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E
nergy management is 
a critical technology in 
plug-in hybrid-electric 
vehicles (PHEVs) for max-
imizing efficiency, fuel 
economy, and range, as 
well as reducing pollutant 

emissions. At the same time, deep rein-
forcement learning (DRL) has become 
an effective and important methodol-

ogy to formulate model-free and real-
time energy-management strategies 
for HEVs and PHEVs. In this article, we 
describe the energy-management is-
sues of HEVs/PHEVs and summarize 
a variety of potential DRL applications 
for onboard energy management. We 
also discuss the prospects for various 
DRL approaches in the energy-manage-
ment field.
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Overview
Powertrain electrification, fuel decar-
bonization, and energy diversification 
are techniques that are spreading across 
the world, leading to cleaner and more 
efficient vehicles. HEVs/PHEVs have sig-
nificantly increased fuel economy while 
maintaining extremely low emissions. 
To achieve these gains, it is critical that 
HEVs/PHEVs have sophisticated ener-
gy-management systems. PHEVs can 
operate in different modes, such as full 
electric and power split modes. These 
modes are controlled by the energy-
management system under diverse driv-
ing conditions [1].

In general, an energy-management 
system adjusts and regulates the out-
put power from multiple sources to 
fulfill the power request and minimize 
a predefined objective cost [2]. Battery 
packs, internal combustion engines 
(ICEs), and supercapacitors are often 
used as power sources. In practical ap-
plications, the optimization of energy 
consumption and performance is the 
primary concern and objective of a 
hybrid powertrain. Constructing ap-
propriate and efficient energy-manage-
ment strategies in a PHEV or an HEV 
is a challenging optimization problem 
that many researchers have investigat-
ed during the past decade.

Several published works have summa-
rized the research progress in HEV/PHEV 
energy management. For example, 
Serrao et al. constructed a comparative 
analysis of three known global optimal 
algorithms [3], including dynamic pro-
gramming, Pontryagin’s minimum prin-
ciple, and the equivalent consumption 
minimization strategy. In addition, [4] 
and [5] discussed the real-time and 
global optimization methods for energy 
management, such as game theory, the 
genetic algorithm, and model predictive 
control (MPC). Furthermore, Ganji et al. 
focused on studying predictive energy-
management strategies, such as velocity 
and power demand prediction [6]. How-
ever, the research advance represented 
by learning methods in the HEV/PHEV 
energy-management field has not been 
significantly covered in the literature.

Recently, academic and industrial 
researchers have shown an increas-
ing interest in learning-based energy 

management approaches that are 
founded in artificial intelligence. Ma-
chine learning is a prevalent and use-
ful technique to address a variety of 
problems in many research fields [7]. 
The greatest challenges in HEV/PHEV 
energy management are shortening 
the counting process and improving 
adaptability, and they can be over-
come by learning methods. Therefore, 
RL has become increasingly popular 
in the HEV/PHEV energy-management 
field. The technique can derive a 
model-free and instantaneous energy-
management strategy for online appli-
cation purposes.

In this article, a comprehensive sur-
vey of the recent progress in learning-
based energy-management strategies 
is presented. In general, applications 
of RL methods to energy management 
can be classified into two categories. 
The first is “simplex algorithms,” mean-
ing that only a single algorithm is used 
to derive the energy-management 
policy, such as the Q-learning, Dyna, 
and Sarsa algorithms [8]. The second 
is “hybrid algorithms,” indicating the 
commixture of other information or 
algorithms with RL, such as predic-
tive algorithms, trip information, deep 
learning, and MPC [9]. These additional 
details are integrated into the RL frame-
work to deduce more efficient and real-
time controls. We summarize the appli-
cation of RL approaches aimed at HEV/
PHEV energy-management systems.

The remaining content of this ar-
ticle is organized as follows. First, 
the energy-management problem is 
sketched, with the vital optimization 
objective and constraints. Next, the 
different executions of RL methods, 
including the simplex and hybrid al-
gorithms, are reviewed in their appli-
cations in HEVs/PHEVs. This article 
covers a variety of vehicle types and 
different techniques and compares 
their key performance measures. Fi-
nally, the future research prospects 
for RL-based energy-management sys-
tems are discussed.

The Energy-Management Problem
The core function of an energy-man-
agement system is balancing the power 
distribution among multiple onboard 

energy/power sources, with the goal of 
optimizing some cost functions, such 
as fuel consumption, battery life, pol-
lution emissions, and driving mobility. 
This issue is usually formulated as an 
optimal control problem that has de-
sired control objectives and particular 
physical constraints [10]. The control 
objectives may contain one or several 
options ranging from exhaust tempera-
ture, nitrogen oxide and sulfur oxides 
emissions, fuel consumption, shift fre-
quency, the battery’s state of charge 
(SOC) and state of health (SOH), and 
the cost of electricity. Figure 1 illus-
trates the energy-management prob-
lem for PHEVs.

The optimal control problem is 
often subject to three kinds of physi-
cal constraints: the powertrain dy-
namics, initial and final values of the 
state variables, and limitations on the 
control actions and state variables. 
Once the inputs (for example, power 
demand, vehicle velocity, the current 
SOC, and the steering angular speed) 
of this problem are provided in ad-
vance, the desired power from each 
energy source and the fuel cost can be 
calculated based on the powertrain 
dynamics. The battery SOC, position 
of the gearbox, and motor/generator 
speed are usually chosen as the state 
variables. The engine’s output torque 
or the throttle position, the gear shift-
ing, and the status of the clutches (in 
multimode HEVs, including the Toyota 
Prius and Chevrolet Volt) are often se-
lected as the control actions. To solve 
this optimal control problem, limits 
for these parameters are necessary.

