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ABSTRACT OF THE DISSERTATION

Bayesian Methods for Finding Sparse Representations

by

David Paul Wipf
Doctor of Philosophy in Electrical Engineering
(Intelligent Systems, Robotics & Control)
University of California, San Diego, 2006

Professor Bhaskar D. Rao, Chair

Finding the sparsest or minimufg-norm representation of a signal given a
(possibly) overcomplete dictionary of basis vectors isapartant problem in many
application domains, including neuroelectromagnetiaos®ulocalization, compressed
sensing, sparse component analysis, feature selecti@geimestoration/compression,
and neural coding. Unfortunately, the required optimaaiis typically NP-hard, and
so approximate procedures that succeed with high probabie sought.

Nearly all current approaches to this problem, includintp@gonal match-
ing pursuit (OMP), basis pursuit (BP) (or the LASSO), and miam ¢, quasi-norm
methods, can be viewed in Bayesian terms as performing sthiMdAP estimation
using a fixed, sparsity-inducing prior. In contrast, we adhte empirical Bayesian ap-
proaches such as sparse Bayesian learning (SBL), which usamgtarized prior to

encourage sparsity through a process called evidence rnzatiom. We prove several

XV



results about the associated SBL cost function that eluitdsitgeneral behavior and
provide solid theoretical justification for using it to findaximally sparse representa-
tions. Specifically, we show that the global SBL minimum is & achieved at the
maximally sparse solution, unlike the BP cost function, whiften possessing a more
limited constellation of local minima than comparable MARthods which share this
property. We also derive conditions, dependent on theiloligion of the nonzero model
weights embedded in the optimal representation, such tBhatHas no local minima.
Finally, we demonstrate how a generalized form of SBL, out lafrge class of latent-
variable models, uniquely satisfies two minimal perforneaoiteria directly linked to
sparsity. These results lead to a deeper understanding ebtimections between vari-
ous Bayesian-inspired strategies and suggest new spamsmtgalgorithms.

Several extensions of SBL are also considered for handliagsepepresenta-
tions that arise in spatio-temporal settings and in theeodraf covariance component
estimation. Here we assume that a small set of common fesatmeierly the observed
data collected over multiple instances. The theoreticaperties of these SBL-based
cost functions are examined and evaluated in the contexkiefi®y methods. The
resulting algorithms display excellent performance onesrely large, ill-posed, and
ill-conditioned problems in neuroimaging, suggestingrargy potential for impacting

this field and others.
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Chapter |

Introduction

Suppose we are presented with some target signal and adesguthat are

linked by a generative model of the form
t = dw + €, (1.1)

wheret ¢ R is the vector of responses or targebsc RV*M s a dictionary ofM
features (also referred to as basis vectors) that have Hdessrved or determined by
experimental designy is a vector of unknown weights, ards Gaussian noisk The
goal is to estimatev givent and®.

Perhaps the most ubiquitous estimator used for this tagkashat maximizes
the likelihood of the data(t|w) and is equivalent to the least squares solution. When
the dimensionality otw is small relative to the signal dimension (i.8/, < N), then

the ML solution is very effective. However, a rich set of apations exist where the

IWhile here we assume all quantities to be real, we will later consider the couimieain as well.



opposite is true, namely, the dimensionality of the unknawsignificantly exceeds the
signal dimensionV. In this situation, the inverse mapping frofrto w is said to be
underdeterminedeading to a severely more complicated estimation tasiedimere are
now an infinite number of solutions that could have produbedbserved signalwith
equal likelihood.

A Bayesian remedy to this indeterminacy assumes that naageifawnw
from some distributiop(w) that allows us to narrow the space of candidate solutions in
a manner consistent with application-specific assumptibos example, if we assume
thatw has been drawn from a zero-mean Gaussian prior with covaigiy while e
is independently Gaussian with covarian¢d, then themaximum a posterioiiMAP)

estimator ofw is given by
w = arg max p(tjw)p(w) = " (A + <I><I>T)_1 t, (1.2)

where\ £ 02/52. Here the inverse mapping’ (M + ®®7) ™" is linear like the for-
ward (generative) model; however, in general this need edhé case.

Use of (1.2) favors estimate® with a large number of small nonzero coeffi-
cients. Instead, assume now that we have some prior bedief tias been generated by
a sparse coefficient expansion, meaning that most of thesglisrmw are equal to zero.
Such inverse solutions can be encouraged by the incorporatia so-called sparsity-
inducing prior, characterized by fat tails and a sharp, ipbsgfinite, peak at zero [79].

An alternative route to sparsity is to use special so-catagirical priorscharacterized



by flexible parameters that must be estimated (somewhat@aotuitively) from the
data itself [66]. The problem in both situations, howevsrihat the ensuing inverse
problem fromt to w becomes highly non-linear. Moreover, althoughMsncreases
there is a greater possibility that a highly sparse reptasen exists, the associated
estimation task becomes exponentially more difficult, velen modest sized problems
becoming insolvable.

In the next section, we will discuss a few relevant applaatiwhere sparse
representations as described are crucial. We will then mi@esely define the types of
sparse inverse problems we wish to solve followed by detalkescriptions of several
popular Bayesian solutions to these problems. We will catechy providing an outline

of the remainder of this thesis.

[.LA  Applications

Numerous applications can effectively be reduced to theckdar tractable
sparse solutions to (I.1) and the associated interpretafithe coefficients that result.
Three interrelated examples are signal denoising, comsipr@soding of high dimen-
sional data, and dictionary learning or sparse componaiysis. In the first, the goal
is to find a mapping such that signal energy is concentratedfénv coefficients while
the noise energy remains relatively distributed, or isgaled to a few noise components
of an appropriately fashioned overcomplete dictionaryis Etlows for thresholding in
the transform domain to remove noise while limiting the sigtlegradation [15, 43].

Secondly, for coding purposes, sparsity can play an impbréde in redundancy reduc-



tion, leading to efficient representations of signals [@},95]. It has also been argued
that such representations are useful for modelling highedsional data that may lie in
some lower-dimensional manifold [69]. Thirdly, a large raenof overcomplete dictio-
nary learning algorithms rely heavily on the assumptiorn tha unknown sources are
sparse [31, 50, 52, 53]. These methods typically interleadietionary update step with
a some strategy for estimating sparse sources at each timie ptere the distinction
arises between learning the optimal sources at every tim foy a given dictionary
and blindly learning an unknown dictionary, which does netessarily require that we
learn the optimal source reconstruction.

Applications of sparsity are not limited to the above as bdldiscussed in the
following subsections. These descriptions representsoparticularly germane to the

research contained in this thesis.

[.LA.1 Nonlinear Parameter Estimation and Source Localizatim

Sparse solutions to (I.1) can be utilized to solve a gendaskoof nonlinear

estimation problems. Suppose we are confronted with thergéwe model

D
t=g(a,@)+e=2adf(0d)+e (1.3)
d=1
wherea = [a4, ..., ap]" is an unknown coefficient vecta® = [6, ..., 0] € RF*P

is an unknown parameter matrix, arid: R® — R is a known nonlinear function.

Givent and f(-), the goal here is to learac and©. A surprisingly large number of



parameter estimation tasks, including many ML problems beaexpressed in this form.
We will refer to this problem asource localizationsince often the parametesand
« correspond with the location and amplitude of some sourtieitgaof interest. Note
also thatD, which can be considered the number of active sources, magkewn.

Assuming thatf(-) is highly nonlinear, then estimation ef and© can be
extremely difficult and subject to numerous local optimawldeer, by densely sampling
O space, this estimation task can be mapped into the spaneseapation framework,
assumingD is sufficiently smaller thamv. This requires a dictionary to be formed with
columnsg; = f(6;), with sampling sufficiently dense to obtain the requireduaacy.
The nonzero coefficients obtained from learning a sparsdisolw correspond with
the unknownn,, while the corresponding selected columnsbogignify, to within the
guantization accuracy, the values&f . . ., 6p.

This method generally has a significant advantage over madéional non-
linear optimization techniques, in that results are musk tependent on the initializa-
tion that is used and the local minimum profile of (1.3). Thxors because, in some
sense, the sparse approximation framework considers@irce locations initially and
then prunes away unsupported values in a competitive pgocé#hile local minima
may still exist, they are local minima with respect to a mdabgl solution space and
typically a reasonable solution is obtainable. In confrashimizing (1.3) directly us-
ing some descent method considers only a single solutiotiraesand proceeds based
only on local information in the neighborhood of this sobuti Moreover, it requires

explicit knowledge ofD, whereas in theory, the sparse approximation framework can



learn this value from the data (i.e., upon convergence, tineber of nonzero elements
in w approximately equal®).

The next section, in part, addresses a particular instantteésomethodology
related to neuroimaging. Another very relevant examplé @msxrussed) involving this

framework is direction-of-arrival estimation [34, 60].

I.LA.2 Neuroelectromagnetic Source Imaging

Recent non-invasive imaging techniques based on elecepbatography (EEG)
and magnetoencephalography (MEG) draw heavily on the ugsnol of underdeter-
mined inverse problems using (implicitly or explicitly) pagse Bayesian formulation
[33, 40, 74, 75, 100]. At least two fundamental issues carddesssed under a Bayesian
sparse recovery framework. The first relates to source ikatain, the second uses
sparse component analysis to remove artifacts and analgeenrevel brain dynamics.

MEG and EEG use an array of sensors to take EM field measursiinemt on
or near the scalp surface with excellent temporal resaiutio both cases, the observed
field is generated by the same synchronous, compact cuoerdes located within the
brain. Because the mapping from source activity configunaiiosensor measurement
IS many to one, accurately determining the spatial locatairthese unknown sources is
extremely difficult. In terms of the generative model (Ithg relevant localization prob-
lem can be posed as follows: The measured EM signahisere the dimensionalityV
is equal to the number of sensors. The unknown coefficierdse the (discretized) cur-

rent values af\/ candidate locations distributed throughout the corticalaxe. These



candidate locations are obtained by segmenting a strudilRascan of a human sub-
ject and tesselating the gray matter surface with a set ¢itesr Thei-th column of®
then represents the signal vector that would be observée atalp given a unit current
source at the-th vertex. Multiple methods (based on the physical progguf the brain
and Maxwell's equations) are available for this computafi&s].

To obtain reasonable spatial resolution, the number of idatel source lo-
cations will necessarily be much larger than the number md®es. The salient inverse
problem then becomes the ill-posed estimation of theseiyadr source regions. Given
the common assumption that activity can be approximatedhypact cortical regions,
or a collection of equivalent current dipoles, the sparsevery framework is particu-
larly appropriate. Source localization using a varietyroplicit Bayesian priors have
been reported with varying degrees of success [33, 42, 71,003. This problem can
also be viewed as an instance of (1.3), wh@yeepresents the 3D coordinates of a partic-
ular current dipole and the correspondimgis the source amplitude, which is assumed
to be oriented orthogonal to the cortical surface. The casaanstrained dipoles can
be handled by adding two additional source components tdiadj& the cortex.

Direct attempts to solve (1.3) using nonlinear optimizatexhibit rather poor
performance, e.g., only two or three sources can be relegilgnated in simulation, due
to the presence of numerous local minima. In contrast, usiegparse representation
framework upwards of fifteen sources can be consistentipvexed [75]. Regardless,
the estimation task remains a challenging problem.

A second application of sparse signal processing metho&#&®/MEG in-



volves artifact removal and source separation. Whereasithierdary ¢ is computed
directly using standard physical assumptions to solvedbalization task, here we as-
sume an unknown decompositidrthat is learned from a series of observed EEG/MEG
signalst(n) varying over the time index. The dimensionality of the associatadn)

is interpreted as the number of unknown neural sources @esaplus the number of
artifactual sources and noise. A variety of algorithmstexigteratively estimate bottr
(dictionary update) andy(n) (signal update) using the a priori assumption that therlatte
time courses are sparse. In practice, it has been obserethéresulting decomposi-
tion often leads to a useful separation between unwantedlsige.g., eye blinks, heart
beats, etc.) and distinct regions of brain activity or ewetated dynamics [48, 75].
Note that all of the sparse Bayesian methods discussed ithésss, when combined
with a dictionary update rule, can conceivably be used toesddthis problem.

In summary, high-fidelity source localization and dynaneiaree detection/separation
serve to advance non-invasive, high temporal resolutieatemagnetic brain imaging
technologies that heretofore have suffered from inadegsiaatial resolution and am-
biguous dynamics. The solution of a possibly underdetezthisystem using the as-

sumption of sparsity plays a crucial role is solving bothighemns.

I.LA.3 Neural Coding

This section focuses on the role of sparse representatpmrating at the level
of individual neurons within a population. A mounting call®n of evidence, both

experimental and theoretical, suggests that the mamnadidex employs some type of



sparse neural code to efficiently represent stimuli fromethdronment [67, 72, 101].
In this situation, the observed dataepresent a particular stimuli such as a visual scene
projected onto the retina. Each column of the madrirnodels the receptive field of a
single neuron, reflecting the particular feature (e.g.hssan oriented edge) for which
the neuron is most responsive. The veci@rthen contains the response properties
of a set of M neurons to the input stimulus with a sparse code implying that most
elements otw, and therefore most neurons, are inactive at any given timkea small
set with stimulus-correlated receptive fields maintainssaittial activity or firing rates.

In many situations the number of neurons available for apgurposes is much greater
than the intrinsic dimensionality of the stimulus, posgitgflecting the existence of a
large number of potential causes underlying the space angat stimuli [69]. This
requires that the response properties of many corticalomsuare effectively nonlinear,
consistent with sparse inverse mappings associated withaihd a variety of empirical
data.

A key pointer to the potential role of sparse coding in theepssing of sensory
data came in the seminal work by Olshausen and Field [67 H&je an iterative algo-
rithm is proposed to learn a matrik that encourages/faciliates sparse representations
w when presented with patches from natural imaigesVith no other assumptions, the
® that results from this procedure contains columns reptegea full set of spatially
localized, oriented, and bandpass receptive fields cemsigtith those observed in the

simple cells of the mammalian primary visual cortex. Thisutereinforces the notion

2We will briefly discuss learning the dictionadyin Section VIII.C
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that a sparse coding principle could underly the brain'sa@lenepresentation of natural
stimuli.

As summarized in [69], sparse coding strategies offersrabaevantages to
an individual organism. For example, sparse codes froncoweplete dictionaries lead
to efficient, less redundant representations and may madasier for higher areas of
the brain to learn relevant structure and causal relatipegmbedded in sensory inputs.
Recent work using overcomplete representations in a bicddlgimotivated recognition
systems support this assertion [65]. Moreover, in undedstg how the brain processes
information, the possibility exists for building bettettificial systems for robust com-

pression and recognition.

I.LA.4 Compressed Sensing

Compressed sensing begins with the assumption that sonsestata vector
of interestw exists in a high-dimensional space [8, 20, 102]. We would tix have
access tav but direct measurement of each elemendis assumed to be very expen-
sive. As such, the objective is to obtain an accurate estitmatmeasuring only a few
random projections ofv. In this situation, each row @b becomes a random vector and
each element of is the associated measurement/projection. The goal isthetover

w using only the observed projectiohand the knowledge thab is sparse.
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[.B Definitions and Problem Statement

To simplify matters, it is useful to define

M
[wllo £ ZIHwA > 0], (1.4)

whereZ[-] denotes the indicator functiol. ||, is adiversitymeasure since it counts the
number of elements i that are not equal to zero. It is also commonly referred to as
the/, norm, although it is not actually a true norm. This is in castrtosparsity which

counts the number of elements that are strictly equal to. Zére two are related by
diversity = M — sparsity. (1.5)

The nonzero elements of any weight vector are referred &zthge sources

With regard to the dictionargp, sparkis defined as the smallest number of
linearly dependent columns [17]. By definition then< sparK®) < N + 1. Asa
special case, the condition spa® = N + 1 is equivalent to the unique representation
property from [34], which states that every subsedNofolumns is linearly independent.
Finally, we say thaf is overcompletéf M/ > N and rank®) = N.

Turning to the sparse representation problem, we beginthétimost straight-
forward case where = 0. If ® is overcomplete, then we are presented with an ill-posed

inverse problem unless further assumptions are made. Ron@e, if a matrix of gen-
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erating weightsw,., satisfies

ngenHO < Spaqu))/Qv (I-G)

then no other solutionv can exist such that = dw and ||w|lop < ||wgeo. Results
of this nature have been derived in [34] and later discuss¢t7]. Furthermore, if we
assume suitable randomness on the nonzero entrieg.pfthen this result also holds

under the alternative inequality

| Wgenl |0 < Spark®) — 1, (1.7)

which follows from the analysis in Section 11.B.2. Given thate or both of these

conditions hold, then recovering,., is tantamount to solving

Wyen = Wo = argmin ||w|o, s.t.t = dw. (1.8)

This has sometimes been called thect sparse recovery problesince any solution
forces exact (strict) equality. In general, (1.8) is NP¢hao approximate procedures are
in order. In Chapters Il and Ill, we will examine the solutioh(b8) in further detail,
which has also been studied exhaustively by others [17,295. For the remainder
of this thesis, whenever= 0, we will assume thaiv,., satisfies (1.6) or (1.7), and s@,
(the maximally sparse solution) ane., can be used interchangeably.

Whene # 0, things are decidedly more nebulous. Because noise is pyesen
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we typically do not expect to represehexactly, suggesting the relaxed optimization
problem

wo(A) £ argmin (£ = Gl + A, (1.9

where )\ is a trade-off parameter balancing estimation quality wplarsity. Unfortu-
nately, solving (1.9) is also NP-hard, nor is it clear how &est\. Furthermore, there
is no guarantee that the global solution, even if availabtelie optimal value oA, is
necessarily the best estimator#f.,, or perhaps more importantly, is the most likely
to at least have a matching sparsity profile. This latter tamdis often crucial, since
it dictates which columns ob are relevant, a notion that can often have physical sig-
nificance (e.g., in the source localization problem). Altgb not the central focus of
this thesis, if the ultimate goal is compressiortothen the solution of (1.9) may trump
other concerns.

From a conceptual standpoint, (1.9) can be recast in Bayésiars by adding
constants and applyingeap|—(+)] transformation. This leads to a Gaussian likelihood

functionp(t|w) with \-dependent variance

plthw) o cxp H“t - @wr@} (1.10)

and a prior distribution given by

po(w) o< exp [—||wl|o] - (1.12)

In weight space, this improper prior maintains a sharp peagénna weight equals zero



14

and heavy (in fact uniform) ‘tails’ everywhere else. Theimation problem from (1.9)

can equivalently be written as

(t|w)po(w)

wo(A\) = argmax p(t|w)py(w) = arg max 2 ® = argmax po(wlt). (1.12)
w w p w

Therefore, (1.9) can be viewed as a challenging MAP estonatask, with a posterior

characterized by numerous locally optimal solutions.

I.C Finding Sparse Representations vs. Sparse Regression

Before proceeding to discuss various Bayesian strategie®fang (1.8) and
(1.9), it is important to make the following distinction. many ways, the problem of
finding sparse representations can be thought of as regnessiere sparsity acts as a
regularization mechanism to avoid overfitting the traindadat as well as potentially
leading to more interpretable model structures. None$iselthere remains one sub-
tle difference: while the ultimate goal of regression is tmimize generalization error
(i.e., error on evaluation data not available during modahing), here we are more
concerned with the actual sparse representation of tha@rtgadatat. This distinction
is reflected in the results of this paper, which focus on how avparticular method is
likely to solve (1.8) or (1.9). With the exception of Chaptér,lwhich discusses how
certain sparse Bayesian strategies relate to probabiligg mmea full predictive distribu-
tion, performance on unseen data is not emphasized. Howevéhne interested reader,

there is a known relationship between sparsity of fit and geization performance as
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discussed in [39]. And so many sparsity-based regressimenses have demonstrated

marked success [86, 94] relative to predictive accuracy.

[.D Bayesian Methods

Directly solving (1.8) or (1.9) poses a difficult optimizati challenge both
because of the sharp discontinuity at zero and the combiabtmmber of local min-
ima. However, simple greedy methods offer a convenient sié&amproviding at least
locally optimal solutions. For example, there are forwaedugential selection meth-
ods based on some flavor of Matching Pursuit (MP) [61]. As thea implies, these
approaches involve the sequential (and greedy) congtrucii a small collection of
dictionary columns, with each new addition being ‘matchtedhe current residual. Al-
though not our focus, we will sometimes consi@ethogonal Matching PursufOMP),
a popular variant of MP that can be viewed as finding a localmmm to (1.8) or (1.9)
[12].

An alternative strategy is to replace the troublesome pki¢iw) with a distri-
bution that, while still encouraging sparsity, is somehoarencomputationally conve-
nient. Bayesian approaches to the sparse approximatioteprdhat follow this route
have typically been divided into two categories: rtipximum a posteriofMAP) es-
timation using a fixed, computationally tractable family pfors and, (ii)empirical
Bayesiamapproaches that employ a flexible, parameterized priorishiegarned’ from

the data. We discuss both techniques in turn.
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.D.1 MAP Estimation

A natural solution to the computational difficulty assoethtwith p(w) is
to choose the best possible convex relaxation, which tuamdoobe the standardized

Laplacian distribution
M
p1(w) o< exp <—Z\wi|>. (1.13)
i=1

Often referred to as Basis Pursuit (BP)[10], the LASSO [93]/;enorm regularized
regression, MAP estimation using this prior involves sodyvi
M
pr:argmuiJn ||t—q)w||g—|—/\2|wi|. (1.14)
=1
This convenient convex cost function can be globally miziedli using a variety of stan-
dard optimization packages. The properties of the BP costifumand algorithms for
its minimization have been explored in [17, 79, 96]. Whilesafeffective, the BP solu-
tion sometimes fails to be sufficiently sparse in practideis Bubject will be discussed
more in later sections.

A second prior that is sometimes chosen in place of the Lalpas the scale-

invariant Jeffreys prior given by

(1.15)

Although technically an improper prior [4], the heavy taaisd sharp (in fact infinite)

peak at zero mirror the characteristics of a sparse disioiou The MAP estimation
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problem then becomes

M
Wietreys = ATg Min ||t — Pew[3 + A " log |wil, (1.16)

=1

where the regularization term here has sometimes beemaéfer as the Gaussian en-
tropy [78]. This Jeffreys-based cost function suffers freamerous local minima, but
when given a sufficiently good initialization, can potehyifind solutions that are closer
to w,,, thanwyg,. From an implementational standpoint, (1.16) can be solwsdg the
algorithms derived in [27, 34].

Thirdly, we weigh in the generalized Gaussian prior

M
p(w) o exp (— Z |wi\p> , (1.17)

wherep € [0, 1] is a user-defined parameter. The corresponding optimizatioblem,
which is sometimes called the FOCUSS algorithm, involvesgisgl
M
Wrocyss = arg min ||t — dw||3 + /\Z |w;|P. (1.18)
b =1
This is very similar to a procedure originally outlined inl]%ased on work in [2]. If
p — 0, the FOCUSS cost function approaches (1.9). While this magappromising,
the resultant update rule in this situation ensures (forfamnte \) that the algorithm

converges (almost surely) to a locally minimizing solut@hsuch thatt = ®w’ and

|w'||o < N, regardless of\. The set of initial conditions whereby we will actually
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converge tavy(A) has measure zero. When= 1, FOCUSS reduces to an interior point
method for implementing BP [78]. The FOCUSS framework alstuthes the Jeffreys
approach as a special case as shown in Appendix VI.H.1. ktipeait is sometimes
possible to jointly select values gfand A such that the algorithm outperforms both
BP and Jeffreys. In general though, with BP, Jeffreys, and FG&W$nust be tuned
with regard to a particular application. Also, in the limg& a becomes small, we can
view each MAP algorithm as minimizing the respective ditgnmeasure subject to the
constraint = dw. This is in direct analogy to (1.8).

Because the FOCUSS framework can accommodate all the thétypaicrs
mentioned above, and for later comparison purposes witr otlethods, we include the
FOCUSS update rules here. These rules can be derived in nafrgettings, including
the EM algorithm [70]. This requires expressing each pmioteirms of a set of latent
variablesy = [y1,...,vy|" which are treated as hidden data. Details will be discussed
further in Chapter V. The E-step requires computing the ebgokecalue ofy givent

and the current weight estimai using

Yi = |’(Z)Z‘|2_p, VZ, (llg)

while the M-step updates via

W =TT (A + eTe?) ' ¢, (1.20)

wherel’ £ diag(~). These updates are guaranteed to converge monotonicallptal
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minimum (or saddle point) of (1.18).
In the low-noise limit, i.e., a3 — 0, the M-step can be seamlessly replaced
with

W =T2 (er/2) "¢, (1.21)

where (-)" denotes the Moore-Penrose pseudo-inverse. This resldwiolfrom the
general identity

lim U (e +UU™) " = U, (1.22)

In this manner, all of the methods from above can be used tooappate (1.8). We
observe that at each iteratiain is feasible, i.e.t = dw. This assumes thdtis in the
span of the columns @b associated with nonzero elementsyinwhich will always be

the case it is in the span of and all elements of are initialized to nonzero values.

I.D.2 Empirical Bayes

All of the methods discussed in the previous section fonesingw,., involve
searching some implicit posterior distribution for the radxy solvingarg max,, p(w, t) =
arg max,, p(t|w)p(w), wherep(w) is a fixed, algorithm-dependent prior. At least two
significant problems arise with such an endeavor. Firstnif @ moderately sparse
prior such as the Laplacian is chosen as with BP, a unimodé&posresults and mode-
finding is greatly simplified; however, the resultant pastemode may not be suffi-
ciently sparse, and therefoke,, may be unrepresentative af,., (or the maximally

sparse solutiom,). In contrast, if a highly sparse prior is chosen, e.g., #ifgelys prior
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or a generalized Gaussian with< 1, we experience a combinatorial increase in local
optima. While one or more of these optima may be sufficientfyspand representative
of w,., finding it can be very difficult if not impossible.

So mode-finding can be a problematic exercise when sparses @ie in-
volved. In this section, a different route to solving thersparepresentation problem
is developed using the conceptaftomatic relevance determinati¢ARD), originally
proposed in the neural network literature as a quantitateans of weighing the relative
importance of network inputs, many of which may be irrelé\&@, 66]. These ideas
have also been applied to Bayesian kernel machines [94]. Ankggdient of this for-
mulation is the incorporation of aempirical prior, by which we mean a flexible prior
distribution dependent on a set of unknown hyperparaméatsmust be estimated
from the data.

To begin, we postulatg(t|w) to be Gaussian with noise varianaeconsis-
tent with the likelihood model (1.10) and previous Bayesiagetimods. Generally) is
assumed to be known; however, the case whasenot known will be discussed briefly
in Section VIII.LA. Next, application of ARD involves assigig to each coefficent;

the independent Gaussian prior

p(wi;v) =N (0,7), (1.23)

where~; is an unknown variance parameter [94]. (In Chapter V we witlrads how

thesey,; parameters relate to those from the MAP section.) By comgiaach of these
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priors, we arrive at a full weight prior

M
p(w;y) = [ [ p(wi ), (1.24)
=1
whose form is modulated by the hyperparameter vegtor [y1,...,7u|" € RY.

Combining likelihood and prior, the posterior densitywofthen becomes

oy Pwity)

with mean and covariance given by

Y £ Covwl|t;y] =T -TeTL eI,

Elwl|t;v] = TS, ¢, (1.26)

T
|

wherel' = diagv) as before and;, = A\ + ®I'd7.

Since it is typically desirable to have a point estimatedgy,, we may enlist
w, the posterior mean, for this purpose. Sparsity is natuedhieved whenever g
is equal to zero. This forces the posterior to satisfy Pugb= 0O|t;y; = 0) = 1,
ensuring that the posterior mean of thth elementy;, will be zero as desired. Thus,
estimating the sparsity profile of some,,, is shifted to estimating a hyperparameter
vector with the correct number and location of nonzero elgmeThe latter can be

effectively accomplished through an iterative processufised next.
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Hyperparameter Estimation: The SBL Algorithm

Each unique value for the hyperparameter vegtaorresponds to a different
hypothesis for the prior distribution underlying the geatem of the data. As such,
determining an appropriatgis tantamount to a form of model selection. In this context,
the empirical Bayesian strategy for performing this task iseat the unknown weights
w as nuisance parameters and integrate them out [56]. Themahligelihood that

results is then maximized with respectipleading to the ARD-based cost function

aw:é—m%/imwawmwz—m%pww

= log|%| + 751, (1.27)

where a—2log(-) transformation has been added for simplicity.

The use of marginalization for hyperparameter optimizaiio this fashion
has been proposed in a variety of contexts. In the classiabsétics literature, it has
been motivated as a way of compensating for the loss of degifdecedom associated
with estimating covariance components along with unknovemghts analogous ta
[36, 37]. Bayesian practitioners have also proposed ths &$ea natural means of in-
corporating the principle of Occam’s razor into model sttet, often using the descrip-
tion evidence maximizatioor type-Il maximum likelihoodo describe the optimization
process [4, 56, 66].

Two ways have been proposed to minimizey) with respect toy. (Section

VII.B.1 briefly discusses additional possibilities.) Fjrseating the unknown weights
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w as hidden data, we can minimize this expression guesing a simple EM algorithm

as proposed in [13, 37, 94] for covariance estimation. FerHhkstep, this requires
computation of the posterior moments using (1.26), whilke Mstep is expressed via
the update rule

%(new) =243 Vi=1,...,M. (1.28)

While benefitting from the general convergence properti¢is®EM algorithm, we have
observed this update rule to be very slow on some large pedetpplications.
Secondly, at the expense of proven convergence, we mayasigtimize
(1.27) by taking the derivative with respect4q equating to zero, and forming a fixed-
point equation that typically leads to faster convergeride p4]. Effectively, this in-

volves replacing the M-step from above with
L o S T VS (1.29)

We have found this alternative update rule to be extremedyulisn large-scale, highly
overcomplete problems, although the results upon conaeggare sometimes inferior
to those obtained using the slower update (1.28). In thesstbioff kernel regression using
a complete dictionary (meaniny = M), use of (1.29), along with a modified form of
(1.26).2 has been empirically shown to drive many hyperparameterio, allowing
the associated weights to be pruned. As such, this procedselea referred to a&parse

Bayesian learningSBL) [94]. Similar update rules have also been effectivgiplieed

3This requires application of the matrix inversion lemmaoo'.
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to an energy prediction competition under the guise of ARD.[B@r our purposes, we
choose the label SBL (which stresses sparsity) to refer tptbeess of estimating,
using either the EM or fixed-point update rules, as well asstitesequent computation
and use of the resulting posterior.

Finally, in the event that we would like to find exact (noised) sparse repre-
sentations, the SBL iterations can be easily adapted to @danellimit asA — 0 using

the modified moments

L= 1=V (@) el r, =T (arh2) e, (1.30)

This is particularly useful if we wish to solve (1.8). Againevare ensured a feasible
solution will be produced at each iteration with a sparsityfite dictated byy.
1.D.3 Summary of Algorithms

Given observation dathand a dictionaryp, all of the MAP and SBL proce-

dures can be summarized by the following collection of steps

1. Initialize the hyperparametefs e.g.,v := 1 or perhaps a non-negative random

initialization.

2. For SBL, compute: and i using (1.26), or in the noiseless case, using (1330).

For MAP estimation, only: need be computed, which equals thaipdate.

“Note that off-diagonal elements Bf need not be computed.
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3. For SBL updatey using the EM rule (1.28) or the faster fixed-point rule (1.29)

For MAP estimation, use the update rule (1.19).

4. lterate Steps 2 and 3 until convergence to a fixed pgint

5. Assuming a point estimate is desired for the unknown weigh.,, choosep*,

the value ofu evaluated aty*.

6. Given thaty* is sparse, the resultant estimajer will necessarily be sparse as

well.

In practice, some arbitrarily small threshold can be set $hiat, when any hyperparam-
eter becomes sufficiently small (e.40,71), it is pruned from the model (along with the

corresponding dictionary column).

|.E Thesis Outline

The remainder of this thesis is organized as follows. In Gévalptwe pro-
vide a detailed, comparative analysis of the global and lmtaima of both MAP and
empirical Bayesian methods for finding sparse representatiSpecial focus is placed
on SBL, which is shown to have a number of attractive featu€dsapter Il then de-
scribes how the distribution of the nonzero weights affdu¢sSBL algorithm’s ability
to find maximally sparse solutions and provides evidencét$osuperior performance
over popular competing methods.

Chapter IV switches gears and provides a more intuitive rattm for why

SBL is able to achieve sparse solutions. It also details hev6BL model relates to the
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probability mass in a full Bayesian model with a sparse prior.

The analysis thus far centers on comparing SBL with a few @opMIAP-
based methods. However, recent results have shown thah aetoof latent variable
models with sparse priors can be efficiently optimized legdo alternative MAP and
empirical Bayesian approaches. Chapter V provides a theafrettamination of these
types of models and demonstrates a unique procedure, olittbé gossibilities, that
satisfies two minimal performance criteria related to theovery of sparse sources.
SBL and BP can be viewed as special cases. The distinction betfaetorial and non-
factorial priors is also discussed.

