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Abstract: Advanced noninvasive neuroimaging techniques such as EEG and fMRI allow researchers to 
directly observe brain activities while subjects perform various perceptual, motor, and/or cognitive tasks. 
By combining functional brain imaging with sophisticated experimental designs and data analysis methods, 
functions of brain regions and their interactions can be examined. A nascent field called neuroeconomics 
has recently emerged as a result of the enormous success of applications of functional brain imaging 
techniques in the study of human decision-making. In this article, we first provide an overview of brain 
imaging techniques, focusing on the recent developments in multivariate analysis and multi-modal data 
integration. We then present several studies on risky decision making, intertemporal choice, and social 
decision making, to illustrate how neuroimaging techniques can be used to advance our knowledge on 
decision making. Finally, we discuss challenges and future directions in neuroeconomics. 
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The last 20 years have witnessed the 
emergence and rapid development of the field of 
cognitive neuroscience. This new field combines 
two traditionally distinct disciplines—cognitive 
psychology and neurology—to address the neural 
underpinnings of human cognition. The impact of 
cognitive neuroscience has been felt beyond 
psychology and extended to disciplines as diverse 
as anthropology, philosophy, linguistics, sociology, 
and economics. This article aims at providing 
readers with an overview of the recent advances in 
neuroimaging techniques and their applications in 
the study of human decision-making.   

 

Brain Imaging as a Window into the Mind 
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Many brain imaging tools are available to 
cognitive neuroscientists, including positron 
emission tomography (PET), near infrared 
spectroscopy (NIRS), magnetoencephalogram 
(MEG), electroencephalography (EEG), and 
functional magnetic resonance imaging (fMRI). 
We focus on EEG and fMRI in this article because 
they are the most widely used tools. 
 
Electroencephalography (EEG).  

First discovered about a century ago, EEG 
measures electrical activities of the brain from 
electrodes placed on the scalp. Usually, EEG is 
collected from tens to hundreds of electrodes 
positioned on different locations on the scalp. 
Most EEG systems used in cognitive neuroscience 
research today employ 64 to 256 electrodes. 

Scalp EEG represents the aggregates of 
post-synaptic currents of millions of neurons. The 
recorded EEG signals usually reflect two types of 
brain activities, spontaneous and event-related 
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activities. Spontaneous EEG reflects neuronal 
responses that occur unprovoked, i.e., in the 
absence of any identifiable stimulus, with or 
without behavioral manifestations. Spontaneous 
EEG has long been used in clinical settings to 
evaluate seizure disorders, and has not been used 
often in cognitive neuroscience research (but see 
Williamson, Kaufman, Lu, Wang, & Karron, 1997). 
Recently, there are growing interests in examining 
how the background brain activities as measured 
by spontaneous EEG affect current cognitive 
activities (Ergenoglu et al., 2004; Romei et al., 
2008). In addition, spontaneous EEG may hold the 
key to unraveling the patterns of functional 
connectivity and synchronicity among brain 
regions underlying the states of consciousness 
(also known as the default network) (Mantini, 
Perrucci, Del Gratta, Romani, & Corbetta, 2007). 
By combining with resting-state fMRI, generators 
of spontaneous EEG activities can be localized 
(Salek-Haddadi, Friston, Lemieux, & Fish, 2003). 

Event-related potentials (ERPs) are associated 
with specific stimuli or thoughts. The amplitudes 
of ERPs tend to be low, ranging from less than a 
microvolt to several microvolts, compared to tens 
of microvolts for spontaneous EEG. To detect these 
low-amplitude potentials against the ongoing 
background EEG, EKG (cardiac artifacts), EMG 
(muscle activation artifacts) and other biological 
signals and ambient noise, repeated stimulus 
presentations and signal processing techniques 
(e.g., averaging) are required in ERP studies. The 
major techniques to detect event-related potentials 
can be divided into two categories, time-locked 
averaging techniques and spectral analysis 
techniques. Time-locked averaging techniques are 
usually used to detect evoked activities, which are 
time-locked to the presentation of stimuli. Because 
most noise occurs randomly, time-locked 
averaging techniques can greatly reduce the noise 
while preserving the event-related signals in the 
EEG. Time-locked averaging can be either 
stimulus-locked or response-locked.  

In addition to time-locked responses, there 

may also be signals in the EEG that are related to 
stimulus processing without a well-defined 
temporal relation to the event. These responses are 
called induced activity. An example of induced 
activity is oscillatory activity (e.g. gamma 
oscillations), which might have a different phase in 
each single measurement and therefore would 
cancel one another in time-locked averaging. 
However, induced activity can be detected using 
spectral analysis, in which EEG recordings are 
decomposed into a number of frequency 
(sinusoidal) components, such as delta (0-3Hz), 
theta (4-7Hz), alpha (8-12Hz), beta (12-30 Hz), 
gamma (30-50 Hz), and high gamma (80-150 Hz). 
Among the various spectral analysis techniques, 
Fourier transform (FT) is traditionally the 
preferred method because it is time-shift invariant 
in both the time and frequency domains. However, 
in FT, any time-varying spectral content of the 
signal is ignored because it assumes that the signal 
is stationary over time. This assumption is in 
contradiction to the fact that EEG signals are 
non-stationary. To overcome this limitation, 
Wavelet transform (WT) is now considered to be 
more suitable than Fourier transform in analyzing 
induced activities (Akin, 2002). 
 
Functional magnetic resonance imaging (fMRI).  

fMRI is one of the most recently developed 
forms of neuroimaging technique. Since the early 
1990s, fMRI has become the dominant method in 
cognitive neuroscience because of its low 
invasiveness, lack of radiation exposure, and 
relatively wide availability. In the brain, neural 
activities often lead to metabolic activities such as 
increased blood flow and oxygen supply to the 
local vasculature. Several techniques can be used 
to detect changes of metabolic activities following 
neural activities, including contrast fMRI, 
blood-oxygen-level dependent (BOLD) fMRI, and 
perfusion fMRI. Contrast fMRI requires injection 
of contrast agents, such as iron oxide coated with 
sugar or starch. The signals associated with 
contrast agents are proportional to the cerebral 
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blood volume (CBV). Although this method can 
provide relatively strong signals, researchers are 
reluctant to use this semi-invasive method with 
healthy volunteers. Perfusion fMRI uses "arterial 
spin labeling" (ASL) to magnetically label 
hydrogen nuclei in the arterial blood and then 
images their distribution in the brain. This method 
is sensitive to cerebral blood flow (CBF), which is 
considered as a good correlate of neuronal activity. 
This method does not require any contrast agents. 
Compared to the BOLD responses (to be discussed 
below), the signal in perfusion fMRI is more stable 
and the noise is much whiter. However, the 
relatively weak signal and the length of image 
acquisition time have limited the use of perfusion 
fMRI in cognitive neuroscience. 

