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The future of computing 
beyond Moore’s Law
John Shalf

Department of Computer Science, Lawrence Berkeley National
Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

JS, 0000-0002-0608-3690

Moore’s Law is a techno-economic model that has enabled the information technology 
industry to double the performance and functionality of digital electronics roughly every 2 
years within a fixed cost, power and area. Advances in silicon lithography have enabled 
this exponential miniaturization of electronics, but, as transistors reach atomic scale and 
fabrication costs continue to rise, the classical technological driver that has underpinned 
Moore’s Law for 50 years is failing and is anticipated to flatten by 2025. This article 
provides an updated view of what a post-exascale system will look like and the challenges 
ahead, based on our most recent understanding of technology roadmaps. It also discusses 
the tapering of historical improvements, and how it affects options available to continue 
scaling of successors to the first exascale machine. Lastly, this article covers the many 
different opportunities and strategies available to continue computing performance 
improvements in the absence of historical technology drivers.

This article is part of a discussion meeting issue ‘Numerical algorithms for 
high-performance computational science’.

1. Introduction
Society has come to depend on the rapid, predictable and affordable scaling of computing 
performance for consumer electronics, the rise of ‘big data’ and data centres (Google, 
Facebook), scientific discovery and national security. There are many other parts of the 
economy and economic development that are intimately linked with these dramatic 
improvements in information technology (IT) and computing, such as avionics systems for 
aircraft, the automotive industry (e.g. self-driving cars) and smart grid technologies. The 
approaching end of lithographic scaling threatens to hinder continued
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Figure 1. The ITRS most recent report predicts transistor scaling will end in 2021 (a decade sooner than was predicted in 2013). 
Figure from ITRS. (Online version in colour.)

health of the $4 trillion electronics industry, impacting many related fields that depend on 
computing and electronics.

Moore’s Law [1] is a techno-economic model that has enabled the IT industry to double the 
performance and functionality of digital electronics roughly every 2 years within a fixed cost, 
power and area. This expectation has led to a relatively stable ecosystem (e.g. electronic design 
automation tools, compilers, simulators and emulators) built around general-purpose processor 
technologies, such as the ×86, ARM and Power instruction set architectures. However, within a 
decade, the technological underpinnings for the process that Gordon Moore described will come 
to an end, as lithography gets down to atomic scale. At that point, it will be feasible to create 
lithographically produced devices with dimensions nearing atomic scale, where a dozen or fewer 
silicon atoms are present across critical device features, and will therefore represent a practical 
limit for implementing logic gates for digital computing [2]. Indeed, the ITRS (International 
Technology Roadmap for Semiconductors), which has tracked the historical improvements over 
the past 30 years, has projected no improvements beyond 2021, as shown in figure 1, and  
subsequently disbanded, having no further purpose. The classical technological driver that has 
underpinned Moore’s Law for the past 50 years is failing [3] and is anticipated to flatten by 
2025, as shown in figure 2. Evolving technology in the absence of Moore’s Law will require an 
investment now in computer architecture and the basic sciences (including materials science), 
to study candidate replacement materials and alternative device physics to foster continued 
technology scaling.

(a) Multiple paths forward
To address this daunting problem in both the intermediate and long term, a multi-pronged 
approach is required: evolutionary for the intermediate (10 year) term and revolutionary for 
the long (10–20 year) term strategy. Timing needs for the intermediate term will require an 
evolutionary approach based on achieving manufacturing technology advances allowing the 
continuation of Moore’s Law with current complementary metal oxide semiconductor (CMOS) 
technology—relying on new computing architectures and advanced packaging technologies such 
as monolithic three-dimensional integration (building chips in the third dimension) and photonic 
co-packaging to mitigate data movement costs [4,5]. The long-term solution requires fundamental 
advances in our knowledge of materials and pathways to control and manipulate information 
elements at the limits of energy flow, ultimately achieving 1 attojoule/operation, which would
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Figure 2. Sources of computing performance have been challenged by the end of Dennard scaling in 2004. All additional 
approaches to further performance improvements end in approximately 2025 due to the end of the roadmap for improvements 
to semiconductor lithography. Figure from Kunle Olukotun, Lance Hammond, Herb Sutter, Mark Horowitz and extended by John 
Shalf. (Online version in colour.)

be six orders of magnitude smaller than today’s devices. As we approach the longer term, 
we will require ground-breaking advances in device technology going beyond CMOS (arising 
from fundamentally new knowledge of control pathways), system architecture and programming 
models to allow the energy benefits of scaling to be realized. Using the history of the silicon fin 
field-effect transistor (FinFET), it takes about 10 years for an advance in basic device physics to 
reach mainstream use. Therefore, any new technology will require a long lead-time and sustained 
R&D of one to two decades. Options abound, the race outcome is undecided, and the prize 
is invaluable. The winner not only will influence chip technology, but also will define a new 
direction for the entire computing industry and many other industries that have come to depend 
heavily on computing technology.

