
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Computationally Recognizing Wordplay in Jokes

Permalink
https://escholarship.org/uc/item/0v54b9jk

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 26(26)

ISSN
1069-7977

Authors
Taylor, Julia M.
Mazlack, Lawrence J.

Publication Date
2004

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0v54b9jk
https://escholarship.org
http://www.cdlib.org/

Computationally Recognizing Wordplay in Jokes

Julia M. Taylor (tayloj8@email.uc.edu)
Lawrence J. Mazlack (mazlack@uc.edu)

Electrical & Computer Engineering and Computer Science Department
University of Cincinnati

Abstract

In artificial intelligence, researchers have begun to look at ap-
proaches for computational humor. Although there appears to
be no complete computational model for recognizing verbally
expressed humor, it may be possible to recognize jokes based
on statistical language recognition techniques. This is an in-
vestigation into computational humor recognition. It considers
a restricted set of all possible jokes that have wordplay as a
component and examines the limited domain of “Knock
Knock” jokes. The method uses Raskin's theory of humor for
its theoretical foundation. The original phrase and the
complimentary wordplay have two different scripts that
overlap in the setup of the joke. The algorithm deployed
learns statistical patterns of text in N-grams and provides a
heuristic focus for a location of where wordplay may or may
not occur. It uses a wordplay generator to produce an utter-
ance that is similar in pronunciation to a given word, and the
wordplay recognizer determines if the utterance is valid.
Once a possible wordplay is discovered, a joke recognizer de-
termines if a found wordplay transforms the text into a joke.

Introduction
Thinkers from the ancient time of Aristotle and Plato to the
present day have strived to discover and define the origins
of humor. Most commonly, early definitions of humor relied
on laughter: what makes people laugh is humorous. Recent
works on humor separate laughter and make it its own dis-
tinct category of response. Today there are almost as many
definitions of humor as theories of humor; as in many cases,
definitions are derived from theories (Latta, 1999). Some
researchers say that not only is there no definition that
covers all aspects of humor, but also humor is impossible to
define (Attardo, 1994).

Humor is an interesting subject to study not only because
it is difficult to define, but also because sense of humor
varies from person to person. The same person may find
something funny one day, but not the next, depending on the
person’s mood, or what has happened to him or her recently.
These factors, among many others, make humor recognition
challenging.

Although most people are unaware of the complex steps
involved in humor recognition, a computational humor
recognizer has to consider all these steps in order to
approach the same ability as a human being.

A common form of humor is verbal, or “verbally ex-
pressed, humor” (Ritchie 2000). Verbally expressed humor
involves reading and understanding texts. While
understating the meaning of a text may be difficult for a
computer, reading it is not.

One of the subclasses of verbally expressed humor is the
joke. Hetzron (1991) defines a joke as “a short humorous

piece of literature in which the funniness culminates in the
final sentence.” Most researchers agree that jokes can be
broken into two parts, a setup and a punchline. The setup is
the first part of the joke, usually consisting of most of the
text, which establishes certain expectations. The punchline
is a much shorter portion of the joke, and it causes some
form of conflict. It can force another interpretation on the
text, violate an expectation, or both (Ritchie, 1998). As
most jokes are relatively short, it may be possible to recog-
nize them computationally.

Computational recognition of jokes may be possible, but
it is not easy. An “intelligent” joke recognizer requires
world knowledge to “understand” most jokes.

Theories of Humor
Raskin’s (1985) Semantic Theory of Verbal Humor has
strongly influenced the study of verbally expressed humor.
The theory is based on assumption that every joke is com-
patible with two scripts, and those two scripts oppose each
other in some part of the text, usually in the punch line,
therefore generating humorous effect.

Another approach is Suls’ (1972) two-stage model, which
is based on false expectation. The following algorithm is
used to process a joke using two-stage model (Ritchie,
1999):

• As a text is read, make predictions
• While no conflict with prediction, keep going
• If input conflicts with prediction:

o If not ending – PUZZLEMENT
o If is ending, try to resolve:
� No rules found – PUZZLEMENT
� Cognitive rules found –HUMOR

There have been attempts at joke generation (Attardo,
1996; Binsted, 1996; Lessard and Levison, 1992;
McDonough, 2001; McKay, 2002; Stock and Strapparava,
2002) and pun recognizers (Takizawa, et al. 1996;
Yokogawa, 2002) for Japanese. However, there do not
appear to be any theory based computational humor efforts.
This may be partly due to the absence of a theory that can be
expressed as an unambiguous computational algorithm. In
the cases of Raskin and Suls, the first does not offer any
formal algorithm, and the second does not specify what a
cognitive rule is, leaving one of the major steps open to
interpretation.