While the standard sparse recovery model is sufficient forynagplications,
additional flexibility is needed in certain cases. The nextthapters extend this frame-
work to handle more general modelling assumptions. In Chafitewe assume that
multiple response vectotsare available that were putatively generated by the same un-
derlying set of features. The goal is then to assimilaterife@ination contained in each
response so as to more reliably estimate the correct sparsifile. An extension of
SBL for solving this problem is derived and analyzed.

Chapter VII further extends the flexibility of sparsity-bds®AP and em-
pirical Bayesian methods to handle the more general probferovariance component
estimation. This added generality is especially saliettiércontext of neuroelectromag-
netic source imaging, where we derive some new algorithrdspamt to connections
between existing source imaging approaches.

Chapter VIl addresses some practical issues that arise isetirch for sparse
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representations. It also discusses the extension to dartidearning, deriving a partic-
ularly effective algorithm for learning orthogonal traoshs that encourage sparisty.

Chapter IX contains brief concluding remarks.



Chapter Il

Analysis of Global and Local Minima

This chapter is primarily aimed at evaluating the propertieglobal and lo-
cal minima of the empirial Bayesian SBL algorithm and its rielaghip with more es-
tablished MAP methods. Ideally, a given method should hagklbal minimum that
closely coincides withw,., while maintaining as few suboptimal local minima as possi-
ble. The major result of this chapter is showing that, whilke global minimum of both
SBL and certain MAP procedures are guaranteed to corresphanaximally sparse
solutions under certain conditions, the former has subiathrfewer local minima. We
also derive necessary conditions for local minima to ocagrguantify worst-case per-
formance at locally minimizing solutions. Several emgalticesults (here and in later
chapters) corroborate these findings.

Much of the analysis will focus on the exact recovery prob(éB), i.e., find-
ing the maximally sparse solutiow, which we will assume equala,., The exact

recovery case is a useful starting point for comparing nethmecause the analysis is

28
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more straightforward and there is no ambiguity involvedaregng how the trade-off pa-
rameter\ should be chosen. Moreover, many of the insights gainedigfirthis process
carry over to the case where noise is present and we are foycactept some error
betweent and the estimatéw. Extensions to the noisy case are briefly addressed, but

will be explored further in Section VI.E.3 in a slightly mageneral context.

II.LA  Preliminaries

Consistent with previous discussion, we say that a dictipdasatisfies the
unique representation properfWRP) if every subset oV columns of® forms a basis
in RY. This property will be satisfied almost surely for dicticiearcomposed of iid
Gaussian elements, or dictionaries whose columns haveawendiniformly from the
surface of a unit hypersphere. fasic feasible solutio(BFS) is defined as a solution
vectorw such thatt = dw and||wl|, < N. As will be explained more below, the
locally minimizing solutions for all algorithms considerare achieved at BFS. ée-
generateBFS has strictly less thatv nonzero entries; however, the vast majority of
local minima are non-degenerate, containing exastlyonzero entries.

Regarding algorithmic performance in obtaining sparsetswis, we define
two types of errors. First, @onvergence errorefers to the situation where an algorithm
converges to a non-global minimum of its cost function tha¢sinot equatvy. In
contrast, astructural errorimplies that an algorithm has reached the global minimum of
its cost function (or a local minima with lower cost than isi@wvable at the maximally

sparse solutiom,), but this solution does not equa,.
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I1.B  MAP Methods

This section discusses the properties of global and lodatisns using stan-
dard MAP procedures. This leads to a discussion of what wa telocal sparsity

maximizationLSM) algorithm.

II.B.1 MAP Global Minima and Maximally Sparse Solutions

The MAP methods from Section 1.D.1 applied to the exact sparsblem
(1.8) reduce to solving either
M
minZlog |w;|  s.t. t = dw (1.2)
=1

assuming the Jeffreys prior, or

M
minz |w;|? s.t. t = dw (1.2)

=1
assuming a generalized Gaussian prior, for which the Lapilas a special case (equiv-
alent to assuming = 1). With regard to globally minimizing solutions, the anatys
is very simple. In the limit ap — 0, it can be shown that (ll.1) is a special case of
(11.2) both in terms of the resulting cost function and theasated update rules that
result (see [78] and Appendix VI.H.1 for more discussion)n€&guently, we only need
consider (11.2) without loss of generality. As described54], there exists @’ suffi-
ciently small such that, for all < p < p/, the global minimum of (I.2) will equal the

maximally sparse solution tbo= dw. However, thig’ is dependent o andt and can
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be arbitrarily small. Moreover, there is no way to determisevalue without a priori
knowledge of the global solution. But the point here is fhaeed not equal zero exactly
in order to be guaranteed that (11.2) produagswhen globally optimized. Equivalently,
we can say there will always bepasufficiently small such that no structural errors are
possible.

As p — 1, there is increasingly less likelihood that the global minim to
(11.2) will be maximally sparse. While significant attentibilas been given to estab-
lishing equivalence conditions whereby the glopat 1 solution will in fact equakw,
[17, 18, 29, 35, 95], these conditions tend to be extremedirictive, and therefore dif-
ficult to apply, in many practical situations. And so in gealestructural errors can be
frequent as shown empirically in Sections [1.D.2, 111.D gavil.D.

In the neuroimaging applications with which we are concermeost existing
equivalence conditions only allow for trivial sparse reexgvproblems, if any, to be
solved. Appendix Il.F.2 contains a brief example of a BP eajernce condition and the
associated difficulty applying it in the context of MEG/EE@Gusce imaging. Chapter

VIl evaluates neuroimaging-specific issues in greaterildeta

I1.B.2 Analysis of Local Minima

Whenp = 1, it is well known that the resulting optimization problencisn-
vex, whether\ — 0 or not. Consequently, convergence to undesirable localisnhiis

not generally an issueWhenp < 1, things are decidedly different. Local minima pose

Lt is possible, however, to have multiple globally minimizing solutions, all cwdito the same basin of attrac-
tion, in certain nuanced situations.
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a clear impediment to achieving globally optimal solutioasd therefore, quantifying
the number and extent of such minima is important. While tgrideterministic results
may be evasive in general, the issue can be addressed pistizaiy. To facilitate this

goal, we first present the following result (see Appendik.1l.for proof):

Lemma 1. If ¢ satisfies the URP, then the set of BFStte= dw equals the set of

locally minimizing solutions to (11.2) assuminge [0, 1).

Assuming the URP holds (as is the case almost surely for dities formed from iid
elements drawn from a continuous, bounded probabilityignse can conclude from
Lemma 1 that we need only determine how many BFS exist whertioguihe number
of local minima for the case whepe< 1.

The number of BFS, and therefore the number of local minimapismded

M-1

between("

) + 1 and (Y); the exact number depends trand® [34]. Given that
usuallyM > N, even the lower bound will be huge. The exact number can lesssd
more precisely in certain situations. For example, if weiassthere exists only a single
degenerate sparse solution withy < N nonzero elements, then this solution is by
definition the maximally sparse solutian,. Under these circumstances, it is a simple
matter to show that the total number of BFS, dendtéd, is given by(y) — (Y =1°) +1.

But in what situations is our assumption of a single degead®&S6 valid? The following

Lemma addresses this question (see Appendix II.F.1 forrbef)p

Lemma 2. Let ® ¢ R¥*M M > N be constructed such that it satisfies the URP.

Additionally, lett € RY satisfyt = ®w, for somew, such that|w)|jo = Dy < N,
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with non-zero entries ofv, drawn independently and identically from a continuous,
bounded density. Then there is almost surely no other soluti # w, such that

t = dw and||w|o = D < N.

Given that the conditions of Lemma 2 are satisfied, we may toeclude that,

M M — Dy,
P{Nm: <N> - (N_DO) +1} ~ 1. (11.3)

So for an arbitrary initializationv and assuming/ > N, we cannot guarantee (i.e.,
with probability one) that the FOCUSS algorithm (or any ottlescent method) will
avoid converging to one of th&4.s — 1 suboptimal local minima (i.e., a convergence
error per our previous definition), each with suboptimakdsity given by||w||, = N.
However, while the number of local minima is the same fopadl 1, the relative sizes
of the basins of attraction for each corresponding localimmnis not. Asp — 1, the
basins of attraction favor solutions resembling the= 1 case become much larger,
thereby increasing the likelihood that a random initiaia will produce the minimum
¢1-norm solution.

In the more general case where we would like to relax theicéisin t = dw
exactly, the analysis of global and local minima is decigledbre complex. However,

it has been shown that the corresponding MAP estimationi@nob

M
min ||t — dwl[3 + A wl” (11.4)

i=1
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will have at mostN nonzero entries at any local minimum for amye [0, 1] and\ €

(0, 00) [79].

[1.B.3 Discussion

The discussion in the preceding sections leads to a natetatdmy between
two strategy extremes for obtaining sparse solutions vidPMatimation. We can either,
(a) Choose to keep a cost function whose global minimum presgltice maximally
sparse solution and then deal with the local minima that @ndthis implies we will
incur no structural errors but may encounter frequent cgarece errors. Or we can, (b)
Substitute a convex surrogate measure in place of the #sable/; norm (i.e., the/;
norm which follows from a Laplacian prior) that leads to a emtmactable optimization
problem but whose global minimum often does not equgl This means there will be
no convergence errors but potentially many structuralrerro

The first case leads to what will we céddical sparsity maximizatiogLSM)
algorithms. We will use this label to refer to any descenbatgm that employs a cost
function whose global and local minima can be achieved bytwwis that globally and
locally minimize (1.8) respectively. From the precedingabysis we know that MAP
estimation (in the noiseless limit) using the EM algorithoalifies when either a gen-
eralized Gaussian with sufficiently small or a Jeffreys prior is chosen. While all of
these methods are potentially very useful candidates fdmfinsparse solutions, their
Achilles heel is that a combinatorial number of local miniexast.

One potential advantage of using an LSM algorithm is thatr gmdutions
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can be thrown out and the algorithm reinitialized repeatedtil a suitable estimate is
found. This method has been shown to be somewhat succesdfi]iand benefits
from the fact that many LSM methods converge rapidly, megivat multiple runs
are feasible. In contrast, if the minimufg-norm solution is computed and found to
be unacceptable, reinitialization is fruitless, sincergwarting point leads to the same
solution. This is the price we must pay for incorporating &feotive function whose
global minimum need not coincide with the global minimum lo8), and so regardless

of initialization option (b) may fail.

[I.C Sparse Bayesian Learning

In an ideal setting, we would like to experience no convecgesnrors or struc-
tural errors such that we would be sure of always finding makinsparse solutions.
While this is generally not possible given the NP-hardnegh@Eparse recovery prob-
lem, perhaps there is a better way to manage the trade-offitheurrently available
using the MAP framework. In this section, we prove that SBU$® & LSM algorithm
when)\ — 0, implying that it will never produce structural errors. $hnay come as
somewhat of a surprise since the SBL objective function im#&sgly unrelated to (1.8).
We then show that it maintains provably fewer local minima &merefore, displays
vastly fewer convergence errors than previous LSM algor#thThe net result is fewer

total errors than any of the MAP procedures discussed above.
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[I.C.1 SBL Global Minima and Maximally Sparse Solutions

To qualify as an LSM, we must first show how global minima of 8#L cost
function

L(v;A=¢) =log |l + ®T®T| 4 ¢7 (eI + OT'DT) ' ¢ (11.5)

relate to maximally sparse solutions in the limit aspproaches zero. Since SBL
operates in hyperparameter space, the connection is esptrent than in the MAP

case, but no less viable. The following theorem quantifiesréiationship.

Theorem 1. Let W, denote the set of weight vectors that globally minimize)(W&h

¢ satisfying the URP. Furthermore, &f(=) be defined as the set of weight vectors
{'w** D ow,, =1,07 (eI + @F**ch)‘l t, Yo =argmin L(y; A = 5)} . (11.6)
Y

Then in the limitag — 0, if w € W(e), thenw € W,.

The weight estimator used faw.. is just the posterior mean derived in Section I.D.2.
A full proof of this result is available in Appendix II.F.3;0lwever, we provide a brief
sketch here. First, as shown in the next section, every fagamum of L(y; A = ¢) is
achieved at a basic feasible solutigp i.e., a solution withV or fewer nonzero entries,
regardless of. Therefore, in our search for the global minimum, we onlycheeamine

the space of basic feasible solutions. As we allot® become sufficiently small, we

2When convenient, we will usé€(v; \) to denote the SBL cost function when> 0 and reservel(~) for the
specific case wherk = 0.
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show that

L(ve; A =¢) = (N — [[%]lo) log(e) + O(1) (I.7)

at any such solution. This result is minimized when. ||, is as small as possible. A
maximally sparse basic feasible solution, which we dengte can only occur with
nonzero elements aligned with the nonzero elements of s3orae)V,. In the limit as
¢ — 0, w,. becomes feasible while maintaining the same sparsity prady..., leading
to the stated result.

This result demonstrates that the SBL framework can provideftective
proxy to direct/y-norm minimization. More importantly, in the next sectior will

show that the limiting SBL cost function, which we will henogh denote
L(y) £ lim L(v; A = &) = log [BI"| + ¢ (ere”) ¢, (11.8)

often maintains a much more attractive local minima profilant comparable MAP

methods.

I1.C.2 Analysis of Local Minima

Like the MAP approaches, we will now show that SBL local miniar@
achieved at BFS which, when combined with Theorem 1, enshe¢sSBL is also an
LSM algorithm per our definition. But not all LSM algorithmseacreated equal. We
will also show that the converse is not truevery BFS need not represent an SBL lo-

cal minimum Necessary conditions are derived for local minima to o¢eading to a
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simple geometric example of how SBL can have many fewer thewiqgus MAP-based
LSM methods. This is a key factor in SBL's superior performe@aas demonstrated later
in Section 11.D.2. Additionally, we show that even when mois present, SBL local

minima produce solutions with at mo3t nonzero elements.

Local Minima and BFS

This section proves that all local minima 6f~; \) are achieved at solutions
with at most/N nonzero elements, regardless of the valua.oThis leads to a simple
bound on the number of local minima and demonstrates that SBIso an LSM. First

we introduce two lemmas that are necessary for the maintresul

Lemma 3. log || is concave with respect 0 (or equivalentlyy).

Proof: In the space of psd matrices (suchg$, log| - | is a concave function (see
e.g., [41]). Furthermore, based on Theorem 5.7 in [85], ifigcfion f(-) is concave
onRR™ and.A is an affine transformation frof™ to R™, then f(.A(-)) is also concave.

Therefore, by defining

=
s
I

log | X | (1.9)

P
2
I3

M+ oro7, (11.10)

we achieve the desired result. [ |
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Lemma 4. The termt”%; 't equals a constar® over all v satisfying theN linear

constraintd = A~ where

b 2 t—)u (I1.11)

A 2 ddiag®’u) (1.12)

andw is any fixed vector such thatu = C.

Proof: By construction, the constraimt (A + ®I'®7)~'t = C' is subsumed by the
constraint A\ + ®Ir'd7) "'t = u. By rearranging the later, we get- \u = ®I'd7u or
equivalently

t — \u = ®diag @’ u)~, (11.13)

completing the proof. [ |

Theorem 2. Every local minimum of£(+; \) is achieved at a solution with at mast

nonzero elements, regardless of the valug.bf

Proof: Consider the optimization problem

min : fv)

subjectto: Ay =b, v >0, (11.14)

3This does not rule out the possibility that anothewill also obtain the same local minimum, i.e., a given basin
could potentially include multiple minimizing at the bottom if certain conditions are met. However, included in
this local minimizing set, will be a solution with at mat nonzero elements.
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whereb and A are defined as in (11.11) and (11.12) arfigy) = log |3;|. From Lemma 4,
the above constraints hotd’Y; 't constant on a closed, bounded convex polytope (i.e.,
we are minimizing the first term of (+; A) while holding the second term constant to
some(). Also, Lemma 3 dictates that the objective functifiry) is concave.

Clearly, any local minimum of(~; \), e.g.,I'., must also be a local minima
of (1.14) with

C=t"u=t"(\ + oI, 07) 't (11.15)

However, based on [55] Theorem 6.5.3, a minimum of (ll.14adkieved at an extreme
point and additionally, Theorem 2.5 establishes the etpric® between extreme points
and BFS. Consequently, all local minima must be achievable &t dFa solution with

vllo < N. |

Corollary 1. If A = 0 and® satisfies the URP, then every local minimumzgfy) is
achieved at a solutiof, = w? wherew, is some BFS té¢ = ®dw and the(-)? operator

is understood to apply elementwise.

Proof: Assume some local minimg, is obtained such thaty.|o = N. Definey to
be the vector of nonzero elementsynand® to be the associated dictionary columns.
Letw £ ®~'t, and sow represents the nonzero elements of some BFS. Thenisfa

local minimum toL(+y), v must (locally) minimize the constrained cost function

L(7) = log|®F@"|+¢" (zf)fzfﬂ)l ¢
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N 2
_ (log% ; %) . (11.16)
1 i

1=

The unique minimum is easily seen to Be= w? for all .. Upon padding with the
appropriate zeros, we obtain the desired result. Findle/case whergy.|o < N can
be handled in a similar manner by arbitrarily addiNg- ||v.]o columns to® and pro-

ceeding as before. [ |

Corollary 2. If A = 0 and® satisfies the URP, then

M—1 M
#0fSBL  _ #OfBFSto _ K )+1,< )} (11.17)
Local Minima t = dw N N

Proof: From Corollary II.C.2, there can be at most one SBL local mimmassociated

1 <

with each BFS ta = dw. It follows then that the total number of SBL local minifna

cannot be greater than the number of BFS. The lower bound surée trivial. [ |

Along with Theorem 1, these results imply that SBL is also aM|-&ssum-
ing a proper descent method is used to optimize its costifumctHowever, in the
remainder of this chapter we will show that the actual nunth&BL local minima can
be well below the upper bound of (11.17) in many practicaligitons (unlike previous

LSM methods). In fact, only in particularly nuanced sitoas will the upper bound be

4By local minima here, we implicitly mean separate basins (which could pollgritéve multiple minimizing so-
lutions at the bottom). Of course the relative sizes of these basins, aasitled! relative proximity of any initialization
point to the basin containing the global minimum are very important factors.
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reached. Later, Chapter Il will demonstrate conditions nebg the lower bound can

be reached.

Eliminating Local Minimum

Thus far, we have demonstrated that there is a close afiiidietween the
limiting SBL framework and the the minimization problem pd$s (1.8). We have not,
however, provided any concrete reason why SBL should bernpeefever current MAP
methods of finding sparse solutions. In fact, this prefeeaaaot established until we
more carefully explore the problem of convergence to locaimma.

As discussed in Section 11.B, the problem with MAP-based LSkthods is
that every BFS, of which there exist a combinatorial numbeavoidably becomes a
local minimum. However, what if we could somehow eliminateoamost of these ex-
trema? For example, consider the alternate objective famg¢i{w) £ min(||w]|o, N),

leading to the optimization problem

mui,n f(w), s.tt=dw. (11.18)

While the global minimum remains unchanged, we observe thlatal minima occur-
ring at non-degenerate BFS have been effectively removeather words, at any solu-
tion w, with N nonzero entries, we can always add a small compamentc Null ()
and maintain feasibility without increasinw), sincef(w) can never be greater than

N. Therefore, we are free to move from BFS to BFS without increpgiw). Also,
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the rare degenerate BFS that do remain, even if suboptinekparser by definition.
Therefore, locally minimizing our new problem (11.18) iseally superior to locally
minimizing (1.8). But how can we implement such a minimizatfrocedure, even ap-
proximately, in practice?

Although we cannot remove all non-degenerate local mininthdill retain
computational feasibility, it is possible to remove manytlem, providing some mea-
sure of approximation to (I11.18). This is effectively whataccomplished using SBL as
will be demonstrated below. (Chapter V deals indirectly witis issue as well when we
talk about non-factorial priors such asp [ f(w)].) Specifically, we will derive nec-
essary conditions required for a non-degenerate BFS tosepra local minimum to
L(~). We will then show that these conditions are frequendysatisfied, implying that
there are potentially many fewer local minima. Thus, locatinimizing £(~) comes
closer to (locally) minimizing (11.18) than traditional MA-based LSM methods, which

in turn, is closer to globally minimizingw||o.

Necessary Conditions for Local Minima

As previously stated, all local minima #(~) must occur at BFSy, (in the
sense described in the previous section). Now suppose thdtawe found a (non-
degeneratey, with associatedv, computed using (1.30) and we would like to assess
whether or not it is a local minimum to our SBL cost function.r Eonvenience, let
w again denote théV nonzero elements of, and ® the associated columns df

(thereforet = dw andw = EIS‘lt). Intuitively, it would seem likely that if we are not
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at a true local minimum, then there must exist at least ongiaddl column of® not in
P, e.g., some, that is somehow aligned with or in some respect simildr tdoreover,
the significance of this potential alignment must be assessative tod. But how do
we guantify this relationship for the purposes of analyzowal minima?

As it turns out, a useful metric for comparison is realizecgwive decompose
x with respect tab, which forms a basis iR under the URP assumption. For example,
we may form the decomposition = $v, whered is a vector of weights analogous
to w. As will be shown below, the similarity required betweerandt (needed for
establishing the existence of a local minimum) may then bézed by comparing the
respective weight® andw. In more familiar terms, this is analogous to suggesting
that similar signals have similar Fourier expansions. kebgave may expect that id
is ‘close enough’ taw, thenx is sufficiently close ta (relative to all other columns in

5) such that we are not at a local minimum. We formalize thisiidia the following

theorem:

Theorem 3. Let ¢ satisfy the URP and lef, represent a vector of hyperparameters
with N and only N nonzero entries and associated basic feasible solutiea o1t
Let X denote the set af/ — N columns of® not included in® and) the set of weights

given by{fb’ =0z, x € X}. Then. is a local minimum of£ () only if

U< weev. (11.19)

w;W;

i#]

Proof: If ~, truly represents a local minimum of our cost function, thiea following
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condition must hold for alle € X’:

OL(7.)
0z

0, (11.20)

where~, denotes the hyperparameter corresponding to the basisrvectin words,
we cannot reducé&(,) along a positive gradient because this would ptsloelow
zero. Using the matrix inversion lemma, the determinamtithe and some algebraic

manipulations, we arrive at the expression

oL(v)  a'Ba < ' Ba ) (1.21)

0.  l+~va™Bx \1+,z7Bx

whereB £ (#I'd7)~!. Since we have assumed that we are at a local minimum, it is

straightforward to show thdt = diag(w)? leading to the expression
B = & Tdiagw) 2" (11.22)

Substituting this expression into (11.21) and evaluatihgha point~, = 0, the above

gradient reduces to

OL(vx)
0z

=" (diagw o) —w 'lw "), (1.23)

wherew ! £ [w; ', ..., wy']?. This leads directly to the stated theorem. u
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This theorem provides a useful picture of what is requireddoal minima to exist and
more importantly, why many BFS are not local minima. Morepvkeere are several
convenient ways in which we can interpret this result to atoodate a more intuitive

perspective.

A Simple Geometric Interpretation

In general terms, if the signs of each of the elements in angivatch up with
w, then the specified condition will be violated and we canreaba local minimum.
We can illustrate this geometrically as follows.

To begin, we note that our cost functiai(~) is invariant with respect to
reflections of any basis vectors about the origin, i.e., we raltiply any column of
® by —1 and the cost function does not change. Returning to a caedioeal min-
imum with associated®, we may therefore assume, without loss of generality, that
® = ddiag(sgn(w)), giving us the decompositioh = dw, w > 0. Under this as-
sumption, we see thdtis located in the convex cone formed by the columné ofVe
can infer that if anyz € X (i.e., any column ofb not in ®) lies in this convex cone,
then the associated coefficiemtsnust all be positive by definition (likewise, by a simi-
lar argument, any in the convex cone of @ leads to the same result). Consequently,
Theorem 3 ensures that we are not at a local minimum. The sigiplexample shown
in Figure 1.1 helps to illustrate this point.

Alternatively, we can cast this geometric perspective imgeof relative cone

sizes. For example, l&t; represent the convex cone (and its reflection) forme&)by
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Figure I.1: 2D example with @ x 3 dictionary® (i.e., N = 2 andM = 3) and a basic
feasible solution using the columds= [¢; ¢,]. Left In this casex = ¢ does not
penetrate the convex cone containingnd we do not satisfy the conditions of Theorem
3. This configuration does represent a minimizing basicili@solution. Right Now

x is in the cone and therefore, we know that we are not at a SBI toramum; but
this configuratiordoesrepresent a local minimum to current LSM methods.

Then we are not at a local minimum fg(~y) if there exists a second convex cofie
formed from a subset of columns @fsuch that ¢ C' C Cj, i.e.,C is a tighter cone
containingt. In Figure Il.1¢ight), we obtain a tighter cone by swappimgor ¢s.

While certainly useful, we must emphasize that in higher disnans, these
geometric conditions amnmuchweaker than (11.19), e.g., if alt arenotin the convex
cone of®, we still may not be at a local minimum. In fact, to guarantdecal min-
imum, all z must be reasonably far from this cone as quantified by (II.C¥)course
the ultimate reduction in local minima from tHé'. ') + 1 to (/) bounds is dependent
on the distribution of basis vectors taspace. In general, it is difficult to quantify this
reduction except in a few special cases. For example, ingbea case whergis pro-
portional to a single column @b, the number of BFS, and therefore the number of local
minima to standard LSM algorithms, eque(lzg];l) + 1 (this assume® satisfies the

URP). In contrast, SBL is unimodal under these conditiond) wie unique minimum
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producingw,. The proof of this claim follows as a special case of Coroldiscussed
in Section I11.B, which addresses criteria whereby SBL hasiguenminimum? While
detailed theoretical analysis is difficult in more generalations, the next section em-
pirically demonstrates that the overall reduction in laoadima can be very substantial,

ultimately leading to a higher probability of recovering.

[I.D Empirical Results

This section serves to empirically substantiate many oftteeretical ideas of

this chapter.

[I.D.1 Local Minima Comparison

To show that the potential reduction in local minima deripeglviously trans-
lates into concrete results, we conducted a simulationysiigthg randomized dictio-
naries, with columns drawn uniformly from the surface of at imypersphere. Ran-
domized dictionaries are of particular interest in signmalcessing and other disciplines
[11, 17, 22, 80, 102]. Moreover, basis vectors from manyweald measurements can
often be modelled as random. In any event, randomized deties capture a wide
range of phenomena and therefore represent a viable berchondesting sparse re-
covery methods. At least we would not generally expect aardlgn to perform well
with a random dictionary and poorly on everything else. Aiddally, this particular

mechanism for generating dictionaries is advocated in §s8h useful benchmark and

5|t can also be viewed as a special case of Theorem 9 presented imSécHal.
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is exactly what is required in compressed sensing appicatj20, 102]. Regardless,
related experiments with other dictionary types, e.g.rgai orthobases, yield similar
results.

Our goal was to demonstrate that MAP-based LSM algorithrienafonverge
to local minima that do not exist in the SBL cost function. Ta@uoplish this, we
repeated the following procedure for dictionaries of vasigizes. First, we generate a
randomN x M dictionary ® whose columns are each drawn uniformly from a unit
sphere. Sparse weight vectaus,, are randomly generated withw,. |0 = 7 (and
uniformly distributed amplitudes on the nonzero composkeniThe vector of target
values is then computed &s= Pw,.,. The LSM algorithm is then presented witland
® and attempts to learn the minimuig-norm solutions. The experiment is repeated a
sufficient number of times such that we collect 1000 examplesre the LSM algorithm
converges to a local minimum. In all these cases, we chehk ifondition stipulated by
Theorem 3 applies, allowing us to determine if the giventsatus a local minimum to
the SBL algorithm or not. The results are contained in Tablefdr the FOCUSS LSM
algorithm assuming — 0. We note that, the larger the overcompleteness ratidv,
the larger the total number of LSM local minima (via the bosiqmulesented earlier).
However, there also appears to be a greater probabilityS3Batcan avoid any given
one.

In many cases where we found that SBL was not locally minimizezlini-
tialized the SBL algorithm in this location and observed veetor not it converged to

the optimal solution. In roughly 50% of these casegscaped to find the maximally
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Table 11.1: Given 1000 trials where FOCUSS (wjth— 0) has converged to a sub-
optimal local minimum, we tabulate the percentage of tinnesldcal minimum is also

a local minimum to SBLAM /N refers to the overcompleteness ratio of the dictionary
used, with/N fixed at 20.

M/N 1.3 1.6 2.0 24 3.0

SBL Local Minimum % 4.9% 4.0% 3.2% 2.3% 1.6%

sparse solution The remaining times, it did escape in accordance with fheoow-
ever, it converged to another local minimum. In contrastemive initialize other LSM

algorithms at an SBL local minima, we always remain trappeekagcted.

[I.D.2 Performance Comparisons

While we have shown SBL has potentially many fewer local minimahave
not yet shown exactly to what degree this translates intoongd performance finding
w,., over standard MAP methods, both LSM algorithms and BP. Trasaeprovides
such a comparison. As before, we employ Monte Carlo simulatising randomized
dictionaries for this purpose. We also use more structuictthdaries composed of pairs
of orthobases as a further means of evaluation. For simplimbiseless tests were per-
formed first, which facilitates direct comparisons becaliserepancies in results cannot
be attributed to poor selection of the trade-off paramateMoreover, we have found
that relative performance with the inclusion of noise ramassentially unchanged (see
below). More extensive simulation results involving sinitypes of problems can be

found in Sections I11.D and VI.D.
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Random Dictionaries

The experimental setup here is similar to that of the pres/gmction, although
here we used the fixed valuds= 20 andM = 40 (related results using other dictionary
sizes and sparsity levels can be found in Section 111.D). 0lid@ependent trials were
performed, each with a randomly generated dictionary«apd For every trial, three
different MAP algorithms were compared with SBL; each mettsogresented witht
and® and attempts to learw,,,, with a minimum/,-norm initialization being used in
each case. An error is recorded whenever the estimatees not equab,,.

Under the conditions set forth for the generatio®aindt, sparK®) = N +1
and (1.7) is in force. Therefore, we can be sure thgt, = w, with probability one.
Additionally, we can be certain that when an algorithm fésl$ind w,., it has not been
lured astray by an even sparser representation.

The purpose of this study was to examine the relative frecpehcases where
each algorithm failed to uncover the generating sparsehi®igAlso, we would like
to elucidate the cause of failure, i.e., convergence to radsta local minimum (i.e.,
convergence error) or convergence to a minimum (possiblyal) that is not maximally
sparse and yet has a lower cost function value than the gergesalution (i.e., structural
error). To this end, for each trial we compared cost functi@ines at convergence with
the ‘ideal’ cost function value ab,. Results are presented in the Table II.2.

Several items are worth noting with respect to these redhtiitst, we see that

with BP, only structural errors occur. This is expected siheeBP cost function has no
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Table 11.2: Comparative results from simulation study ov@@Q independent trials us-
ing randomly generated dictionaries. Convergence errerdefined as cases where the
algorithm converged to a local minimum with cost functionueaabove (i.e., inferior
to) the value at the maximally sparse soluti@g. Structural errors refer to situations
where the algorithm converged to a minimum (possibly glpéh cost function value
below the value atv.

FOCUSS FOCUSS Basis Pursuit SBL
(p =0.001) (p=0.9) (p =1.0)

Convergence Errors 34.1% 18.1% 0.0% 11.9%
Structural Errors 0.0% 5.7% 22.3% 0.0%
Total Errors 34.1% 23.8% 22.3% 11.9%

local minima® However, there is essentially2a.3% chance that the minimuif)-norm
solution of BP does not correspond with the generating sysais#ion.

In contrast, FOCUS$(= 0.001) is functionally similar to th&/,-norm min-
imization as mentioned previously. Thus, we experiencetnatral errors but are
frequently trapped by local minima. Wheris raised td).9, thenumberof local min-
ima does not change, but the relative basin sizes becomegdkeward the/;-norm
solution. Consequently, FOCUSS£ 0.9) exhibits both types of errors.

On the other hand, we see that SBL failure is strictly the tefidonvergence
errors as with FOCUS®(= 0.001), although we observe a much superior error rate
because of the fewer number of local minima. Also, theseltesere obtained using
the fast (fixed-point) SBL update rules (see Section I.D.2)elMihe slower EM version

of SBL is used, the error rate is reduced still further.

SAnd so these results hold whether we use interior-point or Simplex metbpB#.
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Pairs of Orthobases

Lest we attribute the superior performance of SBL to the idstt domain
of randomized dictionaries, we performed an analysis aintd the preceding section

using dictionaries formed by concatenating two orthobases

® =[O, V], (11.24)

where® and ¥ represent tw@0 x 20 orthonormal bases. Candidates torand ¥
include Hadamard-Walsh functions, DCT bases, identity icegr and Karhunen-Loéve
expansions among many others. The idea is that, while alsigaanot be compactly
represented using a single orthobasis, it may become feastler we concatenate two
or more such dictionaries. For example, a sinusoid with areevdom spikes would be
amenable to such a representation. Additionally, in [1§dch attention is placed on
such dictionaries.

