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Model-based analysis of the impact of diffuse radiation on CO2 

exchange in a temperate deciduous forest

Min S.Leea David Y.Hollingerb Trevor F. Keenanc Andrew P. Ouimetted Scott V. 
Ollingerd Andrew D. Richardsonaef

Abstract

Clouds and aerosols increase the fraction of global solar irradiance that is 
diffuse light. This phenomenon is known to increase the photosynthetic light 
use efficiency (LUE) of closed-canopy vegetation by redistributing 
photosynthetic photon flux density (400–700 nm) from saturated, sunlit 
leaves at the top of the canopy, to shaded leaves deeper in the canopy. We 
combined a process-based carbon cycle model with 10 years of eddy 
covariance carbon flux measurements and other ancillary data sets to assess
1) how this LUE enhancement influences interannual variation in carbon 
uptake, and 2) how errors in modeling diffuse fraction affect predictions of 
carbon uptake. Modeled annual gross primary productivity (GPP) increased 
by ≈0.94% when observed levels of diffuse fraction were increased by 0.01 
(holding total irradiance constant). The sensitivity of GPP to increases in 
diffuse fraction was highest when the diffuse fraction was low to begin with, 
and lowest when the diffuse fraction was already high. Diffuse fraction also 
explained significantly more of the interannual variability of modeled net 
ecosystem exchange (NEE), than did total irradiance. Two tested radiation 
partitioning models yielded over- and underestimates of diffuse fraction at 
our site, which propagated to over- and underestimates of annual NEE, 
respectively. Our findings highlight the importance of incorporating LUE 
enhancement under diffuse light into models of global primary production, 
and improving models of diffuse fraction.

Abbreviations: 

fd

diffuse fraction

PPFD

photosynthetic photon flux density

NEE

net ecosystem exchange

GPP

gross primary productivity

RE

ecosystem respiration

LUE

light use efficiency
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1. Introduction

A key uncertainty of forest ecosystem carbon uptake in a changing climate is
its differential responses to diffuse and direct beam solar radiation (Bonan, 
2008; Heimann and Reichstein, 2008; Settele et al., 2014). Cloud 
cover and aerosols (Cheng et al., 2016; Niyogi et al., 2004) account for most 
of the variability in the ratio of diffuse to global irradiance (hereafter referred
to as diffuse fraction), and projections of how these will change in the future 
are highly uncertain (Boucher et al., 2013; Wild, 2009). There is also 
uncertainty associated with the pathways through which diffuse fraction 
influences the carbon budget. Diffuse fraction affects the 
photosynthetic photon flux density (PPFD) distribution within the forest 
canopy, which has potentially important implications for 
canopy photosynthesis. Under clear sky conditions, sunlit leaves are often 
light saturated while shaded leaves receive little light and thus lie on the 
linear part of the light response curve (Roderick et al., 2001). Under diffuse 
light conditions, sunlit leaves receive less direct beam PPFD but shaded 
leaves receive more diffuse PPFD, which comes from all directions of the sky 
and penetrates the canopy to a fuller extent. Because leaves in deep shade 
benefit more from an increase in PPFD than leaves in full sun suffer from an 
equivalent decrease, a more even vertical distribution of PPFD should 
enhance the photosynthetic light use efficiency (LUE) of the canopy as a 
whole (Farquhar and Roderick, 2003). Direct measurements of forest 
CO2 uptake have shown that canopy LUE is indeed enhanced under cloudy 
conditions, though estimates of enhancement vary (Alton, 2008; Alton et al., 
2007; Baldocchi, 1997; Gu et al., 2002; Hollinger et al., 1994; Jenkins et al., 
2007; Urban et al., 2007; Zhang et al., 2010). A number of studies have also 
found that aerosol loading events, such as the eruption of Mount Pinatubo 
(Farquhar and Roderick, 2003; Gu et al., 2003; Mercado et al., 2009), have 
enhanced the terrestrial carbon sink. However, aside from these studies of 
dramatic increases in diffuse fraction, there has been relatively little 
research on the extent to which interannual variation in diffuse fraction − 
typically stemming from fluctuations in cloudiness − mediates the 
interannual variation in carbon budget. Min and Wang (2008) find that 
the transmittance index, compared to temperature and precipitation, is more
highly correlated (R2 > 0.65) with mean midsummer net ecosystem 



production at a northern hardwood forest, which suggests LUE changes with 
cloudiness may accumulate over the growing season in annually distinct 
ways and have meaningful influence on forest productivity in a given year.

Diffuse fraction also covaries with other environmental factors that impact 
the carbon budget. The presence of clouds and aerosols often reduces the 
solar radiation reaching Earth’s surface, and is associated with lower air and 
leaf temperature and vapor pressuredeficit (Gu et al., 2002; Oliphant et al., 
2011; Wohlfahrt et al., 2008; Zhang et al., 2011). Less incident PPFD reduces
photosynthesis, while the thermal effects can enhance photosynthesis 
when ambient temperature is above the optimum (Baldocchi and Harley, 
1995; Steiner and Chameides, 2005) and reduce ecosystem respiration 
(Alton, 2008; Gu et al., 1999; Urban et al., 2007). Lower vapor pressure 
deficit (VPD) associated with reduced irradiance can increase stomatal 
conductance, enhancing leaf photosynthesis (Gu et al., 1999). Recent studies
suggest the decrease in total irradiance has a greater effect on the net 
ecosystem exchange (NEE) than associated changes in temperature and 
humidity (Alton et al., 2007; Knohl and Baldocchi, 2008; Oliphant et al., 
2011), though quantifying these separately remains difficult (Kanniah et al., 
2012).

In this paper, we investigated the impacts of diffuse radiation on forest gross 
primary productivity (GPP) by combining long-term data sets (half-hourly 
measurements over 10 years) of eddy covariance fluxes and direct and 
diffuse PPFD with a process-oriented model. Many studies have estimated 
diffuse fraction using radiation partitioning models (Alton, 2008; Alton et al., 
2007; Choudhury, 2001; Gu et al., 2002; Rocha et al., 2004). The 
performance of these radiation partitioning models can vary with site 
(Boland et al., 2001; Schurgers et al., 2015) due to differences in geographic 
or climatic factors like cloud cover and type, sunshine duration, 
and particulate matter in the air (Cruse et al., 2015). Studies using observed 
diffuse fraction have typically relied on records of a few years or less (Gu et 
al., 2002; Hollinger et al., 1994; Jenkins et al., 2007; Niyogi et al., 2004; but 
see Cheng et al., 2015), which may not adequately capture the variability of 
NEE responses to diffuse fraction and other meteorological drivers. Our 
analysis also allowed us to account for additional factors that affect 
ecosystem productivity, including temperature, VPD, and total irradiance. 
These variables interact with GPP through multiple pathways (e.g., air 
temperature influences photosynthetic rates as well as the growing period 
length) and lagged effects (e.g., changes in leaf photosynthesis affect GPP, 
which, in turn, can affect carbon allocation to foliage), which are difficult to 
quantify using a purely empirical model. The parameters of our forest carbon
cycle model were optimized against multiple observational data constraints, 
allowing us to explicitly isolate the impact of diffuse fraction on the 
distribution of light in the canopy (and hence on GPP).

Next, we examined the extent to which interannual variability of diffuse 
fraction mediates the interannual variability of modeled NEE. Studies have 



often asked whether and when increasing diffuse fraction poses a 
productivity trade-off between total irradiance and LUE; a common finding is 
that diffuse fraction above a certain threshold causes net decrease in NEE 
because the accompanying reductions in incident PPFD outweigh 
improvements in LUE (Alton, 2008; Knohl and Baldocchi, 2008; Mercado et 
al., 2009; Oliveira et al., 2007; Still et al., 2009). We asked a related but 
different question: how much does variability of diffuse fraction influence the
modeled NEE of a given year, compared to variability of total PPFD? 
Answering this question provides insights into the relative importance of 
diffuse fraction for accurately modeling carbon budgets at longer time 
scales.