Wordplay Jokes
Wordplay jokes, or jokes involving verbal play, are a class
of jokes depending on words that are similar in sound, but
are used in two different meanings. The difference between
the two meanings creates a conflict or breaks expectation,

1315

and is humorous. The wordplay can be created between two
words with the same pronunciation and spelling, with two
words with different spelling but the same pronunciation,
and with two words with different spelling and similar
pronunciation. For example, in Joke1 the conflict is created
because the word has two meanings, while the pronun-
ciation and the spelling stay the same. In Joke2 the wordplay
is between words that sound nearly alike.

Joke1: “Cliford: The Postmaster General will be making
the TOAST.

 Woody: Wow, imagine a person like that helping
out in the kitchen!”

Joke2: “Diane: I want to go to Tibet on our honeymoon.
 Sam: Of course, we will go to bed.”1

Sometimes it takes world knowledge to recognize which
word is subject to wordplay. For example, in Joke2, there is
a wordplay between “Tibet” and “to bed.” However, to un-
derstand the joke, the wordplay by itself is not enough, a
world knowledge is required to “link” honeymoon with
“Tibet” and “to bed.”

A focused form of wordplay jokes is the Knock Knock
joke. In Knock Knock jokes, wordplay is what leads to the
humor. The structure of the Knock Knock joke provides
pointers to the wordplay.

A typical Knock Knock (KK) joke is a dialog that uses
wordplay in the punchline. Recognizing humor in a KK
joke arises from recognizing the wordplay. A KK joke can
be summarized using the following structure:

Line1: “Knock, Knock”
Line2: “Who’s there?”
Line3: any phrase
Line4: Line3 followed by “who?”
Line5: One or several sentences containing one of the
following:

Type1: Line3
Type2: a wordplay on Line 3
Type3: a meaningful response to Line3.

Joke3 is an example of Type1, Joke4 is an example of
Type2, and Joke5 is an example of Type3.

Joke : Knock, Knock 3
 Who’s there?
 Water
 Water who?
 Water you doing tonight?
Joke : Knock, Knock 4
 Who’s there?
 Ashley
 Ashley who?
 Actually, I don’t know.
Joke : Knock, Knock 5
 Who’s there?
 Tank
 Tank who?
 You are welcome.2

From theoretical points of view, both Raskin’s (1985) and
Suls’ (1972) approaches can explain why Joke3 is a joke.
Following Raskin’s approach, the two belong to different

1 Joke1, Joke2 are taken from TV show “Cheers”
2 http://www.azkidsnet.com/JSknockjoke.htm

scripts that overlap in the phonetic representation of “wa-
ter,” but also oppose each other. Following Suls’ approach,
“what are” conflicts with the prediction. In this approach, a
cognitive rule can be described as a function that finds a
phrase that is similar in sound to the word “water,” and that
fits correctly in beginning of the final sentence’s structure.
This phrase is “what are” for Joke3.

N-grams
A joke generator has to have an ability to construct mean-
ingful sentences, while a joke recognizer has to recognize
them. While joke generation involves limited world
knowledge, joke recognition requires a much more
extensive world knowledge.

To be able to recognize or generate jokes, a computer
should be able to “process” sequences of words. A tool for
this activity is the N-gram, “one of the oldest and most
broadly useful practical tools in language processing”
(Jurafsky and Martin, 2000). An N-gram is a model that
uses conditional probability to predict Nth word based on N-
1 previous words. N-grams can be used to store sequences
of words for a joke generator or a recognizer.

N-grams are typically constructed from statistics obtained
from a large corpus of text using the co-occurrences of
words in the corpus to determine word sequence probabili-
ties (Brown, 2001). As a text is processed, the probability
of the next word N is calculated, taking into account end of
sentences, if it occurs before the word N.

“The probabilities in a statistical model like an N-gram
come from the corpus it is trained on. This training corpus
needs to be carefully designed. If the training corpus is too
specific to the task or domain, the probabilities may be too
narrow and not generalize well to new sentences. If the
training corpus is too general, the probabilities may not do a
sufficient job of reflecting the task or domain” (Jurafsky and
Martin, 2000).

