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Emittance preservation in plasma-based accelerators with ion motion

C. Benedetti, C. B. Schroeder, E. Esarey, and W. P. Leemans
Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 16 June 2017; published 1 November 2017)

In a plasma-accelerator-based linear collider, the density of matched, low-emittance, high-energy
particle bunches required for collider applications can be orders of magnitude above the background ion
density, leading to ion motion, perturbation of the focusing fields, and, hence, to beam emittance growth.
By analyzing the response of the background ions to an ultrahigh density beam, analytical expressions,
valid for nonrelativistic ion motion, are derived for the transverse wakefield and for the final (i.e., after
saturation) bunch emittance. Analytical results are validated against numerical modeling. Initial beam
distributions are derived that are equilibrium solutions, which require head-to-tail bunch shaping, enabling
emittance preservation with ion motion.

DOI: 10.1103/PhysRevAccelBeams.20.111301

I. INTRODUCTION

Plasma accelerators (PAs) have received substantial
theoretical and experimental interest because of their ability
to produce large accelerating gradients, enabling compact
accelerating structures [1]. In a PA, a short and intense laser
pulse or charged-particle beam propagating in a plasma
drives (via the ponderomotive force in the case of the laser,
or via the transverse space-charge field in the case of the
beam) an electron plasma wave (or wakefield). The plasma
wave has a relativistic phase velocity (of the order of the
driver velocity), and can support large longitudinal and
transverse fields, suitable for accelerating and focusing a
particle beam properly delayed with respect to the driver.
PAs have demonstrated the production of high-quality
(mono-energetic) electron bunches, and the generation of
accelerating gradients in the range of 10s to 100 GV=m,
several orders of magnitude larger than that obtained in
conventional accelerators, which are presently limited to
∼100 MV=m by material breakdown [2–5].
The rapid development and the properties of PAs make

them interesting candidates for applications to future high-
energy linear colliders (LCs) [6–10]. Even though the
properties of future LCs will be determined by high-energy
physics experiments that are currently underway, it has
been anticipated that a center-of-mass energy ≳1 TeV and
a luminosity ≳1034 cm−2 s−1 will be required [11,12].
Typically, this implies using electrons and positron bunches
with Nb ∼ 1010 particles and normalized horizontal and
vertical emittances such that ðεn;xεn;yÞ1=2 < 100 nm in

order to guarantee a sufficiently small bunch size at the
interaction point [7,10].
Preservation of the (small) bunch emittance during the

acceleration process, which usually requires cascading
several PA stages, is of fundamental importance to ensure
the viability of a PA-based LC. Emittance preservation is
ensured by matching the bunch in the plasma wave. This is
possible because the transverse wakefield in a beam-driven
PA operating in the blowout regime [13], or in a laser-
driven PA operating in the quasilinear regime using a near-
hollow plasma channel [14], varies linearly with the
transverse position. Denoting by W⊥ the amplitude of
the transverse wake (the force experienced by a relativistic
electron is F⊥ ≃ −eW⊥, where Wx¼Ex−By, Wy ¼ Ey þ
Bx, and where Ex;y and Bx;y are, respectively, the transverse
components of the electric and magnetic fields in the
wake), we have that (an axisymmetric driver is assumed)

W⊥
E0

¼ kpr

2
; ð1Þ

here r ¼ ðx; yÞ represents the transverse coordinates,
kp ¼ ωp=c, and E0 ¼ mcωp=e, where ω2

p ¼ 4πn0e2=m
is the plasma frequency, n0 is the background electron
plasma density (density in the channel for the near-hollow
channel case), c is the speed of light, and e (m) is the
electron charge (mass). Using Eq. (1), the matched rms
bunch sizes are σx½y� ¼ k−1=2p ð2ε2n;x½y�=γbÞ1=4, where γb ≫ 1

is the beam energy normalized to mc2.
The linear dependence of the transverse wakefield on the

transverse coordinates relies on the assumptions that the
background ion distribution is uniform and stationary.
However, as the bunch accelerates and the matched beam
sizes adiabatically decrease, the bunch peak density, nb;0,
increases, and so does the amplitude of the bunch space-
charge fields. As was initially pointed out in Ref. [15],
when the fields of the accelerating beam become large
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enough so that the background ions move significantly
during the bunch transit, the transverse wake can be
strongly perturbed (e.g., the wakefield strength acquires
a nonlinear dependence from the transverse coordinate and
changes slice-by-slice along the bunch), resulting in a
potentially severe degradation of the bunch emittance. This
is anticipated to occur for high bunch densities, longer
bunches, and lighter background ions, and can be quanti-
fied by the parameter

