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A Computational Strategy for the Rapid Identification and
Ranking of Patient-Specific T Cell Receptors Bound to
Neoantigens

Zachary A. Rollins, Matthew B. Curtis, Steven C. George, and Roland Faller*

T cell receptor (TCR) recognition of a peptide–major histocompatibility
complex (pMHC) is crucial for adaptive immune response. The identification
of therapeutically relevant TCR-pMHC protein pairs is a bottleneck in the
implementation of TCR-based immunotherapies. The ability to
computationally design TCRs to target a specific pMHC requires automated
integration of next-generation sequencing, protein–protein structure
prediction, molecular dynamics, and TCR ranking. A pipeline to evaluate
patient-specific, sequence-based TCRs to a target pMHC is presented. Using
the three most frequently expressed TCRs from 16 colorectal cancer patients,
the protein–protein structure of the TCRs to the target CEA peptide–MHC is
predicted using Modeller and ColabFold. TCR-pMHC structures are compared
using automated equilibration and successive analysis. ColabFold generated
configurations require an ≈2.5× reduction in equilibration time of TCR-pMHC
structures compared to Modeller. The structural differences between Modeller
and ColabFold are demonstrated by root mean square deviation (≈0.20 nm)
between clusters of equilibrated configurations, which impact the number of
hydrogen bonds and Lennard-Jones contacts between the TCR and pMHC.
TCR ranking criteria that may prioritize TCRs for evaluation of in vitro
immunogenicity are identified, and this ranking is validated by comparing to
state-of-the-art machine learning-based methods trained to predict the
probability of TCR-pMHC binding.

1. Introduction

Cytotoxic (CD8+) T cells are part of the adaptive immune system
and eradicate potentially harmful cells—including cancer cells—
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by recognition of the peptide-major his-
tocompatibility complex (pMHC) on
target cells. Tumor-specific pMHCs are
comprised of a peptide derived from
a mutated and/or aberrantly expressed
intracellular protein[1] presented to the
cell membrane in a pocket formed by
the MHC 𝛼 and 𝛽 chains.[2] The wide
diversity of peptide-MHCs (≈106–12)[3] is
matched by the even wider diversity of
TCRs (>1020–61)[4,5] through random V(D)J
recombination of the hypervariable com-
plementarity determining regions (CDRs).
The function of the adaptive immune re-
sponse ultimately depends on the ability to
produce appropriate immunogenic TCRs
(on-target) while minimizing response to
self pMHCs (off-target effects).

Despite breakthrough clinical poten-
tial for TCR-T cell therapies in solid
tumors,[6–10] the implementation is hin-
dered by three central challenges: 1)
identifying tumor-specific pMHC ligands;
2) matching immunogenic TCRs with
identified pMHCs, and 3) minimizing
off-target (side) effects.[11] Combining
next generation sequencing and machine
learning, significant advancements have

been made to identify and rank tumor-specific pMHC
ligands,[12–14] thus addressing the first challenge.

Addressing the second challenge has been difficult as the
identification of patient-specific TCR repertoires has involved
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Figure 1. Process flow diagram for the protein–protein structure prediction of TCRs to a target pMHC. The process begins with single cell V(D)J RNA
sequencing of the T cells from resected tumors of 16 colorectal cancer patients (left). Then, protein–protein structure prediction of TCRs sequenced
from patients bound to a pMHC (HLA-A2) with a restricted target peptide CEA571–579 (middle right) is performed. Finally, we run molecular dynamics
simulations to equilibrate the structure and rank TCRs based on the number of interactions at equilibrium (right).

methods that are low-throughput or limited to a single
chain.[15–17] However, recent breakthroughs in single-cell se-
quencing allow determination of the CDR3 regions of the 𝛼 and
𝛽 chain of the TCR in a high-throughput manner.[18–21] This
technological breakthrough facilitates an unprecedented explo-
ration of the vast TCR information space and allows the scientific
community to refocus attention on fundamental questions re-
lated to recombination, maturation, and intersecting diversity of
patient-specific TCR repertoires. This advance also provides an
opportunity to leverage machine learning to predict TCR antigen
binding specificity from primary amino acid sequence[22–25] or
from structural features of TCR-pMHC homology models.[26]

