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ABSTRACT
In this paper, we characterize and analyze an increasingly
popular style of programming for the GPU called Persis-
tent Threads (PT). We present a concise formal definition
for this programming style, and discuss the difference be-
tween the traditional GPU programming style (nonPT) and
PT, why PT is attractive for some high-performance usage
scenarios, and when using PT may or may not be appropri-
ate. We identify limitations of the nonPT style and identify
four primary use cases it could be useful in addressing—
CPU-GPU synchronization, load balancing/irregular paral-
lelism, producer-consumer locality, and global synchroniza-
tion. Through micro-kernel benchmarks we show the PT
approach can achieve up to an order-of-magnitude speedup
over nonPT kernels, but can also result in performance loss
in many cases. We conclude by discussing the hardware and
software fundamentals that will influence the development
of Persistent Threads as a programming style in future sys-
tems.

1. INTRODUCTION
GPGPU programming has spawned a new era in high

performance computing by enabling massively parallel com-
modity graphics processors to be utilized for non-graphics
applications. This widespread adoption has been possible
due to architectural innovations of transforming the GPU
from fixed-function hardware blocks to a programmable uni-
fied shader model, and programming languages like CUDA [11]
and OpenCL [9] that present an easy-to-program coding
style by heavily virtualizing processor hardware, and shift-
ing the onus of extracting parallelism from the programmer
(explicit SIMD) to the compiler (implicit SIMD) for instruc-
tion generation.

There are numerous examples of the current GPGPU pro-
gramming environment facilitating good speed-up over se-
quential implementations [12]. This trend has been espe-
cially true for core compute portions from a broad variety
of application domains which quite often tend to be brute
force, or generally embarrassingly parallel in nature. How-
ever, from an application standpoint, the overall benefit of
employing a GPU is governed by Amdahl’s Law, necessitat-
ing the port of larger portions of an application to the GPU
for achieving better overall application acceleration. As a
wider variety of workloads are implemented on the GPU,
many of which are highly irregular, limitations of GPU pro-
gramming become apparent. We believe that the key source
for these limitations stems from the programming environ-
ment that was originally created in 2006 [10] lacking native
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Figure 1: An illustration of GPU architecture
and workload evolution through an example of a
three-shader application—A (blue), B (red) and
C (green)—(a) dedicated processor cores for each
shader in the graphics pipeline; (b) unified proces-
sor architecture supporting all three shaders, well
suited for data-parallel stream workloads (kernels);
(c) data-flow patterns of modern workloads: (i) mul-
tiple kernels within an application to be executed
successively (without having to write intermediate
values to global memory), (ii) processing of a sin-
gle kernel with synchronization requirement before
the next iteration can be started, and (iii) strongly
inter-dependent kernels B and C producing variable
work for the next stage to process.

support for handling the kinds of communication patterns
shown in Figure 1(c).

Many application-specific solutions have been proposed
in literature recently to address these limitations — rang-
ing from fundamental parallel programming primitives like
scan and sort [8] and core algorithms like FFT [18] to pro-
grammable graphics pipelines like ray tracing [1] and Reyes-
style rendering [16] — to maximize performance. These
solutions while seemingly disjoint in usage are all centered
around a common programming principle, called Persistent
Threads (PT). However, showing that PT is useful in a spe-
cific instance does not address the larger questions: broadly,
when is the PT style applicable and why is it the right choice.
We go a step further by providing insights into this success-
fully used GPU-compute programming style in this paper.

Our first major contribution is to formally introduce/define



the Persistent Threads model in a domain-independent way
that is understandable to anyone with reasonable knowledge
of GPU computing. We hope it contributes to a deeper
understanding of this programming style. Our second ma-
jor contribution is to concisely categorize the possible usage
scenarios based on our needs and those encountered in lit-
erature into four broad use cases, each of which have been
clearly described and benchmarked in the paper. These use
cases encompass a wide body of issues that are encountered
with the irregular workloads addressed by PT and therefore
this paper provides a good starting point for anyone try-
ing to look at ways to improve their performance. As this
paper is neither intended as a summary nor validation of
results seen in past literature, our third and most important
contribution is a deep distillation and analysis of the use
cases via un-biased benchmarks developed by us to provide
insight into the key questions of using PT—when and why
is PT appropriate. We believe this understanding is sorely
lacking today. In this paper we take a systematic approach
that would be useful to a broad audience from a variety of
application domains.

In specific cases, the reason that makes PT successful is
because of inefficiencies in current hardware and program-
ming systems. We hope that over time, many of these inef-
ficiencies that we identify in this paper will be resolved as
hardware and software continue to move forward. However,
we believe that the use cases we describe in this paper are
relevant today and will continue to be relevant in the fu-
ture. So another contribution of this paper is the creation
of a set of benchmarks (comparison points) to help evaluate
implementations using PT against not only the traditional
programming style but also (and most importantly) against
future software and hardware advances. As these use cases
will continue to exist despite hardware and software evolu-
tion, the broader discussion we hope to initiate through this
paper is the relative merits of hardware scheduling (as in the
traditional GPU programming style) vs. software scheduling
(as in PT).

We begin by describing the present programming style
and identifying key performance bottlenecks in GPGPU pro-
gramming today, followed by a description of the Persistent
Threads style of programming in Section 2. In Section 3
we briefly describe each of the four use cases where we
find PT to be applicable, and discuss them in detail sub-
sequently. Through synthetic micro-kernel benchmarks, we
present guidelines for when a PT formulation could be ben-
eficial to programmers. We propose modifications to hard-
ware and software programming based on the experience
gained while running our benchmarks for native-PT-style
programming in Section 4. We conclude in Section 5 by ob-
serving that the changes required for native support for PT
style does not require a significant re-working of the proces-
sor hardware, making it a potentially attractive option for
inclusion in near-term hardware and software programming
extensions of CUDA and OpenCL.

