UC Berkeley

UC Berkeley Electronic Theses and Dissertations

Title
Scalable Ensemble Learning and Computationally Efficient Variance Estimation

Permalink
https://escholarship.org/uc/item/3kb142r2

Author
LeDell, Erin

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/3kb142r2
https://escholarship.org
http://www.cdlib.org/

Scalable Ensemble Learning and Computationally Efficient Variance Estimation

by

Erin E. LeDell

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Biostatistics
and the Designated Emphasis
in
Computational Science and Engineering
in the
Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Mark van der Laan, Co-chair
Assistant Professor Maya Petersen, Co-chair
Professor Alan E. Hubbard

Professor in Residence Phillip Colella

Spring 2015



Scalable Ensemble Learning and Computationally Efficient Variance Estimation

Copyright 2015
by
Erin E. LeDell



Abstract

Scalable Ensemble Learning and Computationally Efficient Variance Estimation
by
Erin E. LeDell

Doctor of Philosophy in Biostatistics
and the Designated Emphasis in
Computational Science and Engineering

University of California, Berkeley
Professor Mark van der Laan, Co-chair

Assistant Professor Maya Petersen, Co-chair

Ensemble machine learning methods are often used when the true prediction function is
not easily approximated by a single algorithm. The Super Learner algorithm is an ensemble
method that has been theoretically proven to represent an asymptotically optimal system for
learning. The Super Learner, also known as stacking, combines multiple, typically diverse,
base learning algorithms into a single, powerful prediction function through a secondary
learning process called metalearning. Although ensemble methods offer superior performance
over their singleton counterparts, there is an implicit computational cost to ensembles, as it
requires training multiple base learning algorithms. We present several practical solutions
to reducing the computational burden of ensemble learning while retaining superior model
performance, along with software, code examples and benchmarks.

Further, we present a generalized metalearning method for approximating the combina-
tion of the base learners which maximizes a model performance metric of interest. As an
example, we create an AUC-maximizing Super Learner and show that this technique works
especially well in the case of imbalanced binary outcomes. We conclude by presenting a com-
putationally efficient approach to approximating variance for cross-validated AUC estimates
using influence functions. This technique can be used generally to obtain confidence inter-
vals for any estimator, however, due to the extensive use of AUC in the field of biostatistics,
cross-validated AUC is used as a practical, motivating example.

The goal of this body of work is to provide new scalable approaches to obtaining the
highest performing predictive models while optimizing any model performance metric of
interest, and further, to provide computationally efficient inference for that estimate.
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Chapter 1

Introduction

The machine learning technique of combining multiple algorithms into an ensemble has long
been used to provide superior predictive performance over single algorithms. While ensem-
bles achieve greater performance than a single algorithm, the computational demands of
ensemble learning algorithms can be prohibitive in the era of “big data.” The computa-
tional burden of an ensemble algorithm is the aggregate of the computation required to
train all the constituent models. While some ensemble learners, e.g. Random Forest [16],
can be described as “embarrassingly parallel” in nature, there are others, such as boosting
[29] methods, that require much more sophistication to effectively scale. Although there are
several algorithms that fall into the category of ensemble learning, stacking [17, 86] or Super
Learning [84] in particular, has been theoretically proven to represent an asymptotically
optimal system for learning and will be a main focus of this dissertation.

The Super Learner algorithm combines multiple, typically diverse, learning algorithms
into a single, powerful prediction function through a secondary learning process called met-
alearning. Although the Super Learner may require a large amount of computation to per-
form all of the training required in cross-validating each of the constituent algorithms, many
of the steps in the algorithm are computationally independent. We can exploit this compu-
tational independence by taking advantage of modern parallel computing architectures. In
addition to exploiting the natural parallelism inherent to the Super Learner algorithm, we
explore novel approaches to scaling the Super Learner to big data. In Chapter 2, we use
cluster-distributed base learning algorithms as well as online or sequential base learners and
metalearners. In Chapter 3, we discuss a subset-based ensemble method called the Subsemble
[72] algorithm, including its theoretical properties and parallelized implementation. With
each of these approaches, we present open source software packages and benchmarks for our
methods.

In the field of biostatistics, and in industry at large, binary classification or ranking
problems are quite common. In many practical situations, the number of available examples
of the majority class far outweighs the number of minority class examples, producing training
sets with a rare outcome. In the medical field, binary classification algorithms can be trained
to diagnose a rare health condition using patient health data [65]. In industry, fraud detection
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is a canonical example of a rare outcome problem. Some of the most important data science or
applied machine learning problems involve predicting a rare, and sometimes disastrous, event
using a limited number of positive training examples. In rare outcome problems, it may not
be appropriate to use a model performance metric such as mean squared error or classification
error, so different types of performance metrics are needed. The Area Under the ROC Curve
(AUC) is probably the most well-known example of these performance measures, however
Partial AUC [62, 44], Fi-score [70] and H-measure [37] are also examples of performance
measures that may be used in practice. In Chapter 4, we propose a generic computational
approach, based on nonlinear optimization, to construct a Super Learner ensemble which
will maximize any desired performance metric. In biostatistics, AUC is still one of the most
widely-used performance metrics, so AUC is used as a motivating and practical example.

Although the past decade has produced significant efforts towards the goal of scaling of
machine learning algorithms to big data, there has been considerably less research on the
topic of variance estimation for big data. This lack of inference is noticeably absent. In the
machine learning community, journal articles are consistently published containing model
performance estimates with no mention of the corresponding confidence intervals for these
estimates. The statistics community has a tradition of computing confidence intervals for
statistical estimates using a variety of techniques, such as the nonparametric bootstrap. How-
ever, in the case of model performance estimates, training a single model on a large dataset
may already be a computationally arduous task. Repeating the entire training process hun-
dreds or thousands of times to obtain a bootstrap estimate of variance is simply not feasible
in many cases. Although there has been success at reducing the computational burden of
traditional bootstrapping, as in the case of the Bag of Little Bootstraps (BLB) [1] method,
re-sampling based methods for variance estimation still require repeated re-estimation of
the quantity of interest. In Chapter 5, we demonstrate how to generate a computationally
efficient, influence function based estimate of variance, using cross-validated AUC as an ex-
ample. Influence function based variance estimation removes the requirement of repeated
re-estimation of the parameter of interest, and simplifies the variance estimation task into a
computationally simple calculation. Since variance estimation via influence functions relies
on asymptotic theory, the technique is perfectly suited for large n.

This dissertation establishes a modern and practical framework for high-performance en-
semble machine learning and inference on big data. Using AUC as an example performance
metric of interest, we present theoretically sound methods as well as efficient implementations
in open source software. The goal of this body of work is to provide new scalable approaches
to obtaining the highest performing predictive models while optimizing any model perfor-
mance metric, and further, to provide computationally efficient inference for that estimate.



Chapter 2

Scalable Super Learning

2.1 Introduction

Super Learning is a generalized loss-based ensemble learning framework that was theoreti-
cally validated in [84]. This template for learning is applicable to and currently being used
across a wide class of problems including problems involving biased sampling, missingness,
and censoring. It can be used to estimate marginal densities, conditional densities, condi-
tional hazards, conditional means, conditional medians, conditional quantiles, conditional
survival functions, among others [48]. Some applications of Super Learning include the es-
timation of propensity scores, dose-response functions [47] and optimal dynamic treatment
rules [60], for example.

When used for standard prediction, the Super Learner algorithm is a supervised learning
algorithm equivalent to “generalized stacking” [17, 86], an ensemble learning technique that
combines the output from a set of base learning algorithms via a second-level metalearning
algorithm. The Super Learner is built on the theory of cross-validation and has been proven
to represent an asymptotically optimal system for learning [84]. The framework allows for a
general class of prediction algorithms to be considered for the ensemble.

In this chapter, we discuss some of the history of stacking, review the basic theoretical
properties of Super Learning and provide a description of Online Super Learning. We discuss
several practical implementations of the Super Learner algorithm and highlight the various
ways in which the algorithm can scale to big data. In conclusion, we present examples of
real-world applications that utilize Super Learning.

2.2 The Super Learner algorithm

The Super Learner algorithm is a generalization of the stacking algorithm introduced in
context of neural networks by Wolpert [86] in 1992 and adapted to regression problems by
Breiman [17] in 1996. The “Super Learner” name was introduced due to the theoretical
oracle property and its consequences as presented in [24] and [84].
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The distinct characteristic of the Super Learner algorithm in the context of stacking, is
its theoretical foundation, which shows that the Super Learner ensemble is asymptotically
equivalent to the oracle. Under most conditions, the theory also guarantees that the Super
Learner ensemble will perform as least as well as the best individual base learner. Therefore,
if model performance is the primary objective in a machine learning problem, the Super
Learner with a rich candidate learner library can be used to theoretically and practically
guarantee better model performance than can be achieved by a single algorithm alone.

Stacking

Stacking or stacked generalization, is a procedure for ensemble learning where a second-level
learner, or a metalearner, is trained on the output (i.e., the cross-validated predictions, de-
scribed below) of a collection of base learners. The output from the base learners, also called
the level-one data, can be generated by using cross-validation. Accordingly, the original
training data set is often referred to as the level-zero data. Although not backed by theory,
in the case of large training sets, it may be reasonable to construct the level-one data using
predictions from a single, independent test set. In the original stacking literature, Wolpert
proposed using leave-one-out cross-validation [86], however, due to computational costs and
empirical evidence of superior performance, Breiman suggested using 10-fold cross-validation
to generate the level-one data [17]. The Super Learner theory requires cross-validation (usu-
ally k-fold cross-validation, in practice) to generate the level-one data.

The following describes in greater detail how to construct the level-one data. Assume
that the training set is comprised of n independent and identically distributed observations,
{O4,...,0,}, where O; = (X;,Y;) and X; € RP is a vector of covariate or feature values
and Y; € R is the outcome. Consider an ensemble comprised of a set of L base learning
algorithms, {W! ..., WL} each of which is indexed by an algorithm class and a specific set
of model parameters. Then, the process of constructing the level-one data will involve
generating an n x L matrix, Z, of k-fold cross-validated predicted values as follows:

1. The original training set, X, is divided at random into £ = V roughly-equal pieces
(validation folds), X 1y, ..., X (v).

2. For each base learner in the ensemble, W! V-fold cross-validation is used to generate
n cross-validated predicted values associated with the [** learner. These n-dimensional
vectors of cross-validated predicted values become the L columns of Z.

The level-one data set, Z, along with the original outcome vector, (Y,...,Y,) € R" is
used to train the metalearning algorithm. As a final task, each of the L base learners will be
fit on the full training set, and these fits will be saved. The final “ensemble fit” is comprised
of the L base learner fits, along with the metalearner fit. To generate a prediction for new
data using the ensemble, the algorithm first generates predicted values from each of the L
base learner fits, and then passes those predicted values as input to the metalearner fit,
which returns the final predicted value for the ensemble.
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The historical definition of stacking does not specify restrictions on the type of algorithm
used as a metalearner, however the metalearner is often a method which minimizes cross-
validated risk of some loss function of interest. For example, ordinary least squares (OLS)
can be used to minimize the sum of squared residuals, in the case of a linear model. The
Super Learner algorithm can be thought of as the theoretically-supported generalization of
stacking to any estimation problem where the goal is to minimize the cross-validated risk of
some bounded loss function, including loss functions indexed by nuisance parameters.

Base learners

It is recommended that the base learner library include a diverse set of learners (e.g., Linear
Model, Support Vector Machine, Random Forest, Neural Net, etc.), however the Super
Learner theory does not require any specific level of diversity among the set of the base
learners. The library can also include copies of the same algorithm, indexed by different sets
of model parameters. For example, the user could specify multiple Random Forests [16],
each with a different splitting criterion, tree depth or “mtry” value. Typically, in stacking-
based ensemble methods, the prediction functions, \ill, e \ifL, are fit by training each of base
learning algorithms, W', ..., WX on the full training data set and then combining these fits
using a metalearning algorithm, ®. However, there are variants of Super Learning, such as
the Subsemble algorithm [72], described in Chapter 2, which learn the prediction functions
on subsets of the training data.

The base learners can be any parametric or nonparametric supervised machine learning
algorithm. Stacking was originally presented by Wolpert who used neural networks as base
learners. Breiman extended the stacking framework to regression problems under the name,
stacked regressions and experimented with different base learners. For base learning algo-
rithms, he evaluated ensembles of decision trees (with different numbers of terminal nodes),
and generalized linear models (GLMs) using subset variable regression (with a different num-
ber of predictor variables) or ridge regression [40] (with different ridge parameters). He also
built ensembles by combining several subset variable regression models with ridge regression
models and found that the added diversity among the base models increased performance.
Both Wolpert and Breiman focused their work on using the same underlying algorithm
(i.e., neural nets, decision trees or GLMs) with unique tuning parameters as the set of base
learners, although Breiman briefly suggested the idea of using heterogeneous base learning
algorithms such as “neural nets, nearest-neighbor, etc.”

Metalearning algorithm

The metalearner, @, is used to find the optimal combination of the L base learners. The Z
matrix of cross-validated predicted values, described previously, is used as the input for the
metalearning algorithm, along with the original outcome from the level-zero training data,
(Y1,...,Y,).
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The metalearning algorithm is typically a method designed to minimize the cross-validated
risk of some loss function. For example, if your goal is to minimize mean squared prediction
error, you could use the least squares algorithm to solve for (a, ..., ayr), the weight vector
that minimizes the following:

n L
Z(Yi - ZOZZZM)Q
i=1 1=1

Since the set of predictions from the various base learners may be highly correlated, it is
advisable to choose a metalearning method that performs well in the presence of collinear
predictors. Regularization via Ridge [39] or Lasso [79] regression is commonly used to over-
come the issue of collinearity among the predictor variables that make up the level-one data
set. Empirically, Breiman found that using Ridge regression as the metalearner often yielded
a lower prediction error than using unregularized least squares regression. Of the regular-
ization methods he considered, a linear combination achieved via non-negative least squares
(NNLS) [50] gave the best results in terms of prediction error. The NNLS algorithm min-
imizes the same objective function as the least squares algorithm, but adds the constraint
that oy > 0, for [ = 1, ..., L. Le Blanc and Tibshirani [51] also came to the conclusion that
non-negativity constraints lead to the most accurate linear combinations of the base learners.

Breiman also discussed desirable theoretical properties that arise by enforcing the addi-
tional constraint that ), oy = 1, where the ensemble is a conver combination of the base
learners. However, in simulations, he shows that the prediction error is nearly the same
whether or not ), a; = 1. The convex combination is not only empirically motivated, but
also supported by the theory. The oracle results for the Super Learner require a uniformly
bounded loss function, and restricting to the convex combination implies that if each algo-
rithm in the library is bounded, the convex combination will also be bounded. In practice,
truncation of the predicted values to the range of the outcome variable in the training set is
sufficient to allow for unbounded loss functions.

In the Super Learner algorithm, the metalearning method is specified as the minimizer of
the cross-validated risk of a loss function of interest, such as squared error loss or rank loss
(1-AUC). If the loss function of interest is unique, unusual or complex, it may be difficult
to find an existing machine learning algorithm (i.e., metalearner) that directly or indirectly
minimizes this function. However, the optimal combination of the base learners can be
estimated using a nonlinear optimization algorithm such as those that are available in the
open source NLopt library [45]. This particular approach to metalearning, described in
detail in Chapter 4, provides a great deal of flexibility to the Super Learner, in the sense
that the ensemble can be trained to optimize any complex objective. Historically, in stacking
implementations, the metalearning algorithm is often some sort of regularized linear model,
however, a variety of parametric and non-parametric methods can used as a metalearner to
combine the output from the base fits.
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Oracle properties

The oracle selector is defined as the estimator, among all possible weighted combinations of
the base prediction functions, which minimizes risk under the true data-generating distribu-
tion. The oracle result for the cross-validation selector among a set of candidate learners was
established in [82] for general bounded loss functions, in [25] for unbounded loss functions
under an exponential tail condition, and in [84] for its application to the Super Learner. The
oracle selector is considered to be optimal with respect to a particular loss function, given the
set of base learners, however it depends on both the observed data and the true distribution,
Py, and thus is unknown. If the true prediction function cannot be represented by a com-
bination of the base learners in the library, then “optimal” will be the closest combination
that could be determined to be optimal if the true data-generating mechanism were known.
If a training set is large enough, it would theoretically result in the oracle selector. In the
original stacking literature, Breiman observed that the ensemble predictor almost always has
lower prediction error than the single best base learner, although a proof was not presented
in his work [17].

If one of the base learners is a parametric model that happens to contain the true pre-
diction function, this base learner will achieve a parametric rate of convergence and thus the
Super Learner achieves an almost parametric rate of convergence, log(n)/n.

Comparison to other ensemble learners

In the machine learning community, the term ensemble learning is often associated with
bagging [15] or boosting [29] techniques or particular algorithms such as Random Forest [16].
Stacking is similar to bagging due to the independent training of the base learners, however
there are two notable distinctions. The first is that stacking uses a metalearning algorithm
to optimally combine the output from the base learners instead of simple averaging, as in
bagging. The second is that modern stacking is typically characterized by a diverse set
of strong base learners, where bagging is often associated with a single, often weak, base
learning algorithm. A popular example of bagging is the Random Forest algorithm which
bags classification or regression trees trained on subsets of the feature space. A case could
be made that bagging is a special case of stacking which uses the mean as the metalearning
algorithm.

From a computational perspective, bagging, like stacking, is a particularly well-suited
ensemble learning method for big data since models can be trained independently on different
cores or machines within a cluster. However, since boosting utilizes an iterative, hence
sequential, training approach, it does not scale as easily to big data problems.

A Bayesian ensemble learning algorithm that is often compared to stacking is Bayesian
Model Averaging (BMA). A BMA model is a linear combination of the output from the
base learners in which the weights are the posterior probabilities of models. Both BMA and
Super Learner use cross-validation as part of the ensemble process. In the case where the
true prediction function is contained within the base learner library, BMA is never worse
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than stacking and often is demonstrably better under reasonable conditions. However, if the
true prediction function is not well approximated by the base learner library, then stacking
will significantly outperform BMA [22].

2.3 Super Learner software

This section serves as an overview of several implementations of the Super Learner ensemble
algorithm and its variants. The original Super Learner implementation is the SuperLearner
R package [68], however, we present several new software projects that aim to create more
scalable implementations of the algorithm that are suitable for big data. We will discuss a
variety of approaches to scaling the Super Learner algorithm:

1. Perform the cross-validation and base learning steps in parallel since these are computa-
tionally independent tasks.

2. Train the base learners on subsets of the original training data set.
3. Utilize distributed or parallelized base learning algorithms.
4. Employ online learning techniques to avoid memory-wise scalability limitations.

5. Implement the ensemble (and/or base learners) in a high-performance language such as
C++, Java, Scala or Julia, for example.

Currently, there are three implementations of the Super Learner algorithm that have an
R interface. The SuperLearner and subsemble [55] R packages are implemented entirely
in R, although they can make use of base learning algorithms that are written in compiled
languages as long as there is an R interface available. Often, the main computational tasks of
machine learning algorithms accessible via R packages are written in Fortran (e.g., random-
Forest, glmnet) or C++ (e.g., €1071’s interface to LIBSVM [21]), and the runtime of certain
algorithms can be reduced by linking R to an optimized BLAS (Basic Linear Algebra Sub-
programs) library such as OpenBLAS [88], ATLAS [85] or Intel MKL [42]. These techniques
may provide additional speed in training, but do not necessarily curtail all memory-related
scalability issues. Typically, since at least one copy of the full training data set must reside
in memory in R, this is an inherent limitation to the scalability of these implementations.