Currently, the most widely used fMRI method 
is BOLD imaging, which detects the difference in 
magnetic susceptibility between oxygenated 
hemoglobin and deoxygenated hemoglobin. 
Hemoglobin is diamagnetic when oxygenated but 
paramagnetic when deoxygenated. The magnetic 
property of blood therefore depends on its 
oxygenation level. Although neuronal activities 
consume some oxygen, the increase in blood flow 
following neuronal activities supplies more oxygen 
than the neuronal consumption, resulting in an 
increase in oxygenated hemoglobin and therefore 
increased BOLD response. Although BOLD fMRI 
is an indirect measure of neuronal activities, there is 
strong empirical evidence that the BOLD signals 
are highly correlated with neuronal activities 
(Logothetis et al., 2001). Because the BOLD signals 
are usually stronger and require less time to acquire 
than perfusion signals, BOLD fMRI is more 
popular than perfusion fMRI. 

One major technical challenge for fMRI is 
that the hemodynamic responses are relatively 
slow, weak, and noisy. The typical BOLD 
hemodynamic response following a single stimulus 
event starts to rise after 1 to 2 seconds, peaks at 
4-6 seconds, and returns to its baseline after 12-16 
seconds. The typical BOLD signal change 

following a single stimulus event captured on a 3T 
scanner is about 1-2% and varies greatly across 
different event types and different brain regions. 
To increase the statistical power of fMRI studies, 
many repetitions of the same event type are 
necessary. In the early years of fMRI research, 
block design, in which the same types of stimuli 
are grouped together in each block, was used in 
many studies. A block design can generate strong 
BOLD signals that are relatively easy to process. 
However, block design has several limitations. 
First, in some experimental paradigms, the events 
cannot be blocked. For example, in an oddball 
paradigm, the target trials are presented amongst 
more common stimuli. Such target trials cannot be 
blocked. Second, in some experiments, the nature 
of each particular trial cannot be predetermined to 
allow for a block design. For example, in memory 
research, trials remembered vs. forgotten cannot be 
discovered prior to the recall/recognition test. 
Similarly, trials won vs. lost in a gambling task 
cannot be known prior to subject’s response. It is 
therefore impossible to use a block design to 
examine the neural bases of winning vs. losing 
bets or remembering vs. forgetting. To overcome 
these limitations, event-related design was 
introduced. The early event-related design studies 
usually used long inter-trial intervals (12 to 20 s) 
to avoid the overlap of the BOLD responses 
between trials. Slow event-related designs turned 
out to be very boring for subjects and were highly 
inefficient in data collection. Currently fMRI 
studies usually use rapid event-related designs, in 
which different types of events are pseudo- 
randomly mixed together. Two key features of 
rapid event-designs are trial order randomization 
and random time jittering between trials (Xue, 
Dong, & Zhang, 2003a). The development of rapid 
event-related design has significantly changed 
cognitive neuroscience research (Xue, Dong, & 
Zhang, 2003b). A third type of design is the mixed 
design, which combines the block design and the 
event-related design (Wang & Dong, 2007). In a 
mixed design, trials from different conditions are 
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grouped into blocks, and also randomly jittered 
within blocks. An obvious advantage of the mixed 
design is the reduction of switches between 
different experimental conditions, e.g., decision 
making under a winning situation and under a 
losing situation (e.g., Xue et al., 2008). In studies 
of cognitive control, the mixed design can also 
help to dissociate sustained cognitive control and 
transient cognitive control (Wang, Kuhl, Chen, & 
Dong, In press). 

In order to identify the regions that show 
significant signal changes in response to a task 
(thus presumed to be involved in that task), 
imaging data must be analyzed with statistical 
methods. Many techniques have been developed. 
Currently, most analysis approaches, for both 
block and event-related designs, have been 
integrated into the general linear model (GLM) 
framework (Friston et al., 1995). The aim of the 
GLM is to explain the variance in the BOLD time 
course (i.e., the BOLD signal acquired from the 
scanner) in terms of a linear combination of 
explanatory variables (i.e., the experimental design 
matrix) and an error term. By finding the 
magnitudes of the parameters that corresponds to 
each variable in the design matrix, the presence or 
absence of activation can be detected. In the GLM 
model, one can either assume the shape of the 
BOLD response function (e.g., a double-gamma 
function) and then simply estimate the amplitude 
of the response, or do not assume the shape of the 
BOLD response function and estimate the 
amplitude of each time-point of the BOLD 
response, resulting in an estimate of the shape of 
the BOLD response for each event type. The latter 
method is commonly called deconvolution. 
Obviously, with deconvolution, more parameters 
must be estimated and the results are always 
noisier. The advantage of deconvolution, however, 
is that the results are less affected by the 
theoretical shape of the BOLD response function. 
 
Comparison of EEG and fMRI.  

EEG and fMRI have their respective strengths 

and weaknesses. Ideally experiments employing 
these methods must be carefully designed and 
conducted to maximize their strengths and 
minimize their weaknesses. The most salient 
feature of EEG is its high temporal resolution at a 
level of milliseconds. It is also a direct measure of 
neuronal response. Nevertheless, EEG has several 
limitations. First, EEG is only sensitive to 
post-synaptic potentials generated in the 
superficial layers of the cortex. It is not sensitive 
to neuronal responses from structures that are deep 
in the brain, such as the striatum or hippocampus. 
In addition, currents that are tangential to the skull 
make little contribution to the EEG signal. Second, 
the spatial resolution of EEG is very low. Third, it 
is almost impossible to reconstruct a unique 
intracranial current source distribution for a given 
EEG signal, although substantial recent progress 
has been made in this area.  

In contrast, fMRI has high spatial resolution 
and a comprehensive coverage of the whole brain. 
Conventional BOLD fMRI has a typical spatial 
resolution of 3-6 millimeters; high resolution 
fMRI can reach about 1 millimeter spatial 
resolution at the expense of whole-brain coverage. 
fMRI is sensitive to the BOLD signals from both 
the cortical surface and deep brain structures. The 
only limiting factor for coverage is susceptibility 
artifacts in the ventromedial prefrontal cortex and 
temporal poles. This problem has been partly 
resolved by some newly developed scanning 
sequences, or by using contrast fMRI and 
perfusion MRI. The major limitation of fMRI is its 
temporal resolution because the BOLD response is 
very slow. Moreover, the BOLD signal is only an 
indirect measure of neuronal activity, and is 
therefore susceptible to influence by many 
physiological activities of the body that are 
un-related to neuronal processes.  

 
Recent Advances in Neuroimaging 

Techniques 
Functional brain imaging is a rapidly 
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developing field. Many new techniques and 
improvements to existing techniques continue to 
emerge. Some recent examples include the 
development of simultaneous high-intensity EEG 
and high field fMRI recording techniques, new 
data acquisition protocols, better data 
preprocessing methods, and better analysis models 
to improve the sensitivity in detecting the BOLD 
responses. Among all these advances, two most 
significant developments are multivariate analysis 
and multi-modal data integration. 
 
Multivariate Analysis.  

Traditional data analysis methods treat each 
single voxel as an independent measure of brain 
activity. The BOLD responses in surrounding 
voxels are usually averaged (through certain types 
of spatial filters) in order to increase statistical 
power. The BOLD responses are usually 
thresholded to generate activation maps. Although 
averaging and thresholding help to reduce noise, 
they also remove potentially useful information. 
Second, the univariate approach does not explore 
interactions among different brain regions. In 
recent years, multivariate analysis methods are 
increasingly used in fMRI data analysis. For 
example, multiple-voxel pattern analysis (MVPA) 
has been used to identify the subtle differences in 
activation patterns across voxels, whereas neural 
connectivity analysis has been used to examine 
functional interactions among brain regions. 