A bigram is an N-gram with N=2, a trigram is an N-gram
with N=3, etc. A bigram model will use one previous word
to predict the next word, and a trigram will use two previous
words to predict the word.

Experimental Design
A further tightening of the focus was to attempt to recognize
only Type1 of KK jokes. The original phrase, in this case
Line3, is referred to as the keyword.

There are many ways of determining “sound alike” short
utterances. The only feasible method for this project was
computationally building up “sounds like” utterances as
needed.

The joke recognition process has four steps:

Step1: joke format validation
Step2: generation of wordplay sequences
Step3: wordplay sequence validation
Step4: last sentence validation

Once Step1 is completed, the wordplay generator gener-
ates utterances, similar in pronunciation to Line3. Step3 only
checks if the wordplay makes sense without touching the
rest of the punchline. It uses a bigram table for validation.
Only meaningful wordplays are passed to Step4 from Step3.

1316

If the wordplay is not in the end of the punchline, Step4
takes the last two words of the wordplay, and checks if they
make sense with the first two words of text following the
wordplay in the punchline, using two trigram sequences. If
the wordplay occurs in the end of the sentence, the last two
words before the wordplay and the first two words of the
wordplay are used for joke validation. If Step4 fails, go back
to Step3 or Step2, and continue the search for another
meaningful wordplay.

It is possible that the first three steps return valid results,
but Step4 fails; in which case a text is not considered a joke
by the Joke Recognizer.

The punchline recognizer is designed so that it does not
have to validate the grammatical structure of the punchline.
Moreover, it is assumed that the Line5 is meaningful when
the expected wordplay is found, if it is a joke; and, that
Line5 is meaningful as is, if the text is not a joke. In other
words, a human expert should be able to either find a
wordplay so that the last sentence makes sense, or conclude
that the last sentence is meaningful without any wordplay.
It is assumed that the last sentence is not a combination of
words without any meaning.

The joke recognizer is to be trained on a number of jokes;
and, tested on jokes, twice the number of training jokes. The
jokes in the test set are previously “unseen” by the
computer. This means that any joke, identical to the joke in
the set of training jokes, is not included in the test set.

Generation of Wordplay Sequences
Given a spoken utterance A, it is possible to find an utter-
ance B that is similar in pronunciation by changing letters
from A to form B. Sometimes, the corresponding utterances
have different meanings. Sometimes, in some contexts, the
differing meanings might be humorous if the words were
interchanged.

A repetitive replacement process is used for generation of
wordplay sequences. Suppose, a letter a1 from A is replaced
with b1 to form B. For example, in Joke3 if a letter ‘w’ in a
word ‘water’ is replaced with ‘wh’, ‘e’ is replaced with ‘a’,
and ‘r’ is replaced with ‘re’, the new utterance, ‘what are’
sounds similar to ‘water’.

A table, containing combinations of letters that sound
similar in some words, and their similarity value was used.
The purpose of the Similarity Table is to help computation-
ally develop “sound alike” utterances that have different
spellings. In this paper, this table will be referred to as the
Similarity Table. Table 1 is an example of the Similarity
Table. The Similarity Table was derived from a table devel-
oped by Frisch (1996). Frisch’s table contained cross-refer-
enced English consonant pairs along with a similarity of the
pairs based on the natural classes model. Frisch’s table was
heuristically modified and extended to the Similarity Table
by “translating” phonemes to letters, and adding pairs of
vowels that are close in sound. Other phonemes, translated
to combinations of letters, were added to the table as needed
to recognize wordplay from a set of training jokes.

The resulting Similarity Table approximately shows the
similarity of sounds between different letters or between
letters and combination of letters. A heuristic metric indi-
cating how closely they sound to each other was either taken

from Frisch’s table or assigned a value close to the average
of Frisch’s similarity values. The Similarity Table should be
taken as a collection of heuristic satisficing values that
might be refined through additional iteration.

Table 1: Subset of entries of the Similarity Table, showing
similarity of sounds in words between different letters

a e 0.23
e a 0.23
e o 0.23
en e 0.23
k sh 0.11
l r 0.56
r m 0.44
r re 0.23
t d 0.39
t z 0.17
w m 0.44
w r 0.42
w wh 0.23

When an utterance A is “read” by the wordplay generator,

each letter in A is replaced with the corresponding replace-
ment letter from the Similarity Table. Each new string is
assigned its similarity with the original word A.