There are numerous paths forward to continue performance scaling in the absence of 
lithographic scaling, as shown in figure 3. These three axes represent different technology scaling 
paths that could be used to extract additional performance beyond the end of lithographic 
scaling. The near-term focus will be on development of ever more specialized architectures and 
advanced packaging technologies that arrange existing building blocks (the horizontal axis of 
figure 3). In the mid-term, emphasis will likely be on developing CMOS-based devices that 
extend into the third, or vertical, dimension and on improving materials and transistors that 
will enhance performance by creating more efficient underlying logic devices. The third axis 
represents opportunities to develop new models of computation such as neuro-inspired or 
quantum computing, which solve problems that are not well addressed by digital computing.

2. The complementary role of new models of computation
Despite the rapid influx of funding into these respective technologies, it is important to 
understand that they are not replacement technologies for digital electronics as we currently 
understand them. They certainly expand computing into areas where digital computing 
is deficient. Digital computing is well known for providing reproducible and explainable



Figure 3. There are three potential paths forward to realize continued performance improvements for digital electronics
technology. (Online version in colour.)

calculations that are accurate within the precision limit of the digital representation. Brain-
inspired computational methods such as machine learning have substantially improved our
ability to recognize patterns in ‘big data’ and automate data mining processes over traditional
pattern recognition algorithms, but they are less reliable for handling operations that require
precise response and reproducibility (even ‘explainability’ for that matter). Quantum computing
will expand our ability to solve combinatorically complex problems in polynomial time, but they
will not be much good for word processing or graphics rendering, for example. It is quite exciting
and gratifying to see computing expand into new spaces, but equally important to know the
complementary role that digital computing plays in our society that is not and cannot be replaced
by these emerging modes of computation.

Quantum and brain-inspired technologies have garnered much attention recently due to
their rapid pace of recent improvements. Much of advanced architecture development and new
startup companies in the digital computing space are targeting the artificial intelligence/machine
learning (AI/ML) market because of its explosive market growth rate. Growth markets are far
more appealing business opportunities for companies and venture capital, as they offer a path
to profit growth, whereas a large market that is static invites competition that slowly erodes
profits over time. As a result, there is far more attention paid to technologies that are seeing a
rapid rate of expansion, even in cases where the market is still comparatively small. So interest
in quantum computing and AI/ML is currently superheated due to market opportunities, but it
is still urgent to advance digital computing even as we pursue these new computing directions.
Neither quantum nor brain-inspired architectures are replacement technologies for functionality
that digital technologies are good at. Indeed, current AI/ML solutions are deeply dependent
upon digital computing technology, and if there is any lesson to be learned from the diversity
of AI/ML hardware solutions, it is that architecture specialization and custom hardware is very
effective—the topic of the next section.



3. Architectural specialization
In the near term, the most practical path to continued performance growth will be architectural 
specialization in the form of many different kinds of accelerators. We believe this to be 
true because historically it has taken approximately 10 years for a new transistor concept 
demonstrated in the laboratory to become incorporated into a commercial fabrication process. 
Our US Office of Science and Technology Policy (OSTP) report with Robert Leland surveyed the 
landscape of potential CMOS-replacement technologies and found many potential candidates [4], 
but no obvious replacements demonstrated in the laboratory at this point. Therefore, we are 
already a decade too late to resolve this crisis by finding a scalable post-CMOS path forward. 
The only hardware option for the coming decade will be architectural specialization and 
advanced packaging for lack of a credible alternative. When competing against an exponentially 
improving general-purpose computing ecosystem, it was very difficult to compete using 
hardware specialization. In the past, the path of specialization has not been productive to pursue 
due to long lead-times and high development costs. However, as Thompson & Spanuth’s [6] 
article on the evaluation of the economics of Moore’s Law points out, the tapering of Moore’s Law 
improvements makes architecture specialization a credible and economically viable alternative 
to fully general-purpose computing, but such a path will have a profound effect on algorithm 
development and on the programming environment.