In the first fMRI study that used pattern 
analysis methods, Haxby et al. (2001) illustrated 
that activation patterns of distributed voxels in the 
ventral visual pathway can be used to effectively 
discriminate which types of visual objects 
participants were viewing. In this study, they asked 
subjects to passively view several categories of 
visual objects (e.g., faces, houses, chairs, shoes, 
bottles) that were grouped in blocks. The imaging 
data from each category were split in half (i.e., odd 
blocks vs. even blocks). They first used the GLM 
approach to identify the responses in the ventral 

temporal cortex (VTC), separately for each half of 
the blocks and for each category. Unlike the 
traditional approach, they did not smooth the data, 
nor did they threshold the statistical maps. Instead, 
they extracted the pattern of activation within VTC 
for each category, as well as for each half of the 
blocks, and then calculated the within-category 
correlation (e.g., the first-half patterns with the 
second-half patterns) and between-category 
correlation (e.g., “faces” vs. “houses”). The results 
indicate that each category was associated with a 
reliable and distinct pattern of activity in the VTC 
(i.e., the degree of within-category match was 
significantly higher than the degree of 
between-category match), challenging the view 
that these visual categories are processed in 
isolated brain regions. More significantly, this 
study demonstrates that the multivariate approach 
is able to provide a high degree of discrimination 
across different mental states, suggesting the 
superiority of pattern analysis over the traditional 
approaches. 

Following this seminal study, many more 
sophisticated pattern-classification algorithms, 
such as support vector machines (SVM) (e.g., 
Mourao-Miranda, Bokde, Born, Hampel, & Stetter, 
2005) and linear discriminant analysis (LDA) (e.g., 
Hampton & O'Doherty J, 2007), have been used in 
fMRI data analysis. These methods have 
significantly improved the sensitivity of the MVPA 
approach. For example, in the correlational 
approach, all voxels have the same discrimination 
weight, whereas the SVM approach can identify 
the voxels that maximize the margin between the 
two states (i.e., the support vectors), and thus 
assign the optimal discrimination weights to the 
voxels. These pattern-analysis algorithms usually 
include a training/learning stage and a test stage. 
In the training stage, the fMRI data and their 
associated mental states are both submitted into 
the learning algorithms to develop a classifier for 
each mental state. In the test stage, only the fMRI 
data that are not used for training are supplied to 
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the classifiers to examine whether the classifiers 
can correctly label the associated mental states. 
Using these approaches, researchers have shown 
that fMRI responses can be successfully decoded 
as neural representations of different visual objects 
(Haxby et al., 2001), different word types 
(Mitchell et al., 2008), and different mental 
mathematical manipulations (e.g., addition vs. 
multiplication) (Haynes et al., 2007). 

Both the traditional GLM approach and the 
MVPA approach can address the question of 
functional localization, with the former focusing 
on discrete brain regions and the latter on 
contiguous groups of brain voxels. However, 
results from these analyses suggest that even a 
very simple cognitive function may involve a large 
cooperative and/or competitive neural network. 
These findings point to the importance of 
understanding the communications and 
interactions among different brain regions when 
studying brain functions. A number of neural 
connectivity analysis (NCA) approaches have been 
developed to address this issue.  

The simplest neural connectivity analysis 
approach is functional connectivity analysis, which 
is developed to evaluate coupling of neural 
activations in different brain regions. This can be 
done by simply extracting BOLD responses in two 
brain regions and calculating their correlation. As 
an extension of the method, the time course of the 
BOLD response in one brain region can be 
extracted and correlated with that of the rest of the 
brain. This approach can provide a comprehensive 
connectivity map of the whole brain with one 
particular region. Although the same method can 
be used to examine mutual connectivities of each 
voxel/region in the brain, the resulted connectivity 
map is usually very complicated. Additional 
informatics techniques are necessary to 
characterize the connectivities. For example, it has 
been shown that connectivities among brain 
regions during resting states exhibit “small-world” 
attributes, i.e., high levels of clustering and short 
path lengths (Hagmann et al., 2008). 

Another approach is to examine how different 
tasks and mental states modulate functional 
connectivity. Friston and colleagues (1997) 
developed a method called psychophysiological 
interaction (PPI) to address this issue. They rely on 
task- or context-dependent inter-regional covariance 
to determine statistically associations among brain 
activities in different regions. However, all 
functional connectivity approaches are based on 
correlations, and therefore cannot be used to 
identify the directions and causal relations of the 
connections (i.e., effective connectivities).  

A number of other approaches have been 
developed to examine effective connectivities. For 
example, covariance modeling (e.g., structural 
equation model, SEM) has been used successfully 
to evaluate effective connectivities among a given 
set of brain regions when subjects perform a 
particular task. It can also be used to test the 
differences in effective connectivities involved in 
different cognitive tasks, thus illustrating the time- 
and task-dependent nature of these patterns 
(McIntosh & Gonzalez-Lima, 1994). It shall be 
kept in mind that SEM makes causality inferences 
based on the covariance structure but not temporal 
information of neural activities in different brain 
regions. A causality model that emphasizes 
temporal information is the Granger causality 
model (Goebel, Roebroeck, Kim, & Formisano, 
2003). This model, for example, has been applied 
to EEG as well as fMRI time series and has 
provided information about directional interactions 
between neural elements in cognitive tasks 
(Brovelli et al., 2004).  

Dynamic Causal Modeling (DCM), developed 
by Friston et al. (2003), is based on the 
construction of a reasonably realistic neuronal 
model of interacting cortical regions with 
neurophysiologically meaningful parameters. The 
idea is to use a full Bayesian approach to estimate 
neuronal responses from the measured BOLD 
response data. Applications of DCM have 
examined modulatory effects of attention on 
connectivity in the visual system (Mechelli, Price, 
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Friston, & Ishai, 2004). The DCM approach has 
also been expanded to model EEG and MEG data 
(David et al., 2006). It is important to note that 
both SEM and Granger causality model make 
causal inferences based on the BOLD response, 
but not neuronal activities. 
 
Multi-modality data integration. 

Another significant development in functional 
imaging is multi-modality data integration. In a 
sense, like reaction times and many other 
physiological responses, functional imaging is just 
another measure of human brain activities. Each of 
these measures provides different insights into the 
human mind. In addition, as mentioned before, 
different functional imaging techniques measure 
different aspects of brain responses and have their 
own strengths and limitations. Thus, integrating 
different measures is not only useful but very 
necessary. There are four types of integrations. 
First, different imaging techniques can be 
integrated to take advantage of their respective 
strengths. Second, behavioral and functional 
imaging data must be integrated when interpreting 
imaging results. Third, data on brain structures and 
functions must be integrated. Finally, there are also 
methodological reasons to integrate multi- 
modality data. For example, recordings of 
subjects’ head movement, eye blinking, breathing, 
and heart rates can be used to reduce the noise in 
functional imaging data. Using multi-modal data 
to reduce noise in fMRI has become a standard 
affair in modern functional imaging analysis. We 
focus on the first three types of integrations in the 
following sections.  

