functional
limit on group size, but this limit depends heavily on the

particular architecture and implementation powering the
NRG.

8.5. Bootstrapping Group Membership

For a node to join an NRG with the joinGroup(args)
operation in Table 1, it must already know (1) the group
architecture, (2) any args the group requires, and (3) to
whom to send this information. Though the mechanics
and specifics of joining an NRG should be handled by the
NRG itself, the process of group discovery and acquiring
the information listed above must be standardized, be-
cause it is a process that exists outside of any individual
NRG and may interact with other protocols and systems.
There are several protocols (e.g. DHCP [8] and AutoIP
[9]) used to help nodes join a network by supporting dis-
covery, authentication, and address acquisition. They also

global

Figure 3: Example FERN Name Resolution Tree

bootstrap DNS resolution by providing hosts with the ad-
dress of a local DNS server to be used. Thus, FERN can
extend these existing protocols by defining an extra FERN
record to be passed to a node when it joins the network.
This record should contain: (1) the fullname of the NRG,
(2) the structure of the NRG, (3) any group-specific argu-
ments, and (4) a fallback network address to be used as a
local DNS server if the node does not recognize the value
in (2) or is FERN-unaware.

3.6. NRT Traversal

The FERN process of forwarding requests up and then
down the NRT also affects the fault tolerance and resilience
of the system. In DNS, if a node is unable to contact the
root server it is unable to perform any resolution, as shown
in Figure 2. This behavior makes the root server an attrac-
tive target for attackers, and also restricts the usefulness
of DNS to nodes that can access a root name server, as
opposed to nodes in a private network or MANET. Con-
versely, FERN requests only travel up the NRT as far as
necessary. Thus, in the example NRT shown in Figure 3,
the only queries that would reach the root NRG are re-
quests from NRG ucsc to NRG parc or vice-versa. All
other traffic stays within either NRG, and thus would func-
tion normally independently of their ability to access the
root NRG.

3.7. Internal Resolution

By forwarding queries in the manner described above,
FERN reduces the reliance on the top-level NRGs of the
NRT and improves resilience among lower-level NRGs. If
a root or TLD server fails, or if a NRG is cut off from
these servers due to a network partition, internal resolu-
tion is unaffected. When combined with FERN’s support
for different internal name-resolution architectures, this
forwarding behavior enables FERN to effectively power
name-resolution in dramatically different network-layer ar-
chitectures. Such architectures could include opportunis-
tic, delay-tolerant, or pocket-switched networks, depend-
ing on the name-resolution architecture.

By supporting incredible diversity in name-resolution
protocols, FERN enables a corresponding diversity in
network-layer protocols. Ideally in FERN, if there ex-
ists a network-layer route between two hosts, they should
be able to resolve each other’s names and communicate.
Conversely, if no route exists between the hosts, then name
resolution is unimportant because even in the event of suc-
cessful resolution, no communication can occur.

3.8. Caching

Caching name responses and intermediate name refer-
rals significantly reduces latency and overall network load.
FERN enables caching by allowing groups to append a re-
source record for their group itself whenever they answer
a query or recursively return the answer to a query. Thus,
if a request originates at group A and traverses groups B,
C, and D before finishing at F, the requesting node could
end up caching the network address of groups B through
FE if these groups elect to append their network address to
the response. Additionally, intermediate groups may also
read these records, so in this example group C could also
learn the network address of groups D and E.

As in DNS, intermediate record caching can significantly
change system performance and behavior. Since FERN
differs from DNS in the way it forwards queries and re-
sponses, these changes in system behavior have the poten-
tial to be much different than in DNS. A comprehensive
analysis of these differences and necessary policies is pro-
vided in Section 4.3.

3.9. Fault Tolerance And Resilience

Consider the case where the NRG parc fails. In DNS,
all nodes (including nodes within the domain parc) would
be unable to resolve any names below domain parc in the
tree, but are able to resolve all other names. Conversely, in
FERN, requests that stay inside NRGs csl or isl would
still succeed, but none of the nodes in these NRGs would
be able to resolve any names outside of parc, unless the
NRT is modified to reflect the failure that took place.

FERN addresses this problem by allowing nodes to
cache the network address of other nodes in their ancestor
NRGs all the way up to the root of the NRT. An NRG
may use these addresses to forward requests to its grand-
parent if and only if its parent is unresponsive. With this
rule in place, FERN may often do better than DNS (by
preserving internal resolution when possible) but it never
does worse, since it effectively reduces to DNS when inter-
mediate NRGs fail.

3.10. Internal Redundancy

To mitigate the risk of a node failure, NRGs may choose
to replicate records across K > 1 separate nodes. In this
case, choosing a proper value for K depends heavily on
the underlay network powering the NRG. In the case of
the Internet, the DNS itself shows that small values of
K are sufficient. For example, over 80% of DNS entries
were supported by just one or two name servers in 2004
[22]. In other, more-dynamic networks such as MANETS,
higher values of K might be necessary to ensure continued
resolution and operation in the face of node failures or
network partitions.