Finally, we tested the accuracy of two standard partitioning models used to 
predict diffuse fraction, and analyzed the impact of their errors on 
predictions of NEE and other carbon cycle components. While studies have 
measured the goodness of fit between observations and predictions of NEE 
that were informed by modeled diffuse fraction (Gu et al., 2002; Rocha et al.,
2004; Schurgers et al., 2015), and Gu et al. (2002) compare independently 
parameterized models utilizing observed and modeled diffuse fraction, this is
the first study to our knowledge that has compared performances of model 
runs differing only in the accuracy of their diffuse and direct PPFD drivers. 
Our findings help gauge the importance of improving diffuse fraction models 
to better replicate forest carbon dynamics.

To achieve these three objectives, we first optimized and validated a 
process-based model using 10 years of half-hourly eddy covariance fluxes, 
observations of direct and diffuse PPFD, and other ancillary measurements at
the Bartlett Experimental Forest, a deciduous site in the northeastern United 
States. After optimizing model parameters using the first half of our 
observational record, and validating the model against the second half, we 
then prescribed various scenarios of diffuse fraction to measure how model 
outputs and performance respond.

2. Materials and methods

2.1. Site

The Bartlett Experimental Forest (BEF) 
(https://www.nrs.fs.fed.us/ef/locations/nh/bartlett/) is a primarily deciduous 
forest located in the northeastern United States (44.05° N, 71.29° W). Mean 
annual temperature is approximately 6.6°C (summer: 20°C, winter: −8°C), 
and mean annual precipitation is approximately 1300 mm, distributed evenly
throughout the year. The soils are Spodosols, developed on glacial till 
derived from granite and gneiss. Soils are well drained, acidic, and nutrient 
poor.

Forest stands around the tower are generally 90–130 y in age, dominated by 
the deciduous species Acer rubrum (red maple) and Fagus 
grandifolia (American beech), with lesser amounts of Acer saccharum (sugar 



maple), Betula papyrifera (paper birch) and Betula alleghaniensis (yellow 
birch). Conifers like Tsuga canadensis (eastern hemlock), Abies 
balsamea (balsam fir), and Pinus strobus (Eastern white pine) are present 
around the tower in smaller numbers compared to the deciduous species.

2.2. Data

We combined ten years (2004-13) of half-hourly NEE flux measurements with
ancillary data sets—soil respiration, wood growth, foliar and 
woody litterfall, leaf area index, turnover times of litter and soil organic 
matter pools—to train and validate our model (Table 1). Data from the first 
five years (2004-08) were used for training, data from the last five years 
(2009-13) for validation. We prescribed meteorological drivers in each period
at half-hourly intervals in line with the model structure (see Section 2.3.1).

Table 1. Data used to constrain the model. The training period consists of 
years 2004-08, and the validation period consists of years 2009-13. For litter 
and soil carbon turnover, the same turnover time was used during training 
and validation periods.

Measurement
Frequenc
y

Number of Data Points

Training
Validati
on

Eddy-covariance Half-hourly 24,312 24,887

Soil respiration Daily 75 0

Wood growth Yearly 4 5

Foliar litterfall Yearly 5 2

Woody litterfall Yearly 2 0

Leaf area index Yearly 3 0

Litter turnover One 1

Soil carbon turnover 
(microbial)

One 1

Soil carbon turnover (slow) One 1

Soil carbon turnover 
(passive)

One 1



NEE and meteorological measurements were obtained from the Bartlett 
AmeriFlux tower (http://ameriflux.lbl.gov/sites/siteinfo/US-Bar). NEE was 
measured with the eddy covariancetechnique (Foken et al., 2012) using a 
model SAT-211/3 K three-axis sonic anemometer(Applied Technologies Inc., 
Longmont, CO) and a model LI-6262 fast response CO2/H2O infrared gas 
analyzer (Li-Cor Inc., Lincoln, NE), with data recorded at 5 Hz and fluxes 
(covariances) calculated every 30 min. Instrument configuration, calibration 
protocol, QA/QC and data processing procedures are identical to those used 
at the Howland AmeriFlux site in central Maine, and are documented 
by Hollinger et al. (2004). We removed nighttime NEE values with friction 
velocity (u*) below 0.50, a threshold derived from the change-point model 
in Barr et al. (2013). We trained the model on NEE measurements, and used 
gap-filled NEE only to assess optimized model performance at annual and 
monthly time scales. Meteorological measurements were recorded every 5 s 
and half-hourly means stored on data loggers (models CR10 and CR21x; 
Campbell Scientific, Logan UT). These included air temperature and relative 
humidity above the canopy (HMP-35, Vaisala Inc.), soil temperatureat 5 cm 
(thermocouple), and direct and diffuse PPFD (BF3 Sunshine Sensor, Delta-T 
Devices Ltd., Cambridge UK). Measurements of direct and diffuse PPFD 
began on June 10 of 2004, the first year of the training period. For days prior 
to June 10 of 2004, direct and diffuse PPFD were estimated using the model 
in Spitters et al. (1986) (see Section 2.3.3).

All ancillary data used to constrain the model, except turnover times of litter 
and soil pools, were obtained from the Earth Systems Research Center at the
University of New Hampshire (Bradford et al., 2010). These measurements 
were taken in 12 plots within the 1 km2footprint of the Bartlett tower, each 
divided into four sub-plots, as described by Hollinger (2008). Soil respiration 
was measured about every three weeks during the snow-free portion of the 
year (3424 measurements over 75 days during 2004-07) using a model LI-
820 infrared gas analyzer (Li-Cor Inc., Lincoln, NE) and three 10 inch PVC 
collars per sub-plot: collar concentrations of CO2 were measured every 2 s 
over a 60 s period, and the rate of change of concentration was converted to
flux. We constrained the model against mean soil respiration flux over the 
course of the day. For wood growth, diameter at breast height was measured
to calculate basal area of trees, which was converted to biomass 
using allometric equations by Hocker and Earley (1983), Whittaker et al. 
(1974), and Young et al. (1980). To account for uncertainties associated with 
diameter measurements, carbon concentration in the wood, and choice of 
allometric model, a Monte Carlo simulation was used to estimate annual 
wood growth (g C m−2 yr−1), similar to Yanai et al. (2010). Mean of 1000 
iterations was calculated for each plot and then averaged across plots to 
yield a single estimate of wood growth per year. Foliar and woody litterfall 
were collected using two baskets per sub-plot, three times in autumn and 
once in spring. Annual litterfall was calculated by summing the weight of 
litter for the year and dividing by area of the baskets, and then converted to 



biomass (g C m−2 yr−1) by assuming carbon concentration of 49% (Bernier et 
al., 2008). Leaf area index (LAI) was measured annually in sub-plots using 
the LAI-2000 Plant Canopy Analyzer (Li-Cor Inc, Lincoln NE). Finally, we 
obtained turnover times of litter and the three soil organic matter pools 
(microbial, slow, passive) from McFarlane et al. (2013). We assumed that the
microbial pool corresponds to the Oi soil layer, the slow pool to the Oe and 
Oa soil layers, and the passive pool to the 0–30 cm mineral soil layer.