However, the training sets to characterize and rank TCRs by
their immunogenicity are restricted by either insufficient data
on the relevant TCR-pMHC binding parameters[27–32] or a
limited number of known TCR-pMHC structures (≥645 on
STCRDab).[33] Moreover, machine learning (ML) based methods
to predict TCR-pMHC binding probability are strongly biased
to the sequence training distributions and fail to generalize to
unseen pMHC and TCR sequences.[34,35]

Despite significant advances in protein–protein structure
prediction,[36–43] the prediction of TCRs bound to a target
pMHC from patient-specific sequences is fundamentally bi-
ased to the features of known protein structures. Moreover,
ranking TCRs is not possible without detailed information
on the relationship between bond strength and immunogenic
response.[27–32] Previously, we have identified several physio-
chemical parameters of the TCR-pMHC interaction that corre-
spond with immunogenicity.[30,44] Herein, we present an auto-
mated pipeline to assess TCRs to a target pMHC (Figure 1). This
pipeline begins with single-cell sequencing to identify the amino
acids in the CDR3𝛼𝛽 loops from T cells resected from the tu-
mors of 16 colorectal cancer (CRC) patients.[20,21] Next, we restrict
the carcinoembryonic (CEA) peptide (CEA571–579:YLSGANLNL)
to the MHC (HLA-0201), known to be expressed in CRC
patients[11,45–47] and predict several TCR-pMHC complexes us-
ing TCRs sequenced from patients.[20,21] The predicted protein
structures are equilibrated at physiological conditions by molec-
ular dynamics simulations and an automated equilibration[48]

is implemented to assess the starting structures from ei-
ther Modeller[39,40] or the recently developed ColabFold[36–38]

(Figure 1). Our results demonstrate that ColabFold creates struc-

tures that are ≈2.5X faster to equilibrate, and thus reduce over-
all computational cost compared to Modeller. However, the clus-
ters of structures generated by Modeller and ColabFold are con-
sistently divergent despite structural equilibration. Moreover,
we provide potential criteria for ranking the TCRs after struc-
tural equilibration including the number of hydrogen bonds and
Lennard-Jones contacts. This methodology is generally applicable
to identify TCRs with relevant and quantifiable binding parame-
ters to a target pMHC.

2. Experimental Section

2.1. Single-Cell RNA V(D)J Sequencing of CRC Patient T Cells

T lymphocyte single cell RNA-Seq data were made available to us
from the Han group and has been previously published.[20,21] Raw
data were first put through a quality control process to exclude
cells with less than 200 unique genes, more than 7500 unique
genes, and/or more than 10% mitochondrial gene expression.
In addition, any genes that were present in fewer than three to-
tal cells were excluded from downstream analysis. All single-cell
analysis was performed using the Seurat pipeline.[44] T lympho-
cytes were clustered using 0.3 as the value for the “resolution”
parameter. Cytotoxic T lymphocyte clusters were identified by ex-
pression of Cd3d and Cd8a, and the absence of Cd4 expression.
TCR CDR3𝛼 and CDR3𝛽 sequences from the 10X Genomics 5′

VDJ analysis pipeline were matched to their corresponding cells
for downstream analysis. After the segregation of CD3D+CD4-
CD8A+ T cells, the top 3 most frequent TCR clonotypes were
identified (Figure S8, Supporting Information).

2.2. TCR-pMHC Protein–Protein Structure Prediction

To demonstrate the feasibility of the proposed pipeline, the
starting structures for the three most common TCRs were
generated independently using Modeller V10.1[39,40] and Co-
labFold V 1.2.0[36–38] denoted TCR1, TCR2, and TCR3, re-
spectively. Importantly, this methodology might benefit from
recent and future models that fine-tune structure prediction
methods on TCR-pMHC structure databases.[42,43] This benefit
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Table 1. Rank of TCRs binding to CEA571–579 pMHC.