All new words are inserted into a heap, ordered according
to their similarity value, greatest on top. When only one
letter in a word is replaced, its similarity value is being
taken from the Similarity Table. The similarity value of the
strings is calculated using the following heuristic formula:

similarity of string = number of unchanged letters +
sum of similarities of each replaced entry from the table

Note, that the similarity values of letters are taken from
the Similarity table. These values differ from the similarity
values of strings.

Once all possible one-letter replacement strings are found,
and inserted into the heap, according to the string similarity,
the first step is complete.

The next step is to remove the top element of the heap.
This element has the highest similarity with the original
word. If this element can be decomposed into an utterance
that makes sense, this step is complete. If the element can-
not be decomposed, each letter of the string, except for the
letter that was replaced originally, is being replaced again.
All newly constructed strings are inserted into the heap
according to their similarity. Continue with the process until
the top element can be decomposed into a meaningful
phrase, or all elements are removed from the heap.

Consider Joke3 as example. The joke fits a typical KK
joke pattern. The next step is to generate utterances similar
in pronunciation to ‘water.’

Table 2 shows some of the strings received after one-letter
replacements of ‘water’ in Joke3. The second column shows
the similarity of the string in the first table with the original
word.

Suppose, the top element of the heap is ‘watel,’ with the
similarity value of 4.56. Watel cannot be decomposed into
a meaningful utterance. This means that each letter of
‘watel’ except for ‘l’ will be replace again. The newly
formed strings will be inserted into the heap, in the order of

1317

their similarity value. The letter ‘l’ will not be replaced as it
not the ‘original’ letter from ‘water.’ The string similarity
of newly constructed strings will be most likely less than 4.
(The only way a similarity of a newly constructed string is
greater than 4 is if the similarity of the replaced letter is
above 0.44, which is unlikely.) This means that they will be
placed below ‘wazer.’ The next top string, ‘mater,’ is re-
moved. ‘Mater’ is a word. However, it does not work in the
sentence ‘Mater you doing.’ (See Sections on Wordplay
Recognition and Joke Recognition for further discussion.)
The process continues until ‘whater’ is the top string. The
replacement of ‘e’ in ‘whater’ with ‘a’ will result in
‘whatar’. Eventually, ‘whatar’ will become the top string, at
which point ‘r’ will be replaced with ‘re’ to produce
‘whatare’. ‘Whatare’ can be decomposed into ‘what are’ by
inserting a space between ‘t’ and ‘a’. The next step will be
to check if ‘what are’ is a valid word sequence.

Table 2: Examples of strings received after replacing
one letter from the word ‘water’ and their similarity

value to ‘water’
New String String Similarity to ‘Water’
watel 4.56
mater 4.44
watem 4.44
rater 4.42
wader 4.39
wather 4.32
watar 4.23
wator 4.23
whater 4.23
wazer 4.17

Generated wordplays that were successfully recognized

by the wordplay recognizer, and their corresponding key-
words are stored for the future use of the program. When
the wordplay generator receives a new request, it first
checks if wordplays have been previously found for the re-
quested keyword. The new wordplays will be generated
only if there is no wordplay match for the requested key-
word, or the already found wordplays do not make sense in
the new joke.

Wordplay Recognition
A wordplay sequence is generated by replacing letters in the
keyword. The keyword is examined because: if there is a
joke, based on wordplay, a phrase that the wordplay is based
on will be found in Line3. Line3 is the keyword. A
wordplay generator generates a string that is similar in
pronunciation to the keyword. This string, however, may
contain real words that do not make sense together. A
wordplay recognizer determines if the output of the
wordplay generator is meaningful.

A database with the bigram table was used to contain
every discovered two-word sequence along with the number
of their occurrences, also referred to as count. Any sequence
of two words will be referred to as word-pair. Another
table in the database, the trigram table, contains each three-
word sequence, and the count.

The wordplay recognizer queries the bigram table. The
joke recognizer, discussed in section on Joke Recognition,
queries the trigram table.

To construct the database several focused large texts were
used. The focus was at the core of the training process.
Each selected text contained a wordplay on the keyword
(Line3) and two words from the punchline that follow the
keyword from at least one joke from the set of training
jokes. If more than one text containing a given wordplay
was found, the text with the closest overall meaning to the
punchline was selected. Arbitrary texts were not used, as
they did not contain a desired combination of wordplay and
part of punchline.