We estimated uncertainties for each data stream used to constrain the 
model. Uncertainties of half-hourly NEE fluxes were calculated as shown 
in Richardson et al. (2006), where uncertainties follow a double-exponential 
distribution, the standard deviation of which scales linearly with the flux 
magnitude. For gap-filled NEE totals, we accounted for measurement, gap-
filling, and friction velocity (u*) uncertainties following the approach of Barr 
et al. (2013). Uncertainties for mean soil respiration flux were estimated as 
standard deviations of the fluxes averaged over the day. Uncertainties for 
annual wood growth were first estimated for each plot using the 95% 
confidence intervals of 1000 Monte Carlo simulation iterations, and then 
propagated with spatial variability. Uncertainties for foliar and woody 
litterfall were estimated as sampling errors (standard errors of mean values 
across all plots). LAIuncertainties were estimated as sums of standard errors 
and instrument errors (±0.1). We obtained uncertainties for turnover times 
and initial carbon stocks of soil pools from McFarlane et al. (2013).

2.3. Model structures

2.3.1. FöBAAR

We used a forest carbon cycle model called Forest Biomass, Assimilation, 
Allocation, and Respiration (FöBAAR), developed by Keenan et al. (2012), 
which runs on a half-hourly time step with 37 free parameters (Table 2). 
FöBAAR uses Norman's (1982) canopy model to calculate 
photosynthetic photon flux density (PPFD) for two leaf classes (shaded and 
sunlit), based on direct and diffuse PPFD. Photosynthesis is modeled as a 
function of PPFD, air temperature, VPD, and intercellular concentration of 
CO2 using a Farquhar-type approach (De Pury and Farquhar, 1997; Farquhar 
et al., 1980). The net rate of leaf photosynthesis equals the gross rate of 
photosynthesis minus the leaf respiration rate, where the gross rate is 
calculated as the minimum of electron-transport limited photosynthesis and 
Rubisco-limited photosynthesis. Electron-transport limited photosynthesis is 
a function of the electron transport rate per unit leaf area, intercellular 
concentration of CO2, and CO2 compensation point of photosynthesis. 
Rubisco-limited photosynthesis depends on the maximum Rubisco rate, 
intercellular concentrations of CO2 and O2, temperature-dependent Michaelis-
Menten constants for CO2 and O2, and the CO2 compensation point (De Pury 
and Farquhar, 1997). The intercellular concentration of O2 is fixed at 21%. 
The ratio of the maximum electron transport rate (Jmax) to the maximum 
Rubisco rate (Vcmax) is assumed to be fixed at 2.1 at 298 K (Wullschleger, 



1993), and the temperature dependencies of Jmax and Vcmax are modeled with 
Arrhenius functions (De Pury and Farquhar, 1997). Arrhenius-type equations 
are also used to calculate the CO2 compensation point 
and mitochondrial respiration rate (Bernacchi et al., 2001). Stomatal 
conductance, calculated using the Ball-Berry model (Ball et al., 1987), is 
coupled to the net rate of leaf photosynthesis through an analytical solution 
(Baldocchi, 1994). Rates of photosynthesis for the two leaf classes are 
integrated over their respective LAIs, and the sum of these two results is 
integrated over time to calculate canopy productivity over a period.

Table 2. FöBAAR model parameters and pools. “Min” and “Max” indicate the 
range of parameter values explored during optimization. “90% CI” gives the 
range of parameter values accepted after posterior chi-squared tests at 90% 
confidence for the model run that was optimized to all data constraints with 
observed diffuse fraction.

Id Name Definition Min Max 90% CI

Initial carbon pools 
(g C m−2)

P1 Rc Carbon in roots 30 500 369, 378

P2 Wc Carbon in wood 10300
105
08

10300, 
10508

P3 Litc Carbon in litter 10
100
0

435, 484

P4 SOMM
Carbon in microbial soil 
organic matter pool

183 193 183, 185

P5 SOMS
Carbon in slow soil organic 
matter pool

3186
335
6

3210, 
3356

P6 SOMP
Carbon in passive soil organic 
matter pool

8129
856
4

8130, 
8424

P7 Mobc Mobile carbon 50 500 345, 406

Allocation and transfer

P8 Af
Fraction of GPP allocated to 
foliage

0.1 1
0.72, 
0.80

P9 Ar Fraction of NPP allocated to 0.1 1 0.80, 



Id Name Definition Min Max 90% CI

roots 0.82

P1
0

Lff Litterfall from foliage (Log10) −6 −0.5
−1.20, 
−1.11

P1
1

Lfw Litterfall from wood (Log10) −6 −1
−5.22, 
−4.95

P1
2

Lfr Litterfall from roots (Log10) −6 −1
−5.49, 
−5.15

P1
3

Fc_lf
Fraction of foliage carbon not 
transferred to mobile carbon

0.1 1
0.81, 
0.84

P1
4

LitSOMM
Litter to microbial SOM 
transfer rate (Log10)

−8 −1
−6.91,−6
.05

P1
5

SOMMSOM
S

Microbial SOM to slow SOM 
rate

0.01 0.95
0.68, 
0.92

P1
6

SOMSSOMP Slow SOM to passive SOM rate 0.01 0.95
0.44, 
0.89

Canopy

P1
7

LMA Leaf mass per area (g C m−2) 25 30 29, 30

P1
8

Vcmax
Maximum Rubisco rate at 
25°C (μmol m−2s−1)

50 175 62, 68

P1
9

gSD0
Coefficient in Ball-Berry-
Leuning model

0.95 4.5
3.92, 
4.23

P2
0

θ1

Curvature of leaf response of 
electron transport to 
irradiance

0.3 0.9 0.34,0.36

P2
1

Rd Rate of dark respiration 0.01 0.9
0.02, 
0.03

P2
2

Q10 Rd
Temperature dependence of 
Rd

0.5 2.5
0.70, 
0.71



Id Name Definition Min Max 90% CI

Phenology

P2
3

GDD0
Day of year for growing 
degree day start

50 150 80, 82

P2
4

GDD1
Growing degree days for 
spring onset

100 500 221, 229

P2
5

Air TS
Leaf senescence onset mean 
air temperature

1 25 8.7, 9.1

P2
6

GDD2
Spring photosynthetic GDD 
maximum

30
100
0

71.6, 
93.1

P2
7

Folg Duration of leaf growth 15 90 47, 49

Respiration

P2
8

RLit Litter respiration rate (Log10) −8 −1
−4.8, 
−4.5

P2
9

RLitTd
Litter respiration temperature 
dependence

0.001 0.2
0.01, 
0.02

P3
0

RSOMM
Microbial SOM respiration rate
(Log10)

−8 −1
−5.6, 
−5.4

P3
1

RSOMS
Slow SOM respiration rate 
(Log10)

−8 −1
−6.7, 
−6.2

P3
2

RSOMP
Passive SOM respiration rate 
(Log10)

−8 −1
−7.3, 
−7.0

P3
3

RMob
Mobile stored carbon 
respiration rate (Log10)

−6 −0.5
−2.9, 
−2.8

P3
4

RSOMTd
SOM respiration temperature 
dependence

0.001 0.2 0.07, 0.1

P3
5

Rroot Root respiration rate (Log10) −7 −1
−4.3, 
−4.1

P3 RootTd Root respiration temperature 0.001 0.3 0.1, 0.2



Id Name Definition Min Max 90% CI

6 dependence

P3
7

GPPFr
Fraction of GPP respired for 
maintenance

0.1 0.5 0.3, 0.4

A percentage of the assimilated carbon is respired daily, and the rest is 
distributed among foliage, wood, and roots. Root respiration depends on the 
allocated carbon and soil temperature. Budburst and senescence are 
determined using growing degree day (GDD) formulas. Litterfall decomposes
and then is passed through three progressively more recalcitrant soil organic
matter (SOM) pools: microbial, slow, and passive. Heterotrophic respiration 
from the litter and SOM pools occurs as a function of a base rate parameter 
and a temperature sensitivity parameter.