TCR rank method TCR1 TCR2 TCR3

ERGO-II-AE-VDJdb[22] 2 1 3

ERGO-II-LSTM-McPAS[22] 3 1 2

NetTCR-2.2[23] 2 3 1

pMTNet[24] 3 1 2

pMTnet-Omni[25] 3 1 2

ML – average rank 2.6 1.4 2.0

MD-H-bonds (Modeller) 2 1 3

MD-LJ-contacts (Modeller) 3 1 2

MD-H-bonds (ColabFold) 2 3 1

MD-LJ-contacts (ColabFold 2 1 3

MD – average rank 2.25 1.5 2.25

Note: This includes the rank determined by the probability of binding from numerous
machine learning (ML) based methods (top). The rank based on molecular dynamics
(MD) interactions is also provided (bottom). The average rank is italicized under the
respective ranking methodology.

would likely reduce the required molecular dynamics simula-
tion time to equilibrate approximated structures. The primary
amino sequence used for multiple sequence alignment was de-
rived from the DMF5 TCR bound to the HLA-A2 (MHC) re-
stricted MART1 (PDB:3QDJ).[49] For sequence alignment, the
CDR3𝛼 (CAVNFGGGKLIF), CDR3𝛽 (CASSLSFGTEAFF), and
MART1 peptide (AAGIGILTV) were substituted with the re-
spective CDR3 loops found from patient TCR clonotypes (Table
1) and the CEA571–579 peptide (YLSGANLNL) known to be re-
stricted to the HLA-A2 (MHC). The TCR CDR3s were sub-
stituted as follows: TCR1 (CDR3𝛼: CAVNGDDYKLSF, CDR3𝛽:
CASRKRDDSEQYF), TCR2 (CDR3𝛼: CAVSDNARLMF, CDR3𝛽:
CASSPFGGGNEQFF), and TCR3 (CDR3𝛼: CAYRISAYDKVIF,
CDR3𝛽: CASSQTGGADTDTQYF). For Modeller, the MART1
(PDB:3QDJ) crystal structure was used as the template, ten
model structures were generated from the alignment of the re-
spective TCR, and the structure with lowest DOPE score[50] was
selected for MD equilibration. ColabFold[38] is, in part, a server
that performs rapid MSA/homology search combined with the
trained network architecture of AlphaFold2[36,37] for prediction
of the 3D atomic coordinates of folded protein structures. For
ColabFold, five model structures were generated from the align-
ment of the respective TCR, and the structure with the highest
pTMscore[36,37] was selected for MD equilibration. Multiple struc-
tures were generated from both Modeller and ColabFold to main-
tain best practice at producing the most accurate starting struc-
ture as described in their methods.[38,50]

2.3. Molecular Dynamics: Setup, Energy Minimization, and
Equilibration

The predicted Modeller or ColabFold structures were used as
starting configurations for a seven-step molecular dynamics
pipeline to determine their equilibrated structures at physiologi-
cal conditions. All MD Simulations were performed in full atom-
istic detail with Gromacs 2019.1[51,52] using the CHARMM22
with CMAP force field[53] in orthorhombic periodic boundary
conditions. The force field was chosen to be consistent with ear-