To construct the bigram table, every pair of words occur-
ring in the selected text was entered into the table.

The concept of this wordplay recognizer is similar to an
N-gram. For a wordplay recognizer, the bigram model is
used.

The output from the wordplay generator was used as input
for the wordplay recognizer. An utterance produced by the
wordplay generator is decomposed into a string of words.
Each word, together with the following word, is checked
against the database.

An N-gram determines for each string the probability of
that string in relation to all other strings of the same length.
As a text is examined, the probability of the next word is
calculated. The wordplay recognizer keeps the number of
occurrences of word sequence, which can be used to calcu-
late the probability. A sequence of words is considered valid
if there is at least one occurrence of the sequence anywhere
in the text. The count and the probability are used if there is
more than possible wordplay. In this case, the wordplay
with the highest probability will be considered first.

For example, in Joke3 ‘what are’ is a valid combination if
‘are’ occurs immediately after ‘what’ somewhere in the text.

Joke Recognition
A text with valid wordplay is not a joke if the rest of the
punchline does not make sense. For example, if the
punchline of Joke3 is replaced with “Water a text with valid
wordplay,” the resulting text is not a joke, even though the
wordplay is still valid. Therefore, there has to be a
mechanism that can validate that the found wordplay is
“compatible” with the rest of the punchline and makes it a
meaningful sentence.

A concept similar to a trigram was used to validate the
last sentence. All three-word sequences are stored in the
trigram table.

The same training set was used for both the wordplay and
joke recognizers. The difference between the wordplay
recognizer and joke recognizer was that the wordplay
recognizer used pairs of words for its validation while the
joke recognizer used three words at a time. As the training
text was read, the newly read word and the two following
words were inserted into the trigram table. If the newly read
combination was in the table already, the count was
incremented.

As the wordplay recognizer had already determined that
the wordplay sequences existed, there was no reason to re-
validate the wordplay.

1318

To check if wordplay makes sense in the punchline, the
last two words of the wordplay, wwp1 and wwp2, are used, for
the wordplay that is at least two words long. If the punch-
line is valid, the sequence of wwp1, wwp2, and the first word
of the remainder of the sentence, ws, should be found in the
training text. If the sequence <wwp1 wwp2 ws> occurs in the
trigram table, this combination is found in the training set,
and the three words together make sense. If the sequence is
not in the table, either the training set is not accurate, or the
wordplay does not make sense in the punchline. In either
case, the computer does not recognize the joke. If the pre-
vious check was successful, or if the wordplay has only one
word, the last check can be performed. The last step in-
volves the last word of the word play, wwp, and the first two
words of the remainder of the sentence, ws1 and ws2. If the
sequence <wwp ws1 ws2> occurs in the trigram table, the
punchline is valid, and the wordplay fits with the rest of the
final sentences.

If the wordplay recognizer found several wordplays that
“produced” a joke, the wordplay resulting in the highest
trigram sequence probability was used.

Results and Analysis
A set of 65 jokes from the “111 Knock Knock Jokes” web-
site3 and one joke taken from “The Original 365 Jokes, Puns
& Riddles Calendar” (Kostick, et al., 1998) was used as a
training set. The Similarity Table, discussed in the Section
on Generation of Wordplay Sequences, was modified with
new entries until correct wordplay sequences could be
generated for all 66 jokes. The training texts inserted into
the bigram and trigram tables were chosen based on the
punchlines of jokes from the set of training jokes.

The program was run against a test set of 130 KK jokes,
and a set of 65 non-jokes that have a similar structure to the
KK jokes.

The test jokes were taken from “3650 Jokes, Puns & Rid-
dles” (Kostick, et al. 1998). These jokes had the punchlines
corresponding to any of the three KK joke structures
discussed earlier.

To test if the program finds the expected wordplay, each
joke had an additional line, Line6, added after Line5. Line6
is not a part of any joke. It only existed so that the wordplay
found by the joke recognizer could be compared against the
expected wordplay. Line6 consists of the punchline with the
expected wordplay instead of the punchline with Line3.

The jokes in the test set were previously “unseen” by the
computer. This means that if the book contained a joke,
identical to the joke in the set of training jokes, this joke
was not included in the test set.

Some jokes, however, were very similar to the jokes in
the training set, but not identical. These jokes were in-
cluded in the test set, as they were not the same. As it
turned out, some jokes to a human may look very similar to
jokes in the training set, but treated as completely different
jokes by the computer.