For comparison purposesandw, were generated in an identical fashion as
before. ® and ¥ were selected to be Hadamard and K-L bases respectivelgr(exa
amples have been explored as well). Unfortunately, by apglthe results in [17], we
cannot a priori guarantee thay, is the sparsest solution as we could with randomized
dictionaries. More concretely, it is not difficult to showatreven given the most favor-
able conditions for pairs df0 x 20 orthobases, we cannot guarantegis the sparsest
possible solution unlesgwyl||o < 5. Nevertheless, we did find that in all cases where

an algorithm failed, it converged to a solutianwith ||w|lo = N > ||wy||o. Results are
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Table 11.3: Comparative results from simulation study ov@@Q independent trials us-
ing pairs of orthobases. Convergence errors and structucakere defined as before.

FOCUSS FOCUSS Basis Pursuit SBL
(»p=0.001) (p=0.9) (» =1.0)

Convergence Errors 31.8% 17.1% 0.0% 11.8%
Structural Errors 0.0% 6.0% 21.8% 0.0%
Total Errors 31.8% 23.1% 21.8% 11.8%

displayed in Table 11.3.

The results are remarkably similar to the randomized chetip case, strength-
ening our premise that SBL represents a viable alternatyardéess of the dictionary
type. Likewise, when SBL was initialized at the FOCUSS locatima as before, we
observed a similar escape percentage. FOCUSS could stidsoape from any SBL

local minima as expected.

Experiments with Noise

To conclude our collection of experiments, we performetstagalogous to
those above with the inclusion of noise. Specifically, widgaissian noise was added to
produce an SNR o20dB. This relatively high number was selected so as to obtain
reasonable results with limited signal dimensi@ng only N = 20 samples). For
example, if we doubleéV and M, retaining an overcompleteness ratio of 2.0, we can
produce similar results at a much lower SNR.

With the inclusion of noise, we do not expect to reprodé@xactly and so

some criteria must be adopted for choosing the trade-o#imater), which balances
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Table 11.4: Comparative results from simulation study ov@@Q independent trials us-
ing randomly generated dictionaries and the inclusion dita@ white Gaussian noise
to 20dB.

FOCUSS FOCUSS Basis Pursuit SBL
(p =0.001) (p=0.9) (p =1.0)

Total Errors 52.2% 43.1% 455% 21.1%

sparsity with data fit. For all algorithmga,was selected to roughly optimize the proba-
bility of recovering the generative weights per the craatescribed below. In contrast,

Section VI.D.1 contains related results plotted)as varied across a wide range of

values.

Results are presented in Table 11.4. Note that we have no tquaytitioned
the error rates into categories since the distinction betvwaructural and convergence
errors becomes muddied with the inclusion of noise. Funtioee, we now classify a
trial as successful if the magnitude of each weight assettiaith a nonzero element
of w is greater than the magnitudes of all other weights as®utiaith zero-valued
elements otw,.

Again, SBL displays a much higher probability of recoverihg ggenerative
basis vectors. These results corroborate our earlier éliear and empirical findings

suggesting the superiority of SBL in many situations.

[1.D.3 Discussion

We have motivated the SBL cost function as a vehicle for findipgrse rep-

resentations of signals from overcomplete dictionariese N&ve also proven several
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results that complement existing theoretical work with FG3UJand Basis Pursuit,
clearly favoring the application of SBL to sparse recovemybpems. Specifically, we

have shown that SBL retains a desirable property of gh@orm diversity measure (i.e.,
no structural errors as occur with Basis Pursuit) while ofieasessing a more limited
constellation of local minima (i.e., fewer convergenceesithan with FOCUSS using
p < 1). We have also demonstrated that the local minima that dst exe achieved

at sparse solutions. Moreover, our simulation studiecatdithat these theoretical in-
sights translate directly into improved performance witlthorandomized dictionaries
and pairs of orthobases. The next chapter will extend triessesiby examining criteria

wherebyall troublesome local minima are removed.
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[I.LF  Appendix

[I.LF.1 Proof of Lemmas 1 and 2

Proof of Lemma 1That local minima are only achieved at BFS has been showr8in [7
We will now handle the converse. A vectar* is a constrained local minimizer gt ||,

(s.t.t = dw) if for every vectorw’ € Null(®), there is & > 0 such that

Jw*|, < |w* +ew'||, Ve e (0,d]. (11.25)

We will now show that all BFS satisfy this condition. We firstildde the case where
p > 0 by definingg(e) £ ||lw* + ew’||, and then computing the gradient gf:) at a
feasible point in the neighborhood 9f0) = ||w*||,. We then note that at any feasible

pointw = w* 4+ ew’ we have

M
) _ (Aol 0w _ " Ol
Oe = O(w;)
M
= ngr(w + ew!)plw; + ew!|P~ w) (11.26)

=1

Since we have assumed we are at a BFS, we know that atlleasiV entries ofw* are
equal to zero. Furthermore, let us assume without loss adrgdity that the first\/ — N

elements otw* equal zero. This allows us to reexpress (11.26) as

M—-N

= ) sgn(w))plew;’~ w; + O(1)

i=1

dg(e)
Oe
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M—-N 1\ 1P

= e =
pizl |w] (5) +0(1). (1.27)

At this point we observe that any’ € Null(®) must have a nonzero element corre-
sponding to a zero elementin®. This is a direct consequence of the URP assumption.
Therefore, at least one!, i € [1, M — N| must be nonzero. As such, wittsufficiently
small, we can ignore terms of ordex 1) (since(1/¢)'~? is unbounded for sufficiently
small andp < 1) and we are left in (11.27) with a summation that must be pessit
Consequently, we see that for alE (0, 6], dg(e)/0e > 0. By the Mean Value

Theorem, this requires thaty) > ¢(0) or more explicitly,
|w* + dw'||, > [Jw*||,. (1.28)

Sincew’ is an arbitrary feasible vector, this completes the proof.
Finally, in the special case of = 0, it is immediately apparent that all BFS

must be local minima sincew*(|o < [[w* + ew'[lo, Ve € (0,4]. |

Proof of Lemma 2 Let w;, be a vector containing the amplitudes of the nonzero en-
tries inw, and ®, the associated columns @. Now let us suppose that there does
exist a second solutiow satisfying the conditions given above, witéi and®, being

analogously defined. This implies that for somé

t = dw), = ow', (11.29)
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or equivalently, that lies in both the span ob; and the span ob,, both of which are

full column rank by the URP assumption. Let us define this s#etion as

A = spar{®,) N span®,), (11.30)

where we know by construction that

dim (A) = dim (Null ([®; ®s]))
= max(0,D+ Dy — N)

< D,. (11.31)

Note that the latter inequality follows sinde < N by assumption. At this point there
are two possibilities. First, iD < N — Dy, thendim (A) = 0 and no solutiorw’
(or w with ||lw|lp = D) can exist. Conversely, iD > N — D,, the existence of a
solutionw’ requires thatb,wy, resides in a D + Dy — N)-dimensional subspace of
the Dy-dimensional space Range ). However, we know that with the entries af],
independently drawn from a continuous, bounded densitgtiom, ¢,w, also has a
continuous and bounded density in Rafipg and the sefwy, : ®,w( € A} is of
probability measure zero (see [83] for a discussion of godityameasures). Therefore,

we know that

P(w # wy exists s.t||w|jp < N) = P(®;w], € A) =0, (1.32)
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completing the proof. [ |

II.LF.2 Performance Analysis withp =1

As previously mentioned, whem = 1, a single minimum exists that may
or may not correspond with the maximally sparse soluti@n However, in [17], a

substantial result is derived that dictates when the mimimjw||; solution is sufficient.

Theorem 4. (Equivalence Theorem [17]) Given an arbitrary diction@rwith columns
¢; normalized such thap!’¢; = 1,Vi = 1,..., M, and givenG £ ®7® andx =

max;.; |G, |, if the sparsest representation of a signat by dw, satisfies

llwollo < 1/2(1 + 1/), (1.33)

then the BP solution (which minimizes the= 1 case) is guaranteed to equay.

This is a potentially powerful result since it specifies a poiable condition
by which the minimum|w||;-norm solution is guaranteed to produeg. While elegant
in theory, in practice it may be very difficult to apply. Foraemple, the dictionaries
required for MEG/EEG source localization (when suitablymalized as required by
the theorem) typically have ~ 1. This implies that only sparse solutions with at most
one nonzero element are guaranteed to be found. However,/BRikavork effectively

when the conditions of this theorem are violated.
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As another consideration related to MEG/EEG, it may sonesiioe desir-
able to leave the dictionary unnormalized or normalize \&ittmetric other than thé,
norm, which can potentially mean that not even one nonzereht will be found with
BP. In contrast, the SBL cost function is invariant to colummnmalization schemes,
which only affect the implicit initialization used by thegalrithm. More discussion
of MEG/EEG related issues can be found in Chapter VII. Furdmalysis of general
equivalence conditions and performance bounds for BP aneeden [18, 19, 96]. How-
ever, these are all more applicable to applications suclrepressed sensing than to

MEG/EEG source localization.

II.LF.3 Proof of Theorem 1

In Section 11.C.2 we demonstrate that every local minimumcZadfy; \) is
achieved at a with at most/N nonzero entries. Consequently, we know that for gny
the global minimum must occur at such a solution. At any swtdmate local mini-
mum, we only need be concerned with a subseVdfasis vectors, denotebl and the

corresponding weight& such that

t = dw = dw. (11.34)

Of course some of the elementswfmay be zero if we are at a degenerate basic feasible

solution. Let us rewrite our cost function at this presunzaal minimum (withe treated
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as a fixed parameter) as
~ ~ o~ ~ e~ —1
LTA=¢) =log|el + d0DT| + 7 (51 + @F@T) t, (11.35)

wherel is the diagonal matrix of hyperpriors associated with We now decompose

each term as follows. First, we have

—~ e~ —1 ~ ~ —~ ~\ o~ —1
7 (5I+¢>F<I>T) t — 7T [CD (5®*1¢*T+r) @T} ¢
~ =1 7Y
T [g <1>Tc1>) +F} > dw

— @7 [gs+'f]lrw, (11.36)

whereS £ (5T€§)*1 and the required inverse exists by the URP assumption. At this
point we allow, without loss of generality, fas to be expressed a8 = [w(p); On-—p))
wherewp) is a vector containing thé& < N nonzero entries inv andOy_p) is a
vector of N — D zeros.

Defining A £ ¢S + I and we can partition A as

A= [ATAR2 A2 4% (11.37)

whereA'lisaD x D block, A*? is (N — D) x (N — D), and so on.

Using the expression for the inverse of a partitioned matvixcan expand (11.36) as
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1~ . 1~
w A 'w = w(TD) (A7) w(TD)
T -1 -
_ w(TD) -All — A2 (4%) AQl} @(p)

- _ _ 71 _1
= @{D) eS! 4 T —cS" <822 + F22> 8215} W(p)

r ~ —1
— @y [0 4TV @), (11.38)
where we have defined
~ —1
F22
gt 2 gl _gh (s” + —) Sl (11.39)
19

Also, we observe that becauSeepresents a non-degenerate (i.e., full-rank) covariance
matrix, U1 is full rank for alls > 0 and allT®* > 0.

We now turn to the second term in our cost function using

log|ely + ®LdT| = log|®|led ' +T'||d7|

log |eS +T|

~ ~ ~ -1
— log|eS" + T + log |¢S22 + [22 — S (s“ + r“) S'%|

= log ’5511 +

+ log ’5\1122 + 12

: (11.40)

where¥?? is defined in an analogous fashion®8 and likewise, is full-rank for alk

andl'!, Combining terms, we have established that at an arbitrag} lainimum, our
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cost function is given by

~ ~ -1
L(T,e) = log ‘gs“ + T W) [0 4T ). (1141)

+ log ‘5\1122 4+

At this point, we are poised to demonstrate two propertias flold for alle € (0, 9],

whered is sufficiently small yet greater than zero:

Lemma 5. There exists a constaat > ¢ such thaty, > C'foralli € {1,...,D} (i.e.,

the diagonal elements in'! are all greater tha@').

Proof: We observe that, fo€’ sufficiently small (yet greater thaf), i € {1,..., D},

and~; < C, an upper bound for the gradient of (11.41) with respectitts given by

W <0 (é) +0(1)-0 (%) -0 (%) | (11.42)

Since this gradient is necessarily negative foralk C, by the Mean Value Theorem,

our local minimum must have; greater thart'. |

Lemma6. Foralli € {D+1,...,N},v; =0 (i.e., the diagonal elementsiit? are all

equal to zero).

Proof: First, we observe that the minimum 6f~; A = ¢), excluding the second term,

is given by

~ ~ —1
min log‘gsn + T + @, [gqf“ +r11] @p = O1),  (1.43)

[t 122
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regardless of the value 6F2. In contrast,

min  log ‘\1122 +I2| = log O (gN*D) : (11.44)

['it 122

with the minimum occurring with; < O(e) foralli € {D + 1,..., N}, regardless of
'L, But how do we know if these; actually go to zero? If we compute the gradient of
our cost function with respect to thesg we obtain,

%5;5) <0 (l) _0(1)=0 (1) . (11.45)

This result is positive for all; < O(e) and therefore, at the local minimum, all must go

to zero. [ |

In conclusion, we can achieve an overall minimum of ofdér D) log  with
I''! > 0andl?? = 0. Or more explicitly, at each local minimuriky||, = D. Of course,
the global minimum occurs wheh is smallest. Therefore, at a solution achieving the
global minimunvy...., we must havély...||o = ||wo||o for all £ € (0, J].

Without loss of generality, by Lemma 6 we can then write

w,, = .07 (eI +T,.07) ¢
— (TR +eT)) DTt

1\ !
- |:((I){w0)(1)(’w0) te (Fii) > (I){wg)t; 0(N—||'w0H0) ) (”46)
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where®,,,) denotes the columns df associated with nonzero elementsug. Using

Lemma5, ag — 0 we have

T -1 -7 .
Wae = (P @) ™ Pt O anl)

— (1.47)

completing the proof.



Chapter Il

Comparing the Effects of Different

Weight Distributions

Previously, we have argued that the sparse Bayesian leaf@Big) frame-
work is particularly well-suited for finding maximally sys representations, showing
that it has far fewer local minima than many other Bayesiapined strategies. In
this Chapter, we provide further evidence for this claim bgviorg a restricted equiv-
alence condition, based on the distribution of the nonzeregating model weights,
whereby the SBL cost function is unimodal and will achievertreximally sparse rep-
resentation at the global minimum (in a noiseless settikig.also prove that if these
nonzero weights are drawn from an approximate Jeffreys,phen with probability
approaching one, our equivalence condition is satisfietallyi we motivate the worst-
case scenario for SBL and demonstrate that it is still belien the most widely used

sparse representation algorithms. These include BasisiP(B#), which is based on

67
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a convex relaxation of th&, (quasi)-norm, and Orthogonal Matching Pursuit (OMP), a
simple greedy strategy that iteratively selects basisovechost aligned with the current

residual.

I1I.LA Introduction

To review, the canonical form of the noiseless (exact) spasovery problem
is given by,

min [|[wllp, S.t.t=dw, (111.1)

where® € RY*M is a matrix whose columns represent an overcomplete or dzohin
basis (i.e., rankd) = N andM > N), w € RM is the vector of weights to be learned,
andt is the signal vector. The cost function being minimized espnts thé, (quasi)-
norm ofw (i.e., a count of the nonzero elementa). The solution to (I1l.1) has been
considered in [17, 18, 29, 35, 95].

Unfortunately, an exhaustive search for the optimal regtgion requires the
solution of up to(%) linear systems of siz& x N, a prohibitively expensive proce-
dure for even modest values 6f and N. Consequently, in practical situations there
is a need for approximate procedures that efficiently sdivd) with high probability.
To date, the two most widely used choices are Basis Pursuit[@B®and Orthogonal
Matching Pursuit (OMP) [95]. (Note that the later can be \wdwas an LSM algo-
rithm.) BP is based on a convex relaxation of thenorm, i.e., replacindw||, with

|w||1, which leads to an attractive, unimodal optimization pesblthat can be read-
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ily solved via linear programming or the EM algorithm. In ¢@st, OMP is a greedy
strategy that iteratively selects the basis vector moghall with the current signal
residual. At each step, a new approximant is formed by ptiojge¢ onto the range of

all the selected dictionary atoms. In the previous chapterdemonstrated that SBL
can be also be used to effectively solve (lll.1) while maimtay several significant ad-
vantages over other, Bayesian-inspired strategies fomigngparse solutions (notably
MAP-based LSM methods [27, 34]).

To compare BP, OMP, and SBL, we would ultimately like to know ihatv
situations a particular algorithm is likely to find the maxilly sparse solution. A va-
riety of results stipulate rigorous conditions whereby B &@MP are guaranteed to
solve (l11.1) [17, 29, 95]. All of these conditions dependokgitly on the number of
nonzero elements contained in the optimal solution. Egsdbnif this number is less
than somed-dependent constart the BP/OMP solution is proven to be equivalent to
the minimum/{y-norm solution. Unfortunately howevet,turns out to be restrictively
small and, for a fixed redundancy ratid/N, grows very slowly asV becomes large
[18]. But in practice, both approaches still perform well @vehen these equivalence
conditions have been grossly violated. To address thigjssmuch looser bound has
recently been produced for BP, dependent onlyoAV. This bound holds for “most"
dictionaries in the limit asvV becomes large [18], where “most” is with respect to dic-
tionaries composed of columns drawn uniformly from the acefof anV-dimensional
unit hypersphere. For example, with/ N = 2, it is argued that BP is capable of resolv-

ing sparse solutions with roughty3 N nonzero elements with probability approaching
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one as\N — oo.
Turning to SBL, we have neither a convenient convex cost fandias with

BP) nor a simple, transparent update rule (as with OMP); heweve can nonethe-
less come up with an alternative type of equivalence reattis neither unequivocally
stronger nor weaker than those existing results for BP and.KIB condition is depen-
dent on the relative magnitudes of the nonzero elementsduheblean optimal solutions
to (lll.1). Additionally, we can leverage these ideas to wait which sparse solutions
are the most difficult to find. Later, we provide empiricaldamce that SBL, even in

this worst-case scenario, can still outperform both BP and?OM

[1.B Equivalence Conditions for SBL

From Section 1.D.2, we know that SBL can be used to solve {llising the

update rules

. ) ) T
Yoy = diag (w(om)’wg;.d) + {I - Féﬁ) (@P%ﬁ)) @] F(ma))
/2

T
1/2
(new) (q)r(new)> t’ (|”2)

W (new)

where(-)" denotes the Moore-Penrose pseudo-inverselafiddiag(~). Based on EM
convergence properties, these rules are guaranteed toerélalel SBL cost function at

each iteration until a fixed point is reached. For the remaimd this chapterw®®- will
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refer to a stable fixed point of (Il.2), and therefore also@al minimum of

L(7) = log |dT'd”| + ¢7 (T'D7) " . (I11.3)

In this section, we establish conditions whereby ari§ will necessarily min-
imize (lll.1). To state these results, we require some ratafirst, we formally define
a dictionary® = [¢y,. .., ¢y as a set of\/ unit £,-norm vectors (atoms) iRY, with
M > N and rank®) = N. We say that a dictionary satisfies the unique representa-
tion property (URP) if every subset df atoms forms a basis iR". We definew;
as thei-th largest weight magnitude and as the||w||,-dimensional vector containing
all the nonzero weight magnitudes @f The set of optimal solutions to (l11.1) iB/*
with cardinality |[WW*|. Thediversity (or anti-sparsity) of eaclw* € W* is defined as
D* = |lw*fo.

Theorem 5. For a fixed dictionaryp that satisfies the URP, there exists a setbf 1
scaling constants; € (0, 1] (i.e., strictly greater than zero) such that, for any dw’
generated with

Wiy < viw i=1,...,M—1, (111.4)

anyw** must satisfy||ws® ||, = min(N, ||w’[|o) andw3® € W*.

The proof has been deferred to Appendix 111.G.1. The basia id that, as the magnitude
differences between weights increase, at any given s¢ee;dvariancé;; embedded
in the SBL cost function is dominated by a single dictionagnasuch that problematic

local minimum are removed. The unique, global minimum imtachieves the stated
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result! The most interesting case occurs wheo(||, < N, leading to the following:

Corollary 3. Given the additional restrictiofrw’||o < N, thenw*™ = w’ € W* and
[W*| = 1, i.e., SBL has a unique stable fixed point that equals the enigpaximally

sparse representation of the sighal

See the Appendix III.G.1 for the proof. These results ar&riotise in the sense that the
dictionary dependent constamissignificantly confine the class of signalthat we may
represent. Moreover, we have not provided any convenieansef computing what
the different scaling constants might be. But we have nohethesolidified the notion
that SBL is most capable of recovering weights of differeialeas (and it must still find
all D* nonzero weights no matter how small some of them may be). tisadily, we
have specified conditions whereby we will find the unigqueeven when the diversity
is as large a®D* = N — 1. The tighter BP/OMP bound from [17, 29, 95] scales as
O (N*l/Q), although this latter bound is much more general in thatindependent of
the magnitudes of the nonzero weights.

In contrast, neither BP or OMP satisfy a comparable resulipth cases, sim-
ple 3D counter examples suffice to illustrate this pdinle begin with OMP. Assume

the following:

!Because we have effectively shown that the SBL cost function mustingodal, etc., any proven descent method
could likely be applied in place of (Ill.2) to achieve the same result.

2While these examples might seem slightly nuanced, the situations being illdsteate@ccur frequently in prac-
tice and the requisite column normalization introduces some complexity.
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1 _ - _ -
0 % 0 Zia 7
w* = ‘ =109 0 1 (ﬁn t=0w" = . (ll.5)
0
; K 5 0 0 | | 1+ 75 |

where® satisfies the URP and has columpisof unit £, norm. Given any € (0, 1),
we will now show that OMP will necessarily fail to fin@*. Providede < 1, at the first

iteration OMP will selectp;, which solvesnax; |t” ¢;|, leaving the residual vector

=T -¢p)t=[¢/v2 0 0" (I11.6)

Next, ¢, will be chosen since it has the largest value in the top pmsitihus solving

max; |r! ¢;|. The residual is then updated to become

€

mz(l—[¢1 ol 1 @y ]T)t:mm“ ~10 ol" (1.7)

From the remaining two columns; is most highly correlated witlps. Oncegs is
selected, we obtain zero residual error, yet we did notdirigwhich involves onlyg,
ande¢,. So for alle € (0, 1), the algorithm fails. As such, there can be no fixed constant
v > 0 such that ifw(,) = € < vw(;, = v, we are guaranteed to obtaist (unlike with
SBL).

We now give an analogous example for BP, where we presentible=aslu-
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tion with smaller/; norm than the maximally sparse solution. Given

1 — - — —_
0.1 0.1
01 1.02 1.02 €
€
— o = —0.1 0.1 = * = .
w 0 0 oL oL t = dw 01l (111.8)
0
1 1
10 1.02 1.02 1
0 _ i L

it is clear that||w*|; = 1 + . However, for alle € (0,0.1), if we form a feasible

solution using onlyp;, ¢3, and¢,, we obtain the alternate solution

W= (1-10¢) 0 5V1.02¢ 5v1.02¢ (11.9)

with ||wl|; =~ 1 + 0.1e. Since this has a smalléy norm for alle in the specified range,
BP will necessarily fail and so again, we cannot reproducedbelt for a similar reason
as before.

At this point, it remains unclear what probability distritans are likely to
produce weights that satisfy the conditions of Theorem furtis out that the Jeffreys
prior, given byp(z) o 1/z, is appropriate for this task. This distribution has thequei
property that the probability mass assigned to any givelingces equal. More explic-
itly, for any s > 1,

P(ze[ss]) xlog(s) Vie€Z (111.10)

For example, the probability thatis betweerl and10 equals the probability that it lies

between10 and 100 or betweer0.01 and0.1. Because this is an improper density, we
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define an approximate Jeffreys prior with range parameter(0, 1]. Specifically, we
say thatr ~ J(a) if

With this definition in mind, we present the following result

Theorem 6. For a fixed® that satisfies the URP, |étbe generated by = ®w’, where
w’ has magnitudes drawn iid froth(a). Then as: approaches zero, the probability that

we obtain aw’ such that the conditions of Theorem 5 are satisfied appreaatisy.

Appendix I11.G.2 contains the proof. However, on a concaptavel this result can
be understood by considering the distribution of ordernstas. For example, given
M samples from a uniform distribution between zero and sénvath probability ap-
proaching one, the distance between#ké and(k + 1)-th order statistic can be made
arbitrarily large a®) moves towards infinity. Likewise, with thé(a) distribution, the
relative scaling between order statistics can be increastbdut bound as decreases

towards zero, leading to the stated result.

Corollary 4. Assume thatD)’ < N randomly selected elements af are set to zero.
Then as: approaches zero, the probability that we satisfy the cmmditof Corollary 3

approaches unity.

In conclusion, we have shown that a simple, (approximat@jniormative
Jeffreys prior leads to sparse inverse problems that aimalby solved via SBL with

high probability. Interestingly, it is this same Jeffreygpthat forms the implicit weight
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prior of SBL (see [94], Section 5.1). However, it is worth mening that other Jeffreys
prior-based techniques, e.g., direct minimizatiop@b) = [, ﬁ subject tot = dw,

do not provide any SBL-like guarantees. Although several algorgldo exist that can
perform such a minimization task (e.g., [27, 34]), they parf poorly with respect
to (lll.1) because of convergence to local minimum as shaw&hapter Il. This is

especially true if the weights are highly scaled, and nomaat equivalence results are

known to exist for these procedures.

[11.C Worst-Case Scenario

If the best-case scenario occurs when the nonzero weightslaf very dif-
ferent scales, it seems reasonable that the most difficalisepnverse problem may
involve weights of the same or even identical scale, exy+ w; = ... w}.. This no-
tion can be formalized somewhat by consideringdiedistribution that is furthest from
the Jeffreys prior. First, we note that both the SBL cost fiamcand update rules are
independent of the overall scaling of the generating wsighteaningyw* is function-
ally equivalent tow* provideda is nonzero. This invariance must be taken into account
in our analysis. Therefore, we assume the weights are sgseakch thad |, w; = 1.
Given this restriction, we will find the distribution of wdigmagnitudes that is most
different from the Jeffreys prior.

Using the standard procedure for changing the parametienzaf a probabil-
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ity density, the joint density of the constrained varialdaa be computed simply as

1 =

Py, W) < —p—  for Y @) =1, @ >0,Vi, (11.12)
i=1 Wi i=1
From this expression, it is easily shown thgt= w} = ... = wj,. achieves the global

minimum. Consequently, equal weights are the absdéastlikely to occur from the
Jeffreys prior. Hence, we may argue that the distributiat #ssignso; = 1/D* with
probability one is furthest from the constrained Jeffregiemp

Nevertheless, because of the complexity of the SBL framewbik difficult
to prove axiomatically thatv* ~ 1 is overall the most problematic distribution with
respect to sparse recovery. We can however provide addlitroativation for why we
should expect it to be unwieldy. As proven in Section II.CHe global minimum of
the SBL cost function is guaranteed to produce saniec W*. This minimum is
achieved with the hyperparameters = (w;)?, Vi. We can think of this solution as
forming a collapsed, or degenerate covariange= oT*®* that occupies a propdp*-
dimensional subspace @f-dimensional signal space. Moreover, this subspace must
necessarily contain the signal vectorEssentially>; proscribes infinite density te,
leading to the globally minimizing solution.

Now consider an alternative covariantg that, although still full rank, is
nonetheless ill-conditioned (flattened), containingithin its high density region. Fur-
thermore, assume that is not well aligned with the subspace formed By. The

mixture of two flattened, yet misaligned covariances ndljutaads to a more volu-
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minous (less dense) form as measured by the determjn&it+ 5%¢|. Thus, as we
transition from>¢ to 7, we necessarily reduce the density athereby increasing the
cost functionZ(«). So if SBL converges t& it has fallen into a local minimum.

So the question remains, what valuesugf are likely to create the most sit-
uations where this type of local minima occurs? The issuesslved when we again
consider theD*-dimensional subspace determined®ljy The volume of the covariance

within this subspace is given tﬁf*%” , whered* andI'™* are the basis vectors and

hyperparameters associated wigh. The larger this volume, the higher the probability
that other basis vectors will be suitably positioned so dsotb (i), containt within the
high density portion and (ii), maintain a sufficient compoithat is misaligned with the
optimal covariance.

The maximum volume oﬁ)*f*&)*T under the constrainty_, w; = 1 and

yF = (w*)? occurs withy; = 1/(D*)?, i.e., all thew; are equal. Consequently, geo-
metric considerations support the notion that deviance fitee Jeffreys prior leads to
difficulty recoveringw*. Moreover, empirical analysis (not shown) of the relatlops
between volume and local minimum avoidance provide furtteeroboration of this

hypothesis.

[1.D Empirical Comparisons

The central purpose of this section is to present empiricdieace that sup-
ports our theoretical analysis and illustrates the impdgeformance afforded by SBL.

As previously mentioned, others have established det&tiirequivalence conditions,
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dependent o®*, whereby BP and OMP are guaranteed to find the unigidJnfortu-
nately, the relevant theorems are of little value in assggsiactical differences between
algorithms. This is because, in the cases we have teste@\BROMP equivalence is
provably known to hold (e.qg., via results in [17, 29, 95]), S&llvays converges ta*
as well.

As such, we will focuss our attention on the insights proditdg Sections 111.B
and II1.C as well as probabilistic comparisons with [18].véh a fixed distribution for
the nonzero elements af*, we will assess which algorithm is best (at least empirygall
for most dictionaries relative to a uniform measure on thiesphere as discussed.

To this effect, a number of monte-carlo simulations weredcmted, each con-
sisting of the following: First, a random, overcompléiex M dictionary® is created
whose columns are each drawn uniformly from the surface aVatimensional hy-
persphere. Next, sparse weight vectars are randomly generated with* nonzero
entries. Nonzero amplitudes* are drawn iid from an experiment-dependent distribu-
tion. Response values are then computetl-asbw*. Each algorithm is presented with
t and® and attempts to estimate*. In all cases, we ran 1000 independent trials and
compared the number of times each algorithm failed to recave Under the specified
conditions for the generation @ andt, all other feasible solutionay almost surely
have a diversity greater than*, so our synthetically generated* must be maximally
sparse. Moreovem will almost surely satisfy the URP.

With regard to particulars, there are essentially fouralaas with which to

experiment: (i) the distribution ab*, (ii) the diversityD*, (iii) NV, and (iv) M. In Figure
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l11.1, we display results from an array of testing condigorin eachrow of the figure,
w; is drawn iid from a fixed distribution for afl, the first row uses; = 1, the second
hasw; ~ J(a = 0.001), and the third use&; ~ N(0,1), i.e., a unit Gaussian. In all
cases, the signs of the nonzero weights are irrelevant dine tandomness inherent in
the basis vectors.

Thecolumnsof Figure 111.1 are organized as follows: The first columnaséd
on the valuesV = 50, D* = 16, while M is varied fromN to 5V, testing the effects
of an increasing level of dictionary redundandy/N. The second fixe& = 50 and
M = 100 while D* is varied from10 to 30, exploring the ability of each algorithm
to resolve an increasing number of nonzero weights. Findlly third column fixes
M/N = 2andD*/N =~ 0.3 while N, M, and D* are increased proportionally. This
demonstrates how performance scales with larger problees si

The first row of plots essentially represents the worst-cassario for SBL
per our previous analysis, and yet performance is still istestly better than both BP
and OMP. In contrast, the second row of plots approximatedést-case performance
for SBL, where we see that SBL is almost infallible. The handfuiailure events that
do occur are becauseis not sufficiently small and thereforé(a) was not sufficiently
close to a true Jeffreys prior to achieve perfect equivadree center plot). Although
OMP also does well here, the parameiectan generally never be adjusted such that
OMP always succeeds. Finally, the last row of plots, base@Gaussian distributed
weight amplitudes, reflects a balance between these tweregs. Nonetheless, SBL

still holds a substantial advantage.
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Figure I1l.1: Empirical results comparing the probabilibat OMP, BP, and SBL fail to
find w* under various testing conditions. Each data point is baselD00 independent
trials. The distribution of the nonzero weight amplitudedabeled on the far left for
each row, while the values fa¥, M, and D* are included on the top of each column.
Independent variables are labeled along the bottom of theefig

In general, we observe that SBL is capable of handling morendaht dic-
tionaries (column one) and resolving a larger number of aomweights (column two).
Also, column three illustrates that both BP and SBL are ableesolve a number of
weights that grows linearly in the signal dimensien({.3/NV), consistent with the analy-
sis in [18] (which applies only to BP). In contrast, OMP penf@ance begins to degrade
in some cases (see the upper right plot), a potential lirantadf this approach. Of course
additional study is necessary to fully compare the relgiéormance of these methods

on large-scale problems.
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Finally, by comparing row one, two and three, we observe tiatperfor-
mance of BP is independent of the weight distribution (cdasiswith results from
[59]), with performance slightly below the worst-case SBlrfpemance. Like SBL,
OMP results are highly dependent on the distribution; h@reas the weight distri-
bution approaches unity, performance is unsatisfactorgummary, while the relative
proficiency between OMP and BP is contingent on experimetdiqolars, SBL is uni-
formly superior in the cases we have tested (including eXasnmot shown, e.g., results

with other dictionary types).

