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ABSTRACT OF THE DISSERTATION

3D Scene and Event Understanding by

Joint Spatio-temporal Inference and Reasoning

by

Yuanlu Xu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2019

Professor Song-Chun Zhu, Chair

It is a challenging yet crucial task to have a comprehensive understanding of human activities

and events in the 3D scene. This task involves many many mid-level vision tasks (e.g.,

detection, tracking, pose estimation, action/interaction recognition) and requires high-level

understandings and reasoning about their relations. In this dissertation, we aim to propose

a novel and general framework for both mid-level and high-level tasks under this track,

towards a better solution for complex 3D scene and event understanding. Specifically, we

aim to formulate problems with interpretable representations, enforce high-level constraints

with domain knowledge guided grammar, learn models solving multiple tasks jointly, and

infer based on spatial, temporal and casual information. We make three major contributions

in this dissertation:

First, we introduce interpretable representations to incorporate high-level constraints

defined by domain knowledge guided grammar. Specifically, we propose: i) Spatial and

Temporal Attributed Parse Graph model (ST-APG) encoding compositionality and attribu-

tion for multi-view people tracking, enhancing trajectory associations across space and time,

ii) Scene-centric Parse Graph to represent a coherent understanding of information obtained

from cross-view scenes for multi-view knowledge fusion, iii) Fashion Grammar for constrain-

ing configurations of human appearance and clothing in human parsing, iv) Pose Grammar

for describing physical and physiological relations among human body parts in human pose
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estimation, and v) Causal And-Or Graph (C-AOG) to represent the causal-effect relations

between an object’s fluent changes and involved activities in tracking interacting objects.

Second, we formulate multiple related tasks into a joint learning, inference and reasoning

framework for mutual benefits and better configurations, instead of solving each task inde-

pendently. Specially, we propose: i) a joint parsing framework for iteratively tracking people

locations and estimating people attributes, ii) a joint inference framework modeled by deep

neural networks for passing messages from direct, top-down and bottom-up directions in the

task of human parsing, and iii) a joint reasoning framework to reason object’s fluent changes

and track the object in videos, iteratively searching for a feasible causal graph structure.

Third, we mitigate the problem of data scarcity and data-hungry model learning us-

ing a learning-by-synthesis framework. Given limited training samples, we consider either

propagate supervisions to unpaired samples or synthesizing virtual samples that minimize

discrepancies with the realistic data. Specifically, we develop a pose sample simulator to

augment training samples in virtual camera views for the task of 3D pose estimation, which

improves our model cross-view generalization ability.

There are several interesting properties regarding the proposed frameworks: i) a novel

perspective for problem formulation on joint inference and reasoning on space, time and

causality, ii) overcoming the drawbacks of lack of interpretability and data hunger for end-

to-end deep learning methods. Experiments show that our joint inference and reasoning

framework outperforms existing approaches on many tasks and obtains more interpretable

results.
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CHAPTER 1

Introduction

Though much progress has been made in 2D image/video based vision tasks, e.g., object

detection, tracking, human pose estimation, action recognition, it remains uncharted to

leverage such estimations into the 3D world, due to the difficulty in data acquisition, ambi-

guities from monocular inputs and nuisance in natural images (e.g., illumination, occlusion,

texture). For example, as illustrated in Fig. 1.1, given the featured 2D RGB image, we could

easily parse the content inside the image and leverage it into the 3D world. The holistic 3D

scene and event parsing not only involves reconstructing 3D objects (e.g., table, chair, peo-

ple) and layouts (e.g., wall, floor, ceiling), estimating human 3D poses and actions, but also

engages high-level cognitive tasks about interactions, navigations, attentions and intentions.

In this dissertation, we focus on the task of understanding scene and event into the

3D world. Unlike common and popular 2D image/video based analytics (e.g., recognition,

detection, tracking, we first leverage information obtained from visual inputs with 3D spatial,

structural and physical constraints, and then represent intra/inter-class as expressive and

interpretable models (e.g., grammar) to infer and reason the optimal configuration under

the 3D world context.

We solve tasks related to the topic of 3D scene and event understanding under three

kinds of input settings:

Directly estimating 3D objects, people and scene configurations from RGB image inputs.

This is the most popular input type in the computer vision literature, as images can be

easily captured and stored using widespread RGB cameras. Noticed monocular data is high

ambiguous, we further consider two particular settings which provides richer information

and enables high-level behavioral and cognitive analysis, i.e., video and multi-view data.
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Figure 1.1: An illustration of 3D scene and event understanding.

Video data, in comparison with image data, encodes richer visual information and tem-

poral consistency, which provides better roots for people to study many high-level tasks, e.g.,

behavior, gait, relationship. Although video processing and analyzing has received more and

more attentions from industrial and academic communities, works in both communities seem

to focus on well defined low-level/middle-level tasks, e.g., object detection, tracking and re-

trieval and lack the depth to study high-level tasks and how the high-level information affects

and gets reflected on the low-level information. For example, many popular surveillance ap-

plications integrate multiple modules dealing with different tasks in a simple cascaded way

and incapable of inferring low-level, middle-level and high-level information jointly.

We further consider cameras covering the same scene as a camera network and recon-

struct 3D scene from multiple camera views using commonsense of scene geometry, and

stitch a 3D scene from all cameras as global context. Then we parse objects, human pose,

attributes actions, and group activities; project human and vehicle positions in 3D scene;

and output their relations in 3D by cognitive reasoning in spatial and temporal parse graphs
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Figure 1.2: An illustration of indoor and outdoor scenes and corresponding multi-view cam-

era networks.

with probabilities associated with nodes. For example, as shown in Fig. 1.2, an important

public facility may be covered by several different cameras. There exist both overlapped

regions (e.g., the conference room) and non-overlapped regions (e.g., the passageway). If we

want to monitor and analyze what happens in this whole scenario, single camera can only

provide limited information about certain agents. The information across different cameras,

such as agents’ identities, behaviors, are not associated together. Therefore, a joint inference

across space and time is required to process information globally.

In this dissertation, we aim to solve basic perception tasks as well as advanced cognition

tasks through a joint spatial-temporal inference and reasoning framework. As illustrated in

Fig. 1.3, given image/video/multi-view data, we are interested in inferring low-level infor-

mation (e.g., trajectory, pose, attribute) and high-level information (e.g., status, behavior)

of a certain agent, and also the relations between this agent and other agents/objects in the

scene. The analysis results from low-level are fine-tuned with constraints from high-level

reasoning. For example, when the query agent misses, we want to figure out the reason that

causes this. Is this agent occluded by some other agents? Does this agent exit and re-enter

3
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Figure 1.3: The proposed framework for 3D scene and event understanding.

the scene? Is this agent interacting with objects or other people? After figuring out the

reason, the further step is to identify to what extend we can infer and recover the hidden

information during the missing period. By commonsense, people know that different clues

can be utilized and work in different cases.