A more scalable implementation of Super Learner algorithm is available in the h2oEnsemble
R package [53]. The H20 Ensemble project currently uses R to interface with distributed
base learning algorithms from the high-performance, open source Java machine learning
library, H20 [35]. Each of these three Super Learner implementations are at a different
stage of development and have benefits and drawbacks compared to the others, but all three
projects are being actively developed and maintained.

The main challenge in writing a Super Learner implementation is not implementing
the ensemble algorithm itself. In fact, the Super Learner algorithm simply organizes the
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cross-validated output from the base learners and applies the metalearning algorithm to this
derived data set. Some thought must be given to the parallelization aspects of the algorithm,
but this is typically a straightforward exercise, given the computational independence of the
cross-validation and base learning steps. One of the main software engineering tasks in any
Super Learner implementation is creating a unified interface to a large collection of base
learning and metalearning algorithms. A Super Learner implementation must include a
novel or third-party machine learning algorithm interface that allows users to specify the
base learners in a common format. Ideally, the users of the software should be able to define
their own base learning functions that specify an algorithm and set of model parameters in
addition to any default algorithms that are provided within the software. The performance
of the Super Learner is determined by the combined performance of the base learners, so a
having a rich library of machine learning algorithms accessible in the ensemble software is
important.

The metalearning methods can use the same interface as the base learners, simplifying
the implementation. The metalearner is just another algorithm, although it is common for
a non-negative linear combination of the base algorithms to be created using a method like
NNLS. However, if the loss function of interest to the user is unrelated to the objective
functions associated with the base learning algorithms, then a linear combination of the
base learners that minimizes the user-specified loss function can be learned using a nonlinear
optimization library such as NLopt. In classification problems, this is particularly relevant
in the case where the outcome variable in the training set is highly imbalanced. NLopt
provides a common interface to a number of different algorithms that can be used to solve
this problem. There are also methods that allow for constraints such as non-negativity
(ay > 0) and convexity (3.1, oy = 1) of the weights. As discussed in Chapter 4, using a
nonlinear optimization algorithm such as L-BFGS-B, Nelder-Mead or COBYLA, it is possible
to find a linear combination of the base learners that specifically minimizes the loss function
of interest.

SuperLearner R package

As is common for many statistical algorithms, the original implementation of the Super
Learner algorithm was written in R. The SuperLearner R package, first released in 2010, is
actively maintained with new features being added periodically. This package implements
the Super Learner algorithm and provides a unified interface to a diverse set of machine
learning algorithms that are available in the R language. The software is extensible in the
sense that the user can define custom base-learner function wrappers and specify them as
part of the ensemble, however, there are about 30 algorithm wrappers provided by the
package by default. The main advantage of an R implementation is direct access to the rich
collection of machine learning algorithms that already exist within the R ecosystem. The
main disadvantage of an R implementation is memory-related scalability.

Since the base learners are trained independently from each other, the training of the
constituent algorithms can be done in parallel. The embarrassingly parallel nature of the
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cross-validation and base learning steps of the Super Learner algorithm can be exploited in
any language. If there are L base learners and V' cross-validation folds, there are L x V'
independent computational tasks involved in creating the level-one data. The SuperLearner
package provides functionality to parallelize the cross-validation step via multicore or SNOW
(Simple Network of Workstations) [80] clusters.

The R language and its third-party libraries are not particularly well known for memory
efficiency, so depending on the specifications of the machine or cluster that is being used, it is
possible to run out of memory while attempting to train the ensemble on large training sets.
Since the SuperLearner package relies on third-party implementations of the base learning
algorithms, the scalability of SuperLearner is tied to the scalability of the base learner
implementations used in the ensemble. When selecting a single model among a group of
candidate algorithms based on cross-validated model performance, this is computationally
equivalent to generating the level-one data in the Super Learner algorithm. If cross-validation
is already being employed as a means of grid-search based model selection among a group
of candidate learning algorithms, the addition of the metalearning step is a computationally
minimal burden. However, a Super Learner ensemble can result in a significant boost in
overall model performance over a single base learner model.

subsemble R package

The subsemble R package implements the Subsemble algorithm [72], a new variant of Super
Learning, which ensembles base models trained on subsets of the original data. Specifically,
the disjoint union of the subsets is the full training set. As a special case, where the number
of subsets = 1, the package also implements the Super Learner algorithm. The algorithm
and the package are described in greater detail in Chapter 3, however we will briefly mention
the algorithm and software in this chapter.

The Subsemble algorithm can be used as a stand-alone ensemble algorithm, or as base
learning algorithm in the Super Learner algorithm. Empirically, it has been shown that
Subsemble can provide better prediction performance than fitting a single algorithm once on
the full available dataset [72], although this is not always the case.

An oracle result shows that Subsemble performs as well as the best possible combination
of the subset-specific fits. The Super Learner has more powerful asymptotic properties;
it performs as well as the best possible combination of the the base learners trained on
the full data set. However, when used as a stand-alone ensemble algorithm, Subsemble
offers great computational flexibility, in that the training task can be scaled to any size by
changing the number, or size, of the subsets. This allows the user to effectively “flatten”
the training process into a task that is compatible with available computational resources.
If parallelization is used effectively, all subset-specific fits can be trained at the same time,
drastically increasing the speed of the training process. Since the subsets are typically much
smaller than the original training set, this also reduces the memory requirements of each
node in your cluster. The computational flexibility and speed of the Subsemble algorithm
offers a unique solution to scaling ensemble learning to big data problems.
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In the subsemble package, the J subsets can be created by the software at random, or
the subsets can be explicitly specified by the user. Given L base learning algorithms and J
subsets, a total of L x J subset-specific fits will be trained and included in the Subsemble
(by default). This construction allows each base learning algorithm to see each subset of
the training data, so in this sense, there is a similarity to ensembles trained on the full
data. To distinguish the variations on this theme, this type of ensemble construction is
referred to as a “cross-product” Subsemble. The subsemble package also implements what
are called “divisor” Subsembles, a structure that can be created if the number of unique base
learning algorithms is a divisor of the number of subsets. In this case, there are only J total
subset-specific fits that make up the ensemble, and each learner only sees approximately
n/J observations from the full training set (assuming the subsets are of equal size). For
example, if L =2 and J = 10, then each of the two base learning algorithms would be used
to train five subset-specific fits and would only see a total of 50% of the original training
observations. This type of Subsemble allows for quicker training, but will typically result in
less accurate models. Therefore, the “cross-product” method is the default Subsemble type
in the software.

An algorithm called Supervised Regression Tree Subsemble or “SRT Subsemble” [71]
is also on the development road-map for the subsemble package. SRT Subsemble is an
extension of the regular Subsemble algorithm, which provides a means of learning the optimal
number and constituency of the subsets. This method incurs an additional computational
cost, but can provide greater model performance for the Subsemble.

H20 Ensemble

The H20 Ensemble project contains an implementation of the Super Learner ensemble
algorithm which is built upon the distributed, open source, Java-based machine learning
learning platform for big data, H20. H20 Ensemble is currently implemented as a stand-
alone R package called h20Ensemble which makes use of the h2o package, the R interface to
the H20 platform. There are a handful of powerful supervised machine learning algorithms
supported by the h2o package, all of which can be used as base learners for the ensemble.
This includes a high-performance method for deep learning, which allows the user to create
ensembles of deep neural nets or combine the power of deep neural nets with other algorithms
such as Random Forest or Gradient Boosting Machines (GBMs) [30].

Since the H20 machine learning platform was designed with big data in mind, each
of the H20 base learning algorithms is scalable to very large training sets and enables
parallelism across multiple nodes and cores. The H20 platform is comprised of a distributed
in-memory parallel computing architecture and has the ability to seamlessly use datasets
stored in Hadoop Distributed File System (HDFS), Amazon’s S3 cloud storage, NoSQL and
SQL databases in addition to CSV files stored locally or in distributed filesystems. The
H20 Ensemble project aims to match the scalability of the H20 algorithms, so although
the ensemble uses R as its main user interface, most of the computations are performed in
Java via H20 in a distributed, scalable fashion.



CHAPTER 2. SCALABLE SUPER LEARNING 12

There are several publicly available benchmarks of the H20 algorithms. Notably, the
H20 GLM implementation has been benchmarked on a training set of 1 billion observations
[34]. This benchmark training set is derived from the “Airline Dataset” [77], which has been
called the “Iris dataset for big data”. The 1 billon row training set is a 42GB CSV file with
12 feature columns (9 numerical features, 3 categorical features with cardinalities 30, 376
and 380) and a binary outcome. Using a 48-node cluster (8 cores on each node, 15GB of
RAM and 1Gb interconnect speed), the H20 GLM can be trained in 5.6 seconds. The H20
algorithm implementations aim to be scalable to any size dataset so that all of the available
training set, rather than a subset, can be used for training models.

h2oEnsemble takes a different approach to scaling the Super Learner algorithm than the
subsemble or SuperLearner R packages. Since the subsemble and SuperLearner ensembles
rely on third-party R algorithm implementations which are typically single-threaded, the
parallelism of these two implementations occurs in the cross-validation and base learning
steps. In the SuperLearner implementation, the ability to take advantage of multiple cores
is strictly limited by the number of cross-validation folds and number of base learners. With
subsemble, the scalability of the ensemble can be improved by increasing the number of
subsets used, however, this may lead to a decrease in model performance. Unlike most
third-party machine learning algorithms that are available in R, the H20 base learning
algorithms are implemented in a distributed fashion and can scale to all available cores in a
multicore or multi-node cluster. In the current release of h20Ensemble, the cross-validation
and base learning steps of the ensemble algorithm are performed in serial, however, each
serial training step is maximally parallelized across all available cores in a cluster. The
h2o0Ensemble implementation could possibly be re-architected to parallelize the the cross-
validation and base learning steps, however, it is unknown at this time how that may affect
runtime performance.

h2oEnsemble R code example

The following R code example demonstrates how to create an ensemble of a Random Forest
and two Deep Neural Nets using the h2oEnsemble R interface. In the code below, an example
shows the current method for defining custom base learner functions. The h2o0Ensemble
package comes with four base learner function wrappers, however, to create a base learner
with non-default model parameters, the user can pass along non-default function arguments
as shown. The user must also specify a metalearning algorithm, and in this example, a GLM
wrapper function is used.



CHAPTER 2. SCALABLE SUPER LEARNING 13

library("SuperLearner") # For "SL.nnls" metalearner function
library("h2oEnsemble")

# Create custom base learner functions using non-default model params:

h2o_rf_1 <- function(..., family = "binomial",
ntree = 500,
depth = 50,

mtries = 6,
sample.rate = 0.8,

nbins = 50,
nfolds = 0)
h2o0.randomForest.wrapper (..., family = family, ntree = ntree,

depth = depth, mtries = mtries, sample.rate = sample.rate,
nbins = nbins, nfolds = nfolds)

}
h20_d1_1 <- function(..., family = "binomial",

nfolds = 0,

activation = "RectifierWithDropout",

hidden = ¢(200,200),

epochs = 100,

11 = 0,

12 = 0)
h20.deeplearning.wrapper(..., family = family, nfolds = nfolds,
activation = activation, hidden = hidden, epochs = epochs,
11 =11, 12 = 12)

b
h20_d1_2 <- function(..., family = "binomial",

nfolds = 0,

activation = "Rectifier",

hidden = ¢(200,200),

epochs = 100,

11 =0,

12 = 1e-05)
h20.deeplearning.wrapper(..., family = family, nfolds = nfolds,
activation = activation, hidden = hidden, epochs = epochs,
11 = 11, 12 = 12)

+

The function interface for the h2o.ensemble function follows the same conventions as
the other h2o R package algorithm functions. This includes the x and y arguments, which
are the column names of the predictor variables and outcome variable, respectively. The
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data object is a reference to the training data set, which exists in Java memory. The
family argument is used to specify the type of prediction (i.e., classification or regression).
The predict.h20.ensemble function uses the predict(object, newdata) interface that is
common to most machine learning software packages in R. After specifying the base learner
library and the metalearner, the ensemble can be trained and tested:

# Set up the ensemble
learner <- c("h2o_rf_1", "h20_dl_1", "h2o0_dl_2")
metalearner <- "SL.nnls"

# Train the ensemble using 2-fold CV to generate level-one data

# More CV folds will increase runtime, but should increase performance

fit <- h2o.ensemble(x = x, y = y, data = data, family = "binomial",
learner = learner, metalearner = metalearner,
cvControl = 1list(V = 2))

# Generate predictions on the test set
pred <- predict(fit, newdata)

Performance benchmarks

h2oEnsemble was benchmarked on Amazon’s Elastic Compute Cloud (EC2) in order to
demonstrate the practical use of the Super Learner algorithm on big data. The instance type
used across all benchmarks is EC2’s “c3.8xlarge” type, which has 32 virtual CPUs (vCPUs),
60 GB RAM and 10 Gigabit interconnect speed. Since H2Q’s algorithms are distributed
and the benchmarks were performed on multi-node clusters, the node interconnect speed is
critical to performance. Further computational details are given in the next section. A few
different cluster architectures were evaluated, including a 320 vCPU and 96 vCPU cluster
(ten and three nodes each, respectively), as well as a single workstation with 32 vCPUs.

The h2oEnsemble package currently provides four base learner function wrappers for the
H20 algorithms. The following supervised learning algorithms are currently supported: Gen-
eralized linear models (GLMs) with Elastic Net regularization, Gradient Boosting (GBM)
with regression and classification trees, Random Forest and Deep Learning (multi-layer feed-
forward neural networks). These algorithms support both classification and regression prob-
lems, although this benchmark is a binary classification problem. Various subsets of the
“HIGGS” dataset [8] (28 numeric features; binary outcome with balanced training classes)
were used to assess the scalability of the ensemble. An independent test set of 500,000
observations (the same test set as in [8]) was used to measure the performance.

The base learner library consists of the three base learners: a Random Forest of 500 trees
and two Deep Neural Nets (one with dropout [38] and the other with Ls-regularization). In
the ensemble, 2-fold cross-validation was used to generate the level-one data and both a GLM
and NNLS metalearner were evaluated. An increase in the number of validation folds will
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likely increase ensemble performance, however, this will increase training time (2-fold is the
recommended minimum required to retain the desirable asymptotic properties of the Super
Learner algorithm). Although the performance is measured by AUC in the benchmarks, the
metalearning algorithms used (GLM and NNLS) are not designed to maximize AUC. By
using a higher number of cross-validation folds, an AUC-maximizing metalearning algorithm
and a larger and more diverse base learning library, the performance of the ensemble will
likely increase. Thus, the ensemble AUC estimates shown in Table 2.1 are conservative
example of performance.

RF | DNN-Dropout | DNN-L, | Ensemble: GLM, NNLS
n = 1,000 | 0.730 0.683 0.660 0.729, 0.730
n = 10,000 | 0.785 0.722 0.707 0.786, 0.788
n = 100,000 | 0.825 0.812 0.809 0.818, 0.819
n = 1,000,000 | 0.823 0.812 0.838 0.841, 0.841
n = 5,000,000 | 0.839 0.817 0.845 0.852, 0.851

Table 2.1: Base learner model performance (test set AUC) compared to h20Ensemble model
performance performance using 2-fold CV (ensemble results for both GLM and NNLS met-
alearners).

Cluster (320) | Cluster (96) | Workstation (32)

n = 1,000 2.1 min 1.1 min 0.5 min

n = 10,000 3.3 min 2.5 min 2.0 min

n = 100,000 3.5 min 5.9 min 11.0 min
n = 1,000, 000 14.9 min 42.6 min 102.9 min

n = 5,000,000 62.3 min 200.2 min -

Table 2.2: Training times (minutes) for h2oEnsemble with a 3-learner library using various
cluster configurations, including a single workstation with 32 vCPUs. The number of vCPUs
for each cluster is noted in parenthesis. Results for n = 5 million are not available for the
single workstation setting.

Memory profiling was not performed as part of the benchmarking process. The source
code for the benchmarks is available on GitHub [52].

Computational details

All benchmarks were performed on 64-bit linux instances (type “c3.8xlarge” on Amazon
EC2) running Ubuntu 14.04. Each instance has 32 vCPUs, 60 GB RAM and uses Intel Xeon
E5-2680 v2 (Ivy Bridge) processors. In the 10-node (320 vCPU) cluster and 3-node (96
vCPU) cluster that were used, the nodes have a 10 Gigabit interconnect speed. Since the
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Runtime Performance of H20 Ensemble
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Figure 2.1: Training time for h2oEnsemble for training sets of increasing size (subsets of the
HIGGS dataset). This ensemble included the three base learners, listed previously.

H20 base learner algorithms are distributed across all the cores in a multi-node cluster, it is
recommended to use 10 Gigabit interconnect (or greater). These results are for h2o0Ensemble
R package version 0.0.3, R version 3.1.1, H20 version 2.9.0.1593 and Java version 1.7.0_65
using the OpenJDK Runtime Environment (IcedTea 2.5.3).

2.4 Online Super Learning

Another approach to creating a scalable Super Learner implementation is by using sequential,
or online learning techniques. The Online Super Learner uses both online base learners and
an online metalearner to achieve out-of-core performance. Online learning methods offer
a solution to the demanding memory requirements of batch learning (where the algorithm
sees all the data at once), which typically requires the full training set to fit into RAM. A
unique advantage of online learning, as opposed to batch learning, is that the algorithm fit
can respond to changes or drift within the data generating mechanism over time.
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Optimization in online learning

Training an estimator typically reduces to some sort of optimization problem. There are
many ways to solve different optimization problems, and one such way is gradient descent
(GD). The algorithm is parameterized by 7, which controls the step size. If the number of
training examples is very large, one iteration of the algorithm may take a long time because
computing the gradient on the full data set is slow.

An alternative to GD is stochastic gradient descent (SGD). The algorithm is similar,
except a step is taken using an estimate of the gradient based on one, or in the case of
the mini-batch version, m < n, observations. In [13], it is shown that SGD converges at
the same rate as GD. Though SGD steps are noisy and more are required, each step only
uses a small fraction of the data and therefore can be computed very quickly. Because of
this, reasonably good results can be obtained in only a few passes through the data, which
may take many passes in traditional GD. This results in a much faster algorithm. Another
advantage of SGD is that it can be used in an online setting, where an essentially infinite
stream of observations are being collected and consumed by the algorithm in a sequential
process.

The Online Super Learner algorithm

Assume a finite set, X,..., X,,, or stream of observations, Xi, ..., X,,, X;,11, ..., from some
some distribution, Fy, or some sequence of distributions. In the Online Super Learner al-
gorithm, the base learning algorithms are online learners. We will consider the sequential
learning case where we update each of the base learners after observing each new training
point, X;.

Since the online base learners are all observing the same training point at the same time,
all of the base learners can be updated simultaneously at each iteration (either serially, or in
parallel). In the batch version of Super Learning, after cross-validation is used to generate the
level-one data from the base learners, a metalearning algorithm is fit using the level-one data.
Since standard k-fold cross-validation is a batch operation, we must consider an alternative
sequential approach to generating the level-one data and updating the metalearner fit in the
Online Super Learner algorithm. There may be many possible ways to do this, but we will
discuss one particular method, which was implemented in Vowpal Wabbit Ensemble [56].

Consider two types of sequential learning — single-pass and multi-pass mode, in which the
training process is completed in one pass or multiple passes through the data, respectively.
If the training samples are streaming in sequentially (in other words, the training set is not
a previously-collected set of examples), then the single-pass mode is necessary. However, if
all of the training samples have already been collected, then it is possible to take multiple
passes through the data.