Therefore, in the absence of any miraculous new transistor or other device to enable continued 
technology scaling, the only tool left to a computer architect for extracting continued performance 
improvements is to use transistors more efficiently by specializing the architecture to the target 
scientific problem(s), as projected. Overall, there is strong consensus that the tapering of Moore’s 
Law will lead to a broader range of accelerators or specialization technologies than we have 
seen in the past three decades. Examples of this trend exist in smartphone technologies, which 
contain dozens of specialized accelerators co-located on the same chip; in hardware deployed 
in massive data centres, such as Google’s Tensor Processing Unit (TPU), which accelerates the 
Tensorflow programming framework for ML tasks; in field-programmable gate arrays (FPGAs) 
in the Microsoft Cloud used for Bing search and other applications; and a vast array of other deep 
learning accelerators. The industry is already moving forward with production implementation of 
diverse acceleration in the AI and ML markets (e.g. Google TPU [7], Nervana’s AI architecture [8], 
Facebook’s Big Sur [9]) and other forms of compute-in-network acceleration for mega-data 
centres (e.g. Microsoft’s FPGA Configurable Cloud and Project Catapult for FPGA-accelerated 
search [10]). Even before the explosive growth in the AI/ML market, system-on-chip (SoC) 
vendors for embedded, Internet of things (IoT) and smartphone applications were already 
pursuing specialization to good effect. Shao et al. [11] from Harvard University tracked the growth 
rate of specialized accelerators in iPhone chips, and found a steady growth rate for discrete 
hardware accelerator units, which grew from around 22 accelerators for Apple’s 6th-generation 
iPhone SoC to well over 40 discrete accelerators in their 11th-generation chip. Companies engaged 
in this practice of developing such diverse heterogeneous accelerators because the strategy works!

There have also been demonstrated successes in creating science-targeted accelerators such 
as D.E. Shaw’s Anton, which accelerates molecular dynamics (MD) simulations nearly 180× 
over contemporary high-performance computing (HPC) systems [12], and the GRAPE series 
of specialized accelerators for cosmology and MD [13]. A recent International Symposium on 
Computer Architecture workshop on the future of computing research beyond 2030 (http://
arch2030.cs.washington.edu/) concluded that heterogeneity and diversity of architecture are 
nearly inevitable given current architecture trends. This trend toward co-packaging of diverse 
‘extremely heterogeneous’ accelerators is already well under way, as shown in figure 4.

Therefore, specialization is the most promising technique for continuing to provide the 
year-on-year performance increases required by all users of scientific computing systems, but 
specialization needs to have a well-defined application target to specialize for. This creates 
a particular need for the sciences to focus on the unique aspects of scientific computing 
for both analysis and simulation. Recent communications with computing industry leaders

http://arch2030.cs.washington.edu/
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suggest that post-exascale HPC platforms will become increasingly heterogeneous environments.
Heterogeneous processor accelerators—whether they are commercial designs (evolutions of
GPU or CPU technologies), emerging reconfigurable hardware or bespoke architectures that
are customized for specific science applications—optimize hardware and software for particular
tasks or algorithms and enable performance and/or energy efficiency gains that would not be
realized using general-purpose approaches. These long-term trends in the underlying hardware
technology (driven by the physics) are creating daunting challenges for maintaining the
productivity and continued performance scaling of HPC codes on future systems.

As a means to organize the universe of options available, we subdivide the solution space into
three different strategies:

(i) Hardware-driven algorithm design: where we evaluate emerging accelerators in the context
of workload, and modify algorithms to take full advantage of new accelerators.

(ii) Algorithm-driven hardware design: where we design largely fixed-function accelerators
based on algorithm or application requirements.

(iii) Co-develop hardware and algorithms: this represents a cooperative design with a selected
industry partner or partnership to design algorithms and hardware together.