In particular, we conduct studies in the following five topics in the rest chapters:

Multi-view People Tracking. We consider surveillance scenarios where there are mul-

tiple cameras monitoring an area (e.g., parking-lot, garden) from different viewpoints. With

streaming footages, we aim to recover the trajectories of all people in the scene. Different

from single-view setting, a multi-view tracker is able to associate people in the long term

and across camera views. Our algorithm aims to parse all people trajectories in the scene

into a scene-centric representation which explicitly encodes various fine-grained attributes of

humans in both spatial and temporal domains. Our representation encodes two principles:

(i) compositionality, i.e., decomposing a trajectory into sub-trajectories using multi-model

information; (ii) attribution, i.e., augmenting each trajectory elements with a set of fine-

grained semantic/geometric attributes to enhance multi-view tracklet associations.
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3D Scene Parsing. Based on the 3D trajectories obtained in multi-view people tracking,

we further reconstruct and compose 3D scenes; infer the objects, human pose, actions,

attributes and group activities in the global context of the scene; and output spatial and

temporal parse graphs with probabilities associated with nodes. We focus on explicitly

representing various constraints that reflect the appearance and geometry correlations among

objects across multiple views and the correlations among different semantic properties of

objects.

Human Pose and Attribute Estimation. This topic is in accordance with popular

work of human parsing in the literature. We are inferring the trajectories, poses, appear-

ance attributes of agents in images/videos. Noticed existing approaches often fail to directly

encode interpretable structures and top-down information into their models due to the am-

biguities of end-to-end learned deep neural networks, we specifically study expressive and

interpretable representations that could organize different source of information.

3D Pose Estimation. Estimating 3D human poses from monocular RGB images has

attracted growing interest in the past few years for its wide applications in robotics, au-

tonomous vehicles, intelligent drones, etc. This is a challenging inverse task since it aims

to reconstruct 3D spaces from 2D data and the inherent ambiguity is further amplified by

other factors, e.g., clothes, occlusions, background clutters. With the availability of large-

scale pose datasets, e.g., Human3.6M [IPO14], deep learning based methods have obtained

encouraging success. We however, seek to encode domain-specific knowledge into current

deep learning based detectors and improve performance and model robustness.

Event Understanding. This topic studies the relations between a specified agent and

other agents/objects in the scene. For example, we may observe certain interactions such as

getting-in/out, putting-in/out, throwing/fetching. In this track, we hope to understand how

interactions affect the status of agents. Some typical and interesting problems are: tracking

interacting objects, group activities/behaviors analysis, event understanding. Based on the

initial results obtained in inference, we want to further refine them by reasoning. Supposed

we have obtained the initial trajectory of an agent through basic spatio-temporal analysis, our

purpose is to find out the abnormal parts. For example, the trajectory could be incomplete

5



and missing at certain moments. In this case, we need to infer the reason that causes this

abnormality. Does the trajectory before and after the missing make sense? If so, we can

further diagnose the casualty of the missing phenomenon. Finally, we can confirm whether

the missing parts could be recovered.
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CHAPTER 2

Multi-view People Tracking via Hierarchical

Trajectory Composition

2.1 Introduction

Multi-view multi-object tracking has attracted lots of attentions in the literature [KGS09].

Tracking objects from multiple views is by nature a composition optimization problem. For

example, a 3D trajectory of a human can be hierarchically decomposed into trajectories of

individual views, trajectory fragments, and bounding boxes. While existing trackers have ex-

ploited the above principles more or less, they enforced strong assumptions over the validity

of a particular cue, e.g. appearance similarity [ARS06], motion consistency [DCS13], spar-

sity [ML11, ZLA15], 3D localization coincidence [KS06], etc., which are not always correct.

Actually, different cues may dominate different periods over object trajectories, especially

for complicated scenes. In this chapter, we are interested in automatically discovering the

optimal compositional hierarchy for object trajectories from various cues, in order to handle

a wider variety of tracking scenarios.

As illustrated in Fig. 2.1, suppose we would like to track the highlighted subject and

obtain its complete trajectory (e). The optimal strategy for tracking may vary over space

and time. For example, in (a), since the subject shares the same appearance within certain

time period, we apply an appearance based tracker to get a 2D tracklet; in (b) and (c), since

the subject can be fully observed from two different views, we can group these two boxes

into a 3D tracklet by testing the proximity of their 3D locations; in (d), since the subject is

fully occluded in this view, we consider sampling its position from the 3D trajectory curve

constrained by background occupancy.
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Figure 2.1: An illustration of utilizing different cues at different periods for the task multi-

-view multi-object tracking.

In this chapter, we formulate multi-view multi-object tracking as a structure optimization

problem described by a hierarchical composition model. As illustrated in Fig. 2.2, our

objective is to discover composition gradients of each object in the hierarchical graph. We

start from structureless tracklets, i.e., object bounding boxes, and gradually compose them

into tracklets of larger size and eventually into trajectories. Each trajectory entity may be

observed in single view or multiple views. The composition process is guided by a set of

criteria, which describe the composition feasibility in the hierarchical structure.

Each criterion focuses on one certain cue and in fact is equivalent to a simple tracker,

e.g., appearance tracker [LLY11, XZW12], geometry tracker [SLX13], motion tracker [AS11],

etc., which groups tracklets of the same view or different views into tracklets of larger sizes.

Composition criteria lie in the heart of our method: feasible compositions can be conducted

recursively and thus the criteria can be efficiently utilized.

To infer the compositional structure, we divest MCMC sampling-based algorithms due
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to their heavy computation complexity. We approximate the hierarchy by a progressive

composing process. The composition scheduling problem is solved by an iterative greedy

pursuit algorithm. At each step, we first greedily find and apply the composition with

maximum probability and then re-estimate parameters for the incremental part.

In the experiments, we evaluate the proposed method on a set of challenging sequences

and the results demonstrate superior performance over other state-of-the-art approaches.

Furthermore, we design a series of comparison experiments to systematically analyze the

effectiveness of each criterion.

The main contributions of this work are two-fold. Firstly, we re-frame multi-view multi-

object tracking as a hierarchical structure optimization problem and present three tracklet-

based composition criteria to jointly exploit different kinds of cues. Secondly, we establish

a new dataset to cover more challenges, to present richer visual information and to provide

more detailed annotations than existing ones.

The rest of this chapter is organized as follows. We review the related work in Section 2.2,

introduce the formulation of our approach in Section 2.3, and discuss the learning and

inference procedures in Section 2.4. The experiments and comparisons are presented in

Section 2.5, and finally comes a summary in Section 2.6.

2.2 Related Work

Our work is closely related to the following four research streams.

Multi-object tracking has been extensively studied in the last decades. In the litera-

ture, the tracking-by-detection pipeline [ZDS12, HLN13, PMR14, WLY14, DAS15, DTT15]

attracts widespread attentions and acquires impressive results, thanks to the considerable

progress in object detection [FGM10, SWJ13, RHG15], as well as in data association [ZLN08,

PRF11, BFT11]. In particular, network flow based methods [PRF11, BFT11] organize de-

tected bounding boxes into directed multiple Markov chains with chronological order and

pursue the trajectory as finding paths. Andriyenko et al. [AS11] propose to track objects in
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discrete space and use splines to model trajectories in continuous space. Our approach also

follows this pipeline but considers bounding boxes as structureless elements. With prelimi-

nary associations to preserve locality, we can better explore the nonlocal properties [KGS13]

of trajectories in the time domain. For example, tracklets with evident appearance similari-

ties can be grouped together without considering the time interval.

Multi-view object tracking is usually addressed as a data association problem across

cameras. The typical solutions include, homography constraints [KS06, ALD11], ground

probabilistic occupancy [FBL08], network flow optimization [WHH09, BFT11, LPR12], marked

point process [UB11], joint reconstruction and tracking [HWR13], multi-commodity net-

work [SBF13] and multi-view SVM [ZYS15]. All these methods have certain strong assump-

tions and thus are restricted to certain specific scenarios. In contrast, we are interested

in discovering the optimal composition structure to obtain complete trajectories in a wide

variety of scenarios.