In both the single and multi-pass mode, there is an option to designate a holdout set
of observations that are never used in training. This is not strictly necessary, but can be
performed in order to collect information about estimated model performance (where model
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performance is evaluated incrementally on the holdout set). In practice, for single-pass mode,
sequential validation of each observation is sufficient, and thus a designated holdout set is
not required. This is because in single-pass mode, each observation can be used first as a
test sample for the current fit, and then as a training sample in the next iteration of the
algorithm. However, in multi-pass mode, a holdout set is required in order to generate an
honest estimate of model performance.

To distinguish between two types of observations that are not used in training — we will
reserve the term “holdout set” for observations used strictly for model evaluation. A second
group of held-out observations, the “validation set”, will be set aside and used to generate
predicted values using the existing model fit. The resulting predicted values will serve as the
level-one data, which is used to train the metalearner.

We define two tuning parameters, p and v, to control the construction of the level-one
data for the metalearner. In multi-pass mode, the parameter p controls the “validation
period”, or the number of training examples between each (non-holdout) validation sample,
as observed in sequence. For example, if p = 10, then every 10" non-holdout sample would
be set aside to be included in the rolling validation set. In this case, the algorithm sees 10
training samples for every validation sample. All non-validation, non-holdout sample points
are used in training.

The second tuning parameter is v, the “running validation size”, or the number of most
recent (and non-holdout, if multi-pass) validation samples to be retained (at any iteration)
for updating the metalearning fit. This parameter controls the amount of data that needs to
reside in memory at any given time — bigger v translates into a more informed metalearning
fit, but demands higher memory requirements. In theory, the v parameter could be adaptive,
however, in this specificiation of the algorithm, we will consider it to be a fixed value.

Fixing or limiting the size of the level-one data for the ensemble at a given iteration via the
v parameter allows the user to make use of batch learning algorithms in the metalearning
process. Regardless, this implementation of the Online Super Learner algorithm is still
considered to be a sequential learner, since the ensemble fit is learned incrementally. When
using a batch algorithm as part of the metalearning process, it is advisable to choose a large
enough v, or validation set size, in order to successfully train the metalearner. This is similar
to mini-batch learning in SGD, where m > 1 examples are retained at any given time for
training (in that case, the m samples are used to estimate the gradient).

In an alternative formulation, where sequential learners are used for both the base learners
and the metalearning algorithm, then v = 1 and the metalearner fit will be updated with one
training sample at a time, in sync with the updates of the base learner fits. Or, in the case
of mini-batch SGD, then v = m and m training observations are processed at each iteration.

A practical Online Super Learner

Vowpal Wabbit (VW) [49] is a fast out-of-core learning software developed by John Langford
that was first released in 2007 and is still very actively maintained. VW implements SGD
(and a few other optimization routines) for a variety of estimators with a primary goal of
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being computationally very fast and scaling well to large datasets. The software also allows
for estimators to easily be fit on different subsets and cross products of subsets of independent
variables. VW is written in C4++ and can be used as a library in other software.

The default learning algorithm in VW is a variant of online gradient descent. Various
extensions, such as conjugate gradient (CG), mini-batch, and data-dependent learning rates,
are included. Vowpal Wabbit is very useful for sparse data, so a VW-based Online Super
Learner will also be useful for sparse data.

A proof-of-concept version of the Online Super Learner algorithm, Vowpal Wabbit En-
semble, was implemented in C++, and uses the Vowpal Wabbit machine learning library to
provide the base learners. The additional dependencies are the Boost C++ library [23] and
a C implementation (f2¢ translation from Fortran) [73] of the NNLS algorithm for the met-
alearning process. The tuning parameters mentioned in Section 2.4 give the user fine-grained
control over the sequential learning process.

To demonstrate computational performance, the Online Super Learner was trained on
the “Malicious URL Dataset” [61] which has 2.4 million rows and 3.2 million sparse features.
Using three algorithms to make up the ensemble, the Online Super Learner made a single
pass over the data. The training process on a single 2.3 GHz Intel Core i7 processor took
approximately 25 seconds.

2.5 Super Learner in practice

There are many applications of the Super Learner algorithm, however, due to its superior
performance over single algorithms and other ensemble learners, it is often used in situations
where model performance is valued over other factors, such as training time and model sim-
plicity. The algorithm has been used in a wide variety of applications in field of biostatistics.
In the context of prediction, Super Learner has been used to predict virologic failure among
HIV-infected individuals [65], HIV-1 drug resistance [76] and mortality among patients in
intensive care units [66], for example.

Super Learning can be used at iterative time points to evaluate the the relative importance
of each measured variable on an outcome. This can provide continuously changing prediction
of the outcome and evaluation of which clinical variables likely drive a particular outcome.
[41]

In the context of learning the optimal dynamic treatment rule, a non-sequential Super
Learner seeks to directly maximize the mean outcome under the two time point rule [60].
This implementation relies on sequential candidate estimators based on various loss functions.
Super Learner has also been used to estimate both the generalized propensity score and the
dose-response function [47].
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2.6 Conclusion

In this chapter, we discussed the Super Learner algorithm, a theoretically-backed non-
parametric ensemble prediction method. Super Learner fits a set of base learners, and
combines the fits through a second-level metalearning algorithm using cross-validation. We
discussed several software implementations of the algorithm, and provided code examples
and benchmarks of a distributed, scalable implementation called H20 Ensemble. Further,
an online implementation of the Super Learner algorithm was presented as an alternative
to the batch version as another approach to achieving scalability for big data. Lastly, we
described examples of practical applications of the Super Learner algorithm.
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Chapter 3

Subsemble: Divide and Recombine

3.1 Introduction

As massive datasets become increasingly common, new scalable approaches to prediction are
needed. Given that memory and runtime constraints are common in practice, it is important
to develop practical machine learning methods that perform well on big data sets in a fixed
computational resource setting. Procedures using subsets from a training set are promising
tools for prediction with large-scale data sets [90]. Recent research has focused on developing
and evaluating the performance of various subset-based prediction procedures. Subsetting
procedures in machine learning construct subsets from the available training data, then train
an algorithm on each subset, and finally combine the results across the subsets to form a
final prediction. Prediction methods operating on subsets of the training data can take
advantage of modern computational resources, since machine learning on subsets can be
massively parallelized.

Bagging [15], or bootstrap aggregating, is a classic example of a subsampling prediction
procedure. Bagging involves drawing many bootstrap samples of a fixed size, fitting the
same underlying algorithm on each bootstrap sample, and obtaining the final prediction by
averaging the results across the fits. Bagging can lead to significant model performance
gains when used with weak or unstable algorithms such as classification or regression trees.
The bootstrap samples are drawn with replacement, so each bootstrap sample of size n
contains approximately 63.2% of the unique training examples, while the remainder of the
observations contained in the sample are duplicates. Therefore, in bagging, each model is fit
using only a subset of the original training observations. The drawback of taking a simple
average of the output from the subset fits is that the predictions from each of the fits are
weighted equally, regardless of the individual quality of each fit. The performance of a bagged
fit can be much better compared to that of a non-bagged algorithm, but a simple average is
not necessarily the optimal combination of a set of base learners.

An average mizture (AVGM) procedure for fitting the parameter of a parametric model
has been studied by [90]. AVGM partitions the full available dataset into disjoint subsets,
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estimates the parameter within each subset, and finally combines the estimates by simple
averaging. Under certain conditions on the population risk, the AVGM can achieve better
efficiency than training a parametric model on the full data. A subsampled average mizture
(SAVGM) procedure, an extension of AVGM, is proposed in [90] and is shown to provide
substantial performance benefits over AVGM. As with AVGM, SAVGM partitions the full
data into subsets, and estimates the parameter within each subset. However, SAVGM also
takes a single subsample from each partition, re-estimates the parameter on the subsample,
and combines the two estimates into a so-called “subsample-corrected” estimate. The final
parameter estimate is obtained by simple averaging of the subsample-corrected estimates
from each partition. Both procedures have a theoretical backing, however, the results rely
on using parametric models.

An ensemble method for classification with large-scale datasets, using subsets of obser-
vations to train algorithms, and combining the classifiers linearly, was implemented and
discussed in the case study of [59] at Twitter, Inc.

While not a subset method, boosting, formulated by [29], is an example of an ensemble
method that differentiates between the quality of each fit in the ensemble. Boosting iterates
the process of training a weak learner on the full data set, then re-weighting observations,
with higher weights given to poorly classified observations from the previous iteration. How-
ever, boosting is not a subset method because all observations are iteratively re-weighted,
and thus all observations are needed at each iteration. Boosting is also a sequential al-
gorithm, and thus cannot be easily parallelized, although distributed implementations of
boosting algorithms do exist.

Another non-subset ensemble method that differentiates between the quality of each fit
is the Super Learner algorithm of [84], which generalizes and establishes the theory for
stacking procedures developed by [86] and extended by [17]. Super Learner learns the op-
timal weighted combination of a base learner library of candidate base learner algorithms
by using cross-validation and a second-level metalearning algorithm. Super Learner gener-
alizes stacking by allowing for general loss functions and hence a broader range of estimator
combinations.

The Subsemble algorithm is a method proposed in [72], for combining results from fitting
the same underlying algorithm on different subsets of observations. Subsemble is form of
supervised stacking and is similar in nature to the Super Learner algorithm, with the distinc-
tion that base learner fits are trained on subsets of the data instead of the full training set.
Subsemble can also accommodate multiple base learning algorithms, with each algorithm
being fit on each subset. The approach has many benefits and differs from other ensemble
methods in a variety of ways.

First, any type of underlying algorithm, parametric or nonparametric, can be used. In-
stead of simply averaging subset-specific fits, Subsemble differentiates fit quality across the
subsets and learns a weighted combination of the subset-specific fits. To evaluate fit qual-
ity and determine the weighted combination, Subsemble uses cross-validation, thus using
independent data to train the base learners and learn the weighted combination. Finally,
Subsemble has desirable statistical performance and can improve prediction quality on both
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small and large datasets.

This chapter focuses on the statistical properties and performance of the Subsemble
algorithm. We present an oracle result for Subsemble, showing that Subsemble performs
as well as the best possible combination of the subset-specific fits. Empirically, it has been
shown that Subsemble performs well as a prediction procedure for moderate and large sized
datasets [72]. Subsemble can, and often does, provide better prediction performance than
fitting a single base algorithm on the full available dataset.

3.2 Subsemble ensemble learning

Let X € RP denote a real valued vector of covariates and let Y € R represent a real
valued outcome value with joint distribution, Py(X,Y"). Assume a training set consists of n
independent and identically distributed observations, O; = (X;,Y;) of O ~ By. The goal is
to learn a function f (X) for predicting the outcome, Y, given the input X.

Assume that there is a set of L machine learning algorithms, W', ..., % where each is
indexed by an algorithm class and a specific set of model parameters. These algorithms can
be any class of supervised learning algorithms, such as a Random Forest, Support Vector
Machine or a linear model. The base learner library can also include copies of the same algo-
rithm, specified by different sets of tuning parameters. Typically, in stacking-based ensemble
methods, functions, ¥, ..., UL, are learned by applying base learning algorithms, U?, ..., UL,
to the full training data set and then combining these fits using a metalearning algorithm,
®, trained on the cross-validated predicted values from the base learners. Historically, in
stacking methods, the metalearning method is often chosen to be some sort of regularized
linear model, such as non-negative least squares (NNLS) [17], however a variety of paramet-
ric and non-parametric methods can be used to learn the optimal combination output from
the base fits. In the Super Learner algorithm, the metalearning algorithm is specified as a
method that minimizes the cross-validated risk of some particular loss function of interest,
such as negative log-likelihood loss or squared error loss.

The Subsemble algorithm

Instead of using the entire dataset to obtain a single fit, \i/l, for each base learner, Subsemble
applies algorithm W' to multiple different subsets of the available observations. The subsets
are created by partitioning of the entire training set into J disjoint subsets. The subsets are
typically created randomly and of the same size. With L unique base learners and J subsets,
the ensemble is then comprised of a total of L x J subset-specific fits, ‘i/é As in the Super
Learner algorithm, Subsemble obtains the optimal combination of the fits by minimizing
cross-validated risk through cross-validation.

In stacking algorithms, k-fold cross-validation is often used to generate what is called
the level-one data. The level-one data is the input data to the metalearning algorithm,
which is different from the level-zero data, or the original training data set. Assume that the
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number of cross-validation folds is chosen to be £ = V folds. In the Super Learner algorithm,
the level-one data consists of the V' sets of cross-validated predicted values from each base
learning algorithm. With L base learners and a training set of n observations, the level-one
data will be an n x L matrix, and serve as the design matrix in the metalearning task.

In the Subsemble algorithm, a modified version of k-fold cross-validation is used to obtain
the level-one data. Each of the J subsets are partitioned further into V folds, so that the v'*
validation fold spans across all .J subsets. For each base learning algorithm, W', the (j,v)™
iteration of the cross-validation process is defined as follows:

1. Train the (j,v)" subset-specific fit, \ifé-, by applying ¥ to the observations that are in

folds {1,...,V'} \ v, but restricted to subset j. The training set used here is a subset of
n(V—1)

T ) observations.

the 7' subset and contains *

2. Using the subset-specific fit, \ilé, predicted values are generated for the entire v** val-
idation fold, including those observations that are not in subset j. The size of the

. . . J
validation set for the (j,v)" iteration is 2.

This unique version of cross-validation generates predicted values for all n observations in
the full training set, while only training on subsets of data. A total of L x J learner-subset
models are cross-validated, resulting in a n x (L x J) matrix of level-one data that can be
used to train the metalearning algorithm, ®. A diagram depicting the Subsemble algorithm
using a single underlying base learning algorithm, ¢, is shown in Figure 3.2.

More formally, define P, , as the empirical distribution of the observations not in the v'!
fold. For each observation 7, define P, ,(; to be the empirical distribution of the observations
not in the fold containing observation 7. The optimal combination is selected by applying the
metalearnmg algorithm @ to the followmg redefined set of n observations: (XZ, Y;), where

= {X!}F,, and X! = {U}(P,.(;))(X;)}/_,. That is, for each i, the level-one input vector,

XZ-, consists of the L x J predicted values obtained by evaluating the L x J subset-specific
estimators trained on the data excluding the v(i)™ fold, at X;. Note that the level-one
dataset in Subsemble has J times as many columns as the level-one dataset generated in the
Super Learner algorithm.

The cross-validation process is used only to generate the level-one data, so as a separate
task, L x J final subset-specific fits are trained, using the entire subset j as the training set
for each (I, 7)!" fit. The final Subsemble fit is comprised of the L x J subset-specific fits, \ilé,

and a metalearner fit, ®. Pseudocode for the Subsemble algorithm is shown in Figure 3.2.
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Figure 3.1: Diagram of the Subsemble procedure using a single base learner 1, and linear

regression as the metalearning algorithm.
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Algorithm 1 Subsemble

Assume n observations (X;, Y;)

Partition the n observations into J disjoint subsets
Base learning algorithms: W', ... ¥l

Metalearner algorithm: @

Optimal combination: ®({¥,... W,}L))

for j+1:J do
// Create subset-specific base learner fits
for /< 1:L do
\ifé < apply U! to observations i such that i € j
end for
// Create V folds
Randomly partition each subset j into V' folds
end for

forv<+1:V do
// CV fits
for/+1:L do
\ilé‘,v + apply U! to observations i such that i € j, i € v
end for
fori:7€vdo
// Predicted values X, < ({\illlv(Xl), ce \i/f,v(XZ)}lel)
end for
end for

d + apply ® to training data (Y;, X)

S({W, ... WL} ,) « final prediction function

Figure 3.2: Pseudocode for the Subsemble algorithm.
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Oracle result for Subsemble

The following oracle result gives a theoretical guarantee of Subsemble’s performance, was
proven in [72] and follows directly from the work of [84]. Theorem 1 has been extended from
the original formulation in order to allow for L base learners instead of a single base learner.
The squared error loss function is used as an example in Theorem 1.

Theorem 1. Assume the metalearner algorithm d = @5 1s indexed by a finite dimensional
parameter 5 € B. Let B, be a finite set of values in B, with the number of values growing
at most polynomial rate in n. Assume there exist bounded sets Y € R and Fuclidean X such
that P(Y,X) € Y xX) =1 and P(¥/(P,) € Y) =1 forl=1,...,L.

Define the cross-validation selector of B as
n R _ 2
B, = arg min {Y; — @5(XZ~)}
i=1

and define the oracle selector of 5 as

% 2
1 3
Bn = arg min 321 Ey HEO[Y‘X] - (I),B(Pn,l))} ]

Then, for every 6 > 0, there exists a constant C(d) < oo (defined in [82]) such that

E% XV: Eq [{EO Y|X] - éﬁn(Pn,v)}z}

v=1

Vilogn

<(+ 6)E% EV: B HEO[Y|X] - cﬁgn(PM)}z] +C()

v=1

n

As a result, if none of the subset-specific learners converge at a parametric rate, then the
oracle selector does not converge at a parametric rate, and the cross-validation estimator ign
15 asymptotically equivalent with the oracle estimator (T)Bn' Otherwise, the cross-validation
estimator (i)gn achieves a near parametric 10% rate.

Theorem 1 tells us that the risk difference, based on squared error loss, of the Subsemble
from the true Ey[Y'|X] can be bounded from above by a function of the risk difference of the
oracle procedure. Note that the oracle procedure results in the best possible combination
of the subset-specific fits, since the oracle procedure selects § to minimize the true risk
difference. In practice, the base learning algorithms are unlikely to converge at a parametric
rate, so it follows that Subsemble performs as well as the best possible combination of subset-
specific fits. It has also been shown empirically that Subsembles can perform at least as well
as, and typically better than simple averaging [72] of the subset-specific fits. Since averaging,
or bagging, is an example of combining the subset-specific fits, it follows from Theorem 1
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that the Subsemble algorithm is asymptotically superior than bagging the subset-specific
fits.

Note that Theorem 1 doesn’t specify how many subsets are best, or how Subsemble’s
combination of many subset-specific fits will perform relative to fitting a single algorithm, W!,
just once on the full training set. The Supervised Regression Tree (SRT) Subsemble algorithm
[71], discussed in Section 3.3, will provide further insight into how to data-adaptively select
the optimal number of subsets.

A practical Subsemble implementation

The Subsemble algorithm offers a practical “divide-and-conquer” approach to supervised
ensemble learning with big data. The original training data set can be partitioned into J
disjoint subsets, each of which can reside in memory on one node of a cluster. Assuming that
the subsets contain roughly the same number of training examples, the computational burden
of training with the full dataset of n observations is reduced to training on a dataset of size
n/J. This can greatly reduce both the (per-node) memory and total runtime requirements
of the training process, while still allowing each base learning algorithm to see all of the
original training samples. Subsemble offers an advantage over approaches that use only a
single subset of the data, thereby wasting valuable training data.

The base learners are trained independently of each other, so much of the Subsemble
algorithm is embarrassingly parallel in nature. The V-fold cross-validation process of gener-
ating the level-one predicted values involves training and testing a total of L x J x V' models.
These models can be trained and evaluated simultaneously, in parallel, across L x J x V
nodes. After generating the cross-validated level-one data, the metalearning algorithm is
trained using this data.

The metalearning step is performed after the cross-validation step, as it uses the level-
one data produced by the cross-validation step as input. This step involves training a
metalearning algorithm on a design matrix of dimension, n x (L x J), however, a subset of
the level-one design matrix can be used if prohibited by memory constraints. Alternatively,
an online algorithm can be used for a metalearner if the level-one data does not fit into
memory.

The final ensemble model will consist of the metalearner fit and L x J base learner
fits. These final base learner fits can be can be fit in parallel. Alternatively, the L x J
subset-specific fits from any v iteration of the cross-validation step can be saved instead of
fitting L x J new models, however, these models will be fit using approximately (%) n/J,
instead of n/J, training observations. Therefore, if resources are available, it is preferable to
additionally fit the L x J models (each trained using n/.J observations), separate from the
cross-validation step. Given appropriate parallel computing resources (at least L x J x V
cores), the entire ensemble can be trained in parallel in just two or three steps.