Γ ¼ Zi
m
Mi

nb;0
n0

ðkpLbÞ2 ∼ 1; ð2Þ

where Zi is the ion charge state,Mi the ion mass, and Lb the
bunch length.
Ion motion and the related bunch emittance growth is

potentially a serious issue for future PA-based LCs. For
instance, for the LC design presented in Ref. [10], the
bunch parameters are Nb ¼ 1010, Lb ≃ 20 μm, εn;x ¼
10 μm, εn;y ¼ 35 nm, and the bunch energy in the first
PA stage (n0 ≃ 1017 cm−3, nonlinear blowout regime) is
25 GeV. The matched rms bunch sizes are then σx ≃ 1 μm,
σy ≃ 60 nm, yielding nb;0=n0 ≃ 12 000, and so Γ≃ 10 for
a Hydrogen ion background. We expect ion motion to be
important in this case. Ion motion is reduced for heavier
background ions. However, in this case, the multiple
ionization states available could lead to uncontrolled
plasma formation inside the bunch, resulting in the deg-
radation of the wakefield [15,16].
In Ref. [17], the emittance growth problem was

addressed by considering an adiabatic matching section,
located at the entrance of the PA, consisting of a short
plasma section with a decreasing ion mass to allow for the
beam to remain matched to the focusing wakefield.
In this article we analyze the interaction of a highly

relativistic bunch propagating in a stationary ion back-
ground that provides focusing for the bunch. We compute
the ion response to the bunch transverse space-charge field
by solving the fluid equations describing the ion distribu-
tion together with Maxwell’s equations for the associated
electromagnetic fields. We provide, for any arbitrary bunch
shape, analytic expressions for the transverse wake in the
bunch region, and we compute the final (i.e., after phase-
space mixing) bunch emittance. Analytical results, valid in
the nonrelativistic ion motion regime where the induced ion
density perturbation, δni ¼ ni − ni;0 (ni;0 ¼ n0=Zi being
the unperturbed ion density and ni the ion density including
ion motion effects), satisfies δni=ni;0 ≲ 1, are compared to
fully nonlinear and self-consistent particle-in-cell (PIC)
simulations performed with the code INF&RNO [18,19].
Finally, we derived a class of initial beam distributions that
are exact equilibrium solutions, enabling ion motion with-
out emittance growth.
This article is organized as follows. In Sec. II we derive

an analytic expression for the transverse wakefield in

presence of ion motion. The ion-motion-induced bunch
emittance growth is discussed in Sec. III. Analytic expres-
sions for the final bunch emittance are presented in Sec. IV.
In Sec. V we discuss the equilibrium bunch distributions
that enable ion motion without emittance growth.
Conclusions are presented in Sec. VI.

II. TRANSVERSE WAKEFIELD IN PRESENCE
OF ION MOTION

We consider a relativistic bunch with a density profile
parametrized as

nbðζ; rÞ ¼ nb;0g∥ðζÞg⊥ðr; ζÞ; ð3Þ

where ζ ¼ z − ct is the comoving longitudinal coordinate
(z is the longitudinal coordinate, t is the time), g∥ðζÞ and
g⊥ðr; ζÞ describe, respectively, the longitudinal and the
ζ-dependent transverse profile of the bunch. We assume
that the bunch head is located at ζ ¼ 0 and that the bunch
extends for ζ < 0. We require that, for any longitudinal
slice,

Z
d2rg⊥ðr; ζÞ ¼

Z
d2rg⊥ðr; ζ ¼ 0Þ; ð4Þ

so that the bunch current density profile only depends on
the choice of g∥ðζÞ, and this can be arbitrary.
The ion dynamics may be described using a cold fluid

model [1]. By making use of the quasistatic approximation
[20], the equations for the ion density, ni, and for the
normalized fluid momentum, ui ¼ γiβi (cβi being the ion
fluid velocity, and γi the associated relativistic factor), are,
respectively,

∂ξ½nið1 − βi;zÞ� ¼ ∇⊥ · ðniβi;⊥Þ; ð5Þ

and

ð1 − βi;zÞ∂ζui ¼ ðβi;⊥ ·∇⊥Þui −
Zi

Mic2
ðEþ βi × BÞ; ð6Þ

E andB being the total fields due to the ions and the bunch.
The fluid equations for the plasma are coupled to
Maxwell’s equations, describing the evolution of the
electromagnetic fields in the wake. In particular, the
amplitude of the transverse wakefield in presence of ion
motion is given by

∂ζW⊥ ¼ 4π

c
J⊥: ð7Þ

The transverse current density in the regime of interest is
due solely to ion motion (the contribution due to the
relativistic bunch is negligible), J⊥ ¼ Zienicβi;⊥. This
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current provides the coupling between ion fluid equations
and Maxwell’s equations.
In the nonrelativistic limit for the ion motion, i.e., jβij≪1

and ui ≃ βi, the equation for the transverse ion fluid
momentum becomes ∂ζβi;⊥ ≃ −ðZie=Mic2ÞE⊥, the cur-
rent is J⊥ ≃ Zieni;0cβi;⊥ ¼ en0cβi;⊥, and the transverse
wakefield equation is k−2p ∂2