Multi-modality data integration has not only 
furthered our understanding of old problems, but 
also addressed many new questions. For example, 
researchers have long been puzzled by the sources 
of resting-state BOLD fMRI. Mantini et al. (2007) 
recorded simultaneous EEG and fMRI when 
subjects were instructed to lie down quietly in the 
scanner without thinking about anything. Using 

independent component analysis on the fMRI data, 
they identified six widely distributed resting state 
networks. The BOLD signal fluctuations associated 
with each network were correlated with EEG 
power variations in the delta, theta, alpha, beta, 
and gamma bands. Each functional network was 
characterized by a specific electrophysiological 
signature that involved combination of different 
brain rhythms (Mantini et al., 2007). Another 
classical example is to identify the relationship 
between the BOLD response and neuronal 
activities. Logothetis et al. (2001) simultaneously 
recorded neuronal activities (single neuron spikes 
and local field potentials) and the BOLD responses 
on monkey subjects, and found that the BOLD 
responses were highly correlated with local field 
potentials, providing support that the BOLD 
responses at least partially reflect neuronal 
activities. Similar studies have been conducted on 
human patients (due to the invasive nature of this 
procedure) and have generally confirmed this 
observation (Nir et al., 2007) 

The multi-modality data integration approach 
has also been used to identify the relationship 
between anatomical connectivities and functional/ 
effective connectivities. In a recently study, 
Hagmann et al. (2008) found a very high degree of 
overlap between structural and functional 
connectivities by combining diffusion spectrum 
imaging (a non-invasive method to examine the 
white-matter anatomical connectivities) and 
resting-state fMRI imaging. 

One of the ultimate goals of cognitive 
neuroscience is to use functional imaging to reveal 
the neural basis of human behavior. At a minimum, 
behavioral data must be correlated with fMRI data. 
As illuminating as such correlations may be, it is 
even more important to have such analyses guided 
by computational models. Recent successful 
applications of the state-space model (Law et al., 
2005; Smith et al., 2004) and reinforcement- 
learning model (Sutton & Barto, 1998) in imaging 
illustrates the importance of theory-driven 
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integration of behavioral and imaging data 
(O'Doherty et al., 2004). As it will become clear in 
the next section, an important feature of 
neuroeconomics research is the integration of 
functional imaging with decision-making models 
from economic research. Computational models 
and theories provide important hypotheses to guide 
imaging data analysis. 

In sum, cognitive neuroscience has experienced 
a rapid development, in large part due to recent 
advances in functional imaging techniques and 
their obvious advantages over traditional 
neurological and animal physiological methods. 
Cognitive neuroscience has become highly 
influential not only in the field of neuroscience 
and psychology, but also in disciplines such as 
sociology, economics, and philosophy. Researchers 
of different disciplines have begun to use brain 
imaging to connect human behaviors with brain 
activities. Among the most rapidly developing 
areas is neuroeconomics, which combines 
cognitive neuroscience with experimental and 
behavioral economics. In the next section, we 
provide some illustrative examples of research in 
neuroeconomics. 

 
Neuroeconomics: Applications of Brain 
Imaging in Decision Making Research 
Neuroeconomics is a multidisciplinary area of 

research that incorporates neuroscience, 
economics, and psychology, with the goal of 
building a biological model of decision-making in 
economic environments. By combining techniques 
from cognitive neuroscience and experimental 
economics, neuroeconomic studies examine how 
real-time neural activities are associated with 
various decision making processes, such as 
evaluating options, assessing risks and rewards, 
making decisions, and interacting with others who 
may be affected by the decisions (Camerer, 
Loewenstein, & Prelec, 2005). 

Before the emergence of neuroeconomics, 
researchers in behavioral economics had 

developed various models to describe, predict and 
guide human economical decision-making. These 
models can be roughly divided into two categories. 
One category, the so-called normative or 
prescriptive models, is about optimal decisions. By 
assuming people are absolutely rational and fully 
informed, and possess unlimited computational 
power, these models describe how people should 
make optimal decisions. The other category, the 
so-called predictive or descriptive models, is about 
how people actually make decisions in real life. 
One focus of neuroecnomics is to understand why 
people often do not make optimal decisions, i.e., 
neural mechanisms of irrationality. 

Research in neuroeconomics covers a wide 
range of topics. In the first comprehensive 
handbook in this field, Neuroeconomics: Decision 
Making and the Brain, there are 33 chapters and 
the topics range from axiomatic neuroeconomics 
to social preference in primates. Due to space 
limitation, the current article focuses on three 
specific areas, decision under uncertainty, 
intertemporal choice, and game theory. For each 
area, we first introduce the general research 
questions and then review some representative 
studies to exemplify the diverse set of research 
topics in neuroeconomics. 
 
Decision under uncertainty 

Many decisions, such as whether to invest in 
the stock market or to accept a new job, involve 
the possibility of gaining or losing relative to the 
status quo. The economics literature makes 
distinctions between two types of decision-making 
under uncertainty, decision under risk and decision 
under ambiguity. When the probabilities of the 
possible outcomes are known to the decision maker, 
such as in the dice game, gambling on a roulette 
wheel, and certain lottery, it is called risky 
decision making or decision making under risk. In 
most daily decision-making situations, such as 
whether or not to take a job offer, to marry 
someone, and to invest in the stock market, the 
probabilities of possible outcomes are not 
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available. Decision under these situations is called 
decision under ambiguity.  

The difference between risky and ambiguous 
decision-making is illustrated by the Ellsberg 
paradox (Segal, 1987). Imagine one deck of 20 
cards composed of 10 red and 10 blue cards (the 
risky deck), and another deck has 20 red or blue 
cards, but the composition of the red and blue 
cards is completely unknown (the ambiguous deck). 
A successful bet on a color wins a certain amount 
of money if a card with the chosen color is drawn. 
Otherwise the participant loses a certain amount of 
money. This gambling task reveals two important 
characteristics of human decision making under 
uncertainty. First, when faced with such decisions, 

most people are markedly risk aversive. For 
instance, if you offer people $10 gain (when 
betting correctly) and otherwise $10 loss, people 
will reject this gamble. On average, people will not 
accept the gamble unless the amount that may be 
gained is at least twice the amount that may be lost 
(e.g., gain $20 or lose $10). Second, people also 
have ambiguity aversion. They are more likely to 
reject the gamble in the ambiguous situation (e.g., 
when the distribution of the red and blue cards is 
unknown). That is, when asked to choose between 
a risk decision and an ambiguous decision, 
subjects prefer the risk decision task over the 
ambiguous decision making task.  