A parallelized implementation of the Subsemble algorithm is available in the subsemble R
package [55]. Support for both multicore and multi-node clusters is available in the software.
This package currently uses the SuperLearner R package’s [68] machine learning algorithm
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wrapper interface to provide access to approximately 30 machine learning algorithms that
can be used as base learners. The user can also define their own algorithm wrappers by
utilizing the SuperLearner wrapper template.

The Supervised Regression Tree Subsemble algorithm, discussed in Section 3.3, provides
a way to determine the optimal number of subsets. However, in practice, the number of
subsets may be determined by the computational infrastructure available to the user. By
increasing the number of subsets, the user can re-size the learning problem into a set of
computational tasks that fit within specific resource constraints. This is particularly useful
if compute nodes are easy to come by, but the memory on each node is limited. The larger
the memory (RAM) on each compute node, the bigger your subsets can be.

subsemble R code example

In this section, we present an R code example that shows the main arguments required
to train a Subsemble fit using the subsemble R package. The interface for the subsemble
function should feel familiar to R users who have used other modeling packages in R. The
user must specify the base learner library, the metalearning algorithm, and optionally, the
number of desired data partitions (subsets).

Algorithm functions (e.g. "SL.gam") from the SuperLearner package are used to spec-
ify the base learner library and metalearner. Support for other types of base learner and
metalearner functions, such as those specified using the caret [43] R package, is on the de-
velopment road-map for the subsemble package. In contrast to the SuperLearner package,
the subsemble package allows the user to choose any algorithm for the metalearner and does
not require the metalearner to be a linear model that minimizes the cross-validated risk
of a given loss function. Most machine learning algorithms work by minimizing some loss
function (or surrogate loss function), so this functionality is not that different in practice,
however it does allow the user to specify a non-parametric metalearning algorithm.

The code example uses a three-learner library consisting of a Generalized Additive Model
("SL.gam"), a Support Vector Machine ("SL.svm.1") and Multivariate Adaptive Regression
Splines ("SL.earth"). The metalearner is specified as generalized linear model with Lasso
regularization ("SL.glmnet"). A number of algorithm wrapper functions are included in the
SuperLearner package. However, the user may want to define non-default model parameters
for a base learner. To illustrate this, one custom base learner (the SVM) is included in the
example ensemble. To create a custom wrapper function, the user may pass along any
non-default arguments to the default function wrapper for that algorithm.
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library("subsemble") # Also loads the SuperLearner package
library("cvAUC") # For model evaluation

# Create one non-default base learner function to use in the library
SL.svm.1 <- function(..., type.class = "C-classification") {
SL.svm(..., type.class = type.class)

¥

# Set up the Subsemble:

# Use two default learners from SuperLearner package, one custom wrapper
learner <- c("SL.gam", "SL.svm.1", "SL.earth") # Base learners
metalearner <- "SL.glmnet" # Metalearner

subsets <- 4 # Number of subsets

By default, a “cross-product” type Subsemble will be created using the subsemble func-
tion, but this can be modified using the learnControl argument. Since four subsets and
three base learners are specified by the user, this will result in an ensemble of 4 x 3 = 12
subset-specific fits.

# Train and evaluate the Subsemble fit:

fit <- subsemble(x = x, y = y, newx = newx,
family = binomial(),
learner = learner,
metalearner = metalearner,
subsets = subsets)

# Evaluate model performance on a test set
auc <- cvAUC::AUC(predictions = fit$pred, labels = newy)

Performance benchmarks

This section presents benchmarks of the model performance and runtime of the Subsemble
algorithm as implemented in the subsemble R package, version 0.0.9. This example uses the
same three-algorithm base learner library and metalearner that was specified in the R code
example above.

Binary outcome training data sets with 10 numerical features were simulated using the
twoClassSim function in the caret R package [43]. Training sets of increasing size were
generated, and a independent test set of 100,000 observations was used to estimate model
performance, as measured by Area Under the ROC Curve (AUC). Confidence intervals for
the test set AUC estimates were generated using the cvAUC R package [54].
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Model Performance Comparison
Super Learner vs. Subsembles with 3 Learners

o
(o2}
g
IS}
[0}
— o
$ o
7]
. J
S
S 8 .
§ o
&)
2
<
2
5
o
—— Super Learner (1 subset)
Subsemble (2 subsets)
—— Subsemble (10 subsets)

I I I I I I
0 100000 200000 300000 400000 500000

Number of Training Observations

Figure 3.3: Model performance for Subsemble and Super Learner for training sets of increas-
ing size. 95%-confidence intervals from the cvAUC package are shown.

Model performance

As shown in Figure 3.3, the performance of the 2-subset and 10-subset Subsemble is com-
parable to the Super Learner algorithm. In this example, after about 100,000 training ob-
servations, the 95% confidence intervals for AUC for the three models overlap. For smaller
training sets, Subsemble model performance can dip below Super Learner if too many sub-
sets are used. Once the subsets become too small, they may fail to sufficiently estimate the
distribution of the full training set.

Computational performance

These benchmarks were performed on a single “r3.8xlarge” instance on Amazon’s Elastic
Compute Cloud (EC2) with 32 virtual CPUs and 244 GB of RAM using R version 3.1.1.
Both single-threaded and multicore implementations of Subsemble and Super Learner were
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Computational Performance Comparison
Super Learner vs. Subsembles with 3 Learners
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Figure 3.4: Training time for Subsemble and Super Learner for training sets of increasing
size.

measured. For this example, there are a total of 3 x J subset-specific fits since three base
learners were used in the Subsemble. In the case of J = 10, there are 30 subset-specific
models that need to be trained, which can be fit all at once on a 32-core machine using
the multicore option in the software. Subsembles with a larger number of subsets and base
learners can also be trained in parallel on multi-node clusters. The cross-validation and base
learning tasks are computationally independent tasks, so as long as a big enough cluster is
used, the subset-specific models can all be trained at the same time. For maximum efficiency,
a cluster with at least L x J cores should be used. The training time for multicore Subsemble
and multicore Super Learner is shown in Figure 1.4 for training sets of increasing size.
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3.3 Subsembles with Subset Supervision

Different methods for creating Subsemble’s subsets result in different Subsembles, since the
performance of the final Subsemble estimator can vary depending on the specific partitioning
of the data into subsets. The naive approach to creating subsets is to randomly partition
the n training observations into .J subsets of size n/J, however, this still requires the user
to choose a value for J, or to try several values for J.

In this section, we introduce the “Supervised Subsembles” method [71] for partitioning
a data set into the subsets used in Subsemble. Supervised Subsembles create subsets via
supervised partitioning of the covariate space, and use a form of histogram regression [64] as
the metalearner. We also discuss a practical supervised Subsemble method called “Super-
vised Regression Tree Subsemble,” or “SRT Subsemble”, which employs regression trees to
both partition the observations into the subsets used in Subsemble, and select the number of
subsets to use. In each subsection, we highlight the computational independence properties
of these methods which are advantageous for applications involving big data.

Supervised Subsembles

The subsets used in supervised Subsembles are obtained by a supervised partitioning of the
covariate space, X = U}]:1 S;, to create J disjoint subsets Si,..., S, such that any given
vector of covariates belongs to exactly one of the J subsets. There are many unsupervised
methods that can be used to partition the covariate space, however, supervised partitioning
methods will create a partitioning that is predictive of the outcome. Given the number of
clusters, J, this technique will partition the covariate space, however it does not directly
solve the problem of choosing an optimal value for J.

Compared to randomly selecting the subsets, constructing the subsets to be internally
similar, yet distinct from each other, results in locally smoothed subset-specific fits. The
added diversity among the subset-specific fits can improve the overall performance of the
ensemble. In this case, each subset-specific fit is optimal for a distinct partition of the
covariate space. Since a subset-specific fit, \ilé, is tailored for the subspace S;, it will not

necessarily be the case that \ilg will be a good predictor for observations belonging to the
subspace, S;/, where j # j'.

To account for this, supervised Subsembles use a modified version of histogram regression
as the metalearner in order to combine the subset-specific fits. The usual form of histogram
regression, applied to the J subsets {Sj};’:l, produces a local average of the outcome Y
within each subset. In contrast, the modified version of histogram regression outputs the
associated \ifé for each subset S;. In addition, this version of histogram regression includes a

coefficient and intercept within each subset. The histogram regression metalearning fit, ®,
for combining the subset-specific fits is defined as follows:

S(U, .. T (2) = 2:; {I(:c € S;) (ﬁ;? + li;ﬁgig(x)ﬂ (3.1)
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These supervised Subsembles have the benefit of preserving the subset computational
independence. That is, if subsets are known a priori, by keeping the subset assignments
fixed, computations on the subsets of the Supervised Subsemble described in this section
remain computationally independent across the entire procedure.

To see this, let 5, to be the cross-validation selector of 5 and use the squared error loss
as an example. As shown in [71],

n 2
= argmin )Y~ (5

L 2
= { arg r%in Z (Yz — {5]0 + Z 5;@2‘,1;(1‘) (Xz):|) }
3 I=1

i:iESj

J
J=1

Thus, each term ; can be estimated by minimizing cross-validated risk using only the data
in subset S;. Unlike when using randomly constructed subsets, supervised subsets remove
the requirement of recombining data in order to produce the final prediction function for the
Subsemble algorithm.

The Supervised Regression Tree (SRT) Subsemble algorithm

Supervised Regression Tree (SRT) Subsemble is a practical supervised Subsemble algorithm
which uses regression trees to determine both of the number of subsets, J, and the parti-
tioning of the covariate space.

With large-scale data, reorganizing a data set into different pieces can be a challenge from
an infrastructure perspective. In a cluster setting, this requirement could require copying a
large amount of data between nodes. As a result, it is preferable to avoid approaches that
split and then recombine data across the existing subsets. After the initial partitioning of
the data across nodes, it is more computationally efficient to create additional splits that
divide an already existing partition.

Constructing and selecting the number of subsets

The Classification and Regression Tree (CART) algorithm [18], recursively partitions the
covariate space by creating binary splits of one covariate at a time. Concretely, using covari-
ate vector X; = (X}, ..., X[, the first iteration of CART selects a covariate X*, and then
creates the best partition of the data based on that covariate. As a metric to measure and
select the best covariate split for a continuous outcome, some splitting criterion is used. For
classification trees, Gini impurity or information gain is often used as a splitting criterion.
For regression trees, typically, the split that minimizes the overall sum of squares is selected.
For additional details, we refer the reader to [18].

The first iteration of CART creates the first partition of the data based on two regions
St = I(X* < ¢) and S? = I(X* > ¢;). Subsequent splits are obtained greedily, by
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repeating this procedure on each new partition. For example, the second iteration of CART
selects a covariate, X*'| and partitions S} into S = I(X* < ¢, X* < ¢) and S3 = I(X* <
c1, X¥ > ¢;). For a given partitioning, the standard prediction function from CART outputs
the local average of the outcome Y within each subset.

To partition the covariate space and select the number of subsets, SRT Subsemble applies
CART as follows:

1. Run the CART algorithm on the data set, resulting in a sequence of nested partitionings
of the covariate space. That is, the CART algorithm outputs a sequence of sub-trees:
a first tree with a single root node, a second tree with two nodes, a third tree with
three nodes, and so on, ending with the full tree with M nodes. The m nodes of each
m!" sub-tree are treated as a candidate partitioning into m subsets.

2. Next, explore the sequence of M possible partitions (sequence of sub-trees) produced
by CART, beginning at the root. For each candidate number of subsets 1,..., M,
a supervised Subsemble model is fit. Moreover, with m subsets, create L subset-
specific fits, \ilé, for each subset 7 = 1, ..., m, and create the overall prediction function
according to Equation 3.1. Note that CART is used to create the subsets S; that appear
in Equation 3.1.

3. Finally, choose the number of subsets that produces the supervised Subsemble with
minimum cross-validated risk.

SRT Subsemble in practice

SRT Subsemble has desirable computational independence (by subset) and provides a mech-
anism to learn the optimal number and constituency of the subsets to use in the Subsemble
algorithm. Note that as a consequence of this independence, fitting a sequence of Subsembles
in a series of sub-trees, each subsequent Subsemble only requires computation for the two
new nodes at each step. That is, given the Subsemble fit with, say, m subsets, computing
the next Subsemble with m + 1 subsets only requires computation for the two new nodes
formed in the (m + 1)® split of the tree. This is a result of the fact that the nodes are
computationally independent in the SRT Subsemble framework, and also that at each split
of the tree, all nodes remain the same, except for the single node in the m' tree (that is
split into two new nodes in the (m + 1) tree).

There are several choices available for practitioners applying the SRT Subsemble process
in practice. These user-selected options allow SRT Subsemble to be quite flexible, with
options to suit the application at hand. There is no single, best approach; instead the
options will be determined based on the application, computational constraints and desired
properties of the estimator.

The first consideration relates to building and exploring the tree. One possibility is to
simply build a very large tree (resulting in a full tree with M nodes), build a Subsemble for
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each sub-tree, 1,..., M, and through this process simply locate the Subsemble with the low-
est cross-validated risk among the sequence of sub-trees outputted by CART. Alternatively,
a greedy process can be used. Instead of calculating cross-validated risk for all sub-trees
of a very large tree, the cross-validated risk can be computed while the tree is being built.
That is, after each additional split to the tree, build the associated Subsemble, calculate the
associated cross-validated risk, and refrain from making additional splits once some stopping
criteria is achieved. As a simple example, the stopping criteria could be an increase of the
cross-validated risk.

Second, the user must decide where in the tree to start building Subsembles. The most
obvious approach is to start with building a Subsemble at the root node of the tree, meaning
the Subsemble is built with only one subset containing all observations. A Subsemble with
one subset is equivalent to the Super Learner algorithm [84]. For small to moderate-sized
data sets, where computational considerations are of less of a concern, this is a good choice.
However, for large-scale data sets, it may be preferable to first split the data into partitions
of some desired size, and then begin the Subsemble process on the subsets. This approach
would allow the user to take advantage of multiple independent computational resources,
since each partition of data could be transferred to a dedicated computational resource (all
subsequent computations remain independent from other partitions).

3.4 Conclusion

In this chapter, we presented the Subsemble algorithm, a flexible subset ensemble predic-
tion method. Subsemble partitions a training set into subsets of observations, fits one or
more base learning algorithm on each subset, and combines the subset-specific fits through
a second-level metalearning algorithm using a unique form of k-fold cross-validation. We
provided a theoretical performance guarantee showing that Subsemble performs as well as
the best possible combination of the subset-specific fits. Further, we described the practical
implementation of the Subsemble algorithm which is available in the subsemble R package,
and presented performance benchmarks that demonstrate desirable predictive performance
with significant runtime improvements as compared with full-data ensembles such as gen-
eralized stacking. We described using a supervised partitioning of the covariate space to
create Subsemble’s subsets. We discussed the computational advantages of this supervised
subset creation approach, and described the practical SRT Subsemble algorithm which will
construct the covariate partitioning and learn the optimal number of subsets.
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Chapter 4

AUC-Maximizing Ensembles through
Metalearning

4.1 Introduction

In the field of biostatistics, binary classification or ranking problems arise in many appli-
cations, for example, in diagnostic testing. There are also many problems for which the
outcome is rare, or imbalanced, meaning the number of positive cases far outweighs the
number of negative cases, or vice versa. In this type of prediction problem, the Area Un-
der the ROC Curve (AUC) is frequently used to measure model performance, due to its
robustness against prior class probabilities. When AUC maximization is the goal, a classifier
that aims to specifically maximize AUC can have significant advantages in these types of
problems.

However, most commonly used classification algorithms work by optimizing an objective
function that is unrelated to AUC — for example, accuracy or error rate. If the training
dataset has an imbalanced outcome, this can lead to classifiers where the majority class has
close to 100% accuracy, while the minority class has an accuracy of closer to 0-10% [87].
In practice, the accuracy of the minority class is often more important than the accuracy
of the majority class. Therefore, unless some type of intervention (e.g., under-sampling,
over-sampling) is used to help alleviate this issue, or AUC maximization is inherent to the
algorithm, class imbalance may negatively impact the performance of a binary classification
algorithm.

In this chapter, we introduce an ensemble approach to AUC maximization for binary
classification problems. Ensemble methods are algorithms that combine the output from a
group of base learning algorithms, with the goal of creating an estimator that has predictive
performance over the individual algorithms that make up the ensemble. The Super Learner
algorithm [84] is an ensemble algorithm which generalizes stacking [51, 17, 86], by allowing
for more general loss functions and hence a broader range of estimator combinations. The
Super Learner is built on the theory of cross-validation and has been proven to represent an
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asymptotically optimal system for learning [84].

Super Learner, described in further detail in Section 4.2, estimates the optimal combi-
nation of the base learning algorithms in the ensemble, with respect to a user-defined loss
function. The “metalearning step” in the Super Learner algorithm is the process of data-
adaptively determining the optimal combination a specific group of base learner fits via a
second-level metalearning algorithm. With respect to model performance, this leads to es-
timators that have superior (or at worst, equal) performance to the top base algorithm in
the ensemble. Even if none of the base learners specifically maximize AUC, it is possible to
inject AUC-maximization directly into imbalanced data problems via the metalearning step
of the Super Learner algorithm.

Any type of parametric or nonparametric algorithm (which is associated with a bounded
loss function) can be used in the metalearning step, although in practice, it is common
to estimate the optimal linear combination of the base learners. Since the Super Learner
framework allows for any loss function (and corresponding risk function), to be used in the
metalearning step, it is possible to create ensemble learners that specifically aim minimize a
user-defined loss function of interest.

The loss function associated with AUC, also called “rank loss,” measures the bipartite
ranking error, or disagreement between pairs of examples. The associated risk is calculated
as 1.0 — AUC. In the Super Learner algorithm, minimization of the rank loss or, equivalently,
maximization of the AUC, can be approached directly by using an AUC-maximining met-
alearning algorithm. In Section 4.3, we discuss how AUC maximization can be formulated as
a nonlinear optimization problem. We have implemented the AUC-maximizing metalearning
algorithm as an update to the SuperLearner R package and demonstrate its usage with a
code example.

In Section 4.4, we evaluate the effectiveness of a large number of nonlinear optimization
algorithms to maximize the cross-validated (CV) AUC of a Super Learner fit. We compare
the cross-validated AUC of the AUC-optimized ensemble fits to the cross-validated AUC
of the ensembles that do not attempt to optimize AUC. Super Learner fits using various
metalearning algorithms are benchmarked using training sets with varying levels of class
imbalance. The results provide evidence that AUC-maximizing metalearners typically out-
perform non-AUC-maximizing metalearning methods, with respect to ensemble AUC. The
results also demonstrate that as the level of class imbalance increases in the training set, the
Super Learner ensemble out-performs the top base algorithm by a larger degree.

4.2 Ensemble metalearning

The Super Learner prediction is the optimal combination of the predicted values from the
base learners, which is the motivation behind the name, “Super Learner.” The optimal way
of combining the base learning algorithms is precisely what is estimated in the metalearning
step of the Super Learner algorithm. The output from the base learners, also called “level-
one” data in the stacking literature [86], serves as input to the metalearner algorithm. Super
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Learner theory requires cross-validation to generate the level-one dataset, and in practice,
k-fold cross-validation is often used.