Another important factor for replication is the position
of the NRG in the NRT. As implied in Section 3.9, NRG
failures higher in the NRT can be more problematic and
disruptive to end-to-end resolution because a failed NRG

ucsb
={global, parc, csl}

inrg ccr% isl
cache ={global, ucsb}

Figure 4: Ubiquitous Caching Policy

cannot forward queries. In these cases, it is important
to ensure that K is large enough that the NRG main-
tains sufficient uptime requirements. However, in other
network scenarios such as bridging a MANET to the In-
ternet, K = 1 might be completely acceptable if the only
node bridging name-requests is also the only node able to
perform network address translation: in this case, higher
values of K accomplish nothing because if the bridging
node fails, the underlay network itself is partitioned. In
this light, ideally K should be sufficiently large so that
name resolution reflects network connectivity, and is never
the bottleneck or weakest link.

4. Forwarding and Caching Policies

The primary difference between FERN and DNS is
FERN’s ability to support different group architectures,
which is explained in detail in Section 3. However, more
nuanced differences between the systems include (a) how
the system forwards and handles recursive queries and (b)
how this difference affects caching policy.

4.1. Recursion Vs Iteration

Figures 1 and 2 illustrate that the DNS generally em-
ploys iterative resolution, whereas FERN enforces recur-
sive resolution. Though the DNS does provide a recursive
resolution option, it is typically disabled, and explicitly
must be for higher-level domains such as TLDs. This de-
sign decision is primarily motivated by security concerns,
since a malicious query can exploit a recursive DNS server,
either targeting the server itself or using the server to
launch an amplification attack on another target.

4.2. Forwarding Queries

In addition to mandating recursive resolution as opposed
to iterative, FERN also differs from DNS in the path that
queries take through the NRT. Even when employing re-
cursion, DNS queries always start at the top of the tree
and descend down, as opposed to FERN queries which
first climb the NRT until a common ancestor is reached.
This fundamental difference in forwarding behavior is a
vital part of FERN, and enables operation in disrupted or
non-Internet-enabled networks such as MANETS, since it
removes the DNS dependence on TLD and root servers.
In these networks, the only comparison that can be made

csl

global

TSC parc

cache ={global, parc, csl}
0]

inr; ccr, isl
s cac%e ={ucsb}

Figure 5: Caching Behavior With Rules

is that FERN succeeds where DNS fundamentally cannot.
In contrast, the difference in forwarding policies is much
more apparent in the case where an NRG is a part of the
Internet. In this case, a node could resolve a hostname
using either FERN or DNS, and the only real difference
between the two protocols is that FERN climbs the tree
to a common ancestor.

4.3. Caching Policy

The difference in forwarding policies discussed above af-
fects which groups in FERN, or servers in DNS, receive
intermediate requests and responses, and this in turn af-
fects caching policy. In DNS, resolution always starts at
the top of the NRT and descends down the tree. This dif-
ference means that a cache-hit always results in reducing
traffic on a higher-level server. For example, a cached en-
try for ucsc.edu avoids sending queries to the root server
or the edu TLD. Thus, caching in DNS only serves to re-
duce load, especially on higher-level servers, and can never
worsen performance.

While this point appears obvious, it stands in stark con-
trast to FERN, which requires a much more careful caching
policy. In FERN; since a request first climbs the NRT be-
fore descending, a careless cache-hit may inadvertently re-
sult in more work being done by the system. This point is
best illustrated by Figures 4 and 5, which show an exam-
ple NRT with caching enabled. In both examples, a node
in ccrg.ucsc wishes to resolve a name in csl.parc. In
Figure 4, the group ccrg has a cache entry for the root
group, global, and so the request is forwarded directly to
the root group and bypasses the better cache-hit in ucsc.
In contrast, if the cache entry for global is removed as in
Figure 5, we see better performance in two key ways: first,
the total number of hops is reduced from 3 to 2. Second,
and more importantly, we avoid having to issue a request
to the top group global.

The above examples illustrate the need for a more re-
fined caching policy in FERN, since ubiquitous caching as
in DNS will create the scenario in Figure 4 very quickly.
With ubiquitous caching, once any node in ccrg resolves
any name outside of ucsc, the top group is queried, and its
address cached upon successful resolution, as described in
Section 3.8. After this caching occurs, any time any node
in ccrg wishes to resolve any name outside of ucsc, the

csl

closest matching cache-hit will always be global. More-
over, this creates another problem: if ccrg queries global
directly as in Figure 4, then the group ucsc is not on the
return path and has no opportunity to cache the address of
parc or csl. This lack of cached information means that
a node in inrg wishing to resolve the same name cannot
take advantage of any cached information, and the request
must ascend and descend the tree as before.

The solution to this problem is to restrict the ability of
certain NRGs to cache the address of other NRGs. In Fig-
ure 5, if a caching policy prohibits ccrg from caching the
address of global, we can ensure proper operation and
avoid the scenario in Figure 4. Furthermore, we ensure
that in the event of a request climbing and descending
the NRT, more intermediate groups are able to cache re-
sponses. With these goals in mind, we designed a set of
FERN caching rules, stated in List 2.

These rules significantly reduce the load on nodes in
NRGs that are higher in the hierarchy and serve to create
a much more distributed system. Revisiting the above ex-
ample, they ensure that the group ccrg will never cache
the address of global, which means that instead of query-
ing the group directly, it must recursively ask the group
ucsc to resolve a name in parc. Asking the group ucsc
has the benefit of ensuring that in the event of a success-
ful response, ucsc is on the return path and can cache the
address of parc. Placing ucsc on the return path ensures
that (a) the name is cached, so the group global only
has to be queried once and (b) the cache entry in ucsc
will be accessed by all nodes within ucsc, rather than
some nodes “leapfrogging” the group. This policy helps
distribute caching information throughout the NRT, and
helps to reduce traffic on higher level name-servers.