III.LE Conclusions

In this chapter, we have related the ability to find maximalharse solutions
using SBL to the particular distribution of amplitudes thatmpose the nonzero ele-
ments. At first glance, it may seem reasonable that the mégtudi sparse inverse
problems occur when some of the nonzero weights are extyesnadll, making them
difficult to estimate. Perhaps surprisingly then, we haxashthat the exact opposite is
true with SBL: The more diverse the weight magnitudes, theeb#te chances we have
of learning the optimal solution. In contrast, unit weigbtfer the most challenging task
for SBL. Nonetheless, even in this worst-case scenario, we $tzown that SBL outper-
forms the current state-of-the-art; the overall assumptiere being that, if worst-case
performance is superior, then it is likely to perform bettea variety of situations.

Unlike SBL, it has been shown that under very mild conditions i&for-

mance is provably independent of the nonzero weight magde#t{69]. While this inde-
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pendence is compelling, it also ensures that there is nmatiee distribution that can
improve BP performance beyond what we have shown above, vidicitferior to the
worse-case SBL results in the situations we have tested dinus f

For afixeddictionary and diversityD*, successful recovery of unit weights
does not absolutely guarantee that any alternative weiglstheme will necessarily be
recovered as well. However, a weaker result does appearféabible: For fixed values
of N, M, andD*, if the success rate recovering unity weights approachedamost
dictionaries, where most is defined as in Section Ill.A, ttlensuccess rate recovering
weights of any other distribution (assuming they are disted independently of the
dictionary) will also approach one. While a formal proof ofstisonjecture is beyond
the scope of this paper, it seems to be a very reasonablé tieauis certainly born
out by experimental evidence, geometric considerationilae arguments presented in

Section 11.C. Nonetheless, this remains a fruitful areadother inquiry.
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.G Appendix

l11.G.1 Proof of Theorem 5 and Corollary 3

In the most general setting, the constamtsnay all be unique, leading to
the most flexible set of allowable weighting schemes. Howdwee simplicity we will
assume that; = v, = ... = v);_1 = €, Wheree is a constant in the intervgl, 1|. The
extension to the more general setting is straightforward.

Every local minimum ofL(+), the SBL cost function, is achieved at a basic
feasible solution (BFS) (see Section 11.C.2). By this we meahékery local minimum

is achieved at a solution with = w? (for all ;) such that,

w WL [ t = dw, ||wl|y < N} (11.13)

Interestingly, the converse is not true; that is, every elenof)V®*™ need not correspond
with a minimum toL(+). In fact, for a suitable selection ef we will show that this
reduced set of minima naturally leads to a proof of Theorem 5.

We begin with a set of weight®’ such thalwg < ewEi) and||w'|jo & D’ €

i+1) =
{1,...,M}. For convenience, we will also assume thgf = |w;| for all i. In other
words, the first element af’ has the largest magnitude, the second element has the
second largest magnitude, and so on. To avoid any loss of@épewe incorporate
an M x M permutation matrixP into our generative model, giving us the siga

dPw' = ®'w’. Becaused’ £ &P is nothing more tha® with reordered columns, it

will necessarily satisfy the URP for alt given that® does.
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We now examine the properties of an arbitrary BFS with nonzezightsw
and associated dictionary atords i.e.,t = ®w. There exist two possibilities for a

candidate BFS:

e Case I The columns ofp’ associated with the largest (in magnitudeh (N, D')
nonzero weights otv’ are contained inb. By virtue of the URP, no other ba-

sis vectors will be present even I’ < N, so we may conclude that =
/ / /
[ 1525 ¢min(N,D’)]'

e Case IL At least one of the columns associated with the largest(/N, D’)

weights is missing frond.

Given this distinction, we would like to determine when adidate BFS, particularly a
Case Il BFS of which there are many, is a local minimum.

To accomplish this, we lete {1,..., min(N, D)} denote the index of the of
the largest weight for which the respective dictionary gtginis notin ®. Therefore,
by assumption the first — 1 columns ofd equal(@), @, ...,¢._;]. The remaining
columns of®d are arbitrary (provided of course th@t is not included). This allows us

to express any Case Il BFS as

r—1 D’
W=0"t=0""Vw = wie + Y widj, (I11.14)

k=1 k=r
whereg, is a zero vector with a one in theth element and we have assumed that every

Case Il BFS utilizes exactlyv columns ofd’ (i.e.,® is N x N and therefore invertible

via the URP). This assumption is not restrictive provided Waafor zero-padding of
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BFS with less thanV nonzero weights (this implies that some elementsoodvill be
equal to zero if we have to add dummy column§>bo
Since SBL is invariant to the overall scaling of model weightghout loss of

generality we will assume that. = 1. We also defin@ = P! ', giving us

r—1 D’
W=0"t=> wie+v+d" > we}. (111.15)
k=1 k=r+1

By virtue of the stipulated-dependent weight scaling, we know that

D’ D’
O N wig =Y O() 1y = O(e) - 1, (111.16)
k=r+1 k=r+1

where we have used the notatifr) = O(g(z)) to indicate thatf(z)| < Cy|g(z)| for
all z < Oy, with ' andCs, constants independent of Also, O(x) - 1 refers to an
N-dimensional vector with all elements of ordefx). Combining (111.15) and (111.16),

we can express thieth element ofw as

W = wl [i <]+ 7+ O (e). (111.17)

Providedke is chosen suitably small, we can ensure thaalire necessarily nonzero (so
in fact no zero-padding is ever necessary). Whenr, this occurs because all elements
of v must be strictly nonzero or we violate the URP assumption.ti®i < r case,
a sufficiently smalk means that the), term (which is of orde© (1/¢"~) by virtue of

(11.4)) will dominate, leading to a nonzero;. This allows us to apply Theorem 3, from
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which we can conclude that a candidate BFS witmonzero weights will represent a

local minimum only if

<0. (111.18)
T WiWj

Substituting (111.17) into this criterion, we obtain

2 (arriarom) ( . )- (1.19)

wWil[j < 7]+ + O(e)
PPy (770m) (5=60):

If D' < N, thenr < N by definition and so there will always be at least one set of

indices: and; that satisfy the above summation constraints. This thefie@sfhat

T,

—L o~ Y 1 > 0 (111.20)
T W;Wj

i#] i#g; 1,52

since eachy; is a nonzero constant independentofSo we have violated a necessary
condition for the existence of a local minimum.

In contrast, IfD’ > N, then it will always be possible to choose= N such

that there are no allowable terms that satisfy the indextcaings, meaning that this
Case Il BFS could potentially satisfy (I11.18) and therefoeegblocal minimum withV

nonzero elements.

In summary, we have shown two properties of an arbitrary ClaBES$, pro-

vided thate is small enough: We have shown that it will have exactlynonzero el-

ements and that it will not represent a local minimum to SBIDif < N. The exact
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value of thise will depend on the particular BFS and permutation maftixhowever,
we can simply choose the smallesicross all possibilities. From these two properties,
it follows that D* = min(/NV, D), meaning that the maximally sparse solution can only
have diversity less thaP' if D’ > N.

These results are sufficient to complete the proof of Thedsems follows.
Any stable fixed point of the SBL update rules (111.2) must resaeily correspond with a
local minima toL () and a particular BFS. ID’ > N, thenD* = N and scanyBFS s a
member ofV* (although all BFS need not be local minima of SBL). In contrifgh)’ <
N then no Case Il BFS are local minima. The unique minimum (ancetbee stable
fixed point) that remains is the Case | BFS which satisfiés- D*. This completes the
proof. Also, because the maximally sparse solution is regcéyg unique wher)’ < N,
Corollary 3 naturally follows.

It is important to stress that these results spesifificientconditions for find-
ing maximally sparse representations via SBL, but theseitonsd are by no means
necessaryand SBL performs quite well even when the weights are nothigtaled.
This is desirable from a practical standpoint, especiatigesit is not generally feasible
to determine the value effor an arbitrary dictionary of reasonable size. Moreovegne
if ¢ where easily computable it will typically be prohibitivegynall in all but the most

simple cases.
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l11.G.2 Proof of Theorem 6 and Corollary 4

Again, for convenience willassume that= 1, = ... = v);_; = ¢; extension
to the more general case is straightforward. Theorem 5 tigated on the existence of
a sufficiently smalk > 0 such thatw*®" is guaranteed to be in the s8t*. The actual
value of thise is dependent o®. However, we will show that the (a) distribution is
capable of producing weights that satisfgﬂ) < ewgi) with high probability no matter
how smalle may be. Thus, we can fulfill the conditions of Theorem 5 witbhability
approaching one for ang.

The distribution of the ordered weight magnitudes is given b

ool 1
MHwE for a<wiy <... <wpy < -
i=1 i)

(I1.21)

p(w21)7"'7w21\/[)) - QIOgCL

However, we would like to calculate the probability masstaored within the restricted

weight space

Qe) & {w' - a < wiyyy < ew(y gy <. ewfyy < 1/a} (1.22)

for an arbitrarye. This is readily computed via the integral

Pw' € Qe)) = /Q( )p(w’)dw'

B ew(M 1) ew / d , d , d ,
= wl <M>) Wiy * - QW) AWy

~ (2loga+ (M —1 loge M .
B ( 2loga ) — O((loga)™?), (111.23)
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whereO(-) is defined as before. For any fixeds (0, 1], asa — 0, the righthand term

can be ignored while the lefthand term converges to onengius

lim P(w' € Q(e)) = 1. (111.24)

a—0

Therefore, ag becomes small, the probability that we satisfy the cond#tiof Theorem
5 approaches unity.

The proof of Corollary 4 follows directly from the argumentegented above.



Chapter IV

Perspectives on Sparse Bayesian

Learning

Upon inspection of the SBL cost function and associated dhgos for its
optimization, it is appropriate to ponder intuitive expddinns for the sparsity that is so
often achieved in practice. This is an especially saliesk ta light of the considerable
differences between the SBL framework and MAP paradigms as¢tOCUSS and BP.
As a step in this direction, this chapter will demonstratat tBBL can be recast using
duality theory, where the hyperparametgrgan be interpreted as a set of variational
parameters. The end result of this analysis is a generadziednce maximization pro-
cedure that is equivalent to the one originally formulate{®i]. The difference is that,
where before we were optimizing over a somewhat arbitrargehparameterization, we
now see that it is actually evidence maximization over trecepof variational approx-

imations to a full Bayesian model with a sparse, well-mogdgprior. Moreover, from

91
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the vantage point afforded by this new perspective, we céterenderstand the spar-
sity properties of SBL and the relationship between sparisesmnd approximations to
sparse priors.

Unlike previous Chapters, here we take some consideratitimeategression
problem where, from a fully Bayesian perspective, the ultexgpal is accurately form-
ing the predictive distributiop(t.|t), wheret, is an unknown response value not in-
cluded in the training set Whenp(t.|t) is not feasible to obtain, approximate methods
are often used that, ideally should capture the mass in thenodel [56]. The mate-
rial contained in this Chapter quantifies exactly how SBL medleé mass in the full

predictive distribution, thus supporting heuristic claimade in [94].

IV.A Introduction

In an archetypical regression situation, we are presentttdancollection of
N regressor/target paifgp; € R t; € R}Y, and the goal is to find a vector of weights

w such that, in some sense,

ti~ ¢lw, Vi or t~ dw, (IV.1)

wheret = [t;,....tx]T and® = [¢y,...,¢n]|T € RV*M |deally, we would like to
learn this relationship such that, given a new training @egt,, we can make accurate
predictions oft,, i.e., we would like to avoid overfitting. In practice, thesquires some

form of regularization, or a penalty on overly complex madel
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The sparse Bayesian learning (SBL) framework was originahyed to find
robust solutions to regression problems. Wikeis square and formed from a positive-
definite kernel function, we obtain the relevance vector mree (RVM), a Bayesian

competitor of SVMs with several significant advantages 283,

IV.A.1 Sparse Bayesian Learning for Regression

Given a new regressor vector, the full Bayesian treatment of (IV.1) involves
finding the predictive distributiop(t,|t).! We typically compute this distribution by

marginalizing over the model weights, i.e.,

plt.]t) = ﬁ / p(t.|w)p(w, t)dw, (V2)

where the joint density(w, t) = p(t|w)p(w) combines all relevant information from
the training data (likelihood principle) with our prior lbefis about the model weights.

The likelihood ternp(t|w) is assumed to be Gaussian,

pltho) = (203)exp (-t~ B, (1v3)

where for now we assume that the noise variahég known. For sparse prioggw)
(possibly improper), the required integrations, inclgdihe computation of the nor-
malizing termp(t), are typically intractable, and we are forced to accept sfome of

approximation tg(w, t).

!For simplicity, we omit explicit conditioning o ande., i.e.,p(t«|t) = p(t.|t, ®, ¢.).
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Sparse Bayesian learning addresses this issue by intrgdaisiet of hyperpa-
rameters into the specification of the problematic weighirps(w) before adopting a

particular approximation. The key assumption is fi{ab) can be expressed as

M

p(w) = [[otw) = [T [ plawshptas. (v4)

wherey = [, ..., vu|” represents a vector of hyperparameters, (one for each tyeigh

The implicit SBL derivation presented in [94] can then be mafolated as follows,

ptlt) = % / (£ }w)p(tw)p(w)dw

= // (te|w)p(t|w)p(w|y)p(v)dwd~. (IV.5)

Proceeding further, by applying Bayes’ rule to this exp@ssive can exploit the plugin

rule [21] via,

= w w)p(w POY[t) w
pLlt) = / / plt.w)p(tw)p(wiy) 2wy

/ / (tfw)pttwip(uln) " oy

_ m / (.| w)p(aw, £ ag ap) dao. (IV.6)

Q

The essential difference from (1V.2) is that we have repdge@w, t) with the approx-
imate distributionp(w, t; yaprap) = p(t|w)p(w;vyamap). Also, the normalizing term
becomes| p(w, t; vy 4p)dw and we assume that all required integrations can now be

handled in closed form. Of course the question remains, fmwelstructure this new
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set of parametery to accomplish this goal? The answer is that the hyperpasmet

enter as weight prior variances of the form,

p(wih/i> = N(O, Yi)- (IV.7)

The hyperpriors are given by,

p(; ) o< v exp(—b/i), (IV.8)

wherea, b > 0 are constants. The crux of the actual learning procedusepted in [94]

is to find some MAP estimate of (or more accurately, a function ef). In practice,
we find that many of the estimated's converge to zero, leading to sparse solutions
since the corresponding weights, and therefore columids oén effectively be pruned
from the model. The Gaussian assumptions, both(éjw) andp(w; ~y), then facilitate

direct, analytic computation of (I1V.6).

IV.A.2 Ambiguities in Current SBL Derivation

Modern Bayesian analysis is primarily concerned with findiigtributions
and locations of significant probability mass, not just nededistributions, which can
be very misleading in many cases [56]. With SBL, the justifarafor the additional
level of sophistication (i.e., the inclusion of hyperpaeders) is that the adoption of the
plugin rule (i.e., the approximatiomw, t) ~ p(w,t; vy ap)) is reflective of the true

mass, at least sufficiently so for predictive purposes. Heweao rigorous motivation
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for this particular claim is currently available nor is itinediately obvious exactly how
the mass of this approximate distribution relates to the tnass.

A more subtle difficulty arises because MAP estimation, agratck the plugin
rule, is not invariant under a change in parameterizatiggecBically, for an invertible

function f(-),

Lf(Y)]map # f(ymar). (IV.9)

Different transformations lead to different modes andmétiely, different approxima-
tions top(w, t) and thereforey(t.|t). So how do we decide which one to use? The
canonical form of SBL, and the one that has displayed remé&lsalzcess in the litera-
ture, does not in fact find a mode pfvy|t), but a mode op(— log v|t). But again, why
should this mode necessarily be more reflective of the disii@ss than any other?

As already mentioned, SBL often leads to sparse results otipea namely,
the approximatiom(w, t; vy 4p) is typically nonzero only on a small subspace\d#
dimensionakv space. The question remains, however, why should an appati®in to
the full Bayesian treatment necessarily lead to sparsetsasypractice?

To address all of these ambiguities, we will herein demasthat the sparse
Bayesian learning procedure outlined above can be recdst application of a rigorous
variational approximation to the distributigitw, t).? This will allow us to quantify the
exact relationship between the true mass and the approximass of this distribution.

In effect, we will demonstrate that SBL is attempting to dilecapture significant por-

2We note that the analysis in this paper is different from [5], which preafealternative SBL derivation using
a factorial approximation to minimize a Kullback-Leibler divergenceebasost function. The connection between
these two types of variational methods can be found in [70].
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tions of the probability mass g@f{w, t), while still allowing us to perform the required
integrations. This framework also obviates the necessigssuming any hyperprior
p(7y) and is independent of the (subjective) parameterizatian, (e or — log~, etc.).

Moreover, this perspective leads to natural, intuitivelarptions of why sparsity is ob-
served in practice and why, in general, this need not be the c@hapter V will consider

this issue in greater detalil.

IV.B A Variational Interpretation of Sparse Bayesian Learning

To begin, we review that the ultimate goal of this analysiisind a well-

motivated approximation to the distribution

]t o [ plt.wlptw. tiH)dw = [ plt.w)p(tw)p(wiHydw,  (V.10)

where we have explicitly noted the hypothesis of a model wisiparsity inducing (pos-
sibly improper) weight prior by. As already mentioned, the integration required by
this form is analytically intractable and we must resortdams form of approximation.
To accomplish this, we appeal to variational methods to finadalle approximation

to p(w, t; H) [47]. We may then substitute this approximation into (I\J,l@ading to
tractable integrations and analytic posterior distritms$i. To find a class of suitable
approximations, we first expregéw; H) in its dual form by introducing a set of vari-
ational parameters. This is similar to a procedure outlimefB81] in the context of

independent component analysis.
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IV.B.1 Dual Form Representation of p(w; H)

At the heart of this methodology is the ability to represenbavex function
in its dual form. For example, given a convex functiffy) : R — R, the dual form is
given by

fly) = sup vy — f*(v)], (IV.11)

where f*(v) denotes the conjugate function. Geometrically, this camtepreted as
representing (y) as the upper envelope or supremum of a set of lines parameddyy
v. The selection of *(v) as the intercept term ensures that each line is tangefito

If we drop the maximization in (IV.11), we obtain the bound

fy) =z vy — f*(v). (IV.12)

Thus, for any giveny, we have a lower bound of{'y); we may then optimize over to
find the optimal or tightest bound in a region of interest.
To apply this theory to the problem at hand, we specify thenffar our sparse

prior p(w; H) = [, p(w;; H). Using (IV.7) and (IV.8), we obtain the prior

2\ —(a+1/2)
p(wi; H) = /p(wih/i)p(%)d% =C (b + %) ; (IV.13)

which fora,b > 0 is proportional to a Studeritdensity. The constart is not chosen
to enforce proper normalization; rather, it is chosen tdifate the variational analysis

below. Also, this density function can be seen to encourpgesgty since it has heavy
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tails and a sharp peak at zero. Clearly;; H) is not convex inw;; however, if we let

y; = w? as suggested in [47] and define
Jw) 2 logpluaH) = ~(a+1/2)log (b+ 5 ) +logC. (V1)

we see that we now have a convex functionjiramenable to dual representation. By
computing the conjugate functioff(y;), constructing the dual, and then transforming

back top(w;; H), we obtain the representation (see Appendix for details)

p(wi; M) = max {(%%)_m exp (— ;U ) exp (—£> %“] : (IV.15)

7>0 i i

As a,b — 0, it is readily apparent from (IV.15) that what were straidjhes in the
y; domain are now Gaussian functions with varianeé the w; domain. Figure V.1
illustrates this connection. When we drop the maximizatiea,obtain a lower bound

onp(w;; H) of the form

2
p(wi H) > p(wi; H) £ (27y:) "2 exp <_;U ) P <_£) ¥, (IV.16)
i Vi

which serves as our approximate priorptav; H). From this relationship, we see that

~

p(w;; H) does not integrate to one, except in the special case when> 0. We will
now incorporate these results into an algorithm for findimgad?{, or more accurately

H (=), since each candidate hypothesis is characterized byeaetitf set of variational

parameters.
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Figure IV.1: Variational approximation example in bogh space andv; space for
a,b — 0. Left Dual forms iny; space. The solid line represents the plotf¢#;)
while the dotted lines represent variational lower boumdthe dual representation for
three different values of;. Right Dual forms inw; space. The solid line represents

the plot of p(w;; H) while the dotted lines represent Gaussian distributiorih thiree
different variances.

IV.B.2 Variational Approximation to p(w,t;H)

So now that we have a variational approximation to the probte weight
prior, we must return to our original problem of estimatjii¢. |¢; ). Since the integra-
tion is intractable under model hypothesis we will instead compute(t,|t; H) using
plw, t;H) = p(t|w)p(w; H), with p(w; H) defined as in (1V.16). How do we choose
this approximate model? In other words, given that differinare distinguished by
a different set of variational parameteyshow do we choose the most approprigt®
Consistent with modern Bayesian analysis, we concern o@selot with matching
modes of distributions, but with aligning regions of sigrafnt probability mass. In
choosingp(w, t; 7%), we would therefore like to match, where possible, significe-

gions of probability mass in the true mogeho, t; ). For a givent, an obvious way
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to do this is to seleck by minimizing the sum of the misaligned mass, i.e.,

H = argmin /‘p(w,t;H)—p(w,t;ﬂ) dw
H

= argmax /p(t]w)p(w;ﬂ)dw, (IV.17)
H

where the variational assumptions have allowed us to rert@/absolute value (since
the argument must always be positive). Also, we note thatl{l)Vis tantamount to
selecting the variational approximation with maximal Bagasvidence [56]. In other
words, we are selecting tH¥€, out of a class of variational approximations7f that
most probably explains the training ddtanarginalized over the weights.

From an implementational standpoint, (1V.17) can be reesged using (1V.16)

as,

M

v = agmax log/p<t|’w)Hp<wi;7:f(%)) dw

=1

M
1 S b
= argmax —3 [log || + ¢S, '] + ;1 (—% - alog%) , (IV.18)

4

whereY; = \I + ®diag(y)®?. This is the same cost function as in [94] only without
terms resulting from a prior on, which we will address later. Thus, the end result
of this analysis is an evidence maximization procedurevedgmt to the one in [94].
The difference is that, where before we were optimizing avesomewhat arbitrary
model parameterization, now we see that it is actually agaition over the space of

variational approximations to a model with a sparse, regifa prior. Also, we know
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from (IV.17) that this procedure is effectively matching,rauch as possible, the mass

~

of the full modelp(w, t; H).

IV.C Analysis

While the variational perspective is interesting, two petit questions still

remain:

1. Why should it be that approximating a sparse ppiap; ) leads to sparse repre-

sentations in practice?
2. How do we extend these results to handle an unknown, randaance\?

We first treatQuestion (1) In Figure 1V.2 below, we have illustrated 2D
example of evidence maximization within the context of aaanal approximations to
the sparse priop(w; H). For now, we will assume,b — 0, which from (IV.13),
implies thatp(w;; H) « 1/|w;| for eachi. On the left, the shaded area represents the
region ofw space where both(w;H) and p(t|w) (and thereforep(w, t; H)) have
significant probability mass. Maximization of (IV.17) inves finding an approximate
distributionp(w, t; ﬂ) with a substantial percentage of its mass in this region.

In the plot on the right, we have graphed two approximatergriloat satisfy
the variational bounds, i.e., they must lie within the camgoof p(w; H). We see that
the narrow prior that aligns with the horizontal spinep0iv; H) places the largest per-

centage of its mass (and therefore the mags(@f, t; H,)) in the shaded region. This
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constraint

ey \" variational
o p<w17w27Hb>\

Figure 1V.2: Comparison between full model and approximatelets witha, b — 0.
Left: Contours of equiprobability density fei(w; H) and constant likelihood(t|w);

the prominent density and likelihood lie within each regrespectively. The shaded
region represents the area where both have significant iRag#: Here we have added
the contours of)(w; ﬂ) for two different values ofy, i.e., two approximate hypotheses
denotedH, andH,. The shaded region represents the area where both théndikelli
and theapproximateprior H,, have significant mass. Note that by the variational bound,
eachp(w; H) must lie within the contours gf(w; H).

corresponds with a prior of

~

p(w;H,) = p(wy, wa; v > 0,72 ~ 0). (IV.19)

This creates a long narrow prior since there is minimal vaxgaalong thev, axis. In
fact, it can be shown that owing to the infinite density of taeational constraint along
each axis (which is allowed asandb go to zero), the maximum evidence is obtained
when~y, is strictly equal to zero, giving the approximate prior iftrdensity along this
axis as well. This implies that, also equals zero and can be pruned from the model.
In contrast, a model with significant prior variance alonghbaxes,,, is hampered
because it cannot extend directly out (due to the dottedtianal boundary) along the

spine to penetrate the likelihood.
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Similar effective weight pruning occurs in higher dimemsb problems as
evidenced by simulation studies and the analysis in [23hidimer dimensions, the al-
gorithm only retains those weights associated with thergpines that span a subspace
penetrating the most prominent portion of the likelihoods@.e., a higher-dimensional
analog to the shaded region already mentioned). The pﬁor?—l) navigates the vari-
ational constraints, placing as much as possible of its matsss region, driving many
of the~;,’s to zero.

In contrast, whernu, b > 0, the situation is somewhat different. It is not dif-
ficult to show that, assuming a noise variarnce- 0, the variational approximation to
p(w, t;’H) with maximal evidence cannot have afly= w; = 0. Intuitively, this oc-
curs because the nofinite spines of the priop(w; H), which bound the variational
approximation, do not allow us to place infinite prior deysit any region of weight
space (as occurred previously when gny— 0). Consequently, if any; goes to zero
with a,b > 0, the associated approximate prior mass, and thereforepih@x@mate
evidence, must also fall to zero by (IV.16). As suamdels with all non-zero weights
will be now be favored when we form the variational approximathye therefore can-
not assume an approximation to a sparse prior will necégsave us sparse results in
practice.

We now addresQuestion (2) Thus far, we have considered a known, fixed
noise variance,; however, what if\ is unknown? SBL assumes it is unknown and ran-

dom with prior distributiorp(1/)) oc (\)!~¢exp(—d/)), andc, d > 0. After integrating
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out the unknown\, we arrive at the implicit likelihood equation,

. ~(et1/2)
p(thw) = /p(t|w, Np(V)dA o (d bl <I>wH2> | (IV.20)

where¢ £ ¢ + (N — 1)/2. We may then form a variational approximation to the
likelihood in a similar manner as before (with) being replaced byit — dw||) giving

us,

pltho) = (20) 200 exp (gt - dwl ) exo (<1 ) (0

= (270) M2 exp (—%Ht — ¢w||2> exp (—%) (A7, (Iv.21)

where the second step follows by substituting back incfoBy replacingp(t|w) with
the lower bound from (1V.21), we then maximize over the vidgoizal parameters and

Avia

M
1
YA = argrr;%\x—é [log AEE tTEt_lﬂ + ; (—% — alog%) — % — clog A,
(IvV.22)
the exact SBL optimization procedure. Thus, we see that theee®BL framework,

including noise variance estimation, can be seen in vanatiterms. However, as dis-

cussed in Section VIII.A, care should be exercised wheriljogstimatingy and .
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IV.D Conclusions

The end result of this analysis is an evidence maximizatioegrure that is
equivalent to the generalized SBL framework originally fotated in [94]. The differ-
ence is that, where before we were optimizing over a somesarhitary model param-
eterization, we now see that SBL is actually searching a spheariational approxi-
mations to find an alternative distribution that capturesgignificant mass of the full
model. Additionally, this formulation obviates the nedgssf assuming any subjective
hyperpriors and leads to natural, intuitive explanatiohs/loy sparsity is achieved in
practice. This topic will be taken up in more detail in the n€kapter, where the gen-

eral relationship between sparse priors and approximatmaparse priors is discussed.
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IV.F  Appendix: Derivation of the Dual Form of p(w;; H)

To accommodate the variational analysis of Sec. IV.B.1, wgire the dual

representation gf(w;; H). As an intermediate step, we must find the dual representatio
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of f(v;), wherey; = w? and

f(yi) = log p(wi; M) = log {C (b + %) _(GH/Q)} : (IV.23)

To accomplish this, we find the conjugate functitiiv;) using the duality relation

P (w0 = s o = )] = max [ —tog €+ (a1 1o (0.4 4] vz

To find the maximizingy;, we take the gradient of the left side and set it to zero, givin

us,

1
yrar = L~ _op (IV.25)
(O QUZ'

Substituting this value into the expression fd(v;) and selecting

1 1\ (@+1/2)
C = (2r) Y exp [— <a + 5)} (a + 5) : (IV.26)
we arrive at
« 1 —1 1
fflv)=(a+ 5 log S0 + 3 log 21 — 2bv);. (IV.27)

We are now ready to represefity;) in its dual form, observing first that we only need
consider maximization over; < 0 sincef(y;) is a monotonically decreasing function
(i.e., all tangent lines will have negative slope). Procegdorward, we have
b

—Yi 1 1
— -1 , — —log 27 — — |(IV.28
27 (a—l— 2) 08 2 08 =T Vi (I )

fly:) = max iy — [*(vi)] = max {
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where we have used the monotonically increasing transfioma; = —1/(2v;),v; >

0. The attendant dual representationp@f;; /) can then be obtained by exponentiating

both sides of (1V.28) and substituting = w?,

1 w? b\ .,
p(wi; H) = max [mexp (— 2%) exp <—%) v, } : (IV.29)



Chapter V

A General Framework for Latent

Variable Models with Sparse Priors

A variety of general Bayesian methods, some of which have desuissed
in previous chapters, have recently been introduced formfiindparse representations
from overcomplete dictionaries of candidate features. s€éhmethods often capitalize
on latent structure inherent in sparse distributions téoper standard MAP estimation,
variational Bayes, approximation using convex duality,\adence maximization. De-
spite their reliance on sparsity-inducing priors howetleese approaches may or may
not actually lead to sparse representations in practice,sant is a challenging task
to determine which algorithm and sparse prior is approgrid&ather than justifying
prior selections and modelling assumptions based on thigdiy of the full Bayesian
model as is commonly done, this chapter bases evaluatiotieeactual cost functions

that emerge from each method. Two minimal conditions aréuteted that ideally any

109
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sparse learning objective should satisfy. Out of all pdestost functions that can be
obtained from the methods described above using (virtuatly sparse prior, a unique
function is derived that satisfies these conditions. BothsgpBayesian learning (SBL)
and basis pursuit (BP) are special cases.

These results elucidate connections between methods ggdsts new sparse
learning cost functions. For example, we demonstrate that tne above sparse learn-
ing procedures can be viewed as simple MAP estimation githegappropriate prior.
However, where as traditional MAP methods for sparse rego{@g., BP, LASSO,
FOCUSS, etc.) employ a factorial (separable) prior, SBL ahdratmpirical Bayesian

methods do not.

V.A Introduction

Here we will again be concerned with the generative model

t=dw + €, (V.1)

where® ¢ RY*M js a dictionary of unit,-norm basis vectors or featuras,is a vector

of unknown weightst is the observation vector, ards uncorrelated noise distributed
asN (0, AI). In many practical situations, this dictionary will beercompletemeaning

M > N andrank(®) = N. When large numbers of features are present relative to
the signal dimension, the estimation problem is fundantignteposed. A Bayesian

framework is intuitively appealing for formulating thesgés of problems because prior
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assumptions must be incorporated, whether explicitly golicitly, to regularize the
solution space.

Recently, there has been a growing interest in models thabgreparse priors
to encourage solutions with mostly zero-valued coeffigeRbr purposes of optimiza-
tion, approximation, and inference, these models can becoently framed in terms of
a collection of latent variableg = [v, ..., vy]?. The latent variables dictate the struc-
ture of the sparse prior in one of two ways. First, in the irdétype representation, the

prior is formed as a scale mixture of Gaussians via

M

pw) = T[otw). o) = [ NO0p0)d (v.2)

=1

In contrast, the convex-type representation takes theform

p(w;) = sup N (0, ;) p(7:), (V.3)

720

whose form is rooted in convex analysis and duality theoysAown in [70], virtually
all sparse priors of interest can be decomposed using bo) &vd (V.3), including
the popular Laplacian, Jeffreys, Student'sind generalized Gaussian priér§he key

requirement is that(w;) is strongly supergaussiamvhich requires that

p(w;) o exp[—g(w})], (V.4)

'Here we use a slight abuse of notation, in th@;) need not be a proper probability distribution.
2The convex-type representation is slightly more general than (V.2).
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with g(-) a concave and non-decreasing function.