For hardware-driven algorithm design, we recognize that the industry will continue to
produce accelerators that are targeted at other markets such as ML applications. In the near
future, GPUs, accelerators (NVIDIA, AMD/ATI, Intel) and multi-core processors with wide-
vector extensions (such as ARM SVE and Intel’s AVX512) will continue to dominate. However,
the boost in performance offered by the GPUs and wide-vector extensions to CPUs have offered
a one-time jump in performance, but do not offer a new exponential growth path. There are a
number of extensions emerging that are targeted at accelerating the burgeoning AI workloads,
such as NVIDIA’s tensor extensions in the V100 GPU. Such extensions are very specific tensor
operations that operate at much lower (16-bit and 8-bit) precision, which may limit them unless
algorithms are completely redesigned to exploit these features (where possible). While this puts
the primary burden upon the algorithm and application developers, to some extent this is the
strategy that has more or less been common practice since the ‘attack of the killer micros’
transformed the HPC landscape from purpose-built vector machines to clusters of commercial
off-the-shelf (COTS) nodes nearly 3 decades ago.

Algorithm-driven hardware design would mark a return to past practices of designing
purpose-built machines for targeted high-value workloads. As mentioned earlier, the rapid



growth and diversity in specialized AI architectures (Google TPU and others) as well as isolated 
examples in the sciences (D.E. Shaw’s Anton, SPINNAKER, etc.) demonstrate that this approach 
can offer a path to performance growth. However, the development costs are high (tens to 
hundreds of millions of dollars per system in today’s technology market), it requires long 
development lead times, and it risks having the application requirements shift so as to make 
the hardware obsolete. This concern has caused an increased interest in reconfigurable hardware 
such as FPGAs and coarse-grained reconfigurable arrays (CGRAs). These devices allow the logic 
and specializations within the chip to be reconfigured rather than having to build a new chip. The 
challenge with FPGAs is that the extreme flexibility to enable hardware reconfiguration comes at 
a cost of 5× slower clock rates (typical designs run at 200 MHz rather than at the gigahertz clock 
rates expected of custom logic) and a reduction of effective logic density (number of usable gates 
per chip) by a similar factor. CGRAs, such as Stanford’s Plasticine [14], mitigate these problems 
by offering a coarser granularity of reconfiguration where the building blocks are full floating-
point adders and multipliers rather than individual wires and gates offered by the FPGAs. The 
biggest challenge to making these devices useful is that the tools and programming models for 
programming these devices are extraordinarily difficult to use and it requires a lot of effort to 
get even simple algorithms to perform well. There is a lot of work going in to developing more 
agile hardware design methodologies such as higher-level hardware development languages 
(e.g. CHISEL, PyMTL), and more design automation to reduce human effort to make production 
of custom chips more affordable.

The third option of deeper co-design is less of a technological option than it is a new 
economic model for interacting with the industry that produces computer systems and the 
potential customers of said technologies. The era of general-purpose computing led to a more 
or less hands-off relationship between technology suppliers and their customers, as documented 
by Thompson & Spanuth [6], where a general-purpose processor could serve many different 
applications. In an era where specializing hardware to the application is the only means of 
performance improvement, the economic model for the design of future systems is going to 
need to change dramatically to lower design and verification costs for the development of new 
hardware. Otherwise, the future predicted by economists such as Thompson is one where high-
value markets such as AI for Google and Facebook will be able to afford to create custom 
hardware (the fast lane) and the rest of the market will receive no such boosts (remaining in 
the slow lane). To prevent this kind of future from happening, the industry is adopting more 
agile hardware production methods such as using chiplets. Rather than have a single large 
piece of silicon that integrates together all of the diverse accelerators comprising the customized 
hardware, the chiplets break each piece of functionality into a very tiny tile. These chiplets/tiles 
are then stitched together into a mosaic by bonding them to a common silicon substrate. This 
enables manufacturers to rapidly piece together a mosaic of these chiplets to serve the diverse 
specialized applications at a much lower cost and much faster turn-around. However, this 
approach falls down if the desired functionality does not already exist in the available chiplets. 
Perhaps in the future the ‘algorithm-driven hardware design’ and this chiplets approach might 
be able to meet in the middle to bring forth a new economic model that can enable productive 
architecture specialization for small markets, such as Dr Sophia Shao’s [11] vision for her Aladdin 
integrated hardware specialization/design environment.

(a) Programming system and software challenges
New software implementations, and in many cases new mathematical models and algorithmic 
approaches, are necessary to advance the science that can be done with new architectures. This 
trend will not only continue but also intensify; the transition from multi-core systems to hybrid 
systems has already caused many teams to re-factor and redesign their implementations. But the 
next step to systems that exploit not just one type of accelerator but a full range of heterogeneous 
architectures will require more fundamental and disruptive changes in algorithm and software 
approaches [15]. This applies to the broad range of algorithms used in simulation, data analysis



and learning. New programming models or low-level software constructs that hide the details
of the architecture from the implementation can make future programming less time-consuming,
but they will not eliminate nor in many cases even mitigate the need to redesign algorithms. Key
elements of a path forward include:

— Understanding the impact of proposed architectures on current mathematical kernels and
algorithms and using this knowledge to steer the HPC hardware deployment choices
through feedback in an iterative co-design process.