2.3.2. Canopy radiation model

The Norman (1982) sun-shade canopy model was used to translate direct 
and diffuse PPFD into PPFD on shaded and sunlit leaves. The PPFD on shaded
leaves, Ishade, is the sum of diffuse PPFD and scattered direct beam:

where Idif is the diffuse PPFD on a horizontal plane above the canopy, F is the 
total LAI, and C is the direct beam scattered by the canopy. The exponential 
term represents the extinction of the diffuse component. Norman 
(1982) expresses the scattered direct beam, C as:

where k is the scattering coefficient set at 0.07, Idir is the direct PPFD on a 
horizontal plane above the canopy, and θ is the solar elevation angle. 
Scattered direct beam decreases as canopy depth or solar elevation angle 
increases. The PPFD on sunlit leaves, Isun, is calculated as:

where a is the mean leaf-sun angle. We assume a equals 60° for a spherical 
leaf angle distribution (Goudriaan, 1988). Ishade and Isun are used to calculate 
photosynthesis per leaf area for shaded and sunlit leaves, which are then 
multiplied by the shaded and sunlit LAIs, respectively, to compute GPP from 
shaded and sunlit leaves. The sunlit LAI is Fsun and the shaded LAI is Fshade as 
follows:



The sum of GPP from shaded and sunlit leaves gives the total GPP.

2.3.3. Diffuse fraction models

For our final experiment, we incorporated models for estimating diffuse 
fraction of incoming PPFD from Weiss and Norman (1985) and Spitters et al. 
(1986). Both models have been widely used for carbon cycle modeling (Reed
et al., 2014, Knorr and Kattge, 2005, Mercado et al., 2006) and other 
applications (Bash et al., 2016; Cabrera-Bosquet et al., 2016; Fleisher et al., 
2015), though comparisons of their performance against observations are 
relatively sparse (see Schurgers et al., 2015 for assessment of the Spitters et
al. model).

The Weiss and Norman model first calculates potential visible radiation on 
the horizontal plane for direct (RDV) and diffuse (RdV) components as follows:

where m is optical air mass, P/P0 the ratio of actual to sea level pressure, and
θ the solar elevation angle. We estimated P/P0 to be ≈0.97 using the 
barometric formula. Air mass m is a function of θ:

Total potential visible radiation on the horizontal plane, RV, is just the sum of 
potential direct and diffuse components:

Next, the Weiss and Norman model calculates potential direct (RDN) and 
diffuse (RdN) components of near-infrared radiation (NIR):



where w is the water absorption in the near-infrared for 10 mm 
of precipitable water:

Total potential NIR on the horizontal plane, RN, is again the sum of its direct 
and diffuse components:

Fraction of incident visible radiation that is direct (fD) and diffuse (fd) is then 
estimated as:

where RT is observed incoming solar radiation (visible and NIR). Therefore, 
the higher the share of direct component in potential visible radiation, the 
higher the predicted share of the direct component in observed visible 
radiation. fD also increases with the ratio of observed to potential radiation.

The Spitters et al. model (1986) estimates diffuse fraction (fd) as a function of
atmospheric transmissivity (Sg/So):

where Sg and So are global and extra-
terrestrial irradiance respectively, R = 0.847–1.61 sin(θ) + 1.04 sin2(θ), 



and K = (1.47–R)/1.66. Extra-terrestrial irradiance at a plane parallel to 
Earth’s surface, So, is estimated as:

where td is day number of the year.

2.4. Model optimization

We used a Markov Chain Monte Carlo (MCMC) algorithm to optimize the 
model against data constraints and to explore the posterior distribution of 
optimized parameters. The algorithm utilizes the Metropolis-Hastings method
(Hastings, 1970; Metropolis et al., 1953) with simulated annealing (Press et 
al., 2007). Simulated annealing is a widely used technique that likens the 
search for minimum cost function value to the cooling of liquid material into 
a state of minimum energy, where temperatures start high to allow the 
algorithm to accept solutions that are worse than the current best (to escape
any local optima), and gradually cool to focus the search on a global 
optimum. At each iteration of the optimization, the model steps from one 
parameter set to another, the size of the step being a randomly sampled 
fraction of the prior parameter range and a function of the annealing 
temperature. The step size also adjusts to yield an acceptance rate of ∼20%,
which we have found leads to efficient posterior exploration and well-
performing parameter sets. We assume uniform prior distributions of 
parameters.

The first phase of optimization entails searching the parameter space for 
120,000 iterations to achieve the minimum value for the aggregate cost 
function, which calculates the model-data mismatch across all data streams 
used to constrain the model. As in Keenan et al. (2011), each data stream 
has a normalized root mean squared error (NRMSE), or uncertainty-weighted 
square of the model error, averaged across the number of observations:

where Ni is the number of observations for data stream i, Oi(t) is the 
observation at time t, Mi(t) is the modeled value for the same time, 
and δi(t) is the uncertainty of the observation. The aggregate cost 
function J is then the mean of all NRMSEs:

where Q is the number of data constraints. By giving equal weight to each 
data stream, the aggregate cost function favors balanced model 



performance that accurately represents various ecosystem 
processes (Barrett et al., 2005; Franks et al., 1999).

The second phase of optimization involves identifying parameter sets 
consistent with the optimal set found in the first phase. A parameter set is 
accepted only if the NRMSE for each data stream passes the chi-square test 
at 90% confidence, where the critical values are determined from the 
optimal parameter set. This way, model performance is comparable across 
data streams (Richardson et al., 2010). We used 1000 accepted parameter 
sets to generate the posterior distributions in Table 2.

2.5. Experimental set-up

We first constructed a base scenario against which later model runs with 
different diffuse fraction settings could be compared. In this base scenario, 
we optimized the model to half-hourly, monthly, and yearly NEE data and the
full suite of ancillary measurements, feeding in observed diffuse fraction 
alongside other meteorological drivers. Data from the first five years (2004-
08) were used for optimization, and the latter five years (2009-13) for 
validation of optimized performance. We examined how accurately FöBAAR 
predicted NEE in each period when utilizing all available information at the 
study site.

We then conducted three experiments to assess how changes in diffuse 
fraction impact FöBAAR outputs and performance. In Experiment (1), we ran 
the model using the optimal parameter set from the base scenario but under
five different scenarios of diffuse fraction (fd): (1) all PPFD is direct (fd = 0) (2)
all PPFD is diffuse (fd = 1) (3) PPFD is equal parts direct and diffuse (fd = 0.5) 
(4) fd is 0.01 higher than observed (5) fd is 0.01 lower than observed. Total 
PPFD was kept at observed values across the scenarios. We compared how 
PPFD and GPP change for shaded and sunlit leaves in Scenarios (1) − (3), 
given the structure of Norman’s canopy model. We used Scenarios (4) and 
(5) to assess GPP’s sensitivity to small changes in diffuse radiation (±1 
percentage point change in percentage of diffuse radiation).

In Experiment (2), we again used the same parameter set as before but 
prescribed two scenarios in which either fd or PPFD deviates from 
observations: (1) every half-hour of the year is assigned observed PPFD but 
mean time-varying fd (mean observed fd for that half-hour across all years, 
see Table 3 for an example) (2) every half-hour is assigned observed fd but 
mean time-varying PPFD. We compared the annual NEE of these two model 
runs with that from the base scenario to understand the relative impact of 
interannual variation in fd on the modeled interannual carbon budgets.