4.4. Hybrid Behavior

Caching leads to behavior that closely resembles a hy-
brid system. In the examples above, consider a scenario
where the bottom groups use architectures better-suited
for dynamic networks. The first time a node in one of
these groups attempts to resolve a name outside of the
group, it must call getParent and use the group to in-
ternally resolve the address of its parent. However, the
resolving node may then cache this address and send all

List 2: FERN Caching Rules

1. A node in NRG X may cache the address of nodes of
NRGs for which NRG X has a branch in the FERN
NRT.

2. A node in NRG X may not cache addresses of nodes
in NRGs that are closer to the root of the FERN
NRT.

3. A node in NRG X may cache the addresses of nodes
in NRGs that are at the same level of NRG X in the
NRT, or further down the NRT.

future requests directly to its parent group without need-
ing to re-resolve its address. This behavior is remarkably
similar to the hybrid approaches described in Section 2,
where local requests stay local and system-wide requests
get forwarded to the appropriate SBN or DA, yet FERN
enables this behavior without the added protocol complex-
ity of specifying how it should be done, figuring out what
constitutes a local request, or forcing that system on all
network scenarios. This behavior can also be compared
to current systems, where requests are either multicasted
over mDNS or sent to a local DNS server based on the
TLD of the name-request. FERN exhibits very similar
behavior, yet accomplishes this without fragmenting the
namespace.

4.5. FERN and Plutarch

Given that FERN does not specify the internal me-
chanics of an NRG, it can be compared to Plutarch, in
that individual NRGs can be compared to Plutarch’s con-
texts, and request-forwarding to the interstitial function.
However, FERN differs from Plutarch in how naming
and name-resolution is performed. Plutarch stresses that
names need not be global, yet implicitly requires globally-
unique contexrt names, since name-resolution starts by
specifying a context. Moreover, Plutarch essentially pro-
poses using a gossip protocol and request-flooding to dis-
seminate context information, which leads to questions of
scalability as well as deterministic resolution.

In contrast, FERN explicitly addresses the problem of
locating a particular named context by organizing groups
into a hierarchy. In addition to supporting globally unique
names, this hierarchy ensures that: (1) the system resolves
names deterministically, (2) name requests do not traverse
NRGs unnecessarily, and (3) scalability is preserved by
enforcing an upper-bound on the number of other NRGs
any one group must know.

5. FERN Proofs Of Correctness

The FERN rules in Lists 1 and 2 allow us to formally
prove that requests processed in FERN deterministically
terminate, do not loop, and are resolved correctly. The
following proof focuses solely on loops resulting from the
misconfiguration of FERN groups, and does not consider
underlay network errors or malicious behavior.

Theorem 1: FERN request forwarding is loop-free.

Proof: Assume that there exists a request-forwarding
loop among nodes using FERN. Given that NRGs are
organized as a tree, which is acyclic, the existence of a
request-forwarding loop necessarily implies that an NRG
1 must forward the request to another NRG k that is not
its parent or child in the FERN naming tree. However,
according to Rule 6 in List 1 and List 2, an NRG that
forwards a request must do so to either (a) its parent or
(b) one of its children. Given that the NRT is acyclic, the

request-forwarding loop must occur as a result of miscon-
figuring either the parent NRG or one of its children.

According to Rules 1 and 3, an NRG cannot mistake
its parent and hence NRG i cannot consider NRG £ to be
its parent NRG mistakenly. This means that the request-
forwarding loop must result from the misconfiguration of
a child NRG, i.e., assuming that NRG k is a child NRG
when in fact it is not. For this to be the case, NRG i must
know how to contact NRG k, and NRG i can acquire this
knowledge only through the registration process. Since the
registration process is always initiated by the child NRG,
it is impossible for NRG ¢ to mistakenly assume that NRG
k is its child when it is in fact not the case. This completes
the proof.

Though Theorem 1 may appear trivial, referral loops are
possible in the DNS, and these loops significantly impact
network performance. Jung et. al. [23] observe that a very
small portion (3%) of requests to misconfigured name-
servers result in referral loops, and these requests generate
over 12% of all DNS packets, on average retrying each
query over ten times before giving up. Theorem 2 below
serves as a general proof of correctness for FERN requests.

Proposition 1: Any two NRGs have a common ancestor.

Proof: The proof is immediate from the fact that the
root group “/” is the parent of all TLD groups, hence it is
a common ancestor of every group.

Theorem 2: FERN name resolution is provably correct

Proof: Without loss of generality, assume that some
node in group X wishes to resolve the name of a node in
group Y. From Proposition 1, it follows that groups X
and Y must have a common ancestor; call that ancestor
group Z. By Rule 3 and Theorem 1, the request originating
in group X can be forwarded up the tree until it reaches
group Z. Again by Rule 3 and Theorem 1, once the request
reaches group Z, it is forwarded down the tree until it
reaches group Y, which resolves the request. Hence, any
node in any group is always able to resolve the name of
any node in any other group.

6. Deployment Concerns

The previous sections have focused primarily on defin-
ing the underlying behavior of a FERN system. In this
section, we address other issues that would affect a large-
scale FERN deployment, such as performance, scalability,
security, and resilience to attacks.