2. PROGRAMMING STYLE BACKGROUND

2.1 Traditional Programming Style
GPU’s hardware and programming style are designed such

that they rely heavily on Single Instruction Multiple Thread
(SIMT) and Single Program Multiple Data (SPMD) pro-
gramming paradigms. Both these paradigms virtualize the
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Figure 2: An illustration of the various levels of hi-
erarchy in GPGPU programming. Solid rectangu-
lar boxes indicate a physical processor while dotted
boxes indicate virtual entities. (a) Multiple blocks
can simultaneously execute on a single SM; (b) Fur-
ther virtualization of blocks on the SM scheduled
over time.

underlying hardware at multiple levels, abstracting the view
for the software programmer from actual hardware opera-
tion. Every lane of the physical SIMD Streaming Multi-
processor (SM) is virtualized into larger batches of threads,
which are some multiple of the SIMD-lane width, called
warps or wavefronts (SIMT processing). Just like in SIMD
processing, each warp operates in lock-step and executes the
same instruction, time-multiplexed on the hardware proces-
sor. Multiple warps are combined to form a higher abstrac-
tion called thread blocks, with threads within each block al-
lowed to communicate and share data at runtime via L1
cache/shared memory or registers. The process is further
virtualized with multiple thread blocks being scheduled onto
each SM simultaneously, and each block operating indepen-
dently on different instances of the program on different data
(SPMD processing). A hierarchy of these virtualizations are
shown in Figure 2.

This programming style (which we shall refer to as ‘nonPT’)
forces the developer to abstract units of work to virtual
threads. As the number of blocks is dependent on the num-
ber of work units, in most scenarios there are several hun-
dreds or thousands more blocks to run on the hardware than
can be initiated at kernel launch. In the traditional program-
ming style, these extra blocks are scheduled at runtime. The
switching of blocks is managed entirely by a hardware sched-
uler, with the programmer having no means of influencing
how blocks are scheduled onto the SM. So while these ab-
stractions provide an easy-to-program model by presenting
a low barrier to entry for developers from a wide variety of
application domains, it gets in the way of seasoned program-
mers working on highly irregular workloads that are already
hard to parallelize. This exposes a significant limitation of
the current SPMD programming style that neither guaran-
tees order, location and timing, nor does it explicitly allow
developers to influence the above three parameters without



CUDA OpenCL

thread work item
warp —

thread block work group
grid index space

local memory private memory
shared memory local memory
global memory global memory

scalar core processing element
multi-processor (SM) compute unit

Table 1: Equivalent terminologies between CUDA
and OpenCL are listed here. Although we make use
of NVIDIA hardware and ‘C’ for CUDA terminolo-
gies in this paper, the same discussion can be ex-
tended to GPUs from other vendors using OpenCL.

bypassing the hardware scheduler altogether. To circumvent
these limitations, developers have used a PT style and its
lower level of abstraction to gain performance by directly
controlling scheduling.

2.1.1 Core Limitations of GPGPU Programming
A brief summary of other major characteristics of the cur-

rent GPGPU programming style, many of which impact per-
formance and are directly targeted by the Persistent Threads
programming style, are outlined below:

1. Host-Device Interface:

Master-slave processing: Only the host (master) pro-
cessor has the ability to issue commands for data move-
ment, synchronization, and execution on the device
outside of a kernel.

Kernel size: The dimensions of a block, and the num-
ber of blocks per kernel invocation, are passed as launch
configuration parameters to the kernel invocation API.

2. Device-side Properties:

Lifetime of a block: Every block is assumed to per-
form its function independent of other blocks, and re-
tire upon completion of its task.

Hardware scheduler: The hardware manages a list of
yet-to-be executed blocks and automatically schedules
them onto a multi-processor (SM) at runtime. As
scheduling is a runtime decision, the programming style
offers no guarantees of when or where a block will be
scheduled.

Block state: When a new block is mapped onto a par-
ticular SM, the old state (register and shared memory)
on that SM is considered stale, disallowing any com-
munication between blocks, even when run on the same
SM.

3. Memory Consistency:

Intra-block: Threads within a block communicate data
via either local (per-block) or global (DRAM) mem-
ory. Memory consistency is guaranteed between two
sections within a block if they are separated by an
appropriate intrinsic function (typically a block-wide

barrier).

Inter-block: The only mechanism for inter-block com-
munication is global memory. Because blocks are in-
dependent and their execution order is undefined, the
most common method for communicating between blocks
is to cause a global synchronization by ending a kernel
and starting a new one. Inter-block communication
through atomic memory operations is also an option,
but may not be suitable or deliver sufficient perfor-
mance for some application scenarios.

4. Kernel Invocations:

Producer-consumer: Due to the restrictions imposed
on inter-block data sharing, kernels can only produce
data as they run to completion. Consuming data on
the GPU produced by this kernel requires another ker-
nel.

Spawning kernels: A kernel cannot invoke another copy
of itself (recursion), spawn other kernels, or dynami-
cally add more blocks. This is especially costly in cases
where data reuse exists between invocations.

2.2 Persistent Threads Programming Style
The requirement imposed by the nonPT programming

style of dividing a workload into several blocks, more than
can physically reside simultaneously at kernel launch time,
is a design choice of the programming style, and not due
to some constraint imposed by the SM. From a hardware
perspective, threads are active throughout the execution of
a kernel. This differs from a developer’s perspective using
nonPT style coding guidelines by implying that as blocks
run to completion, threads corresponding to these blocks
are “retired”, while a batch of threads are “launched” as new
blocks are scheduled onto the SM.

The Persistent Threads style of programming alters the
notion of the lifetime of virtual software threads, bring-
ing them closer to execution lifetime of physical hardware
threads, i.e. the developer’s view is that threads are active
for the entire duration of a kernel. This is achieved by two
simple modifications to kernel code: First, the virtualization
of hardware SMs is limited to the level shown in Figure 2(a),
also referred to as maximal launch. Second, the lack of ad-
ditional blocks shown in Figure 2(b) is compensated by em-
ploying work queues. Both these are described in greater
detail below. The PT style of coding is much closer to how
one would program CPUs or Intel’s Larrabee processor [14],
which exposes the scheduler for the programmer to influ-
ence, if desired.