Hierarchical model receives heated endorsement for its effectiveness in modeling diverse

tasks. In [HZ09], a stochastic grammar model was proposed and applied to solve the image

parsing problem. After that, Zhao et al. [ZZ11] and Liu et al. [LCK14] introduced generative

grammar models for scene parsing. Pero et al. [PBH13] further built a generative scene

grammar to model the constitutionality of Manhattan structures in indoor scenes. Ross

et al. presented a discriminative grammar for the problem of object detection [GFM11].

Grosse et al. [GSS12] formulated matrix decomposition as a structure discovery problem

and solved it by a context-free grammar model. In this chapter, our representation can

be analogized as a special hierarchical attributed grammar model, with similar hierarchical

structures, composition criteria as production rules, and soft constraints as probabilistic

grammars. The difference lies in that our model is fully recursive and without semantics in

middle levels.

Combinatorial optimization receives considerable attentions in the surveillance liter-

ature [XLZ13]. When the solution space is discrete and the structure cannot be topolog-

ically sorted (e.g., loopy graphs), there comes the problem of combinatorial optimization.

Among all the solutions, MCMC techiques are widely acknowledged. For example, Khan et

10



al. [KS06] integrated the MCMC sampling within the particle filer tracking framework. Yu et

al. [YMC07] utilized the single site sampler for associating foreground blobs to trajectories.

Liu et al. [LLJ13] introduced a spatial-temporal graph to jointly solve the region labeling

and object tracking problem by Swendsen-Wang Cut [BZ07]. In this chapter, though facing

a similar combinatorial optimization problem, we propose a very efficient inference algorithm

with acceptable trade-off.

2.3 Representation

In this section, we first introduce the compositional hierarchy representation, and then dis-

cuss the proposed problem formulation for multi-view multi-object tracking.

2.3.1 Hierarchical Composition Model

Given an input sequence containing videos shot by multiple cameras, we follow a default

tracking-by-detection pipeline and apply [RHG15] to obtain detected bounding boxes. After

that, we associate them into short trajectory fragments, i.e., tracklets, similar to [HLN13,

WWC14]. Tracklets preserve better local properties of appearance and motion as well as

better robustness against errors and noises, compared with bounding boxes.

We denote a tracklet as O, which contains the appearance and geometry information over

a certain period of time:

O = {(ai, li, ti) : i = 1, 2, . . . , |O|}, (2.1)

where ai is the appearance feature, li the location information (i.e., 2D bounding box and

3D ground position) and ti the time stamp. Note that the 3D ground position is calculated

by projecting the foot point of the 2D bounding box onto the world reference frame. For

convenience, we denote the start time and end time of a tracklet by ts and te, respectively.

We further augment a set of states x(O) for each tracklet O

x(O) = {ωi : i = 1, . . . , |O|}, (2.2)

where ωi ∈ {1, 0} indicates the state of visibility/invisibility on the 3D ground plane at time

11



ti. x(0) describes the sparsity of a trajectory and can be utilized to enforce the consistency

of object appearing and disappearing over time.

As shown in Fig. 2.2, we organize the scene as a compositional hierarchy G to recover the

trajectory for each object in both single views and 3D ground. The compositional hierarchy

G is denoted as

G = (VN , VT , S,X), (2.3)

where VT denotes the set of terminal nodes, VN indicates the set of non-terminal nodes, S

is the root node representing the scene, and X represents the set of states of both terminal

and non-terminal nodes.

A non-terminal node O is constructed by composing two nodes O1 and O2 together, that

is

O ← f(O1, O2), gi(x(O)) = fi(x(O1), x(O2)), (2.4)

where gi(·) and fi(·) are associated operations on states. Note that gi(·) and fi(·) can

assign states in either bottom-up or top-down direction, which act like functions of passing

messages.

2.3.2 Bayesian Formulation

According to Bayes’ rule, we can solve the problem of inferring the hierarchical composition

model by maximizing a posterior, that is,

G∗ = arg max
G

p(G|I) ∝ arg max
G

p(I|G) · p(G), (2.5)

where I denotes the input video data.

Prior. Due to the property of hierarchy, we can further factorize the prior p(G) as

p(G) =
∏

Oi∈VN

p(x(Oi))
∏
k

pcpk (Oi1, Oi2)δi==k, (2.6)

where δi is an indicator for the type of criterion used in composition, and Oi1 and Oi2 are

two children nodes of tracklet Oi.
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Figure 2.2: An illustration of the hierarchical compositional structure.
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p(x(O)) is a unary probability defined on the state of O. We employ a simple Ising/Potts

model to penalize the discontinuity of the trajectory, i.e.,

p(x(O)) ∝ exp{−β
|O|−1∑
i=1

1(ωi 6= ωi+1) }, (2.7)

where β is a coefficient. p(x(O)) in fact constrain the number of times a trajectory switches

between visible and invisible.

pcpk (Oi, Oj) represents the composition probability using the k-th type of cue. We will

discuss details about of composition criteria in Section 2.3.3.

Likelihood. The video data I is only dependent on the terminal nodes VT and can be

further decomposed as

p(I|G) =

 ∏
Oi∈VT

∏
aj∈Oi

pfg(aj)

 · ∏
aj∈I\VT

pbg(aj)

=
∏
Oi∈VT

∏
aj∈Oi

pfg(aj)

pbg(aj)
·
∏
aj∈I

pbg(aj),

(2.8)

where pfg(·) and pbg(·) are foreground and background probabilities, respectively. The second

term
∏

aj
pbg(aj) measures the background probability over the entire video data and thus

can be treated as a constant, and the first term measures the divergence between foreground

and background, which can be analogous to a probabilistic foreground/background classifier.

We use the detection scores to approximate this log-likelihood ratio.

2.3.3 Composition Criteria

In this section, we introduce details of the proposed composition criteria.

Appearance Coherence. Instead of using traditional descriptors (e.g., SIFT, color

histograms, MSCR) to measure the appearance discrepancy, we employ the powerful DCNN

to model people’s appearance variations. Notice that most DCNNs are trained over generic

object categories and insufficient to provide fine-grained level of information about peoples

identities [XMH14]. We therefore fine-tune the CaffeNet [JSD14] using people image samples

with identity labels. The new DCNN consists of 5 convolutional layers, 2 max-pooling
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layers, 3 fully-connected layers and a final 1000-dimensional output. The last two layers are

discarded and replaced by random initializations. The output is new 1000 labels on people’s

identities. Note the training samples are augmented from unlabeled data and identity labels

are obtained in an unsupervised way.

Similar to bag-of-words (BoW), our DCNN plays the role of a codebook, which codes a

person image with common people appearance templates. We use this 1000-dimensional out-

put as our appearance descriptor. Given two tracklets Oi and Oj, the appearance coherence

constraint pcp1 (Oi, Oj) is defined as

pcp1 (Oi, Oj) ∝ exp{−
∑

an∈Oi

∑
am∈Oj ‖an − am‖2

|Oi| · |Oj|
}. (2.9)

pcp1 (Oi, Oj) actually measures the mean complete-link appearance dissimilarities among ob-

ject bounding boxes belonging to two tracklets.

Geometry Proximity. Given tracklets from a single view or cross views, we first

project them on the world reference frame to measure their geometric distances uniformly.