6.1. Internal Group Communication

The best choice for internal group communication de-
pends on both the underlying network topology and the
number of nodes in the NRG. Though an NRG may specify
that only a certain number of nodes may join, the num-
ber of nodes in an NRG is determined primarily by ex-
ternal factors, which in turn determine group communica-

-~ _ - -~ —

Figure 6: DNS Integration With FERN

tion. These external factors could be logical (the number
of people in an organization), hierarchical (an org chart),
or based on the underlying network topology (e.g., nodes
in a MANET).

In the case of the Internet, a connected underlay network
with static addresses, the client-server architecture has
been shown by the DNS to be efficient, scalable, and pro-
vides an attractive first choice, as discussed in Section 6.2.
For fully-connected networks with dynamic network ad-
dresses (such as an internal subnet or home network), a
DHT may be a better choice for both robustness and dy-
namic updating. As we continue along the spectrum to
more dynamic networks such as MANETS, it is likely that
highly specialized protocols will evolve to complement dif-
ferent routing protocols, such as AODV or OLSR.

6.2. DNS and FERN Interoperability

Conceptually, DNS can be thought of as a subset of
FERN, since DNS zones are roughly equivalent to FERN’s
NRGs. Because FERN explicitly does not define the im-
plementation details of an individual NRG, an NRG could
easily be powered by DNS servers configured to support a
zone of the same name. This interoperability is enhanced
by the fact that FERN uses the same record format and
port as DNS.

However, if FERN NRGs are to be deployed in a sys-
tem alongside DNS, the DNS domains and zones must be
placed at the top of the hierarchy to ensure proper oper-
ation. This requirement is because of the differences in
caching policies and forwarding between FERN and DNS:
if a FERN NRG at the bottom of the hierarchy is actually
powered by DNS servers, it will send requests directly to
the top level of the hierarchy. This behavior then creates
the caching issues described above.

These problems do not occur if all the NRGs powered
by DNS form a contiguous set of NRGs that includes the
root of the NRT. An example is shown in Figure 6, with
the dotted lines indicating separate FERN NRGs. In this
case, FERN can effectively treat this set of NRGs as one
large system that resolves names and forwards queries ap-
propriately.

This topology is important because it strongly resembles
how FERN would interact with the DNS if it were to be
deployed today. Rather than seeking to replace the DNS,

FERN can be thought of as extending the DNS, in par-
ticular to deal with networks where the DNS architecture
is inappropriate. FERN enables a scenario where the core
of the NRT is powered by the DNS, and network-specific
NRGs are deployed in lower regions of the tree.

6.3. NRT Height

The current DNS hierarchy is relatively shallow, with a
typical height of three or four levels, but is almost exclu-
sively limited to naming Internet servers. We believe that
a full FERN NRT would have more levels, because part
of the intent of FERN is to expand name resolution to
devices in different network environments. As described
above, the addition of NRGs in the NRT could be the
result of several logical or organizational factors, as well
as underlay network concerns (such as bridging resolution
across two MANETS). In Section 7 below, we investigate
the performance overhead of adding extra groups to the
NRT.

6.4. Scalability

A primary concern with any name resolution protocol is
scalability, and this is one area where the DNS performs
exceptionally well. The DNS today is clearly Internet-
scale, and yet manages to accomplish this while keeping
latency low, typically under 100ms total for a query and
response [23]. This performance sets a high bar for the
evaluation of new name resolution protocols, which typi-
cally propose trading one characteristic for another. For
example, DHT-based approaches (described more exten-
sively in Section 2.3) are typically orders of magnitude
more robust and resilient to attack, yet accomplish this
with untenable increases to average latency.

As mentioned in Section 4.2, no quantitative compar-
isons can be made between DNS and FERN in the dis-
connected scenarios where DNS completely fails. Thus,
to compare FERN to DNS with regards to scalability, we
must assume a large, connected underlay network scenario
suitable for DNS. In this scenario, the differences in recur-
sion, forwarding, and caching policies may play a large role
in the overall performance of the system; we evaluate these
metrics using a small topology in Section 7. However, the
interoperability feature described in Section 6.2 effectively
makes the DNS a “lower bound” on FERN performance
in these network scenarios: if a FERN system struggles to
achieve Internet scale, the solution is to simply use DNS
to power this part of the NRT. Thus, we conclude that
while FERN may do better than DNS depending on sev-
eral factors examined below, it may never do worse.

6.5. Denial of Service Attacks

A primary attack vector for the DNS is an amplified
DDoS, which takes advantage of a DNS server that has
been configured to allow recursive resolution. The only
way to protect against these attacks is to (a) disable re-
cursion or (b) restrict service to a trusted set of clients.

Unfortunately, option (b) is infeasible due to the nature of
the DNS, since queries may come directly from end-hosts
or local DNS servers, both of which are deployed without
registering anything in the DNS itself. Somewhat ironi-
cally, another obstacle for top DNS servers to only serve
trusted clients is that requests may come from anywhere,
specifically because the DNS must also support iterative
resolution.

In contrast, FERN is able to easily implement option (b)
specifically because it enforces recursive resolution. Con-
sider, for example, the TLD .edu. In FERN, the only
entities that may send a query to edu are its direct chil-
dren nodes and NRGs, such as ucsc.edu. However, to
receive a name ending in edu, these entities must have
previously registered themselves with edu. Thus, the es-
tablished registration process also serves to limit the num-
ber of requests. Furthermore, since FERN’s distributed
model ensures that registration messages for a group do
not propagate outside the group, the registration process
is lightweight and remains feasible even at large-scale.