1. Maximal Launch: A kernel uses at most as
many blocks as can be concurrently scheduled
on the SM:

Since each thread remains persistent throughout the
execution of a kernel, and is active across traditional
block boundaries until no work remains, the program-
mer schedules only as many threads as the GPU SMs
can concurrently run. This represents the upper bound
on the number of threads with which a kernel can
launch. The lower bound can be as small as the num-
ber of threads required to launch a single block. In
order to distinguish nonPT and PT thread blocks, we
will refer to blocks in PT style programming as thread
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Figure 3: An illustration of nonPT and PT programming styles through an example image of 64x64 pixels
undergoing vertical motion blur — In this example, 16x16 threads combine to form a block and process the
image in a set of 4x4 blocks. The GPU has four SMs labeled 0-3. We assume a load-balanced system where
each SM runs one block at a time and four blocks each. For nonPT, the kernel launches with 16 blocks. At run
time the hardware non-deterministically schedules new blocks to SMs as other blocks complete. A PT kernel
launches at-most the number of blocks corresponding to ‘maximal launch’, which in this example correspond
to four thread groups, along with a 16-entry work queue; with each entry in this queue representing a block
index. Through the work queue, developers can control scheduling of blocks onto SMs. In this example,
each SM processes all blocks within a vertical sub-section of the image, thus helping data-reuse as pixels are
shared across vertical block boundaries.

groups for the remainder of this paper. A thread group
has the same dimensions as a thread block, but is
formed by combining persistent threads launched at
kernel invocation, processing work equivalent to zero,
one, or many thread blocks, and remaining active until
no more work is left for the kernel to process.

2. Software schedules work through work queues,
not hardware:

The traditional programming environment does not
expose the hardware scheduler to the programmer, thus
limiting the ability to exploit workload communication
patterns. In contrast, the PT style bypasses the hard-
ware scheduler by relying on a work queue of all blocks
that are to be processed for kernel execution to com-
plete. When a block finishes, it checks the queue for
more work and continues doing so until no work is left,
at which point the block retires.
Depending on the communication pattern exhibited by
the algorithm, the queue can either be static (known at
compile time) or dynamic (generated at runtime) and
can be used to control the order, location, and timing
of the execution of each block. There are several kinds
of optimizations one could incorporate in how work is
submitted and fetched from these queues – one exam-
ple would be to incorporate distributed queues instead
of a global queue that could lead to optimal load bal-
ancing via work stealing/donating or a hybrid of the
two approach. In this paper we focus on the base case
of a single queue which primarily as a FIFO.

3. USE CASES
Over the past two years, several researchers have used PT

techniques in their applications to improve performance. We
have categorized these into four use cases, each of which are
described in detail in the following four subsections.

PT-style programming lacks native hardware and pro-
gramming API support. While past studies have shown PT
to be advantageous, the benefits and limitations of hack-
ing the nonPT model to fit into a PT style in software is
not well understood and documented, and therefore cannot
be universally applied to all scenarios. Although a handful
benchmark suites are available for GPU computing [5, 6],
these workloads primarily deal with performance at a higher
level than we wanted for our analysis. Hence, apart from
distinctly categorizing use cases in this paper, another con-
tribution of this paper is the creation of an un-biased micro-
kernel benchmark suite that future studies can use/compare
against, and that vendors can use to evaluate future designs.

For each use case, we give a brief introduction and cite
relevant studies that have utilized the use case. We pro-
vide implementation details of our synthetic workloads fol-
lowed by results and conclusions. We wrote our tests in
both OpenCL and CUDA. Specifically, since OpenCL pro-
vides the ability for fine-grain profiling, we wrote the first
use case in OpenCL, and the remaining in CUDA. We ran
all our use cases on an NVIDIA GeForce GTX2951. Un-

1We also tested on a GTX580 (Fermi) and found the general
trends were similar, even though we made heavy use of atom-
ics and the Fermi architecture supposedly has better atomic
support (atomics in Fermi happen in the L2 cache/shared



Use Case Scenario Advantage of Persistent Threads

CPU-GPU Synchronization Kernel A produces a variable amount
of data that must be consumed by
Kernel B

nonPT implementations require a round-trip commu-
nication to the host to launch Kernel B with the exact
number of blocks corresponding to work items pro-
duced by Kernel A.

Load Balancing Traversing an irregularly-structured,
hierarchical data structure

PT implementations build an efficient queue to allow
a single kernel to produce a variable amount of out-
put per thread and load balance those outputs onto
threads for further processing.

Maintaining Active State A kernel accumulates a single value
across a large number of threads, or
Kernel A wants to pass data to Kernel
B through shared memory or registers

Because a PT kernel processes many more items per
block than a nonPT kernel, it can effectively leverage
shared memory across a larger block size for an appli-
cation like a global reduction.

Global Synchronization Global synchronization within a ker-
nel across thread blocks

In a nonPT kernel, synchronizing across blocks within
a kernel is not possible because blocks run to comple-
tion and cannot wait for blocks that have not yet been
scheduled. The PT model ensures that all blocks are
resident and thus allows global synchronization.

Table 2: Summary of Persistent Threads use cases

less otherwise stated, every block consists of 256 threads
in our experiments, and as a proxy for work per thread,
we perform a varying number of fused multiply-add (FMA)
operations on single-precision floating-point values. In the
following subsections, “more FMAs per item” is equivalent
to “more work per item”. For each experiment, we imple-
mented two versions of our synthetic benchmarks, nonPT
and PT (both with equivalent functionality), to evaluate
performance and identify tradeoffs. The four use cases are
CPU-GPU synchronization, load balancing/irregular paral-
lelism, producer-consumer locality, and global synchroniza-
tion, which are summarized in Table 2.

3.1 CPU-GPU Synchronization
Since the CPU (host) and GPU (device) are coupled to-

gether as a master and slave, the device lacks the ability to
submit work to itself. Outside of the functionality built into
a kernel, the device is dependent on the host for issuing all
data movement, execution and synchronization commands.
In cases where a producer kernel generates a variable num-
ber of items for the consumer kernel to process at run time,
the host must issue a readback, determine the number of
blocks needed to consume the intermediate data, and then
launch a new kernel. The readbacks have significant over-
head, especially in systems where the host and device do not
share the same memory space or are not on the same chip.

Boyer et al. present a systematic approach for accelerating
the process of detecting and tracking in-vivo blood vessels of
leukocytes [3]. By modifying memory access patterns, refor-
mulating the computations within the kernel, and fusing ker-
nels to minimize the CPU-GPU synchronization overhead,
they report a 60× speedup over the baseline naive imple-
mentation. Further, upon restructuring the computations
that originally required 50,000 kernel invocations to just one
PT invocation, they achieved a 211× speedup over the base-
line. Tzeng et al. utilized a work-queue based task-donation
strategy for efficiently handling split and dice stages in the
Reyes pipeline [16]. Their work splits micropolygons of a
scene into a variable number of patches at each step. With

memory, not in DRAM).

the nonPT traditional programming style, this would re-
quire a host readback of the number of patches to be split
in the next iteration. But by combining these two stages
into a single uberkernel and wrapping it in a PT kernel,
they eliminated the need for this readback and created a
self-sustaining Reyes engine that efficiently handles their ir-
regular workload.