ζW⊥ ¼ −Ziðm=MiÞE⊥. The
solution to this equation for ζ ≤ 0 (within the bunch) is

W⊥ðr;ζÞ
E0

¼kpr

2
þZi

m
Mi

k2p

Z
0

ζ
dζ0ðζ−ζ0ÞE⊥ðr;ζ0Þ

E0

; ð8Þ

where at the head of the bunch (ζ ¼ 0) the wakefield is
from the uniform ions [Eq. (1)].
In general, both the ion column density and the bunch

density contribute, via Gauss’s law, to the transverse
electric field E⊥ in Eq. (8). However, as described in
Ref. [15], ion motion is important when nb;0=ðZini;0Þ ≫ 1,
and so the bunch contribution to E⊥ is the dominant one.
Furthermore, since the bunch is (highly) relativistic, its
space-charge field is mainly transverse (i.e., jEzj ≪ jE⊥j)
and so, we have,

∇⊥ · E⊥ ¼ −4πenb: ð9Þ

Analytical solutions to this equation to be inserted in
Eq. (8) can be obtained for a specific beam distribution
(e.g., round or flat bunch distribution).
In the case of a round bunch (σx ¼ σy), the transverse

quantities depend only on the radial coordinate r ¼ jrj ¼
ðx2 þ y2Þ1=2, W⊥ ¼ Wrr̂, and E⊥ ¼ Err̂, r̂ being
the transverse radial versor. The bunch field is Er ¼
−½4πenb;0g∥ðζÞ=r�

R
r
0 g⊥ðr0; ζÞr0dr0, and Eq. (8) becomes

Wr

E0

¼ kpr

2
− Zi

m
Mi

nb;0
n0

k3p
r

Z
0

ζ
dζ0ðζ − ζ0Þg∥ðζ0Þ

×
Z

r

0

g⊥ðr0; ζ0Þr0dr0: ð10Þ

For a bunch with a longitudinally flat-top distribution of
length Lb (i.e., g∥ðζÞ ¼ 1 for −Lb ≤ ζ ≤ 0, and zero
elsewhere), and a transverse Gaussian profile, g⊥ ¼
expð−r2=2σ2xÞ, the expression for the wakefield Eq. (10)
becomes

Wr

E0

¼ kpr

2

�
1þ Zi

m
Mi

nb;0
n0

ðkpζÞ2
2

H

�
r2

2σ2x

��
; ð11Þ

where HðqÞ ¼ ð1 − e−qÞ=q. The wake strength increases
quadratically in ζ going from the head towards the tail of
the bunch. Furthermore, as a result of the nonuniform
transverse bunch profile, the wake also acquires a nonlinear
dependence from the transverse coordinate. In the case of
an uniform transverse profile, g⊥ ¼ 1 for r < R ¼ 2σx, the

wake is linear in r within the bunch cross section, i.e.,
HðqÞ ¼ 1 in Eq. (11).
Figure 1 shows the transverse lineouts of the wakefield

Wr obtained for the case of a bunch with a longitudinal flat-
top distribution with kpLb ¼ 1, and a Gaussian transverse
distribution with kpσx ¼ 0.015 (round beam) propagating
in an ion channel (Hydrogen ions) for different values of
the bunch peak density. Lineouts are taken at ζ ¼ −Lb.
Colored lines refer to (fully nonlinear) numerical modeling
performed with the code INF&RNO (quasistatic modality),
where the bunch and the ion distribution are modeled using
a particle-in-cell (PIC) approach. Dashed black lines are the
theoretical values given by Eq. (11). The analytical solution
is in good agreement with modeling for nb;0=n0 ≲ 2000

(corresponding to Γ≲ 1). For higher bunch densities the
space-charge field of the bunch is strong enough that the
ion motion becomes relativistic during the bunch transit
time, violating one of the assumptions of Eq. (11). In this
regime, the ion distribution collapses toward the center of
the bunch, generating a high-density filament with a
characteristic size much smaller than the bunch size,
resulting in a major disruption of the linear confining
wakefield toward the bunch core [21]. This is shown in
Fig. 1 where we plot (orange dashed line) a transverse
lineout of the normalized ion density (ni=n0) at ζ ¼ −Lb
for nb;0=n0 ¼ 8000.
In the case of a flat bunch (σx ≫ σy) and within the bulk

of the bunch cross section, we have ∂xEx ≪ ∂yEy, and so

FIG. 1. Transverse lineouts of the wakefield Wr obtained
for the case of a bunch with a longitudinal flat-top distri-
bution (kpLb ¼ 1), and a Gaussian transverse distribution
(kpσx ¼ 0.015) propagating in an ion channel (Hydrogen ions,
ni;0 ¼ n0 ¼ 1017 cm−3) for different values of the bunch peak
density. Transverse lineouts are taken at ζ ¼ −Lb. Colored lines
refer to numerical results. Dashed black lines are the theoretical
values given by Eq. (11). The orange dashed line is the transverse
lineout of then ion density taken at ζ ¼ −Lb for nb;0=n0 ¼ 8000.
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the components of the fields of the bunch are given by
Ex ≃ 0, and Ey ≃ −4πe