This recursion can be further exploited to provide a dis-
tributed security model: suppose a malicious node exists
under the ucsc.edu domain. If the ucsc NRG is able to
detect this node, it can protect itself by excising the node
from the group. However, this is not the only point of
security: even if a malicious node is able to subvert what-
ever security measures are in place in the ucsc NRG, it
cannot simply issue requests to any NRG, these requests
must still be forwarded through the NRT by ucsc. This
feature provides multiple failsafes, since any higher-level
group (edu in this case) identifying malicious activity from
one of its member NRGs can protect itself, and the rest
of the system, by excising the NRG suspected of being
compromised. This stands in stark contrast to the DNS,
where servers must fulfill all requests since there is no way
of identifying the source of the request.

6.6. Record Integrity And DNSSEC

As mentioned in Section 4.1, a key difference between
FERN and DNS is that FERN requires nodes to be a mem-
ber of an NRG (and, by extension, have a FERN name pre-
fix) before they can resolve names, whereas the DNS serves
requests regardless of whether they have a DNS entry or
not. Because of this, the DNS security suite (DNSSEC)[24]
is designed primarily around authentication and integrity
of data, including denial-of-existence, but does not guar-
antee availability or confidentiality.

With regards to response integrity, FERN is compat-
ible with the tools and protocols of the DNSSEC suite.
However, DNSSEC may still be compromised in FERN
because it depends on a chain-of-trust model where the
identity and record data provided by a DNS zone is veri-
fied by its parent zone, all the way up to the root, whose
public keys are widely known and distributed. This model
depends on the accessibility of the root zone, which is not
a problem for the DNS because all resolution depends on

the availability the root zone. In contrast, the architec-
ture of FERN is designed specifically to remove this de-
pendence: If a member node of ccrg.ucsc resolves a name
in inrg.ucsc, the request only travels as high as ucsc.

Since FERN requests travel up the tree to the nearest
common ancestor, this introduces a new set of spoofing at-
tacks where a malicious group advertises itself, and nodes
wishing to join the legitimate ucsc group join the ma-
licious one (presumably of the same name) by mistake.
Once joined, the malicious group provides illegitimate re-
sponses that appear to be verified with a separate set of
keys. However, it should be pointed out that the same
threat model exists with DNSSEC today: DNSSEC au-
thentication is performed at the local DNS resolver be-
fore the records are delivered to the DNS client initiating
the request, so there is nothing in DNSSEC that protects
against a malicious local resolver.

This attack-vector highlights a separate part of the ex-
isting security model. When clients join a network today,
either through WiFi or ethernet, they typically configure
their network parameters (such as IP address and subnet)
through DHCP. During this process, DHCP also provides
the address of one or more local DNS servers for the client
to use. FERN uses this same process to bootstrap NRG
membership itself, and thus the attack-vector of spoofed
NRGs in FERN is equivalent to the attack-vector today of
fake or misleading SSIDs (such as the famous “Free Public
WiFi” bug in Windows XP [25]). Thus, using DNSSEC
with FERN is no less secure than DNSSEC today, since
they both depend on legitimate DHCP configuration in
the underlay network. This attack-vector merits further
examination, especially in the context of social engineer-
ing attacks, but this problem is outside the scope of this

paper.

7. Testbed Evaluation

The main contribution of FERN is a low-overhead mod-
ular framework that enables different systems to inter-
connect. This modularity makes it hard to compare its
performance to existing systems, because any results col-
lected are heavily dependent on the individual groups and
their structure. Additionally, all existing approaches to-
day, such as the DNS or UPnP, can function as a FERN
group, so they can be considered a subset of FERN func-
tionality.

To confirm the arguments we made in the above sec-
tions, and to collect more information about FERN per-
formance, we built a FERN daemon in Java and used it
to support three different internal NRG protocols. These
protocols, Chord, Server, and Flood, are detailed below,
though it is important to note that FERN can support
many other forms of communication. We then deployed
this daemon on eleven separate nodes located at UCSC,
PARC, and UCSB. At each campus we deployed one server
connected to the Internet to handle inter-campus queries,

10

arc: Server/

* {E'Sb:_ScF\'/er_/ -

_—/

|
\\I‘/

\r/
- =~ /’\—‘—\\\
\ I \ b
7 = \ ’ == A
g /
\

/ 4
csl: Flood/IP-Multicast
| ’ cerg: Chord/OLSR | '\ ‘
\ e N
. & C AN
N 4 ~
~

e

_ -

-l

~ - =

Figure 7: Testbed Implementation

at PARC we also used three laptops connected to the cam-
pus wireless network, and at UCSC we set up a MANET
of four smartphones (and one laptop) running OLSR, with
the laptop also connected to the LAN via ethernet.

Figure 7 shows how we configured the nodes into the
NRT shown in Figure 3. The NRT, network topology,
and choice of name resolution protocols was designed to
emulate what we envision a wide scale FERN system might
look like, with significantly more mobility and dynamic
behavior in the lower layers of the NRT than in the upper
layers. We ran several name resolution tests using this
testbed to evaluate our system and summarize our results
below.