However, considering tracklets with different time stamps and lengths, it is not a trivial task

to determine whether the two given tracklets belong to the same object or not. The reason

lies in: i) the time stamps of tracklet pairs might not be well aligned; ii) the localizations

across views usually lead to remarkable amount of errors.

In order to address these issues, we introduce a kernel to measure these time series

samples. The kernel K(Oi, Oj) to measure the distance between two tracklets Oi and Oj is

defined as the product of two kernel distances in space and time

K(Oi, Oj) =
∑

(ln,tn)∈Oi

∑
(lm,tm)∈Oj

φl(ln, lm) · φt(tn, tm)

|Oi| · |Oj|
, (2.10)

where φl(ln, lm) and φt(tn, tm) are two RBF kernels between two points. We use different

σl and σt values for the two kernels, respectively. This new kernel acts like a sequential

convolution filter and takes both spatial and temporal proximities into consideration.

Given a set of training samples D,

D = {(Oi, Oj, yn) : n = 1, . . . , |D|}, (2.11)
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where yn ∈ {1, 0} indicates whether or not the two tracklets Oi and Oj belong to the same

identity, we can train a kernel SVM with the energy function

min
w

1

2
< w,w > +C

∑
n

max(0, 1− yn < w,K(Oi, O) >), (2.12)

where C is a regularization factor.

We therefore interpret the normalized classification margin as the composition probability

pcp2 (Oi, Oj).

Motion Consistency. We model the motion information of a tracklet O as a continuous

function of its 3D ground positions l w.r.t. time t, i.e., l = τ(t). We define a constraint on

two tracklets that they can be interpreted with the same motion function. However, finding

this motion pattern is a challenging problem. The reason lies in two-fold: i) inaccurate 3D

positions due to perspective effects, detection errors and false alarms; ii) missing detections

and object inter-occlusions in certain views, especially for crowded scenarios. In this chapter,

we address these issues in the following two aspects.

Firstly, we employ the b-spline function to represent the motion pattern of the trajectory.

B-spline functions can enforce high-order smoothness constraints, which enables learning

from sparse and noisy data. Considering a tracklet O with 3D positions {li : i = 1, . . . , |O|},

starting time ts and ending time and te, the spline function τ(t) uses some quadratic basis

functions Bk(t), and represents the motion path as a linear combination of Bk(t):

τ(t) =
∑
k

αkBk(t),

s.t. τ ′′(ts) = τ ′′(te) = 0,

(2.13)

where τ ′′(t) denotes the second derivative of τ(t). The constraints enforce zero curvature at

the starting and the ending point.

Secondly, we take advantages of the multi-view setting and derive feasible regions for

object 3D positions to further confine the fitted motion curve. As illustrated in Fig. 2.3, given

bounding boxes of a single object in the views (a), (b) and (c), we first perform exhaustive

search to find the two anchor points (yellow dots in the image) along two sides of the foot

position of each object. An anchor point is defined as a position where the surrounding
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(a) (b)

(c) (d)

Figure 2.3: An illustration of finding feasible regions (polygons) for interacting people.

8×8 area contains most of background regions. Note that we generate background masks by

GMM background modeling.

Once obtaining all the anchor points for an object, we can find the union area Ω, i.e., a

polygon on the world ground plane, as shown the shaded area in (d). These polygons serve

as additional localization feasibility constraints on the motion pattern. That is, the spline

fitting is formulated as minimizing the following objective function:

min
αk,Bk

E(Oi, Oj) =
∑

(ln,tn)∈Oi∪Oj

(
ln −

∑
k

αkBk(tn)

)2

,

s.t. αkBk(tn) ∈ Ωn.

(2.14)

This is a constrained convex programming problem considering that all polygons are con-

vex. We refer the readers to find more details about b-spline and robust fitting algorithms

in [EM96].
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The probability p3(Oi, Oj) is defined upon the averaged residuals for spline fitting, i.e.,

pcp3 (Oi, Oj) ∝ exp{−E(Oi, Oj)

|Oi ∪Oj|
}. (2.15)

2.4 Learning and Inference

In this section, we first discuss the learning procedure for our constraints and then introduce

how to infer the hierarchical compositional structure.

2.4.1 Learning Constraints

Appearance Coherence. Even for fine-tuning a DCNN, fair amount of training samples

are required. We therefore augment the training data by external samples from public

people detection datasets, e.g., CaltechPedestrians, NICTA, ETH and TUD-Brussels. The

augmented training set contains around 30,0000 samples of cropped people images. We

resize all the samples to 128×256 and horizontally flip them to double the training set size.

And then we extract dense HSV color histograms with 16 bins from 16×16 non-overlapping

patches for each image. The computed histograms are concatenated into a 6144-dimensional

feature vector. We perform K-means clustering on the data and obtain 1000 clusters. Each

cluster is regarded as a class and we utilize them to fine tune our DCNN. In general, the

fine-tuning process converges after 100000 iterations and costs about 8 hours.

Geometry Proximity. Given the training data and ground-truth of a scenario, we

first generate initial tracklets and then associate them with the ground-truth. A tracklet is

treated as a fragment of a ground-truth trajectory if more than 50% of its bounding boxes

are correctly assigned (i.e., hit/miss cutoff with 50% IoU ratio). The training data set D

can thus be constructed using tracklets from the same trajectory as positive pairs samples

and those from different trajectories as negative pairs. We learn the parameters of our kernel

SVM for each pair of views (including self-to-self). The kernel parameters σl and σt are also

tuned by cross-validation.

Note we also estimate the normalization constant for each constraint pcpk (Oi, Oj) using
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the training data.

2.4.2 Inferring Hierarchy

Our objective is to find a compositional hierarchy G by maximizing the posterior probability

formulated in Equation (2.5). The optimization algorithm should accomplish two goals: i)

composing hierarchical structures, and ii) estimating states for terminal and non-terminal

nodes.

The main challenge in optimizing Equation (2.5) lies in the size of the solution space. For

example, if there are n terminal nodes, even a single group can be formed in 2n−1 different

ways, which is exponential. Although MCMC sampling-based algorithms [LLJ13, XLZ13]

are favored to solve such kinds of combinatorial optimization problems, they are typically

computationally expensive and difficult to converge, especially for our case, with thousands

of terminal nodes and numerous possible compositions.

Hereby, we approximate the construction of the hierarchical structure by a progressive

composing process. In the beginning, given a set of initial tracklets VT , we initialize the

state ωi ∈ x(O) for each tracklet O as visible. We then enumerate all the tracklets over

all composition criteria, and find two tracklets Oi and Oj with maximum probability to be

composed into a new tracklet On, that is,

max
Oi,Oj ,δn

p(x(On))
∏
k

pcpk (Oi, Oj)
δn==k, (2.16)

where δn is an indicator for which cue is selected. We then group these two tracklets Oi and

Oj together, and create their parent node On.

The states for this newly merged node On are re-estimated by

x(On) = x(Oi) ∪ x(Oj),

tsn = min(tsi , t
s
j), ten = max(tei , t

e
j),

|x(On)| = ten − tsn + 1.

(2.17)

Note we set all the states of missing time stamps within the time scope [tsn, t
e
n] to 0, i.e.,

invisible. This encourages future filling-in operations.
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If a composition performed based on motion consistency constraint, we then fill in the

missing fragments by interpolations, and create a corresponding tracklet Om ∈ VT . The

new tracklet Om will be naturally incorporated into the hierarchical structure by subsequent

compositions.