lier studies.[30,44] For the particular question under study here
the exact choice of force field is not very relevant. 1) The residue
protonation states were determined by calculating pKa values us-
ing propka3.1[54,55] and deprotonated if pKa values are below pH
7.4. 2) The properly protonated or deprotonated protein struc-
tures were solvated in orthorhombic water boxes large enough
to satisfy minimum image convention using the TIP3P water
model.[56] 3) Na+ and Cl− ions were added to reach salt concen-
tration ≈150 × 10−3 m and neutral charge. Box sizes were 10.627
× 7.973 × 10.685 nm with ≈48 000 water molecules, ≈300 ions,
and ≈157 000 total atoms. Full specifications can be found in
the Dryad repository:[57] 4) To avoid steric clashes, steepest de-
scent energy minimization (emtol = 1000 kJ mol−1 nm−1) was
performed. 5) To relax solute–solvent contacts, a 100 ps simula-
tion was run in the constant volume ensemble (NVT) with 0.2 fs
timestep (T = 310 K). Temperature was maintained by coupling
protein and nonprotein atoms to separate baths using a velocity
rescale thermostat[58] with a 0.1 ps time constant. 6) To main-
tain pressure at 1.0 bar, a 100 ps simulation was run in the con-
stant pressure (NPT) ensemble using isotropic Berendsen pres-
sure coupling,[59] a 2.0 ps time constant, and 2 fs timestep. Steps
(5) and (6) used position restraints (harmonic force constant =
1000 kJ mol−1 nm−2) on all protein atoms. 7) Equilibration MD
simulations were conducted for 100–300 ns with no restraints.
Equilibration runs were extended in 50 ns increments until the
root mean square deviation (RMSD) of the TCR-pMHC complex
was in equilibrium for a minimum of 50 ns determined by the
variance-bias trade-off algorithm.[48] Such equilibration lengths
were sufficient for this problem, but additional longer term con-
formational changes in atomistic simulations were cannot be ex-
cluded. To maintain temperature and pressure during the pro-
duction runs, the Nosé–Hoover thermostat[60] and Parrinello–
Rahman barostat[61] were used with time constants 2.0 and 1.0 ps,
respectively. The isothermal compressibility of water was used
as 4.5 × 10−5 bar−1. Simulations used the particle Ewald mesh
algorithm[62,63] for long-range electrostatic calculations with cu-
bic interpolation and 0.12 nm grid spacing. Short-range non-
bonded interactions were cut off at 1.2 nm. All water bond lengths
were constrained with SETTLE,[64] and all other bond lengths
were constrained using the LINCS algorithm.[65] The leap-frog
algorithm was used for integrating equations of motion with a 2
fs time step.

2.4. Data and Statistical Analysis

Selected TCR-pMHC structures from MD trajectories were vi-
sualized using the Pymol v2.4.0 Molecular Graphics System
(Schrodinger, LLC; New York, NY). The selected frames for visu-
alization were chosen to be from the top three clusters (two from
each cluster) after TCR-pMHC structure equilibration (Figures
S1 and S2, Supporting Information). This resulted in a total of
12 structures for each TCR: 6 from Modeller (TCR1: Cluster 1,
2, & 7, TCR2: Cluster 1, 9, & 12, and TCR3: Cluster 1, 6, & 9)
and 6 from ColabFold (TCR1: Cluster 1, 2, & 4, TCR2: Clus-
ter 1, 3, & 4 and TCR3: Cluster 1, 3, & 6) (Figures S3–S5, Sup-
porting Information). The clusters were selected because they
were after the simulation time required for equilibration (e.g.,
for Modeller TCR1, Clusters 1, 2, & 7 were chosen because Clus-
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ters 3–6 were only dominant during the 249 ns equilibration
time). The all-to-all alignment of TCR-pMHC structures was per-
formed in Pymol using the align command on the C𝛼 atoms
to compute RMSD between pairs of structures. Data analysis
from MD simulations was performed with tools from the Gro-
macs suite:[51,52] gmx make_ndx, gmx hbond, gmx rms, gmx
rmsf, and gmx cluster. These results were complemented with
a secondary analysis utilizing python packages for data handling
and visualization including: numpy,[66] pandas,[67] matplotlib,[68]

GromacsWrapper,[69] scipy,[70] and pingouin,[71] and pymbar.[48]

Custom bash shell python scripts relevant to the production of
figures were deposited in a GitHub repository.[72] The geometry
of a Lennard-Jones contact is defined as a distance of less than
0.35 nm between atoms. Results were presented as mean ± SEM.
As indicated in figures, statistics were performed in python using
scipy for one-way analysis of variance (ANOVA), and pingouin
for pairwise Tukey-HSD post hoc tests. Detailed outputs of sta-
tistical analysis were written to excel and are provided in a Dryad
repository.[57]

2.5. Machine Learning Based TCR-pMHC Binding Predictions

The TCR ranking method based on physical interactions was
compared with the pMHC to numerous state-of-the-art ma-
chine learning methods. Recent machine learning methods
were typically trained on sequence representations of the TCR-
pMHC and their binary binding label. The positive bind-
ing label data were derived from 10X Genomics sequenc-
ing datasets after redundancy reductions.[73] The dataset sizes
vary depending on the methodology used for redundancy re-
ductions as well as the resolution capability of the sequenc-
ing dataset: CDR3𝛽-peptide, CDR3𝛼-CDR3𝛽-peptide, or CDR1𝛼-
CDR2𝛼-CDR3𝛼-CDR1𝛽-CDR2𝛽-CDR3𝛽-peptide. The negative
binding label data were usually generated assuming that known
TCR-peptide binders do not cross react with additional pep-
tides. For more details, the authors referred to the methods
of the machine learning based method used to predict the
TCR-pMHC binding probability of TCR1, TCR2, and TCR3 to
the CEA571–579 peptide: ERGO-II-AE-VDJdb,[22] ERGO-II-LSTM-
McPAS,[22] NetTCR-2.2,[23] pMTNet,[24] and pMTNet-Omni.[25]