R y
0 nbðx; y0Þdy0. In this case, the

wakefield in the y direction is affected by ion motion, while
the one in the x direction is essentially unperturbed, namely
Wx=E0 ¼ kpx=2. From Eq. (8), assuming, as before, a
longitudinal flat-top distribution and a transverse Gaussian
distribution, g⊥ ¼ expð−x2=2σ2x − y2=2σ2yÞ, we have

Wy

E0

¼ kp
2

�
1þ Zi

m
Mi

nb;0
n0

ðkpζÞ2 exp
�
−

x2

2σ2x

�
K

�
yffiffiffi
2

p
σy

��
;

ð12Þ

where KðqÞ ¼ ð ffiffiffi
π

p
=2ÞerfðqÞ=q. We see that in the non-

symmetric case the degree of perturbation of the wakefield
is approximately twice as large compared to the symmetric
case Eq. (11).

III. EMITTANCE GROWTH FROM
ION MOTION

For a bunch initially matched in the linear (unperturbed)
wakefield, the modification of the transverse wake due to
ion motion results in the growth of the total projected rms
bunch emittance. Figure 2(a) (black curve) shows the
evolution, as a function of the (normalized) propagation
distance kβz [kβ ¼ kp=ð2γbÞ1=2 being the betatron wave
number], of the normalized emittance for a bunch in an ion
column (no acceleration) with parameters taken from the
TeV-class LC presented in Ref. [10], namely Nb ¼ 1010,
Lb ≃ 20 μm (we use a flat longitudinal current profile),
and γb ¼ 49 000 (first PA stage). For simplicity, we
consider a symmetrized bunch with initial emittances
εn;x ¼ εn;y ¼ εn;0 ¼ 0.6 μm (this value is the geometric
average of the emittances in Ref. [10]), yielding a matched
rms bunch size σx ¼ σy ¼ 0.245 μm. The transverse bunch
profile is Gaussian. The background Hydrogen ion density
is ni;0 ¼ n0 ¼ 1017 cm−3, yielding nb;0=n0 ≃ 12 000, and
so Γ≃ 10. The modeling shows that in a propagation
distance kβz≃ 4 (corresponding to ≃2 cm), the projected
bunch emittance increases by ∼20%. Furthermore, the
slice-dependent nature of the wake perturbation causes
the final (i.e., after saturation) bunch emittance to be slice-
dependent (i.e., we expect the final emittance of a bunch
slice located towards the tail of the bunch to be higher than
that of a slice towards the head of the bunch). This is shown
in Fig. 2(b) [black line], where we plot the bunch slice
emittance for kβz ¼ 12. A slice-dependent emittance can
pose major practical issues for bunch transport and
manipulation (e.g., transport between PA stages, final
focus). For instance, staging of PAs to reach high energy
[22] requires coupling the bunch extracted from a depleted
PA stage to the entrance of the subsequent PA stage, using
some focusing optic [23]. Conventional focusing optics,

which, for any fixed distance, are designed to focus
bunches with a given value of the emittance and energy,
a slice-dependent emittance can result in an imperfect
coupling (mismatch) of the bunch to the entrance of the
PA stage.

IV. EXPRESSION FOR THE ION-MOTION
INDUCED EMITTANCE GROWTH AT

SATURATION

Analytical expressions for the final (saturated) bunch
emittance can be obtained by analyzing the transverse
dynamics of the particles in the wakefield given by Eq. (8).
For simplicity, we will neglect acceleration (i.e., γb is

(a)

(b)