In the context of regression and model selection, the fullyd3&n treatment
would involve integration (or maximization for the convespresentation) over both
the latent variables and the unknown weights. With sparsegyrhowever, this is in-
tractable. Moreover, in applications where sparsity isangnt, often a sparse point
estimatew is all that is required, rather than merely a good estimajé®for the con-
ditional distribution of new data-points, i.e.,p(¢*|t). As such, nearly all models with
sparse priors are handled in one of two ways, both of whichbeaviewed as approxi-
mations to the full model.

First, the latent structure afforded by (V.2) and (V.3) offa very convenient
means of obtaining (local) MAP estimateswwfusing generalized EM procedures that
iteratively solve

w = arg mjuxp(t|w)p(w). (V.5)

Henceforth referred to as/pe | methodommon examples include minimuiquasi-
norm approaches [50, 79], Jeffreys prior-based methodstsms called FOCUSS [24,
27, 34], and algorithms for computing the basis pursuit (BR)asso solution [27, 54,
79].

Secondly, instead of integrating out (or maximizing ou® byperparameters,

Type Il methodinstead integrate out the unknownand then solve

g = arg mgxp(vlt) = argmax / p(tw)N(0,7)p(y)dw. (V.6)
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Once~ is obtained, a point estimate far naturally emerges as
~ “ —1
W = E [w|t; 4] = D07 ()J + <I>F<I>T) t, (V.7)

wherel" = diag(v). Relevant examples include sparse Bayesian learning (SBL,) [94
automatic relevance determination (ARD) [66], evidenceim&ation [86], and meth-
ods for learning overcomplete dictionaries [31]. Perhapprssingly, even the popular
variational mean-field approximations, which optimize etdaial posterior distribution
such thap(w, v|t) ~ q(w|t)q(~|t), are equivalent to the Type Il methods in the con-
text of strongly supergaussian priors [70]. A specific exengs this can be found in
[5].

In applying all of these methods in practice, the perfornesanchieving sparse
solutions can be highly varied. Results can be highly dep#nole the (subjective)
parameterization used in forming the latent variabless Daicurs because the decom-
position ofp(w) is generally not unique. In some cases, these methods |édeltiical
results, in others, they may perform poorly or even lead togioly non-sparse represen-
tations, despite their foundation on a sparse prior-basedrgtive model. In still other
cases, they may be very successful. As such, sorting out &damimgful differences
between these methods remains an important issue.

In the past, sparse models have sometimes been justifidy baked on their
ostensible affiliation with a sparse prior. However, a mb@ough means of evaluation

involves looking at the actual cost function that resulbsrfrvarious prior and modelling
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assumptions. We would argue that models should be justiisddon this lower level,
not the plausibility of the full model, which may be irreleand/or non-unique.

In this paper, we will begin by examining the cost functiomattemerge from
all possible Type | and Type Il methods, demonstrating thatformer is actually a
special case of the latter, with a common underlying set gdative functions uniting
both methods. However, it still remains unclear how to f#jisselect from this class
of algorithms when sparsity is the foremost concern. To dfffisct, we postulate two
minimal conditions that ideally any sparse approximatiostdunction should satisfy.
We then select, out of all the possible Type | and Il methodsudised above, the unique
function that satisfies these two conditions. Interesyingbth BP and SBL are special
cases. In general, we would argue that these results segmtiffocompress the space of
‘useful’ sparse algorithms and provides a more rigorousfjcation for using a partic-
ular method consistent with observed empirical results.cdfeclude by discussing an
important distinguishing factor between candidate athors that suggests avenues for

improvement.

V.B A Unified Cost Function

Given the significant discrepancies between the varioestiatariable sparse
approximation methods, it would seem that the respectigséfanctions should be very
different. However, this section demonstrates that thieyeal be viewed as special cases
of a single underlying objective function. We start with timtermediate results before

presenting the main idea.
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Lemma 7. Given a sparse prior expressible using (V.2) or (V.3), tisailteng posterior
mode overw (as is sought by Type | methods) can be obtained by minimitiegcost

function

Loy(vd N2+ f() (V.8)

i=1
over the latent variableg, whereX, = \I+®I'd” andf(-) is a suitably chosen function

on [0, o).

Proof: From basic linear algebra, we have
1
t"¥7 't = min 3 It = dw| + w' T w. (V.9)

The minimizingw is given by (V.7). If we choosg(v;) = —g* (v; '), whereg*(:)

denotes the concave conjugate;6f), then the optimization problem becomes

m§ﬂ£<f>(7; A f) =

. . 1 2 — * —
min min + |t — dw||; + w'T 1w+;—g (v ). (V.10)
When we switch the order of minimization (allowable) and oypte overy first, we get
inw T lw+ ) —¢' (1) = w?), V.11
minw’ T w Z g (") = > g(w) (V.11)

which follows from the representation (V.3) and its assuampthatg(-) is concave in
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w? [70]. Since the posterior mode is given by the minimum of

M
Lin(wi A, f) & —logp(tlw)p(w) = ||t — dwll3+ XY g(w?), (V.12)

i=1

this completes the proof. Additionally, local minima aregerved as well, meaning
there is a one-to-one correspondence between local minirf)a8) and local minima
of (V.12). Note that this analysis is valid even for priormstiucted via the integral

representation (V.2), since such priors are a subset oéthaiét upon (V.3). [ |

Lemma 8. All of the Type Il methods can be obtained by minimizing thetdoinction

Lan(v; A f) 2 757+ log [3] + Z [ (V.13)

Proof: This result can be obtained by computing the integral i®)énd applying a
— log(+) transformation. The value of(-) will depend on the prior representation that

is assumed. [ |

Theorem 7. Up to an inconsequential scaling factor, both the Type | ayjkTI cost

functions can be reduced to (V.13) with the appropriatecsiele of f(-).

Proof. It only remains to show that (V.8) is a special case of (V.13his is very

straightforward because we can always reparameterizgstSinch that thivg || term
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vanishes. Let

f() £ af [Oé()} ) 5‘ = a_l/\a (V14)

wherea > 0 is a constant. Note that(-) represents a valid selection for either Type |

or Type Il methods. Under these definitions, (V.13) can beesged as

M
Lan(riAf) = 7 (M +eTdT) " ¢+ log [\ + @Te7| + > f(v)
=1
= 7 [a”" (AT + a®T'd")] " ¢ +log |a~" (AT + adl'd7)]

M
+3af(a) (v.15)

M
t7 [\ + @]t +a tlog| A + a®TdT| + Y flam)

i=1

As a becomes large, we have

M
Lan(vh f) = t M+ @ (al) @7] ¢+ 3 flam). (V.16)

i=1

This is equivalent to (V.8) with the exception of the scalfagtor of on~. However,
this factor is irrelevant in that the weight estimatesso obtained will be identical.
To make this explicit, lety ;) denote a minimum to (V.8) while;) is a minimum of
(V.16), where if follows thaty;) = av . The corresponding weight estimatésg;

andw ;) will be identical since

L@ (M + ®T (") ¢

<3S
~
=

|

— aln®7 [aM + & (al () 7] ¢
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— Tupn®" (M + 0T ") 't

— ). (V.17)

This completes the proof. [ |

In summary, by choosing the appropriate sparse prior, amefibre the functiory(-),
any Type | method can be reduced to a special case of Type WilAbe discussed in
Section V.E, the real distinction between the two is thatelymethods are restricted to
separable (i.e., factorial) effective priors while Typapiproaches are not. Additionally,
we will drop explicit use of the subscriptg and ), usingL(~; A, f) to denote the cost

function for all methods.

V.C Minimal Performance Conditions

In the past, different methods have been justified basedepl#usibility of
the full model and the full priop(w), or in terms of how well a particular approxima-
tion resembles the full model. But this can be problematicesias already mentioned,
sparse priors need not lead to sparsity-promoting costifumewhen using Type | or
Type Il methods, even when well-motivated priors are in igerv As such, we base
our evaluation solely on two minimal performance critehattwe would argue a cost
function should ideally satisfy if sparsity is the overatjective. While certainly there
are different notions of sparsity, here we are concerneld @ast functions that encour-

age sparsity in thé,-norm sense, meaning most weights go to exactly zero, nalyner



119

small values. This notion of sparsity is often crucial, hessmawith large numbers of
features, it is very desirable for a variety of reasons thatyrmmay be pruned from the

model.

Condition 1. Every local minimum is achieved at a solution with at m§shonzero

elements.

In the noiseless case, this requirement is equivalent tmgtthat every local minima
is achieved at a basic feasible solution (BFS). Many of the M#gerithms satisfy this
condition (e.g., using a generalized Gaussian prior with 1 or a Jeffreys prior). This
ensures that an algorithm is guaranteed to prune atdéasv unnecessary coefficients,

a minimal sparsity condition.

Condition 2. Given thatt = w¢; for somew € R and unique dictionary columg;,
then there is a unique, minimizing solution characterizgdib= we;, whereg; is the

canonical unit vector.

This can be viewed as a minimal recoverability criteria: athod maintains trou-
blesome local minima even when only a single, nonzero elemesd be found, then
serious difficulties may arise for more challenging prolderin the context of source

localization for neuroimaging, this is sufficient to ensmego localization bias [90].
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V.D Performance Analysis

Rather than directly considering each possible sparse andrits attendant
latent variable structure, we can instead analyze the gknest functionZ(~; \, f)
that encompasses all possibilities. This leads to a mucle siwaightforward means
of assessing the different Type | and Type Il methods. Heremillebegin with the
assumption thaf(-) is an arbitrary differentiable function df, oc). Note that there
is some indeterminacy between the specification of the pmorthe cost function that
results. In other words, a given pripfw) can be decomposed using multiple latent
parameterizations, leading to different effective valokg(-).

We begin with some preliminary definitions and results. Wi say that the
function f () is strictly conve>on some (possibly open) intenal o] if f (ca + (1 — €)b) <

ef(a)+(1—e)f(b) foralle € (0,1).2 Strict concavitys defined in an analogous manner.
Lemma 9. To satisfy Condition 1f(-) must be a nondecreasing function[onco).
This result is very straightforward to show.

Lemma 10. Let f(-) be strictly convex in some (possibly open) interval. Tiign; \, f)

violates Condition 1.

It is not difficult to create examples that illustrate thisukt. In general, if a large subset
of hyperparameters maintain similar values in the specd@wex region, then certain
dictionaries with redundant means of achieving nearly #mescovariance; will lead

to locally minimizing solutions with more thal' nonzero elements.

3Here we assume a slightly nonstandard (and weaker) definition of sirizéxity.
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Lemma 11. Let f(-) be a strictly concave function df, co). ThenL(~; ), f) violates

Condition 2.

The proof has been deferred to Appendix V.G.1. Only the @déssn-decreasing affine
functions satisfy the above three lemma, which constiteteessary conditions. For

sufficiency we have the following result:

Lemma 12. L(~; A, f) satisfies Conditions 1 and 2 ff(z) « az, wherea > 0.

See the Appendix V.G.2 for the proof. Combining all of the alowe arrive at the

following conclusion:

Theorem 8. L(; A, f) satisfies Conditions 1 and 2 if and only fifz) « «az, where

a > 0.

A couple of things are worth noting with respect to this reskirst, the implicit prior
associated withf(z) o« az depends on which representation of the latent variables is
assumed. For example, using the integral representation (.2) to perform MAP
estimation ofv, we find thatp(w) is Laplacian, but using the convex representation
(or when using the equivalent variational Bayes formul3tiptw) becomes a kind of
Jeffreys prior-like distribution with an infinite peak atree Both lead to the exact same
algorithm and cost function, but a very different interptein of the prior. In contrast,

if a Laplacian prior is decomposed using (V.3) as in done j,[8 provably non-sparse
cost function results. This underscores the difficulty in@$ing a model based on the
plausibility of the starting prior rather than performaraéeria directly linked to the

actual cost function that ensues.
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Secondly, both the SBL and BP cost functions can be viewed asa$fien-
iting cases ofL(~; A, f) when usingf(z) = az. SBL is obtained withh — 0, while
BP results from the assumptien — oo, with A — \/a!/2. The general case is eas-
ily implemented using EM updates, where the E-step invobaesputing the posterior
moments

Elww’|t;y] =T0"'sS; 't S, '0T + T — 9" %, '@r, (V.18)
while the M-step reduces to

14 (14 4aF [lww'|t;v] . 12
i = ( 2& ) (V.19)

Consistent with the above observations, wher- 0, these expressions reduce to the
exact SBL updates (EM version), while the assumptianss oo, with A — \/a!/?
produce an interior point method for computing the BP soiuti&or all othera, the
algorithm is very effective in empirical tests (not showaljhough the optimal value is

likely application dependent.

V.E Discussion

Bayesian algorithms for promoting sparsity have been detisgeng a variety
of assumptions, from standard MAP estimation, to varigidayes, to convex lower-
bounding, to evidence maximization, etc. These methodgatiae on latent structure
inherent to sparse distributions in one of two ways, leadinthe distinction between

Type | and Type Il methods, all of which can be optimized usingeneral EM frame-
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work [70]. However, despite their reliance on a sparsitysiting prior, these approaches
may or may not actually lead to sparse representations ctipea

Rather than subjectively evaluating different methods thasethe plausibility
of the particular prior or approximation strategy that isdisn this paper we have cho-
sen to take a step back and evaluate each model with resgenttevell the underlying
cost function encourages sparsity. To accomplish this,ave described a general class
of objective functions that encompasses all Type | and Iraaghes using results from
[70]. From this family, we then demonstrated that only a Erfgnction satisfies two
broad criteria directly tied to performance in finding sgarspresentations. Both SBL
and BP objectives are special cases of this function. Penhaipsoincidentally then,
SBL and BP were respectively the first and second best Bayegmoaihes to solving
extremely large sparse inverse problems tied to neurselaegnetic source imaging
using400+ times overcomplete dictionaries [75].

A final point is worth exploring regarding the differenceweéen Type | and
Type Il approaches. In the past, Type | methods, being letbeds MAP estimates
for w, have been distinguished from Type Il methods, which canieead as MAP
estimates for the hyperparametersin specific cases, arguments have been made for
the merits of one over the other based on intuition or haar@sguments [58, 94]. But
we would argue that this distinction is somewhat tenuoudadty all Type Il methods

can equivalently be viewed as standard MAP estimatia-space using the prior

~

p(w) o< exp [—% min <'wTF_1'w + log |Z¢| + Z f(v,))] . (V.20)
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Although not generally available in closed form, this piignecessarily concave n?
in the same sense as the priors (V.2) and (V.3). Unlike theique prior expressions
however, (V.20) imon-separablemeaningp(w) # >, p(w;). This we believe is the
key distinction between Type | and Type II; both are finding RlAstimates ofv, but
the former is restricted to factorial priors while the lati® not (this is consistent with
the notion that Type | is a special case of Type II).

This distinction between factorial and non-factorial psiappears both imw-
space and in hyperparameteispace and is readily illustrated by comparing SBL and
FOCUSS in the latter. Using a determinant identity and redutim Section V.B, the

SBL cost can be expressed as

LspL(v;A) = 'St +log|l] + log [T + X' 07 ®|

= Lrocuss(1;A) +log [T+ A7 107 @ (V.21)

Thus, the two cost functions differ only with respect to tba+separable log-determinant
term. In fact, it is this term that allows SBL to satisfy Conaliti2 while FOCUSS does
not. Again, this reinforces the notion that cost-functlmased evaluations can be more
direct and meaningful than other critiques.

These issues raise a key question. If we do not limit ourseiveseparable
regularization terms (i.e., priors), then what is the opliselection fop(w)? Perhaps
there is a better choice that does not neatly fit into curmaméworks that are linked to

the Gaussian distribution. This remains an interesting amefurther research.
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V.G Appendix

V.G.1 Proof of Lemma 11
Preliminaries

Assume a dictionarg with M > N that satisfies the URP. Condition 2 ap-
plies to the scenario where one columndois proportional tot. We denote the hyper-
parameter associated with this colummas Let v, be a hyperparameter vector such
that||7. o = N and~, = 0, with w, = I't/*(@I'Y/?)1.

Definey andw to be theN nonzero elements in ang andw, respectively,
and® the corresponding columns & Note that this implies thab = d—1¢. We will

later make use of the simple inequality

N 2
t't = 0707w < |W|T1ywm|W| = <Z|@\> : (V.22)

i=1
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where1 v, ) denotes anV x N matrix of ones and the- | is understood to apply
element-wise. Note that equality can only be achieved whemnyecolumn of d is
identical up to a factor of-1, which violates the URP assumption. However, we can
get arbitrarily close to this bound, while still satisfyinige URP, by adding a small

perturbation to each column. Finally, we define
S . (V.23)

Sufficient Conditions for Local Minima

With a little effort, it can be shown that the following tworditions are suf-

ficient for ~, to be a local minimum of(y; A = 0, f).

Condition (A): ~ is the unique minimizer of the reduced cost function

- N
LA;A=0,f) 2 log ]f| +t7 ((TDFCET) 1t + Zf(%)
=1

N ~2
- wj ~
= ) <1og Bt =t f(%-)) : (V.24)
i=1 v
Condition (B):
ULLA=01 (V.25)
O Y=

This condition can be motivated as follows.~lf is a local minima tol(~v; A = 0, f),

then the gradient with respect to all zero-valued hyperpatars cannot be negative
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(as discussed in Section 11.C.2 in the case wh&r¢ equals zero). Otherwise the cost
function can be reduced by increasing a particular hyparpater above zero. By the
URP assumptior;; will be zero-valued wherny = ~,, moreover, the gradient with

respect toy, will always be less than the gradient with respect to anyratbeo-valued

hyperparameter, so (B) holds, no other gradients need be checked.

The proof which follows is a demonstration that these coowit, which together are
sufficient for the existence of a local minimum, can alwaysrzele to hold forf(-)

strictly concave and non-decreasing.

Satisfying Condition (A)

Using simple calculus and some algebraic manipulatiorgitbe shown that

if each~; satisfies

—1+ /1 + 4a;w?
~ _ + + alwl’ (V.26)

Yi 2a,
then~ is the unique minimizer of (V.24). Note that is a function ofw;. The=;
that satisfies (V.26) will increase monotonicallyasincreases, while; will decrease
monotonically froma, due to the assumed concavity & ).
Satisfying Condition (B)

(B) can be reduced to

afyt ~t=0

>0, (v.27)
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where, excluding terms without, the relevant cost is

LA =0,f) 2 log (1+ 2206) + < ﬁTﬁ ), (V.28)

where
~2

N N _
N W; 2a,;W?

L : V.29

P IE A D vy v (v29)

1177’

The later equality follows from satisfyin@\). The required gradient can be analytically
computed leading to

G — 3%+ apt™t > 0. (V.30)

Substituting (V.22) gives the weaker sufficient condition

N 2
B =B+ ag (Z m!) > 0. (V.31)
=1

To show that there will always exist cases where (V.31) halgsallowt, and therefore

eachw;, to grow arbitrarily large. This permits the reductton

8= a; 1w +0(1), (V.32)

which reduces (V.31) to

(Z 1/2lwz|> - (Z 1/2|wz|> +o(z 1/2|w1|> > 0. (V.33)

=1 % 7

“We assume here that > 0; otherwise, the condition obviously holds.
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Since f(-) is strictly concave and nondecreasing, there will alwaystmew with
elements sufficiently large such that > a; for all . Consequently, we can ignore
the lower-order terms and satisfy the sufficient conditimnsomew sufficiently large,

implying that there will always be cases where local minimiatausing such arf(-).

V.G.2 Proof of Lemma 12

Assumef(z) = az, with a > 0. Condition 1 is satisfied as a natural con-
sequence of Theorem 2, which implicitly assunfés) = 0 but is easily extended to
include any concave, nondecreasing function. So the onhk vgato show that it also
fulfills Condition 2. For this purpose, we will assunkesatisfies the URP; this assump-
tion can be relaxed, but it makes the presentation moregktfarward.

Using the above we can assume, without loss of generaligy, ahy local
minimum is achievable with a solutiof, such that||~.|[p < N. We can be more
specific; either|v.|lo = 1 if +, is the lone nonzero hyperparameter, || = N
(a non-degenerate BFS per the parlance of Section II.A). Morrediate solution is
possible. This occurs as a consequence of the URP assumptid4 Theorem 1].
So to satisfy Condition 2, we only need show that no solutiortis ¥y norm equal taV
are local minima. The only remaining possibility will thegpresent the unique, global
minimizer, i.e.w, = T/ (<I>1“1/2)T = wy.

If we relax the strict inequality in (V.25) to allow for equg then the suf-
ficiency conditions from the previous proof become necegssanditions for a local

minimum to occur at a BFS. Following the analysis from SecWt@.1 leads to the
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necessary condition
N 2
B-03+a (ZI@I) >0, (V.34)
=1

where we note that; = ag = « given our assumptions of1-). Using the definition

2|w;|at/?
Ci(a) £ , V.35
(@) -1+ /1+ daw? ( )
it follows that
B=>"a"lw|Ci() (V.36)

and therefore (V.34) becomes

Za1/2|wl|0 (Z o |wg| Ci(ax ) (Z o w| ) > 0. (V.37)

To check if (V.37) holds, we note that

Z o Jwg| Ci(ax Z aw?Ci(a)? + Z alw;* =0 (V.38)
and that
= afwi|lwy|Ci(@)Ci(a) + > alwi|w;] < 0. (V.39)
i#] i#]

The later inequality follows becaugé(«) > 1, with equality only in the limit agy —
oo. Together (V.38) and (V.39) dictate that (V.37) can neverbe (except in the special
case wherex — 0, which will be discussed below). Since a necessary comdhis

been violated, no BFS witlV nonzero elements can be a local minimum. That leaves
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only the solution with|~.|lo = 1 as the unique global minimum.

Note that (V.37) cannot hold even in the limitas— 0. Becauseb satisfies
the URP,tTt will always be strictly less thar(Zfil |@iy)2. This fact, when propa-
gated through the various inequalities above, imply tha&{V/will even fail whenx is

unbounded.



Chapter VI

Solving the Simultaneous Sparse

Approximation Problem

Given a large overcomplete dictionary of basis vectors,gibed is to simul-
taneously represent > 1 signal vectors using coefficient expansions marked by a
common sparsity profile. This generalizes the standardepapresentation problem to
the case where multiple responses exist that were putageslerated by the same small
subset of features. Ideally, the associated sparse gengpnagights should be recovered,
which can have physical significance in many applicationg. (source localization).
The generic solution to this problem is intractable anddfaee approximate proce-
dures are sought. Based on the concept of automatic reledmteemination (ARD),
this chapter uses an empirical Bayesian prior to estimatengecent posterior distri-
bution over candidate basis vectors. This particular appration enforces a common

sparsity profile and consistently places its prominentgromt mass on the appropriate

132
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region of weight-space necessary for simultaneous specseery. The resultant algo-
rithm is then compared with multiple response extensionslatiching Pursuit, Basis
Pursuit, FOCUSS, and Jeffreys prior-based Bayesian methindsg that it often out-
performs the others. Additional motivation for this pauter choice of cost function is
also provided, including the analysis of global and localima and a variational deriva-
tion that highlights the similarities and differences be@n the proposed algorithm and

previous approaches.

VI.A Introduction

Previous chapters have focused on what we will refer to asitiyge response
problem, meaning that estimation of the unknown weighjs is based on a single
observedt. But suppose instead that multiple response vectors {g.@,, ... ) have
been collected from different locations or under differeomditions (e.g., spatial, tem-
poral, etc.) characterized by different underlying pareameectoraw;, w», . . ., but with
an equivalent design matrik. Assume also that while the weight amplitudes may be
changing, the indexes of the nonzero weights, or the sggmifile, does not. In other
words, we are assuming that a common subset of basis vec®rslavant in gener-
ating each response. Such a situation arises in many digp@iEation domains such
as neuroelectromagnetic imaging [33, 40, 73, 74, 75], comaations [12, 25], signal
processing [45, 92], and source localization [60]. Othemegles that directly comply
with this formulation include compressed sensing [8, 2@] Hhd landmark point selec-

tion for sparse manifold learning [91]. In all of these apations, it would be valuable
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to have a principled approach for merging the informationtamed in each response
so that we may uncover the underlying sparsity profile. Timigirn provides a useful
mechanism for solving what is otherwise an ill-posed inggnoblem.

Given L single response models of the standard férmdw + €, the multiple

response model with which we are concerned becomes

T = ®W + €, (VI1.1)

whereT = [t.,...,t.z], andW = [w.,...,w.r]. Note that to facilitate later analysis,
we adopt the notation that; represents thg-th column of X while ;. represents the
i-th row of X. Likewise, z;; refers thei-th element in thej-th column ofX. In the
statistics literature, (VI.1) represents a multiple resggomodel [46] or multiple output
model [38]. In accordance with our prior belief that a bagster (and its correspond-
ing weight) that is utilized in creating one response wkkly be used by another, we
assume that the weight matfiX has a minimal number of nonzemws. The inference
goal then becomes the simultaneous approximation of eaigintwectorw.; under the

assumption of a common sparsity profile.

VI.A.1 Problem Statement
To simplify matters, it is useful to introduce the notation

dW) £ T [|lw;] > 0], (VI.2)

=1
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whereZ|-] denotes the indicator function afjd || is an arbitrary vector normi(-) is a
row-diversitymeasure since it counts the number of rowH/irthat are not equal to zero.
This is in contrast taow sparsity which measures the number of rows that contain all
elements strictly equal to zero. Also, for the column veetoit is immediately apparent

thatd(w) = ||lw

0, and sad(-) is a natural extension of thig quasi-norm to matrices.
The nonzero rows of any weight matrix are referred tacts/e sources

To reiterate some definitions, we define #park of a dictionary® as the
smallest number of linearly dependent columns [17]. By dédinithen 2 < sparK®) <
N+1. As a special case, the condition spg@rk= N +1 is equivalent to the unique rep-
resentation property from [34], which states that everysstibf N columns is linearly
independent. Finally, we say thétis overcompletéf A/ > N and rank®) = N.

Turning to the simultaneous sparse recovery problem, winlvéth the most
straightforward case whe& = 0. If ® is overcomplete, then we are presented with
an ill-posed inverse problem unless further assumptioasveade. For example, by

extending [12, Lemma 1], if a matrix of generating weighits, satisfies

d(Wyer) < (sparkK®) +rankT) — 1) /2 < (sparK®) + min(L, d(W,)) — 1) /2,
(VI.3)
then no other solutiofl” can exist such that' = ®WW andd(IV) < d(W,,). Further-

more, if we assume suitable randomness on the nonzerosatfig,.,, then this result
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also holds under the alternative inequality
d(Wyen) < sparK®) — 1, (VI1.4)

which follows from the analysis in Section 11.B.2. Given thate or both of these

conditions hold, then recovering,., is tantamount to solving
Wyen = Wy = arg min d(W), St.T = dW. (VL.5)

In general, this problem is NP-hard so approximate proaedare in order. In Section
VI.E.1 we will examine the solution of (VI.5) in further déta The single response
(L = 1) reduction of (VI.5) has been studied exhaustively [17, 28, 95]. For the
remainder of this paper, whenev@r= 0, we will assume thatV,., satisfies (VI.3) or
(VI.4), and soll, andW ., can be used interchangeably.

When& # 0, things are decidedly more nebulous. Because noise is firesen
we typically do not expect to represefitexactly, suggesting the relaxed optimization
problem

Wo(\) £ arg min || — W% + Md(W), (V1.6)

where )\ is a trade-off parameter balancing estimation quality wiv sparsity. An
essential feature of using(1V) as the regularization term is that whenever a single
element in a given row ofV is nonzero, there is no further penalty in making other

elements in the same row nonzero, promoting a common sparsiile as desired. Un-
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fortunately, solving (VI1.6) is also NP-hard, nor is it cldaw to select\. Furthermore,
there is no guarantee that the global solution, even if alvklfor the optimal value of
A, is necessarily the best estimatorldf., or perhaps more importantly, is the most
likely to at least have a matching sparsity profile. Thisglattondition is often crucial,
since it dictates which columns df are relevant, a notion that can often have physical
significance"

From a conceptual standpoint, (VI.6) can be recast in Bagdsians by ap-
plying aexp|[—(-)] transformation. This leads to a Gaussian likelihood fuomgti 7| W)
with A\-dependent variance and a prior distribution giverpbly’) o exp [—d(W)]. In
weight space, this improper prior maintains a sharp peakeviee a row norm equals
zero and heavy (in fact uniform) ‘tails’ everywhere elseeDptimization problem from
(V1.6) can equivalently be written as

Wo(A) = arg mV%XP(T’W)p(W) = arg max p(TW)p(W)

AL A T
1 o(T) arg max p(W|T)

(VI.7)
Therefore, (V1.6) can be viewed as a challenging MAP esionatask, with a posterior

characterized by numerous locally optimal solutions.

VI.LA.2 Summary

In Section VI.B, we discuss current methods for solving thauianeous

sparse approximation problem, all of which can be undedsteiher implicity or ex-

! Although not our focus, if the ultimate goal is compressiorfpithen the solution of (VI1.6) may trump other
concerns.
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plicitly, as MAP-estimation procedures using a prior that@urages row sparsity. These
methods are distinguished by the selection of the spairsilyeing prior and the opti-
mization strategy used to search for the posterior mode.diffieulty with these pro-
cedures is two-fold: either the prior is not sufficiently sgty-inducing (supergaussian)
and the MAP estimates sometimes fail to be sparse enoughe anwst deal with a
combinatorial number of suboptimal local solutions.

In this paper, we will also explore a Bayesian model based orioa fhat
ultimately encourages sparsity. However, rather than ekirigaon a problematic mode-
finding expedition, we instead enlist an empirical Bayesiaategy that draws on the
concept of automatic relevance determination (ARD) [57, &8&rting in Section VI.C,
we posit a prior distribution modulated by a vector of hy@egmeters controlling the
prior variance of each row df’, the values of which are learned from the data using
an evidence maximization procedure [56]. This particulgpraximation enforces a
common sparsity profile and consistently places its prontip@sterior mass on the
appropriate region dfi’-space necessary for sparse recovery. The resultantthlgas
called M-SBL because it can be posed as a multiple responsestah of the standard
sparse Bayesian learning (SBL) paradigm [94], a more desa&iptle than ARD for
our purposes. Additionally, it is easily extensible to tleenplex domain as required in
many source localization problems. The per-iteration demity relative to the other
algorithms is also considered.

In Section VI.D, we assess M-SBL relative to other methodsguempirical

tests. First, we constrain the columnsdofo be uniformly distributed on the surface of
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anN-dimensional hypersphere, consistent with the analygi8jhand the requirements

of compressed sensing applications [102]. In a varietysiirtg scenarios, we show that
M-SBL outperforms other methods by a significant margin. €hresults also hold up

when® is instead formed by concatenating pairs of orthobases [16]

In Section VI.E, we examine some properties of M-SBL and dramgar-
isons with the other methods. First, we discuss how the lediwa between the active
sources affects the simultaneous sparse approximatidahepno For example, we show
that if the active sources maintain zero sample correlatioen all (sub-optimal) lo-
cal minima are removed and we are guaranteed to solve (\BiBuM-SBL. We later
show that none of the other algorithms satisfy this conditia a more restricted setting
(assumingd?® = I), we also tackle related issues with the inclusion of naiseon-
strating that M-SBL can be viewed as a form of robust, spargalsige operator, with
no local minima, that uses an average across responses toatethe shrinkage mech-
anism.

Next we present an alternative derivation of M-SBL usingat@onal methods
that elucidates its connection with MAP-based algorithmd kelps to explain its su-
perior performance. More importantly, this perspectivargifies the means by which
ARD methods are able to capture significant posterior mass \sparse priors are in-
volved. The methodology is based on the variational petsgeof Chapter IV that
applies to the single responsk € 1) case. Finally, Section VI.F contains concluding
remarks as well as a brief discussion of recent results agpM-SBL to large-scale

neuroimaging applications.
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VI.B Existing MAP Approaches

The simultaneous sparse approximation problem has reteila of attention
recently and several computationally feasible methode baen presented for estimat-
ing the sparse, underlying weights [9, 12, 60, 77, 81, 98, gitst, there are forward
sequential selection methods based on some flavor of Matétunsuit (MP) [61]. As
the name implies, these approaches involve the sequeatidigreedy) construction of
a small collection of dictionary columns, with each new &ddibeing ‘matched’ to the
current residual. In this paper, we will consider M-OMP, Kultiple response model
Orthogonal Matching Pursujta multiple response variant of MP that can be viewed as
finding a local minimum to (VI1.6) [12]. A similar algorithm @nalyzed in [97].