— Redesigning current algorithms in response to proposed architectures; hardware choices
should be based not only on current algorithms but also on the potential performance of
new algorithms and even new science use cases.

— Developing advanced programming environments that ease the implementation of these
new algorithms and numerical libraries and are able to generate code for these diverse,
heterogeneous accelerators.

Applied mathematics is critical to our ability to co-design application- and science-relevant
accelerators. There are two categories of applications that will need to be redesigned to run
effectively in a heterogeneous accelerated environment. In the first type, a single computational
motif or kernel is paramount, such as stencil computations with fixed spatial patterns. In this
case, there is likely to be a single best choice of hardware design. Most of the success stories
regarding specialized architectures fall into this category. The advances in numerical methods
can be encapsulated in numerical libraries (such as SuperLU, GraphBLAS and STRUMPACK)
and application frameworks (such as AMReX) to make these advances broadly available to the
community. The second, more complex type is that in which solving the science problem requires
fundamentally heterogeneous operations. The heterogeneous operations can be staggered, as one
might envision in a data pipeline; as the data moves through the pipeline, different operations
are performed on it. In this scenario, the data may also be moving physically in steps from
source to destination, making the use of different architectures for different stages transparent and
separable. Heterogeneous simulation algorithms place a different demand in that, unlike the data
example, the flow is more fine-grained and tightly coupled. For example, in a simulation of a time-
evolving state or any iterative solution procedure, each step may contain multiple heterogeneous
substeps, with each step repeated multiple times, perhaps with different relative (i.e. dynamically
changing) costs of the components. No single specialized architecture will be ideal for all stages,
suggesting an architectural layout that allows a single code to exploit multiple specialized
components. Existing hybrid CPU/GPU systems already allow this, and applications are being
re-factored to use this capability; the current trend of offloading different algorithmic components
to different specialized architectures will not only continue but become more important.

Performance portability is not an achievable goal if we attempt to do it using imperative
languages like Fortran and C/C++. There is simply not enough flexibility built in to the
specification of the algorithm for a compiler to do anything other than what the algorithm
designer explicitly stated in their code. To make this future of diverse accelerators usable and
accessible in the former case will require the co-design of new compiler technology and domain-
specific languages (DSLs) designed around the requirements of the target computational motifs
(the 13 motifs that extended Phil Colella’s original Dwarfs of algorithmic methods [16]). The
higher levels of abstraction and declarative semantics offered by DSLs enable more degrees of
freedom to optimally map the algorithms onto diverse hardware than traditional imperative
languages that over-prescribe the solution. Because this will drastically increase the complexity
of the mapping problem, new mathematics for optimization will be developed, along with better
performance introspection (both hardware and software mechanisms for online performance
introspection) through extensions to the roofline model. Use of ML/AI technologies will be
essential to enable analysis and automation of dynamic optimizations.



1

10

102

103

104

DP fl
op

reg
ist

er

1 m
m on

-ch
ip

5 m
m on

-ch
ip

15
 m

m on
-ch

ip

of
f-c

hip
/D

RAM

loc
al 

int
erc

on
ne

ct

cro
ss 

sy
ste

m

2008 (45 nm)

2018 (11 nm)