Chord: The Chord NRG requires that every node in
the group be a member of the Chord DHT[26]. Once a
member of Chord, nodes use key-value pairings to map
their TP address to any names (nodes or groups) in the
NRG that they are responsible for. We use Chord at two
levels, shown in Figures 3 and 7, to illustrate its use in
different contexts: in the group ccrg, we use Chord on
top of OLSR to simulate a MANET environment where
routing and discovery are done through a DHT[27, 28]. We
also use Chord at the highest level, global, to emulate an
Internet-wide DHT of static name-servers, as discussed in
Section 2.3.

Server: The Server NRG very closely resembles a DNS
zone. The group consists of one node acting as a name
server, and all other nodes in the group are clients of that
server. Names and services are registered with this server
and resolved by querying the server.

Flood: The Flood NRG is completely decentralized and
emulates mDNS. When nodes join a Flood NRG, they
subscribe to a multicast address and port combination.
Rather than publishing or announcing any names or ser-
vices, they listen to the multicast address and respond in
unicast to any requests for a name or service that they can
provide. Conversely, nodes resolve a name or service by
simply sending a request to that multicast address. This
approach is used at the lowest levels of the hierarchy for
two reasons: first, to emulate a MANET running a reactive
routing protocol, such as AODV. Second, to illustrate the
current role of mDNS and UPnP in today’s home network-

\

Table 2: Mean Latency of Internal Group Resolution

NRG name ucsc parc | global ccrg csl
NRG Architecture || Server | Server | Chord | Chord Flood
Underlay Network || LAN | LAN | WAN | OLSR | IP Multicast

Latency Mean 2ms 3.5ms | 180ms | 106ms 451ms
Latency Stdev 0.7ms | 0.8ms | 60ms | 21.8ms 173ms

ing environment, where discovery is limited to the reach
of the multicast tree.

7.1. Latency

We evaluate latency in our testbed by disabling caching
and using tcpdump to time 50 requests internal to each
NRG, and 50 requests (each way) between every pair of
NRGs. In analyzing these results, we find that the latency
of an inter-group request can be expressed as the sum of
two main components: the latency of internal group reso-
lution to determine the address of the next hop, and the
latency of sending a request or response from one group
to another. This distinction is important because it offers
greater insight into the system behavior than simply pro-
viding end-to-end metrics, especially since resolution times
vary dramatically between NRG architectures.

7.1.1. Internal Group Latency

Internal group latency varies tremendously by group,
and can dominate the end-to-end latency. As Table 2
shows, in server architectures (including DNS) where the
address of the next hop is already known and exists in a ta-
ble, this time is typically under 5ms, whereas other groups
based on DHT's or multicast take significantly longer. Ad-
ditionally, the groups csl and global merit additional
discussion.

In csl, resolution is supported by IP multicast, which
results in both a high mean and a significant variance
(u = 451 o = 173). Incidentally, these same problems
also seen with mDNS. The performance of IP multicast
varies significantly with the network topology, traffic load,
and even the implementation of the multicast tree. Thus,
the results we present in Table 2 do not necessarily reflect
performance in other LANs, though they do highlight the
fundamental performance problems with using multicast
for name resolution.

In our topology, the Chord used for global contains
three nodes, located at UCSC, UCSB, and PARC. When
querying this Chord, we observed latencies ranging from 80
to several hundred milliseconds, depending on the physical
location of the data in the Chord. Though our deployment
serves as a proof-of-concept, the low number of nodes and
their geographical proximity does not accurately reflect
the topology of a large-scale Chord. To better reflect a
large-scale geographically diverse Chord deployment, we
choose to present and compare numbers from the original
Chord paper [26] instead, where the authors measured a
large 190-node Chord deployed across the entire USA. This

11

topology is closer to what we would expect to see, and
therefore their results are a better indicator of latency in
this scenario.

7.1.2. Inter-Group Latency

Inter-group latency is determined by two relatively
static factors: the physical distance a message must travel
(from one node in one group to another node in another
group), and the number of times it travels between groups.
We compare inter-group latency in FERN to DNS values
to get a more accurate understanding of how group hi-
erarchy and structure affects latency. We compare this
particular metric to DNS latency because DNS does not
have an equivalent internal group component.

Jung et. al. [23] conclude that the number of DNS
referrals has a strong effect on the latency of a DNS re-
quest. Unfortunately, as examined in Section 6.2, a DNS
request with N referrals could potentially result in 2NV
FERN referrals, since it must both climb and descend the
tree. However, DNS requests (especially to root and TLD
servers) are generally performed iteratively. This distinc-
tion is important because the latency of an iterative re-
quest with two referrals corresponds to the latency of two
complete round-trips from a local DNS server to an au-
thoritative name-server that may or may not be physically
close. This problem is highlighted by their KAIST dataset
analysis, where they identify a latency “bump” that they
correlate with round-trips traversing the Pacific Ocean.
Iterative resolution makes this problem worse, since it re-
sults in potentially N transpacific round-trips.

In contrast, FERN minimizes inter-group latency by (1)
requiring groups to resolve name-requests recursively and
(2) organizing nodes in a hierarchy that reflects physical
proximity (i.e. assigning countries or physical regions to
TLDs). These two concepts combine to forward these re-
quests to their destination and ensure that requests only
traverse a particular long-haul link (i.e. the Pacific Ocean)
once. With this feature in place, we find that the latency
overhead of adding another logical group to the hierarchy
is minimal: although it is unlikely that the network ad-
dress of the group is directly on the route to the target
group, with these rules it should be relatively close, and in
our tests we find this overhead to typically be under 10ms.