For each method, the instructions on the respective GitHub
repository were followed, and only the sequence information
used to train the model was provided. The TCR-pMHC pairs
were then ranked by the predicted binding probability (Table 1).
Results from the machine learning based model predictions are
made available on the GitHub repository:[72] https://github.com/
zrollins/TCR_homology.git.

3. Results

To design TCRs to target the CEA571–579 peptide restricted to the
HLA-A2 (MHC), TCR clonotypes were identified utilizing the
single cell RNA V(D)J sequenced T cells resected from colorectal
tumors of 16 CRC patients.[20,21] This technique identifies TCR
clonotypes by matching the amino acids from the CDR3 regions
of the 𝛼 and 𝛽 chain of the TCR.[18–21] First, T cells were identified
by the expression of Cd3d and Cd8a (and the absence of Cd4 ex-
pression), as only CD8+ T cells can bind to the HLA-A2 (MHC).

Of the 37931 T cells analyzed (Figure 2Ai), there were 9709
Cd3d+/Cd4−/Cd8a+ T cells (corresponding to clusters 2, 6, 7, 9,
and 11; Figure 2Aii–iv), and 3931 identified Cd3d+/Cd4−/Cd8a+
TCR𝛼𝛽 clonotypes (Figure 2B and Table 1). The three most fre-
quently identified TCRs (Table 1) from patient tumors (denoted
clonotype TCR1, TCR2, and TCR3) were then used to predict
TCR-pMHC structures.

To determine the best method for generating TCR-pMHC
starting configurations, we generated the configurations by ei-
ther Modeller[39,40] or ColabFold.[36–38] The structures generated
in Modeller utilized the DMF5 TCR bound to the HLA-A2 (MHC)
restricted MART1 (PDB:3QDJ)[49] as template structure, and
the ColabFold structures were predicted from trained neural
networks.[36–38] The resulting starting configurations were then
solvated in all-atom molecular dynamics simulations at physio-
logical conditions (see the Experimental Section) for 150–300 ns
to equilibrate the protein structures. Equilibration is indicated by
the flattening of the RMSD from the initial configuration with
fluctuations less than 0.2 nm for the entire TCR-pMHC struc-
ture (Figure S1, Supporting Information). A bias-variance trade-
off algorithm[48] was used to automate the detection of the equi-
librated TCR-pMHC structure (Figure S1, Supporting Informa-
tion). The equilibration time required for TCR1 (249 & 9 ns),
TCR2 (127 & 61 ns), and TCR3 (149 & 136 ns) from Modeller and
ColabFold, respectively, demonstrates ≈61% reduction in compu-
tational cost—on average—using ColabFold.

We next evaluated the structural similarity of the TCR-pMHC
structures throughout the equilibration using the GROMOS
clustering algorithm (Figure S2, Supporting Information).[74] Us-
ing a C𝛼 RMSD cutoff of 0.2 nm, the top ten equilibrated clusters
contain most of the configurations for TCR1 (86.8% and 98.3%),
TCR2 (92.7% and 97.0%), and TCR3 (71.0% and 97.7%) from
Modeller and ColabFold, respectively. Interestingly, the top clus-
ter contains a plurality of structures and occurs after the esti-
mated equilibration time indicating not a single, but a set of con-
verged TCR-pMHC structures (Figure S2, Supporting Informa-
tion).