In addition to the control objective 
and constraints, an elaborate model of 
the powertrain components is neces-
sary as part of the solution. For exam-
ple, the modeling of an engine involves 
the calculation of the fuel consump-
tion, an estimate of efficiency, and the 
derivation of the torque and angular 
speed. Also, a computation of efficien-
cy and an expression of the power 
balance are required for motor model-
ing. The transfer process of the speed 
and power from the motor/generator 
to the final drive is part of the trans-
mission modeling. The battery pack 
modeling incorporates the evolution 
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of the SOC and the relationship of the 
open-circuit voltage and internal re-
sistance with respect to the SOC.

Reinforcement Learning
In RL, an agent learns how to estab-
lish a mapping, from input states to 
optimal control actions, to maximize a 
cumulative reward as illustrated in Fig-
ure 2. The “learner” (for example, the 
vehicle controller) needs to discover 
which actions contribute to the largest 
reward, typically through a trial-and-
error search process. Each action may 
influence the current and delayed re-
wards simultaneously. Sensing the 
states from the environment, taking 
particular actions, and achieving goal-

directed rewards are pivotal steps in 
RL applications [11].

Three representative features be-
long to RL. The first is the coordina-
tion between exploitation and explo-
ration. The agent utilizes exploration 
to acquire knowledge about the envi-
ronment and applies exploitation to 
achieve a control action based on 
current knowledge. The greedy-f  
algorithm is frequently utilized to 
balance exploitation and explora-
tion. The second feature is that the 
environment in RL is sometimes un-
certain. Hence, adaptive and model-
free control actions are necessary. 
Owing to the interactions with the 
environment, the agent can recog-

nize the states and choose suitable 
actions to affect the environment, 
which constitutes a grand picture 
of the states and actions. The third 
is the Markovian property of the 
environment, which means that the 
conditional probability distribution 
of the future states of the environ-
ment depends only upon the pres-
ent state, not the sequence of events 
that preceded it.

Figure 2 depicts the essential RL 
framework and its representation in 
the energy-management problem. In 
the original form, an agent receives 
state and reward signals from the en-
vironment and decides the control ac-
tion. In the PHEV energy-management 
problem, the environment model can 
be regarded as the driving conditions, 
powertrain dynamics, and modeling. 
The agent is a particular power-split 
controller with different algorithms. 
The objective of this controller is to 
search for a sequence of actions ac-
cording to the received state and re-
ward information. Hence, different 
RL algorithms indicate that the tech-
niques used for obtaining control ac-
tions are different, such as Q-learning, 
Dyna, temporal difference (TD), and 
the deep Q-network.

To train the RL algorithm, a value 
function is established in the agent. It 
is a function of state, action, and re-
ward, and it is often represented as 

( , )Q s a  (s  is state, and a  is action). In 
the PHEV energy-management prob-
lem, the state, action, and reward 
information can be collected in real 
driving situations. Then, Markov deci-
sion processes (MDPs) are usually ex-
ploited to mimic the variables, mean-
ing that the next state and reward are 
determined only by current informa-
tion and are independent of historical 
data. Finally, the value function can 
be computed and applied to decide 
the best control action. Varying RL 
algorithms mean that the updating 
criteria of the value function are dif-
ferent. Moreover, RL algorithms can 
be classified into model-based and 
model-free versions, and they are dis-
tinguished by the dependency of the 
environment model. The model-free 
RL algorithms can easily handle the 

Environment
Model

Agent

Reward

State

Action

Driving Conditions,
Powertrain Dynamics,

and Modeling

Energy-
Management

Controller 

Reward

State

Action

Representation
in Energy- 

Management 
Problem

FIGURE 2 – The RL framework and its representation in the energy-management problem.

Energy-Management Problem Formulation

1) Powertrain Dynamics: 

2) Components Modeling: 
Motor ICE

Charger Fuel

3) Control Objectives:

4) Physical Constraints: 

PHEV 

The Transfer Process of Dynamic Variables,
Such as Vehicle Speed, Acceleration, Battery
SOC, Power Demand, and Generator Speed

The Mathematical Expression of the Main
Transmission Components, Such as the Engine,
Electric Motor, Battery Pack, Generator,
and Supercapacitor, Among Others

The Optimized Goals, Such as Pollution
Emissions, Fuel Consumption, Battery Life,
Driving Mobility, Electricity Cost, and
Shift Frequency

The Restrictions Imposed on Some Important
Variables, Such as the Battery SOC, Power
Demand, Rotate Speed, Torque, and Gears

FIGURE 1 – The formulation of the energy-management problem for the PHEV.
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battery aging, engine abrasion, and 
driver behavior changes.

The Application of RL in PHEV 
Energy Management
In this section, state-of-the-art RL ap-
proaches in the HEV/PHEV energy-
management field are summarized. 
First, the primary attempts of the sim-
plex algorithms are discussed. Then, 
the recent progress and development 
of multiple-algorithm commixture, the 
hybrid algorithms, are introduced. 
Table 1 provides an overview of the 
different types of algorithms in the 
HEV/PHEV energy management.

Simplex Algorithms
In 2012, Hsu et al. assisted with the 
power management of a “pedelec,” or 
hybrid bicycle, using the Q-learning al-
gorithm [12]. They quantified the pede-
lec’s safety and comfort targets as the 
quality of riding and improved energy 
utilization in the battery. Simulation 
results indicated that the quality-of-
riding and energy objectives could be 
increased by 24 and 50%, respective-
ly. Subsequently, many researchers 
changed the methods of HEV/PHEV en-
ergy management from optimization 
control theory to RL algorithms. For 
example, Yue et al. proposed a TD( )-m

learning-based, model-free, and online 
strategy to manage the energy flows 
in the supercapacitor and battery of 
an HEV [13]. In [14], the authors also 
applied a TD( )-m learning algorithm to 
train and learn the optimal Q-function 
based on collected historical driving 
data. Implemented on a hybrid-elec-
tric bus, the RL-based controls aimed 
to increase fuel economy and reduce 
emissions. Using the same algorithm, 
TD( )m  learning, [15] constructed a 
power management system in an ad-
vanced vehicle simulator (ADVISOR). 
The convergence and complexity of 
the method were analyzed, and the 
deduced strategy was compared with 
the rule-based policy on different driv-
ing cycles.