pi
co

jo
ul

es
 p

er
 6

4-
bi

t o
pe

ra
tio

n

Figure 5. The energy consumption of compute and data movement operations at different levels of the compute hierarchy—
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(b) Data movement challenges
Extracting more compute performance alone may not be sufficient to realize performance gains in 
future systems. A potential complication for future digital technologies is that the cost of data 
movement (and not necessarily compute) already dominates electrical losses, and could 
undermine any potential improvements in compute energy efficiency if not addressed. Since the 
loss of Dennard scaling in 2004, a new technology scaling regime has emerged. According to 
the laws of electrical resistance and capacitance, the intrinsic energy efficiency of a fixed-length 
wire does not improve appreciably as it shrinks in size with Moore’s Law improvements in 
lithography, as elegantly described in Miller’s articles [17,18]. By contrast, the power consumption 
of transistors continues to decrease as their gate size (and hence capacitance) decreases. Since the 
energy efficiency of transistors is improving as sizes shrink, and the energy efficiency of wires 
is not improving, we have come to a point where the energy needed to move data exceeds the 
energy used to perform the operation on those data, as shown in figure 5. This leads to extreme 
bottlenecks and heterogeneity in the cost of accessing data because the costs to move data are 
strongly distance-dependent. Furthermore, although computational performance has continued 
to increase, the number of pins per chip has not tended to improve at similar rates [19]. This leads 
to bandwidth contention, which leads to additional performance non-uniformity. The natural 
consequence of this technological limitation is an increased heterogeneity in data movement and 
non-uniform memory access (NUMA) effects so long as copper/electrical communication is used. 
Data locality and bandwidth constraints have long been concerns for application development 
on supercomputers, but recent architecture trends have exacerbated these challenges to the 
point that they can no longer be accommodated with existing methods such as loop blocking 
or compiler techniques. Future performance and energy efficiency improvements will require 
more fundamental changes to hardware architectures, advanced packaging approaches and new 
algorithm designs.

The most significant consequence of these assertions is the impact on scientific applications 
that run on current HPC systems, many of which codify years of scientific domain knowledge and 
refinements for contemporary computer systems. To adapt to computing architectures beyond



2025, developers must be able to reason about new hardware and determine what programming 
models and algorithms will provide the best blend of performance and energy efficiency into the 
future. Even our theory of complexity for numerical methods is based on counting the number of 
floating-point operations, which fails to account for the order of complexity of compulsory data 
movement required by the algorithm. Ultimately, our theories about algorithmic complexity are 
out of step with the underlying physics and cost model for modern computation. Future systems 
will express more levels of hierarchy than we are accustomed to in our existing programming 
models. Not only are there more levels of hierarchy, but it is also likely that the topology of 
communication will become important to optimize. Programmers are already facing NUMA 
performance challenges within the node, but future systems will see increasing NUMA effects 
between cores within an individual chip die in the future [15,20]. It will become important to 
optimize for the topology of communication; but current programming models do not express 
information needed for such optimizations, and current scheduling systems and runtimes are not 
well equipped to exploit such information were it available. Overall, our current programming 
methodologies are ill-equipped to accommodate changes to the underlying abstract machine 
model, which would break our current programming systems. There is a journal article by Unat 
et al. [21] from the PADAL (Programming Abstractions for Data Locality) workshop [22] that 
outlines the current state of the art in data locality management in modern programming systems 
and identifies numerous opportunities to greatly improve automation in these areas.

New algorithms favouring less data movement or higher arithmetic intensity, such as 
communication-avoiding and high-order operators, are already being developed, and data-
centric programming abstractions must be built into new partitioned global address space 
(PGAS) programming systems in order to confer algorithmic information about data locality 
to the underlying software system. These capabilities are even more crucial for heterogeneous 
architectures where different accelerators have different memory/communication speeds. More 
complex algorithms increase the challenges of performance modelling, and tools such as the 
Roofline model need to be improved to take heterogeneity into account. Although applied 
mathematicians must lead the effort to re-factor core simulation and analysis algorithms, 
they should be working as part of collaborative teams containing algorithm, application, 
software, computer architecture and performance analysis expertise. Looking ahead, we expect 
to demonstrate algorithmic redesign of simulation algorithms that target multiple specialized 
architectures and refine the software prototypes to the point that they can transition to production 
release and adoption on leading-edge facilities.