We continue this process iteratively. If the maximum composition probability reaches the

lower limit, we terminate the algorithm and connect all the top non-terminal nodes to the

root node S. Each sub-tree connected to the root node is essentially an object trajectory.

2.5 Experiment

In this section, we first introduce the datasets and the parameter settings, and then show

our experimental results as well as component analysis of the proposed approach.

2.5.1 Datasets and Settings

We evaluate our approach on three public datasets:

(i) EPFL dataset [FBL08]1. We adopt the Terrace sequence 1, Passageway sequence

and Basketball sequence in our experiments. In general, each sequence consists of 4 different

views and films 6-11 pedestrians walking or running around, lasting 3.5-6 minutes. Each

view is shot at 25fps and in a relatively low resolution 360×288.

(ii) PETS 2009 dataset [FS09]2. This dataset is widely used in evaluating tracking tasks

and sequence S2/L1 is specially designed for multi-view-based tasks. With 3 surveillance

cameras and 4 DV cameras, 10 pedestrians are recorded entering, passing through, staying

and exiting the pictured area. The video is down-sampled to 720×576 and the frame rate is

set to 7 FPS.

(iii) CAMPUS dataset. To cover more complete challenges not presented in existing

databases, we design this dataset based on the idea of dense foreground (around 15-25 ob-

1Available at https://cvlab.epfl.ch/data/pom/

2Available at http://www.cvg.reading.ac.uk/PETS2009/a.html
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Figure 2.4: Comparison charts using CLEAR metrics on EPFL and PETS 2009 datasets.

jects, frequent conjunctions and occlusions), complex scenarios (objects conducting diverse

activities, dynamic background, interactions between objects and background), various ob-

ject scales (tracking targets sometimes either too tiny or huge to be accommodated in certain

cameras). We incorporate 4 sequences into this dataset: Garden 1, Garden 2, Auditorium

and Parking Lot. Each sequence is shot by 3-4 high-quality DV cameras mounted around 1.5-

2 meters above ground and each camera covers both overlapping regions and non-overlapping

regions with other cameras. The videos are recorded with frame rate 30 FPS and duration

about 3-4 minutes. The resolution is preserved in 1920×1080, for better precision and richer

information.

For all three datasets, videos in each sequence are synchronized. We fully annotate the

21



ground-truth trajectories for all the videos in all the sequences using [VPR13]. Note that we

assign an unique ID for each object, whether it appears once or several times in the scene.

Since the ultimate task of multi-view multi-object tracking is to discover the complete 3D

trajectory of any targeted individual under a camera network, we believe uniquely assigned

ID should be the ground-truth to fully evaluate the trackers, which poses higher requirements

than conventional tracking tasks [KGS09]. In experiments, we use the beginning 10% video

data for training and the rest for testing.

All the parameters are fixed in the experiments. For object detection, we use the PAS-

CAL VOC fine-tuned ZF net, score threshold 0.3 and NMS threshold 0.3, which obtains

proper trade-off between the efficiency and effectiveness. As for tracklet initialization, we

construct a graph with edges only connected among successive frames and within limited

scale changes. That is, sizes of two successive bounding boxes should not change more

than 25% larger or smaller, in either height or width. We then run the successive shortest

path algorithm [PRF11] to generate tracklets. Empirically, this produces short but identity

consistent tracklets. β = 0.05 in the unary probability p(x(O)). The motion consistency

constraint is conducted on tracklets with time interval no longer than 2 seconds, with the

B-spline of order at most 3 and breaks at most 4. In the hierarchical composition, the lower

limit is set to 0.2, which obtains good results.

2.5.2 Experimental Results

We employ the widely used CLEAR metrics [KGS09], Multiple Object Detection Accuracy

(MODA), Detection Precision (MODP), Tracking Accuracy (MOTA) and Tracking Precision

(MOTP) to measure three kinds of errors in tracking: false positives, false negatives and

identity switches. Besides, we also report the percentage of mostly tracked (MT), partly

tracked (PT) and mostly lost (ML) ground-truth (referring to [LHN09]), as well as the

number of identity switches (IDSW) and fragments (FRAG). Hit/miss for the assignment of

tracking output to ground-truth is set to a threshold of Intersection-over-Union (IoU) ratio

50%.
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Sequence Method MODA(%) MODP(%) MOTA(%) MOTP(%) MT(%) PT(%) ML(%) IDSW FRAG

Garden1

Our-full 49.30 72.02 49.03 71.87 31.25 62.50 6.25 299 200

Our-3 44.63 72.35 44.36 72.20 18.75 68.75 12.50 296 202

Our-2 42.10 71.08 41.69 70.97 12.50 75.00 12.50 448 296

Our-1 41.21 71.06 37.21 70.94 12.50 75.00 12.50 4352 4390

[BFT11] 30.47 62.13 28.10 62.01 6.25 68.75 25.00 2577 2553

[FBL08] 24.52 64.28 22.43 64.17 0.00 56.25 43.75 2269 2233

Garden2

Our-full 27.81 71.74 25.79 71.59 21.43 78.57 0.00 94 73

Our-3 23.39 71.13 22.50 71.08 14.29 85.71 0.00 92 72

Our-2 18.76 70.20 17.27 70.12 14.29 78.57 7.14 142 97

Our-1 17.68 70.12 10.24 70.11 14.29 78.57 7.14 700 733

[BFT11] 24.35 61.79 21.87 61.64 14.29 85.71 0.00 268 249

[FBL08] 16.51 63.92 13.95 63.81 14.29 78.57 7.14 241 216

Auditorium

Our-full 20.84 69.26 20.62 69.21 33.33 55.56 11.11 31 28

Our-3 18.83 68.99 18.62 68.95 22.22 61.11 16.67 30 28

Our-2 18.02 68.32 17.29 68.25 16.67 66.67 16.67 104 94

Our-1 17.78 68.33 14.11 68.28 16.67 66.67 16.67 523 536

[BFT11] 19.46 59.45 17.63 59.29 22.22 61.11 16.67 264 257

[FBL08] 17.90 61.19 16.15 61.02 16.67 66.67 16.67 249 235

ParkingLot

Our-full 24.46 66.41 24.08 66.21 6.67 66.67 26.67 459 203

Our-3 19.23 66.50 18.84 66.38 0.00 53.33 46.67 477 191

Our-2 12.85 65.70 12.23 65.61 0.00 46.67 53.33 754 285

Our-1 10.86 65.77 8.74 65.72 0.00 46.67 53.33 2567 2600

[BFT11] 14.73 58.51 13.99 58.36 0.00 53.33 46.67 893 880

[FBL08] 11.68 60.10 11.00 59.98 0.00 46.67 53.33 828 812

Table 2.1: Quantitative results and comparisons on CAMPUS dataset. Our-1, Our-2, Our-3

are three benchmarks set up for component evaluation. See text for detailed explanations.

23



We compare the proposed approach with 4 state-of-the-arts methods: Probabilistic Oc-

cupancy Map (POM) [FBL08], K-Shortest Path (KSP) [BFT11], Branch-and-Price [LPR12]

and Discrete-Continuous Optimization [AS12]. We adopt the public code of POM detec-

tion and implement the data association algorithms ”DP with appearance” [FBL08] and

KSP [BFT11] according to their descriptions. The reported metrics for comparing methods

are quoted on PETS 2009 dataset from [ESF09] and computed on the rest by conducting

experiments.