FIG. 2. (a) Emittance evolution for: Gaussian bunch initially
matched in the unperturbed wakefield [black]; matched equilib-
rium bunch obtained solving Eqs. (23), (28) [red]; approximate
equilibrium bunch where the transverse profile is Gaussian but
with the same rms properties of the exact equilibrium [blue].
(b) Slice emittance measured for kβz ¼ 12 (saturation) for the
three types of bunches in (a). The bunch parameters are
Nb ¼ 1010, Lb ≃ 20 μm (flat longitudinal current profile),
γb ¼ 49 000, εn;x ¼ εn;y ¼ εn;0 ¼ 0.6 μm. The background Hy-
drogen ion density is ni;0 ¼ n0 ¼ 1017 cm−3.
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constant), and we assume that the transverse motion
satisfies juj ≪ γb, u ¼ ðux; uyÞ being the transverse elec-
tron momentum normalized to mc. We will consider a
bunch with a uniform longitudinal current profile of length
Lb, and with an initial Gaussian transverse phase-space
distribution uniform in ζ, namely

f0;⊥ðr;u; ζÞ ¼
exp

�
− x2

2σ2x
− y2

2σ2y
− u2x

2σ2ux
− u2y

2σ2uy

�
ð2πÞ2σxσyσuxσuy

; ð13Þ

where σux [σuy] describes the rms horizontal [vertical]
momentum distribution. Generalization to other longi-
tudinal current profiles is straightforward. The bunch is
initially matched in the unperturbed (linear) wakefield if
σux½uy� ¼ ðγb=2Þ1=2kpσx½y�, and the initial bunch emittances

are then εn;x½y� ¼ σx½y�σux½uy� ¼ ðγb=2Þ1=2kpσ2x½y�. We also

make the assumption that, during the ion motion-induced
phase mixing, the structure of the transverse wake (and so
the bunch shape) does not change significantly. Under these
assumptions, the transverse equations of motion for an
electron in the bunch are

	
dr=dz ¼ u=γb;

du=dz ¼ −eW⊥=mc2;
ð14Þ

with the propagation distance z ¼ ct the independent
variable. These equations can be derived from the
Hamiltonian

H⊥ðr;uÞ ¼
u2

2γb
þ eU⊥ðrÞ

mc2
; ð15Þ

where the potential U⊥ðrÞ satisfies W⊥ ¼ ∇⊥U⊥. We
recall that all the quantities are, in general, ζ-dependent.
We also note that since the electrons in the bunch are highly
relativistic, there is no longitudinal slippage, and so the
motion in each longitudinal slice of the bunch is decoupled
from the motion in other slices. Computing the final bunch
emittance requires evaluating the second order transverse
phase-space moments of the particle distribution at satu-
ration, namely, for the x-plane, hx2i and hu2xi, where the
average h·i is done over all the particles in the bunch. We
recall that, at saturation, hxuxi ¼ 0, and so the final
equilibrium emittance is given by ε�n;x ¼ ðhx2ihu2xiÞ1=2.
Similar definitions apply to the moments in the y-plane.
In general, if the transverse wakefield has a nonlinear

dependence from the transverse coordinates, the motion in
the x and y planes is coupled and difficult to analyze
analytically. However, since we are interested in the
average properties of the transverse dynamics, and we
made the assumption that the structure of the transverse
wake does not change significantly during the phase-space
mixing, we can simplify the problem by performing a

dimensionality reduction. We can derive a 1D dynamical
system describing the (approximate) dynamics of the bunch
in the x-plane by averaging the 2D Hamiltonian H⊥ given
by Eq. (15) in the y-plane according to the initial phase-
space distribution [Eq. (13)], namely

Hð1DÞ
x ðx; uxÞ ¼

1

2πσyσuy

Z Z
H⊥ðx; y; ux; uyÞ

× exp

�
−

y2

2σ2y
−

u2y
2σ2uy

�
dyduy: ð16Þ

Weobtain,Hð1DÞ
x ¼u2x=2γbþeUð1DÞ=mc2, whereUð1DÞðxÞ¼

ð2πÞ−1=2σ−1y
R
U⊥ðx;yÞexpð−y2=2σ2yÞdy. Owing to the fact

that Hð1DÞ
x does not depend explicitly on time (i.e., propa-

gation distance), it can be used to analyze the particle orbits
in the ðx; uxÞ phase plane. Given a particle with the initial

condition ðx0; ux0Þ, and defining h0 ¼ Hð1DÞ
x ðx0; ux0Þ, then,

in any point of the orbit identified by the chosen initial
condition, the relationship between particle momentum and
position is uxðxÞ ¼ �f2γb½h0 − eUð1DÞðxÞ=mc2�g1=2.
Using the equation of motion dx=dt ¼ cuxðxÞ=γb, we find
that the time spent by a particle moving between the
positions x and xþ dx is dt ¼ ½γb=uxðxÞ�dx=c. From this,
we can evaluate the period of the closed orbit (i.e., the
betatron period), Tβ ¼

H
dt ¼ ð4γb=cÞ

R xmax
0 ½1=uxðxÞ�dx,

where xmax satisfies h0 ¼ Uð1DÞðxmaxÞ. The time average
over the closed orbit (i.e., the equilibrium value after phase-
space mixing) of any dynamical variable Qðx; uxÞ is then