3.1.1 Implementation
Overhead Characterization: In order to characterize

the overhead of host-device synchronization, we performed
a timing analysis of the three steps involved, shown in red
as the critical path in Figure 4-I: a blocking readback by
the host to determine the subsequent launch bounds, the
host overhead of generating configuration parameters for a
kernel with the appropriate number of items, and the kernel
launch time from the moment of issue to the moment the
device starts the kernel.

To obtain an accurate assessment of the synchronization
overhead, we used the low-level profiling API, clGetEvent-
ProfilingInfo(), provided in OpenCL (CUDA does not pro-
vide the fine-grained control we need, hence why we did not
implement this use case in CUDA). This call provides four
instances pertaining to when a call in the command queue is
issued by the host, dispatched to the device execution queue,
begins execution on the device, and the end time. For this
experiment, we computed the time it takes from the moment
the producer kernel (GPU-kP) ends to when the consumer
kernel (GPU-kC ) starts.

Persistent Threads Alternative: The PT alternative
requires two modifications. First, GPU’-kC is reformulated
to encapsulate the original kernel in a while loop, along with
an atomic operation to either increment or decrement the
number of items remaining. Second, the modified kernel
is launched with a fixed number of blocks by the host, re-
gardless of how many items are to be processed. When the
work queue counter exceeds the item count in the case of an
incremental queue or goes below zero in the case of a decre-
mental queue, the corresponding block exits. At runtime,
the last block of the GPU-kP writes the number of items
GPU’-kP must process to a predefined GPU-accessible lo-



cation. GPU’-kP then uses this value as its terminal count.
Thread groups retire once they reach this count.

Both modifications outlined here in the PT formulation
are sources of overhead. In order to further understand this
overhead w.r.t. nonPT kernels, we created two synthetic
workloads, one that was compute-intensive (CI), and the
other a combination of compute and memory (CMI) op-
erations. For the CI kernel we read data from memory,
perform a variable number of FMAs, and then write the
result to global memory. For the CMI kernel we perform
strided access to memory for every iteration of FMA com-
putation, committing the result to global memory after the
pre-determined number of operations has been performed.
In both cases, we unroll the FMA loop completely in order
to minimize loop overhead. For the nonPT case, the time
of execution is the sum of performing a synchronous data
transfer from GPU to CPU, and kernel execution.

3.1.2 Results & Conclusions
Using empty kernels we measured the round-trip cost of a

synchronized copy to the CPU and the launch on the GPU
to be around 400 µs. In addition to running this use case
on a NVIDIA GTX295, we also ran it on a GeForce 9400M
processor. A more detailed analysis of PT vs. nonPT per-
formance for a varying number of FMAs and blocks for our
workloads on both the processors is shown in Figure 5.

From Figure 5(a) we see that non-compute-intensive ker-
nels benefit from a PT formulation. As the number of blocks
to process increases, the atomic pressure increases consider-
ably, resulting in a slowdown. As the arithmetic intensity of
the amount of work processed per block increases, the PT
formulation generally results in a speedup, eventually dip-
ping below the nonPT baseline. In Figure 5(b) we see a dif-
ferent trend than for the CI case. While having fewer blocks
results in significant speedup with a small amount of work
per thread, as this work increases, we transition to a con-
siderable slowdown. We attribute this, in part, to the drop
in occupancy, the ratio of number of thread groups started
at launched time to the theoretical maximum supported by
the hardware. As the number of iterations to be unrolled
increases, the compiler requires more registers, and is more
restricted in making optimizations within the while-loop for
the PT case.

In stark contrast, we see a very distinct set of results for
these workloads on the GTX295. On both CI and CMI
workloads, the PT version is almost always slower than its
nonPT counterpart. The slowdown further increases as the
number of blocks to process increase. The only reasonable
explanation we hypothesize for this is the cost of contention
for atomics. The 9400M has only 2 SMs while the GTX295
has 30.

From these workloads we conclude that using PT
to avoid CPU-GPU synchronization is beneficial for
small workloads with few memory accesses and small
arithmetic intensity. Further, PT through software
is better for kernels launching fewer thread groups,
and where the cost of synchronization is a significant
fraction of the overall cost of the application.

3.2 Load Balancing / Irregular Parallelism
Efficiently processing poorly-structured algorithms or ir-

regular data-structures is a challenge on any compute device,
but especially the GPU. Extracting parallelism on the GPU

16 80 16
0

24
0

32
0

40
0

48
0

51
2

# Blocks

0.5

0.7

0.9

1

1.5

2

4

S
p
e
e
d
u
p
 o

v
e
r 

n
o
n
P
T

CPU-GPU Sync (Compute-Intensive)
nonPT
16 FMAs
32 FMAs
64 FMAs
128 FMAs
256 FMAs
512 FMAs

(a) 9400M – Compute only

16 80 16
0

24
0

32
0

40
0

48
0

51
2

# Blocks

0.5

0.7

0.9

1

1.5

2

4

S
p
e
e
d
u
p
 o

v
e
r 

n
o
n
P
T

CPU-GPU Sync (Compute- and Memory-Intensive)
nonPT
16 FMAs
32 FMAs
64 FMAs
128 FMAs
256 FMAs
512 FMAs

(b) 9400M – Compute+Mem.

60 30
0

60
0

90
0

12
00

15
00

18
00

21
00

24
00

27
00

30
00

33
00

36
00

# Blocks

0.1

0.2

0.5

1

2

S
p
e
e
d
u
p
 o

v
e
r 

n
o
n
P
T

CPU-GPU Sync (Compute-Intensive)

nonPT
16 FMAs
32 FMAs
64 FMAs
128 FMAs
256 FMAs
512 FMAs
1024 FMAs

(c) GTX295 – Compute only

60 30
0

60
0

90
0

12
00

15
00

18
00

21
00

24
00

27
00

30
00

33
00

36
00

# Blocks

0.1

0.2

0.5

1

2

S
p
e
e
d
u
p
 o

v
e
r 

n
o
n
P
T

CPU-GPU Sync (Compute- and Memory-Intensive)

nonPT
16 FMAs
32 FMAs
64 FMAs
128 FMAs
256 FMAs
512 FMAs
1024 FMAs

(d) GTX295 – Compute+Mem.