To evaluate the structural similarity at the TCR-pMHC in-
terface of TCR1, TCR2, and TCR3, we selected and aligned a
subset of the equilibrated structures (12 structures—6 Modeller
+ 6 ColabFold—see the Experimental Section) (Figure 3A–C).
An all-to-all structural alignment (72 unique comparisons) was
performed to calculate the pairwise RMSD (after equilibration)
within and between TCR-pMHC structures generated by Mod-
eller and ColabFold. The average RMSD for TCRs generated
within either Modeller or ColabFold is consistent for TCR1-
pMHC (0.19 ± 0.04 nm), TCR2-pMHC (0.20 ± 0.07 nm), and
TCR3-pMHC (0.19 ± 0.05 nm). However, there is a consistent
increase in average RMSD when comparing equilibrated struc-
tures between Modeller and ColabFold for TCR1-pMHC (0.41
± 0.05 nm), TCR2-pMHC (0.40 ± 0.05 nm), and TCR3-pMHC
(0.33 ± 0.04 nm) (Figures S3–S5, Supporting Information). The
increase in RMSD occurs despite selecting TCR-pMHCs from
distinct equilibration clusters (Figure S2, Supporting Informa-
tion). The increase in configuration dissimilarity between Mod-
eller and ColabFold at the TCR-pMHC interface can be visualized
by the aligned and overlaid structures (Figure 3A–C). To inves-
tigate the relative fluctuations of the substructures at the TCR-
pMHC interface, the root mean square fluctuations were calcu-
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Figure 2. Identified TCR𝛼𝛽 clonotypes from CRC patient tumors. UMAP projection of T cell gene expression data from Han et al. include the A) i) total
number of unsupervised clusters, ii) distribution of Cd3d expression, iii) distribution of Cd4 expression, and iv) distribution of Cd8a expression across the
dataset. TCR𝛼𝛽 clonotypes were identified from the subset of T cells with high Cd8a expression and the relative frequency B) of those Cd8a+ clonotypes.
Single cell data from refs. [20, 21].

Figure 3. Equilibrated patient-specific TCRs bound to CEA571–579 pMHC. The structures of the three most frequently found TCRs from 16 CRC patients
were predicted (using Modeller or ColabFold) and equilibrated at physiological conditions using molecular dynamics simulations. A–C) The most fre-
quent TCRs: TCR1, TCR2, and TCR3 are displayed with colors green, magenta, and blue, respectively. The starting structures were created from Modeller
(black) and ColabFold (red) and 12 TCR-pMHC structures (6 from Modeller + 6 from ColabFold) are aligned after equilibration with the TCR (on the
left, in respective color) and pMHC (on the right, in purple). In addition, the mutated substructures of the TCR and pMHC are indicated by arrows
and highlighted in the following colors: CDR3𝛼, CDR3𝛽, and CEA571–579 (Modeller: gray and ColabFold: orange). After structural equilibration, the root
mean square fluctuation (RMSF) for each TCR is calculated for the regions that were mutated: CDR3𝛼, CDR3𝛽, and CEA571–579 (bottom). The RMSF is
calculated for both the Modeller (black) and ColabFold (red) generated starting structures.
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Figure 4. Interactions of patient specific TCRs with pMHC in equilibrium. A) The probability density for the number of hydrogen bonds between the
pMHC and TCR1 (green), TCR2 (magenta), and TCR3 (blue), respectively. B) The probability density for the number of Lennard-Jones Contacts between
the pMHC and TCR1 (green), TCR2 (magenta), and TCR3 (blue), respectively. The interaction distributions after equilibration are separated for Modeller
(solid line) and ColabFold (dashed line). C) The expected value and standard deviation of H-bonds and LJ-contacts with the TCRs ranked by relative
frequency found in CRC patients. The number of interactions throughout the simulations was statistically compared: *p < 0.05, **p < 0.01, ***p <

0.001 by one-way ANOVA followed by Tukey-HSD post hoc test. Statistical significance was only displayed for comparisons with Cohen effect size d >

0.5. Significance was displayed by solid and dashed lines for Modeller and ColabFold comparisons, respectively.

lated after equilibration for CDR3𝛼, CDR3𝛽, and the CEA peptide
(Figure 3A–C). Fluctuations for all TCRs and TCR substructures
are approximately 0.10 nm.