An alternative strategy is to replace the troublesome dityemeasurel(1})
with a penalty (or prior) that, while still encouraging rowassity, is somehow more
computationally convenient. The first algorithm in thiseggiry is a natural extension
of Basis Pursuit [10] or the LASSO [38]. Essentially, we comst a convex relaxation

of (VI.6) and attempt to solve

M
Wier = arg min 1T — W[5 + A [lw: |2 (V1.8)

i=1

This convex cost function can be globally minimized usingaaety of standard opti-
mization packages. In keeping with a Bayesian perspected)(is equivalent to MAP
estimation using a Laplacian prior on thenorm of each row (after applyingeap|—(-)]

transformation as before). We will refer to procedures tudwe (VI.8) as M-BP, con-
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sistent with previous notation. The properties of the M-BBt¢onction and algorithms
for its minimization have been explored in [12, 60]. Othenaats involve replacing the
row-wisels norm with the/,, norm [98, 99] and thé; norm [9]. However, when thég
norm is used across rows, the problem decouples and we awvétlef. single response
problems. As such, this method is inconsistent with our gdaimultaneously using
all responses to encourage row sparsity.
Secondly, we consider what may be termed the M-Jeffreysitthgo, where

the/;-norm-based penalty from above is substituted with a regataon term based on
the negative logarithm of a Jeffreys prior on the row nofrithie optimization problem

then becomes

M
Wiseters = argmin [T — W% + A > log ||wi. (VI1.9)

i=1

The M-Jeffreys cost function suffers from numerous locahimia, but when given a
sufficiently good initialization, can potentially find salons that are closer td/,., than
Wuee- From an implementational standpoint, M-Jeffreys can beesbusing natural,
multiple response extensions of the algorithms derive@ B4].

Thirdly, we weigh in the M-FOCUSS algorithm derived in [12, B1] based
on the generalized FOCUSS algorithm of [79]. This approacpleys an/,-norm-like
diversity measure [14], whegec |0, 1] is a user-defined parameter, to discourage mod-

els with many nonzero rows. In the context of MAP estimatittiis method can be

*The Jeffreys prior is an improper prior of the fopfic) = 1/ [4].
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derived using a generalized Gaussian prior on the row ncamapgous to the Lapla-
cian and Jeffreys priors assumed above. The M-FOCUSS updatesrguaranteed to

converge monotonically to a local minimum of

M
Wisroouss = argmin.  [|T — SW |3 + A (fJwill2)? (VI.10)

i=1

If p — 0, the M-FOCUSS cost function approaches (VI.6). While this rappear
promising, the resultant update rule in this situation eesiifor any finite\) that the
algorithm converges (almost surely) to a locally minimgsolution?” such thafl’ =
dW’ andd(W’) < N, regardless of. The set of initial conditions whereby we will
actually converge tdl;(\) has measure zero. When= 1, M-FOCUSS reduces to an
interior point method of implementing M-BP. The M-FOCUSS feamork also includes
M-Jeffreys as a special case as shown in Appendix VI.H.1rdete, it is sometimes
possible to jointly select values pfand A such that the algorithm outperforms both M-
BP and M-Jeffreys. In general though, with M-BP, M-Jeffreyg] 8-FOCUSS\ must
be tuned with regard to a particular application. Also, ia limit as\ becomes small,
we can view each multiple response algorithm as minimizivegrespective diversity

measure subject to the constrdint= @11, This is in direct analogy to (VI.5).

VI.C An Empirical Bayesian Algorithm

All of the methods discussed in the previous section fomestiing IV, in-

volve searching some implicit posterior distribution foetmode by solvingrg maxy, p(W,T) =
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arg maxy p(T|W)p(W), wherep(WW) is a fixed, algorithm-dependent prior. At least
two significant problems arise with such an endeavor. Rfretjly a moderately sparse
prior such as the Laplacian is chosen for the row norms (as M#P), a unimodal
posterior results and mode-finding is greatly simplifiedybeer, the resultant posterior
mode may not be sufficiently sparse, and therefdig,, may be unrepresentative of
W In contrast, if a highly sparse prior is chosen, e.qg., thfe}es prior or a gener-
alized Gaussian withh < 1, we experience a combinatorial increase in local optima.
While one or more of these optima may be sufficiently sparsegmesentative dfl/,,,
finding it can be very difficult if not impossible.

So mode-finding can be a problematic exercise when sparses @re in-
volved. In this section, a different route to solving the sitaneous sparse approxi-
mation problem is developed using the concepawtomatic relevance determination
(ARD), originally proposed in the neural network literat@® a quantitative means of
weighing the relative importance of network inputs, manyvich may be irrelevant
[57, 66]. These ideas have also been applied to Bayesianlkeaohines [94]. A key
ingredient of this formulation is the incorporation of ampirical prior, by which we
mean a flexible prior distribution dependent on a set of unknbyperparameters that
must be estimated from the data.

To begin, we postulatg(7'|1V) to be Gaussian with noise variangehat is

assumed to be known (the case whares not known is discussed briefly in Section
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VIII.A). Thus, for eacht.;, w.; pair, we have,

_ 1
pltfw,) = (20 exp (=l - @), (vi.11)

which is consistent with the likelihood model implied by (§) and previous Bayesian
methods. Next, application of ARD involves assigning to tkta row of W an L-

dimensional Gaussian prior:
p(w;;y:) = N (0,7%1), (VI.12)

where~; is an unknown variance parameter. By combining each of tteg@riors, we

arrive at a full weight prior

M
p(W37) = [ [ plwis ), (VI.13)
=1
whose form is modulated by the hyperparameter vegtor [y1,...,7m|" € RY.

Combining likelihood and prior, the posterior density of théh column of W then

becomes

plw. ,t :
plw.lt.j;y) = Tp(w CERE 72[11) =N(p.;, %), (V1.14)
]’ J’ J
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with mean and covariance given by

Y £ Cofw,|t;v] =T —-Te's'er,  Vji=1,...,L

Y

M= [, pr) 2 EW|Ti~] = DTS, T, (V1.15)

wherel’ £ diag-v) andy; £ A\ + ®I'®7T.

Since it is typically desirable to have a point estimateligr, we may enlist
M, the posterior mean, for this purpose. Row sparsity is niyusahieved whenever
a~; is equal to zero. This forces the posterior to satisfy Pugh= 0|7;~; = 0) = 1,
ensuring that the posterior mean of th#h row, u;., will be zero as desired. Thus, esti-
mating the sparsity profile of som&, is conveniently shifted to estimating a hyperpa-
rameter vector with the correct number and location of nomeements. The latter can
be effectively accomplished through an iterative processugsed next. Later, Sections

VI.D and VI.E provide empirical and analytical support forst claim.

VI.C.1 Hyperparameter Estimation: The M-SBL Algorithm

Each unique value for the hyperparameter vegtaorresponds to a different
hypothesis for the prior distribution underlying the gextem of the datd’. As such,
determining an appropriatgis tantamount to a form of model selection. In this context,
the empirical Bayesian strategy for performing this task iseat the unknown weights

W as nuisance parameters and integrate them out [56]. Themahlgelihood that
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results is then maximized with respectipleading to the ARD-based cost function

lI>

L(v) —2log / p(TIW)p(W;~)dW

= —2logp(T;~)

L
Llog|S| + Y 55"t (V1.16)

j=1

where a—2log(+) transformation has been added for simplicity.

The use of marginalization for hyperparameter optimizaiio this fashion
has been proposed in a variety of contexts. In the classiaastics literature, it has
been motivated as a way of compensating for the loss of degidecedom associated
with estimating covariance components along with unknoveigims analogous td/
[36, 37]. Bayesian practitioners have also proposed thessadea natural means of incor-
porating the principle of Occam’s razor into model selattmiten using the description
evidence maximizatioor type-Il maximum likelihootb describe the optimization pro-
cess [4, 56, 66].

There are (at least) two ways to minimiZ€~) with respect toy. (Section
VII.B.1 briefly discusses additional possibilities.) Fjrseating the unknown weights
W as hidden data, we can minimize this expression evesing a simple EM algo-
rithm as proposed in [13, 37] for covariance estimation. ther E-step, this requires
computation of the posterior moments using (VI.15), while M-step is expressed via
the update rule

1
WM:ZWM@+&“ Vi=1,...,M. (VI1.17)

(2
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While benefitting from the general convergence properti¢is@EM algorithm, we have
observed this update rule to be very slow on large practmalieations.

Secondly, at the expense of proven convergence, we mayadsigtimize
(V1.16) by taking the derivative with respect4q equating to zero, and forming a fixed-
point equation that typically leads to faster convergerids p4]. Effectively, this in-

volves replacing the M-step from above with

(new) %HIJ”LH%

; =, Vi=1,...
L= i

, M. (V1.18)

We have found this alternative update rule to be extremedyulign large-scale, highly
overcomplete problems, although the results upon conaesgare sometimes inferior
to those obtained using the slower update (V1.17). In thaeodrof kernel regression
using a complete dictionary (meaning= M) andL = 1, use of (VI.18), along with a
modified form of (V1.15)2 has been empirically shown to drive many hyperparameters
to zero, allowing the associated weights to be pruned. AR,dhis process has been
referred to asparse Bayesian learningBL) [94]. Similar update rules have also been
effectively applied to an energy prediction competitiordenthe guise of ARD [57].
For application to the simultaneous sparse approximatioblpm, we choose the label
M-SBL (which stresses sparsity) to refer to the process ahesihg-y, using either the
EM or fixed-point update rules, as well as the subsequent atatipn and use of the

resulting posterior.

3This requires application of the matrix inversion lemmaoo'.
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Finally, in the event that we would like to find exact (noise€f) sparse rep-
resentations, the M-SBL iterations can be easily adaptedndlb the limit as\ — 0

using the modified moments

s=[r-re@re)elr,  m=r72(@re) T (V1.19)

where(-)" denotes the Moore-Penrose pseudo-inverse. This is particuseful if we
wish to solve (VL.5).
VI.C.2 Algorithm Summary

Given observation dat@' and a dictionary®, the M-SBL procedure can be

summarized by the following collection of steps:

1. Initialize~, e.g.,y := 1 or perhaps a non-negative random initialization.

2. Compute the posterior momentsand M using (VI.15), or in the noiseless case,

using (VI1.19).
3. Updatey using the EM rule (VI.17) or the faster fixed-point rule (\3)1
4. lterate Steps 2 and 3 until convergence to a fixed pgint

5. Assuming a point estimate is desired for the unknown wgidf).,, chooséV,, s =

M* = W, whereM* = E[W|T; ~*].

6. Given thaty* is sparse, the resultant estimatet* will necessarily be row sparse.
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In practice, some arbitrarily small threshold can be set $hat, when any hyperparam-
eter becomes sufficiently small (e.40,71), it is pruned from the model (along with the

corresponding dictionary column and row1af).

VI.C.3 Extension to the Complex Case

The use of complex-valued dictionaries, responses, anghtgeexpands the
relevance of the multiple response framework to many ussafmal processing disci-
plines. Fortunately, this extension turns out to be veryratand straightforward. We
start by replacing the likelihood model for eaichwith a multivariate complex Gaussian

distribution [49]

1
pltfw,) = (o) exp (1l - 2w, 2) (V1.20)

where all quantities exceptare now complex anflz||2 now impliesz x, with (-)%
denoting the Hermitian transpose. The row pripfsv;.; H) need not change at all
except for the associated norm. The derivation proceedsfasd) leading to identical
update rules with the exception e changing tq(-)”.

The resultant algorithm turns out to be quite useful in figdsparse represen-
tations of complex-valued signals, such as those that aridee context of direction-
of-arrival (DOA) estimation. Here we are given an array\obmnidirectional sensors
and a collection ofD complex signal waves impinging upon them. The goal is then

to estimate the (angular) direction of the wave sources wgipect to the array. This
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source localization problem is germane to many sonar arat iguplications . While
we have successfully applied complex M-SBL to DOA estimaparblems, space pre-
cludes a detailed account of this application and comperagsults. See [60] for a
good description of the DOA problem and its solution using@osd-order cone (SOC)

implementation of M-BP. M-SBL is applied in exactly the samshian.

VI.C.4 Complexity

With regard to computational comparisons, we assivng M. Under this
constraint, each M-SBL iteration 3( N2 M) for real or complex data. The absence.of
in this expression can be obtained using the following imm@etation. Because the M-
SBL update rules and cost function are ultimately only depahdn1 through the outer
product?’T”, we can always replacE with a matrix7' € RN k() sych that' 77 =
TTT. Substitutin_df into the M-SBL update rules, while avoiding the computatién o
off-diagonal elements aof, leads to the stated complexity result. In a similar fashion
each M-BP, M-FOCUSS, and M-Jeffreys iteration can also be eoeapin O(N?M).
This is significant because little price is paid for addingiidnal responses and only a
linear penalty is incurred when adding basis vectors.

In contrast, the second-order cone (SOC) implementation -&RV[60] is
O (M3 L3) per iteration. While the effective value aéfcan be reduced (beyond what we
described above) using various heuristic strategiesk@iMi-SBL and other approaches,
it will still enter as a multiplicative cubic factor. This atal be prohibitively expensive

if M is large, although fewer total iterations are usually gassiNonetheless, in neu-
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roimaging applications, we can easily havex 200, L ~ 100, andM = 100,000. In
this situation, the M-SBL (or M-FOCUSS, etc.) iterations aeepattractive. Of course

M-OMP is decidedly less costly than all of these methods.

VI.D Empirical Studies

This section presents comparative Monte Carlo experimentsving ran-

domized dictionaries and pairs of orthobases.

VI.D.1 Random Dictionaries

We would like to quantify the performance of M-SBL relativedther meth-
ods in recovering sparse sets of generating weights, whichany applications have
physical significance (e.g., source localization). To awcwdate this objective, we
performed a series of simulation trials where by design wee lacess to the sparse,
underlying model coefficients. For simplicity, noiselessts were performed first (i.e.,
solving (VI1.5)); this facilitates direct comparisons besa discrepancies in results can-
not be attributed to poor selection of trade-off paramegetsch balance sparsity and
quality of fit) in the case of most algorithms.

Each trial consisted of the following: First, an overcomel& x M dictio-
nary @ is created with columns draw uniformly from the surface ohi biypersphere.
This particular mechanism for generating dictionariesdgogated in [18] as a useful
benchmark. Additionally, it is exactly what is required iongpressed sensing applica-

tions [102]. L sparse weight vectors are randomly generated Wittonzero entries and
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a common sparsity profile. Nonzero amplitudes are drawn famiform distribution.
Response values are then computed’as W, Each algorithm is presented with
T and® and attempts to estimai&,.,. For all methods, we can comparé,, with W
after each trial to see if the sparse generating weights Ibese recovered.

Under the conditions set forth for the generatio®and?’, sparK®) = N+1
and (V1.4) is in force. Therefore, we can be sure g, = W, with probability one.
Additionally, we can be certain that when an algorithm fesléind .., it has not been
lured astray by an even sparser representation. Resulth@ma $n Figure VI.1 ad.,
D, and M are varied. To create each data point, we ran 1000 indepetriEs and
compared the number of times each algorithm failed to recdyg,. Based on the fig-
ures, M-SBL @) performs better for different values éf (b) resolves a higher number
of nonzero rows, andtf is more capable of handling added dictionary redundancy.

We also performed analogous tests with the inclusion ofeno®&pecifically,
uncorrelated Gaussian noise was added to produce an SNRIBf Y0hen noise is
present, we do not expect to reproddcexactly, so we now classify a trial as successful
if the D largest estimated row-norms align with the sparsity prafiléV,., Figure
VI.1(d) displays sparse recovery results as the trade-off paearfeegteach algorithm is
varied. The performance gap between M-SBL and the otherslisesl when noise is
included. This is because now the issue is not so much log@hmaiavoidance, etc.,
sinceD is relatively low relative taV and M, but rather proximity to the fundamental

limits of how many nonzero rows can reliably be detected étesence of noiseFor

“Most of the theoretical study of approximate sparse representatiorsisa has focused on when a simpler
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example, even an exhaustive search for the optimal solti¢¥l.6) over all\ would

likely exhibit similar performance to M-SBL in this situatio
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Figure VI.1: Results comparing the empirical probability€p 1000 trials) that each
algorithm fails to find the sparse generating weights undeious testing conditions.
Plots @), (b), and €) display results as., D and M are varied under noiseless con-
ditions. Plot ¢) shows results with 10dB AGWN for different values of the wrauff

parameten.

In fact, for sufficiently small values oV and M, we can test this hypothesis
directly. UsingN = 8, M = 16, andD = 3, we reproduced Figure VI.dJ with the
inclusion of the the global solution to (VI.6) for differemalues of\. The exhaustive

search failed to locate the correct sparsity profile with mpieical probability similar

method, e.g., BP- or OMP-based, is guaranteed to provide a godibseadia (VI.6), or at least exhibit a similar
sparsity profile. Currently, we know of no work that examines rigokmmlitions whereby the minimum of (V1.6) or
any of the other proposed cost functions is guaranteed to match ttsityppaofile of Wgen. When there is no noise,

this distinction effectively disappears.
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to M-SBL (about0.10 using \,,), underscoring the overall difficulty of finding sparse
generating weights in noisy environmentdoreover, it demonstrates that, unlike in
the noise-free case, the NP-hard optimization problem &6{\'s not necessarily guar-

anteed to be the most desirable solution even if computti@sources are abundant.

VI.D.2 Pairs of Orthobases

Even if M-SBL seems to perform best on “most” dictionariestieé to a
uniform measure, it is well known that many signal proceagsipplications are based
on sets of highly structured dictionaries that may have m@gasure on the unit hyper-
sphere. Although it is not feasible to examine all such scesawe have performed
an analysis similar to the preceding section using dictiesdormed by concatenating
two orthobases, i.e® = [O, V], where® andV representV x N orthonormal bases.
Candidates fo® and V¥ include Hadamard-Walsh functions, DCT bases, identity ma-
trices, and Karhunen-Loéve expansions among many othées.idea is that, while a
signal may not be compactly represented using a singleloai® as in standard Fourier
analysis, it may become feasible after we concatenate talo digtionaries. For exam-
ple, a sinusoid with a few random spikes would be amenabledb a representation.
Additionally, much attention is placed on such dictionaiiiethe signal processing and
information theory communities [17, 16].

For comparison purpose®, and W, were generated in an identical fashion

as before.®© was set to the identity matrix antl was selected to be either a DCT or

*With no noise and increased t@, exhaustive subset selection yields zero error (withary 1) as expected
while M-SBL fails with probability0.24. So a high noise level is a significant performance equalizer.
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a Hadamard basis (other examples have been explored as Re#l)lts are displayed
in Figure V1.2, strengthening our premise that M-SBL repnése viable alternative
regardless of the dictionary type. Also, while in this sitaa we cannot a priori guar-
antee absolutely that’,,, = W, in all cases where an algorithm failed, it converged to

A

a solution withd(W) > d(W,,).

No Noise, N=24, L=3, Identity and DCT Bases No Noise, N=24, L=3, Identity and Hadamard Bases
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Figure VI.2: Results using pairs of orthobases with= 3 and N = 24 while D is
varied from 10 to 20.Left © is an identity matrix andl is an N-dimensional DCT.
Right © is again identity and is a Hadamard matrix.

VI.LE Analysis

This section analyzes some of the properties of M-SBL and evpessible,

discusses relationships with other multiple responseriifgos.

VI.LE.1 Multiple Responses and Maximally Sparse Representatits: Noiseless Case

Increasing the number of responge$as two primary benefits when using
M-SBL. First, and not surprisingly, it mitigates the effeofsnoise as will be discussed

more in Section VI.E.3. But there is also a less transparemefiie which is equally
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important and applies even in the absence of noise: Incrgastan facilitate the avoid-
ance of suboptimal, locally minimizing solutions. Or sthtéfferently, increasing the
number of responses increases the likelihood that M-SBL amitiverge to the global
minimum of £(-y). This is important because, under very reasonable conditithis
global minimum is characterized byt* = W, when& = 0 and\ — 0. This result fol-
lows from Theorem 1, which applies to tihe= 1 case but is easily generalized. So the
globally minimizing M-SBL hyperparameters are guarantegoroduce the maximally
sparse representation, and increadingproves the chances that these hyperparameters
are found.

Of course the merits of increasirig in the absence of noise, are highly depen-
dent on how the active sources (the nonzero rowid/gf are distributed. For example,
suppose these sources are perfectly correlated, mear@nhg/ghcan be written as the
outer-produciab”’ for some vectors andb. In this situation, the problem can be re-
duced to an equivalent, single response problem tvithda||b||2, indicating that there
is no benefit to including additional responses (i.e., tlwalloninima profile of the cost
function does not change with increasihy

In contrast, as the (sample) correlation between activecesus reduced, the
probability that M-SBL becomes locally trapped falls off ohatically as evidenced by
empirical studies. This begs the question, is there angtsito where we are guaran-
teed to reach the global minimum, without ever getting staickuboptimal solutions?
This is tantamount to finding conditions under which M-SBLIwaiways produce the

maximally sparse solutioi/, the solution to (VI.5).
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To address this issue, we consider the fixed points of the M-E&Bhtions
using the modified moments from (VI1.19). Of particular i&tris the set of stable fixed
points because they must necessarily be local minima to #&BM cost function by
virtue of the convergence properties of the EM algorithiite now establish conditions

whereby a unique stable fixed point exists that is also gteearto solve (VI.5).

Theorem 9. Given a dictionary® and a set of responsds assume thatl(17,) <
sparK®) — 1 < N. Then if the nonzero rows df; are orthogonal (no sample-wise
correlation), there exists a unique, stable fixed pgintAdditionally, at this stable fixed
point, we have

M = E[W|T;~47 = T2 (@r/2) 7 = Wy, (V1.21)

the maximally sparse solution. All other fixed points aretabke.

See Appendix VI.H.2 for the proof.

Because only highly nuanced initializations will lead to astable fixed point
(and small perturbations lead to escape), this resulttdEt@onditions whereby M-SBL
is guaranteed to solve (VI.5), and therefore fing., assuming condition (VI.3) or
(V1.4) holds. Moreover, even if a non-EM-based optimizatgyocedure is used, the M-
SBL cost function itself must be unimodal (although not neadfy convex) to satisfy
Theorem 9.

Admittedly, the required conditions for Theorem 9 to appig highly ideal-

5The EM algorithm ensures monotonic convergence (or cost functioredse) to some fixed point. Therefore,
a stable fixed point must also be a local minimum, otherwise initializing at proppately perturbed solution will
lead to a different fixed point.
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Table VI.1: Verification of Theorem 9 witth-= 5, M = 50, D = L = 4. & is
generated as in Section VI.D.1, whilg,, is generated with orthogonal active sources.
All error rates are based on 1000 independent trials.

M-OMP M-Jeffreys M-FOCUSS M-BP M-SBL
(= 0.8)

ERROR RATE  1.000 0.471 0.371 0.356 0.000

ized. Nonetheless, this result is interesting to the exteattit elucidates the behavior
of M-SBL and distinguishes its performance from the otherhods. Specifically, it
encapsulates the intuitive notion that if each active ssigsufficiently diverse (or un-
correlated), then we will findV,. Perhaps more importantly, no equivalent theorem
exists for any of the other multiple response methods meetion Section VI.B. Con-
sequently, they will break down even with perfectly unctated sources, a fact that
we have verified experimentally using Monte Carlo simulatianalogous to those in
Section VI.D.1. Table VI.1 displays these results. As expdcM-SBL has zero errors
while the others are often subject to failure (convergenciboptimal yet stable fixed
points).

In any event, the noiseless theoretical analysis of spaesaihg algorithms
has become a very prolific field of late, where the goal is taldisth sufficient conditions
whereby a particular algorithm will always recover the nmaaily sparse solution [18,
17, 29, 35, 95]. Previous results of this sort have all beteefifrom the substantial
simplicity afforded by either straightforward, greedy apelrules (MP-based methods)

or a manageable, convex cost function (BP-based methodsgonitmast, the highly
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complex update rules and associated non-convex cost@umnatider consideration here
are decidedly more difficult to analyze. As such, evidenaanvaig that good, fully
sparse solutions can be achieved using ARD has typicallgdein empirical results
or heuristic arguments [57, 66, 94]. Here we have tried toarskme progress in this
regard.

And while Theorem 9 provides a limited sufficient conditi@an éstablishing
equivalence between a unique, stable fixed pointl&jdit is by no means necessary.
For example, because the sparse Bayesian learning frameésvetil quite robust in
the L = 1 regime as shown in previous chapters, we typically expeeemn smooth
degradation in performance as the inter-source correlatioreases. Likewise, when
d(Wy) > L or when noise is present, M-SBL remains highly effective as sleown in

Section VI.D.

VI.E.2 Geometric Interpretation

As discussed above, a significant utility of simultaneourstprporating mul-
tiple responses is the increased probability that we awdidgtimal extrema, a benefit
which exists in addition to any improvement in the effectédR (see Section VI.E.3
below). The following simple example serves to illustratevithis happens geomet-
rically from a Gaussian process perspective [82]. In [9dLhsa perspective is also
considered, but only to heuristically argue why standard &ty sometimes produce
sparse representations in practice; there is no connectaate to the geometry of lo-

cally minimizing solutions. In contrast, here the goal idligstrate how a local minima
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that exists wherl. = 1 can be removed wheh = 2 or higher.

Suppose we have a single response vetterR? as well as a dictionary of
five candidate basis vectofis = [¢.1, ..., ¢.5]. In minimizing the SBL cost function,
we are linearly combining basis vectors to form a distrilmutinat aligns itself witht.
As discussed in [94], SBL manipulates the covariahgef the Gaussian distribution
p(t; ) anchored at mean zero to maximize the likelihootl ¢f our simplified situation

(and assuming = 0), we can express this covariance as

= oro” = Z%qﬁj o, (VI.22)

where increasing a particulas causes the covariance to bulge out along the direction
of the corresponding.;. Figure V1.3 depicts a scenario where the global minimum
occurs with onlyy4,v5 > 0 whereas a suboptimal local minimum occurs with only
1,72, 73 > 0. For convenience and ease of illustration, we have assumagédlt vectors
(basis and response) have been normalized to lie on thecewfaa unit sphere in 3D
and that there is no noise present. &), (each dot labelled from 1 to 5 represents a
single basis vector on the surface of this sphere while trdikewise represents The
ellipse represents @Y% confidence region for a hypothetical covarianeusing only
basis vectors 1, 2, and 3 (i.e4, 72, v3 > 0 while v, = 5 = 0). Note that the smaller
the ellipse, the higher the concentration of probabilityssnand the more probable any
t found within.

To see why &) necessarily represents a local minimum, consider sloady i
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creasingy, and/orvs; while concurrently reducing,, ., and/orys. This situation is
represented ind) where the confidence region is forced to expand, decreésengrob-
ability density att. However, if we continue this process sufficiently far, waiace the
situation in €), where we are close to the global minimum with onlyand~; signif-
icantly greater than zero. This latter solution places areexely high density (in fact
infinite) ont sincet is essentially in the span of these two basis vectors alomg- |
itively, the local minimum occurs because we have a set ekthasis vectors defining

an ellipsoid with a sharp major axis that is roughly orthagdo the plane defined by

¢., andag 5 (i.e., compared) and €)).

(@) (b) (©

Figure VI.3: 3D example of local minimum occurring with a gi@ response vectadr

(@): 95% confidence region foE; using only basis vectors 1, 2, and 3 (i.e., there is a
hypothesize®5% chance that will lie within this region). ): Expansion of confidence
region as we allow contributions from basis vectors 4 an@)5.96% confidence region
for 3, using only basis vectors 4 and 5. The probability densityiathigh in @) and

(c) but low in (b).

Figure V1.4 illustrates how the existence of multiple resg® vectors can re-
duce the possibility of such local minima. Here we have reggbéhe above analysis

with the inclusion of two response vectdrsandt., that are both in the span ¢f, and
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¢.5 (we note that this is consistent with our assumption that @aadel should have the
same sparsity profile). In assessing local minima, we mustaomsider the joint prob-
ability density of 7" = [t.1, ], i.e., botht.; andt., must reside in areas of significant
density. Therefore ind), althought ; is in a region of significant density,, is not and
consequently, the likelihood @f increases fromd) to (b) and @) to (c). In effect, the

inclusion of the additional response has removed the logahmm that existed before.

1 ;
2 N LI
@ 2 ? CR IS ey S A—
4 1, 5
3
3

(a) (b) (c)

Figure VI.4: 3D example with two response vectérsandt.,. (a): 95% confidence
region for3, using only basis vectors 1, 2, and 8):(Expansion of confidence region
as we allow contributions from basis vectors 4 andch. 5% confidence region for;
using only basis vectors 4 and 5. The probabilityof [¢.,, t.,] is very low in @) since
t., lies outside the ellipsoid but higher ib)(and highest ind). Thus, configurationa)
no longer represents a local minimum.

VI.E.3 Extensions to the Noisy Case

We now briefly address the more realistic scenario whereensigresent. Be-
cause of the substantially greater difficulty this entails restrict ourselves to complete
or undercomplete orthonormal dictionaries. Nonetheldsse results illuminate more
general application conditions and extend the analysi83ij which compares the sin-

gle response LASSO algorithm with traditional shrinkagehmnds using orthonormal
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dictionaries.

Empirical and analytical results suggest that M-Jeffrayd-FOCUSS have
more local minima than M-SBL in the noiseless case, and ik&yithat this problem
persists for€ > 0. As an example, assume that < N and®’® = I. Under these
constraints, the M-SBL problem conveniently decouplesgwis)M independent cost

functions, one for each hyperparameter of the form

L

1 MN 2
e > (wi)”, (VI1.23)

j=1

L(vi) = Llog (A + ;) +

wherelW™ £ o'T = ®TT, i.e., W™ is the minimum¢,-norm solution tol’ = ®W.
Conveniently, this function is unimodal ). By differentiating, equating to zero, and
noting that ally; must be greater than zero, we find that the unique minimizihgtisn

occurs at

1 & ) '
v = (EZ (wi') —A) : (VI1.24)

j=1
where the operatqrr)™ equalse if © > 0 and zero otherwise. Additionally, by comput-
ing the associated1*, we obtain the representation,

Lx \*
pio=wy" (1 —) 7 (VI.25)

™3

Interestingly, these weights represent a direct, mulipkponse extension of those ob-
tained using the nonnegative garrote estimator [7, 30, ©@8hsequently, in this setting

M-SBL can be interpreted as a sort of generalized shrinkaghadetruncating rows
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with small norm to zero and shrinking others by a factor thextrdases as the norm
grows. Also, with the inclusion of multiple responses, thantation operator is much
more robust to noise because the threshold is moderateddmeasge across responses,
ie.,1/L Ele(wyj“‘)? So for a given noise variance, there is considerably leaaazh
that a spurious value will exceed the threshold. While obslp(V1.25) can be com-
puted directly without resorting to the iterative M-SBL pealtire, it is nonetheless im-
portant to note that this is the actual solution M-SBL will alyg converge to since the
cost function has no (non-global) local minima.

Turning to the M-Jeffreys approach, we again obtain a ddeougpst function

resulting inM row-wise minimization problems of the form

min [[w}]}3 — 2wl w0l + aw, |3 + Alog ||, |z (V1.26)

K3

For any fixed||w;.||,, the direction of the optima;. is always given byw!™ /||w™||2,
effectively reducing (VI.26) to

min [[w}]3 — 2wy o™ + w3 + Alog il (V1.27)

llwi. 2

If |lw™||3 < 2), then for each row, there is a single minimum witlw;. = 0. In
contrast, for||w!™||3 > 2\, there are two minima, one at zero and the other with
wil. = & <||w§”,’“||2 + W) Unlike M-SBL, this ensures that the M-
Jeffreys cost function will have(Z: Z[Ilwi™I3>2)]) |qcal minimum, although we can ob-

tain a useful alternative shrinkage operator (that closebembles a hard threshold)
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with an appropriate initialization and selection’ofHowever, while it may be transpar-
ent how to avoid unattractive local minima in the orthondroase, in a more general
setting, this poses a significant problem.

M-FOCUSS is more difficult to analyze for arbitrary valuesppfsince we
cannot provide an analytic solution for locally minimizinglues of||w,.||.. But the
optimal solution does entail a threshold and asymptotialtesre obtained (for the
single response case) g&,.||, — oo in [63]. Also, asp — 0, we converge to a gen-
eralized hard-threshold operator, which truncates smalsrto zero and leaves others
unchanged. Unfortunately however, the actual algoriththakivays produce the non-
truncated solutiod¥"™ (one of the2™ possible local minima) because the basins of
attraction of all other local minima have zero measur&irspace. A is steadily in-
creased from zero to one, the number of local minima gragldatips from2*/ to one’
Whenp = 1, we obtain an analogous soft-threshold operator, as disdus [93] for
the single response case. Since each row-wise cost funstammvex, we also observe
no local minimum as with M-SBL.

In summary, we need not actually run the M-SBL algorithm (odéffreys,
etc.) in practice when using an orthonormal dictionérywe could just compute our
weights analytically using the appropriate shrinkage rma@m. Nonetheless, it is en-
couraging to see a well motivated cost function devoid oaéleninima in the case of
M-SBL (and M-BP). This provides further evidence that altéiues to standard mode-

finding may be a successful route to handling the simultaseparse approximation

"The actual number, for any given is dependent o™ and .
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problem. It also verifies that ARD methods will push unnecessaefficients to ex-

actly zero, as opposed to merely making them small.