Q̄ðx0; ux0Þ ¼ T−1
β

I
Q½xðtÞ; uxðtÞ�dt

¼
R xmax
0 ½1=uxðxÞ�Q½x; uxðxÞ�dxR xmax

0 ½1=uxðxÞ�dx
; ð17Þ

where we assume thatQðx; uxÞ is an even function of x and
ux. In particular, for Q ¼ x2 and Q ¼ u2x, we obtain,
respectively, x̄2ðx0; ux0Þ ¼ ∂hP2=∂hP0jh¼h0¼Hð1DÞ

x ðx0;ux0Þ,

and ū2xðx0; ux0Þ ¼ γbP0=∂hP0jh¼h0¼Hð1DÞ
x ðx0;ux0Þ, where

PlðhÞ ¼
R xmax
0 xl½h − eUð1DÞðxÞ=mc2�1=2dx. The second

order transverse phase space moments at saturation in a
given longitudinal slice along the bunch are obtained by
averaging x̄2ðx0; ux0Þ and ū2xðx0; ux0Þ over the initial phase
space distribution in the x-plane, namely

x̄2 ¼ 1

2πσxσux

Z Z
x̄2ðx0; ux0Þ

× exp

�
−

x20
2σ2x

−
u2x0
2σ2ux

�
dx0dux0 : ð18Þ

A similar expression holds for ū2x. Finally, the bunch
moments are obtained by averaging in ζ the slice moments,
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namely hx2i ¼ L−1
b

R
0
−Lb

dζx̄2ðζÞ. A similar expression

holds for hu2xi.
For a symmetric bunch (σx ¼ σy, ϵn;x ¼ ϵn;y ¼ ϵn;0),

where the transverse wake is given by Eq. (11), and
U⊥ðrÞ ¼

R
r
0 Wrðr0Þdr0, the second order moments at sat-

uration in a given longitudinal slice are x̄2ðζÞ=σ2x≃
1 − 0.12Γðζ=LbÞ2 þ 0.016Γ2ðζ=LbÞ4, and ū2xðζÞ=σ2ux≃
1þ 0.13Γðζ=LbÞ2 þ 0.003Γ2ðζ=LbÞ4. The final slice
emittance is then ϵnðζÞ=εn;0 ≃ 1þ 0.005Γðζ=LbÞ2þ
0.0017Γ2ðζ=LbÞ4. By averaging longitudinally the slice-
dependent moments we obtain the saturated rms bunch
moments that read hx2i=σ2x ≃ 1 − 0.039 Γþ 0.003 Γ2, and
hu2xi=σ2ux ¼ 1þ 0.042 Γþ 0.0006 Γ2. From this, we find
that the final saturated bunch emittance is

ε�n;x
εn;0

≃ 1þ 0.0015 Γþ 0.001 Γ2: ð19Þ

As expected, the ion-induced emittance growth effects
increase with the parameter Γ (i.e., the final saturated
emittance is higher for higher bunch densities, longer
bunches, and lighter background ions). In Fig. 3 we show
(red dots) the final bunch emittance (ε�n;x=εn;0 − 1) obtained
via fully non-linear modeling performed with INF&RNO,
plotted as a function of the bunch peak density for a bunch
propagating in an Hydrogen ion column. The bunch
longitudinal and transverse distribution, energy, emittance,
as well as the other plasma parameters are the same as in
Fig. 2. The dashed black line is the theoretical result
Eq. (19). The theoretical result is in good agreement with
modeling for nb;0=n0 ≲ 2000 (corresponding to Γ≲ 1). For
higher bunch densities, where ion motion is relativistic, the

expression for the wakefield Eq. (11) used in deriving
Eq. (19) is no longer accurate.
In the strongly asymmetric case (σx ≫ σy, ϵn;x ≫ ϵn;y),

ion motion affects mainly the wakefield in the vertical
y-plane, while the wakefield in the horizontal x-plane is left
essentially unperturbed. In this case, the horizontal emit-
tance is preserved (ε�n;x ≃ εn;x), while the saturated vertical
emittance is ε�n;y=εn;y ≃ 1þ 0.0027 Γþ 0.0053 Γ2. As
before, we expect this result to be accurate as long as
Γ≲ 1. We note that the saturated emittance in the vertical
plane is approximately twice as large compared to a
round bunch.