Prospect Theory, the most successful 

behavioral model on decision-making under risk 
(Kahneman & Tversky, 1979; Tversky & 
Kahneman, 1992), explains risk aversion for 
"mixed" (gain/loss) gambles using the concept of 
loss aversion: People are more sensitive to the 
possibility of losing objects or money than they are 

to the possibility of gaining the same objects or 
amount of money. To examine the neural substrates 
of loss aversion, Poldrack and colleges (2007) 
collected fMRI data while participants decided 
whether to accept or reject mixed gambles that 
offered a 50/50 chance of either gaining one 
amount of money or losing another amount. They 

systematically manipulated the amount of gain and 
loss so that some gambles were appealing to the 
participants whereas the others were not. The 
amounts of wins and losses were essentially 
orthogonal to each other across the entire pool of 
trials. By comparing trials with potential gains and 
those with potential losses, the researchers could 
separate the neural responses associated with 
possible gains and possible losses. In the first 
analysis, they correlated the brain responses with 
potential gains and potential losses. They found 
that largely overlapping areas (including the 
midbrain dopaminergic regions and their target 
regions, such as the ventral striatum and 
ventromedial prefrontal cortex) exhibited increased 
activities as potential gains increased and 
decreasing activities as potential losses increased. 
More importantly, the slope of decrease associated 
with losses was steeper than that of increase 
associated with gains, consistent with the notion 
that losses loom larger than gains in Prospect Theory. 
Using the slopes for gains and losses, they calculated 
the neural loss aversion factor (λneural) for each brain 
region: λneural = [−βloss−βgain]. They also calculated, 
based on the participants’ choices, the behavioral 
loss aversion factor (λ). They found that individual 
differences in behavioral loss aversion were well 
predicted by the measure of neural loss aversion in 
several brain regions, including the ventral 
striatum and prefrontal cortex. The study provides 
a neural account of behavioral loss aversion. 

According to Prospect Theory, human 
decision-making involves maximization of a single 
measure of expected utility (EU), which is a 
combination of subjective weighting/probability 
and subjective value. Despite its parsimony and 
significant explanatory power, expected utility 
models have not led to a satisfactory 
understanding of the decision impairments 
observed in some of the patients with VMPFC 
lesions who displayed intact processing of reward 
levels (Bechara & Damasio, 2005). This points to 
the possibility that other factors, such as risk 
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sensitivity, i.e., the fear of unknown, might also be 
important in understanding individuals’ risky 
decision making. To test this hypothesis, Xue et al. 
(2008) used the Cups Task to study the neural 
mechanisms of risky decision-making, especially 
the inter-play of risk and reward (Xue et al., 2008). 
The Cups Task includes a Gain domain and a Loss 
domain (Weller, Levin, Shiv, & Bechara, 2007). In 
the Gain domain, each trial consists of a certain 
option of winning $1 for sure, and a risky option 
with a probability, as determined by the number of 
cups, of winning more than the sure bet, or not 
winning at all. Similarly, each trial in the Loss 
domain consists of a certain option of losing $1 for 
sure and a risky option of losing more than the 
sure loss, or not losing at all. Participants were 
asked to choose between the risky option and the 
safe option, and received the outcome after their 
choice. Simple as it is, this task has been shown to 
be sensitive to decision deficits in a group of 
medial prefrontal lesion patients (Weller et al., 
2007).  

In analyzing the fMRI data, Xue et al. (2008) 
first quantified the amount of experienced risk and 
experienced reward for each trial by considering 
participants’ choice (risk vs. no risk) and outcome 
(gain vs. loss). Following existing literature (Holt 
& Laury, 2002), risk was defined as the variance of 
the outcome. The experienced risk was defined as 
the variance of the possible outcome of the risky 
option, multiplied by the choice (1 for risk and 0 
for no risk), i.e., they experienced no risk if they 
did not gamble. By correlating the experienced 
risk and experienced reward with brain activations, 
Xue et al. (2008) found that two adjacent brain 
regions in the medial prefrontal cortex (MPC) 
conveyed distinct decision signals: the dorsal 
MPFC was more activated when individuals 
experienced higher level of risk; in contrast, the 
ventral MPFC was parametrically modulated by 
the received gain/loss. In a further analysis, the 
authors calculated participants’ risk preference 
based on their behavioral choices and correlated it 
with activations in the ventral and dorsal MPFC. 

This analysis revealed that the degree of dorsal 
MPFC activation to risk across subjects was 
negatively correlated with their behavioral risk 
preference, whereas the degree of ventral MPFC 
activation to reward was positively correlated with 
their behavioral risk preference. These results 
suggest risk decision making is a combat between 
two competing neural forces: the “lure” of gain in 
the ventral MPFC and the “fear” of risk in the 
dorsal MPFC.  

Other studies have directly compared decision 
making under ambiguity and under risk. For 
example, Hsu, Bhatt, Adolphs, Tranel, & Camerer 
(2005) found that the level of ambiguity in choices 
was correlated positively with activations in the 
amygdala and orbitofrontal cortex, and negatively 
with that in the striatal system. Essentially, the 
same system treats ambiguity and risk as limiting 
cases of uncertainty. In contrast, another study 
(Huettel, Stowe, Gordon, Warner, & Platt, 2006) 
has also compared ambiguous vs. risky 
decision-making and found that decision under 
ambiguity might involve neural mechanisms that 
are different from those involved in decision under 
risk. The authors found that activation of the 
lateral prefrontal cortex (Ambiguity > Risk) was 
correlated with individuals’ ambiguity preference, 
whereas activation of the posterior parietal cortex 
(Risk > Ambiguity) was correlated with 
individuals’ risk preference.  

Although the majority of studies on risky 
decision-making have used fMRI as their primary 
research tool, there is an increasing number of 
studies using EEG. For example, one ERP study 
has shown that the ERP response recorded from 
the medial frontal electrodes can quickly separate 
two decision components: Feedback negativity 
that occured 200-300ms after the feedback 
significantly differentiated gain and loss trials, 
whereas the P300 component was associated with 
outcome amplitude (regardless whether they were 
gain or loss trials) (Yeung & Sanfey, 2004). As 
mentioned earlier, EEG studies can provide 
important insights into the time-course of neural 
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responses associated with different decision 
parameters. 
 
Impulsivity and inter-temporal choice 

“Should I apply for graduate school or go to 
the job market now?” “Should I save for the future 
or should I consume now?” Life is full of 
inter-temporal choices like this. Most such choices 
require decision-makers to trade off costs and 
benefits at different points in time. According to 
Irving Fisher (1930), rational decision makers will 
make the decision (e.g., borrow or lend) based on 
the market interest, so that present and future 
money can be equated. However, even with interest 
rates and other factors taken into account, human 
behavior deviates greatly from predictions of 
prescriptive decision theories. Most economic 
agents prefer current rewards to delayed rewards 
of similar magnitude. In economics, the theory of 
discounted utility is the most widely used 
framework for analyzing inter-temporal choices. 
Normative models either assume a zero discount or 
a constant discount, i.e., an exponential 
discounting function D(t) = δt, where δ represents 
the discounting rate, t represents time and D 
represents the discount. In contrast, the hyperbolic 
discount function has been widely adopted as a 
more-realistic way of describing how people (and 
animals) value future outcomes. Two major 
hyperbolic discount functions have been proposed. 
The first is the quasi-hyperbolic time-discounting 
function, sometimes referred to as beta-delta 
preference. It posits that the discounted value of a 
reward of value u received at delay t is equal to u 
at t = 0 and ßδtu at t > 0, where 0 < ß ≤1 and δ≤

1. The ß parameter represents the special value 
placed on immediate rewards relative to rewards 
received at any other point in time. When ß < 1, all 
future rewards are uniformly downweighted 

relative to the immediate reward. The δ parameter 
is simply the discount rate in the standard 
exponential formula, which treats a given delay 
equivalently regardless of when it occurs. Another 

hyperbolic function is SV =1/(1+kD), where SV is 
subjective value (expressed here as a fraction of 
the immediate value), D is delay (in days) and k is 
a subject-specific constant. Both versions of the 
hyperbolic discount function have obtained 
support from fMRI studies. 