Table 3. Summary of experiments and scenarios, with illustration of how a 
hypothetical base scenario would be altered under each experiment and 
scenario. For all but Experiment 2, Scenario 2, the photosynthetic photon 
flux density (PPFD) remains constant at observed values while diffuse 
fraction (fd) is changed from observed values. Note that only one half-hour of



three years is shown here for simplicity, but all half-hours of all ten years 
(2004-13) are affected in each experiment and scenario.

Experiments 
and Scenarios

Hypothetical Example: 10:00–10:30 am of 
June 11

2004 2005 2006

PPF
D

fd
PPF
D

fd PPFD fd

Base Scenario 
(Observed 
values)

100
0

0.5
150
0

0.3 500 0.7

Experiment 1, 
Scenario 1 
(fd = 0)

1000 0 1500 0 500 0

Experiment 1, 
Scenario 2 
(fd = 1)

1000 1 1500 1 500 1

Experiment 1, 
Scenario 3 
(fd = 0.5)

1000 0.5 1500 0.5 500 0.5

Experiment 1, 
Scenario 4 
(fd = fd + 0.01)

1000 0.51 1500 0.31 500 0.71

Experiment 1, 
Scenario 5 
(fd = fd − 0.01)

1000 0.49 1500 0.29 500 0.69

Experiment 2, 
Scenario 1 
(observed PPFD, 
mean time-
varying fd)

1000 0.5 1500 0.5 500 0.5

Experiment 2, 
Scenario 2 
(observed fd, 
mean time-
varying PPFD)

1000 0.5 1000 0.3 1000 0.7



Experiments 
and Scenarios

Hypothetical Example: 10:00–10:30 am of 
June 11

2004 2005 2006

PPF
D

fd
PPF
D

fd PPFD fd

Experiment 3, 
Scenario 1 
(Weiss and 
Norman model)

1000

Weiss 
and 
Norman
model

1500

Weiss 
and 
Norman 
model

500

Weiss 
and 
Norman 
model

Experiment 3, 
Scenario 2 
(Spitters et al. 
model)

1000
Spitters 
et al. 
model

1500
Spitters 
et al. 
model

500
Spitters 
et al. 
model

For Experiment (3), we again used the same parameter set as before but 
combined FöBAAR with one of two models for predicting diffuse fraction: 
(1) Weiss and Norman (1985)(2) Spitters et al. (1986). We assessed how 
accurately these models predict diffuse fraction, when errors occur, and how 
these errors propagate to errors in modeling of NEE and other ecosystem 
variables.

3. Results

3.1. Model performance with observed diffuse fraction

To establish a benchmark against which we could compare model runs using 
manipulated diffuse fraction, we first optimized the model to all data 
constraints using observed diffuse fraction (base scenario).

At the annual time step, modeled NEE was consistent with gap-filled NEE for 
the majority of the years in both training and validation periods (Fig. 1a). 
During training, the mean absolute error was ≈48 g C m−2 yr−1, slightly above
the mean annual uncertainty of ≈ ±32 g C m−2yr−1. FöBAAR captured the 
interannual patterns of NEE increase and decrease, but overestimated net 
uptake in 2006 by ≈72 g C m−2 yr−1 and underestimated net uptake the 
following year by ≈75 g C m−2 yr−1. Surprisingly, the mean absolute error 
dropped to ≈42 g C m−2 yr−1 during validation period, on par with the mean 
annual uncertainty of ≈ ±42 g C m−2 yr−1, although the interannual trend of 
NEE was less closely replicated compared to the training period. Overall, 
model estimates and their 90% confidence intervals were within the 
uncertainty bounds of data for six of the ten years (excluding 2006 and 2007
during the training period, 2010 and 2013 during the validation period) with 
no systematic under- or overestimation of fluxes.



Fig. 1. Modeled (red) and gap-filled (gray) NEE sums at annual (a) and monthly (b) time scales. Points 
in (b) represent average NEE for the given month during validation period (2009-13). Red shaded bar 
indicates 90% confidence interval generated using the posterior chi-squared test. Error bars indicate 
uncertainties of gap-filled sums, which include measurement, gap-filling, and u* uncertainties following
the approach of Barr et al. (2013). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)

While it is possible for models to replicate annual flux sums without 
replicating the seasonal cycle, our results indicated fairly accurate modeling 
of fluxes at the monthly time step. During training period, the mean absolute
error for monthly NEE was ≈22 g C m−2 month−1during the peak productivity 
season of June, July, and August, and ≈12 g C m−2 month−1 for rest of the 
year. These errors remained the same during the validation period, 
indicating no major shift in model performance. One persistent bias that 
emerged was the overestimation of net uptake in June; model estimates 
overshot gap-filled sums by an average of ≈34 g C m−2 month−1 during 
validation, compared to mean uncertainty of ≈ ±26 g C m−2month−1 for June 
(Fig. 1b).

The model generally yielded a good fit to observations across the various 
data constraints (Table 4). Errors were low for foliar litterfall and turnover 
rates of soil pools during both training and validation periods, and also 
for soil respiration, woody litterfall, and LAI, which had measurements only 
during training period. Daytime fluxes were not modeled quite as accurately 
as nighttime fluxes, and annual wood growth not as accurately as annual 
NEE, but the average NRMSE across all data constraints was below one for 
both training and validation periods, indicating that key ecosystem 
processes were represented reasonably well given uncertainties in the data.



Table 4. NRMSEs for each of the data constraints, by diffuse fraction model and time period. These are 
uncertainty-weighted root mean squared errors calculated using Eq. (18) in Materials and Methods. All 
model runs shown here used the same optimal parameter set from the base scenario, and differed only in 
the way in which the direct and diffuse PPFD was prescribed.

Training Period Validation Period

Weiss and
Norman

Spitter
s et al.

Observ
ed

Weiss and
Norman

Spitter
s et al.

Observ
ed

Nighttime NEE 0.78 0.56 0.63 0.69 0.47 0.55

Daytime NEE 3.05 2.21 2.29 3.58 2.27 2.45

Monthly NEE 0.47 0.34 0.33 0.47 0.27 0.28

Annual NEE 4.45 3.91 1.66 1.33 1.95 0.32

LAI 4.95 0.12 0.48 – – –

Foliar litterfall 1.80 2.69 1.41 2.46 0.14 0.21

Woody litterfall 0.01 0.01 0.01 – – –

Annual wood 
growth

7.49 4.82 3.57 5.74 9.12 3.93

Multi-year 
wood growth

2.85 1.10 0.04 2.67 5.41 0.98

Soil respiration 0.91 0.42 0.50 – – –

Litter turnover 0.03 0.02 0.03 0.02 0.02 0.02



Training Period Validation Period

Weiss and
Norman

Spitter
s et al.

Observ
ed

Weiss and
Norman

Spitter
s et al.

Observ
ed

SOM 1 
turnover 
(microbial)

0.06 0.06 0.06 0.13 0.13 0.13

SOM 2 
turnover (slow)

0.28 0.28 0.28 0.20 0.20 0.20

SOM 3 
turnover 
(passive)

0.09 0.09 0.09 0.07 0.07 0.07

Average 
NRMSE

1.94 1.19 0.81 1.58 1.82 0.83



3.2. Model sensitivity to diffuse fraction

To assess how modeled GPP responds to changes in diffuse fraction (fd), we 
compared FöBAAR runs using the same optimized parameter set but 
different scenarios of fd as per Experiment (1).