The following describes how to construct the level-one dataset. Assume that the training
set is comprised of n independent and identically distributed observations, {Ox,...,O,},
where O; = (X;,Y;) and X; € RP is a vector of covariate or feature values and Y; € R
is the outcome. Consider an ensemble comprised of a set of L base learning algorithms,
{apt, ..., "}, each of which is indexed by an algorithm class, as well as a specific set of model
parameters. Then, the process of constructing the level-one dataset will involve generating
an n X L matrix, Z, of k-fold cross-validated predicted values as follows:

1. The original training set, X, is divided randomly into k& = V roughly-equal pieces (vali-
dation folds), X ), ..., X (v).

2. For each base learner in the ensemble, 9!, V-fold cross-validation is used to generate
n cross-validated predicted values associated with the [** learner. These n-dimensional
vectors of cross-validated predicted values become the L columns of Z.

The level-one dataset, Z, along with the original outcome vector, (Yi,...,Y,) € R" is
then used to train the metalearning algorithm, ®.

Base learner library

Super Learner theory does not require any specific level of diversity among the set of base
learners, however, a diverse set of base learners (e.g., Linear Model, Support Vector Machine,
Random Forest, Neural Net) is encouraged. The more diverse the library is, the more likely
it is that the ensemble will be able to approximate the true prediction function. The “base
learner library” may also include copies of the same algorithm, indexed by different sets of
model parameters. For example, the user can specify multiple Random Forests [16], each
with a different splitting criterion, tree depth or “mtry” value.

The base learner prediction functions, {1/31, e ?ﬁL }, are trained by fitting each of L base
learning algorithms, {+!,...;%"}, on the training set. The base learners can be any para-
metric or nonparametric supervised machine learning algorithm. Once the level-one dataset
is generated by cross-validating the base learners, the optimal combination of these fits is
estimated by applying the metalearning algorithm, ®, to these data.

Metalearning algorithms

In the context of Super Learning, the metalearning algorithm is a method that minimizes the
cross-validated risk associated with some loss function of interest. For example, if the goal
is to minimize mean squared prediction error, the ordinary least squares (OLS) algorithm
can be used to solve for a = (ay, ..., ar), the weight vector that minimizes the following:
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In the equation above, z; represents the (i,[) element of the n x L level-one dataset, Z.
If desired, a non-negativity restriction i.e., oy > 0, can be imposed on the weights. There is
evidence that this type of regularization increases the predictive accuracy of the ensemble
[17]. In this case, the Non-Negative Least Squares (NNLS) algorithm [50] can be used as a
metalearner. Both OLS and NNLS are suitable metalearner choices to use when the goal
is to minimize squared prediction error. In the SuperLearner R package [68], there are five
pre-existing metalearning methods available by default, and these are listed in Table 4.1.

Method Description R Package
NNLS Non-negative Least Squares nnls
NNLS2 Non-negative Least Squares quadprog
CC_LS Non-negative Least Squares nloptr
NNloglik  Negative Log-likelihood (Binomial) Base R
CC_nloglik Negative Log-likelihood (Binomial) nloptr

Table 4.1: Default metalearning methods in SuperLearner R package version 2.0-17.

However, in many prediction problems, the goal is to optimize some objective function
other than the objective function associated with ordinary or non-negative least squares.
For example, in a ranking problem, if the goal is to maximize the AUC of the model, then
an AUC-maximizing algorithm can be used in the metalearning step. Unlike the accuracy
metric for classification problems, AUC is a performance measure that is unaffected by the
prior class distributions [14]. Accuracy-based performance measures implicitly assume that
the class distribution of the dataset is approximately balanced and the misclassification costs
are equal [37]. However, for many real world problems, this is not the case. Therefore, AUC
may be a suitable performance metric to use when the training set has an imbalanced, or
rare, binary outcome. Multi-class versions of AUC exist [36, 69], however, we will discuss
AUC in the context of binary classification.

Although we use AUC-maximization as the primary, motivating example, the technique
of targeting a user-defined loss function in the metalearning step can be applied to any
bounded loss function, L(1). It is worth noting that the loss function, L(1)), not just risk,
EoL(y), must be bounded. The AUC-maximizing metalearning algorithm that we have
contributed to the SuperLearner package can be reconfigured so that the Super Learner
minimizes any loss function that is possible to implement in code. For binary classification,
other performance measures of interest may be Fi-score (or Fg) [70], Partial AUC [62, 44],
or H-measure [37]. A Super Learner ensemble that optimizes any of these metrics can be
constructed following the same procedure that we present for AUC-maximization.
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4.3 AUC maximization

Given a set of base learning algorithms, the linear combination of the base learners that max-
imizes the cross-validated AUC of the Super Learner ensemble can be found using nonlinear
optimization.

Nonlinear optimization

A nonlinear optimization problem is an optimization problem that seeks to minimize (or
maximize) some objective function, f(a), where f : R? — R, a € R? and the solution
space is subject various constraints. Box constraints enforce an upper or lower bound on
each of the d optimization parameters. In other words, upper and/or lower bound vectors,
Ib = (lby,...,lbg) and ub = (uby,...,ubq), can be defined, such that lb; < a; < wb; for
j = {1,...,d}. In partially constrained, or unconstrained, optimization problems, one or
both of these bounds may be +oo. There may also exist m separate nonlinear inequality
constraints, f., (o) <0 for j = 1,...,m, for constraint functions, f. (a). Lastly, a handful of
algorithms are capable of supporting one or more nonlinear equality constraints, which take
the form, h(a) = 0.

Nonlinear optimization in R

The optimization methods available in base R (via the optim function), as well as algorithms
from the nloptr package [89], can be used to approximate the linear combination of the base
learners that maximizes the AUC of the ensemble.

The optim function supports general-purpose optimization based on Nelder-Mead [63],
quasi-Newton and conjugate-gradient algorithms. There is also a simulated annealing method
[9], however, since this method can be quite slow, we did not consider its use as metalearn-
ing method to be practical. With the optim function, there is only one method, L-BFGS-B
20, 92], that allows for box-constraints on the weights. The optim-based methods do not
allow for equality constraints such as ) ;05 =1, however, normalization of the weights
can be performed as an additional step (after the optimal weights are determined by the
metalearner) to provide added interpretability to the user. Since AUC is a ranking-based
measure, normalization of the weights will not affect the AUC value.

The nloptr package is an R interface to the NLopt [45] software project from MIT. NLopt
is an open-source library for nonlinear optimization, which provides a common interface for
a number of different optimization routines. We evaluated 16 different global and local
optimization algorithms from NLopt for the purpose of metalearning. The complete list of
NLopt-based algorithms is documented in Table 4.2. A lower bound of 0 is imposed for the
weights using the NLopt methods to avoid learning negative weights for the base learner
contribution. We also evaluated the effect of adding an upper bound of 1 in comparison to
leaving the upper bound undefined, i.e., oco.
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Method Description min{a;} max{a;}
NNLS Non-negative Least Squares (nnls) 0 Inf
NNLS2 Non-negative Least Squares (quadprog) 0 Inf
CC_LS Non-negative Least Squares (nloptr) 0 1
NNloglik  Negative Log-likelihood (Binomial) (optim) 0 Inf
CC_nloglik Negative Log-likelihood (Binomial) (nloptr) 0 1
AUCmlopt.1 DIRECT 0 1
AUCmlopt.2 DIRECT 0 Inf
AUC_nlopt.3 DIRECT-L 0 1
AUC.lopt.4 DIRECT-L 0 Inf
AUC_nlopt.5 DIRECT-L RAND 0 1
AUC_nlopt.6 DIRECT-L RAND 0 Inf
AUC_nlopt.7 DIRECT NOSCAL 0 1
AUC_nlopt.8 DIRECT NOSCAL 0 Inf
AUC_nlopt.9 DIRECT-L NOSCAL 0 1
AUC_ nlopt.10 DIRECT-L NOSCAL 0 Inf
AUC_nlopt.11 DIRECT-L RAND NOSCAL 0 1
AUC_ nlopt.12 DIRECT-L RAND NOSCAL 0 Inf
AUC_nlopt.13 ORIG DIRECT 0 1
AUC_nlopt.14 ORIG DIRECT 0 Inf
AUC_nlopt.15 ORIG DIRECT-L 0 1
AUC_ nlopt.16 ORIG DIRECT-L 0 Inf
AUC_nlopt.17 Controlled Random Search with Local Mutation 0 1
AUC nlopt.18 Controlled Random Search with Local Mutation 0 Inf
AUC_ nlopt.19 Improved Stochastic Ranking Evolution Strategy 0 1
AUC_ nlopt.20 Improved Stochastic Ranking Evolution Strategy 0 Inf
AUC nlopt.21 Principal Axis (PRAXIS) 0 1
AUC nlopt.22 Principal Axis (PRAXIS) 0 Inf
AUC nlopt.23 Constrained Opt. by Linear Approximations 0 1
AUC nlopt.24 Constrained Opt. by Linear Approximations 0 Inf
AUC nlopt.25 Bounded NEWUOA 0 1
AUC_nlopt.26 Bounded NEWUOA 0 Inf
AUC nlopt.27 Nelder-Mead 0 1
AUC_nlopt.28 Nelder-Mead 0 Inf
AUC nlopt.29 Sbplex 0 1
AUC nlopt.30 Sbplex 0 Inf
AUC_nlopt.31 BOBYQA 0 1
AUCnlopt.32 BOBYQA 0 Inf
AUC_optim.1 L-BFGS-B 0 1
AUC_optim.2 L-BFGS-B 0 Inf
AUC_optim.3 Nelder-Mead -Inf Inf
AUC_optim.4 BFGS -Inf Inf
AUC_optim.5 Conjugate Gradient (CG) -Inf Inf

Table 4.2: Metalearning methods evaluated.
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AUC-maximizing ensembles

The SuperLearner R package was used to evaluate various metalearning methods. The five
pre-existing methods, described in Table 4.1, were compared against a new set of AUC-
maximizing metalearning methods. As part of this exercise, we implemented a new met-
alearning function, method.AUC, for the SuperLearner package. In the method.AUC func-
tion, the weights are initialized as a;y;; = (%, - %), where L is the number of base learners.
The function will execute an optimization method that maximizes AUC, and will return the
optimal weights found by the algorithm.

The method. AUC function currently supports four optim-based and sixteen nloptr-based
optimization algorithms by default. Many of these algorithms support box-constraints, so
additional configurations of the existing methods can also be specified using our software.
An example of how to specify a custom metalearning function by wrapping the method . AUC
function is shown in Figure 4.1. In the example, we specify the metalearner to use the un-
bounded, optim-based, BFGS method [19, 28, 33, 74|, with post-optimization normalization
of the weights.

# Create a customized AUC-maximizing metalearner
# using the new method.AUC() function:

library("SuperLearner")

method.AUC_optim.4 <- function(optim_method = "BFGS", ...) {
method.AUC(nlopt_method = NULL,
optim_method = optim_method,
bounds = c(-Inf, Inf),
normalize = TRUE)

Figure 4.1: Example of how to use the method.AUC function to create customized AUC-
maximizing metalearning functions.

A complete list of the default SuperLearner metalearning methods plus the new optim
and nloptr-based AUC-maximizing metalearning methods are listed in Table 4.2. A total of
37 new AUC-maximizing metalearning functions were evaluated. The AUC_nloptr.X (where
X is an integer between 1 and 20) functions implement global optimization routines and
the remainder (21-32) are local, derivative-free, methods. The AUC_optim.X (where X is an
integer between 1 and 5) functions implement the variations of the optim-based methods.

To reduce the computational burden of evaluating a large number of metalearners, we
implemented two functions for the SuperLearner package which simplify the processes
of re-combining the base learner fits using a new metalearning algorithm. These func-
tions, recombineSL and recombineCVSL, take as input an existing "SuperLearner" or
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# Example base learner library:

SL.library <- 1list(c("SL.glmnet"),
c("SL.gam"),
c("SL.randomForest"),
c("SL.polymars"),
c("SL.knn"))

# Then the "method.AUC_optim.4" function can be used as follows:
fit <- SuperLearner(Y = Y, X = X, newX = newX,

family = binomial(),

SL.library = SL.library,

method = "method.AUC_optim.4")

Figure 4.2: Example of how to use the custom method.AUC_optim.4 metalearning function
with the SuperLearner function.

"CV.SuperLearner" fit, and a new metalearning function. They re-use the existing level-one
dataset and base learner fits stored in the model object, re-run the metalearning step and
return the updated fit. A simple example of how to use the recombineSL function is shown
in Figure 4.3.

# Assume that ‘fit’ is an object of class, "SuperLearner"
newfit <- recombineSL(object = fit, Y = Y, method = "method.NNloglik")

Figure 4.3: Example of how to update an existing "SuperLearner" fit by re-training the
metalearner with a new method.

4.4 Benchmark results

This section contains the results from the benchmarks of various metalearning methods in
a binary classification problem. The purpose of these benchmarks is twofold. We evaluate
whether AUC-maximizing metalearners, compared to other methods such as NNLS, actually
maximize the cross-validated AUC of the ensemble. We also investigate the training set
characteristics that lead to the greatest performance gain, as measured by cross-validated
(CV) AUC. In particular, we measure the effect that class imbalance, as well as training size,
has on the performance of Super Learner, under various metalearning methods.

After computing the performance of Super Learner using the 42 metalearners under
consideration, we identify the metalearning algorithm that yields the best CV AUC. The
remaining metalearners are compared by calculating the offset, in terms of cross-validated
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AUC, between the Super Learner utilizing the top metalearing method and the other meth-
ods. For example, if the top method produced a model with a CV AUC of 0.75, the offset
between the top method and a model with 0.73 CV AUC would be 0.02. The AUC offsets
for each dataset-metalearner combination are displayed in a grid-format using heatmaps.

For each training set, we contrast the performance, as measured by CV AUC, of the Super
Learner ensemble with the best base model, as determined by a cross-validated grid search
over the set of algorithms in the library. In the grid search method, the estimator with the
best cross-validated performance (as measured by a given loss criterion), is selected as the
winning algorithm, and the other algorithms are discarded. The term “grid search” is often
used to describe a search through a manually specified subset of the hyperparameter space
of a particular learning algorithm, however the term can also be used to describe the search
among a set of different learning algorithms (and parameters) under consideration. In the
Super Learning, or stacking, context, the process of generating the level-one dataset using
cross-validation is equivalent to a cross-validated grid search of the base learners. Moreover,
in the Super Learner literature, the grid search technique is referred to as the Discrete Super
Learner algorithm [83].

It is quite common for machine learning practitioners to use a grid search to evaluate the
performance of a set of unique candidate learning algorithms, or unique sets of model param-
eters within a single algorithm class, as a means to select the best model from those under
consideration. Since the metalearning step requires a only small amount of computation as
compared to the computation involved in generating level-one data, executing a grid search
and training the Super Learner algorithm are computationally similar tasks. Although grid
search and Super Learning require a similar amount of work, the Super Learner ensemble,
by optimally combining the set of candidate estimators, can provide a boost in performance
over the top base model. For context, we also provide the cross-validated AUC for each of
the base models in the ensemble.

In the benchmarks, we use a single, diverse base learner library which contains the follow-
ing five algorithms: Lasso Regression, Generalized Additive Models, Random Forest (with
1,000 trees), Polynomial Spline Regression and K-Nearest Neighbor (k = 10). The R pack-
ages that were used for each these methods are listed in Table 4.3.

Algorithm R Package Function
Y!  Lasso Regression glmnet glmnet
Y?  Generalized Additive Model gam gam
¥®* Random Forest (1,000 trees) randomForest randomForest
1*  Polynomial Spline Regression polyspline polymars
¥ K-Nearest Neighbor (k = 10) class knn

Table 4.3: Example base learner library representing a small, yet diverse, collection of algo-
rithm classes. Default model parameters were used.



CHAPTER 4. AUC-MAXIMIZING ENSEMBLES THROUGH METALEARNING 46

HIGGS dataset

The benchmarks use training sets derived from the HIGGS dataset [8], a publicly available
training set that has been produced using Monte Carlo simulations. There are 11 million
training examples, 28 numeric features and a binary outcome variable. The associated
binary classification task is to distinguish between a background process (Y = 0) and a
process where new theoretical Higgs bosons are produced (Y = 1).

Although this simulated dataset is meant to represent a data generating distribution with
a rare outcome (evidence of the Higgs particle), the class distribution of the outcome variable
in the simulated data is approximately balanced, with P(Y = 1) ~ 0.53. Two groups of
subsets of the HIGGS dataset where created, one with n = 10,000 observations and the
other with n = 100,000 observations. Within each group, ten datasets of fixed size, n, but
varying levels of class imbalance, were constructed from the original HIGGS dataset. The
following levels of outcome imbalance, P(Y = 1), were evaluated: 1-5%, 10%, 20%, 30%,
40% and 50%.

The SuperLearner [68] and cvAUC [54] R packages were used to train and cross-validate
the AUC of the Super Learner fits. For the n = 10,000 sized training sets, 10-fold cross-
validation was used to estimate the cross-validated AUC values. Within the Super Learner
algorithm, 10-fold cross-validation was used to generate the level-one data, where the folds
were stratified by the outcome variable. For the n = 100,000 training sets, 2-fold cross-
validation was used to estimate cross-validated AUC, and 2-fold, stratified, cross-validation
was also used to generate the level-one data.

Negative log-likelihood vs. AUC optimization

The benchmark results in Table 4.4 and Table 4.5 suggest that AUC-maximizing metalearn-
ers and the negative log-likelihood method perform best among all reviewed metalearning
algorithms, as measured by cross-validated AUC. Although the AUC-based metalearners
usually perform better than the non-AUC methods for the datasets that were evaluated,
there are some examples where using the loss function associated with the negative log-
likelihood (of the binomial distribution) yields the top Super Learner.

As expected, there is not one single metalearning method that performs best across all
datasets, so we recommend evaluating various metalearners. Since the metalearning step is
rather fast in comparison to any of the L base learning steps, this is a reasonable approach
to creating the highest performing Super Learner using the available training dataset.

Effect of class imbalance

By creating a sequence of training sets of increasing class imbalance, we evaluate the ability
of an AUC-maximizing Super Learner to outperform the non-AUC-maximizing metalearning
methods. We also measure the gain, in terms of cross-validated AUC of the ensemble, that
the Super Learner provides over the top base model, or grid search winner.
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No. P(Y=1) Metalearner = SL AUC Gain SL AUC GS AUC GS Model

1 0.01 CC_nloglik 0.003 0.721 0.718  gam

2 0.02 AUC _optim.4 0.016 0.739 0.723 gam

3 0.03 NNloglik 0.023 0.764 0.741 gam

4 0.04 AUC _optim.4 0.038 0.770 0.732  gam

5 0.05 AUC_optim.4 0.032 0.759 0.727 randomForest

6 0.10 NNloglik 0.018 0.768 0.750  polymars

7 0.20 AUC_nlopt.11 0.014 0.778 0.764 randomForest

8 0.30 AUC _optim.4 0.007 0.783 0.775  randomForest

9 0.40 AUC nlopt.23 0.005 0.788 0.783  randomForest
10 0.50 NNloglik 0.003 0.787 0.783  randomForest

Table 4.4: Top metalearner performance for HIGGS datasets, as measured by cross-validated

AUC (n = 10,000; CV = 10 x 10).

No. P(Y=1) Metalearner = SL AUC Gain SL AUC GS AUC GS Model

1 0.01 NNloglik 0.027 0.754 0.727  gam

2 0.02 AUC_nlopt.19 0.021 0.766 0.745 polymars

3 0.03 AUC_optim.5 0.024 0.772 0.748  polymars

4 0.04 AUC_optim.4 0.019 0.777 0.758  polymars

5 0.05 AUC _optim.3 0.020 0.779 0.759  randomForest

6 0.10 AUC_nlopt.13 0.014 0.786 0.772  randomForest

7 0.20 AUC_nlopt.5 0.007 0.793 0.786 randomForest

8 0.30 AUC_nlopt.13 0.003 0.795 0.792  randomForest

9 0.40 AUC_ nlopt.21 0.002 0.798 0.796 randomForest
10 0.50 AUC_nlopt.11 0.001 0.800 0.798 randomForest

Table 4.5: Top metalearner performance for HIGGS datasets, as measured by cross-validated
AUC (n = 100,000; CV = 2 x 2).