In addition to these efforts, sev-
eral researchers began to seek break-
throughs in diverse aspects of energy 
management. For a PHEV, Qi et al. 
leveraged the Q-learning algorithm to 
optimize the charge-depletion strategy 
of the battery SOC [16]. Combined with 
the charge-sustaining strategy, the pro-
posed method could balance the opti-
mality and real-time performance. In 
[17], the authors built a new reward sig-
nal related to the power demand, SOC, 
and remaining distance to travel. The 
latter information was obtained from 

GPS data, and the TD(0) technique was 
utilized to train the estimated state-val-
ue tables. In [18], the authors leveraged 
the inverse RL (IRL) method to estab-
lish the probabilistic driving route pre-
diction system, wherein driver behavior 
was predicted, and then the power-split 
rate between the engine and battery 
was calculated. Lin et al. presented a 
nested RL-based framework to address 
the operating cost of an HEV [19], in 
which the inner loop focused on the 
fuel cost minimization, and the outer 
loop aimed to optimize the battery re-
placement cost. Furthermore, in Johri’s 
doctoral dissertation, the author built 
a self-learning system upon NDP and 
RL [20]. That system could minimize 
fuel consumption and predict real-time 
engine-out transient particulate and ni-
trogen oxide emissions.

During the past several years, Liu 
et al. also focused on researching RL-
based power-split controls for hybrid 
powertrains. They first evaluated the 
adaptability, optimality, and learning 
ability of a Q-learning-based energy-
management strategy for a hybrid-
electric tracked vehicle [21]. Next, they 
compared the control performance of 
the Dyna and Q-learning algorithms, in-
cluding fuel cost and calculation speed 
[22]. To achieve real-time controls for 

TABLE 1 – A COMPARISON OF THE RL ALGORITHMS IN THE PHEV.

ALGORITHM POWERTRAIN STRUCTURE ADVANTAGES DISADVANTAGES REFERENCES

Q-learning Bicycle Adaptive to the riding environment Strong model simplifications [12]

TD(m) HEV High accuracy Dependency on driving data [13]–[15]

Q-learning Plug-in HEV Possible online implementation Local optimization sometimes [16]

TD(0) Plug-in HEV Self-improvement capability Dependency on GPS [17]

Inverse RL HEV Finding-reward function Training data quality [18]

Q-learning HEV Multiple control objectives Computational burden [19]

NDP and RL Hydraulic HEV Robust against parameter changes Design complexity [20]

Dyna Hybrid tracked vehicle Real-time controls Complex mathematics [22], [23]

Deep RL Plug-in HEV Data-driven model Special training cases [24]–[27]

Online RL All-climate EV Fast computation Driving cycle sensitivity [28], [29]

Continuous RL Plug-in HEV Lower calculation effort Tuned neural network [30], [31]

MDP and RL HEV and V2G Improved battery life Data requirement [32], [50]

Q(m)-learning Plug-in HEV Multiagent framework Nonunique solution [33]

Predictive RL HEV Robust against uncertainties Online performance [34]–[37]

Dyna-H Multimode HEV Convergence rate Different driving scenarios [42]

NDP: neuro-dynamic programming; V2G: vehicle-to-grid.
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a hybrid powertrain, they integrated 
an online recursive algorithm into the 
Q-learning framework to achieve real-
time updating of the control strategy 
[23]. Their research studies of simplex 
algorithms are summarized in Figure 3. 
Dyna and Q-learning are respectively 
applied in the energy management 
of a hybrid tracked vehicle, and their 
performance is compared in simula-
tion results. Furthermore, the formu-
lated control strategies are validated 
in a real vehicle, which proves the on-
line realization of simplex algorithms. 
However, these algorithms may not 
handle mutable driving situations, 
which means that driving behaviors, 
motion areas, and road environments 
are different.

Hybrid Algorithms
In recent years, with the rapid de-
velopment of deep learning and arti-
ficial intelligence, HEV/PHEV energy-
management strategies have become 
increasingly intelligent. Two or more 
algorithms, or varying amounts of 
information, are usually integrated 
into the RL framework to constitute 
more efficient and real-time controls, 
such as velocity and power demand 
prediction, shared information from 

vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communica-
tion, and interaction with smart grids 
and smart cities.

DRL has been found to be an effi-
cient tool to design the adaptive en-
ergy-management strategy based on 
historical driving data. For example, 
Qi et al. generated DRL-based power-
split controls for a PHEV that did not 
depend on predefined principles or 
prediction [24]. Hu et al. evaluated 
their DRL-based energy management-
strategy in an ADVISOR and proved 
its online learning character via a 
comparison with a rule-based strat-
egy [25] as shown in Figure 4. Differ-
ent energy-management policies are, 
first, computed and stored as histori-
cal experiences via DRL. In current 
driving situations, the best matching 
strategies are chosen by value func-
tion error and applied to manage the 
vehicle in real time. Thus, more data 
are required in hybrid-algorithm cas-
es. In [26], the authors applied a deep 
neural network (DNN) to train the 
offline value functions and used the Q-
learning algorithm to compute the 
online controls, which can be adap-
tive to different powertrain modeling 
and driving situations. The authors of 

[27] constructed DRL-enabled ener-
gy-management strategies that con-
sidered different drivers’ behaviors, 
which could improve fuel efficiency.

Xiong et al. made a number of at-
tempts at real-time and continuous RL-
based energy-management strategies. 
They presented a real-time control 
strategy via combining the Q-learning 
algorithm and an online updating al-
gorithm of value function [28], which 
means that the control actions can be 
refreshed in real time. Next, they vali-
dated this strategy by considering the 
battery and ultracapacitor in the loop, 
where a hardware-in-loop platform 
was established to execute the simu-
lations [29]. To exploit the trained 
value function provided by RL meth-
ods, He et al. leveraged an actor-critic 
approach to handle the continuous 
action space and used stochastic gra-
dient descent to train the state-value 
function [30], [31].