We observed that modeled GPP was significantly higher when fd increased 
from 0 to 1 (Fig. 2b,c) − under the admittedly unrealistic assumption that 
total PPFD is constant − because the enhanced productivity of shaded leaves
far outweighed the reduced productivity of sunlit leaves, due to the 
saturating relationship between PPFD and photosynthesis. The PPFD on 
shaded leaves reached a maximum when all light was diffuse, as per 
Eq. (1) (see Section 2.3.2). Even though PPFD on shaded leaves was above 
zero when all light was direct because of scattered direct beam, this 
component was relatively small, and the GPP of shaded leaves was eight to 
ninefold higher under maximum fd (Fig. 2a). The GPP of sunlit leaves 
decreased when fd changed from 0 to 1 due to the absence of the direct light
contribution to PPFD, but this was partially offset by the larger diffuse PPFD. 
Therefore, the drop in GPP of sunlit leaves was smaller compared to the 
increase in GPP of shaded leaves, and the overall GPP from both leaf classes 
more than doubled when fd increased from 0 to 1 at PPFD of 
1100 μ mol m−2 s−1 or more (Fig. 2b). However, because of saturation in the 
photosynthetic light response function, canopy GPP did not scale linearly 
with fd; prescribing fd of 0.5 in Scenario (3) resulted in GPP that was greater 
than the average of GPP under entirely direct and entirely diffuse light (Fig. 
2b). For the same reason, the enhancement of canopy GPP with 
increasing fd (holding total PPFD constant) was largest when fd is small.

Fig. 2. Mean modeled GPP when diffuse fraction is set at zero (yellow), one-half (green), one (blue), 
and observed levels (black). GPP is shown for (a) sunlit (solid line) and shaded (dotted line) leaves at 
half-hourly time step (b) sum of sunlit and shaded leaves at half-hourly time step (c) sum of sunlit and 
shaded leaves at annual time step. Dashed black line in (c) indicates scenario of ±0.01 change in 
observed levels of diffuse fraction. Observed levels of diffuse fraction range from 0.10 to 0.99 in (b) 
and 0.40–0.47 in (c). Only daylight periods in June, July, and August are shown in (a) and (b). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)



Accumulated over the course of the growing period, fd-mediated changes in 
productivity produced substantial differences in annual GPP. The GPP in 
Scenario (2) (fd = 1) was higher than GPP in Scenario (1) (fd = 0) by 
≈760 g C m−2 year−1, a ≈130% increase (Fig. 2c). The GPP in Scenario (3) 
(fd = 0.5) exceeded that in Scenario (1) by an average of 
≈470 g C m−2 year−1, which is ≈62% of the GPP difference between 
Scenarios (1) and (2). When observed levels of fd − which ranged from 0.40 
to 0.47 annually − were increased and decreased by 0.01 in Scenarios (4) 
and (5) to assess GPP’s sensitivity to small changes in diffuse fraction, the 
annual GPP increased and decreased by ≈9.2 g C m−2 year−1, respectively 
(Fig. 2c). Therefore, a 1 percentage point change in observed percentage of 
radiation that is diffuse, holding total PPFD constant, produced a ≈0.94% 
change in annual GPP.

To evaluate how much interannual variability of fd potentially explains the 
interannual variability of carbon budgets at our site, we conducted 
Experiment (2) which examined two additional scenarios: (1) every half-hour 
of the year is assigned observed PPFD but mean time-varying fd (2) every 
half-hour is assigned observed fd but mean time-varying PPFD.

On average, prescribing observed PPFD and mean time-varying fd caused 
much larger deviations in modeled annual NEE compared to prescribing 
observed fd and mean time-varying PPFD. Use of mean time-
varying fd produced a mean deviation of ≈48 g C m−2 year−1 from the annual 
NEE of the base scenario (Fig. 3). The magnitude of deviation varied 
substantially across the years, ranging from ≈0.7 g C m−2 year−1 in 2006 to 
≈148 g C m−2 year−1 in 2004. It is possible that the large deviation in 2004 
resulted partly from the use of modeled fd during May and early June in 2004 
(see Section 2.2); the modeled values could be underestimates. However, 
there were also three other years (2007, 2010, 2012) with deviations greater
than 50 g C m−2 year−1. Use of mean time-varying PPFD, on the other hand, 
changed modeled annual NEE by an average of only 
≈0.4 g C m−2 year−1 (Fig. 3). This discrepancy indicates that variability 
of fd mediates modeled interannual NEE trends more strongly than does 
variability of total irradiance. The model run using mean time-varying fd also 
differed from the run using mean time-varying PPFD in that the former’s 
predicted carbon uptake consistently exceeded estimates under the base 
scenario. Therefore, while aggregate levels of fd may be higher in one year 
than another (annual fd ranged from ≈0.40–0.47) each year has periods of 
relatively low fd, and increasing fd in these periods enhances annual GPP by 
more than the loss associated with decreasing fd in any relatively 
high fd periods.



Fig. 3. Annual NEE modeled using observed diffuse fraction and observed photosynthetic photon flux 
density (PPFD) (black cross); observed diffuse fraction and mean time-varying PPFD (green circle); 
mean time-varying diffuse fraction and observed PPFD (yellow circle). The three model runs used the 
same optimal parameter set from the base scenario, and differed only in the way that diffuse fraction 
and PPFD were prescribed. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

3.3. Modeling diffuse fraction

In Experiment (3), we assessed the performance of two partitioning models 
that estimate fd, and analyzed how differences between modeled and 
measured fd translate to differences in overall model performance.

The Weiss and Norman (1985) model generally overestimated, and 
the Spitters et al. (1986)model generally underestimated observed fd (Fig. 4).
The two models, however, displayed similar biases with respect to the solar 
elevation angle, PPFD, and observed fd. Overestimation was more 
pronounced at lower sun angles for the Weiss and Norman model, with the 
mean fd error (modeled − observed fd) peaking at ≈0.26 between 20° and 
40° (Fig. 4a), and underestimation increased at higher sun angles for the 
Spitters et al. model, reaching ≈ −0.6 between 60° and 80° (Fig. 4b). Both 
models tended to underestimate fd at higher PPFD. For example, for 
observed values of fd between 0.6 and 0.8, the mean fd error for the Weiss 
and Norman model changed signs from ≈0.09 at 
500 μ mol m−2 s−1 to ≈ −0.19 at 1500 μ mol m−2 s−1 (Fig. 4c), while 



underestimation of the Spitters et al. model increased by ≈0.17 over the 
same PPFD range (Fig. 4d). But a difference between the two models was 
that underestimation of fd peaked at medium PPFD (≈850 μ mol m−2 s−1) for 
the Spitters et al. model, while it continued increasing with PPFD for the 
Weiss and Norman model. Finally, both models tended to 
overestimate fd when fd is low, and underestimate fd when fd is high (Fig. 4c, 
d). On average, the Weiss and Norman model predicted fd more accurately; 
its RMSE was ≈0.19, compared to ≈0.26 for the Spitters et al. model.

Fig. 4. Diffuse fraction error (modeled minus measured diffuse fraction) averaged by (a) solar elevation
angle for Weiss and Norman model (b) solar elevation angle for Spitters et al. model (c) observed 
diffuse fraction for Weiss and Norman model (d) observed diffuse fraction for Spitters et al. model. 
Darker lines correspond to higher solar elevation angles in (a) and (b), and higher diffuse fractions in 
(c) and (d). Only daylight periods in June, July, and August during validation period are shown for each 
graph.

The biases in estimating fd propagated to predictions of GPP and therefore, 
net carbon uptake. Use of the Weiss and Norman model, which generally 
overestimated fd, caused overestimation of net carbon uptake (Fig. 5a), while



the opposite was true for the Spitters et al. model (Fig. 5b), which generally 
underestimated fd. The relationship between fd and NEE errors could be 
confirmed by their matching dependencies on observed fd. For instance, just 
as the partitioning models’ overestimation of fd was most severe when 
observed fd was below 0.2 (Fig. 4c,d), the same pattern emerged for 
overestimation of NEE (Fig. 5a,b). The Weiss and Norman model’s 
underestimation of fd at higher PPFD manifested in less negative NEE errors 
(i.e. less overestimation of net carbon uptake) starting at PPFD of 
≈1250 μ mol m−2 s−1 (Fig. 5a).