McClure and colleagues hypothesized that the 
two parameters in the first hyperbolic discount 
function are mediated by two distinct neural 
systems: The ß system is mediated by the limbic 
structures and the δ system by the lateral prefrontal 
cortex and associated structures supporting higher 

cognitive functions (McClure, Laibson, 
Loewenstein, & Cohen, 2004). To test these 
hypotheses, they asked participants to make a 
series of inter-temporal choices between early 

monetary rewards and later monetary rewards 
while their brains were scanned in fMRI. In some 
choice pairs, the early option was available 
"immediately" (e.g., $20 now vs. $23 in 1 month). 
In other choice pairs, the early option was 
available only after a delay (e.g., $20 in two weeks 
vs. $23 in 1 month and two weeks). According to 
their dual-system hypothesis, the cognitive system 
is involved in both choices, whereas the limbic 
region is only involved in the first choice. To 
identify the ß system, they compared neural 
activations between the two types of choices. This 
comparison revealed regions in the ventral 
striatum (VStr), medial orbitofrontal cortex 
(MOFC), medial prefrontal cortex (MPFC), 
posterior cingulate cortex (PCC), all having been 
implicated in reward processing. To identify the δ 
system, they compared all trials with the baseline. 
Since this comparison included regions that are 
involved in visual and motor processing, they did a 
further analysis comparing the easy and difficult 
trials (based on the reaction time data). The idea 
here is that the cognitive system is engaged to a 
greater degree in difficult trials than the easy trials. 
This comparison revealed significant activations in 
the dorsolateral prefrontal cortex, ventrolateral 
prefrontal cortex, left orbitofrontal cortex, and 
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inferoparietal cortex. If the two systems, i.e., the ß 
limbic system and the δ cognitive system, are 
differentially involved in immediate and future 
rewards, a further prediction is that the ß system is 
more activated when an immediate reward is 
selected and the δ system is more activated when a 
future reward is selected. This prediction was also 
confirmed by the interaction of the two systems 
and the two types of choices, with δ areas showing 
greater activity when future reward was chosen. 

Kable and Glimcher (2007) investigated 
neural mechanisms of the second hyperbolic 
discount function. The authors employed a 
psychometric-neurometric technique in the study 
to identify the subjective values of delayed 
rewards (as compared to the immediate reward) 
based on economic models, and brain regions 
whose responses are correlated with the subjective 
values. To achieve this goal, they asked 
participants to make a series of choices between a 
future reward (with the reward amplitude and time 
delay parametrically varied) and a fixed amount of 
immediate reward (i.e., $20). By examining 
participants’ choices, they estimated the behavioral 
discounting parameter k (i.e., behavioral k) for 
each individual participant, which varied 
from .005 (the most patient subject) to .1189 (the 
most impatient subject). Within each participant, 
they used the estimated parameter k to calculate 
the subjective value of each individual trial, and 
then correlated the subjective values with brain 
activations. This analysis identified that, across all 
subjects, activities of the medial prefrontal cortex, 
posterior cingulate cortex, and the ventral striatum, 
were significantly correlated with subjective 
values. To further confirm this result, they 
extracted the brain responses in the three regions 
in different temporal delay conditions, and 
estimated the neural discount parameter k (i.e., 
neural k). They found that across all subjects, the 
neural k was highly correlated with the behavioral 
k. Taken together, the study provides compelling 
evidence that the limbic reward regions 
quantitatively track subjective values, for both 

immediate and future rewards.  
 
Game theory  

Game theory has been developed to understand 
a wide class of social interactions, including 
competition, cooperation, and coordination. A 
game is usually played by two or more people, 
thus provides the ground to connect individual 
decision making with group-level outcomes. 
Traditional studies of game theory focus on 
developing and describing strategies in social 
interactions. A normative game theory usually 
develops a set of equilibria in these games, i.e., a 
set of strategies that individuals may follow so that 
they are unlikely to change their behavior. One 
important equilibrium state is the so-called Nash 
Equilibrium, which is reached if each player has 
chosen a strategy and no player can benefit by 
changing his or her strategy while the other players 
keep their strategies unchanged. For example, in 
the Ultimatum Game (UG), two players are 
randomly and anonymously matched, one acts as 
proposer and the other as responder. The proposer 
is endowed with a given amount of money (say, 
$10). He is then asked to suggest a way of sharing 
the money with the responder. The responder can 
either accept the offer or reject the offer. If he 
accepts the offer, the money is split according to 
the proposal. If he rejects the offer, neither of them 
gets the money.  

The Nash Equilibrium in this game is reached 
if the proposer gives the responder a smallest 
division of the money (like one cent). This is 
because, once the proposer sticks to this strategy, 
no matter what the responder chooses to do, either 
accept or reject the offer, the outcome for the 
responder will not be better. A rational responder 
would accept whatever proposal (except that the 
proposer keeps all the money), otherwise he gets 
nothing. Surprisingly, many studies have shown 
that the responders actually reject quite often low 
offers; they reject about half of the offers that are 
below 20% of the endowment. The interesting 
question here for neuroeconomics is to understand 
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the neural mechanisms underlying the decision 
making process of the responder. 

Sanfey and colleagues were the first to use 
fMRI to study social exchanges in Ultimatum 
Games (Sanfey, Rilling, Aronson, Nystrom, & 
Cohen, 2003). It should be noted that in the UG 
paradigm, it is important to keep the responder and 
proposer anonymous to each other. In addition, the 
mechanisms involved in single-shot games (i.e., a 
pair of proposer and responder play only one 
round of the game) and its results are different 
from those of multi-shot games in which multiple 
rounds of game are played between them. In the 
latter case, one reason the responder would reject 
an unfair offer is to pressure the proposer to 
increase the subsequent offers, but such a tactic is 
not possible in the single-shot games. In this study, 
the authors first introduced 10 anonymous people 
to the participants and told them that they would 
be the partners with them in the game. In another 
condition, the participants were told to play with a 
computer who makes random proposals. 
Essentially, participants received exactly the same 
offers from the computer as from the 10 
anonymous people, with half of the offers being 
fair ($5:$5 split) and the other half being unfair 
(two offers of $9:$1, two offers of $8:$2 and one 
offer of $7:$3). There were two important 
behavioral results. The first result is that the 
participants accepted all fair offers and the 
rejection rate increased as the offers became more 
unfair. The second result is that the participants 
rejected significantly more unfair offers proposed 
by humans than those by the computer.  

Functional imaging results showed that 
several brain regions, including the anterior insula, 
anterior cingulate cortex, and dorsal prefrontal 
cortex, exhibited stronger activations to unfair 
offers than to fair offers. The bilateral insula 
activation was also significantly greater when the 
unfair offers were from humans than when they 
were from the computer, suggesting that it is not 
simply the amount of money but rather the 

perceived unfair treatment from people that drove 
the insula activation. Across all the participants, it 
has been shown that individuals who showed more 
insula activation to unfair offers were more likely 
to reject the offer. In light of the fact that the 
anterior insula has been implicated in processing 
negative emotions, these results suggest that the 
rejection of unfair offers is driven by negative 
emotion experienced by the responders during the 
ultimatum game. Consistent with this view, it has 
been shown that allowing participants to express 
their negative emotion toward the proposer 
actually increased the rate of acceptance of unfair 
offers (Xiao & Houser, 2005).  