Two additional studies expanded 
the horizon of DRL-based learning 
construction in the PHEV energy-
management field. In [32], Hoang et al. 
considered PHEV discharging and 
charging strategies for conditions 
when information from a vehicle to the 
grid is available. The MDP was utilized 
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to formulate the energy cost problem, 
and an RL-based learning structure was 
used to decide the online charging and 
cyberinsurance strategies. The relevant 
framework is described in Figure 5. The 
energy-management strategies should 
improve each vehicle’s energy efficien-
cy and consider price information and 
the use of charging stations. The ener-
gy-management problem grows from a 
single vehicle to multiple vehicles in a 
connected environment. Furthermore, 
to build an accurate charging-load 
model for multiple plug-in electric tax-
is, the authors in [33] applied multiple 
agents and a multiple-step ( )-Q m learn-
ing algorithm to search for a precise 
and detailed charging strategy for those 
vehicles. The reward performance and 
convergence rate were verified to be 
much better.

Liu et al. implemented many at-
tempts at advanced and novel RL-
based power-split controls with hybrid 
algorithms. To predict the vehicle speed 
or power demand accurately, they de-
veloped a fuzzy encoding predictor to 
forecast those variables [34]. Based 
on future information, they used the 

Q-learning algorithm to derive the guid-
ed control strategy for a hybrid tracked 
vehicle [35]. The computational time 
and energy efficiency achieved remark-
able improvements. As depicted in Fig-
ure 6, they proposed decision-making 
and energy-efficient controls for a group 
of automated HEVs. The upper level 
used MPC to determine the velocity tra-
jectories to avoid red-light idling, and 
the lower level applied RL to optimize 
the energy-efficient controls for each 
HEV [36]. This example indicates that 
anticipative energy-management strate-
gies should be formulated to consider 
information communicated from other 
vehicles and infrastructures. They also 
used a speedy Q-learning algorithm to 
reserve a series of control policies of-
fline. Further, an induced matrix norm 
was leveraged to choose the appropri-
ate policy related to the current driving 
conditions [37].

Most of the HEVs and PHEVs in 
the market adopt rule-based energy-
management strategies that are built 
from humans’ engineering experience, 
which indicates that the techniques 
are simple enough and impose a low 

computational burden. Although DRL-
based energy-management strategies  
are superior to rule-based ones, two 
conditions restrict their real-time ap-
plications. The first is the calcula-
tive capability of the onboard control 
unit; an extra computer needs to be 
installed in the vehicle to process the 
data. The second is data collection 
and storage; DRL needs an enormous 
amount of data to enable the derived 
strategies that are adaptive to differ-
ent driving situations. With the devel-
opment of network communication 
and intelligent transportation systems 
(ITSs), DRL-based energy-manage-
ment strategies may be easily applied 
in real-time, in the future.

The Future Prospects for  
RL Applications
This section examines the future pros-
pects and trends for RL-based HEV/
PHEV energy management. The pros-
pects consist of four circumstances: 
novel and efficient RL algorithms are 
going to be applied in this field, energy 
management will integrate with ITSs to 
construct a smart city or smart grid, 
the optimization control objectives 
will become more comprehensive and 
complicated, and there will be distrib-
uted or multiagent DRL systems for co-
operative learning between vehicles in 
a connected environment.

Novel RL Algorithms
Fast development of the calculative ca-
pacity enables neoteric algorithms to 
be used in the HEV/PHEV energy-man-
agement field. Different kinds of deep-
learning algorithms can be exploited 
to classify, train, and learn the massive 
scale of the data. For example, deep 
belief networks, stacked autoencoders, 
and recurrent neural networks [38] are 
promising approaches to learn the spe-
cial model or table from the generous 
data. Then, double Q-learning, speedy 
Q-learning, and deep deterministic pol-
icy gradient algorithms [39] are able to 
formulate the optimal policy based on 
the trained model or table. With the 
help of cloudy control and manage-
ment, these methods are practical and 
useful for the real-time operations of 
HEVs/PHEVs.
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FIGURE 5 – The PHEV’s energy-management strategy, considering connected information and 
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Furthermore, other RL algorithms 
have proved to be superior to the tradi-
tional Q-learning and Dyna, such as the 
k-nearest-neighbors TD [ ]( )kNN-TD m  
and Dyna-H. In the former, a kNN meth-
od could represent probabilistic char-
acteristics of the state variables, and 
TD back-propagation could be used to 
learn the control actions [40]. Dyna-H 
is a model-free online algorithm that 
adds a heuristic planning strategy to a 
Dyna agent to choose the optimal con-
trols more efficiently [41], [42]. Finally, 
IRL is also suitable for energy-manage-
ment problems, especially when the 
control objectives are unknown. This 
method can search for the proper re-
ward signal through trial and error and 
learn from the existing experience [43].

Energy Management in Intelligent 
Transportation Systems
Information from emerging ITS tech-
nologies [for example, vehicle-to-ev-
erything (V2X) communication] pro-
vides great assistance to the process 
of improving energy management, 
such as real-time trip information, 
specific traffic situations, cloudy pre-

diction, and weather conditions. For 
example, future trip information can 
be learned and forecast from historical 
driving data. Based on this informa-
tion, the energy-management strategy 
can be more adaptive and robust to 
dynamic driving conditions, especially 
for HEVs/PHEVs with stationary routes 
[44]. The current onboard devices have 
the ability to get real-time traffic condi-
tions via wireless communication, GPS, 
and geographical information systems. 
The information can regulate the on-
line control strategy through advanced 
computation methods [45].