Figure 5: Results from CPU-GPU Synchronization
on NVIDIA’s GeForce 9400M and GTX295.
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Figure 6: An illustration of our complete and tilted
forest.

is left to the programmer, often requiring low-level control
routines to be written in software. These workloads present
two important issues—vector processor efficiency and han-
dling variable work items being consumed or produced, Aila
et al. present a thorough study of improving the efficiency
of processing the irregular the trace() phase in ray tracing
on vector processors through PT [1]. Their solution for han-
dling the varying depths of traversal for each ray was by us-
ing warp-wide blocks for avoiding a single ray holding several
warps within a block hostage2,and bypassing the hardware
scheduler by the use of PT. Tzeng et al. [16] addressed the

2We surmise that the large speedups seen by Aila et al.
and other researchers in this area were in large part due to
warp retirement serialization issues with pre-Fermi NVIDIA
hardware, and that newer hardware does not suffer from the
same issues. However, we note that this presumed hardware
issue is only relevant to this particular use case; the other
three use cases do not retire warps out of order.
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Figure 4: nonPT and PT illustrations of the use cases.

issue of variable producer/consumer work items using dis-
tributed work queues coupled with a task-donation strategy
to mitigate load-balancing issues of the split and dice phases
in the Reyes pipeline.

3.2.1 Implementation
In order to explore Load Balancing and Irregular Paral-

lelism (LBIP), we design a test (a forest expansion) that
emits a variable amount of work per thread and requires
multiple stages to complete. The algorithm starts with an
initial number of input items. Each thread performs a pre-
defined amount of FMAs in register space, after which the
owning block generates zero, one, or two new items (we tried
using a larger maximum branching factor, but it had little
effect on the resulting performance trends). The result is a
forest, where items that generate another item(s) are either
roots or intermediate nodes, and items that do not generate
work are leaves. Every block processes one item at a time
using all available threads.

We experimented with two different types of forests. We
call the first a complete forest, since every input item gener-
ates a complete binary tree of a shallow, pre-specified depth.
The second we call a tilted forest. In it, the “first half” of the
items on any given level generate no new items, and every
item in the “second half” generates two new items, shown
in Figure 6. Work generation halts at a pre-specified depth.
The tilted-tree model has the same number of nodes on ev-
ery level (the first level might differ by one item). Instead of
halting the forest growth at a shallow level, we let the tree
grow to a pre-specified depth of at most one thousand.

nonPT Implementation: Each nonPT kernel invoca-
tion processes one or more items comprising a complete level
of the forest. Each node generates zero or two new items.
We can safely store only the current level and the next level
of the forest since we work on a level at a time. Each level
of the tree has a counter dictating how many items are in
that level. For a given block, we check the global index of
the block and terminate immediately if there are fewer items
than this index, otherwise the block processes the input and
helps to populate the next level of the forest (until the forest
reaches a certain depth). To achieve perfect load balancing
(a 1-to-1 matching of number of blocks and items at the
current level), we could issue a readback before each kernel
invocation to get a tight bound on the number of blocks we
need, or since we know implicitly the new number of items
in the next level (we know the initial number and that ev-
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Figure 7: Load Balancing/Irregular Parallelism Re-
sults (Complete Forest): We run with a large variety
of MADs per thread per level (0–50,000), maximum
depth (1–12), and the number of PT blocks (1–240).
The graph shows the general trends we notice from
all runs. We see a general loss of speedup as the
number of elements increases as the NonPT kernel
has more work to do. We see PT speedup greater
than 1.0 when the number of MADs is high, starting
somewhere between 1000 and 5000 per thread per
level.
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Figure 8: Load Balancing/Irregular Parallelism Re-
sults (Tilted Forest): We again run with a large vari-
ation in our configuration. However, we found that
as we varied the maximum depth and the number
of inputs, the trends stayed consistent. So we show
our results from a maximum depth of 50 with 128
initial inputs. We found similar behavior as we var-
ied the number of initial elements. This graph shows
the general trends we notice from all runs. As we
saturate the SMs with at least 30 blocks, we achieve
better performance than the NonPT kernel when we
have a high amount of work per thread per level.

ery item creates two new items at each level), we could just
use that knowledge. But we felt doing either of these went
against the spirit of the use case, since real application prob-
ably would not have full expansion, and it might be slower
to perform the readback than to just schedule the empty
blocks.

When processing an item, we assume that a block knows
how many new items its current item will generate before ac-
tually processing the item. This enables us to cheat slightly
by maximizing the distance between the atomic increment
and the use of the calculated value. The complete forest
application knows ahead of time how many levels of items
to process, so it launches the correct number of kernels all
at once in a single stream, thus lowering kernel-launch over-
head. For the tilted forest, we do not allow the application
to presume knowledge of the final level of work. Thus, the
application schedules X levels of work at a time and then
performs a readback to determine if any work remains. We
did not want to assume that either application knew how
many items were on any level on either test, so we sched-
uled the maximum number of blocks necessary to process
a full level. This caused a performance hit for our nonPT
kernel because we allowed each level to grow quite large (on
the order of millions of elements for the complete forest and
tens of thousands of element for the tilted forest).

PT Implementation: Our PT kernel is different from
our nonPT kernel in that it lacks implicit knowledge of the
level of an item. We use a single work queue to store work
items instead of two queues and a ping pong strategy (as
with nonPT). Our queue grants access via an atomically
guarded spin lock. Each block loops until it detects pro-
gram termination via an atomically guarded variable. As
a block enters an iteration of the loop, it locks the queue,
reads an item, and releases the lock. If the block reads a
valid item, it processes that item and determines how many
new items to generate. The block locks the queue to add
new items and then unlocks the queue. Locking is impor-
tant both for adding and removing elements since it alone
guarantees coherency of the queue pointers. When no more
items are available and all blocks are idle, the kernel exits.
In theory the implementation of our PT kernel is quite sim-
ple, but correctly manipulating the locks and counters for
the queue is tricky.

Our PT implementation uses a shared, global queue. There
are other queuing implementations such as many global queues,
or a global queue with local queues combined with task steal-
ing and/or donation. We used a single queue based on prior
tests, implementation time, performance, and the desire to
keep low the number of variables in our experiments. We
also noted that with the complete-tree implementation, us-
ing small local queues offered no significant performance im-
provement because the queues fill up rapidly (often even at
the end of every level). For the tilted tree, one or more
blocks must constantly steal work from other queues, again
mitigating any performance improvements.