Knoch and his colleagues used repetitive 
transcranial magnetic stimulation (rTMS) to 
examine effects of left and right dorsolateral PFC 
disruption on rejection decision (Knoch, 
Pascual-Leone, Meyer, Treyer, & Fehr, 2006). 
They found that rTMS stimulation of the right 
DLPFC significantly reduced the rejection rate of 
unfair offers, i.e., 10% rejection of offers below 
20% of the endowment, as compared to 50% 
rejection rate when the left DLPFC was disrupted 
by rTMS. One interpretation of this result is that 
the right DLPFC, but not the left DLPFC, can 
override participants’ self-interest and guide their 
decision towards benefits to the society, i.e., to 
foster the social order and fairness. According to 
this interpretation, the motivation of rejecting 
unfair offers is prosocial rather than selfish, which 
is guided by the high-level executive control 
system but not by the emotional system. This study 
has led to many interesting debates. Further 
studies are necessary to resolve these debates. 

The Ultimatum Game is an elegant paradigm 
to study social exchanges as well as their neural 
mechanisms. Researchers have also used other 
games, such as the prison’s dilemma game, the 
trust game, and the public goods game, to study 
social trust, competition, and collaboration. Due to 
space limitation, brain imaging research using 
these other games is not reviewed in this article. 
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Interested readers are referred to Camerer’s 
chapter (Camerer, 2008).  
 
Summary 

Although we have covered a very small sample 
of current neuroeconomics studies on 
decision-making, several features are already 
evident from these studies. From a theoretical point 
of view, these studies have generated important 
insights into human decision-making. For example, 
theses studies have shown that decision making 
usually involves complex psychological and neural 
processes, including competitions between 
automatic and controlled processes, between 
cognitive and emotional processes, as well as 
between different emotional processes, such as the 
“lure” of reward and “fear” of risk. These findings 
suggest that, contrary to normative models’ claim 
that human beings are perfectly rational and possess 
unlimited power for cognitive processing, human 
decision-making is usually affected by emotions 
and by habitual and automatic mental processes. 
These processes have clear neurobiological bases. 
These studies also reveal that many important 
social motivations, such as altruism and prosocial 
morals, social order and hierarchy, and social 
comparison, could profoundly affect human 
decision making. Some of them, such as social 
fairness (Tabibnia, Satpute, & Lieberman, 2008), 
charity giving (Harbaugh, Mayr, & Burghart, 2007), 
and social comparison (Fliessbach et al., 2007) 
might function through the common reward circuits 
that are responsive to primary rewards, such as 
water, food, and sex. Finally, these studies have 
started to reveal the neural mechanisms underlying 
individual differences in decision-making. As is 
evident in these studies, individual differences in 
decision-making might be associated with 
variations in the functionality of brain regions 
implicated in the decision process.  

From a methodological point of view, all these 
studies have set good examples of combining 
models from decision theories (e.g., the Prospect 
Theory) with brain imaging techniques. The high 

degree of correlation between decision parameters 
(such as expected utility, risk, probability) and 
brain activations are crucial in identifying the 
neural substrates of decision-making. Generally, 
both within-subject correlation and between- 
subject correlation have been shown to be 
extremely useful. For example, Xue et al. (2008) 
used a model from the finance literature to quantify 
the experienced risk in each trial, and examined, 
within each individual subject, the trial-by-trial 
variations in the BOLD signals as a result of 
different levels of experienced risk. This 
within-subject analysis revealed highly consistent 
results across all subjects in the dorsal MPFC. To 
further examine the association between dorsal 
MPFC and risk preference, Xue et al. (2008) 
examined whether individual differences in dorsal 
MPFC activations were associated with individual 
differences in risk preference. In this between- 
subject correlational analysis, they found that 
individuals showing strong activations in dorsal 
MPFC also exhibited low levels of risk behaviors. 
A similar approach has been used in a number of 
studies reviewed in this article (e.g., Hsu et al., 
2005; Kable & Glimcher, 2007; Tom et al., 2007). 
Identifying consistent correlations at both the 
within- and between-subject levels has provided a 
highly useful method to integrate functional 
imaging measures with decision models. 
 

Challenges and Future Directions 
Despite the impressive applications of 

functional imaging in decision-making studies, 
neuroeconomics is still in its infancy. This 
discipline has great promises, but also faces many 
challenges.  

First, functional imaging studies can only 
discover the brain regions that are involved in 
performing a task, but cannot establish whether the 
regions are necessary for the task. For example, 
although the anterior cingulate cortex (ACC) has 
been consistently found to be involved in cognitive 
control, patients with ACC lesions perform 
normally in the Stroop and go/no-go tasks 
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(Fellows & Farah, 2005). In order to establish the 
necessary and sufficient conditions of a brain 
region in a task, it is important to combine 
neuroimaging and lesion techniques. For example, 
Hsu et al. (2005) used fMRI to discover that the 
orbitofrontal cortex is involved in risky 
decision-making. In another experiment, they 
applied the same task to a group of patients with 
orbitofrontal lesions and confirmed that damage to 
this region impaired decision-making. The study 
by Xue et al. (2008) has taken a different approach: 
They adapted a task that has been shown to be 
sensitive to medial PFC lesions and used the 
information to guide their analyses of the fMRI 
data collected from healthy participants. Both 
approaches have proved to be effective. One major 
limitation for the combined imaging and lesion 
studies on human subjects is that (irreversible) 
lesions can only be studied with patients. The 
nature of the lesions (size, severity, location, etc.) 
is beyond researchers’ control. Reversible “lesion” 
techniques such as transcranial magnetic 
stimulation (TMS) and pharmacological research 
methods also have their own limitations. For 
example, TMS can only target cortical regions but 
not subcortical nuclei, and drug effects are often 
too widespread for researchers to target a 
particular brain area. Major breakthroughs are 
necessary to overcome these limitations. 