Furthermore, future vehicle veloci-
ties and power demands are potent 
information for influencing the power-
split controls of a PHEV. The develop-
ment of reliable algorithms may be uti-
lized to acquire these data through a 
cloud platform or V2X communication. 
The data processing can be executed 
online, and the achieved controls are 
feasible for a group of vehicles [46]. Fi-
nally, weather conditions are essential 
factors in driver behavior and in fuel 
and electricity costs. The wind direc-
tion and temperature may affect aero-

dynamics and rolling resistance, and 
the weather may influence the driving 
styles of different operators. How to 
adjust the energy-management strat-
egy according to weather information 
is an open question [47].

The Combination of  
Multiple Objectives
A transition from one common ob-
jective (fuel cost) to multiple goals is 
another research interest in the fu-
ture energy-management field. These 
objectives include greenhouse gas 
emissions [48], the battery SOH [49], 
[50], safety, comfort, user convenience 
[51], and powertrain mobility [52]. 
Eco-driving is a promising method to 
reduce the use of ICEs to lower emis-
sions. Battery health is a critical pa-
rameter that limits the driving range of 
a vehicle with electric power. Drivabil-
ity for safety and comfort is significant 
for today’s vehicles that have human 
drivers. Researchers need to strive to 
reach these representative objectives 
in solving future energy-management 
problems. More importantly, the ques-
tion of how to handle the enormous 
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computational overhead demanded by 
the multiple control objectives must 
be resolved.

Cooperative Learning in  
a Connected Environment
Vehicle automation is a research 
hotspot in the automobile industry. 
In the future, numerous HEVs/PHEVs 
could communicate with each other, 
and their driving behaviors might af-
fect one another. In this connected 
and networked environment, a central 
controller should consider more ob-
jectives than improving one vehicle’s 
energy efficiency. The energy-man-
agement controller should realize 
each vehicle’s control objective while 
taking other vehicles’ influences into 
account, in a harmonized and co-
ordinated way. This goal should be 
achieved by advanced learning meth-
ods. For example, the asynchronous 
variants of standard RL algorithms 
are proposed in [53]. This concept 
trains a DNN through asynchronous 
gradient descent, and it can shorten 
computational time and realize paral-
lel calculation. By doing this, different 
energy-management problems can be 
solved in a connected environment 
where HEVs/PHEVs consider each oth-
er’s driving behaviors.

Conclusion
This article summarized DRL-based en-
ergy-management strategies for PHEVs. 
We began with an introduction of the 
energy-management problem and RL 
framework. Then, extensive applica-
tions with multiple control objectives 
were discussed. Finally, the prospects 
of an RL-based energy-management 
system were described.

One of the future research direc-
tions lies in applying more efficient 
artificial intelligence approaches in 
the energy-management field. The 
theoretical feasibility could be vali-
dated by simulation, and the practical 
implementation should be conducted 
through real-vehicle evaluations. An-
other major future work could access 
and improve energy-management 
strategies in the intelligent transporta-
tion environments. Since traffic infor-
mation can be acquired, a procedure 

to tune strategies according to ve-
hicles’ and infrastructures’ behaviors 
should be further addressed.

Acknowledgment
This work was supported, in part, by 
the National Natural Science Founda-
tion of China (grant 51875054).

Biographies
Xiaosong Hu (xiaosonghu@ieee.org) 
earned his B.S. and Ph.D. degrees in auto-
motive engineering at the Beijing Institute 
of Technology, China, in 2006 and 2012, 
respectively. He researched and earned 
his Ph.D. degree at the Automotive Re-
search Center at the University of Michi-
gan, Ann Arbor, from 2010 to 2012. He is 
a professor at the State Key Laboratory 
of Mechanical Transmissions and in the 
Department of Automotive Engineering 
at Chongqing University, China. He has 
received several awards, including the 
Emerging Sustainability Leaders Award 
in 2016 and European Union Marie Cur-
rie Fellowship in 2015. He is a Senior 
Member of the IEEE. 

Teng Liu (tengliu17@gmail.com) 
earned his B.S. degree in applied math-
ematics from the Beijing Institute of 
Technology, China, in 2011 and his Ph.D. 
degree in automotive engineering at 
the Beijing Institute of Technology in 
2017. He worked as a research fellow 
at Vehicle Intelligence Pioneers, Bei-
jing, for one year and is currently a 
postdoctoral fellow in the Department 
of Mechanical and Mechatronics Engi-
neering at the University of Waterloo, 
Ontario, Canada. His research focuses 
on reinforcement learning (RL)-based 
energy management in hybrid elec-
tric vehicles and RL decision making 
for autonomous vehicles. He has pub-
lished more 40 Science Citation Index 
papers and 15 conference papers in 
those areas.

Xuewei Qi (qixuewei@gmail.com) 
earned his B.S. degree in automation 
at the China Agriculture University, 
Beijing, in 2008, his M.S. degree in en-
gineering at the University of Georgia, 
Athens, in 2013, and his Ph.D. degree 
in electrical and computer engineer-
ing at the University of California, 
Riverside, in 2016. He is an artificial 
intelligence scientist in autonomous 

vehicle technology at General Motors, 
Detroit. He is a committee member of 
the Alternative Transportation Fu-
els and Technologies Standing Com-
mittee and the Artificial Intelligence 
Standing Committee and Advanced 
Computing Standing Committee of 
the Transportation Research Board 
at the National Academy of Sciences, 
Engineering, and Medicine, Washing-
ton, D.C.

Matthew Barth (barth@ece.ucr 
.edu) earned his B.S. degree in electri-
cal engineering/computer science at 
the University of Colorado, Boulder, 
in 1984 and his M.S. (1985) and Ph.D. 
(1990) degrees in electrical and com-
puter engineering at the University of 
California, Santa Barbara. His research 
focuses on applying engineering system 
concepts and automation technology to 
transportation systems. He is active on 
the Transportation Research Board at 
the National Academy of Sciences, En-
gineering, and Medicine, Washington, 
D.C., serving on the Transportation 
and Air Quality Committee and the In-
telligent Transportation Systems Com-
mittee. He is a Fellow of the IEEE.