Fig. 5. Half-hourly NEE error (modeled minus measured NEE) averaged by observed diffuse fraction 
and PPFD for FöBAAR runs using (a) Weiss and Norman model (b) Spitters et al. model (c) observed 
diffuse fraction. Negative errors represent model overestimation of net carbon uptake (i.e. modeled 
NEE is more negative than observed NEE), and positive errors represent model underestimation of net 
carbon uptake. Only daylight periods in June, July, and August during the validation period are shown 
for each graph.

Overall, FöBAAR’s ability to predict NEE declined with the use of modeled fd, 
though the decline was more significant with the Weiss and Norman model 
and at annual scales. At the half-hourly time step, the Weiss and Norman 
model’s tendency to overestimate net carbon uptake, especially during 
periods of low observed fd (Fig. 5a) and morning hours (Fig. 6a), increased 
the NRMSE for daytime NEE by ≈1.13, or ≈46%, during the validation period 
(Table 4). The Spitters et al. model’s underestimations of uptake, however, 
reduced the NRMSE slightly because FöBAAR had tended to overpredict mid-
day uptake when using observed fd (Fig. 6a). A similar story unfolded at the 
monthly time step: the Spitters et al. model’s lower estimates of net uptake 
during the growing period had negligible effects on the error because 
FöBAAR had previously overestimated uptake in those months. However, the
Weiss and Norman model’s upward bias in June, July, and August raised the 
mean absolute error for these months by ≈13 g C m−2 month−1 during 
validation (Fig. 6b). In addition, mean absolute error in winter and spring 
(Oct − Mar) increased by ≈4.5 g C m−2 month−1 with the Weiss and Norman 



model because FöBAAR links more productivity with more litterfall and 
heterotrophic respiration, resulting in underestimation of net carbon uptake 
outside the growing season. It was at the annual time step that use of either 
partitioning model caused the most noticeable declines in FöBAAR’s 
performance. During the validation period, modeled net uptake was on 
average ≈26 g C m−2 year−1 greater with the Weiss and Norman model, and 
≈23 g C m−2 year−1 lower with the Spitters et al. model, compared to using 
observed fd (Fig. 6c). As a result, mean absolute error increased by 
≈19 g C m−2 year−1 with the Weiss and Norman model, and 
≈7.8 g C m−2 year−1 with the Spitters et al. model.

Fig. 6. Comparison of NEE errors and sums among FöBAAR runs using Spitters et al. (yellow), Weiss 
and Norman model (blue), and observed diffuse fraction (green). (a) NEE error (modeled minus 
measured NEE) in June, July, August of validation period, averaged in two-hour bins (b) modeled and 
gap-filled NEE sums at monthly time step during validation period (c) modeled and gap-filled NEE sums
at annual time step. The x’s in (a) indicate standard deviation of errors for each model run. The error 
bars in (b) and (c) indicate uncertainties of gap-filled NEE sums, which include measurement, gap-
filling, and u* uncertainties following approach of Barr et al. (2013). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)

Biased estimates of GPP caused by fd modeling errors also increased model-
data mismatch on annual ancillary constraints (Table 4). Annual wood 
growth, LAI, and foliar litterfall increased with the Weiss and Norman model 
because enhanced productivity results in more wood and foliage. Litterfall 
increase, in turn, stimulated litter decomposition and soil respiration. The 
opposite cascade of effects occurred when the Spitters et al. model 
underestimated GPP. The average NRMSE during validation period increased 
significantly with use of either model (columns 5 and 6, last row of Table 4), 
mainly due to biased predictions of wood growth.

4. Discussion

By optimizing a forest carbon cycle model to multiple data constraints and 
prescribing different scenarios of diffuse fraction, we have assessed how the 
modeling of enhanced photosynthesis under diffuse light affects annual GPP 
and other ecosystem carbon fluxes.

4.1. Advantages of diffuse light



In the Norman sun-shade canopy model, the distribution of PPFD between 
leaf layers is more balanced under diffuse light because diffuse PPFD equally 
contributes to PPFD on shaded and sunlit leaves (in absolute terms), whereas
direct PPFD predominantly strikes sunlit leaves. Since leaf photosynthesis 
becomes saturated at higher light intensities, increasing diffuse fraction, 
which effectively reallocates PPFD on sunlit leaves bearing the higher 
radiation load to shaded leaves, enhances overall canopy productivity. We 
observed in Experiment (1) that when diffuse fraction increases from zero to 
one, the net gain in annual GPP across both leaf layers is ≈130% (Fig. 2c). 
Such dramatic variation in diffuse fraction without corresponding changes in 
PPFD is of course unrealistic, but GPP responses to a 0.01 change in 
observed values of diffuse fraction, holding total PPFD constant, were 
≈9.2 g C m−2 year−1 (Fig. 2c).

We found that the sensitivity of GPP to changes in diffuse fraction depends 
on both total irradiance and diffuse fraction. The increase in GPP associated 
with a given increase in diffuse fraction grew with total irradiance (Fig. 2b) 
because more severe photosynthetic saturation at higher PPFD was averted. 
A marginal increase in diffuse fraction also produced greater GPP gains when
the diffuse fraction is relatively low, due to photosynthetic saturation. At 
lower diffuse fraction, the drop in GPP of sunlit leaves associated with an 
increase in diffuse fraction is smaller because PPFD on sunlit leaves is 
already abundant, while the concurrent increase in GPP of shaded leaves is 
larger since PPFD on shaded leaves is minimal. As a result, an increase in 
diffuse fraction from 0 to 0.5 accounted for ≈62%, rather than 50%, of the 
GPP gained when diffuse fraction increased from 0 to 1. This non-linear 
relationship between GPP and diffuse fraction suggests that the moderately 
high diffuse fraction at which GPP often peaks in forest ecosystems (Alton et 
al., 2007; Knohl and Baldocchi, 2008; Oliphant et al., 2011; Zhang et al., 
2010) likely represents the point where LUE gains have diminished to the 
extent that they are outweighed by the effect of irradiance reductions with 
any further increases in diffuse fraction.

Our estimates of GPP changes with diffuse fraction depend to an extent on 
the parameter values and structure of the canopy model. Knohl and 
Baldocchi (2008) show, for instance, that while the choice of leaf inclination 
angle has modest impact on the diffuse light effect, higher scattering 
coefficients reduce the diffuse light effect because the canopy produces 
more diffuse radiation of its own and is thus less sensitive to incident diffuse 
radiation above the canopy. Our estimate of the diffuse light effect is also 
conservative in that the canopy model does not account for potential 
changes in leaf temperature and VPD that may accompany changes in PPFD 
distribution. For example, allowing sunlit leaves to be cooler under higher 
diffuse fraction would likely enhance diffuse light’s contribution to net carbon
uptake by increasing the sunlit leaves’ photosynthesis when air temperature 
exceeds the optimum (Steiner and Chameides, 2005), reducing their 
respiration, and/or increasing their stomatal conductance by reducing VPD.



4.2. Modeling diffuse fraction

Given that the ratio of diffuse to direct light is correlated with 
observable environmental factors, including the solar elevation angle, cloud 
cover, and global irradiance, information about these variables should aid in 
modeling diffuse fraction. However, our evaluation of radiation partitioning 
models from Weiss and Norman (1985) and Spitters et al. (1986) is 
consistent with previous studies that find non-trivial errors in a range of 
diffuse fraction models (Badescu et al., 2013; Batlles et al., 2000; Dervishi 
and Mahdavi, 2012; Noorian et al., 2008). We also observed that the model 
estimates of diffuse fraction are consistently biased, and this bias is 
correlated with input variables.