After structural equilibration, the number of molecular-level
interactions between the TCRs and pMHC were evaluated to as-
sess potential differences between the TCR-pMHCs complexes,
and thus provide insight into potential methods to rank the TCRs
(Figure 4). We selected hydrogen bonds (H-bonds) and Lennard-
Jones contacts (LJ-contacts) between the TCRs and pMHC to un-
derstand the relative importance of coulombic and hydrophobic
interactions. The number of hydrogen bonds (Figure S6, Sup-
porting Information) and the number of Lennard-Jones contacts
(Figure S7, Supporting Information) were calculated as a func-
tion of simulation time, and these plots were used to calcu-
late the probability densities. The probability density of interac-
tions is an index to describe the relative likelihood of interac-
tions that occur at any timepoint during the equilibration. Our
results demonstrate that TCR2 (expected value: 14.2) is signifi-
cantly more likely to have more hydrogen bonds than TCR1 (ex-
pected value: 12.5) and TCR3 (expected value: 11.7) for structures
generated by Modeller (Figure 4). In contrast, for structures gen-
erated by ColabFold, TCR1 (expected value: 10.5) and TCR3 (ex-
pected value: 10.9) are significantly more likely to have more hy-
drogen bonds than TCR2 (expected value: 6.8) (Figure 4A). In ad-
dition, TCR2 (expected value: 404) is more likely to have more

Lennard-Jones contacts than TCR1 (expected value: 279) and
TCR3 (expected value: 294) for structures generated by Modeller.
Consistently, for structures generated by ColabFold, TCR2 (ex-
pected value: 328) is more likely to have more Lennard-Jones con-
tacts than TCR3 (expected value: 294) and TCR1 (expected value:
306) (Figure 4B). Despite TCR1 being detected more frequently
in patient tumors (Figure 2B), TCR2 may have more binding in-
teractions to CEA571–579 pMHC at equilibrium (Figure 4C).

To get a composite score for the MD based TCR rank, we cat-
egorized TCR-pMHC pairs as higher probability of binding the
CEA571–579 pMHC if they had more interactions at equilibrium:
more H-bonds or LJ-contacts for both the Modeller and ColabFold
based starting structures (Table 1). We found that, on average,
TCR2 has more physical interactions with the based CEA571–579
pMHC with a MD rank of 1.5. In addition, TCR1 and TCR3 had
the same MD rank of 2.25. Interestingly, TCR2 was also predicted
to have the highest probability of binding the CEA571–579 pMHC
in 4/5 machine learning based methods (Table 1) and achieved
an average ML rank of 1.4. In addition, TCR2 and TCR3 resulted
in a ML rank of 2.6 and 2.0, respectively.

4. Discussion

Using a combination of single cell sequencing of T cells derived
from patient tumors, protein structure prediction algorithms,
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and MD simulations, we present a pipeline to rank TCRs based
on their molecular level interactions with a target pMHC at equi-
librium. To commence a pipeline to assess TCRs in silico, we
chose only the three most frequently expressed clonotypes in 16
patients with colorectal cancer as a case study. Although the se-
lection of the most frequent TCRs from the clonal pool present
in the tumor microenvironment is somewhat arbitrary, the rel-
atively expanded clonal pool in the tumor microenvironment is
more likely to be immunogenic to the tumor than a random se-
lection of low-frequency clones. Nonetheless, our pipeline is eas-
ily adapted to selecting clonotypes from alternate sources (e.g.,
peripheral blood), or alternate strategies (e.g., selecting from the
entire clonal pool in the tumor microenvironment.

Our study also presented an opportunity to assess two fun-
damentally different protein predictions tools: ColabFold—a re-
cently released trained deep learning network; and Modeller—a
traditional template-based protein-prediction model. We found
that the MD equilibration of 3D atomic coordinates of TCR-
pMHC structures was ≈2.5× faster using ColabFold generated
structures (Figure S1, Supporting Information). This finding is
based on a small number of protein–protein structures, and there
was significant variation. Nonetheless, our results demonstrate
that ColabFold may be a superior computational tool for pro-
tein structure prediction, and thus may have implications on the
scale-up of assessing a larger set (i.e., thousands) of TCRs gener-
ated from sequencing data. Moreover, the compute cost may be
further reduced by utilizing recently fine-tuned structure predic-
tion methods on TCR-pMHC databases[43] which may reduce the
required simulation time to equilibrate approximated protein-
protein structures. A reason why ColabFold is faster in equilibra-
tion might be that it uses a multitude of templates and not only
one.