(c) Photonics and rack disaggregation
Architectural specialization is creating new data centre requirements such as emerging 
accelerator technologies for ML workloads, and rack disaggregation strategies will push the 
limits of current interconnect technologies. While the latest high-throughput processor chips with 
many CPU/GPU cores are intrinsically capable of carrying out extremely demanding computing 
tasks, they do not have the necessary off-chip bandwidth for full and efficient utilization of their 
resources. In addressing this challenge, we must overcome packaging limitations—a challenge 
directly related to the limited bandwidth density limitations of current electrical packages. 
An alternative to this future is to explore co-integration of photonic technologies that do not 
suffer from these data movement distance constraints, such as photonic technologies. Photonic 
interconnect technologies have been proposed to address this critical data movement challenge 
because of their well-known bandwidth density and energy efficiency advantages, but system-
wide energy efficiency and performance gains cannot be attained by simple photonic one-to-one 
replacement of existing links and switches. Observing that the in-package bandwidth densities 
due to the extremely high pin density enabled by copper pillar or solder microbump technologies 
is very well matched to photonic technologies, co-packaging of photonics as in-package devices 
for ‘photonic MCMs’ (multi-chip modules) has been offered as a potential approach. Whereas 
photonic technologies are often sold on the basis of higher bandwidth and energy efficiency
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(e.g. lower picojoules per bit), these emerging workloads and technology trends will shift
the emphasis to other metrics such as bandwidth density (as opposed to bandwidth alone),
reduced latency and performance consistency. For example, copper-based signalling technologies
currently exhibit a maximum at 54 gigabits/second per wire and are struggling to double that
figure—with the roadmap slipping by nearly 2 years at this point. By contrast, a single optical
fibre can carry 1–10 terabits/second of bandwidth by carrying many non-interfering channels
down the same path using different colours of light for each channel. This is a full 5 orders
of magnitude improvement in carrying capacity for photonics in comparison to copper wires.
However, such metrics cannot be accomplished with device improvements alone, but require a
systems view of photonics in computing platforms.

Data centres support diverse workloads by purchasing from a limited menu of application-
area-tailored node designs (e.g. big compute node, big DRAM node and big NVRAM node)
and allocate resources based on instantaneous workload requirements. However, this can lead
to marooned resources when the system runs out of one of those node types and is under-
using other node types due to the ephemeral requirements of the workload. The ‘disaggregated
rack’ involves purchasing the individual components and allocating the resources dynamically
from these different node types on an as-needed basis across the rack [23,24]. Data centres are
motivated to support this kind of disaggregation because it enables more flexible sharing of
hardware resources. However, a conventional Ethernet fabric is a severe inhibitor to efficient
resource sharing. Substantial increases in bandwidth density will be required.

Numerous projects have been working on using high-bandwidth-density photonics to
enable this kind of system wide resource disaggregation by pumping up the off-package data
bandwidths [25]. For example, PINE (Photonic Integrated Networked Energy efficient data
centres) is an ARPAe ENLITENED project led by Keren Bergman of Columbia University and
involving numerous industry and university partners, including NVIDIA, Microsoft, Cisco,
University of California–Santa Barbara (UCSB), Lawrence Berkeley National Laboratory (LBNL)
and Freedom Photonics [26,27]. The three principal elements of the project, shown in figure 6, are
ultra-high-bandwidth-density (multiple terabits/second of bandwidth per fibre using a single
comb laser source) links that are co-packaged with compute accelerators and memory in MCMs.
This approach could revolutionize the use of resource disaggregation within the data centre to
overcome the challenges of co-integrating extremely heterogeneous accelerators. These efforts



will likely coevolve with new architectural approaches that better tailor computing capability 
to specific problems, driven principally by large economic forces associated with the global IT 
market.

4. CMOS replacement: inventing the ‘new transistor’
The development of new devices (e.g. a better transistor or digital logic technology) can greatly 
lower the energy consumed by logic operations. The development of the ‘new transistor’ will 
require fundamental breakthroughs in materials. The suitability for future computing devices 
must be evaluated in the context of circuits and full system architectures in order to determine 
how to make best use of those new devices and if efficiency improvements at device scale can 
translate into delivered improvements to applications at chip and system scale. An integral 
dimension of this challenge is combining these two primary paths with other promising avenues, 
such as three-dimensional integration and novel memory technologies, as well as packaging 
and integration challenges arising from new materials or technology improvements, taking 
information and metrology from those studies to guide the development of new post-CMOS 
transistor and logic technologies. A prior article written by myself and Robert Leland for the 
OSTP in 2013, and then re-released as an IEEE Computer article in 2015 [4], surveys the many 
different technology options that are currently available and scores those opportunities. However, 
Nikonov & Young [28] introduce us to the challenges of ‘Boltzmann’s tyranny’ for electronic 
devices, and also illustrate quantitatively just how far these technologies are from being a clear 
candidate for completely replacing CMOS as we know it.