7.2. Caching

Because FERN allows for nodes to be a part of multi-
ple NRGs simultaneously, we augmented the NRT in Fig-
ure 3 by registering eight “fake” TLDs of the form {fakel,

’ Metric \ Rules H 1 \ 2 \ 3 \ 4 \ 5 \ Total ‘
Root Group Requests No Caching 10 | 10 | 10 | 10 | 10 50
Ubiquitous Caching || 10 | 9 | 8 | 7 | 6 40
Caching Rules 1000|010 10
Cache Hits No Caching O[O0 O0O| 01O 0
Ubiquitous Caching || 0 | 1 | 2 | 3 | 4 10
Caching Rules 0 [10 |10 | 10| 10 40
Cache Entries No Caching O[O0 O| 01O 0
Ubiquitous Caching || 14 | 13 | 13 | 13 | 13 66
Caching Rules 12| 1 1 1 1 16
Table 3: Comparison of Aggregated Caching Rules
Group: || global ucsc ccrg
DNS 0/110 | 66/110 | 77/110
FERN || 40/110 | 92/110 | 77/110

Figure 9: Hierarchy Partitioning Due to Link Failure

fake2, ...} and adding one entry, test, under each fake
TLD. We then ran an experiment where five nodes in ccrg
each resolved one name under each TLD (for a total of 11
names and 55 requests) in our hierarchy three separate
times: once with caching disabled, once with all caching
enabled, and once with the caching rules in Section 3.8.
Table 3 shows our results, represented by three metrics:
the number of requests sent to the root group, the number
of cache-hits that occurred, and the number of cached en-
tries in the system. In addition to the total values of these
metrics, we breakdown the total by node, numbering the
nodes 1-5 to show the order they issued their requests in.

The results with no caching serve primarily as a baseline
for comparison. Turning on all caching reduces the num-
ber of root requests, but only slightly: this is because once
a node issues a request that results in a root group query,
that node caches the address of the root and then sends
all subsequent queries to the root group directly. When an
individual node queries the root group directly, it is able
to cache the responses, but it cannot share this informa-
tion with the other nodes. Correspondingly, when we turn
on our caching rules we see a tremendous decrease in the
number of root queries: the group ucsc is the only one
that can query the root, and once ucsc has a cache entry
for every other TLD in the system, there is no need for

12

Table 4: Successful Requests With An NRG Failure In The Topology

Link: || parc-global | csl-parc
DNS 30/110 42/110
FERN 50/110 54/110

Table 5: Successful Requests With A Link Failure In The Network

any further root queries. This benefit is also reflected in
the total number of cache entries for the system, which is
substantially lower because the TLD entries only exist in
ucsc instead of being duplicated at each node.

7.3. Fault Tolerance

Given that the topology in Figure 7 consists of 11 nodes,
there is a total of 110 different source-destination pairs for
a name-request, and in a fully-connected topology they all
succeed. However, it is the case that sometimes individual
nodes or network links in the system will fail and parti-
tion the network into smaller sub-trees. We measure fault
tolerance in FERN by introducing two different types of
failures into the system and observing how many name-
requests succeed; we present these numbers in Tables 4
and 5.

Table 4 examines failures of a DNS zone or FERN NRG.
We created this scenario by powering-off all servers for this
zone (in DNS) or all members of this NRG (in FERN) and
then seeing how many name-requests still succeeded. Fig-
ure 8 illustrates the corresponding name-resolution sub-
trees left in place after a failure of the group ucsc.

In contrast, Table 5 considers failures in the underlay
network. Here, we left all servers and nodes powered on,
but severed links in the NRT at the network layer. We did
this simply by unplugging ethernet cables or powering off
WiFi radios. Figure 9 illustrates the subtrees created by
disabling the ucsc-global link at the network layer.

As discussed in Section 3.9, FERN groups can contact
higher-up groups if necessary. This is part of the key obser-
vation that FERN always performs at least as well as DNS

with regards to fault tolerance: since FERN “devolves” to
a DNS-esque resolution policy when necessary, there can
never exist a scenario where DNS resolves a hostname and
FERN does not.

Building on this, the data shows that FERN usually
outperforms DNS when failures occur, especially when the
failures occur in higher levels of the hierarchy. This bene-
fit is mainly due to preserving internal connectivity when
higher-level groups and links fail, whereas in DNS no-one
can resolve any names below a failure in the hierarchy.
This is underlined by the complete breakdown of DNS
when the root group global fails.

8. Conclusions

FERN is novel in its ability to interface radically differ-
ent name resolution architectures. By providing a unifying
framework for these protocols, we have laid a foundation
for interoperability between future name resolution pro-
tocols that are highly specialized for a particular network
environment. Furthermore, we show how to seamlessly
extend the current DNS to support FERN-style name res-
olution.

We have examined and highlighted the differences be-
tween FERN and DNS. Our results show that the extra
group traversals in FERN do not significantly impact la-
tency, and FERN’s forcing recursive queries significantly
improves performance. We have discussed the effect of
caching and confirmed FERN’s fault tolerance and abil-
ity to handle network partitions. We have also illustrated
FERN’s scalability and proved that FERN is deterministic
and loop-free.