What the results demonstrate in Table 4.4, Table 4.5 and Figure 4.5 is that the AUC gain
achieved by using a Super Learner (SL) ensemble versus choosing the best base algorithm,
as selected by grid search (GS), is highest in the P(Y = 1) < 10% range. In particular,
for the P(Y = 1) = 4% dataset in Table 4.4, there is nearly a 0.04 gain in cross-validated
AUC achieved from using an AUC-maximizing Super Learner, as opposed to selecting the
top base learning algorithm, which in this case is a Generalized Additive Model (GAM). For
completeness, the cross-validated grid search performance for each of the base algorithms
are provided in Table 4.6 and Table 4.7 at the end of this subsection.
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Figure 4.4: Model CV AUC offset from the best Super Learner model for different met-
alearning methods. (No color == top metalearner)
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Figure 4.5 is a plot of the Super Learner AUC gain versus the value for P(Y = 1) for
both HIGGS datasets, along with a Loess fit for each group of points. With both datasets,
the general trend is that the Super Learner AUC gain increases as the value of P(Y = 1)
decreases. However, with the n = 10,000 training set, there is a sharp decrease in AUC
gain near P(Y = 1) = 1%. This trend is not present in the n = 100,000 dataset, so it
may be a an artifact of the n = 10,000 dataset, due to the global rarity of minority class
examples in the training set (there are only 100 minority class observations in total). Future
investigation could include examining the level of imbalance with higher granularity, and in
particular, in the P(Y = 1) < 1% range, using larger n.
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Figure 4.5: CV AUC gain by Super Learner over Grid Search winning model. (Loess fit
overlays actual points.)
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No. P(Y=1) SL glmnet gam randomForest polymars knn
1 0.01 0.721 0.675 0.718 0.600 0.504  0.487
2 0.02 0.739 0.667 0.723 0.671 0.530 0.490
3 0.03 0.764 0.692 0.741 0.717 0.500 0.508
4 0.04 0.770 0.686 0.732 0.731 0.579 0.540
) 0.05 0.759 0.675 0.723 0.727 0.569 0.540
6 0.10 0.768 0.672  0.720 0.744 0.750  0.554
7 0.20 0.778 0.679 0.720 0.764 0.760 0.579
8 0.30 0.783 0.679 0.721 0.775 0.757 0.593
9 0.40 0.788 0.682 0.722 0.783 0.763 0.595

10 0.50 0.787 0.683 0.722 0.783 0.756 0.600
Table 4.6: CV AUC for HIGGS datasets (n = 10,000; CV = 10 x 10)

No. P(Y=1) SL glmnet gam randomForest polymars knn
1 0.01 0.754 0.679 0.727 0.708 0.500 0.530
2 0.02 0.766 0.683 0.724 0.729 0.745 0.537
3 0.03 0.772 0.684 0.728 0.742 0.748 0.544
4 0.04 0.777 0.684 0.724 0.749 0.758 0.554
) 0.05 0.779  0.687  0.729 0.759 0.753 0.563
6 0.10 0.786  0.689 0.728 0.772 0.771  0.588
7 0.20 0.793 0.684 0.725 0.786 0.776 0.607
8 0.30 0.795 0.682 0.722 0.792 0.767 0.617
9 0.40 0.798  0.680 0.720 0.796 0.769 0.627

10 0.50 0.800 0.682 0.721 0.798 0.771 0.624

Table 4.7: CV AUC for HIGGS datasets (n = 100, 000; CV = 2 x 2)

Effect of regularization on the base learner weights
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The odd-numbered NLopt-based AUC-maximizing metalearning methods enforce box con-
straints — weights are bounded below by 0 and above by 1. As shown in Table 4.2, the
even-numbered NLopt-based methods are the partially unconstrained counterparts of the
odd methods, where the upper bound is co. The top metalearner offset heatmap in Fig-
ure 4.4 shows that all of partially unconstrained AUC-maximizing metalearning methods do
poorly in comparison to their fully constrained counterparts.

In Figure 4.4, the partially unconstrained NLopt methods are removed in order to more
clearly demonstrate the differences between the box-constrained methods.
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Figure 4.6: Model CV AUC offset from the best Super Learner model for the subset of
the metalearning methods that enforce box-constraints on the weights. (No color == top
metalearner)
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4.5 Conclusion

In this chapter, we describe an implementation of an AUC-maximizing Super Learner algo-
rithm that can be replicated for any loss function of interest. Due to the popularity of AUC
as a model performance estimator in binary classification problems, we chose rank loss (1 -
AUC) as an example to demonstrate this technique. The new AUC-maximizing metalearn-
ing functionality, as well as utility functions for efficient re-estimation of the metalearning
algorithm in an existing Super Learner fit, have been contributed to the SuperLearner R
package.

We benchmarked the AUC-maximizing metalearning algorithms against various existing
metalearners that do not target AUC. The results suggest that the use of an AUC-maximizing
metalearner in the Super Learner algorithm will typically lead to higher performance, with re-
spect to cross-validated AUC of the ensemble. The benchmarks indicate that AUC-targeting
is most effective when the outcome is imbalanced — in particular, in the P(Y = 1) < 10%
range. The benchmarks also show that NNLS, which has been widely used as a metalearning
method in stacking algorithms since it was first suggested by Breiman, consistently performs
worse than AUC-maximizing metalearners.

In the current implementation of method.AUC, the weights are initialized as «a;,; =
(%, - %), where L is the number of base learners. It would also be interesting to investigate
the effect of initializing the weights using existing information about the problem, for exam-
ple, let e = (0, ...,0,1,0, ...,0), where the 1 is located at the index of the top base learner,
as determined by cross-validation. Further, it may increase performance to use the global
optimum as input for a local optimization algorithm, although this technique for chaining
algorithms together was not evaluated in our study.
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Chapter 5

Computationally Efficient Variance
Estimation for Cross-validated AUC

5.1 Introduction

The area under the ROC curve, or AUC, is a ranking-based measure of performance in binary
classification problems. Its value can be interpreted as the probability that a randomly
selected positive sample will rank higher than a randomly selected negative sample. AUC
is a more discriminating performance measure than accuracy [2], and is invariant to relative
class distributions [3].

In practice, we are generally concerned with how well our results will generalize to new
data. Cross-validation is a means of obtaining an estimate that is generalizable to data
drawn from the same distribution but not used in the training set. Common types of cross-
validation procedures include k-fold [4], leave-one-out [78, 7, 4], and leave-p-out [75] cross-
validation. Given the advantages of AUC as a performance measure, along with the desire to
produce generalizable results, cross-validated AUC is frequently used in binary classification
problems.

An important task in any estimation procedure is to rigorously quantify the uncertainty in
the estimates. In many cases, specification of a parametric model known to contain the truth
is not possible, and approaches to inference which are robust to model misspecification are
therefore needed. Two approaches to robust inference include inference based on resampling
methods, and inference based on influence curves (also known as influence functions). In
practice, resampling methods such as the nonparametric bootstrap [26, 27], are commonly
used due to their generic nature and simplicity. However, when data sets are large or when
methods for training a prediction model are complex, bootstrapping can quickly become a
computationally prohibitive procedure.

Although cross-validation lends itself well to parallelization, it can still take a very long
time to generate a cross-validated performance measure, such as cross-validated AUC, de-
pending on the complexity of the algorithm used to train the prediction model or the size of
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the training set. In machine learning, ensemble methods are prediction methods that make
use of, or combine, several or many candidate learning algorithms to obtain better predictive
performance. This boost in performance is often accompanied by an increase in the time
it takes to generate cross-validated predictions. Alternatively, given massive data sets, even
simple prediction methods can be computationally expensive. In cases where obtaining a sin-
gle estimate of cross-validated AUC requires a significant amount of time and/or resources,
the bootstrap is either not an option, or at the very least, a undesirable option for obtaining
variance estimates.

As a response to the computational costs of the bootstrap, variations of the bootstrap
have been developed that achieve a more desirable computational footprint, such as the “m
out of n bootstrap” [11] and subsampling [67]. Another recent advancement that has been
made in this area is the “Bag of Little Bootstraps” (BLB) method [1]. Unlike previous
variations, BLB simultaneously addresses computational costs, statistical correctness and
automation, which appears to be a promising generalized method for variance estimation on
massive data sets.

Regardless of the reduction in computation that different variations of the bootstrap
offer, all bootstrapping variants require repeated estimation on at least some subset of the
original data. By using influence curves for variance estimation, we avoid the need to re-
estimate our parameter of interest, which in the case of cross-validated AUC, requires fitting
additional models. In order to estimate variance using influence curves, you must first,
unsurprisingly, calculate the influence curve for your estimator. For complex estimators, it
can be a difficult task to derive the influence curve. However, once the derivation is complete,
variance estimation is reduced to a simple and computationally negligible calculation. This
is the main motivation for our use of influence curves as a means of variance estimation.

The main goal of this chapter is to establish an influence curve based approach for esti-
mating the asymptotic variance of the cross-validated area under the ROC curve estimator.
We first define true cross-validated AUC along with a corresponding estimator and then pro-
vide a brief overview of influence curve based variance estimation. We derive the influence
curve for the AUC of both i.i.d. data and pooled repeated measures data (multiple observa-
tions per independent sampling unit, such as a patient), and demonstrate the construction of
influence curve based confidence intervals. We conclude with a simulation that evaluates the
coverage probability of the confidence intervals and provide a comparison to bootstrapped
based confidence intervals. The methods are implemented in a publicly available R package

called cvAUC [54].

5.2 Cross-validated AUC as a target parameter

In this section, we formally introduce AUC. We then define the estimator for cross-validated
AUC, as well as the target that it is estimating, the true cross-validated AUC.

Consider some probability distribution, Fy, that is known to be an element of a statistical
model, M. Let O = (X,Y) ~ Py € M, where Y is a binary outcome variable, and X € RP
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represents one or more covariates or predictor variables (p > 1). Without loss of generality,
we will denote Y = 1 as the positive class and Y = 0 as the negative class, and 1) as a
function that maps X into (0,1). The quantity, ¥(X), is the predicted value or score of a
sample. The Area Under the ROC curve can be defined as the following:

AUC(Py, 1) = /0 Po((X)>c|Y =1)Py(h(X)=c|Y = 0)de. (5.1)

Alternatively, we can define AUC as
AUC(Poy ) = Py ($(X1) > $(Xa) | Vi = 1,3 = 0), (5.2)

where (X3,Y7) and (X3, Ys) are i.i.d. samples from Fy. The quantity, AUC(P,, ), the true
AUC, equals the probability, conditional on sampling two independent observations where
one is positive (Y; = 1) and the other is negative (Y3 = 0), that the predicted value (or rank)
of the positive sample, 1(X7), is higher than the predicted value (or rank) of the negative
sample, 1¥(X3).

Consider Oy, ..., O, ii.d. samples from P, such that O; = (X;,Y;) for each i, and let
P, denote the empirical distribution. Let ny be the number of observations with Y = 0 and
let n; be the number of observations with Y = 1. In the context of machine learning, the
1 function is what is learned by a binary prediction algorithm using the training data. The
AUC of the empirical distribution can be written as follows:

1

NNy

DD (X)) > p(X) T (¥i=0,Y;=1)

i=1 j=1

AUC (P, 1) =

no ni

where [ is the indicator function.

We focus on estimating cross-validated AUC. We do not require that the cross-validation
be any particular type; however, in practice, k-fold is common. We will use a generalized
notation to encode the data splitting procedure, where a binary indicator vector is used to
specify which observations belong to the validation set at each iteration of the cross-validation
process. Let B ..., BY be the collection of random splits that define our cross-validation
procedure, where B! € {0,1}". In the case of k-fold cross-validation, & = V| and each of
the BY encodes a single fold. The v validation fold is the set of observations indexed by
{i: BY(i) = 1}, and the remaining observations belong to the v'" training set, {i : B%(i) = 0}.

Let Myp denote a nonparametric model that includes the empirical distribution, P,
and let ¥ : Myp — R be an estimator of target parameter, vy, true cross-validated AUC.
We assume that W(Py) = 1.

For each B}, we define ¢p, = @(P,?? B%), where PT(L)’ py 1s the empirical distribution of the
observations contained in the v training set. The function v By, which is learned from the
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v'" training set, will be used to generate predicted values for the observations in the v'*
validation fold. We define n} and n{§ to be the number of positive and negative samples
in the v validation fold, respectively. Formally, ny = >  I(Y; =1)I(Bi(i) =1) and
ng = > I (Y;=0)I(B.(i)=1). We note that n} and nj are random variables that
depend on the value of both BY and {Y; : BY(i) = 1}. The AUC for a single validation fold,
{i: B2(i) = 1}, is:

AUC<P$,B3, 1/133) =

1 ) v/ -
o 2> (U (X)) > ¥my (X)) T(Yi = 0,Y; = ) I(By(i) = B(j) = 1)
Then the V-fold cross-validated AUC estimator is defined as:

14
1
Ep, AUC(Pyp,.¥5,) = 1) AUC(P, p, vUny) (5.3)
v=1

1 v 1 n n
- - ; e DD T (Usy(X)) > sy (X))

i=1 j=1

x (Y, =0,Y; = 1)1 (BYi) = BL(j) = 1).

The target, 1, of the V-fold cross-validated AUC estimator is defined as:
v
1
Ep AUC(Py,vp,) = v > AUC(Py, o) (5.4)
v=1

-
_ %ZPO (0 (X2) > 1y (Xa) | Vi = 1, Y3 = 0)
v=1

where (X1,Y)) and (X5, Ys) are i.i.d. samples from P,. In other words, our target parameter,
the true cross-validated AUC, corresponds to fitting the prediction function on each training
set, evaluating its true performance (or true probability of correctly ranking two randomly
selected observations, where one is a positive sample and the other a negative sample) in the
corresponding validation set, and finally, taking the average over the validation sets. The true
value of this target parameter is random, in that it depends on the split of the sampled data
into training sets and corresponding fits of the prediction function. We now wish to construct
confidence intervals for our estimator of cross-validated AUC, Ep, AUC (P, . , B, )

5.3 Influence curves for variance estimation

We provide a brief overview of influence curves and their relation to variance estimation.
We outline the general procedure for obtaining confidence intervals using the influence curve
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of an estimator. This section serves as a gentle introduction to concepts and notation used
throughout the remainder of the chapter.

Suppose that O = Oy, ..., 0,, are i.i.d. samples from a probability distribution, Fy, that
is known to be an element of a statistical model, M. Let F be some class of functions
of O. Throughout this chapter, we will use the notation Pf, where P is a probability
distribution, to denote [ f(x)dP(x). We consider the empirical process, (Pof : f € F),
which is a “vector” of true means. Let ¥ : M — R? be a parameter of interest, and let
o =V (Fy) = VY(Pyf : f €F) be the true parameter value; 1 is a function of true means.
Now let M yp denote a nonparametric model that includes the empirical distribution, P,, of
01, ..., O,. We consider the empirical process, (P,f : f € F), which is a “vector” of empirical
means. Let W : Myp — R? be an estimator of tho that maps the empirical distribution,
P,, or rather, a “vector” of empirical means, into an estimate W(P,) = U(P,f : f € F).
We assume that \TJ(PO) = 1)y, so that the estimator targets the desired target parameter, .
This estimate is asymptotically linear at Py if

U(P,) — U(Ry) = ZIC (Py)(0;) + op(1/+/n) (5.5)

for some zero-mean function, IC(F), of O (i.e. PyIC(F) = 0). The function, IC(5),
is called the influence curve, or influence function, of the estimator, ¥. The main task in
the process of constructing influence curve based confidence intervals is demonstrating the
asymptotic linearity of your estimator.

By the Central Limit Theorem, we find that \/n <\i/(Pn) — ‘i/(Po)> 4 N(0,%), where

Yo = Py IC(Py)IC(Py)T. This covariance matrix can be estimated with the empirical co-
variance matrix, /C(0;), i = 1,...,n where IC' is an estimate of IC(F). When our target
parameter is one-dimensional, as in cross-validated AUC, we can write the following:

N (@(Pn) . @(PO)) LN (0, 92(Ry)) (5.6)

where ®*(P) = [ IC(Py)(x)?dPy(x). We can estimate ®*(F,) as

P2 = d*(P,) = %zn: IC(P,)(0;)?, (5.7)

however, other estimators of the variance of the influence curve can be considered. Letting z,

denote the 7" quantile of the standard normal distribution, it follows that for any estimate
P2 = ®%(P,) of *(P,), we have that

(007 — 12 BB+ 539

forms an approximate 100 x (1 — )% confidence interval for 1y = W(P,).
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In order to assume that asymptotically linear estimators of 1 exist, we must assume that
the parameter ¥ is pathwise differentiable [12]. This method for establishing the asymptotic
linearity and normality of the estimator is called the functional delta method [81, 32], which
is a generalization of the classical delta method for finite dimensional functions of a finite
set of estimators.

5.4 Confidence intervals for cross-validated AUC

In this section, we establish the influence curve for AUC and show that the empirical AUC
is an asymptotically linear estimator of the true AUC. Using these results, we follow the
methodology from Section 5.3 to derive confidence intervals for cross-validated AUC. Then
we provide a description of the practical construction of the confidence intervals from an
i.i.d. data sample.

Theorem 2. Let O = (X,Y) ~ P, where X € RP represents one or more variables and Y
is binary. Without loss of generality, assume Y € {0,1} and that v is a function that maps
X into (0,1). Define AUC(Py, ) as

/0Pow(X)>c|Y=1>Po<w<X>=crY=o>dc.

The efficient influence curve of AUC(Py, 1)), evaluated at a single observation, O; = (X;,Y;),
for a nonparametric model for Py is given by

1(Yi = 1)

ICavc(FPo, ¥)(0;) = RY =1)

Py ((X) <w | Y =0) ‘wzw(xi)

1(Y; =0) -

FRo=0" WiX)>wl¥=1) ‘wzﬁ(xi)
(Y, =0)  I(Y;=1)

N {PO(Y:O) B(Y = 1)}AUC(Po,w)-

For each 1, the empirical AUC(P,,1) is asymptotically linear with influence curve,

ICAuc(Po,). Let B, € {0,1}" be a random split of the observations into a training and
validation set. Let Pﬁ’ B, and P}i B, be the empirical distributions of the validation set, {i :
B, (i) = 1}, and training set, {i : B,(i) = 0}, respectively. We assume that B, has only
a finite number of values uniformly in n, as in k-fold cross-validation. We assume that
p=>_,By(i)/n is bounded away from a 6 > 0, with probability 1. Define the cross-validated

area under the ROC curve as
R(W, P) = Ep, AUC (P, W(PL,)) (5.9)
We also define the target of this cross-validated area under the ROC curve as

R(V,P,) = B, AUC (po, \@(P,?,Bn)) . (5.10)
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. 2
We assume that there exists a ¢, € ¥ so that Py {IC’AUC (PO,\II(Pn)> — ICAUc(Po,l/Jl)}

converges to zero in probability as n — co. We also assume that
SUP ey SUPo [ICavc(Fo, ¥)(0)| < oo, where the supremum over O is over a support of Fy.
Then,

A

R(¥,P,) — R(V, P,) = % Xn: IC4uc(0;) + op(1//n). (5.11)

In particular, \/n (]A%(\i/, P,) - R(\i/, Pn)> converges to a normal distribution with mean zero

and variance, 0% = B, {~IQAUC(P07¢1)}2- Thus, one can construct an asymptotically 0.95-
confidence interval for R(V, P,) given by R(V, P,) & 1.962%, where o, is a consistent esti-

n

mator of 0. A consistent estimator of o* is obtained as

. 2
o = EBnPé,Bn {ICAUC <P$,Bn; ‘I’(PB,B")>} : (5.12)

Proof. In order to derive influence curve based confidence intervals for cross-validated AUC,
we must first derive the influence curve for AUC and show that AUC(P,,) is an asymp-
totically linear estimator of AUC (P, ) with influence curve as specified in the theorem.
For that purpose we use the functional delta method [81, 32]. The asymptotic linearity
of AUC(P,,) is an immediate consequence of the compact differentiability of functionals
(Fi, F5) — [ Fi(x)dFy(z) for cumulative distribution functions (F, F) [32], so the func-
tional delta method can be applied here as well. Therefore it only remains to determine the
actual influence curve which is defined in terms of the Gateaux derivative of P — AUC/(P, 1))
in the direction of the empirical distribution for a single observation, O.