3.2.2 Results & Conclusions
LBIP has a large number of variables, both for the nonPT

and the PT kernel. The common variables between them are
the initial number of input items, the amount of work per
item, and the depth of the forest. We also varied the total
number of blocks to use per SM for PT and the number of
invoked kernels per read back (to check for termination in
the nonPT kernel).

We conclude that the more items per level, the poorer per-
formance for PT, because the hardware scheduler will always
best an ad hoc software scheduler. The stable and downward
trends in Figure 7 illustrate this point. Concurrent atomic
pressure is a major factor in our PT kernel. We use only
round-trip atomics, meaning we need to wait for the result
of every atomic operation, and thus each block must wait for
the atomic pipeline to flush. The atomic pipeline in NVIDIA
GPUs (both on Tesla and Fermi) does not scale linearly
with the number of concurrent atomics (in fact the behavior
seems non-deterministic and suffers from starvation in cases
where atomics are used as locks). However, as each block
spaces out queue-access requests with significant amounts
of work, the number of concurrent accesses decreases, the
overall time to access the queue decreases rapidly, and the
ratio between the two (and thus queue access time in gen-
eral) quickly becomes negligible. Figure 8 shows this trend
very well: once the number of MADs per thread per level
increases beyond a certain threshold (dictated by the num-
ber of active threads on the GPU), performance stabilizes
in relation to nonPT.

Our experiments show two different trends. First, regard-
less of the number of FMAs per item, PT tends to to outper-
form nonPT with a small number of initial inputs. However,



as the number of inputs grows, PT only does well when the
kernel executes a lot of work per item. This is due to concur-
rent atomic pressure. With many items (regardless of work
per item), nonPT blocks spend most of their time doing ac-
tual work, instead of simply coming alive, seeing no work,
and dying. With many items, but with little work per item
though, PT blocks spend a significant fraction of their time
accessing the high-contention queue. As the amount of work
per item increases, access to the queue spreads out, thus low-
ering contention and significantly speeding up queue-access
time.

Based on our workloads on the GPU under study,
we conclude that for the general case, PT is better
on specific combinations of variables. PT outper-
forms nonPT on small, irregular work and regular
deeply-recursive work, and in either of our forest im-
plementations PT tends to outperform nonPT when
there are not many initial input elements and when
the growth in elements is fairly constrained.

3.3 Producer-Consumer Locality
Many algorithms require data sharing between different

threads within a kernel. Producer-consumer locality refers
to the ability of one piece of work to pass its results to
another piece of work with minimal cost. Current hardware
allows data sharing by threads in the same block via on-chip
memory, but threads in different blocks must communicate
through DRAM and use expensive intrinsics to guarantee
coherency. This limitation is an artifact of the lifetime of a
block (threads retire after finishing a small amount of work),
and the inability to express explicit communication patterns
that aid in guaranteeing coherence without using DRAM.
PT addresses this limitation.

In previous work in this area, Bell and Garland [2] use
persistent warps for passing the “carry-out” of one iteration
as the “carry-in” of the next in their COO format for SpMV
computations. Breitbart [4] details a prefix-sum implemen-
tation that requires a single kernel launch by using static
workgroups as opposed to many kernel launches. Recent
sorting and prefix-sum scan work also uses PT to minimize
global memory traffic by exploiting producer-consumer lo-
cality [8, 13].

3.3.1 Implementation
To test how PT deals with producer-consumer locality,

we use two different workloads. The first is a large reduce
function; given a set of N floats, compute their sum. The
second is a dummy benchmark that executes a synthetic
workload of FMAs in two stages. We begin with a set of
N inputs. In the first step, we perform a certain amount of
arithmetic on each item, then in the second step, perform
additional arithmetic on only a certain percentage of those
items.

nonPT Reduce: We use a multi-kernel approach for our
nonPT reduce. Given N floats, we schedule dN/256e blocks
to reduce the initial input set. Each block reduces 256 floats
down to 1 float and stores it back to DRAM. This reduces
the input set size from N to dN/256e. We continue to sched-
ule kernels in the same manner until we reduce our set to
a single item, the final value. This implies that we must
schedule dlog256Ne kernels to reduce any input set.

PT Reduce: We use a single kernel with at most 256
blocks to complete the two-stage process. The kernel stati-

cally divides the input. Each thread reads a value from the
array, performs a reduction, and then when it has read all its
values, performs a blockwise reduction. Once all blocks fin-
ish their reductions, they write their single value to DRAM
and the kernel executes a global barrier. After the barrier,
block 0 reads all values from DRAM and performs one final
reduction.

nonPT Synthetic Workload: For our nonPT synthetic
workload, we have two implementations; one for the case
that most/all threads in the second stage would work on
items passed from the first stage, and one for the case that
relatively few threads in the second stage would work on
items passed from the first stage.

The first implementation uses a single kernel. We param-
eterize the number of items to pass per block. Each of the
256 threads in a block reads a single float from DRAM, per-
forms a certain amount of FMAs, conditionally progresses
to the second stage (or dies), and carries with it a single re-
sultant float stored in a register. Once in the second stage,
the thread performs the same amount of arithmetic as the
first stage and stores a single float out to DRAM. This im-
plementation is most efficient when all input items produce
an output item, meaning every thread in the first stage re-
mains active during the second stage and also passes with it
a value to compute in the second stage.

Our second implementation is similar to the above in
terms of compute characteristics but differs by storing inter-
mediate values to DRAM and using two kernels (one pro-
ducer, one consumer). As each block finishes stage one, the
threads conditionally store their intermediate data into a
tightly packed array in DRAM (those who do not pass the
condition simply die). Next, we launch the consumer with as
many threads as input items; each thread reads an element
from the array, performs the same amount of arithmetic as
in the producer kernel, and writes the result to DRAM.

Our second approach is most efficient when relatively few
input items produce an output item. In this case, since the
consumer kernel can be configured for the appropriate num-
ber of items, it would better utilize hardware resources (in
the first, many threads per block do not progress to the con-
sumer stage, thus holding hostage many hardware threads
per SM).

PT Synthetic Workload: We again use a single kernel
written as an uberkernel, statically partition the entire in-
put among blocks, and, as with the nonPT implementation,
parameterize the number of items to keep per block. Each
block has a shared-memory storage arena. Just as in the
nonPT case, each thread again reads in one float, does a
pre-determined number of FMAs, and conditionally stores
the result into the shared memory queue. When the queue
fills up, the entire block processes the queue until it is empty
by moving an item from the queue into a register, performing
the same amount of arithmetic per item as in the producer
stage, and then storing the result to DRAM. The block then
resumes processing more items from the producer stage.