References
[1]	 C. Depature et al., “Energy management in 

fuel-cell/battery vehicles: Key issues identi-
fied in the IEEE Vehicular Technology Society 
Motor Vehicle Challenge 2017,” IEEE Veh. Tech-
nol. Mag., vol. 13, no. 3, pp. 144–151, June 2018. 
doi: 10.1109/MVT.2018.2837154.

[2]	 J. Solano, D. Hissel, and M. Pera, “Fail-safe 
power for hybrid electric vehicles: Implement-
ing a self-sustained global energy manage-
ment system,” IEEE Veh. Technol. Mag., vol. 
13, no. 2, pp. 34-39, June 2018. doi: 10.1109/
MVT.2017.2776670.

[3]	 L. Serrao, S. Onori, and G. Rizzoni, “A compara-
tive analysis of energy management strategies 
for hybrid electric vehicles,” J. Dyn. Syst. Meas. 
Control, vol. 13, no. 3, p. 031012, May 2011. doi: 
10.1115/1.4003267.

[4]	 T. Liu, H. Yu, H. Guo, Y. Qin, and Y. Zou, “On-
line energy management for multimode plug-in 
hybrid electric vehicles,” IEEE Trans. Ind. Infor-
mat., vol. 15, no. 7, pp. 4352–4361, July 2019. 
doi: 10.1109/TII.2018.2880897.

[5]	 A. Malikopoulos, “Supervisory power manage-
ment control algorithms for hybrid electric 
vehicles: A survey,” IEEE Trans. Intell. Transp. 
Syst., vol. 15, no. 5, pp. 1869–1885, Oct. 2014. 
doi: 10.1109/TITS.2014.2309674.

[6]	 B. Ganji and A. Kouzani, “A study on look-
ahead control and energ y management 
strategies in hybrid electric vehicles,” in 
Proc. IEEE Int. Conf. Control Automation (ICCA 
2010), pp. 388 –392. doi: 10.1109/ ICCA.2010 
.5524178.

[7]	 E. Foruzan, L. Soh, and S. Asgarpoor, “Re-
inforcement learning approach for optimal 
distributed energy management in a mi-
crogrid,” IEEE Trans. Power Syst., vol. 33, 
no. 5, pp. 5749–5758, Sept. 2018. doi: 10.1109/
TPWRS.2018.2823641.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 14,2020 at 22:23:02 UTC from IEEE Xplore.  Restrictions apply. 



SEPTEMBER 2019  ■  IEEE INDUSTRIAL ELECTRONICS MAGAZINE    25

[8]	 R. S. Sutton, “Dyna, an integrated architecture 
for learning, planning, and reacting,” ACM SI-
GART Bulletin, vol. 2, no. 4, pp. 160–163, Aug. 
1991. doi: 10.1145/122344.122377.

[9]	 G. Williams et al., “Information theoretic 
MPC for model-based reinforcement learn-
ing,” in Proc. 2017 IEEE Int. Conf. Robotics Au-
tomation (ICRA), pp. 1714–1721. doi: 10.1109/
ICRA.2017.7989202.

[10]	 F. Soares, D. Rua, C. Gouveia, B. Tavares, A. 
Coelho, and J. Lopes, “Electric vehicles charg-
ing: Management and control strategies,” IEEE 
Veh. Technol. Mag., vol. 13, no. 1, pp. 130–139, 
Mar. 2018. doi: 10.1109/MVT.2017.2781538.

[11]	 R. Sutton and A. Barto, Reinforcement Learn-
ing: An Introduction, 2nd. ed. Cambridge, MA: 
MIT Press, 2018.

[12]	 R. Hsu, C. Liu, and D. Chan, “A reinforcement-
learning-based assisted power management 
with QoR provisioning for human-electric hy-
brid bicycle,” IEEE Trans. Ind. Electron., vol. 59, 
no. 8, pp. 3350–3359, Aug. 2012. doi: 10.1109/
TIE.2011.2141092.

[13]	 S. Yue, Y. Wang, Q. Xie, D. Zhu, M. Pedram, and 
N. Chang, “Model-free learning-based online 
management of hybrid electrical energy stor-
age systems in electric vehicles,” in Proc. 40th 
Annu. Conf. IEEE Industrial Electronics Society 
(IECON 2014), pp. 3142–3148. doi: 10.1109/
IECON.2014.7048959.

[14]	 Y. Fang, C. Song, B. Xia, and Q. song, “An en-
ergy management strategy for hybrid elec-
tric bus based on reinforcement learning,” 
in Proc. 27th Chinese Control Decision Conf. 
(2015 CCDC), pp. 4973–4977. doi: 10.1109/
CCDC.2015.7162814.

[15]	 X. Lin, Y. Wang, P. Bogdan, N. Chang, and 
M. Pedram, “Reinforcement learning based 
power management for hybrid electric ve-
hicles,” in Proc. 2014 IEEE/Association Com-
puting Machinery Int. Conf. Computer-Aided 
Design (ICCAD), pp. 32–38. doi: 10.1109/IC-
CAD.2014.7001326.

[16]	 X. Qi, G. Wu, K. Boriboonsomsin, M. Barth, 
and J. Gonder, “Data-driven reinforcement 
learning-based real-time energy management 
system for plug-in hybrid electric vehicles,” J. 
Transportation Res. Board, vol. 2572, no. 1, pp. 
1–8, Jan. 2016. doi: 10.3141/2572-01.

[17]	 C. Liu and Y. Murphey, “Power management 
for plug-in hybrid electric vehicles using re-
inforcement learning with trip information,” 
in Proc. 2014 IEEE Transportation Electrifica-
tion Conf. Expo (ITEC), pp. 1–6. doi: 10.1109/
ITEC.2014.6861862.