V. EQUILIBRIUM BUNCH DISTRIBUTIONS
ENABLING ION MOTION WITHOUT

EMITTANCE GROWTH

Preserving the emittance of a bunch in presence of ion
motion is of fundamental importance for the design of
future PA-based LCs. A strategy to mitigate emittance
growth based on the use of an adiabatic matching section at
the entrance of the PA stage was described in Ref. [17].
Here we propose to longitudinally tailor the transverse
bunch profile (and phase space) in such a way that, even
though ion motion is enabled and the transverse wake is
perturbed, the bunch transverse distribution at each longi-
tudinal location is an equilibrium solution (i.e., the bunch
properties do not evolve), and so the bunch remains
matched at all times. Achieving this requires that, at any
longitudinal location, the transverse phase space distribu-
tion of the bunch is a stationary (equilibrium) solution of
the Vlasov equation. This solution allows for constant slice
emittance, greatly simplifying the transport between PA
stages. For simplicity, we will illustrate the construction of
the matched solution in the case of a symmetric bunch with
equal emittances in the x and y planes. However, this
technique is also applicable in the strongly asymmetric
case. Also, we consider, as before, a uniform longitudinal
current profile of length Lb. Generalization to arbitrary
longitudinal profiles is straightforward.
The Vlasov equation governing the evolution of the

transverse phase-space bunch distribution at any ζ location
along the bunch, f0;⊥ðr;u; ζ; zÞ, is

df0;⊥
dz

¼ ∂f0;⊥
∂z þ ff0;⊥; H⊥g ¼ 0; ð20Þ

where f·; ·g are the Poisson brackets [24]. Stationary
solutions to this equation are, by construction, distributions
of the form

f0;⊥ðr;u; ζÞ ∝ F½H⊥ðr;u; ζÞ=H0ðζÞ�; ð21Þ

where F is any positively defined function such that
N ðζÞ ¼ R R

f0;⊥ðr;u; ζÞd2rd2u < þ∞ (i.e., the distribu-
tion is normalizable), and H0ðζÞ is a ζ-dependent scale

FIG. 3. Emittance growth at saturation for a Gaussian bunch
initially matched in the unperturbed wakefield as function of the
bunch peak density. Red dots are the simulation results, the black
dashed line is the theoretical prediction Eq. (19). All the other
bunch and plasma parameters are the same as in Fig. 2.
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parameter used to control locally the properties of the
distribution. The second order phase-space moments at any
slice along the bunch are

x̄2½ū2x� ¼
1

N

Z Z
x2½u2x�f0;⊥ðr;u; ζÞd2rd2u; ð22Þ

and the rms slice emittance is ϵ2nðζÞ ¼ x̄2ðζÞū2xðζÞ. We
require that the slice emittance is constant along the bunch,
namely, for any ζ, x̄2ðζÞū2xðζÞ ¼ x̄2ðζ ¼ 0Þū2xðζ ¼ 0Þ. This
can be enforced by properly choosing the scale parameter
H0ðζÞ. We note that since the knowledge of the phase-
space distribution relies on the knowledge of the
Hamiltonian, which depends on the wake potential that,
in turns, is determined by the bunch distribution and ion
dynamics via Maxwell’s equations, obtaining an explicit
expression for the bunch and wake quantities requires
solving self-consistently the coupled set of Maxwell-
Vlasov equations.
As an example, we will study the matched solution

obtained taking FðxÞ ¼ expð−xÞ. We also define
H0ðζÞ ¼ ðkpσxÞ2=2ηðζÞ, where the slice-dependent
parameter ηðζÞ satisfies ηðζ ¼ 0Þ ¼ 1. The transverse
bunch profile including the proper normalization [see
Eq. (4)] reads

g⊥ðr; ζÞ ¼
σ2x

N ðζÞ exp
�
−

2ηðζÞ
ðkpσxÞ2

eU⊥ðr; ζÞ
mc2

�
; ð23Þ

with

N ðζÞ ¼
Z

∞

0

exp

	
−
�
2ηðζÞ
ðkpσxÞ2

��
eU⊥ðr; ζÞ

mc2

�

rdr: ð24Þ

To set the normalization we considered that for ζ¼0 the
wakefield is unperturbed [fromEq. (1)wehaveU⊥ðr;ζ¼0Þ¼
E0kpr2=4], and so the argument of the exponential function in
Eq. (23) is ½2=ðkpσxÞ2�ðeU⊥=mc2Þ ¼ r2=2σ2x. We see that
the transverse bunch profile at the head of the bunch (ζ ¼ 0) is
Gaussian with rms bunch size σx. For ζ < 0 the transverse
bunchdistributionEq. (23) is, in general, non-Gaussian. From
Eq. (23) we find that the second order spatial moment along
the bunch is

x̄2ðζÞ ¼ 1

2N ðζÞ
Z

∞

0

exp
	
−
�
2ηðζÞ
ðkpσxÞ2

��
eU⊥ðr; ζÞ

mc2

�

r3dr:

ð25Þ

From Eq. (21) we have that the transverse momentum
distribution at any slice along the bunch is Gaussian, and
the second order moment of the distribution is