(a) Deep co-design to accelerate the pace of discovery
Typically, new electronic devices—such as new transistors or memory elements—are evaluated in 
isolation at a physical level, but this approach fails to capture the architectural-level impact of the 
device. It is essential to capture metrics that architects and system designers can use to reason 
about the impact of each to architectures, designs and their complex interactions with existing 
technologies. Existing hardware design tools do not account for the benefits, and limitations, of 
future devices. This creates an urgent and immediate need to efficiently and systematically 
explore the specialized architectural design space in combination with emerging device 
technologies to avoid stalling performance scaling while waiting for radical new technologies to 
mature. The ability to guide development of future devices requires evaluation of their 
performance based on ultimate outcomes for target applications. The value of new and novel 
materials or device technologies is not currently understood in a system context. Performance and 
behaviours in a system context are not currently understood in a device or materials context. True 
co-design to advance future systems containing novel devices and materials requires feedback 
that spans all layers, from atomic-scale materials to large-scale complex systems, to meet the needs 
of emerging scientific applications.

Only with co-design to cover this broad space and consideration of manufacturing challenges 
can we expect to make progress in all areas cohesively to bring about real change to the IT 
energy outlook. Further, the output of this work will provide a path to sustaining exponential 
growth in computing capabilities to enable new scientific discoveries and maintain economic 
vitality in all segments of the computing market (from IoT, to consumer electronics, to data 
centres, to supercomputing). LBNL is currently prototyping an integrated approach that spans 
from fundamental material discovery to architectures, circuits and full system architectures, 
as shown in figure 7, with the intent to dramatically accelerate the discovery process for 
future transistors. Our vision is to develop a co-design framework that integrates the physical 
layers, logical layers and control. We must propagate the quantitative information to guide 
development of better solutions. The co-design framework would enable us to develop 
unified materials/device/circuit/system electronic design automation simulation tools to ensure 
resilience to variability and reduce the development timeline for mission-critical science. The
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Figure 7. LBNL’s prototype deep codesign framework to accelerate the discovery of CMOS replacement technologies. (Online 
version in colour.)

long-term solution requires fundamental advances in our knowledge of materials and pathways 
to control and manipulate information elements at the limits of energy flow. As we approach 
the longer term, we will require ground-breaking advances in device technology going beyond 
CMOS (arising from fundamentally new knowledge of control pathways), system architecture 
and programming models to allow the energy benefits of scaling to be realized. A complete 
workflow will be constructed, linking device models and materials to circuits and then evaluating 
these circuits through efficient generation of specialized hardware architectural models such that 
advances can be compared for their benefits to ultimate system performance. The architectural 
simulations that result from this work will yield better understanding of the performance impact 
of these emerging approaches on target applications and enable early exploration of new software 
systems that would make these new architectures useful and programmable.

In the longer term, we will expand the modelling framework to include non-traditional 
computing models and accelerators, such as neuro-inspired and quantum accelerators, as 
components in our simulation infrastructure. We will also develop the technology to automate 
aspects of the algorithm/architecture/software environment system co-design process so 
developers can evaluate their ideas early in future hardware. Ultimately, we will close the 
feedback loop from the software all the way down to the device to make software an integrated 
part of this infrastructure.

(b) Advanced manufacturing
To meet the goals of broad societal impact, we must ensure transition of basic research to high-
volume manufacturing, and even more fundamentally reshape basic research from the start 
with an eye toward manufacturability. This will be achieved through the development of a new 
technology development capability that can evaluate and demonstrate the manufacturing and 
energy savings feasibility of next-generation technology options. Technologies will be rigorously 
evaluated for potential benefits on energy and implications on architecture and programming 
paradigms. The most promising technologies will be evaluated for issues around high-volume 
manufacturing followed by ramp-up demonstration and getting them to deliver on the 
energy promises. This phase will depend heavily on identifying specific manufacturing/device



materials where we will leverage the capabilities of advanced HPC capabilities to accelerate the 
development through modelling and ‘virtual cycles of learning’. Manufacturing feasibility would 
also include demonstration of whatever patterning technology would be needed to support the 
various technologies and scaling of those technologies. Delivering on this vision will require the 
integration across layers of our R&D institutions and require close partnerships with industry to 
ensure success and economic impact.

5. Conclusion
Semiconductor technology has a pervasive role to play in future energy, economic and technology 
security. To effectively meet societal needs and expectations in a broad context, these new 
devices and computing paradigms must be economically manufacturable at scale and provide an 
exponential improvement path. Such requirements could necessitate a substantial technological 
shift analogous to the transition from vacuum tubes to semiconductors. This transition will 
require not years, but decades, so whether the semiconductor roadmap has 10 or 20 years of 
remaining vitality, researchers must begin now to lay a strategic foundation for change.
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