To automate and remove human bias from determining the
required simulation time to reach an equilibrated TCR-pMHC
structure, we used a variance-bias trade-off algorithm[48] and re-
quired a minimum equilibration time of 50 ns (Figure S1, Sup-
porting Information). In addition, we performed a cluster anal-
ysis to identify the set of converged clusters after equilibration
(Figure S2, Supporting Information). Moreover, we found that
the root-mean-square fluctuations after equilibration for CDR3𝛼,
CDR3𝛽, and the CEA peptide (Figure 3A–C) were ≈0.10 nm. The
fluctuations for CDR3𝛼, CDR3𝛽, and peptide are consistent with
equilibrated TCRs with a known crystal structure,[30] and thus
consistent with equilibration.

After equilibration, we assessed several clusters of configura-
tions and found that within a protein-protein structure predic-
tor (i.e., Modeller or ColabFold) there is a pairwise RMSD of
≈0.20 nm. Interestingly, across structure predictors there is an
increase in pairwise RMSD ≈0.40 nm (Figures S3–S5, Support-
ing Information). This trend is consistent for TCR1, TCR2, and
TCR3 indicating that the structure prediction method can in-
fluence the set of equilibrated TCR-pMHC configurations, and
molecular level interactions. We found that TCR2 had more hy-
drogen bonds compared to TCR1 and TCR3 when generated by
Modeller, but less hydrogen bonds when generated by ColabFold
(Figure 4A). These results indicate that the differences in con-
figurations generated by Modeller and ColabFold can also influ-
ence the number of molecular level interactions between the TCR
and pMHC. We observed consistent results between Modeller

and ColabFold for the number Lennard-Jones contacts across
the three TCRs (Figure 4B). The probability density of hydro-
gen bonds and Lennard-Jones contacts may provide a rudimen-
tary criterion to rank TCRs based on their relative strength of
interaction[30] at equilibrium. For example, TCR2 may be a more
ideal target to the CEA571–579 pMHC because of the consistent in-
crease in Lennard-Jones contacts.

To develop a composite TCR ranking index, we summarized
the results found from the MD simulations (Table 1). After
ranking the TCRs based on the number of interactions with
the CEA571–579 pMHC, we found that TCR2 had the highest av-
erage rank of 1.5. This was consistent with machine learning
based methods that predict the probability of TCR-pMHC bind-
ing (Table 1). In fact, TCR2 had the highest probability of binding
in 4/5 methods and achieved a similar average rank of 1.4 across
the methodologies. Although these results are based on a small
set of TCRs, this demonstrates that the MD rank of TCRs derived
from molecular interactions at equilibrium is consistent with
state-of-the-art ML methods.[22–25] Moreover, a major limitation
in ML methods is difficulty at predicting TCR-pMHC binding
pairs that are not included in the training distribution.[34,35] This
methodology may be better suited for generalization to disparate
TCR-pMHC pairs because the ranking is derived from physical
interactions. Future work will require a comprehensive dataset
that will assess the physiochemical properties of TCR-pMHC in-
teractions that determine immunogenicity. Also, extensive exper-
imental validation would be very useful.

5. Conclusions

The identification of tumor-specific TCRs will be augmented by
computational methodologies that accurately rank TCRs based
on the immunogenic response to a target pMHC. We have inte-
grated next-generation sequencing with protein-protein structure
prediction and MD to introduce a potential pipeline to evaluate
TCRs. We found that ColabFold outperforms Modeller (≈2.5×)
in the required simulation time to generate equilibrated TCR-
pMHC structures, and thus may be a superior computational
tool to utilize in a computational algorithm built to predict TCR
immunogencity. In addition, the protein structure prediction
method influences the set of equilibrated configurations and the
number of interactions between the TCR and pMHC, and thus
may impact the accuracy of predicting TCR-pMHC bond strength
or immunogenic response. On average, the MD-based ranking of
TCR-pMHC pairs was consistent with state-of-the-art ML based
ranking methods and may provide an additional benefit of gen-
eralizability to unseen TCR-pMHC pairs.
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