Quantitative evaluations on EPFL and PETS 2009 datasets is shown in Fig. 2.4 and

CAMPUS dataset in Table 2.1, as well as qualitative results in Fig. 2.5. From the results,

our method demonstrates superior performance over the competing methods. We can also

observe the proposed method acquires significant margins on MODP, MOTP, IDSW and

FRAG, which indicates two empirical conclusions: i) detection-based tracklet initialization

is more beneficial to object overall localization than foreground-blob-based methods which

mainly concerns ground positions; ii) when it comes to occlusions, multiple cues (e.g., ap-

pearance, geometry, and motion) are all neccessary to keep the trajectory identity consistent,

which has also been approved in [HHR13]. Competing methods do not work well on CAM-

PUS dataset mainly due to their strong dependence on clear visibility of ground plane and

uniform object size.

Component Analysis. We set up three benchmarks to further analyze the benefits

of each production rule on CAMPUS dataset. Our-1 outputs the initial tracklets directly,

i.e., no composition performed; Our-2 composes the hierarchy only using the appearance

coherence criterion; Our-3 further incorporates the geometry proximity criterion; Our-full

employs all criteria proposed in this chapter. From the results, it is apparent that each

constraint contributes to a better hierarchical composition model.

Efficiency. Our method is implemented in MATLAB and runs on a desktop with Intel

I7 3.0GHz CPU, 32GB memory and Nvidia GTX780Ti GPU. Given a 1080P sequence, the

runtime on average is 15-20 FPS for object detection, 1000-1500 FPS for tracklet initializa-

tion, and 2-4 FPS for optimizing the hierarchical structure. Overall, the proposed algorithm

obtains 1-3 FPS, which is related to the object density of the sequence. With proper code
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datasets.
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migration and optimization, e.g., batch processing, we believe the real-time processing can

be achieved.

2.6 Summary

In this chapter, we study a novel formulation for multi-view multi-object tracking. We rep-

resent object trajectories as a compositional hierarchy and construct it with probabilistic

constraints, which characterize the geometry, appearance and motion properties of trajecto-

ries. By exploiting multiple cues and composing them with proper scheduling, our method

handles challenges in multi-view multi-object tracking well. Furthermore, we will explore

more powerful inter-tracklet relations and better composition algorithms in the future.
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CHAPTER 3

Cross-view People Tracking by Scene-centered

Spatio-temporal Parsing

3.1 Introduction

In this chapter, we study a novel cross-view tracklet association algorithm for multi-view

person tracking. We consider surveillance scenarios where there are 3-4 cameras looking at

a target area (e.g., parking-lot, garden) from different viewpoints. The task is to compute

the scene-centered overall trajectory of all the people within the scene. In comparison with

the single-view setting [LLJ13, AS11, WBK11, DAS15], it remains unclear how to associate

people trajectories across views, especially when the cameras have wide baselines or large

view changes.

• Large appearance variations. A person is assumed to have similar appearance across

space and time. Nevertheless, large camera view and scale changes compromise such assump-

tion. For example, Fig. 3.1 shows a garden covered by four cameras. From these camera

view snapshots, the person in navy blue looks different in front and back view.

• Inaccurate geo-localization. A common way for solving the task is to calibrate camera

parameters and utilize cross-camera ground homographs, with which a person detected in

one viewpoint can be registered in another view. However, the registration results are often

not accurate enough to separate humans in the proximity because of the calibration errors

or the inaccuracy of footprint estimation. For example, in Fig. 3.1 (c-d), people’s feet are

occluded by the wall and so it is difficult to register the detected human feet positions in

other views.
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(a) (b)

(c) (d)

Figure 3.1: An example of cross-view data association for target tracking. (a)-(d) represents

four different camera views of the same scene. Each color of the bounding box represents a

unique person.

The main idea of our approach is to leverage semantic attributes, e.g., facing orienta-

tions, poses and actions (standing, running, etc.), for cross-view tracklet association. Taking

Fig. 3.1 for example, attributes of person can help prune the ambiguities in cross-view data

association. Specifically, if the orientation of every human box can be correctly identified, we

can associate the green box across views because there is only one person facing the building.

In addition, since there is only one person sitting (red boxes) and one person on the bike

(purple boxes), the pose and action recognition can be used to narrow down the association

space. With the recent advances in computer vision and machine learning, these semantic

attributes can be readily detected with a level of accuracy from a single view, serving as

powerful cues for associating human boxes or trajectories across cameras.

We use Spatio-temporal Attributed Parse Graph (ST-APG) to integrate the semantic at-

tributes with the people trajectories, and pose multi-view people tracking as spatio-temporal

parsing problem. As illustrated in Fig. 3.2, the scene is decomposed into people trajecto-

ries and trajectories consists of tracklets with the same identity. A tracklet is a series of
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human boxes grouped by spatial coherency and perceptual similarity. The parse graph is

enriched with attributes across different levels. The scene is incorporated with the camera

information while tracklets with four types of attributes: i) appearance; ii) geometry, e.g.,

footprints; iii) motion, e.g., facing direction and speed; iv) pose/action, e.g., standing, sit-

ting, walking, running, biking. These attributes can be recognized with a single image or a

monocular video. We use these attributes to impose consistency constraints for cross-view

tracklet associations. The constraints are used as additional energy term in the probabilistic

formula, instead of hard constraints, to reduce errors made in bottom-up predictions.

To infer the ST-APG, we propose an efficient algorithm dealing with two sub-problems.

I) We first employ a stochastic clustering algorithm [BZ05] to group the tracklets, which can

efficiently traverse the combinatorial solution space. We explore two types of relationships

among tracklets: i) being cooperative, i.e., tracklets from different view are allowed to be

grouped together according to their appearance and semantic attributes; ii) being conflicting,

e.g., tracklets with temporal overlaps in the same view, are conflicted to be grouped together.

The conflicting relationships explicitly express the structure of the solution space. II) We

use Dynamic Programming (DP) to estimate semantic attributes of the grouped tracklets.

The trajectory is represented as a Markov Chain and DP are guaranteed to find the optimal

solution. These two algorithms run iteratively until convergence.

We evaluate our approach on one public multi-view tracking dataset and collect a new

multi-view dataset to cover daily activities (e.g., touring, dining, working). We use 4 GOPRO

cameras to capture synchronized videos for 3 scenarios, including food court, office reception

and plaza, which provides rich actions and activities. Results and comparisons with popular

trackers show that our method obtains impressive results and sets up a new state-of-the-art

for multi-view tracking.

3.2 Related Work

The proposed work is closely related to the following research streams in computer vision

and artificial intelligence.
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global attributes

𝐻1 𝐻3𝐻2

crossing walkingwalking turning crossing walking walking standing sitting walking

local attributes local attributes

Figure 3.2: Illustration of Spatial and Temporal Attributed Parse Graph (ST-APG). The

scene S is generated by 3D reconstruction and associated with certain global attributes

(e.g., homograph H1, . . . , Hn), and can be decomposed into trajectories belonging to different

people. Each trajectory consists of multiple tracklets and is leveraged with local attributes

(i.e., blue triangles and words under tracklets).

Multi-view object tracking, like single-view tracking, is often formulated as a data

association problem across cameras. A major question is to find cross-view correspondence

at either pixel level [SZS03] or region-level [KS06, ALD11] or object-level [XLZ13, XMH14].