FERN provides a robust framework for name resolution
and service discovery. It provides one global namespace
and supports both global and local name resolution, yet
does so without the previous constraints on both names-
paces. By supporting different name resolution archi-
tectures, FERN paves the way for optimization of name
resolution protocols for their corresponding networks and
serves as an important stepping-stone for interoperability
between heterogeneous networks, such as wireless sensor
networks and MANETS, home “Internet-of-Things” net-
works, and the general Internet.

References

[1] S. Cheshire, D. Steinberg, Zero configuration networking: the
definitive guide, O’Reilly Media, Inc., 2005.

[2] P. Mockapetris, IETF RFC 1035: Domain names - implemen-
tation and specification, IETF Standard.

[3] GoDaddy outage takes down millions of sites, http:
//techcrunch.com/2012/09/11/godaddy-says-it-wasnt-
anonymous-it-wasnt-a-hack-it-wasnt-a-ddos-it-was-
internal-network-issues/.

[4] Facebook outage blamed on DNS issue, http://www.
itproportal.com/2012/12/12/facebook-outage-blamed-
dns-issue/.

[11]

[12]

[13]

[14]

[15]

21]

[22]

[23]

28]

P. Vixie et. al., IETF RFC 2136: Dynamic updates in the do-
main name system.

Y. Goland et. al., IETF Draft: Simple service discovery proto-
col.

E. Guttman, J. Veizades, IETF RFC 2608: Service location
protocol.

R. Droms, IETF RFC 2131: Dynamic host configuration pro-
tocol.

S. Cheshire, B. Aboba, E. Guttman, IETF RFC 3927: Dynamic
configuration of IPv4 link-local addresses.

R. Cox, A. Muthitacharoen, R. T. Morris, Serving DNS using a
peer-to-peer lookup service, in: Peer-to-Peer Systems, Springer,
2002, pp. 155-165.

V. Pappas, D. Massey, A. Terzis, L. Zhang, A comparative study
of the DNS design with DHT-based alternatives, in: Proc. IN-
FOCOM, 2006.

Y. Song, K. Koyanagi, Study on a hybrid P2P based DNS, in:
Proc. CSAE, 2011.

T. Vu, A. Baid, Y. Zhang, T. D. Nguyen, J. Fukuyama, R. P.
Martin, D. Raychaudhuri, DMap: A shared hosting scheme for
dynamic identifier to locator mappings in the global internet,
in: Proc. ICDCS, 2012.

K. V. Katsaros, N. Fotiou, X. Vasilakos, C. N. Ververidis,
C. Tsilopoulos, G. Xylomenos, G. C. Polyzos, On inter-domain
name resolution for information-centric networks, in: NET-
WORKING 2012, Springer, 2012, pp. 13—26.

A. Venkataramani, A. Sharma, X. Tie, H. Uppal, D. Westbrook,
J. Kurose, D. Raychaudhuri, Design requirements of a global
name service for a mobility-centric, trustworthy internetwork,
in: Communication Systems and Networks (COMSNETS), 2013
Fifth International Conference on, IEEE, 2013, pp. 1-9.

U. C. Kozat, L. Tassiulas, Service discovery in mobile ad hoc
networks: An overall perspective on architectural choices and
network layer support issues, Ad Hoc Networks 2 (1) (2004)
23-44.

M. D’Ambrosio, C. Dannewitz, H. Karl, V. Vercellone, MDHT:
a hierarchical name resolution service for information-centric
networks, in: Proc. SIGCOMM workshop on ICN, 2011.

P. Grace, G. Blair, S. Samuel, ReMMoC: A reflective middle-
ware to support mobile client interoperability, in: Proc. DOA,
2003.

A. Friday, N. Davies, N. Wallbank, E. Catterall, S. Pink, Sup-
porting service discovery, querying and interaction in ubiquitous
computing environments, Wireless Networks 10 (6) (2004) 631—
641.

J. Allard, V. Chinta, S. Gundala, G. Richard III, Jini meets
UPnP: An architecture for Jini/UPnP interoperability, in:
Proc. Symposium on Applications and the Internet, 2003.

J. Crowcroft et. al., Plutarch: An argument for network plural-
ism, in: Proc. FDNA, 2003.

V. Ramasubramanian, E. G. Sirer, The design and implemen-
tation of a next generation name service for the internet, in:
Proc. SIGCOMM, 2004.

J. Jung, E. Sit, H. Balakrishnan, R. Morris, DNS performance
and the effectiveness of caching, Transactions on Networking
10 (5) (2002) 589-603.

S. Weiler, D. Blacka, IETF RFC 6840: Clarifications and im-
plementation notes for DNS security (DNSSEC).

The zombie network: Beware ’free public wifi’,
http://www.npr.org/2010/10/09/130451369/the-zombie-
network-beware-free-public-wifi.

I. Stoica et. al., Chord: a scalable peer-to-peer lookup protocol
for Internet applications, Transactions on Networking 11 (1)
(2003) 17-32.

M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, A. Row-
stron, Virtual ring routing: Network routing inspired by
DHTs, in: ACM SIGCOMM Computer Communication Re-
view, Vol. 36, ACM, 2006, pp. 351-362.

D. Sampath, J. Garcia-Luna-Aceves, Scalable integrated rout-
ing using prefix labels and distributed hash tables for MANETS,
in: Proc. MASS, 2009.