VI.LE.4 Relating M-SBL and M-Jeffreys

Thus far, we have divided Bayesian approaches into two segyniery dif-
ferent categories: an empirical Bayesian approach basedRihakd a class of MAP
estimators including M-BP, M-FOCUSS, and M-Jeffreys. In fadtSBL is closely
related to M-Jeffreys (and therefore M-FOCUSS witbmall per the discussion in Ap-
pendix VI.H.1) albeit with several significant advantag@eth methods can be viewed
as starting with an identical likelihood and prior modelt bwen deviate sharply with
respect to how estimation and inference are performed. ignséction, we re-derive
M-SBL using a variational procedure that highlights the faniies and differences be-
tween the MAP-based M-Jeffreys and the ARD-based M-SBL. Thaodelogy draws
on the ideas from Chapter IV.

To begin, we assume the standard likelihood model from @lahd hypoth-
esize a generalized sparse priorthat includes the M-Jeffreys prior as a special case.

Specifically, for the-th row of I/ we adopt the distribution:

2y —(a+L/2)
”“””2) , (V1.28)

p(wi;H) = C (b+ S

wherea, b, andC are constants. Such a prior favors rows with zero norm (agicktbre

all zero elements) owing to the sharp peak at zero (assuimgigmall) and heavy tails,
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the trademarks of a sparsity-inducing prior. The row pramesthen multiplied together
to form the complete priop(W; H). While certainly other norms could be substituted
in place of the/,, this selection (as well as the inclusion of the factgrwas made to
facilitate the analysis below.

As occurs with the many of the MAP methods described in SedfioB, the
resulting joint density(W, T;H) = p(T|W)p(W; H) is saddled with numerous local
peaks and therefore mode-finding should be avoided. But pethare is a better way
to utilize a posterior distribution than simply searchiog the mode. From a modern
Bayesian perspective, it has been argued that modes arexdirgleén general, and that
only areas of significant posteriorassare meaningful [56]. In the case of highly sparse
priors, mode-finding is easily lead astray by spurious pastpeaks, but many of these
peaks either reflect comparatively little mass or very naidieg mass such as the heavy
peak atl = 0 that occurs with M-Jeffreys. Consequently, here we advaaatdterna-
tive strategy that is sensitive only to regions with postemass that likely reflectd/,,.
The goal is to model the problemati¢iV, T; H) with an approximating distribution

p(W, T;H) that:

1. Captures the significant mass of the full posterior, whiehassume reflects the

region where the weightd’,., reside.

2. Ignores spurious local peaks as well as degenerate@miguch agl” = 0 where

possible.

3. Maintains easily computable moments, @{W!T; H] can be analytically com-
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puted to obtain point estimates of the unknown weights.

To satisfy Property 1, it is natural to selg¢tby minimizing the sum of the misaligned

mass, i.e.,
min / ‘p(W,T;H) (W, T3 H)| dw. (VI.29)
H

The ultimate goal here is to chose a family of distributioicé enough to accurately
model the true posterior, at least in the regions of int€Rstperty 1), but coarse enough
such that most spurious peaks will naturally be ignoredgmy 2). Furthermore, this
family must facilitate both the difficult optimization (\9), as well as subsequent in-
ference, i.e., computation of the posterior mean (Prog&xtyin doing so, we hope to
avoid some of the troubles that befall the MAP-based methods

Given a cumbersome distribution, sparse or otherwiseatianal methods
and convex analysis can be used to construct sets of sindpdifiproximating distribu-
tions with several desirable properties [47]. In the présénation, this methodology
can be used to produce a convenient family of unimodal apmations, each member
of which acts as a strict lower bound eIV, T';’H) and provides of useful means of
dealing with the absolute value in (VI.29). The quality o thpproximation in a given
region ofp(WW, T';’H) depends on which member of this set is selected.

We note that variational approaches take on a variety of$anthe context of
Bayesian learning. Here we will draw on the well-establispettice of lower bound-

ing intractable distributions using convex duality thepty]. We do not address the
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alternative variational technique of forming a factorigpgoximation that minimizes
a free-energy-based cost function [1, 3]. While these twataflies can be related in
certain settings [70], this topic is beyond the scope of tireent work.

The process begins by expressing the py{d¥’; H) in a dual form that hinges
on a set of variational hyperparameters. By extending cotywexsults from Chapter
IV, we arrive at
L

(27y:) Y2 exp (—w—%) . (VI1.30)

b
p(w;;H) = max exp (——) o7
( ) Vi 2%

>0

7=1

Details are contained in Appendix VI.H.3. When the maximaats dropped, we

obtain the rigorous lower bound

p(wi; H) > p(w;.; H) 2 exp (—£> Vi “N(0,71), (VI.31)

Vi

which holds for ally; > 0. By multiplying each of these lower bounding row pri-
ors, we arrive at the full approximating pripfiV; H) with attendant hyperparameters
v = [1,....,7u)" € RY. Armed with this expression, we are positioned to minimize
(VI.29) using’H selected from the specified set of variational approxinmatioSince
p(W,T:H) < p(W,T;H) as a result of (VI.31), this process conveniently allowsaus t

remove the absolute value, leading to the simplification

min /p(TIW) (p(W;H) — p(W;H)|dW = min—/p(TlW)p(W;ﬂ)dW
H H

(V1.32)
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where each candidate hypothesisis characterized by a different vector. Using
(V1.31) and (VI.11), the constituent integral of (V1.32)rche analytically evaluated as

before, leading to the cost function

M
L(v;a,b) = L(y) +2 Z (3 + alog %,) . (V1.33)
i=1 N

For arbitrarya, b > 0, (V1.33) represents a multiple response extension of time ige-
ized SBL cost function from [94] that, while appropriate faher circumstances, does
not produce strictly sparse representations (see Chapter iviore details). However,
whena, b — 0, this expression reduces £j~); the approximate distribution and sub-
sequent weight estimate that emerge are therefore equivtald1-SBL, only now we
have the added interpretation afforded by the variatioaesdgective.

For example, the specific nature of the relationship betwée3BL and M-
Jeffreys can now be readily clarified. Withb — 0, p(W;H) equals the M-Jeffreys
prior up to an exponential factor df. From a practical standpoint, this extra factor
is inconsequential since it can be merged into the tradgathmeter\ after the reg-
uisite — log(-) transformation has been applied. Consequently, M-JeffiagsM-SBL
are effectively based on an identical prior distributionl éimerefore an identical poste-
rior as well. The two are only distinguished by the manner hicl this posterior is
handled. One searches directly for the mode. The othertsdtez mean of a tractable
approximate distribution that has been manipulated toaligh the significant mass of

the full posterior. Additionally, while ARD methods have Ibaeuted for their sensitiv-
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ity to posterior mass, the exact relationship between tlissvand the ARD estimation
process has typically not been quantified. Here that coromeist made explicit.

Empirical and theoretical results from previous secti@msllunequivocal sup-
port that the ARD route is much preferred. A intuitive explom@ is as follows: M-
Jeffreys displays a combinatorial number of locally mirsmg solutions that can sub-
stantially degrade performance. For example, there isuge degenerate (and globally
optimal) peak atV = 0 as discussed in Appendix VI.H.1. Likewise, many other unde-
sirable peaks exist with(1/) > 0. For example such peaks exist with(11) = 1,
(]‘24) peaks withd(1W') = 2, and so on. In general, when any subset of weights go to zero,
we are necessarily in the basin of a minimum with respecteedlweights from which
we cannot escape. Therefore, if too many weights (or the gvwagights) converge to
zero, there is no way to retreat to a more appropriate solutio

Returning to M-SBL, we know that the full posterior distrilartiwith which
we begin is identical. The crucial difference is that, iast®f traversing this improper
probability density in search of a sufficiently “non-globaktremum (or mode), we in-
stead explore a restricted space of posterior mass. A sulastaenefit of this approach
is that there is no issue of getting stuck at a point suchas- 0; at any stable fixed
point~*, we can never havé1* = 0. This occurs because, although thi distribution
may place mass in the neighborhood of zero, the class of mippate distributions as
defined byp(W, T, ﬂ) in general will not (unless the likelihood is maximized at@e
in which case the solutiol” = 0 is probably correct). Likewise, a solution witi}")

small is essentially impossible unle$dV,,,) is also small, assuming has been set to
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a reasonable value. In general, there is much less tendémuogiscriminately shrink-

ing important weights to zero and getting stuck, becausgetiselutions display little
overlap between prior and likelihood and therefore, liptebability mass. This helps
to explain, for example, the results in Figure VH},(where M-SBL performance is

uniformly superior to M-Jeffreys for all values af

VI.F Conclusions

While recent years have witnessed a tremendous amount oétreab progress
in the understanding of sparse approximation algorithnostmotably Basis Pursuit and
Orthogonal Matching Pursuit, there has been comparabdydesgress with regard to
the development of new sparse approximation cost funci@onsalgorithms. Using
an empirical Bayesian perspective, we have extended the ABRDit&mework to al-
low for learning maximally sparse subsets of design vagisbi real or complex-valued
multiple response models, leading to the M-SBL algorithm. /many current meth-
ods focus on finding modes of distributions and frequenttyeoge to unrepresentative
(possibly local) extrema, M-SBL traverses a well-motivaspdce of probability mass.

Both theoretical and empirical results suggest that this useful route to
solving simultaneous sparse approximation problemsnaftgperforming current state-
of-the-art approaches. Moreover, these results providledusupport for the notion that
ARD, upon which SBL is based, does in fact lead to an exact Sgatsdn (or pruning)
of highly overparameterized models. While previous claimhis effect have relied

mostly on heuristic arguments or empirical evidence, weltggantified the relationship
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between M-SBL and a specific sparsity-inducing prior andveericonditions, albeit
limited, whereby maximally sparse representations witlessarily be achieved.

From a signal and image processing standpoint, we envisaitM-SBL could
become an integral component of many practical systemsenhattiple responses are
available. For example, M-SBL has already been success&fuiyloyed in the realm of
neuroelectromagnetic source imaging [75, 76]. These @xpets are important since
they demonstrate the utility of M-SBL on a very large-scalebpem, with a dictionary
of size275x 120, 000 andL = 1000 response vectors. Because of the severe redundancy
involved (M /N > 400) and the complexity of the required, neurophysiologichised
(and severely ill-conditioned) dictionary, it seems liké¢hat the ability of M-SBL to
avoid local minima in the pursuit of highly sparse repreagons is significant. In
any event, neuroelectromagnetic imaging appears to beteemey worthwhile bench-
mark for further development and evaluation of simultarsesparse approximation al-

gorithms. This will be discussed further in the next Chapter.
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VI.H Appendix

VI.H.1 Relating M-Jeffreys and M-FOCUSS

There exists an interesting relationship between the oitpiriors of M-Jeffreys
and M-FOCUSS. To see this, consider the slightly modified fogttion
. A\ M \
E(W) 2T = W[5+ =3 flwll — =, (V1.34)
P = p
where we have set equal to some\’/p and subtracted a constant term, which does
not change the topography. M-FOCUSS is capable of minimignig cost function
for arbitraryp, including the limit agp — 0. This limiting case is elucidated by the

relationship

1
lim — ([|w;.[[; — 1) = log [lw; |2, (V1.35)
p—0 D

which we derive as follows. First, assure;.||» > 0. Using L'Hbpitals rule, we arrive

at
0([lwi.|5-1)
Op

9p
dp

= ||lwi[[3log [|wi [ls — log [Jw || (V1.36)

Likewise, when|w;.||» = 0, we have

1 1
5 (lwellz = 1) = =2 — log w; [l» = —oc. (V1.37)
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By applying this result for all, we arrive at the limiting cost function

M
lim F,(W) = |T = @W (|3 + XY _log [|w;. 2, (V1.38)
p—0

i=1

which is identical to the M-Jeffreys cost function. This deratrates why M-Jeffreys
should be considered a special case of M-FOCUSS and clarifigth& update rules are
related even though they were originally derived with dif& considerations in mind.

In arriving at this association, we have effectively assdnmat the regulariz-
ing component of the cost function (VI1.34) has grown arlitydarge. This discounts
the quality-of-fit component, leading to the globally opailnyet degenerate solution
W = 0. But curiously, M-Jeffreys and equivalently M-FOCUSS (witk- \'/p, p — 0)
still do consistently produce sparse representationsradtheless retain the desirable
propertyT’ ~ ®W.

In fact, any success achieved by these algorithms can bleugédtl to their
ability to find appropriate, explicitly non-global, localimma. This is not unlike the
situation that occurs when using the EM algorithm to fit theapzeters of a Gaussian
mixture model for density estimation. In this case, the dosttion may always be
driven to infinity by collapsing a single mixture componeriand a single data point.
This is accomplished by making the component mean equattedlioe of the data point
and allowing the component variance to converge to zero.rigleéhae desired solution
is not the globally optimal one and heuristics must be adopted tidagetting stuck

[84].
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VI.H.2 Proof of Theorem 9

We say that a vector of hyperparametertessibleiff
T =dM =2 (ar2)' 1. (V1.39)

It is not difficult to show that any stable fixed point (SFP) ¥i.07) and (V1.19), de-
noted~*, must be feasible. Conversely, if a fixed point is not feasilbles unstable.
Additionally, if « is feasible (whether a fixed point or not), then under theusdied

conditions
N > rank(®T'®") > min (spark®) — 1,rankT)) > D, (V1.40)

where®I'®d” is the limiting value of:; as\ — 0 andD, £ d(W).

Now suppose we have converged to a stable fixed pgirthat satisfies the
condition rank®T*®”) = N (later we will address the case where rebK*®7) <
N). By virtue of the convergence properties of the EM algorithihis solution must

necessarily represent a local minimum to the limiting casttion

L
L(y) = Llog [oI®” | + > ¢% (erd”) ' t,; . (V1.41)

j=1

Otherwisey* will be an unstable fixed point. We will now show that no locahima,
and therefore no SFPs, can exist with rebR*®7) = N.

Since we have specified that there exists a solution Witimonzero rows, we
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know that7 is in the span of some subsetf columns of®, denotedd,,. Therefore
T = &p,Wp,, whereWp, is the Dy x L matrix of weigths associated withp,. For
convenience, le¥,, be a diagonal matrix whoseé-th element equals thie norm of the
i-th row of Wp,, and letU £ &, Sp,. It follows thatT = US, Wp,.

Our goal will be to show that adding a contribution from théecolumns
(by increasing the associated hyperparameters) will sac#sreduce’ (), indicating
that we cannot be at a local minimum. With this consideraitiomind, we can express

the cost function in the neighborhood-f as,

L
L(a,B) = LloglaX; +pUUT|+ Y % (a5 + BUUT) 'Ly, (VI.42)

j=1

whereX; = ®I'*®T anda and3 are parameters allowing us to balance contributions
from X; andU to the overall covariance. Wheh= 0, we achieve the presumed local
minimum, whereas foff > 0, we are effectively adding a uniform contribution frdm

Also, the second term of this expression can be simplified via

L -
>t (0% + pUUT) Mty = |17 (o + UUT) T

J=1

— 1 W, S5 U” (o + BUUT) T US|

= |[U7 (% + UUT) T US55

1

— u|[U” (ax; + gUUT) 0| (V1.43)

where we have used the fact théh, W/, = S7, which follows from the stated orthog-
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onality condition.

At any true local minimum, the following conditions must tol

oL (0, B) 0 0L(c, B) >0, (VI.44)

da a=1,4=0 op a=1,3=0

where we note that the gradient with respecttoeed not equal zero singemust be

greater than or equal to zero. This is a reflection of the fat allv;'s must be greater
than or equal to zero. To satisfy the first condition, it isigashown that at the point
a=1,08=0,

tr [U”(2;)7 U] = LN. (V1.45)

With regard to the second condition, after a series of maaijuns, we arrive at

Do
OL(a, B) =3 (A=), (V1.46)
ap a=1,6=0 ;=1

where),; is thei-th eigenvalue of/” (37)~' U. Because

> N =tr(U"(;)"'U) = LN, (V1.47)

i=1

then we have

OL(ev, )

op

a=1,8=0 0

2 < 2 2 <& 7\ 2 2 (LN)2
=L’N—-> N<I?N-D N=I°N- . (V148
Z 2< Z 5 (V1.48)

whered = 1/Dy Y% A\i = LN/D,. Since we have assumed thay < N, this
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gradient must be negative, contradicting our assumptiahvile are at a local minima.
Therefore, no local minima, and therefore no SFPs, can eiistrank ®T*®7) = N.

Now we assume that rarfleT*®”) is equal to some intege¥’ in the interval
Dy < N’ < N. Becausey* must be feasible, this implies that each columf @hust lie
in a N’-dimensional subspace. Likewise, thé columns of® associated with nonzero
elements iny*, as well as theD, columns associated with nonzero rowslgf must
also lie within this subspace (although there may exist sadaendancy between these
two sets). In general, there will i€ > D* columns of® in this subspace.

As both the M-SBL cost function and update rules are rotatiptavariant,
we can replacd’ and® by QT and@Q® where( is an arbitrary orthonormal matrix.
Therefore, at any fixed poing*, we can always transform the original sparse recovery
problem to a more restricted one based on a data matrig RV’ and dictionary
P’ € RV *K_ The columns ofb not in this subspace have been pruned.

More importantly, we have a useful isomorphism in the foilogvsense: Ify*
is a SFP with respect to our original problem, then ihédwyperparameters associated
with & must comprise a SFP with respect to the reduced problem lmaséd and
T'. Therefore, any SFP with rapkl*®7) = N’ must be a local minimum to the

transformed problem

1

L
£'(v) = Llog|®T@T| + 3 (¢] (#Te7)"

=1

¢ . (V1.49)

J

When testing the local minimum condition, we get an analogesslt as before, with
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N’ replacingN. In general, as long a&” is greater tharD,, we cannot have a SFP.
However, whenV’ = D,, then (V1.48) is ambiguous sind&’ N’ — % = 0. In this
unique situation®’ must be a square (i.elf = N’ = D), otherwise we violate the
assumptionD, < sparK®) — 1. The reduced cost function (VI1.49) simplifies to

L
L'(y) = Llog|T|+ > 7 (&I ")t (V1.50)

J
J=1

This expression has a single minimum at the solutjpr= 1/L||(wy);.||3 for all i =
1,..., Dy. By embedding this in the appropriate vector of zeros, we obtain the unique

M-SBL stable fixed point.

VI.H.3 Derivation of the Dual Form of p(w;.; H)

Any convex functionf(y) : R — R can be represented in the dual form

fly) = sup Ay — f*(N)], (V1.51)

wheref*(\) denotes the conjugate function [85]. Geometrically, tlais be interpreted

as representing(y) as the upper envelope or supremum of a set of lines paramederi
by A. The selection off*(\) as the intercept term ensures that each line is tangent to
f(y). If we drop the maximization in (VI.51), we obtain a rigorolesver bound on
f(y), parameterized by. We may then optimize ovex to find the optimal or tightest
bound in a region of interest.

To accommodate the model development of Section VI.E.4,ageire the
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dual representation gf(w;.; H). Clearly this density is not convex iw,.; however, if

we lety; £ ||w;.||? and define

f(y:) 2 log plwi s H) = —(a+ L/2)log (b+ %) +1og . (V1.52)

we now have a convex function i} amenable to dual representation. The constant
C' is not chosen to enforce proper normalization; rather, ¢hgsen to facilitate the
variational analysis below.

We can find the conjugate functigfii()\;) using the duality relation

Yi Yi

£7() = max gy — F()] = max {Ay n ( ; 5) log (5 %) ~ log C](.VIBS)

To find the maximizingy;, we take the gradient of the quantity on the left and set it to

zero, giving us,
a L

R ) (V1.54)

Substituting this into the expression f6t(\;) and selecting

I I (etL/2)
C = (2r) 2 exp {— (a + 5)} (a + 5) , (VI1.55)
we arrive at
L -1 L
fr(N) = (a + 5) log (ZA-) -+ 5 log 21 — 2bA;. (VI1.56)

We are now ready to represefity;) in its dual form, observing first that we only need
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consider maximization ovex; < 0 sincef(y;) is a monotonically decreasing function

(i.e., all tangent lines will have negative slope). Protegdorward, we have

f(y;) = max [)‘iyi - f*(/\i)]

<0
L —1 L
= r/eg,gc [)\iyz- — <a + 5) log (2)\) —5 log 2m + 2b>\z}
= I}/}g%( {2% — <a + 5) log v; — ) log 27 — %} , (VI1.57)
where we have used the monotonically increasing transfiioma, = —1/(2v;), v >

0. The attendant dual representatiop@b;.; H) can then be obtained by exponentiating

both sides of (VI.57) and substituting = ||w;.||3, giving us

—L/2 w13 b —(a+L/2)
plw;;H) = max (27) 2exp [ -2 exp (—— |

7i=0 2’7@ i
L 2
= N—L/2 _M _E —a
r%%%( (277;) exp < > ) exp ( z) Vi

L 2
= max exp (—ﬂ) 'y;aH(ZW%-)*l/Q exp <—%) . (VL58)

720



Chapter VII

Covariance Component Estimation
with Application to

Neuroelectromagnetic Source Imaging

The purpose of this chapter is twofold. First, we discussstiigect of covari-
ance component estimation, which extends the sparsitytse€som previous chapters
to the case where dictionary columns can be arbitrarily gpedutogether to compose
basis matrices, each with an associated hyperparametepar&escollection of these
basis matrices is learned to estimate the sample (datajiaoga. While most of the
discussion will revolve around the application to MEG/EEB£e imaging, the results
are actually quite general and can be applied in many otheatgins.

The ill-posed nature of the MEG/EEG source localizationbpem requires

the incorporation of prior assumptions when choosing am@pate solution out of an

183
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infinite set of candidates. Bayesian methods are useful snddypacity because they
allow these assumptions to be explicitly quantified. Regeatlnumber of empirical
Bayesian approaches have been proposed that attempt a fonodetf selection by us-
ing the data to guide the search for an appropriate prior. &\#gemingly quite different
in many respects, we apply a unifying framework based onrewee component esti-
mation and automatic relevance determination (ARD) thatiéaies various attributes
of these methods and suggests directions for improvemeatalgé derive theoretical
properties of this methodology related to convergencellognima, and localization

bias and explore connections with established algorithms.

VII.A Introduction

Magnetoencephalography (MEG) and electroencephalogréfbG) use an
array of sensors to take EM field measurements from on or heasdalp surface with
excellent temporal resolution. In both cases, the obsefiedd is generated by the
same synchronous, compact current sources located whthilbrain. Because the map-
ping from source activity configuration to sensor measurgrmemany to one, accu-
rately determining the spatial locations of these unknoaurces is extremely difficult.
The relevant localization problem can be posed as followse measured EM signal
is B € %", whered, equals the number of sensors amds the number of time
points at which measurements are made. The unknown sofreesi?:*" are the
(discretized) current values &t candidate locations distributed throughout the cortical

surface. These candidate locations are obtained by segmmenstructural MR scan of
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a human subject and tesselating the gray matter surfaceavsith of verticesB andS

are related by the generative model

B=LS+¢, (VI.1)

wherelL is the so-called lead-field matrix, thieh column of which represents the sig-
nal vector that would be observed at the scalp given a unientisource at the-th
vertex with a fixed orientation (flexible orientations canibeorporated by including
three columns per location, one for each directional corapgn Multiple methods
based on the physical properties of the brain and Maxwedlsgadons are available for
this computation. Finallyg is a noise term with columns drawn independently from
N(0,%,).

To obtain reasonable spatial resolution, the number ofidatelsource loca-
tions will necessarily be much larger than the number of@esnd, > d;). The salient
inverse problem then becomes the ill-posed estimation edettactivity or source re-
gions, which are reflected by the nonzero rows of the soutoaae matrixS. Because
the inverse model is underdetermined, all efforts at sotgcenstruction are heavily
dependent on prior assumptions, which in a Bayesian frantearer embedded in the
distributionp(S). Such a prior is often considered to be fixed and known, asen th
case of minimun¥,-norm approaches, minimum current estimation (MCE) [42].100

FOCUSS [12, 33], and sSLORETA [71]. Alternatively, a number ofpgrical Bayesian

IMCE is another name for BP applied to the neuroelectromagnetic souadizéiion problem.
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approaches have been proposed that attempt a form of mddetige by using the
data to guide the search for an appropriate prior. Examptdgde variational Bayesian
methods [87, 89], hierarchial covariance component md@8ls62, 73], and automatic
relevance determination (ARD) [56, 66, 75, 76, 94]. While sieghy quite different
in some respects, we present a generalized framework thatrgrasses many of these
methods and points to connections between algorithms. $¢eaalalyze several theo-
retical properties of this framework related to computadiéconvergence issues, local
minima, and localization bias. Overall, we envision thatpogviding a unifying per-
spective on these approaches, neuroelectromagneticrignpractitioners will be better
able to assess the relative strengths with respect to aplartapplication. This process

also points to several promising directions for future agsk.

VII.B A Generalized Bayesian Framework for Source Localization

In this section, we present a general-purpose Bayesian Wwarkdor source
localization. In doing so, we focus on the common ground betwmany of the methods
discussed above. While derived using different assumptmas methodology, they
can be related via the notion of automatic relevance detestion [66] and evidence
maximization [56].

To begin we involve the noise model from (VIl.1), which fultiefines the
assumed likelihoog(B|.S). While the unknown noise covariance can also be param-

eterized and estimated from the data, for simplicity we amssthaty, is known and
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fixed. Next we adopt the following source prior f6r
dy
p(S;iZ) =N(0,%), Z,=> %, (VIL.2)
=1

where the distribution is understood to apply indepengdnteach column of. Here

v =Im,..- ,7dW]T is a vector ofd, nonnegative hyperparameters that control the rela-
tive contribution of each covariance basis matrix all of which we assume are fixed
and known. The unknown hyperparameters can be estimatedtiti®data by first inte-

grating out the unknown sourcésgiving
p(B: ) = [ p(BIS)p (S:2.)dS = N (0.5, (ViL3)

whereY, = ¥, + LY,LT. A hyperpriorp(~) can also be included if desired. This ex-
pression is then maximized with respect to the unknown tpgrameters, a process re-
ferred to as type-1l maximum likelihood or evidence maxiatian [56, 66] or restricted
maximum likelihood [28]. Thus the optimization problemfshfrom finding the max-
imum a posteriori sources given a fixed prior to finding theiropt hyperparameters
of a parameterized prior. Once these estimates are obt&neatputational issues will
be discussed in Section VII.B.1), a tractable posterioridistion p(S|B; is) exists in
closed form, wher&, = >, % Ci. To the extent that the ‘learned’ pripf.S; f)s) is re-

alistic, this posterior quantifies regions of significantrent density and point estimates



188

for the unknown sources can be obtained by evaluating thepasmean
" . . . -1
S2E [S]B; zs] _ L7 (26 + ]LZSJLT) B. (VIL.4)

The specific choice of thé€’;’s is crucial and can be used to reflect any assumptions
about the possible distribution of current sources. It is felection, rather than the
adoption of a covariance component model per se, that piyndiifferentiates the many
different empirical Bayesian approaches and points to redgekithms for future study.
The optimization strategy adopted for computipgas well as the particular choice of
hyperpriorp(), if any, can also be distinguishing factors.

In the simplest case, use of the single componént ~,C; = v,/ leads to a
regularized minimunt;-norm solution. More interesting covariance componemhser
have been used to effect spatial smoothness, depth biaseosatpn, and candidate
locations of likely activity [62, 73]. With regard to the tat, it has been suggested that
prior information about a source location can be codifiednigjuding aC; term with all
zeros except a patch of 1's along the diagonal signifyingcation of probable source
activity, perhaps based on fMRI data [73]. An associated fpgrametery; is then
estimated to determine the appropriate contribution of timponent to the overall
prior covariance. The limitation of this approach is that generally do not know,
a priori, the regions where activity is occurring with botigln spatial and temporal
resolution. Therefore, we cannot reliably known how to eoan appropriate location-

prior term in many situations.
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The empirical Bayesian solution to this dilemma, which amsuto a form of
model selection, is to try out many different (or even allgibke) combinations of loca-
tion priors, and determine which one has the highest Bayesiaence, i.e., maximizes
p(B;%,) [56]. For example, if we assume the underlying currents amméd from a
collection of dipolar point sources located at each verfeke lead-field grid, then we
may choose:, = Zf;l v:.€€l’, where eacle; is a standard indexing vector of zeros
with a ‘1’ for the i-th element (and s6'; = e;e! encodes a prior preference for a single
dipolar source at locatiof).? This specification for the prior involves the counterintu-
itive addition of an unknown hyperparameter for every cdatk source location which,
on casual analysis may seem prone to severe overfitting (itnasi to [73], which uses
only one or two fixed location priors). However, the processarginalization, or the
integrating out of the unknown sourcgsprovides an extremely powerful regularizing
effect, driving most of the unknow; to zero during the evidence maximization stage
(more on this in Section VII.C). This ameliorates the ovenfijitproblem and effec-
tively reduces the space of possible active source locabgrthoosing a small relevant
subset of location priors that optimizes the Bayesian evidéhence ARD). With this
‘learned’ prior in place, a once ill-posed inverse problema longer untenable, with the
posterior mean providing a good estimate of source acti@itich a procedure has been
empirically successful in the context of neural networkg][&ernel machines [94], and
multiple dipole fitting for MEG [75], a significant benefit tbe latter being that the

optimal number of dipoles need not be known a priori.

2Here we assume dipoles with orientations constrained to be orthogonal tortieal surface; however, the
method is easily extended to handle unconstrained dipoles.
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In contrast, to model sources with some spatial extent, wecbaoseC; =
Yl , where each); represents, for example, dnx 1 geodesic neural basis vector that
specifies ara priori weight locationand activity extent. In this scenario, the number of
hyperparameters satisfiés = vd,, wherev is the number of scales we wish to examine
in a multi-resolution decomposition, and can be quite ldrgex~ 10°). As mentioned
above, the ARD framework tests many priors correspondingaoyntypotheses or be-
liefs regarding the locations and scales of the nonzerenugactivity within the brain,
ultimately choosing the one with the highest evidence. Téterasult of this formu-
lation is a source prior composed of a mixture of Gaussianeterof varying scales.
The number of mixture components, or the number of nonzgsois learned from the
data and is naturally forced to be small (sparse). In gengr@almethodology is quite
flexible and other prior specifications can be included ad,sach as temporal and
spectral constraints. But the essential ingredient of ARBX, tmarginalization and sub-
sequent evidence maximization leads to a pruning of unstgghbypotheses, remains
unchanged.

We turn now to empirical Bayesian procedures that incorpovatiational
methods. In [89], a plausible hierarchical prior is adopteat, unfortunately, leads to
intractable integrations when computing the desired sopuasterior. This motivates
the inclusion of a variational approximation that models titue posterior as a factored
distribution over parameters at two levels of the prior &iehy. While seemingly quite

different, drawing on results from [5], we can show that tesulting cost function is
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exactly equivalent to standard ARD assumingis parameterized as

ds ds
So= ) nee ) W) (VIL5)
=1

j=1

and sod, = 2d,. When fMRI data is available, it is incorporated into a partacu
inverse Gamma hyperprior of, as is also commonly done with ARD methods [5].
Optimization is then performed using simple EM update rules
In summary then, the general methods of [28, 62, 73] and [8594] as

well as the variational method of [89] are all identical wi#spect to their ARD-based
cost functions; they differ only in which covariance compots (and possibly hyper-
priors) are used and in how optimization is performed as belldiscussed below. In
contrast, the variational model from [87] introduces anitaldal hierarchy to the ARD
framework to explicitly model correlations between sosnatich may be spatially sep-

arated® Here it is assumed th&tcan be decomposed with respectitqre-sourcevia
S=WZ, p(W;S,)=N(0,%y), p(Z)=N(0,1), (VIL6)

whereZ € 14" represents the pre-source matrix angdis analogous t&,. As stated
in [87], direct application of ARD would involve integratiaver W and Z to find the
hyperparameters that maximizep(B; %;,). While such a procedure is not analytically

tractable, it remains insightful to explore the charasters of this method were we able

3Standard ARD can directly handle locally correlated sources as distabsee, but is not easily extended to
explicitly address correlated sources which are spatially separated.
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to perform the necessary computation. This allows us taedtes full model of [87] to
standard ARD.