Typical data association methods are developed based on integer programming [JFL07], net-

work flow [WHH09, BFT11], marked point process [UB11], multi-commodity network [SBF13],

and multi-view SVM [ZYS15]. Notably, Porway and Zhu [PZ11] first introduced a cluster

sampling method to explore both positive and negative relationships between samples, and

Liu et al. [LLJ13] integrated a similar idea with motion information to construct a spatial-

temporal graph for single-view tracking. In this chapter, we extend these two methods

to further explore appearance, geometry, motion and pose/action relations between people

tracklets in multi-view tracking.

Joint video parsing for solving multiple tasks simultaneously has been ap-

proved to be an effective way for boosting the performance of individual objectives. Wei

et al. [WZZ17] presented a probabilistic framework for joint event, recognition, and ob-
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ject localization. Shu et al. [SXR15] proposed to jointly infer groups, events, and human

roles in aerial videos. Nie et al. [NXZ15] used human poses to improve action recognition.

Park and Zhu used an stochastic grammar to jointly estimate human attributes, parts and

poses [PNZ15]. Weng and Fu [WF11] utilized trajectories and key pose recognition to im-

prove human action recognition. Yao et al. [YGF11] employed pose estimation to enhance

human action recognition. Kuo and Nevatia [KN10] studied how person identity recognition

can help multi-person tracking. In this chapter, we follow the same methodology to leverage

semantic human attributes, including orientations, poses, and actions, to narrow the search

space in cross-view data association.

Contributions. In comparison with previous methods, the contributions of this work

is three-fold: i) a unified probabilistic framework of cross-view people tracking that can

leverage multiple semantic attributes; ii) an efficient stochastic inference algorithm that can

explore both positive and negative constraints between tracklets; iii) a comprehensive video

benchmark regarding people’s daily life which fosters research in this direction.z

3.3 Spatio-temporal Attributed Parse Graph

In a common multi-view setting, activities in a scene S are captured by multiple cameras

{C1, C2, . . . , Cn} with overlapping field of view (FOV). Videos from these cameras are syn-

chronized in time. Given such data, our goal is to discover the trajectories Γ of every person

within the scene, that is,

Γ = {Γi : i = 1, ..., K}, (3.1)

where K indicates the total number of people appearing in the scene over a time period.

We use tracklets (i.e., trajectory fragments) as the basic unit. Tracklet is regarded as a

mid-level representation to reduce the computation complexity, similar to super-pixels/voxels

in segmentation. A tracklet τ consists of a short sequence of object bounding boxes, which

can be denoted as

τ = {(bk, tk) : k = 1, 2, . . . , |τ |}, (3.2)
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where bk indicates the bounding box and tk the corresponding frame number. Normally, the

duration of the tracklet is short (less than 300 frames, usually 50-200 frames) and the person

identity and motion within the tracklet is consistent.

Given a tracklet set Γ = {τj, j = 1, 2, . . . , N}, we can re-write the scene-center trajectory

of a person Γi as

Γi = { τj : l(τj) = li, j = 1, 2, . . . , N }, (3.3)

where K indicates the total number of existing people in the scene. Each tracklet τj will be

assigned with a label li ∈ {0, 1, . . . , K}, which can be regarded as the person ID which it

belongs to. We also add li = 0 to denote this tracklet belongs to background.

Therefore, the problem of multi-view tracking can be formulated as a tracklet grouping

problem, i.e. clustering tracklets of the same person into scene-centered trajectories. We

further associate these tracklets with attributes and represent the scene as a Spatio-temporal

Attributed Parse Graph (ST-APG) M , as illustrated in Fig. 3.2. A ST-APG consists of four

components:

M = (S, X(S), Γ, X(Γ) ), (3.4)

where X(S) denotes the global attributes (i.e., homographs {H1, H2, . . . , Hn} for each cam-

era {C1, C2, . . . , Cn}, X(Γ) denotes the semantic attributes for tracklets. Therefore, solving

multi-view people tracking is equivalent to finding the optimal ST-APG.

3.3.1 Semantic Attributes

Besides the identity label l(·), a tracklet τi is enriched with four kinds of attributes:

x(τi) = (l(τi), f(τi), h(τi), ~vi, {ai,k}|τi|k=1), (3.5)

where f(τi) denotes the appearance attribute, h(τi) denotes the geometry attribute, ~vi de-

notes the motion attribute of tracklet τi and ai,k the pose/action attribute at time ti,k, i.e.,

the k-th frame of tracklet τi.

Similar to the literature, we define the appearance attribute f(τi) as a feature descriptor,

which implicitly models the visual evidence, e.g., clothing, face, fair of a person. We also
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define the geometry attribute h(τi) as the 2D object bounding boxes and projected footprints

on the 3D ground plane. Besides appearance and geometry attributes, we further leverage

two kinds of human semantic attributes to specifically handle the task of people tracking.

Motion Attributes. We assume the facing direction of a person is same as his/her

motion direction. The average speed ~vi is computed for each tracklet τi. However, 2D

view-based motion not only suffers from the scale problem, but also is useless for cross-view

comparisons. We thus transform the 2D view-based motion into the 3D real motion. Given

the camera calibration, the foot point of each 2D bounding box is calculated and projected

back onto the 3D ground. The speed and facing direction are thus computed and regarded

as the motion attributes.

Pose/Action Attributes. To describe the actions and poses ai of an individual, we ap-

ply a DCNN to categorize the classical human pose/action variations. We use the PASCAL

VOC 2012 action dataset, augmented by our own collected images. The training set has 7

categories, including standing, sitting, bending, walking, running, riding bike, skateboard-

ing, which covers people’s common type of actions/poses in daily activities. The collected

training set consists 5000 images. We thus fine tune a 7 layer CaffeNet, with 5 convolutional

layers, 2 max-pooling layers, 3 fully-connected layers. The final output give us a 7d human

pose/action confidence score and can be regarded as the local attribute probability p(ai).

Besides the unary pose/action confidence, we further learn a binary temporal consis-

tency table T (ai, aj) to describe the possible transitions between two successive pose/action

attributes. The consistency table is learned from our newly collected multi-view dataset

and apply in all experiments. There are around 1000 training samples in total. In learning,

we initialize impossible transitions (e.g., bending→running, sitting→riding) as 0 and else as

0.05.
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3.4 Bayesian Formulation

According to Bayes rule, M can be solved by maximizing a posterior (MAP), that is,

M∗ = arg max
M

p(M |Γ; θ)

= arg max
M

1

Z
exp {−E(Γ|M ; θ)− E(M ; θ)},

(3.6)

where θ indicates the model parameters.

Likelihood term E(Γ|M ; θ) measures how well the observed data (video bundle) satisfies

a certain object trajectory. Assuming the likelihood of each bundle is calculated indepen-

dently given the partition, then E(Γ|M ; θ) can be written as

E(Γ|M) =
∑
τi∈Γ

E(τi|M ; θ). (3.7)

Each term E(τi|M ; θ) measures how the tracklet τi discriminates from the background.

Therefore we treat this term as the constraint of itself being consistent with a foreground

trajectory of a certain person. We estimate E(τi|M ; θ) as a Markov chain structure, where

the unary term E(ai) is the attributes confidence probability, and the pairwise term E(ai, aj)

is the attribute consistency in two successive frames, that is

E(τi|M ; θ) =

|τi|∑
k=1

E(ai,k) +

|τi|−1∑
k=1

E(ai,k, ai,k+1). (3.8)

Note the motion information is trivial for successive frames and we thus ignore this part.