Out of 130 previously unseen jokes the program was not
expected to recognize eight jokes. These jokes were not

3 http://www.azkidsnet.com/JSknockjoke.htm

expected to be recognized because the program is not
expected to recognize their structure.

The program was able to find wordplay in 85 jokes, but
recognized only seventeen jokes as such out of 122 that it
could potentially recognize. Twelve of these jokes have the
punchlines that matched the expected punchlines. Two
jokes have meaningful punchlines that were not expected.
Three jokes were identified as jokes by the computer, but
their punchlines do not make sense to the investigator.

Some of the jokes with found wordplay were not recog-
nized as jokes because the database did not contain the
needed sequences. When a wordplay was found, but the
needed sequences were not in the database, the program did
not recognize the jokes as jokes.

In many cases, the found wordplay matched the intended
wordplay. This suggests that the rate of successful joke
recognition would be much higher if the database contained
all the needed word sequences.

The program was also run with 65 non-jokes. The only
difference between jokes and non-jokes was the punchline.
The punchlines of non-jokes were intended to make sense
with Line3, but not with the wordplay of Line3. The non-
jokes were generated from the training joke set. The
punchline in each joke was substituted with a meaningful
sentence that starts with Line3. If the keyword was a name,
the rest of the sentence was taken from the texts in the
training set. For example, Joke6 became Text1 by replacing
“time for dinner” with “awoke in the middle of the night.”

Joke6: Knock, Knock
Who’s there?
Justin
Justin who?
Justin time for dinner.

 Text1: Knock, Knock
 Who’s there?
 Justin

 Justin who?
 Justin awoke in the middle if the night.

A segment “awoke in the middle of the night” was taken
from one of the training texts that was inserted into the
bigram and trigram tables.

The program successfully recognized 62 non-jokes.

Possible Extensions
The results suggest that most jokes were not recognized
either because the texts entered did not contain the neces-
sary information for the jokes to work; or because N-grams
are not suitable for true “understanding” of text. One of the
simpler experiments may be to test to see if more jokes are
recognized if the databases contain more sequences. This
would require inserting a much larger text into the trigram
table. A larger text may contain more word sequences,
which would mean more data for N-grams to recognize
some jokes.

It is possible that no matter how large the inserted texts
are, the simple N-grams will not be able to “understand”
jokes. The simple N-grams were used to understand or to
analyze the punchline. Most jokes were not recognized due
to failures in sentence understanding. A more sophisticated
tool for analyzing a sentence may be needed to improve the

1319

joke recognizer. Some of the options for the sentence ana-
lyzer are an N-gram with stemming or a sentence parser.

A simple parser that can recognize, for example, nouns
and verbs; and analyze the sentence based on parts of
speech, rather than exact spelling, may significantly im-
prove the results. On the other hand, giving N-grams the
stemming ability would make them treat, for example,
“color” and “colors” as one entity, which may significantly
help too.

The wordplay generator produced the desired wordplay in
most jokes, but not all. After the steps are taken to improve
the sentence understander, the next improvement should be
a more sophisticated wordplay generator. The existing
wordplay generator is unable to find wordplay that is based
word longer than six characters, and requires more that three
substitutions. A better answer to letter substitution is pho-
neme comparison and substitution. Using phonemes, the
wordplay generator will be able to find matches that are
more accurate.

The joke recognizer may be able to recognize jokes other
than KK jokes, if the new jokes are based on wordplay, and
their structure can be defined. However, it is unclear if
recognizing jokes with other structures will be successful
with N-grams.

Summary and Conclusion
Computational work in natural language has a long history.
Areas of interest have included: translation, understanding,
database queries, summarization, indexing, and retrieval.
There has been very limited success in achieving true com-
putational understanding.

A focused area within natural language is verbally ex-
pressed humor. Some work has been achieved in computa-
tional generation of humor. Little has been accomplished in
understanding. There are many linguistic descriptive tools
such as formal grammars. But, so far, there are not robust
understanding tools and methodologies.

The KK joke recognizer is the first step towards compu-
tational recognition of jokes. It is intended to recognize KK
jokes that are based on wordplay. The recognizer’s
theoretical foundation is based on Raskin’s Script-based
Semantic Theory of Verbal Humor that states that each joke
is compatible with two scripts that oppose each other. The
Line3 and the wordplay of Line3 are the two scripts. The
scripts overlap in pronunciation, but differ in meaning.