3.3.2 Results & Conclusions
Reduce: Our PT implementation of reduce outperforms

an optimized nonPT reduce at every size of input we tested,
with speedup eventually leveling off around 1.1× as the
amount of work to process increases. At small input sizes,
the largest bottleneck in nonPT reduce is the global bar-
rier accomplished via implicit kernel boundaries. By using a
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Figure 9: Producer-Consumer Results: We run our
synthetic workload passing items from the producer
stage to the consumer stage. We vary the number
of items to pass, as well as the full number of initial
items to process. As we vary the number of items
to pass from 0 to 32 (per 256), we maintain perfor-
mance between 0.95–1.05× that of a nonPT kernel.
However, when we pass a large percentage (at least
25%) of the items to the consumer stage, we get
up to 1.40× speedup, in large part because we have
producer-consumer data locality and can pass items
via registers and shared memory.

cheaper global barrier in our PT implementation we achieve
a significant reduction in execution time, between 1.50× and
1.85×. As input size increases, the time taken to execute a
barrier is small compared to DRAM access time. Thus, the
performance improvements we see come not so much from
using an explicit PT barrier, but from passing items via
shared memory.

Synthetic Workload: We draw the following conclusions
from the three major data points in Figure 9: When we pass
no items from producer to consumer, we achieve slowdown
with our PT implementation because the hardware sched-
uler is much better at load-balancing the SMs than our PT
kernel. As the number of passed input items ranges be-
tween one and less than thirty-two (per block), we achieve
only moderate speedup. As the number of input items to
pass grows beyond thirty-two, we begin to achieve notice-
able speedup, finishing off at approximately 1.45× for large
input sizes where we pass every produced item to the con-
sumer stage.

3.4 Global Synchronization
The GPU provides hardware support for synchronizing

threads in a block, but not for synchronizing between ac-
tive blocks on an the same SM, or the entire GPU. Cur-
rent hardware guidelines dictate that the only way to glob-

ally synchronize is to launch separate kernels at would-be
synchronization points. Kernel-launch overhead costs be-
tween 3-7 µs [17], which can lead to significant overheads
depending on the number of kernel invocations [3]. Stuart
and Owens used PT-based global synchronization in their
implementation of a message-passing API for GPUs [15] to
efficiently implement collective communications such as bar-
riers. Luo et al. [7] present a hierarchical kernel arrangement
for building a BFS through the use a global barrier to syn-
chronize between blocks to mitigate the cost of kernel launch
overhead.

We, and others, specifically propose the use of Global Syn-
chronization (GS) through PT to minimize kernel-launch
overhead. The GS construct is a barrier implemented in soft-
ware for inter-block communication. The GS barrier acts on
every block concurrently on the GPU. It can be used for sep-
arating different instances of the same kernel being processed
recursively, or multiple sections of code within the same ker-
nel in the case of uberkernel formulations. The GS construct
has been shown to consume between 1.3–2.0 µs [18]. These
results, however, only cover one data point, and in order
to better understand the performance tradeoffs, we varied a
wide number of parameters for our micro-benchmarks.

3.4.1 Implementation
nonPT: The nonPT implementation of our synthetic GS

use case works as a two-step process, one on the GPU and
one on the CPU. The GPU stage simply performs a prede-
termined number of FMAs in register space, then stores a
value in DRAM. The CPU stage then implictly synchronizes
by launching another kernel. We do not explicitly synchro-
nize, nor do we need to, since the hardware guarantees that
if kernels are launched asynchronously in a single stream, all
blocks of the preceding kernel will run to completion before
the next kernel begins. The point of our synthetic workload
is to determine roughly how much work on average a block
must perform to mitigate the cost of GS.

PT: The PT implementation of GS use case works as a
single-step process consisting of two stages, with both stages
executing on the GPU. Like the nonPT version, each block
in the first PT stage performs its pre-defined set of oper-
ations. However, because blocks are persistent, each must
perform the work of a variable number of blocks from the
nonPT implementation. As each block completes an iter-
ation, it begins processing the second stage. This stage is
where blocks synchronize globally. Our implementation of
GS is based on the lock-free version described by Xiao and
Feng [18].

3.4.2 Results & Conclusions
We varied the number of blocks, the number of FMAs

to be performed per input item, and the total number of
blocks to process. The overall trend remains the same un-
til 2000 FMAs per thread, but falls off dramatically as the
compute intensity is increased. After inspecting the PTX,
this seems to be due to the compiler no longer unrolling for
loops. Figure 10 shows the graph obtained on running GS
on a workload performing 1000 FMAs, with a varying num-
ber of items to process per block and a varying number of
syncs. We see a consistent speedup of 2–2.5×, which is in
line with the previously-reported results3. From our tests
we conclude two things. First, the amount of arithmetic to

3We note one exception: we achieve less speedup when run-
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Figure 10: Global Synchronization Results: The
runs for this graph used 1000 FMAs per input item
per sync.

be performed has little bearing on the performance of global
synchronization. Second, the benefit of syncing on the GPU
increases asymptotically with the number of syncs: when
each PT block executes a significant amount of work, the
time taken to launch a new kernel is small in relation to the
total execution time. Thus the application provides little
room for a PT-based speedup.

From these results we conclude that the amount of
arithmetic to be performed has little bearing on the
performance of global synchronization, and the ben-
efit of syncing on the GPU increases asymptotically
with the number of syncs.

4. DISCUSSION
Based on previous work, and the micro-benchmarks dis-

cussed in Section 3, we have shown that the PT program-
ming style can be used to address a range of computational
patterns. PT addresses many of the restrictions mentioned
in Section 2.1.1 pertaining to the current hardware and pro-
gramming style. Taking a long-term view, we discuss the
potential impact use cases outlined in this paper are likely
to have with eminent changes in future, and possible changes
hardware vendors and Khronos partners might consider use-
ful to look into for future iterations of the programming en-
vironment.

1. CPU-GPU Synchronization: The cost of synchro-
nization across the CPU and GPU is largely dependent
on the round-trip time for data to be copied from GPU
to CPU memory-space, and kernel launch overhead.
For integrated processors with CPU and GPU on the
same die, like AMD’s Llano and Intel’s Sandy Bridge

ning the workload of 50 nonPT blocks and have yet to find
a reasonable answer as to why.

processors, that will share dedicated on-chip memory
for inter-processor communication in future revisions
of the architecture, we see comparitively lesser benefit
in using PT on such platforms when compared to dis-
crete systems where the CPU and GPU are connected
through a system interconnect bus like PCI-Express.