ū2xðζÞ ¼
γb
2

ðkpσxÞ2
ηðζÞ : ð26Þ

The slice emittance for ζ ¼ 0 is ϵn ¼ ðγb=2Þ1=2kpσ2x.
Imposing that, slice-by-slice, the emittance is constant (and
equal to ϵn) we obtain

x̄2ðζÞ ¼ ηðζÞσ2x; ð27Þ

and this, using Eq. (25), can be rewritten as

1

2

R
∞
0 exp

n
− 2ηðζÞ

ðkpσxÞ2
eU⊥ðr;ζÞ

mc2

o
r3dr

R
∞
0 exp

n
− 2ηðζÞ

ðkpσxÞ2
eU⊥ðr;ζÞ

mc2

o
rdr

− ηðζÞσ2x ¼ 0: ð28Þ

Equation (28) determines the values of ηðζÞ defining the
desired matched solution with constant slice emittance. In
general, solutions to Eq. (28) can be found numerically and
require implementing an iterative procedure. Starting from an
ansatz for the bunch shape, we compute the associated wake
potential including ion motion, then we solve Eq. (28) for
ηðζÞ, and subsequently we use ηðζÞ together with the wake
potential to compute a new transverse density profile using
Eq. (23). The cycle is repeated until convergence is reached.
The numerical solutions is particularly fast in the non-
relativistic regime (Γ≲ 1), where the expression for the
wakefield is given by Eq. (10).
We note that for the matched bunch solution the

projected rms emittance differs from the slice emittance
owing to the fact that the second order phase space
moments are slice-dependent. In fact, the rms moments
of the matched bunch are

hx2i ¼ σ2x
Lb

Z
0

−Lb

ηðζÞdζ≡ σ2xhηi; ð29Þ

and

hu2xi ¼
γb
2

ðkpσxÞ2
Lb

Z
0

−Lb

dζ
ηðζÞ≡

γb
2
ðkpσxÞ2

�
1

η

�
: ð30Þ

The projected rms bunch emittance is then εn;x ¼
ðγb=2Þ1=2kpσ2x½hηih1=ηi�1=2.
In Fig. 4(a) we show a plot of the normalized rms bunch

size along the bunch, ½x̄2ðζÞ�1=2=σx, for the matched
equilibrium solution obtained for different values of the
bunch peak density. The bunch length, energy, slice
emittance, and the background ions parameters are the
same as in the example discussed in Fig. 2. We see that the
matched bunch size shrinks towards the tail of the bunch in
response to the increase of the strength of the transverse
wakefield. Figure 4(b) shows a 2D ðζ; xÞ snapshot of the
bunch density for the equilibrium solution obtained for
nb;0=n0 ≃ 12 000. The projected rms emittance for the
matched solution is εn;x ¼ 0.63 μm. The red curve in
Fig. 2(a) shows the emittance evolution for the bunch
depicted in Fig. 4(b). In Fig. 2(b) we show (red curve) the

EMITTANCE PRESERVATION IN PLASMA-BASED … PHYS. REV. ACCEL. BEAMS 20, 111301 (2017)

111301-7



corresponding slice emittance measured for kβz ¼ 12. No
emittance growth is observed in this case, and the slice
emittance is constant along the bunch.
The experimental realization of the matched equilibrium

solution requires an exact preparation of the initial trans-
verse phase space of the bunch, and this can be difficult to
achieve in practice. For instance, the transverse bunch
shape given by Eq. (23) changes continuously along the
bunch and is, in general, non-Gaussian. We investigated the
behavior of an approximate equilibrium solution with a
bunch structure much simpler compared to the exact
equilibrium case. The approximate solution is such that,
at any longitudinal location, the transverse density profile is
Gaussian with the same rms properties of the exact
equilibrium. The blue line in Fig. 2(a) shows the emittance
evolution for the approximate equilibrium bunch. In Fig. 2
(b) we show (blue curve) the corresponding slice emittance
measured for kβz ¼ 12. As expected, we observe some
emittance growth in this case. However, the final emittance

increase is very moderate (∼3%), and the slice emittance
shows a maximum increase ≲10%, much smaller compared
to the nontailored Gaussian case (black curve). The pos-
sibility of generating a tapered, low-emittance electron
bunch via ionization injection [25] using a laser pulse with
a properly tailored evolution is currently under investigation.

VI. CONCLUSIONS

In this article we analyzed ion motion and the associated
emittance growth of a relativistic bunch propagating in an
ion column for parameters relevant to the design of next
generation PA-based LCs. The model derived here well
describes the transverse dynamics of a bunch in the
nonlinear wakefield generated by a particle or a laser
driver in a PA. We provided analytical expressions, valid
in the regime of nonrelativistic ion motion, for the structure
of the transverse wake, and for the corresponding ion-
motion-induced bunch emittance growth. The analytical
results are in good agreement with numerical modeling. We
proposed and analyzed a solution that completely elimi-
nates ion-motion-induced emittance growth. This solution
requires a head-to-tail shaping of the bunch distribution.
Controlling emittance growth is critical to high-energy
physics applications of plasma accelerators.
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