We define F,(c) = Py(¢¥(X) < c|Y =a) for a € {0,1}. Therefore, we can alternatively
express true AUC as

AUC (Py, ) = B(Fy, Fy) = / (1 - Fu(e)dFo() (5.13)

The Gateaux derivative of ®(Fy, F1) in direction (hg, k1) is given by:

d
EQ)(FO + Eho, F1 + Ehl)

- / () dFy(c) + / (1= Fy(¢))dho(c)

€=

Therefore, we have the following linear approximation:

B(Fon, Frn) — B(Fo, Fy) = /—(Fm _F)dF, + /(1 — F)d(Fy — Fy)
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Let Fy,,, I}, be the empirical distributions of Fy, F;. Next we derive the linear approximations
of Fy,, — Fy and Fy, — Fy. Note that for a € {0,1},

P,(¢(X) <¢Y =a)

Fu(o)=P,(¢(X)<c|Y =a)= Po(Y —a) (5.14)
It follows that F,,(c) — F,(c) ~
(P —R)WX) <cY=a) RHX)<cY=a) g .
1 [ I(Y(X;) < ¢, Y =a) _ F(oI(Y; =a)
_nz_;{ Py(Y = a) Py(Y =a) }
So the influence curve of Fy,(c) for a single observation, O; = (X;,Y;), is:
[(¢(Xz) < C,Y;‘ = a’) . Fa(C)](Y; = a) (515)

(Y =a) Py(Y =a)

We can substitute this for h, in the linear approximation above resulting in the desired
influence curve, ICayc(Fo, ), as presented in the theorem. For that, it is helpful to observe
that:

/ [(0(X)) < ¢, Y; = 1)dFy(c) = I(Y; = 1) /w ) (5.16)
=I1(Y; =1)(1 — Fo(¢(X3)) (5.17)

This is the influence curve for AUC(P,, ), and, since the model M for P, is nonpara-
metric, this is also the efficient influence curve of parameter AUC(Fy, ) on a nonparametric
model.

Using the notation that was defined in Section 5.2, it follows that

Ep, AUC(P, 5. ¥(P,) ) — Ep, AUC(Py, ¥(P) 5,))

= Ep,(Pyy, — Po)ICauc(Po, V(P ) + Ep, R(PLpg U(PLy))

~ Ep, (P 5, — Po)ICauc(Po, W(PY 5.)) + op(1/v/n)

= Ep,(Py g, — Po)ICauc(Po, 1)
+ Ep,(Plg, = o) { ICave (P, W(PL5,)) = ICavc(Po, ) }
+op(1/+/n)

= Ep,(Py g, — Po)ICauc(Po, 1) + op(1/3/n)

= (P, — Ry)ICauc(Py,vn) + op(1/v/n).

At the first equality we apply the previously established asymptotic linearity of AUC(P, g1,1),
conditional on the training sample, which proves that each B,-specific remainder,
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R(P, ., \i/(ngBn)), is op(1/4/n). Since there are only a finite number of possible B, this
also proves the next equivalence stating that the average across the different B,,-splits of
the remainder is also op(1/4/n). In the third equality, we just carry out a simple split
of the empirical process in two terms. In the statement of the theorem, we assume that

. 2
Py {IC’AUC(PO, U(P,)) — IOAUc(PO,l/}l)} converges to zero in probability as n — oo for

some ;. Using a result from [91] involving the application of empirical process theory
(specifically Lemma 2.14.1, which references [81]), the term,

Ep, (P!, — P) {](JAUC(PO, B(PY ) — ICauo(P, ¢1)}, is shown to be 0p(1//n), which
results in the fourth equality.

Finally, Ep, (PT;B” —P)ICauc(Po, 1) = (Po—FPo)ICauc(Fo, 1), proving the asymptotic
linearity of the cross-validated AUC estimator as stated in the final equality. In particular,

Vi (Ep, AUC(PL 5, W(PY ) = B, AUC(Py, W(P) )

converges to a normal distribution with mean zero and variance, 02 = Py {ICayc(Po, %)}2 )
A consistent estimator of o2 is obtained as
2

0721 = EBnPé,Bn {ICAUC <P$,Bn: \I/(Prg,Bn)>} .
For o2, we estimate the unknown conditional probabilities of the influence curve ICyuyc

with the empirical distribution of the validation set, so that P, 5 (/(X) >w | Y = 0) will

be consistent at ¢ = i’(PS,Bn) under no conditions on the estimator ¥. This is why we
replaced Py in ICayc(Py, ) by the empirical distribution of the validation set. However,
the probabilities Py(Y = 1) and Py(Y = 0) can be estimated using the whole sample.

Thus, one can construct an asymptotically 0.95-confidence interval for

Eg, AUC(Py, W(P}) ) given by Ep, AUC(P, 5, W(P) 5 )) +1.96%.

A practical implementation for i.i.d. data

For further clarity, we provide a description of the practical construction of the confidence
intervals from an i.i.d. data set, as implemented in our software package. Consider an i.i.d.
sample of size n with a binary outcome Y. For each observation, O; = (X}, Y;), we have a
p-dimensional numeric vector, X; € RP, and a binary outcome variable, Y;. Without loss
of generality, let Y; € {0,1}, for all i = 1,...,n, however, Y can be any ordered two-class
variable. In this example, we will use k-fold cross-validation for K =V > 1 and define the
splits as B, ...., BY. Calculating the V-fold cross validated AUC estimate corresponds to:

1. Building or fitting the prediction function on each of V' validation sets.

2. Generating a predicted outcome for each observation in the v* validation set. The
predictions are generated using a fit that was trained on the {1,...,V} \ v folds.
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3. For each validation fold, using these predicted values, together with the observed out-

comes for each observation, to generate an estimate of the AUC for that validation
fold.

4. Average these estimates across the V' validation folds to calculate the V-fold cross-
validated AUC.

Recall that P, 5, and Py 5, are the empirical distributions of the v validation and train-
ing set, respectively and P, is the empirical distribution of the whole data sample. The V-fold
cross-validated AUC estimate, denoted R(¥, P,), is given by - ZX:1 AUC (P} g ,¢py). In
order to construct influence curve based confidence intervals for }?(\TJ, P,), we estimate the
asymptotic variance as:

02 = Ep, Phs, { ICave (Phs, W(PLs,)) }2 (5.18)
- éi {% Z {1Cave (Phog #(PL5)) (00} 1(By(0) = 1)} . Ga9)

=

where gy = \i/(P,?VB%), and for each v € {1,...,V} and i € {1,...,n}, we have

[Cavc(Py gy W (PY 5,))(0))

Pl (s (X) <w Y =0) |

w=yYpy (Xi)
Pl oy (5(X) > w |V =1) |

)
=0 | Ivi=1)
- {Pn(Y —0) B = 1)

w=Ypy (Xi)

bAve (P, vm).

Despite the density of the notation above, each of the components in the influence curve
can be calculated very easily from the data. The terms, P,(Y = 1) = %Z;:l I(Y; = 1)
and P,(Y = 0) = 23" I(Y; = 0), are the proportions of positive and negative samples,

n j=1
respectively, in the empirical distribution. Let ny = "7 | I(Y; = 1)I(B;(j) = 1) be the
number of positive samples in the v"* validation set and let ng = >"_ I(Y; = 0)I(By(j) = 1)

be the number of negative samples in the v validation set. Also, recall that Ypy is the
function learned by the v*" training set, which maps a vector, X, of covariates, to a predicted
value, ¢ (X) € (0,1). For a given sample, O; = (X;,Y;), we calculate the predicted value,
Ypy(X;), and note whether Y; is labeled as positive (Y; = 1) or negative (Y; = 0). Above,
each of the terms in the expression for the influence curve contains an indicator function,
conditional on the value of Y;. Therefore, given the value of Y;, we need only to evaluate the
non-zero part of the expression.
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When Y; = 1, we need to evaluate:

PLgy (05y(X) < w| Y =0) |

w=vpy (X;)

- nigzz (X; < wmg (X)) 1 (Y; = 0) 1 (BL(j) = 1)

This sum counts the number of negative samples in the validation set that have a predicted
value less than g (X;), the predicted value for sample i. Then, we divide by the total
number of negative samples in the validation set. Similarly, when Y; = 0, we need to
evaluate:

Pl ((X) > w |V =1) |

w=py (X;)

_ %ZI (X; > vpy(X)) I (Y; = ) I(BL() = 1)

This sum counts the number of positive samples in the validation set that have a predicted
value greater than 1y (X;), the predicted value for sample 7. Then, we divide by the total
number of positive samples in the validation set. The remaining term in the expression for
the influence curve is simply AUC (Pﬁ B, > @/}B%), given in Section 5.3, multiplied by inverse
probability of P,(Y = 1) or P,(Y = 0), depending on the value of the indicator function at
Y;. Thus, for fixed v € {1,...,V} and i € {1,...,n}, we have demonstrated how to calculate
the quantity, ICayc (P,iB%, \iJ(PS’B%)> (0;), from an ii.d. data set. Then we square this
term and sum over i.i.d. samples, 7, and cross-validation folds, v, to get
1L 1 . 2
== {5 > {1Cuve (Play W(PLs)) (00} 1(ByG) = 1>} ,
v=1 1

i=

an estimate for the asymptotic variance of R(\i!, P,), our V-fold cross-validated AUC esti-
mator. The target of this estimator is

R(V,P,) = Ep, AUC (Po, @(PS,BJ) - %i AUC (Po, \if(P,g{Bﬁ)) ,
v=1

the true V-fold cross-validated AUC. Then, as in Theorem 2, one can construct an asymp-

totically 0.95-confidence interval for R(¥, P,) as R(¥, P,) + 1.96-Z%.

5.5 Generalization to pooled repeated measures data

Above, we derived a consistent influence curve based estimator of the asymptotic variance of
cross-validated AUC for the simple setting in which there are n i.i.d. observations. Each of
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these observations, O; has a predictor variable, X;, coupled with a binary outcome variable,
Y;, that we wish to predict. Now we consider the common setting in which there are repeated
measures for each observation. This data structure arises frequently in medical studies, where
each patient is measured at multiple time points. We focus on the case where the order of
these measures is not meaningful, and one simply wishes to obtain a single summary of
classifier performance pooled over all measures. We begin by providing a formal definition
of the target parameter, the pooled cross-validated AUC, for such cases. We then extend
the results presented in the previous sections to derive an influence curve based variance
estimator for the cross-validated AUC of a pooled repeated measures data set.

As before, we let By € M and ¥ : M — ¥. We denote the target parameter W(F) as
. Let O = (X(¢),Y(t) : t € T) ~ By for a possibly random index set 7 C {1,..., T}, where
t corresponds to a single time-point observation. Here Y'(¢) is binary for each . We observe
niid. copies O; = (X;(t),Y;(t) :t € ), i=1,...,nof O. Let Myp denote a nonparametric
model that includes the empirical distribution, P,, of Oq, ..., O, and let U: Myp — R be
an estimator of 15. We assume that ‘if(PO) = 10p. We consider the case where ¢ is not a
meaningful index, and that either vy(¢,x) = Ey (Y(t) | X(t) = x) does not depend on ¢, or
that the investigator has no interest in understanding the dependence on ¢. Consider the
distribution,

Py(x,y) =

E0|T| ZPO tenPy(X(t)=z,Yt)=y|ter).

This represents the limit distribution of the empirical distribution P, of the pooled sample:

Po(z,y) = Z“| ZZI Yi(t) =y).

i=1 ten;

One could define as a measure of interest for evaluation a predictor v, the area under the
ROC curve one would obtain if one treats the pooled sample as N i.i.d. observations. That
is, we define

ATC (B, o) = /0 P(X)>c|Y = D) B ((X)=c|Y =0)de,  (5.20)

where, without loss of generality, we let the positive class be represented by ¥ = 1 and
the negative class be represented by Y = 0. The pooled repeated measures AUC can be
interpreted as the probability that, after pooling over all independent sampling units and
all time points, a randomly sampled positive outcome will be ranked more highly than a
randomly sampled negative outcome.

The AUC for the empirical distribution of the pooled sample can be expressed explicitly

as follows. Let ng = > 7, 3, I(Yi(t) = 0) and let ny = 37, 37 I(Yj(s) = 1). Then
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AUC ( p ¢)

nonlzZZZI ) > GG T (i(E) = 0,5(s) = 1).

i=1 ter; j=1 se7;

Now we consider the cross-validated AUC of a pooled repeated measures data set. Let
B, € {0,1}" be a random split of the n independent observations into a training and
validation set. Let P! B and P? B, be the empirical distributions of the pooled data within
the validation set, {z W (1) = 1} and training set, {i : B,(i) = 0}, respectively. Again, we
assume that B,, has only a finite number of values uniformly in n, as in k-fold cross-validation.
Given a random split, B,, we define 15, = W(P?, ).

As in the i.i.d. example in the previous section, we will walk through the case of V-fold
cross-validation. Let Bl, ..., BY be the collection of random splits that define our cross-
validation procedure such that each of the BY encodes a single fold. The v validation
fold is {i : BY(i) = 1}, and the remaining samples belong to the v training set, {i :
B“(') = 0}. Note that since our independent units are collections of pooled time points,
0; = (X;(1),Y;(t) : t € 1;), that all pooled samples from each i.i.d. sample, O; will be
contained within the same validation fold.

For each B}, we define ¢p, = @(15797 o), Where PO gy 18 the empirical distribution of the
pooled data contained in the v training set. The function, Ypy, which is learned from
the v training set, will be used to generate predicted values for the observations in the v
validation fold. We define ny and ng to be the number of positive and negative samples in the

vth Vahdatlon fold, respectively. Formally, ny = 7", 37, T (Yi(t) = 1)1 (B;(i) = 1) and
=Yy D e L(Yi(t) = 0) I (B)(i) = 1). We note that n{ and ng are random variables
that depend on the value of both BY and {Y; : BY(i) = 1}.

The AUC for a single validation fold, {i : BY(i) = 1}, for pooled repeated measures data,

is

)

AUC (P, gy, ¥sy) =

(5.21)

TL n
i=1 ter; j=1 s€T;

where h(n,v,i,t,7,5) =

I (¥y(X;(5)) > ¥my (Xi(1))) I (Yi(t) = 0,Yj(s) = 1) I (B, (i) = By(j) = 1).

In other words, it is the probability that, after pooling over units and time, a randomly
drawn positive sample will be assigned a higher predicted value than a randomly drawn neg-
ative sample in the same validation fold by the prediction model fit using the corresponding
training set.
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Then the V-fold cross-validated AUC estimator, for pooled repeated measures data, is
defined as

Ep, AUC (Pl p,) = ZAUC( Bv,qu%) (5.22)
;

We also define the target, 1y, of the V-fold cross-validated AUC estimate as

i=1 teT; j=1 s€T;

ZZZZhnU,Z,t], } (5.23)

v

B, AUC (B, ¥,) = %ZAUC (Pos vsy) (5.24)
v=1
v

B %ZPO (VBy(X1) > ¥py(X2) | Y1 =1,Y2 = 0), (5.25)

v=1

where (X1,Y7) = (Xi1(¢),Y1(t)) and (X3, Ys) = (Xa(t), Ya(t)) are single time-point observa-
tions. The following theorem is the pooled repeated measures analogue to Theorem 2.

As in the i.i.d. data version, this target represents the average across validation folds
of the true probability (under F) that a randomly sampled positive observation would be
ranked higher than a randomly sampled negative observation in the same validation fold by
the prediction function fit in the corresponding training set. Again, the true value of this
target parameter is random — it depends on the random split of the sample into V' folds and
corresponding fits of the prediction function. However, it nonetheless provides a meaningful
measure of the performance of the prediction function on independent data.

Theorem 3. The efficient influence curve of AUC (PO, w), evaluated at O; = (X;(t), Y;(t)) :
t € 1), for a nonparametric model for Py is given by:

ICq5e (Po, ¥) (O;) ZICAUC (Po, ¥) (Xy(t), Yi(t)),

Eo|7|
where
[Cave (Po, ¥)(Xu(t), Yi(1))
_ Ioég):ll)) By (9(X) <w [Y(t) =0) ‘w: (X (1)
41 (—Yé(Yt):o(;)P 0 (V(X) >w[Y(t)=1) ’w H(Xi(1)
(Yi(t) =0)  I(Yi(t) =
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Directly above, (X,Y) = (X(s),Y(s)) represents a single time-point observation. For each
Y, the estimator AUC (Pn, @D) obtained by plugging in the pooled empirical distribution P,
is asymptotically linear with influence curve IC e (150, w).

Let B, € {0,1}" be a random split and let Pﬁ,Bn and PS,Bn be the empirical distributions
of the validation {i : B, (i) = 1} and training set {i : B,(i) = 0}, respectively. Let P 5 be
the empirical distribution of the pooled data within the validation set. We assume that B, has
only a finite number of values uniformly in n, as in k-fold cross-validation. We assume that
p =Y. By(i)/n is bounded away from a 6 > 0, with probability 1. Define the cross-validated
area under the ROC curve as

R(V,P,) = Ep AUC (ﬁgﬁn, @(Pan)) . (5.26)
We also define the target of this cross-validated area under the ROC curve as
R(V,P,) = By, AUC (PO, xif(pgﬁn)) . (5.27)

We assume that there exists a 1, € W so that
_ . _ 2
Py {ICW (PO, \If(Pn)> — ICqpe (PO, wl)} converges to zero in probability as n — oo. We

also assume that sup,cg supo |1 Capa (150, w) (O)| < o0, where the supremum over O is over
a support of Py. Then,

R(W, P,) ~ R(¥, P) = + 3" 10 (Both) (00 op(1/VA). (529)

In particular, \/n (R(\i/, P,) — R(7, Pn)> converges to a normal distribution with mean zero

and variance, 0® = Py {IC’W (PO, @Z)l)}Q. Thus, one can construct an asymptotically 0.95-

confidence interval for R(V, P,) given by R(V, P,) + 1.96 7% where o2 is a consistent esti-

mator of 0. A consistent estimator of o* is obtained as

_ . 2

02 = B, Phs, { 1Camc (Phs, ¥(Pls)) } - (5:29)

Proof. This is the pooled repeated measures analogue of Theorem 2, so the proof follows the
exact same format and arguments as the proof of Theorem 2. m

5.6 Software

We implemented the influence curve based confidence intervals for cross-validated AUC for
i.i.d. data as well as for pooled repeated measures data, as an R package. The package,
called cvAUC [54], has the same function interface as the popular ROCR package [5].