2. Load Balancing: Effectively utilizing all cores on any
parallel processor is a difficult problem. Quite often
the best way to load balance is by running task-parallel
workloads, an area that is emerging as an important
primitive. Hence, for this use case to be handled effi-
ciently, it is imperative that there be dedicated support
for queues in hardware with API extensions that pro-
vide tracking of head and tail pointers, queue wrap-
around logic, overflow/underflow guard flags, nearly-
full/empty flags, distributed queues, etc. Currently
the developer is required to implement one in software,
taking care of guaranteeing both data consistency and
deadlock avoidance, which is non-trivial. In addition
to this, the ability for kernels to generate and launch
their own work would greatly ease the implementation
of load-balanced and task-parallel systems.

3. Producer-Consumer: Extracting producer-consumer
locality is the most challenging of all the use cases dis-
cussed in this paper. The nonPT style provides no way
of expressing data locality patterns, which is especially
important on massively data-parallel machines. Using
cache-coherence could be one way of addressing this,
but would be expensive to build and does not scale
very well, and hence not popular in most GPUs today.
The PT style helps address these issues by giving more
control over scheduling and exploiting locality exhib-
ited by the underlying algorithm. We see this as the
biggest benefit of using PT style programming, with
use even in future processor generations.

4. Global Synchronization: As the number of proces-
sors on GPU grows, so will the number of blocks that
can be resident on it. This implies that beyond a point
the cost of synchronizing on the GPU would be greater
than the kernel launch overhead, and therefore for fu-
ture systems might not be very useful at a global level.
However, there are several patterns that require only
a subset of blocks to communicate and synchronize,
and hence it could still be quite useful to synchronize
on the GPU. Ultimately, research into fast and good
higher-level synchronization primitives than a barrier
is required.

4.1 Implementation Aspects
As discussed in Section 2.2, the primary purpose of PT

style programming is to bypass the default (traditional) pro-
gramming style offered by CUDA and OpenCL by altering
the lifetime of thread blocks and how they are scheduled.
In providing a greater degree of flexibility to optimally deal
with algorithms with complex compute, data movement and
synchronization patterns, a much greater burden is put upon
the developer as aspects that would otherwise have been
handled transparently by the driver/hardware must now be
done manually.

Even minor modifications in code can lead to enough change
in register and shared memory usage that ultimately affects



multi-processor occupancy (the number of thread groups
that can be simultaneously scheduled on the SM). In the
absence of formal support for PT kernels, the programmer
is required to manually account for changes in occupancy as
it directly influences maximal launch parameters (especially
relevant to the global synchronization use case), and also
impacts the implementation of the underlying algorithm us-
ing complex queue-control structures. A list of portability
aspects with reference to each use case are shown in Table 3.
One possible means of extending support for PT is through
a dedicated API. A sample of how simple this modification
could be is shown in API 1.

4.2 Return-on-Investment
Our results clearly show that there is no guarantee of suc-

cess for kernels designed via PT today. With limited native
support either in the form of dedicated APIs or lower-level
GPU primitives, developer time and effort involved in PT
style programming, in a wide majority of cases, is signifi-
cant. Further, due to the complexities involved in altering
kernels to fit into a PT framework, debugging can also prove
to be an extremely challenging task.

Based on our experiences and results, we suggest that any
decision to use this programming style should be made af-
ter careful consideration as a significant investment in all
aspects of design, implementation, and debug are involved,
that require considerably more effort to program successfully
than any nonPT implementation.

4.3 Power
Although we have not done an analysis regards impact of

PT on power consumption, we believe this to be an interest-
ing aspect for future work to consider, particularly relevant
to low-power GPUs in consumer electronic devices. On the
one hand as atomic operations are inherently serial in na-
ture, they are likely to exhibit a poor power profile (the
power consumption of PT with a high degree of contention
that gets resolved in L2 cache or global memory is likely
to be quite high), it can also lead to bypassing the hard-
ware scheduler (that is one of the most complex parts of
the modern GPU) thereby providing dynamic power saving
opportunities by putting these transistors into power-save
mode for the duration of the PT kernel.

5. CONCLUSION
GPU computing is still a nascent field, with its program-

ming models and styles, and hardware that supports them,
still in a rapid state of change. While GPU architectures
have made steady strides since the adoption of unified shaders
for supporting GPU computing workloads, there is a long list
of potential advancements from the CPU world, from the
supercomputing world, and that have yet to be developed
that may be required to unlock its full potential. Support
for recursion, memory management, and preemption, just to
name a few, may eventually be in the GPU, but only after
potentially significant redesigns of the architecture.

Rather than only inheriting techniques from the CPU
world, one of the most exciting aspects of GPU computing
is how promising software techniques developed first on the
GPU quickly become system and hardware features. Our
discussion in Section 4 shows that extending native support
for PT would not be a particularly expensive exercise, and
we certainly expect that some of them are already on the

radar of future system architects. The most important use
case in the broad sense is that of producer-consumer locality:
locality is poorly supported by the traditional programming
style, but PT shows a definite win over the traditional style
in a realm that is absolutely critical for future system effi-
ciency. Further investigation into how to expose locality in
future programming models is an essential research direction
for the community at large.

More broadly, the GPU is moving from an engine that sup-
ports only regular workloads to one that increasingly targets
irregular ones with complex parallelism and dependencies.
These modifications, while certainly helping PT implemen-
tations, promise to also allow the GPU the broader potential
to support a wider variety of irregular workloads. Our tests
clearly show that PT implementations are not necessarily
an out-right winner, and do not in fact lead to significant
gains for some use cases on our micro-benchmark workloads,
today. However, these results could be markedly different in
future as GPUs continue to evolve, and some of the sugges-
tions discussed in this paper are incorporated by hardware
vendors for PT style programming, natively. Our ultimate
goal of this paper is to formally introduce this important
programming style to the broader GPU computing commu-
nity, and through an initial set of micro-kernel benchmarks
to initiate a broader discussion on this topic. We hope that
our work toward characterizing and understanding persis-
tent threads will play an important role in simplifying and
enhancing general-purpose applications on the GPU.
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