Interestingly, it can be shown that the first and second osthrstics of the
full prior (VI1.6) and the standard ARD prior (VII.2) are egaient (up to a constant
factor), although higher-order moments will be differehtowever, as the number of
pre-sourced, becomes large, multivariate central-limit-theorem arguata can be used
to explicitly show that the distribution df converges to an identical Gaussian prior as
ARD. So exact evaluation of the full model, which is espousedha ideal objective
were it feasible, approaches regular ARD when the numberesgpurces grows large.
In practice, because the full model is intractable, a vianal approximation is adopted
similar to that proposed in [89]. In fact, if we assume therappate hyperprior ony,
then this correlated source method is essentially the santieeaprocedure from [89]
but with an additional level in the approximate posteriatdaization for handling the
decomposition (VII.6). This produces approximate posteroni’” and.Z but the result
cannot be integrated to form the posterior&irHowever, the posterior mean Bf, W,
is used as an estimate of the source correlation matrixusifi’?) to substantially
improve beamforming results that were errantly based oomelated source models.
Note however that this procedure implicitly uses the sonawion-standard criteria
of combining the posterior mean df with the prior onZ to form an estimate of the

distribution of S.
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VII.B.1 Computational Issues

The primary objective of ARD is to maximize the evidengg3; ;) with

respect toy or equivalently, to minimize
L(v) £ —logp(B; %) = nlog |Ss| + trace [B'S; ' B]. (VIL.7)

In [28], a restricted maximum likelihood (ReML) approach ®posed for this opti-
mization, which utilizes what amounts to EM-based updaféisis method typically
requires a nonlinear search for each M-step and does noampearthat the estimated
covariance is positive definite. While shown to be successfeltimating a handful
of hyperparameters in [62, 73], this could potentially belgpematic when very large
numbers of hyperparameters are present. For example,enedéoy problems (witla.,
large) we have found that a fraction of the hyperparametetaireed can be negative-
valued, inconsistent with our initial premise.

As such, we present three alternative optimization proesithat extend the
methods from [56, 75, 89, 94] to the arbitrary covariance ehatiscussed above and
guarantee thaf; > 0 for all i. Because of the flexibility this allows in constructihg,
and therefor&:,, some additional notation is required to proceed. A new agaasition

of ¥ is defined as

dy dy
S =% +L <Z m) LT =%+ ) yLL!, (VIL.8)
=1 i=1
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whereL,I.7 £ LC,L” with r; 2 rank(L;,LL7) < dy. Also, using commutative properties
of the trace operator,(«) only depends on the data through thed, x d, sample
correlation matrixBBT. Therefore, to reduce the computational burden, we replace
B with a matrix B € Ré>rank(B) sych thatBB” = BBT. This removes any per-
iteration dependency om, which can potentially be large, without altering that attu
cost function.

By treating the unknown sources as hidden data, an updateccderived for

the (k + 1)-th iteration

2 1

1 ~
+ [0 () 5]

k+
,yz( n _
F T

nr;

~ -1 -
VLI () B

(2 K3

(VI11.9)
which reduces to the algorithm from [89] given the appraersamplifying assumptions
on the form of:, and some additional algebraic manipulations. It is alsovadgnt to
ReML with a different effective computation for the M-step. &ysting the update rules
in this way and noting that off-diagonal elements of the seld@rm need not be com-
puted, the per-iteration cost is at m@(di S n-) < O (d3d.,). This expense can be
significantly reduced still further in cases where difféngseudo lead-field components,
e.g., somd.; andL;, contain one or more columns in common. This situation aecur
if we desire to use the geodesic basis functions with flexablentation constraints, as
opposed to the fixed orientations assumed above. In getieedinear dependence on
d., is one of the attractive aspects of this method, effectigétwing for extremely large

numbers of hyperparameters and covariance components.
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The problem then with (VI1.9) is not the per-iteration comty but the con-
vergence rate, which we have observed to be prohibitively sh practical situations
with high-resolution lead-field matrices and large numbmréiyperparameters. The
only reported localization results using this type of EMaalthm are from [89], where
a relatively low resolution lead-field matrix is used in aamgtion with a simplifying
heuristic that constrains some of the hyperparameter salt®wever, to avoid these
types of constraints, which can potentially degrade thdityuaf source estimates, a
faster update rule is needed. To this end, we modified theegwoe of [56], which in-
volves taking the gradient df(~) with respect tay, rearranging terms, and forming the

fixed-point update

2

(k+1) ”Y'(k) ~ ®\ '
A BT (20) B
n

(2

(trace []EZT (25]‘9) - ]Ez} ) o (VI1.10)

]_'

The complexity of each iteration is the same as before, ooly the convergence rate
can be orders of magnitude fasteFor example, givenl, = 275 sensorsp = 1000
observation vectors, and using a pseudo lead-field withODBOunique columns and
an equal number of hyperparameters, requires approxiynated mins. runtime using
Matlab code on a PC to completely converge. The EM update mloiesonverge after
24 hours. Example localization results using (VI11.10) destoate the ability to recover
very complex source configurations with variable spatiéek[76].

Unlike the EM method, one criticism of (VI11.10) is that thezerrently exists

“Note that the slower EM iterations and the faster update (VI1.10) neecbmwerge to the same fixed point even
when initialized at the same location. In some situations, the EM variant mareberred since it may be more likely
to reach the global minimum af (), time permitting.
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no proof that it represents a descent function, although awe mever observed it to
increase (VII.7) in practice. While we can show that (VII.19gquivalent to iteratively
solving a particular min-max problem in search of a saddlatpprovable convergence
is still suspect. However, a similar update rule can be ddrihat is both significantly
faster than EMand is proven to producey vectors such that (y*+D) < £ (™)

for every iterationk. Using a dual-form representation 6f~) that leads to a more

tractable auxiliary cost function, this update is given by

(k)
k+1 ’Yz

%

n

~ -1 . - 1 -1/2
= \LF (=) B (trace [LiT (=) LID . (Vi)

F

Details of the derivation can be found in Appendix VII.F.1.

Finally, the correlated source method from [87] can be ipooated into the
general ARD framework as well using update rules related ¢écatbove; however, be-
cause all off-diagonal terms are required by this methoed,itérations now scale as
> r;)” in the general case. This quadratic dependence can be ii@hib applica-

tions with large numbers of covariance components.

VII.B.2 Relationship with Other Bayesian Methods

As a point of comparison, we now describe how ARD can be related-
ternative Bayesian-inspired approaches such as the sLORBif&digm [71] and the
iterative FOCUSS source localization algorithm [33]. Tharmection is most transpar-

ent when we substitute the prior covariante= Z?il v.e,el = T into (VI1.10), giving
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the modified update

_ 2 -1
%(kJrl) _ ‘%(k)glj" (Ee +LF(’“)LT) 'p (nRZ(f)) , (VI.12)
2
wherel' = diag[v], ¢; is thei-th column ofLL, and
R® A TWLT (5, + LTWLT) 'L (VI1.13)

is the effective resolution matrix given the hyperparamsetd thek-th iteration. The
j-th column of R (called a point-spread function) equals the source estimlatained
using (VII.4) when the true source is a unit dipole at locati¢90].

Continuing, if we assume that initialization of ARD occurshvit® = 1 (as
is customary), then the hyperparameters produced afterghe iteration of ARD are
equivalent to computing the SLORETA estimate for standadizurrent density power
[71] (this assumes fixed orientation constraints). In tleistext, the inclusion of? as a
normalization factor helps to compensate for depth biagwik the propensity for deep
current sources within the brain to be underrepresentdweatdalp surface [71, 75]. So
ARD can be interpreted as a recursive refinement of what armaarnihe non-adaptive,
linear SLORETA estimate.

As a further avenue for comparison, if we assume that [ for all itera-
tions, then the update (VI1.12) is nearly the same as the FCZitE8ations modified
to simultaneously handle multiple observation vectord.[The only difference is the

factor ofrn in the denominator in the case of ARD, but this can be offsetbgpropri-



198

ate rescaling of the FOCUSStrade-off parameter. Therefore, ARD can be viewed in
some sense as taking the recursive FOCUSS update rules dundingcthe sSLORETA
normalization that, among other things, allows for dep#slmompensation.

Thus far, we have focused on similarities in update rules/éen the ARD
formulation (restricted to the case whete = I') and sSLORETA and FOCUSS. We
now switch gears and examine how the general ARD cost funcétaies to that of
FOCUSS and MCE and suggests a useful generalization of botbages. Recall that
the evidence maximization procedure upon which ARD is baseolves integrating
out the unknowrsourcesbefore optimizing the hyperparameters However, if some
p(7) is assumed fory, then we could just as easily do the opposite: namely, we can
integrate out théayperparameterand then maximizé& directly, thus solving the MAP

estimation problem

d’Y
wgs [p(BIS)p(S)per)dy = min B-LSJ+ Y g (ISix).
{SS:ZZAL&} ) i=1
(VI1.14)
where eachd; is derived from the-th covariance component such ti@t = A; A7,
andg(+) is a function dependent gr{~y). For example, whep(~) is a noninformative
Jeffreys prior, thery(z) = logx and (VII.14) becomes a generalized form of the FO-
CUSS cost function (and reduces to the exact FOCUSS cost whenee! for all 7).
Likewise, when an exponential prior chosen, thén) = = and we obtain a generalized

version of MCE. In both cases, multiple simultaneous comgsde.g., flexible dipole

orientations, spatial smoothing, etc.) can be naturalhydred and, if desired, the noise
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covarianceX, can be seamlessly estimated as well (see [27] for a spedal afathe
latter in the context of kernel regression). This addressasy of the concerns raised
in [62] pertaining to existing MAP methods. Additionallys svith ARD, source com-
ponents that are not sufficiently important in representiregobserved data are pruned;
however, the undesirable discontinuities in standard FOEQISVICE source estimates
across time, which previously have required smoothinggibiguristic measures [42],
do not occur when using (VII1.14). This is because sparsionig encouragethetween
components due to the concavity gif ), but notwithin components where the Frobe-
nius norm operator promotes smooth solutions (see [12] dsawéhe issues discussed
in Chapter VI).

Presumably, there are a variety of ways to optimize (VII.Z3ne particularly
straightforward and convenient method involves a simplegereof the ARD rules from
Section VII.B.1 with the FOCUSS EM-framework discussed int®ecl.D.1. This
leads to the

2—p

1
S L 7 (VI1.15)

nr;

~ -1 -
CON:

F
wherep € [0,1]. Upon convergence to some fixed poiyit, which is guaranteed, the
source estimate is computed using (VII.4) as with ARD. When1, we get generalized

MCE; p = 0 leads to generalized FOCUSS. Apyin between maintains a balance

between the two.
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VII.C General Properties of ARD Methods

ARD methods maintain several attributes that make thematgdsicandidates
for source localization. For example, unlike most MAP pihaes, the ARD cost func-
tion is often invariant to lead-field column normalizatiomich only affect the implicit
initialization that is used or potentially the selectiontloé C;'s. In contrast, MCE pro-
duces a different globally minimizing solution for everyrmlization scheme. As such,
ARD is considerably more robust to the particular heurisedifor this task and can
readily handle deep current sources.

Previously, we have claimed that the ARD process naturallgef® exces-
sive/irrelevant hyperparameters to converge to zeroehyereducing model complexity.
While this observation has been verified empirically by oweseand others in various
application settings, there has been relatively littleraloorating theoretical evidence,
largely because of the difficulty in analyzing the potemiahultimodal, non-convex

ARD cost function. As such, we provide the following result:

Theorem 10. Every local minimum of the generalized ARD cost function (V)lcan be
achieved at a solution with at mastnk(B)d, < d? nonzero hyperparameters. Conse-
guently, the use of all covariance components is often noésgary to locally minimize

the cost function.

The proof is based on results in Section 11.C.2. Theorem 10ptiz@s a worst-case
bound that is only tight in very nuanced situations. In geagtfor any reasonable

value of X, the number of nonzero hyperparameters is typically mucéallemthan
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d,. The bound holds for alE,, including X, = 0, indicating that some measure of
hyperparameter pruning, and therefore covariance conmpgmening, is built into the
ARD framework irrespective of the noise-based regulamzatiMoreover, the number
of nonzero hyperparameters decreases monotonically éez2t, is increased. And so
there is always somg, = X sufficiently large such that all hyperparameters converge
to exactly zero. Therefore, we can be reasonable confidantttd pruning mechanism
of ARD is not merely an empirical phenomena. Nor is it depehaena particular
sparse hyperprior, since the ARD cost from (VII.7) impligidlssumes a flat (uniform)
hyperprior.

The number of observation vectaisalso plays an important role in shaping
ARD solutions. Increasing has two primary benefits: (i) it facilitates convergence to
the global minimum (as opposed to getting stuck in a subadtextrema) and (ii), it
improves the quality of this minimum by mitigating the effeof noise (Section VI.E
discusses these issues in more detail). With perfectlyelaiad (spatially separated)
sources, primarily only the later benefit is in effect. Foamle, with low noise and
perfectly correlated sources, the estimation problemaesitio an equivalent problem
with n = 1, so the local minima profile of the cost function does not iower with
increasingn. Of course standard ARD can still be very effective in thisnse® [76].
In contrast, geometric arguments can be made to show thatrneteted sources with
largen offer the best opportunity for local minima avoidance. Hwere when strong
correlations are present as well as high noise levels, thiead@f [87] (which explicitly

attempts to model correlations) could offer a worthwhileemdative, albeit at a high
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computational cost.

Further theoretical support for ARD is possible in the cohtdXocalization
bias assuming simple source configurations. For exampstaotial import has been
devoted to quantifying localization bias when estimatingjragle dipolar source. Re-
cently it has been shown, both empirically [71] and theosgly [90], that SLORETA
has zero location bias under this condition at high SNR. Vikthen as an iterative en-
hancement of SLORETA as described in Section VII.B.2, the tjpresiaturally arises
whether ARD methods retain this desirable property. In facgn be shown that this is
indeed the case in two general situations. We assume thigatidield matrixL repre-
sents a sufficiently high sampling of the source space suatlatty active dipole aligns
with some lead-field column. Unbiasedness results can alstbdwvn in the continuous
case for both sSLORETA and ARD, but the discrete scenario is stoa@htforward and

of course more relevant to any practical task.

Theorem 11. Assume that:, includes (among others), covariance components of
the formC; = e;e!. Then in the absence of noise (high SNR), ARD has provably zero

localization bias when estimating a single dipolar souregardless of the value af

Theorem 12. Let X, be constructed as above and assume the noise covarian@e matr
Y. is known up to a scale factor. Then given a single dipolar aguin the limit as
n becomes large the ARD cost function is unimodal, and a sowsttemate with zero
localization bias achieves the global minimum. Additidpafor certain reasonable

lead-field matrices and covariance components, this globamum is unique.
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We focus here on Theorem 12; the argument for Theorem 11 esaga
special case. It also easily follows from both Theorem 5 amelofem 9, which are also
relevant to the analysis in this section and can possiblydmeglized in this context.

To begin, we require an intermediate lemma which is provefppendix VII.F.2.

Lemma 13. If the outerproductBB” can be expressed as some non-negative linear
combination of the available covariance componeﬁ?usil]if, e ,]It.dw]fl:dTw, then the

ARD cost function is unimodal andl, = n~' BB’ at any minimizing solution.

As n becomes large, the conditions of Theorem 12 stipulatethiaB B” will converge

to B3(.(% + ¥, wherel, denotes the column df associated with the active dipole and
(3 > 0is some constant. Because we are assumingthand/, /I are available covari-
ance components, then the above lemma implies that at anponiny, = 3/,(1 + ..

The hyperparameter vectgt characterized by all zeroes except for a valug @i the
element corresponding Q¢ achieves this result (there will also be a nonzero hyper-
parameter associated with the component). When we then proceed to compgite
via (VII.4), all elements will be zero except for the row cesponding with the active
dipole, hence zero localization bias.

Additionally, for certain reasonable lead-field and coaade components;*
will be the unique hyperparameter vector such that= 3¢,¢1 +3., essentially guaran-
teeing that ARD will produce an unbiased estimate providepqr descent algorithm
is used. For example, X, = > eel, X, o« I, andd; < (d, + 1) dy/2 (i.e., the number

of degrees of freedom in& x d;, covariance matrix), then* will be the unique mini-
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mizer® Also, given the very particular ill-conditioned structwL, and therefore any
derivedL,;, it is very likely that much looser restrictions will leaduaiqueness as well.
This is because it is very difficult for any combination ofdefeld columns to exactly
match the contributions of boffi, I and/, ¢~ to the overall covariance.

While theoretical results of this kind are admittedly vempitied, other itera-
tive Bayesian schemes in fact fail to exhibit similar perfamoe. For example, all of
the MAP-based focal algorithms we are aware of, includin€BESS and MCE meth-
ods, provably maintain a localization bias in the genertirgg although in particular
cases they may not exhibit one. (Also, because of the additmomplexity involved,
it is still unclear whether the correlated source method83 [satisfies a similar re-
sult.) When we move to more complex source configurations, (exgltiple dipoles),
theoretical results are not available; however, empitiestls provide a useful means of
comparison. For example, giver@s x 40, 000 lead-field matrix constructed from an
MR scan and assuming fixed orientation constraints and aisphbead model, ARD
usingX; = diag(v) andn = 1 consistently maintains zero empirical localization bias
when estimating up to 15-20 dipoles, while SLORETA startdimnsa bias with only a
few.

MCE (or BP in the parlance of previous chapters) and FOCUSS hese b
compared with ARD as well; however, in both cases they aretalykesolve fewer than
half the dipoles that ARD is capable of [75]. With FOCUSS (argmall), this is be-

cause of a greater tendency to converge to local minima. W@, this is because

5This assumes a very minor technical conditioriloto circumvent some very contrived situations.
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the global solution is often not sufficiently sparse. Thigelaresult is not surprising
since the lead-field matrik is well known to have many columns that are almost per-
fectly correlated, which can make it very difficult for MCE te bffective (e.g., see the
discussion in Appendix II.F.2). Additionally, the prevate of deep sulci implies that
current sources with opposing dipole moments may exiswihigxhibit relatively high

¢, norm. Consequently, the MCE solution may not resemble thespraese distribution

of dipoles.

VII.D Discussion

The efficacy of modern empirical Bayesian techniques andtianal approx-
imations make them attractive candidates for source loat#din. However, it is not al-
ways transparent how these methods relate nor which shewdggected to perform best
in various situations. By developing a general frameworkiadothe notion of ARD,
deriving several theoretical properties, and showing echans between algorithms,

we hope to bring an insightful perspective to these tectesqu
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VIILF  Appendix

VII.LF.1 Derivation of Alternative Update Rule

In this section, we reexpress the ARD-based cost fundtiey) in a more con-
venient form leading to the update rule (VI1.11) and a proatC (v*+1)) < £ (4*)
at each iteration. In fact, a wide variety of alternativenwergent update rules can be
developed by decoupling () using auxiliary functions and an additional set of pa-
rameters that can be easily optimized, along withusing coordinate descent. While
applicable in the general covariance component settirgqudsed in this chapter, these
results also lead to useful algorithms for finding sparseasgntations in the context of
previous chapters.

To begin, the data fit term can be expressed as

2

trace [ész—”“ﬂ = min —

d d
1~ & o
iy B—;Lz’Xi +;% I1X:]1%, (VII.16)

f

T
whereX = [XlT,...,XCﬂ . Likewise, because the log-determinant termCofy) is
concave iny (see Lemma 3), it can be expressed as an minimum over uppading

hyperplanes via

nlog |¥y| = min 27y — ¢g*(2), (VII.17)

whereg*(z) is the concave conjugate big |X,|. For our purposes below, we will never
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actually have to computg(z).
Dropping the minimizations and combining terms from (V@)&nd (VII.17)

leads to the modified cost function

d 2 4
1 . Y . Y B .
Loy, X,2) = y|[B=Y LXi| +> ' IIXil5+ 2"y - g'(2)
i=1 Foi=1
1 d, 2 4,
= 1B~ STLX| + Y [ IXGE + 2] — g7(2), (VIL18)
i=1 F o=l
where by construction
L(vy) = m)}n min L(v, X, z). (VI1.19)

It is straightforward to show that ifv*, X*, z*} is a local minimum tol(~, X, z),
then~* is a local minimum tol(+y). Likewise, if {v*, X*, z*} is a global minimum of
L(v, X, z), then~y* globally minimizesC(~).

Since direct optimization of () may be difficult, we can instead iteratively
optimize L(~, X, z) via coordinate descent over, X, andz. In each case, when two
are held fixed, the third can be globally minimized in closeahf. (In the case of this
occurs because eaghcan be optimized independently given fixed values¥caindz.)
This ensures that each cycle will redu€éy, X, z), but more importantly, will reduce
L(~) (or leave it unchanged if a fixed-point or limit cycle is readh The associated

update rules from this process are as follows.
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With z and X fixed, the minimizingy is obtained by solving

Vo L(v, X, z)=0. (VI1.20)
This leads to the update
|1 Xill 7
e — . VIl.21
Vi 5 ( )

The optimalX (with v andz fixed) is just the standard weighted minimum-norm solu-
tion given by

X = LTS ' B (VI1.22)

for eachi. Finally, the minimizingz equals the slope at the currenof nlog |%,|. As
such, we have

2" = V.. nlog |Xp| = ntrace [IE?Eb_lIEZ-] . (V11.23)

By merging these three rules into a singlepdate, we arrive at the exact ARD iteration
given by (VII.11). Moreover, by using a slightly differenétsof auxiliary functions,
other updates (e.g., the standard EM rule), can be easilyederAlso, this process can
be used to show that the fixed-point update (VI1.10) is ifeed solving a particular
min-max problem in search of a saddle point. Unfortunatebugh, proving conver-

gence in this context is more difficult.
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VII.F.2 Proof of Section VII.C Lemma

To facilitate the analysis below, we defin@;ax rank(B) matrix B such that
BBT = n~*BBT. Now suppose we are at some local minimuntCéfy) characterized
by the covarianc&;. In the neighborhood of;, the ARD cost function can be written

as

L, B) = log |aBBT + g%

~ o~ ~ ~ -1
+ trace {BBT <aBBT + 62,’;) ] L (VIL24)

where at the presumed local minimum= 0 andg = 1. In contrast, by increasing,
we allow a contribution fromBBY to the overall covariance. That such a term exists
is possible by the assumption that! BB7, and thereforeBB7, can be represented
via a nonnegative linear combination of available covaracomponents. Note that for
simplicity, we will henceforth assume that the sample ciavaren~! BB7 is full rank,
and therefore any; must be too. However, the general case can be handled as well
with a little extra effort.

If ¥; is a true local minimum of the original cogl(y), then it must also

locally minimize L(«, 3), necessary conditions for which are

9L(, ) _ 0 9L(a, B) >0, (VI1.25)

Oax a=1,4=0 op a=1,6=0

where the gradient with respectdaneed not actually equal zero sineenust be greater

than or equal to zero. After some manipulations, the firstld@n is equivalent to the
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requirement

trace [EET (z;;)—l] — d,. (VI1.26)

Likewise, the second condition is tantamount to the indatual
trace [EB'T () } ~ trace [BBT (=)' BBT (57 > 0. (VI1.27)
Using the eigendecompositids?” ()™ B = VAVT, this expression reduces to
Z A > Z A2, (VI1.28)
where the summation is over thgeigenvalues defined above. Also, because
trace [BBT SE)” ] Z i, (VI1.29)

the lefthand side of (VI1.28) equaitg. The only way then to satisfy this inequality is if
N, = 1foralli =1,...,d,. Thisis why we chose to reparameterize HBathus forcing

the number of eigenvalues to equal their sum. Furthermloieirplies that
BT 'B=vvT =1 (VI1.30)

Solving (VI1.30) gives:; = BBT = n~'BB”, completing the proof.



Chapter VIII

Practical Issues and Extensions

This chapter discusses performance issues related tordeteg the trade-off
parametern\ as well as convergence. It concludes by deriving a fast meblearning
the dictionary® under the assumption that it is orthonormal. When combined avi
pre-whitening step, this can be used to implement a robasty wersion of independent

component analysis (ICA).

VIIILA Estimating the Trade-Off Parameter )\

If we already have access to some reliable estimata,ftren it can naturally
be incorporated into any of the update rules described gthi@sis. When no such lux-
ury exists, it would be desirable to have some alternativeiatisposal. As one option,
A estimation can be incorporated into the empirical Bayesiaméwork as originally
discussed in [56, 94]. This involves replacing the M-stefhaijoint maximization over

A and the hyperparameteys Because of decoupling, theupdate remains unchanged,

211
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while we must include, e.g., for the fast version of the nplétiresponse SBL algorithm

from Section VI.C, the\ update

LT — oM
oo - 2T = 2MIF (ViIL1)
N_M+Zi=17

This equation generalizes (or reduces) to other SBL-bageditims.

A word of caution is in order with respect foestimation that has not been ad-
dressed in the original SBL literature (this caveat applopsadly to the single response
case). For suitably structured dictionaries and> N, \ estimates obtained via this
procedure can be extremely inaccurate. In effect, thera identifiability issue when
any subset ofV dictionary columns is sufficiently spread out such thét, \) can be
minimized with A = 0. For example, if we choose the dictionaby = [® /], then) as
well as theN hyperparameters associated with the identity matrix cakiof®’ are not
identifiable in the strict statistical sense. This occursaose a nonzerband the appro-
priate N nonzero hyperparameters make an identical contributioheg@ovariancé:,.

In general, the signal dictionary will not containhowever, the underlying problem of
basis vectors masquerading as noise can lead to biasedtiomates of\. As such, we
generally recommend the more modest strategy of simplyrerpating with different

values or using some other heuristic designed with a givehagion in mind.
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VIII.B Implementational and Convergence Issues

Per-iteration complexity of various algorithms has beedraslsed in Sections
VI.C.4 and VII.B.1, but several important outstanding issuesrant further discus-
sion. First, while standard EM implementations exist fongnaf the Bayesian methods
discussed in this thesis, not all have been provably showatisfy the Global Conver-
gence Theorem (GCT) of Zangwill [104]. While all are provenaied functions in the
sense that every iteration is guaranteed to reduce (or leasieanged) the associated
cost! there is no assurance that the fixed points that ensue withdzly minimizing
solutions (or even saddle points) of the underlying costtion.

There are exceptions. The FOCUSS algorithm uginrg 1 has been explic-
itly proven to satisfy all the GCT conditions [78]. Howevenetp = 1 case has not
been addressed, although this can be handled using staaitiardtives like linear pro-
gramming, so the issue is less relevant. Likewise, SBL hasraids been analyzed in
this sense of global convergence. The difficulty in doing 8ees because the SBL
cost function and associated EM update rules do not satistedst they have not been
proven to satisfy thus far) certain important properties thave been used in the past
to guarantee EM convergence to local minima (or in rare ¢asaaddle point). For
example, if the likelihood (or posterior for MAP estimat)as not differentiable, or if
the solution does not lie in the interior of the parametercepthe GCT conditions for
EM algorithms do not seem to be covered by existing proofd(8]. While we have

not observed any problems in practice, this is an issue tsiden

There exist other, stricter definitions of descent functions.
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The heuristically-derived fast version of SBL proposed bypling [94] (and
MacKay earlier) is a different story. Here it has not evenrbgven that each iteration
will always reduce or leave unchanged the SBL cost, althoughave never observed
an exception in empirical studies. We can show that thesatapdre equivalent to al-
ternating a min-max procedure to find a saddle point of a@der auxiliary function,
but this perspective has not yet led to any performance gtega. A more serious prob-
lem, perhaps, is that it does appear that fast SBL can sonsetiomerge to fixed points
that are not local minima (or even saddle points) of the SBIt. dggparently, some hy-
perparameters are pushed to zero too fast during applicafithe update rules. Once
a hyperparameter hits zero, or close enough relative to imaghecision or some other
thresholding criteria, it will remain fixed forever unlessnse heuristic is developed to
reintroduce non-zero values. But even this may not help retlegists undue pressure
to push hyperparameters to zero at inopportune times.

Interestingly, this problem seems to be most pronounceithéicases we have
tested) in a noiseless setting when some nonzero elemeaigarfe small and random
dictionaries are used. (The EM version of SBL works much battéhis case.) How-
ever, on large MEG or EEG leadfield dictionaries (e2J5 rows x 120, 000 columns)
this issue does not seem to arise.

We have derived other fast versions of SBL using convex aisatpst are
guaranteed to reduce the cost at every iteration unlikeabeTipping algorithm (see
Section VII.B.1). But these methods, while appealing as deseethods, can still

sometimes converge to fixed points that do not minimize the &&it. Regardless, this
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is an area that warrants further study.

VIII.C Learning Orthogonal Transforms for Promoting Sparsity

Given a set ofl. data vectors, the goal is to find an orthonormal matrithat
promotes sparse representations in the transform domaich & procedure is useful
in many applications such as sparse coding, image denpgiagcompressed sensing,
where the orthonormality restriction is essential to awoftating noise or inconsequen-
tial components. In practice, it is customary to either ugex, wavelet-based trans-
form [15] or to run a general ICA algorithm to convergencedaiéd by a heuristic
orthonormalization step [44]. In contrast, we derive a hagorithm that, like ICA-
based methods, adaptively learns a sparsity-inducingfwamation; however, with our
approach the orthonormality constraint is embedded in ¢heahcost function and en-
forced at each iteration. The resulting update rules areapty convergent and com-
putationally very efficient. This method compares well withvelet and sparse code
shrinkage methods in an image denoising application. Aafditly, if we first whiten
the datal’, then this method reduces to a robust means of performiray hGA assum-
ing super-Gaussian sources.

The generative model for this problem is

T =W + €, (VII1.2)

where® € RV*VN satisfiesd”® = [ but is otherwise unknownyy € R¥*L s the
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unknown sources which are assumed to be sparse in some sanssyper-Gaussian),
T is the observed mixtures, agds unknown corrupting noise.

The actual optimization problem we propose to solve is

flri;N) st @70 =1, X =0T, (VI1.3)

1

min E
X,

N
=1

L
7 =

where

22X +1log A, 22 €(0,)]
Flz:)) = (VIIl.4)

2log |z| + 1, 2% €[\ ).

A plot of f(z) is provided in Figure VIII.1.
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Figure VIII.1: Plot of f(z; A = 16). The inflection point occurs at= v/ = 4.

This function encourages many of the elementsXofo go belowv/)\, wheref(-) is
reduced quadratically. However, the constrait = I will necessarily force some

elements above/), but this only incurs a logarithmic penalty. The net ressiliiany
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small values below/) and a few large values above it as desired.
To form an estimate dfi’, for denoising or coding purposes, etc., a threshold-
ing operator can be applied 6. For example, from Section VI.E.3 we know that the

optimal SBL threshold in this case would be

_l’_

which equals the non-negative garrote estimator [7]. Thirator has been endorsed
for wavelet denoising [26, 30].

The update rules for minimizing (VIII.3), which can be oliadl using the EM
algorithm in an empirical Bayesian framework, are surpgbirsimple. First, a suitable
initialization is chosen for the dictionary := @ which givesX = ®77. ThenW is

computed using (VIIL.5). For the dictionary update, we have
d=UvT, (VII.6)

wherelU SV is the SVD of W 7. This value ofd solves the constrained optimization
problent

min |7 — &W|z st &' =1. (VIIL7)
[

This process is iterated until convergence. Note that thpsgate rules are guaranteed

to reduce (VI11.3) at each step.

2See [32] for the proof.
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Preliminary results using this method on image data are guamising. More-
over, the algorithm is quite fast, with each iteration (Whicses all of the data unlike
some ICA methods) incurring only @(N?L) complexity cost, which is linear in the

number of samples.
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Chapter IX

Conclusion

Applications of sparsity continue to grow in signal and imggocessing,
functional brain imaging, neural modelling, and machinarméng. While a diverse
set of Bayesian tools exist for finding sparse representafram overcomplete feature
dictionaries, the most common and well-understood methnaéve simple MAP esti-
mation using a fixed, sparsity-inducing prior (e.g., OMP, &R FOCUSS). In contrast,
the relatively under-utilized empirical Bayesian appras;twhich adopt a flexible, pa-
rameterized prior to encourage sparsity, show tremendousipe but lag behind in
terms of solid theoretical justification and rigorous asayn the context of sparse es-
timation problems. Nor have all the connections betweeuarfamilies of Bayesian
algorithms been adequately fleshed out.

We have addressed these issues on a variety of fronts, partycwith re-
spect to sparse Bayesian learning (SBL), an empirical Bayé&siarework built upon

the notion of automatic relevance determination (ARD).tFing&e have proven several
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results about the associated SBL cost function that eluitdsitgeneral behavior and
provide solid theoretical justification for using it to findamimally sparse represen-
tations. Specifically, we show that the global SBL minimum lisags achieved at

the maximally sparse solution, unlike the BP cost functiohjlevoften possessing a
more limited constellation of local minima than comparaidl&P methods which share
this property. We also derive conditions, dependent on ibtgilalition of the nonzero

model weights embedded in the optimal representation, thethSBL has no local

minima. Finally, we demonstrate how a generalized form of S@&it of a large class
of latent-variable Bayesian models (which includes both Mad empirical Bayesian
algorithms), uniquely satisfies two minimal performanadeecia directly linked to spar-

sity. These results lead to a deeper understanding of theections between various
Bayesian-inspired strategies and suggest new sparsengaigorithms.

We have also extended these methodologies to handle moeeafjpnoblems
relevant to compressed sensing, source localization andrthalysis of neural data. In
this context, modifications of SBL were considered for harglBparse representations
that arise in spatio-temporal settings and in the contextovhriance component es-
timation. Here we assume that a small set of common featurderly the observed
data collected over multiple instances. The theoreticaperties of these SBL-based
cost functions were examined and evaluated in the contegkisting methods. The
resulting algorithms display excellent performance onmesrtly large, ill-posed, and
ill-conditioned problems in neuroimaging, suggestingrargy potential for impacting

this field and others.
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