[18]	 A. Vogel, D. Ramachandran, R. Gupta, and A. 
Raux, “Improving hybrid vehicle fuel efficien-
cy using inverse reinforcement learning,” in 
Proc. 26th Association Advancement Artificial 
Intelligence Conf. Artificial Intelligence, 2012, 
pp. 384–390.

[19]	 X. Lin, P. Bogdan, N. Chang, and M. Pedram, 
“Machine learning-based energy management 
in a hybrid electric vehicle to minimize total 
operating cost,” in Proc. 2015 IEEE/Association 
Computing Machinery Int. Conf. Computer-Aid-
ed Design (ICCAD), pp. 627–634. doi: 10.1109/
ICCAD.2015.7372628.

[20]	 R. Johri, “Neuro-dynamic programming and 
reinforcement learning for optimal energy 
management of a series hydraulic hybrid ve-
hicle considering engine transient emissions,” 
Ph.D. dissertation, Dept. Mech. Eng., Univ. 
Michigan, Ann Arbor, MI, 2011.

[21]	 T. Liu, Y. Zou, D. Liu, and F. C. Sun, “Reinforce-
ment learning of adaptive energy management 
with transition probability for a hybrid elec-
tric tracked vehicle,” IEEE Trans. Ind. Electron., 
vol. 62, no. 12, pp. 7837–7846, Dec. 2015. doi: 
10.1109/TIE.2015.2475419.

[22]	 T. Liu, Y. Zou, D. Liu, and F. Sun, “Reinforce-
ment learning-based energy management 
strategy for a hybrid electric tracked vehicle,” 
Energies, vol. 8, no. 7, pp. 7243–7260, July 2015. 
doi: 10.3390/en8077243.

[23]	 Y. Zou, T. Liu, D. X. Liu, and F. C. Sun, “Rein-
forcement learning-based real-time energy 
management for a hybrid tracked vehicle,” 
Appl. Energy, vol. 171, pp. 372–382, June 2016. 
doi: 10.1016/j.apenergy.2016.03.082.

[24]	 X. Qi, Y. Luo, G. Wu, K. Boriboonsomsin, and 
M. Barth, “Deep reinforcement learning-based 
vehicle energy efficiency autonomous learn-
ing system,” in Proc. 2017 IEEE Intelligent Ve-
hicles Symp. (IV), pp. 1228–1233. doi: 10.1109/
IVS.2017.7995880.

[25]	 Y. Hu, W. Li, K. Xu, T. Zahid, F. Qin, and C. Li, 
“Energy management strategy for a hybrid 
electric vehicle based on deep reinforcement 
learning,” Appl. Sci., vol. 8, no. 2, p. 187, Jan. 
2018. doi: 10.3390/app8020187.

[26]	P. Zhao, Y. Wang, N. Chang, Q. Zhu, and X. 
Lin, “A deep reinforcement learning frame-
work for optimizing fuel economy of hy-
brid electric vehicles,” in Proc 2018. 23rd 
Asia South Pacific Design Automation Conf. 
(ASP-DAC), pp. 196–202. doi: 10.1109/ASP-
DAC.2018.8297305.

[27]	 R. Liessner, C. Schroer, A. Dietermann, and B. 
Baker, “Deep reinforcement learning for ad-
vanced energy management of hybrid electric 
vehicles,” in Proc. 10th Int. Conf. Agents and 
Artificial Intelligence (ICAART 2018), pp. 61–72. 
doi: 10.5220/0006573000610072.

[28]	 R. Xiong, J. Cao, and Q. Yu, “Reinforcement 
learning-based real-time power management 
for hybrid energy storage system in the plug-
in hybrid electric vehicle,” Appl. Energy, vol. 
211, pp. 538–548, Nov. 2017. doi: 10.1016/j.apen-
ergy.2017.11.072.

[29]	 R. Xiong, Y. Duan, J. Cao, and Q. Yu, “Battery 
and ultracapacitor in-the-loop approach to 
validate a real-time power management meth-
od for an all-climate electric vehicle,” Appl. 
Energy, vol. 217, pp. 153–165, May 2018. doi: 
10.1016/j.apenergy.2018.02.128.

[30]	 Y. Li, H. He, J. Peng, and H. Zhang, “Power man-
agement for a plug-in hybrid electric vehicle 
based on reinforcement learning with con-
tinuous state and action spaces,” Energy Pro-
cedia, vol. 142, pp. 2270–2275, Dec. 2017. doi: 
10.1016/j.egypro.2017.12.629.

[31]	 J. Wu, H. He, J. Peng, Y. Li, and Z. Li, “Continu-
ous reinforcement learning of energy manage-
ment with deep Q network for a power split 
hybrid electric bus,” Appl. Energy, vol. 222, 
pp. 799–811, July 2018. doi: 10.1016/j.apener-
gy.2018.03.104.

[32]	 D. Hoang, P. Wang, D. Niyato, and A. Hossain, 
“Charging and discharging of plug-in elec-
tric vehicles (PHEV) in vehicle-to-grid (V2G) 
systems: A cyber insurance-based model,” 
IEEE Access, vol. 5, pp. 732–754, Jan. 2017. doi: 
10.1109/ACCESS.2017.2649042.

[33]	 C. Jiang, Z. Jing, X. Cui, T. Ji, and Q. Wu, “Mul-
tiple agents and reinforcement learning for 
modelling charging loads of electric taxis,” 
Appl. Energy, vol. 222, pp. 158–168, July 2018. 
doi: 10.1016/j.apenergy.2018.03.164.

[34]	 T. Liu, X. Hu, S. Li, and D. Cao, “Reinforce-
ment learning optimized look-ahead energy 
management of a parallel hybrid electric ve-
hicle,” IEEE/ASME Trans. Mechatronics, vol. 22, 
no. 4, pp. 1497–1507, Aug. 2017. doi: 10.1109/
TMECH.2017.2707338.