Second, neuroimaging studies have focused 
on understanding brain functions (i.e., what is the 
function of a certain brain region?). Studies of this 
kind have significantly advanced our knowledge of 
brain functions. Nevertheless, if neuroimaging 
studies are ever going to advance our 
understanding of human decision-making, we must 
be able to make inferences on the ongoing 
cognitive processes. Although such inferences 
have been made (implicitly or explicitly) for a long 
time, by cognitive neuroscientists, their validity 
has only been carefully examined recently by 
Poldrack (2006). Poldrack pointed out this issue as 
a “reversal inference” problem. Typical inference 

in cognitive neuroscience goes like this: “When 
task A is presented, brain area Z is active; then we 
conclude that brain area Z is responsible for task 
A”. The reversal reference, on the other hand, goes 
like this: “Brain area Z is active in task X and 
previous studies show that area Z has been 
involved in task A. Thus we conclude that task X 
engages cognitive process A.” The reversal 
inference is guaranteed to be valid only if “Area Z 
is only involved in cognitive process A”. However, 
the reality discovered from neuroimaging studies 
in the last 20 years is that we seldom find a brain 
region that is just doing one thing. Even the 
primary visual cortex is involved in both visual 
processing and visual imagery. The Broca’s area, 
which had been assumed to be solely associated 
with articulation, has been found to be active in 
numerous tasks. In the decision-making literature, 
the nucleus accombens (NAcc) is often found to be 
active in processing reward. However, this does 
not necessarily mean that whenever the NAcc is 
activated, the participant is experiencing reward 
and happiness. Indeed, other studies have found 
that the NAcc is also involved in processing risk 
(Xue et al., 2008) as well as stimulus and feedback 
salience (Cooper & Knutson, 2008). The logical 
pitfall hidden in “reversal inference” is potentially 
very serious and deserves careful treatment. 
Poldrack (2006) proposed two ways to improve 
confidence in reversal inference: increase the 
response selectivity in the brain region of interest, 
or increase the prior probability of the cognitive 
process in question. It should be noted that pattern 
analysis approaches, which have been developed 
to improve “reversal inference” (Poldrack, 2008), 
are using both strategies. By looking at the pattern 
of many voxels rather than the activation or 
deactivation of a single averaged region, pattern 
analysis approaches significantly increase the 
selectivity of brain responses to certain stimuli. 
Using the same experimental task for both the 
training and test dataset, it also significantly 
increases the prior probability of the cognitive 
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process. However, because the same experimental 
task is used in both training and test stages, this 
design does not allow us to learn anything about 
the underlying cognitive process. One potential 
solution, for example, is to use the pattern analysis 
approach to train the classifier to differentiate two 
well-studied tasks (e.g., pictures eliciting positive 
vs. negative emotions) and then use this classifier to 
test whether the brain pattern of watching an 
in-group and an out-group member would match the 
two patterns respectively. If they match, we can 
then conclude with some confidence that observing 
an out-group member would engage negative 
emotions (see Miller, 2008 for similar discussion). 

Third, the laboratory settings for functional 
imaging studies are very different from daily life. 
To simplify interpretations of experimental results, 
researchers have usually used oversimplified 
decision tasks and added strict experimental 
controls. These practices might have impaired the 
ecological validity of these tasks and limited their 
explanatory power in accounting for real-life 
decision-making phenomena. For example, in 
typical fMRI studies, participants have to stay very 
still in a semi-closed space for a relatively long 
time, and engage in very limited social interactions. 
Due to the weak signal levels in brain imaging, 
most studies require repetitions of the same 
decision. As a result, the decision- making tasks in 
this setting have to be relatively simple and can be 
made quickly. These requirements have placed 
major limitations on the research questions that 
can be addressed with functional imaging 
techniques. In addition, to dissociate the neural 
responses involved in different cognitive processes, 
special task designs are required in many 
functional imaging studies. For example, since the 
BOLD response is very slow, in order to separate 
the neural responses associated with decision and 
feedback processes, researchers have to either 
discard the feedback or introduce long and jittered 
delays between decision and feedback. Although 
these manipulations have been very successful, 
their effects on the psychological and neural 

processes of decision-making are not well 
understood and it is not clear how results from 
these studies can be connected to daily life 
decision-making, such as gambling in Las Vegas. 
One possible way to increase the ecological 
validity of functional imaging studies is to 
associate laboratory task performance with 
performance in daily-life decision-making. For 
example, the Iowa Gambling Task (IGT), 
developed by Bechara and colleagues (1994) to 
examine risky decision-making in laboratory 
settings, has been shown to be able to predict 
decision-making behavior in daily life situations. 
Our hope is that, with technical advances, a lot of 
these issues can be resolved in the near future. 

Finally, the fundamental question is whether 
we can make better predictions of human decision 
behavior from neuroeconomical studies. Since the 
birth of neuroeconomics, researchers have been 
debating whether neuroimaging can provide 
theories for economists or whether economic 
theories can provide frameworks for neuroscience 
(Glimcher, Camerer, Poldrack, & Fehr, 2008). 
Ultimately, critics are skeptical whether 
neuroimaging can provide better descriptions and 
predictions of human decision-making behaviors 
than behavioral theories. In a 2005 article by two 
economists at Princeton University, Faruk Gul and 
Wolfgang Pesendorfer, “The Case for Mindless 
Economics”, the authors argued that neuroscience 
cannot transform economics because what goes on 
inside the brain is irrelevant to the discipline. What 
matters are the decisions people make--in their 
jargon, the “revealed preferences”--not the process 
by which they reach them (Gul & Pesendorfer, 
2005). The argument is similar to that of 
“mindless” psychology used by behaviorists and 
that of “brainless” psychology used by cognitive 
psychologists. Although it would be easier to argue 
for “mindless” decision making than “brainless” 
decision making, since the latter is based on 
traceable physical responses, many enthusiasts of 
neuroeconomics like Daniel Kahneman have 
acknowledged that the findings in neuroeconomics 
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have so far generally just confirmed the 
expectations of behavioral theorists and behavioral 
economists (Kahneman, 2008). This is a 
methodological issue as well as a theoretical issue, 
and it is not limited to functional imaging 
techniques but also applies to other methods in 
neuroeconomics. So far we are nowhere close to a 
solution to this issue, but we have reasons to be 
optimistic since neuroeconomics is in its infancy 
and its potential in describing the neural bases of 
decision-making and predicting future decision 
making has just begun to be revealed. 

 
Conclusion  

This paper provides an overview of brain 
imaging techniques, with an emphasis on functional 
MRI and EEG, and their applications in studying 
human decision-making. With its rapid development 
and wide applications, brain imaging has profoundly 
changed the landscape of cognitive neuroscience 
research. One prominent application of brain imaging 
in the last few years is neuroeconomics, an emerging 
field that has roots in economics, neuroscience, and 
psychology. By combining theoretical models from 
experimental and behavioral economics and real-time 
measurements of brain activities, neuroeconomics has 
significantly advanced our understanding of the 
neural mechanisms underlying a wide range of 
decision behaviors, such as decision under 
uncertainty, intertemporal choice, and game theory. 
We believe neuroeconomics will fully realize its 
potentials by addressing several theoretical and 
methodological challenges. 
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脑成像技术及其在决策研究中的应用 
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摘  要  先进的无创神经影像技术(如 EEG 和 fMRI)允许研究者直接观察被试在完成多种知觉、运动和认

知任务时的大脑活动。将脑功能成像与严密的实验设计和数据分析方法结合起来, 我们可以考察大脑不同

脑区的功能以及它们之间的交互作用。随着脑功能成像技术在研究人类决策行为中的日益成功运用, 一个

被称为神经经济学的新兴领域正在逐渐形成和发展起来。本文中首先对脑成像技术进行一个总体介绍, 重
点在于探讨近年来在多体素分析和多模态数据整合的最新进展。接下来, 我们以风险决策、跨时间选择以

及社会决策领域的几个研究为例, 阐述神经影像技术如何能加深和拓展我们对人类决策的认识。最后, 我
们讨论了神经经济学中研究中面临的一些挑战以及未来的研究方向。 
关键词  认知神经科学；决策；脑电图；功能磁共振成像；功能影像；神经经济学 
分类号  B841; B842.5; B849:C93 