In Experiment (3), the Weiss and Norman model predominantly 
overestimated diffuse fraction at our site, while the Spitters et al. model 
predominantly underestimated it. Spatial variability of the relationship 
between diffuse fraction and predictor variables has been well-documented 
(Boland et al., 2001; Oliveira et al., 2002; Soler, 1990) so site-specific factors 
could explain some of this baseline bias. However, the biases of both models 
were correlated with solar elevation angle, total PPFD, and observed diffuse 
fraction in similar ways, suggesting that flawed model inferences of 
cloudiness play a role. The likelihood of underestimating diffuse fraction 
increased with solar elevation angle, PPFD, and observed diffuse fraction, 
which correspond to hazy mid-day periods with medium to high irradiance 
(Fig. 4). This bias pattern is consistent with limitations of the model 
structures, which at high sun angles, infer overcast conditions from less 
global radiation and clear conditions from more global radiation. 
Observations at our study site indicate that diffuse fraction can be highly 
variable even when other environmental factors are similiar; for example, 
one standard deviation of observed diffuse fraction when PPFD ranges from 
1200 to 1300 μ mol m‐2 s−1, and sun angle from 60−70° is ≈0.15. In such 
conditions, both partitioning models often predicted in the lower range of 
distributed diffuse fraction values.

Improving the accuracy of the two partitioning models would likely entail 
reducing both parameter and model structure errors. At study sites where 
measurements of diffuse fraction are available, a systematic approach to 
reducing parameter errors would be model-data fusion; the parameters could
be optimized to achieve the best fit to observed diffuse fraction. The 
optimization could account for spatially varying environmental controls on 
diffuse fraction. However, model-data fusion alone has been found to 
produce only modest improvements in various partitioning models (Dervishi 
and Mahdavi, 2012), and additional specification of cloud amount and type, 
and how these influence diffuse fraction in different ways is likely necessary 
in the model structure. Incorporating additional predictor variables such as 
sunshine fraction (Elminir, 2007; Ulgen and Hepbasli, 2009) and 
using artificial neural network models (Jiang, 2008; Khatib et al., 2012) have 
also shown some promise. Greater availability of direct and diffuse PPFD 



measurements across different ecosystems and latitudes will help validate 
these emerging model structures.

4.3. Impact of diffuse fraction errors

Previous studies have demonstrated, through examining the empirical 
relationship between diffuse fraction and ecosystem productivity, that 
distinction of photosynthesis under direct and diffuse light matters for 
modeling of the terrestrial carbon balance (Gu et al., 2003; Knohl and 
Baldocchi, 2008; Mercado et al., 2009; Niyogi et al., 2004). By prescribing 
various scenarios of diffuse fraction and measuring changes in model 
outputs and performance, we assessed the extent to which errors in diffuse 
fraction can propagate to errors in modeling NEE and other carbon cycle 
components.

In Experiment (2), prescribing mean time-varying diffuse fraction and 
observed PPFD caused larger and more directional deviations in modeled 
annual NEE, compared to prescribing mean time-varying PPFD and observed 
diffuse fraction. The difference in magnitude of NEE shifts was significant: 
mean time-varying diffuse fraction produced a mean shift of 
≈48 g C m−2 year−1 − about two-thirds the standard deviation of annual gap-
filled NEE (≈74 g C m−2 year−1) − while mean time-varying PPFD produced a 
mean shift of only ≈0.4 g C m−2 year−1 (Fig. 3). Therefore, the direct and 
diffuse composition of irradiance in a given year relative to other years has 
stronger influence on carbon uptake during that year, compared to relative 
levels of total irradiance. Furthermore, the model run using mean time-
varying diffuse fraction predicted higher carbon uptake relative to the base 
scenario, even in years with higher than average diffuse fraction, because 
periods of relatively low diffuse fraction in each year experienced LUE gains. 
This result points to the carbon cycling importance of interannual variation in
not only the aggregate ratio of diffuse to global PPFD, but also the within-
year distribution of diffuse PPFD.

When diffuse fraction partitioned using models was prescribed to FöBAAR in 
Experiment (3), it became apparent that errors in diffuse fraction cause 
errors in NEE by affecting estimates of both GPP and RE. At the half-hourly 
time step, the pattern of biases in modeled daytime NEE mirrored that for 
modeled diffuse fraction: use of the Weiss and Norman model, for instance, 
led to severe overestimation of net uptake during early morning (Fig. 6a) and
periods of low observed diffuse fraction (Fig. 5b), the same conditions under 
which diffuse fraction is overestimated (Fig. 4a,c). Accumulated over the 
year, these overestimations on average led to a ≈12% increase in annual 
GPP relative to the base scenario. Annual RE, on average, also increased 
≈11% with the Weiss and Norman model because GPP gains resulted in 
larger carbon allocations to root and foliage, and therefore increases in root 
respiration and litter decomposition. For the Spitters et al. model, which 
underestimated diffuse fraction, the opposite effects occurred: 



photosynthesis decreased, reducing carbon allocations to root and foliage 
and therefore respiration.

Only the Weiss and Norman model was associated with noticeable declines 
in FöBAAR’s performance at sub-annual scales, but errors for annual NEE 
increased with use of either partitioning model. The discrepancy in sub-
annual performance of the two partitioning models arose because the Weiss 
and Norman model’s upward bias on diffuse fraction estimates amplified 
FöBAAR’s slight tendency to overestimate productivity during the growing 
period, while the Spitters et al. model’s downward bias mitigated that 
tendency. But at the annual scale, high-frequency biases of both models 
accumulated to produce significant directional changes, which inevitably 
translated into larger errors because FöBAAR had not persistently over- or 
underestimated annual NEE. On average, modeled net uptake during the 
validation period was ≈26 g C m−2 year−1 greater with the Weiss and Norman
model, and ≈23 g C m−2 year−1 lower with the Spitters et al. model − major 
shifts considering the mean annual gap-filled NEE of ≈ –
136 g C m−2 year−1 and its associated uncertainty of ≈ ±37 g C m−2 year−1.

5. Conclusions

We investigated the contribution of light use efficiency enhancement under 
diffuse light to forest carbon uptake, as well as the impact of diffuse fraction 
modeling errors on predictions of the carbon cycle at a temperate deciduous 
forest. To do so, we combined 10 years of eddy covariance carbon fluxes and
direct and diffuse PPFD measurements with a process-based model using a 
rigorous model-data fusion approach. Our analysis disentangles changes in 
canopy PPFD distribution from other pathways through which diffuse light 
conditions influence the carbon budget, and we find that more even PPFD 
distribution under diffuse light meaningfully enhances primary 
productivity and also helps explain the interannual variability of net carbon 
uptake. Furthermore, systematic errors in estimating diffuse fraction—which 
we show are possible with standard radiation partitioning models—
accumulate to bias annual predictions of the forest carbon cycle.

Since modeling of interannual forest carbon budgets requires accurate, high-
frequency information about diffuse fraction, the same is likely to be true for 
predicting decadal or longer trajectories of terrestrial carbon budgets, 
especially as prevalence and properties of clouds and aerosols show signs of 
temporally coherent change (Eastman et al., 2011; Norris et al., 
2016; Settele et al., 2014). Through impacts on solar radiation, temperature, 
and precipitation, these atmospheric changes will directly and indirectly 
influence photosyntheticlight use efficiency of terrestrial vegetation. 
Developing more accurate models of diffuse fraction will contribute to 
reducing the uncertainty of terrestrial carbon cycle responses to global 
climate change.
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