The joke recognition process can be summarized as:

Step1: joke format validation
Step2: generation of wordplay sequences
Step3: wordplay sequence validation
Step4: last sentence validation

The result of KK joke recognizer heavily depends on the
choice of appropriate letter-pairs for the Similarity Table
and on the selection of training texts.

The KK joke recognizer “learns” from the previously rec-
ognized wordplays when it considers the next joke. Unfor-
tunately, unless the needed (keyword, wordplay) pair is an
exact match with one of the found (keyword, wordplay)
pairs, the previously found wordplays will not be used for
the joke. Moreover, if one of the previously recognized

jokes contains (keyword, wordplay) pair that is needed for
the new joke, but the two words that follow or precede the
keyword in the punchline differ, the new joke may not be
recognized regardless of how close the new joke and the
previously recognized jokes are.

The joke recognizer was trained on 66 KK jokes; and
tested on 130 KK jokes and 66 non-jokes with a structure
similar to KK jokes.

The program successfully found and recognized wordplay
in most of the jokes. It also successfully recognized texts
that are not jokes, but have the format of a KK joke. It was
not successful in recognizing most punchlines in jokes. The
failure to recognize punchline is due to the limited size of
texts used to build the trigram table of the N-gram database.

While the program checks the format of the first four lines
of a joke, it assumes that all jokes that are entered have a
grammatically correct punchline, or at least that the punch-
line is meaningful. It is unable to discard jokes with a
poorly formed punchline. It may recognize a joke with a
poorly formed punchline as a meaningful joke because it
only checks two words in the punchline that follow Line3.

In conclusion, the method was reasonably successful in
recognizing wordplay. However, it was less successful in
recognizing when an utterance might be valid.

References
Attardo, S. (1994) Linguistic Theories of Humor. Berlin: Mouton de

Gruyter
Binsted, K. (1996) Machine Humour: An Implemented Model Of Puns.

Doctoral dissertation, University of Edinburgh
Frisch, S. (1996) Similarity And Frequency In Phonology. Doctoral

dissertation, Northwestern University
Hetzron, R. (1991) On The Structure Of Punchlines. HUMOR:

International Journal of Humor Research, 4:1
Jurafsky, D., & Martin, J. (2000) Speech and Language Processing, New

Jersey: Prentice-Hall
Kostick, A., Foxgrover, C., & Pellowski, M. (1998) 3650 Jokes, Puns &

Riddles. New York: Black Dog & Leventhal Publishers
Latta, R. (1999) The Basic Humor Process. Berlin: Mouton de Gruyter
Lessard, G., & Levison, M. (1992) Computational Modelling Of Linguistic

Humour: Tom Swifties. ALLC/ACH Joint Annual Conference, Oxford
McDonough, C. (2001) Mnemonic String Generator: Software To Aid

Memory Of Random Passwords. CERIAS Technical report, West
Lafayette, IN

McKay, J. (2002) Generation Of Idiom-based Witticisms To Aid Second
Language Learning. Proceedings of Twente Workshop on Language
Technology 20, University of Twente

Raskin, V. (1985) The Semantic Mechanisms Of Humour, Dordrecht:
Reidel

Ritchie, G. (1999) Developing The Incongruity-Resolution Theory.
Proceedings of AISB 99 Symposium on Creative Language: Humour
and Stories, Edinburgh

Ritchie, G. (2000) Describing Verbally Expressed Humour. Proceedings of
AISB Symposium on Creative and Cultural Aspects and Applications of
AI and Cognitive Science, Birmingham

Stock, O., & Strapparava, C. (2002) Humorous Agent For Humorous
Acronyms: The HAHAcronym Project. Proceedings of Twente
Workshop on Language Technology 20, University of Twente

Suls, J. (1972) A Two-Stage Model For The Appreciation Of Jokes And
Cartoons: An Information-Processing Analysis. In J. H. Goldstein and P.
E. McGhee (Eds.) The Psychology Of Humor NY: Academic Press

Takizawa, O., Yanagida, M., Ito, A., & Isahara, H. (1996) On
Computational Processing Of Rhetorical Expressions - Puns, Ironies
And Tautologies. Proceedings of Twente Workshop on Language
Technology 12, University of Twente

Yokogawa, T. (2002) Japanese Pun Analyzer Using Articulation
Similarities. Proceedings of FUZZ-IEEE, Honolulu

1320