[35]	 T. Liu and X. Hu, “A bi-level control for energy 
efficiency improvement of a hybrid tracked 
vehicle,” IEEE Trans. Ind. Informat., vol. 14, 
no. 4, pp. 1616–1625, Apr. 2018. doi: 10.1109/
TII.2018.2797322.

[36]	 T. Zhang, G. Kahn, S. Levine, and P. Abbeel, 
“Learning deep control policies for autono-
mous aerial vehicles with mpc-guided policy 
search,” in Proc. 2016 IEEE Int. Conf. Robotics 
and Automation (ICRA), pp. 528–535, May, 2016.

[37]	 T. Liu, B. Wang, and C. Yang, “Online Markov 
chain-based energy management for a hy-
brid tracked vehicle with speedy Q-learning,” 
Energy, vol. 160, pp. 544–555, Oct. 2018. doi: 
10.1016/j.energy.2018.07.022.

[38]	S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and 
D. Quillen, “Learning hand-eye coordination 
for robotic grasping with deep learning and 
large-scale data collection,” Int. J. Robotics 
Res., vol. 37, no. 4–5, pp. 421–436, Apr. 2018. 
doi: 10.1177/0278364917710318.

[39]	 T. Lillicrap et al., “Continuous control with 
deep reinforcement learning,” presented at the 
Int. Conf. Learning Representations (ICLR), 
San Juan, Puerto Rico, 2016.

[40]	 J.A. Martin, J. Lope, and D. Maravall, “Robust 
high-performance reinforcement learning 
through weighted k-nearest neighbors,” Neu-
rocomputing, vol. 74, no. 8, pp. 1251–1259, Mar. 
2011. doi: 10.1016/j.neucom.2010.07.027.

[41]	 M. Santos, J.A. Martin, V. Lopez, and G. Botella, 
“Dyna-H: A heuristic planning reinforcement 
learning algorithm applied to role-playing 
game strategy decision systems,” Knowledge-
Based Syst., vol. 32, pp. 28–36, Aug. 2012. doi: 
10.1016/j.knosys.2011.09.008.

[42]	 T. Liu, X. Hu, W. Hu, and Y. Zou, “A heuristic plan-
ning reinforcement learning-based energy man-
agement for power-split plug-in hybrid electric 
vehicles,” IEEE Trans. Ind. Informat., Mar. 2019, 
to be published. doi: 10.1109/TII.2019.2903098.

[43]	 A . Ng and S. Russell, “A lgorithms for in -
verse reinforcement learning,” in Proc. 17th Int.  
Conf. Machine Learning (ICML ’00), 2000, pp. 
663–670.

[44]	 Y. Hay, M. Kuang, and R. McGee, “Trip-oriented 
energy management control strategy for plug-
in hybrid electric vehicles,” IEEE Trans. Control 
Syst. Technol., vol. 22, no. 4, pp. 1323–1336, July 
2014. doi: 10.1109/TCST.2013.2278684.

[45]	 C. Sun, S. Moura, X. Hu, J. Hedrick, and F. Sun, 
“Dynamic traffic feedback data enabled ener-
gy management in plug-in hybrid electric ve-
hicles,” IEEE Trans. Control Syst. Technol., vol. 
23, no. 3, pp. 1075–1086, May 2015. doi: 10.1109/
TCST.2014.2361294.

[46]	 E. Ozatay et al., “Cloud-based velocity profile 
optimization for everyday driving: A dynamic-
programming-based solution,” IEEE Trans. In-
tell. Transp. Syst., vol. 15, no. 6, pp. 2491–2505, 
Dec. 2014. doi: 10.1109/TITS.2014.2319812.

[47]	 F. Yan, J. Wang, and K. Huang, “Hybrid electric 
vehicle model predictive control torque-split 
strategy incorporating engine transient char-
acteristics,” IEEE Trans. Veh. Technol., vol. 61, 
no. 6, pp. 2458–2467, July 2012. doi: 10.1109/
TVT.2012.2197767.

[48]	 P. You et al., “Scheduling of EV battery swap-
ping, I: Centralized solution,” IEEE Trans. Con-
trol Netw. Syst., vol. 5, no. 4, pp. 1887–1897, Dec. 
2018. doi: 10.1109/TCNS.2017.2773025.

[49]	 W. Tushar, C. Yuen, S. Huang, D. Smith, and H. 
Poor, “Cost minimization of charging stations 
with photovoltaics: An approach with EV clas-
sification,” IEEE Trans. Intell. Transp. Syst., vol. 
17, no. 1, pp. 156–169, Jan. 2016. doi: 10.1109/
TITS.2015.2462824.

[50]	 X. Wang, C. Yuen, N. Hassan, N. An, and W. Wu, 
“Electric vehicle charging station placement 
for urban public bus systems,” IEEE Trans. 
Intell. Transp. Syst., vol. 18, no. 1, pp. 128–139, 
Jan. 2017. doi: 10.1109/TITS.2016.2563166.

[51]	 H. Chung, W. Li, C. Yuen, C. Wen, and N. Crespi, 
“Electric vehicle charge scheduling mecha-
nism to maximize cost efficiency and user 
convenience,” IEEE Trans. Smart Grid, vol. 10, 
no. 3, pp. 3020–3030, May 2019. doi: 10.1109/
TSG.2018.2817067.

[52]	 R. Yu, W. Zhong, S. Xie, C. Yuen, S. Gjessing, 
and Y. Zhang, “Balancing power demand 
through EV mobility in vehicle-to-grid mobile 
energy networks,” IEEE Trans. Ind. Informat., 
vol. 12, no. 1, pp. 79–90, Feb. 2016. doi: 10.1109/
TII.2015.2494884.

[53] V. Mnih et al., “Asynchronous methods for deep 
reinforcement learning,” in Proc. Int. Conf. Ma-
chine Learning (ICML 2016), pp. 1928–1937.

�

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 14,2020 at 22:23:02 UTC from IEEE Xplore.  Restrictions apply. 