For each observation, the user provides a cross-validated predicted value, as generated by
a binary prediction algorithm, and a corresponding binary class label. If the user has pooled
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repeated measures data instead of i.i.d. data, then the user must also provide an id for each
observation. The user must also indicate which observations belong to each cross-validation
fold. To be clear, the user must provide for each observation, i:

1. The value of the outcome, Y;.
2. The validation fold, v € {1, ..., V'}, that observation, i, is associated with.

3. The predicted probability of the outcome, 1(X;), based on plugging in that obser-
vation’s covariates, W;, into a fit trained on the observations associated with folds:

{1,...,V}\v.

The main functions of the package calculate the confidence intervals (confidence level
supplied by the user; defaults to 95%) for cross-validated AUC and AUC estimates calculated
using i.i.d. and pooled repeated measures training data. The package also includes utility
functions to compute AUC and cross-validated AUC from a set of predicted values and
associated true labels.

To provide some context to the computational efficiency of our methods, the influence
curve based CV AUC variance calculation for i.i.d. data takes less than half a second to
execute for a sample of 100,000 observations on a 2.3 GHz Intel Core i7 processor (package
version 1.0.3). For 1 million observations, it currently takes 13 seconds. The ¢cvAUC R
package [54] is available on CRAN and GitHub. More information and code examples can
be found in the user manual for the package.

cvAUC R code example

Below is a simple example of how to use the cvAUC R package. This i.i.d. data example
does the following:

1. Load a data set with a binary outcome. For the i.i.d. case we use a simulated “toy”
dataset of 500 observations, included with the package, of graduate admissions data.

2. Divide the indices randomly into 10 folds, stratifying by outcome. Stratification is not
necessary, but is commonly performed in order to create validation folds with similar
distributions. Store this information in a list called folds.

3. Define a function to fit a model on the training data and to generate predicted values
for the observations in the validation fold, for a single iteration of the cross-validation
procedure. We use a logistic regression fit.

4. Apply this function across all folds to generate predicted values for each validation
fold. The concatenated version of these predicted values is stored in vector called
predictions. The outcome vector, Y, is the labels argument.
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The following utility functions will create stratified (by outcome) validation folds, train
and test a GLM and then run the entire example.

# Create CV folds (stratify by outcome)
.cvFolds <- function(Y, V){
YO <- split(sample(which(Y == 0)),
rep(1:V, length = length(which(Y == 0))))
Y1 <- split(sample(which(Y == 1)),
rep(1:V, length = length(which(Y == 1))))
folds <- vector("list", length = V)
for (v in seq(V)) {folds[[v]] <- c(YO[[v1], Y1[[vI])}
return(folds)
}

# Train/test glm for each fold
.doFit <- function(v, folds, data){

fit <- glm(Y ~ ., data = data[-folds[[v]],], family = "binomial")
pred <- predict(fit, newdata = datal[folds[[v]],], type = "response")
return(pred)

}

iid_example <- function(data, V = 10){

# Create folds
folds <- .cvFolds(Y = data$y, V = V)
# CV train/predict
predictions <- unlist(sapply(seq(V), .doFit,
folds = folds, data = data))
# Re-order pred values
predictions[unlist(folds)] <- predictions
# Get CV AUC and confidence interval
out <- ci.cvAUC(predictions = predictions, labels = data$y,
folds = folds, confidence = 0.95)
return(out)

The following is an example which returns output from the ci.cvAUC function:

# Load a training set with a binary outcome
library(cvAUC)
data(admissions)

# Get cross-validated performance
set.seed(1)
out <- iid_example(data = admissions, V = 10)
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The output is given as follows:

> out
$cvAUC
[1] 0.9046473

$se
[1] 0.01620238

$ci
[1] 0.8728913 0.9364034

$confidence
[1] 0.95

In the i.i.d. example above, we provided cross-validated predicted values, fold indices,
and class labels (0/1) to the ci.cvAUC function while using a default confidence level of
95%. The cross-validated AUC is shown to be approximately 0.905, with an estimated
standard error of 0.016. The corresponding 0.95% confidence interval for the CV AUC is
approximately [0.873, 0.936].

5.7 Coverage probability of the confidence intervals

In this section, we present results from a simulation which demonstrates the coverage prob-
ability of our influence curve based confidence intervals as implemented in our R package,
cvAUC. The coverage probability of a confidence interval is the proportion of the time, over
repetitions of the identical experiment, that the interval contains the true value of interest.
Our true value of interest is true cross-validated AUC, defined in equation 5.4. In the sim-
ulation below, we consider a variety of training set sizes. We show that when n is small
(for example, n = 1,000), the coverage probability of the influence curve based confidence
interval may drop below the specified rate. However, in the example below, by the time
n = 5,000, the 95% confidence intervals achieve very good coverage (94-95%). Therefore,
if you have a small sample size, bootstrapping may serve as a computationally-reasonable
alternative variance estimation technique. To quantify the computational advantage of the
influence curve approach, we calculate the number bootstrap replicates that are required in
order to achieve 95% coverage.

Simulation to evaluate coverage probability

Let n x p represent the dimensions of our training set design matrix, X. We considered
training sets where n = {500, 1000, 5000, 10000, 20000} and p = {10, 50, 100,200}. The the
number of covariates that are correlated with the outcome is fixed at 10. The remaining p—10
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covariates are random noise. For the 10 informative covariates, we generate 100,000 points
from N (u,X), and for each these observations, we let Y = 0. Similarly, we generate 100,000
observations from N (v, X) and let Y = 1 for all these observations. For this simulation, we
let u; = 0 and v; = 0.3, for i € {1,...,10} and we let 3 represent the identity covariance
matrix. These combined 200,000 observations represent our true data distribution, F,. We
note that our target parameter, true cross-validated AUC, is itself random, but that it
represents a true target. We are interested in the confidence interval that contains this
random target 95% of the time. The samples were generated using the mvrnorm function of
the R package, MASS [6].

To calculate the coverage probability of our influence curve based confidence intervals,
we generate the CV AUC and corresponding confidence intervals 5,000 times and report
the proportion of times that the confidence interval contains the true CV AUC. For each
iteration, we sample n points from the same distribution as our population data and use
that as a training set.

We perform 10-fold cross-validation by splitting these n observations into 10 validation
folds, stratifying by outcome, Y. For each validation fold, we train a Lasso-regularized logistic
regression fit using the glmnet R package [31] using the observations from the remaining 9
folds. Using the fit model, we then generate predictions for each of the samples in the
validation fold and calculate the empirical AUC. We will call this the “fold AUC.” We also
calculate the “true AUC” by generating predicted values for all of the 200,000 data points
in our population data and calculating the empirical AUC among this population.

This process is repeated for each of the 10 validation folds, at which point we average the
fold AUCs to get the estimate for cross-validated AUC. We also average the 10 true AUCs
to get the true cross-validated AUC. We then calculate a 95% confidence interval for our
CV AUC estimate and note whether or not the true CV AUC falls within the confidence
interval.

For each value of p € {10, 50, 100,200}, this process is repeated 5,000 times to obtain an
estimate of the coverage probability of our confidence intervals. The coverage probability
is the proportion times that the true CV AUC fell within our confidence interval. For 95%
confidence intervals, we expect the coverage probability to be close to 0.95. The coverage
probabilities for each training set is shown in Table 5.1.

The results of the simulation indicate that for a relatively small sample size (e.g. n =
1,000), the coverage probability of the confidence intervals are slightly lower (92-93%) than
specified (95%). However, when n > 5,000, we have coverage between 94-95%. These
simulations use just one particular data generating distribution, but the results can serve as
a rough benchmark of coverage probability rates over various n.

In Table 5.2, we summarize the standard errors estimated using the influence curve based
variance estimation technique, as implemented in the cvAUC package. For comparison, in
Table 5.3 we report the standard deviation of the CV AUC estimates across the 5,000
iterations of the simulation. We see that for n > 5,000, the standard errors and standard
deviations are identical, however, for smaller n, the influence curve based standard errors are
slightly conservative compared to the standard deviation across the 5,000 iterations. This is
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Figure 5.1: Plots of the coverage probabilities for 95% confidence intervals generated by our
simulation for training sets of 1,000 (left) and 5,000 (right) observations. In the case of a
95% confidence interval, the coverage probability should be close to 0.95. For the smaller
dataset of n = 1,000 observations, we see that the coverage is slightly lower (92-93%) than
specified, whereas for n = 5,000, the coverage is closer to 95%.

n=500 n=1,000 n=>5,000 n=10,000 n =20,000
p=101| 0.909 0.928 0.946 0.943 0.943
p=250| 0.891 0.931 0.946 0.950 0.941
p =100 | 0.885 0.925 0.946 0.946 0.949
p =200 | 0.878 0.923 0.947 0.937 0.940

Table 5.1: Coverage probability for influence curve based confidence intervals for CV AUC
using training sets of various dimension.

expected, based on the coverage probabilities reported in Table 5.1.

For reference, we provide the average CV AUC estimate across 5,000 iterations for train-
ing sets of various dimensions in Table 5.4. A total of 20 x 5,000 = 500, 000 cross validated
AUC estimates were generated for the entire simulation. The number of individual models
that were trained across all 10 folds was 500,000 x 10 = 5 million.
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n=500 n=1,000 n=>5,000 n=10,000 n =20,000
p=10| 0.023 0.015 0.007 0.005 0.003
p=2501| 0.023 0.016 0.007 0.005 0.003
p =100 | 0.024 0.016 0.007 0.005 0.003
p =200 | 0.024 0.016 0.007 0.005 0.003

Table 5.2: Influence curve based standard errors for CV AUC for training sets of various
dimensions.

n=>500 n=1,000 n=5,000 n=10,000 n = 20,000
p=101| 0.028 0.017 0.007 0.005 0.003
p=2>501| 0.033 0.018 0.007 0.005 0.003
p=100 | 0.034 0.019 0.007 0.005 0.003
p=200 | 0.038 0.019 0.007 0.005 0.003

Table 5.3: Standard deviation of 5,000 CV AUC estimates for training sets of various di-
mensions.

n=>500 n=1,000 n=>5,000 n=10,000 n = 20,000
p=10| 0.720 0.737 0.747 0.748 0.748
p=>50| 0.706 0.733 0.747 0.748 0.748
p =100 | 0.699 0.731 0.747 0.748 0.748
p =200 | 0.689 0.728 0.747 0.748 0.748

Table 5.4: Average CV AUC across 5,000 iterations for training sets of various dimensions.

Comparison to bootstrapped confidence intervals

We implemented quantile (or percent) bootstrapped confidence intervals in Julia [10] (ver-
sion 0.0.3) to compare the coverage probability of bootstrap derived confidence intervals to
influence curve derived confidence intervals. The same data generating distributions [58] as
the influence curve based simulations were used, and again we used Lasso-regularized logis-
tic regression [46]. For each iteration of the experiment, we generate an original training
set and B bootstrapped replicates of the this training set. Using the B training sets, we
generate B cross-validated AUC estimates [57]. We use the 0.025 and 0.975 quantiles of
the B cross-validated AUCs to estimate the 95% confidence intervals. In this simulation,
the computation time for bootstrapped confidence intervals is O(B) times greater than the
runtime of the influence curve based confidence intervals since each bootstrap replicate re-
quires a complete re-calculation of CV AUC. Some methods of bootstrapping (e.g. m of
out n bootstrap [11] and “Bag of Little Bootstraps” [1]) make computational improvements
on O(B), however all bootstrapping methods require generating repeated estimations of CV
AUC.

On an example training set of n = 1,000 observations, we evaluated how many boot-
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strapped replicates, B, are required to obtain 95% coverage. In this simulation, we found
that at least 400 bootstrap replicates were required to obtain a coverage probability of 0.95.
The coverage probabilities for increasing values of B are shown in Table 5.5.

B =100 B=200 B =300 B =400
p=10 | 0.906 0.930 0.929 0.958

Table 5.5: Bootstrap confidence interval coverage probability using B bootstrapped repli-
cates of a training set of n = 1,000 observations.

Since the bootstrap confidence interval coverage probability estimate converged after
approximately 1,000 iterations of the experiment, the coverage probability estimates in Ta-
ble 5.5 are averaged over 1,000 iterations instead of 5,000.

5.8 Conclusion

Cross-validated AUC represents an attractive and commonly used measure of performance
in binary classification problems. However, resampling based approaches to constructing
confidence intervals for this quantity can be computationally expensive. In this chapter, we
established the asymptotical linearity of the cross-validated AUC estimator and derived its
influence curve for both the i.i.d. and pooled repeated measures cases. We then presented a
computationally efficient approach to constructing confidence intervals based on estimating
this influence curve, which is implemented as a publicly available R package called cvAUC.
A simulation demonstrated that we were able to achieve the expected coverage probability
for our confidence intervals, however, for small sample sizes, the coverage probability can
dip below the desired rate. We have demonstrated a computationally efficient alternative to
bootstrapping for estimating the variance of cross-validated AUC estimates. This technique
for generating computationally efficient confidence intervals can be replicated for another
estimator by following the same procedure.
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Chapter 6

Glossary

accuracy: In binary classification problems, accuracy is the proportion of correctly classified
samples divided by the total number of samples.

Area Under the ROC Curve (AUC): The AUC is the area under the receiver operator
characteristic (ROC) curve. In binary classification or ranking problems, the AUC is
a measure of performance which is equal to the probability that a classifier will rank a
randomly chosen positive example higher than a randomly chosen negative example.

asymptotically linear: An estimator, U(P,), of U(P,), is asymptotically linear if U(P,) —
U(Py) =230 IC(PRy)(0;) + op(1/y/n) with influence curve, IC(Fy) of O.

average mixture (AVGM) algorithm: A procedure for estimating a parameter in a para-
metric model using subsets of training data. Given m different machines and a data set
of size N, partition the data into samples of size n = N/m, and distribute n samples to
each machine. Then compute the empirical minimizer on each partition of the data, and
average all the parameter estimates across the machines to obtain a final estimate.

Bag of Little Bootstraps (BLB): A procedure which incorporates features of both the
bootstrap and subsampling to obtain a robust, computationally efficient means of assess-
ing estimator quality.

bagging: Bootstrap aggregating, or bagging, is an ensemble algorithm designed to improve
the stability and accuracy of machine learning algorithms used in statistical classification
and regression. Bagging is a special case of the model averaging approach.

base learner: A supervised machine learning algorithm (with a specific set of tuning pa-
rameters) used as part of the ensemble.

base learner library: A set of base learners that make up the ensemble.

batch learning: Any algorithm that learns by processing the entire dataset at once (which
typically requires the entire dataset to fit in memory). This is the opposite of online or
sequential learning.
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boosting: A boosting algorithm iteratively learns weak classifiers and adds them to a final
strong classifier.

classification error: In classification problems, where the aim is to correctly classify ex-
amples into one of two or more classes, the classification error is rate at which examples
have been classified incorrectly.

convex combination: A convex combination is a linear combination where the coefficients
are non-negative and sum to 1.

covariate space: The space, X, that the input data, X, is sampled from. For example, X
could be equal to R? or {0, 1}7.

coverage probability: The coverage probability of a confidence interval is the proportion
of the time, over repetitions of the identical experiment, that the interval contains the
true value of interest.

cross-validated predicted values: Assuming n i.i.d. training examples and k-fold cross-
validation where & = V| the cross-validated predicted values for a particular learner
is the set of n predictions obtained by training on folds, {1,...,V'} \ v, and generating
predictions on the held-out validation set, fold v. In the context of stacking, this is called
the “level-one” data.

ensemble, ensemble learner: A machine learning algorithm that uses the input from mul-
tiple base learners to inform its predictions.

Fi-score: In binary classification, the Fij-score can be interpreted as the weighted average
of the precision and recall.

functional delta method: A generalization of the classical delta method for finite dimen-
sional functions of a finite set of estimators.

H-measure: The H-measure is an alternative to AUC for measuring binary classification
performance which can incorporate different costs for false positives and false negatives.

H20: An open source machine learning library with a distributed, Java-based back-end.

histogram regression: A prediction method that, given a partitioning of the covariate
space into J subsets, models each subset as the average outcome among the training
data within that subset.

influence function, influence curve: In the field of robust statistics, the influence func-
tion of an estimator measures the effect that one sample has on the estimate. Influence
functions can be used to derive asymptotic estimates of variance.
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k-fold cross-validation: In k-fold cross-validation, the data is partitioned into £ folds,
and then a model is trained using the observations from k — 1 folds. Next, the model is

evaluated on the held out set. This is repeated k times and estimates are averaged over
the k-folds.

leave-one-out cross-validation: Similar to k-fold cross-validation, with the exception that
k is equal to the number of training observations.

level-one data: The independent predictions generated from validation (typically k-fold
cross-validation) of the base learners. This data is the input to the metalearner. This is
also called the set of “cross-validated predicted values”.

level-zero data: The original training data set which is used to train the base learners.

loss function, objective function: A loss function is a function that maps an event or
values of one or more variables onto a real number intuitively representing some ”cost”
associated with the event. An optimization problem seeks to minimize a loss function.

mean squared error (MSE), squared error loss: The mean squared error or squared
error loss of an estimator measures the average of the squares of the error, or the difference
between the estimator and what is estimated.

metalearner: A supervised machine learning algorithm that is used to learn the optimal
combination of the base learners. This can also be an optimization method such as non-

negative least squares (NNLS), COBYLA or L-BFGS-B for finding the optimal linear
combination of the base learners.

metalearning: In stacking or Super Learning, metalearning is the process of fitting a sec-
ondary learning algorithm to the level-one dataset.

negative log-likelihood loss: The negative log of the probability of the data given the
model.

objective function: The objective function is either a loss function or its reciprocal inverse.

online (or sequential) learning: Online learning, as opposed to batch learning, involves
using a stream of data for training examples. In online methods, the model fit is updated,
or learned, incrementally.

Online Super Learner (OSL): An online implementation of the Super Learner algorithm
that uses stochastic gradient descent for incremental learning.

oracle, oracle selector: The estimator, among all possible weighted combinations of the
base prediction functions, which minimizes risk under the true data-generating distribu-
tion.
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Partial AUC: The area under the ROC curve, defined over a restricted range of false
positive rates.

rank loss: The rank loss is a name for the quantity, 1 - AUC, where “AUC” is the area
under the ROC curve.

regression trees: A prediction method that recursively partitions the covariate space of
the training data. The terminal nodes are modeled using linear regression.

splitting criterion: In learning a regression tree, the criterion used to determine where to
split.

stacking, stacked generalization, stacked regression: Stacking is a broad class of al-
gorithms that involves training a second-level metalearner to ensemble a group of base
learners. For prediction, the Super Learner algorithm is equivalent to generalized stack-
ing.

subsampled average mixture (SAVGM): A bias-corrected version of the AVGM algo-
rithm with substantially better performance.

Subsemble: Subsemble is a general subset ensemble prediction method which partitions
the full dataset into subsets of observations, fits a specified underlying algorithm on each
subset, and uses a unique form of k-fold cross-validation to output a prediction function
that combines the subset-specific fits. An oracle result provides a theoretical performance
guarantee for Subsemble.

Super Learner (SL), Super Learning: Super Learner is an ensemble algorithm takes as
input a library of supervised learning algorithms and a metalearning algorithm. SL uses
cross-validation to data-adaptively select the best way to combine the algorithms. It is
general since it can be applied to any loss function L(v) or L, (¢) (and thus correspond-
ing risk Ry(v) = EoL(v)), or any risk function, Rp,(¢). It is optimal in the sense of
asymptotic equivalence with oracle selector as implied by oracle inequality.

Supervised Regression Tree (SRT) Subsemble: A practical supervised Subsemble al-
gorithm which uses regression trees to determine both of the number of subsets, J, and
the partitioning of the covariate space.

Vowpal Wabbit (VW): An open source, out-of-core, online machine learning library writ-
ten in CH++.
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