In this chapter, we utilize prior term E(M ; θ) imposes constraints on people trajectories

and their interactions. To do so, we develop four types of relations between two tracklets,

as illustrated in Fig. 3.3. Given two tracklets, we consider both traditional visual relations

(i.e., appearance and geometry) and leveraged semantic attribute relations (i.e., motion and

pose/action).

Appearance similarity. This constraint assumes that the same person should share

similar appearance across time and cameras. We adopt the appearance measurement pro-

posed in [XLL16], which basically uses a DCNN as codebook and encodes human body
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Figure 3.3: An illustration of four kinds of relations we utilize in this chapter.

appearance as a 1000d feature vector. We measure the appearance similarity rule by

Eappe (τi, τj) =

|τi|∑
1

|τj |∑
1

‖f(τi)− f(τj)‖2

|τi| · |τj|
, (3.9)

where f(τi) denotes the encoded feature vector of τi.

Geometric proximity measures how far two tracklets are located. We project the foot

points of two tracklets onto the scene 3D ground plane using the given 2D to 3D homograph,

and then compute the proximity of two tracklets as

Egeoe (τi, τj) = D(h(τi), h(τj)). (3.10)

D(·, ·) denotes the averaged Euclidean distance between foot points of τi and τj over all

overlapped frames.

Motion consistency. Given two proximate tracklets, the motion direction actually

provides a solid evidence to show whether these tracklets belong to a same person or two
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persons crossing each other. Therefore, we can compute the angle between two motion

directions. that is,

Emove (τi, τj) = arccos
~vi · ~vj
|~vi||~vi|

. (3.11)

If the angle is large, this probably indicates that two persons are moving in different direc-

tions.

Pose/action consistency. Noticing the pose/action of a same person across different

views should also be consistent, we thus use the learned temporal consistency table p(ai, aj)

to describe the consistency between two actions/poses. The rule is computed as

Eacte (τi, τj) =
∑

tm∈{ti,k}∩{tj,k}

E(ai,m, aj,m). (3.12)

Note that we only consider such relation among overlapped frames of two tracklets τi and

τj.

We further introduce an adjacency graph G =< Γ, E > to describe connections among

tracklets. Each tracklet τi ∈ Γ is treated as a graph vertex and each edge eij =< τi, τj >∈ E

describes the relation between two adjacent (neighboring) tracklets τi and τj. In this chapter,

two tracklets τi and τj are regarded as neighbors τi ∈ nbr(τj) if only their temporal difference

is no more than ∆t = 30 frames and no far than ∆d = 5m.

We regard edges generated by four types of constraints as cooperative edges E+. The edge

set E is further extended with conflicting edges E−, that is, E = E− ∪E+. We enforce hard

constraints to guarantee that i) two tracklets from the same view with temporal overlap will

never be grouped together; ii) two adjacent tracklets with same identities will never have

impossible pose/action transitions defined in temporal consistency table T (ai, aj). Both

types of relationships are utilized to help us group tracklets with similar characteristics

together and with conflicting characteristics being dispelled.

Therefore, we can decompose the prior term E(M ; θ) into pairwise potentials between

every two adjacent tracklets within G, that is,

E(M ; θ) =
∑

li=lj ,eij∈E+

E+
e (τi, τj) +

∑
li=lj ,eij∈E−

E−e (τi, τj), (3.13)

36



where p+
e and p−e are the corresponding cooperative and conflicting edge probability defined

above.

3.5 Inference

Given a scenario, finding the optimal ST-APG includes two sub-tasks: (1) partitioning track-

let set Γ into trajectories belonging to different people Γi, (2) inferring the semantic human

attributes for each person. Noticing that sub-task (1) is a combinatorial optimization prob-

lem and jointly solving these two sub-tasks is infeasible, we therefore propose an inference

algorithm to optimize these two sub-tasks iteratively. The inference process is illustrated in

Fig. 3.4. For sub-task (1), we apply a stochastic clustering algorithm, i.e., Swensden-Wang

Cuts [BZ05], which could efficiently and effectively traverses through the grouping solution

space. For sub-task (2), given grouped tracklets, we can use Dynamic Programming to up-

date the semantic attributes of tracklets within every group (i.e., person trajectory). These

two algorithms are are iterated one after another until convergence.

3.5.1 Associating Tracklets by Stochastic Clustering

Traditional sampling algorithms usually suffer from the efficiency issues. On the contrary,

cluster sampling algorithm overcomes this issue by randomly grouping clusters and re-

sampling cluster as a whole. The algorithm consists of two steps:

(I) Generating cluster set. Given an adjacency graph G =< Γ, E > and the current

state M , we regard every edge eij in this graph as a switch. We turn on every edge eij

probabilistically with its edge probability pe. Afterwards, we regard candidates connected

by ”on” positive edges as a cluster Vcc and collect separate clusters to produce the cluster

set.

(II) Relabeling cluster set. We randomly choose a cluster Vcc from the produced

cluster set and randomly change the label of the selected cluster, which generates a new

state M ′. This is essentially changing the ID of a group of tracklets. This group of tracklets
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Figure 3.4: Illustration of our inference process. We parse the optimal parse graph in

a joint bottom-up and top-down process. At each iteration, one of the five composition

criteria is randomly selected and applied to update the current parse graph. The inference

process either augments the current parse graph with bottom-up proposals or recover missing

trajectory fragments from top-down guidance.
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Algorithm 1: Sketch of our inference algorithm

Input: Tracklet set Γ, global attributes X(S)

Output: Spatio-temporal Attributed Parse Graph M

Assign semantic attributes for each tracklet τi by DP ;

Construct adjacency graph G by computing cooperative and conflicting relations among Γ ;

Initialize K = |Γ|, li = i ;

repeat

Generate a cluster Vcc;

Randomly relabel cluster Vcc and obtain a new state M ′ ;

Accept the new state with acceptance rate α(M →M ′) ;

Re-run DP on each new trajectory to update semantic attributes ;

until convergence;

can either be merged into another trajectory, or set to background noises. Following the

Markov chain Monte Carlo principal, we accept the transition from state M to new state

M ′ with a rate α(·) defined by the Metropolis-Hastings method [MRR53]:

α(M →M ′) = min(1,
p(M ′ →M) · p(M ′|Γ)

p(M →M ′) · p(M |Γ)
), (3.14)

where p(M ′ →M) and p(M →M ′) are the state transition probability, p(M ′|Γ) and p(M |Γ)

the posterior defined in Equation.(3.6). This guarantees the stochastic algorithm can find

better states and obtains reversible jumps between any two states.

Following instructions in [BZ05], the transition probability ratio can be calculated as

p(M ′ →M)

p(M →M ′)
∝
p(Vcc|M ′)

p(Vcc|M)
∝

∏
e∈E?

M′
(1− pe)∏

e∈E?M
(1− pe)

, (3.15)

where E? denotes the sets of edges being turned off around Vcc, that is,

E? = {e ∈ E : τi ∈ Vcc, τj 6∈ Vcc, l(τi) = l(τj)}. (3.16)

3.5.2 Assigning Semantic Attributes by DP

Given a trajectory, we first find trajectory gaps (i.e., no bounding box presented) below 60

frames, we then apply a linear interpolation to fill-in the missing bounding boxes.
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Figure 3.5: Comparison charts of major metrics on CAMPUS datasets.

After that, assigning the semantic attribute is similar to estimating the likelihood term

p(τi|M). The whole trajectory is also treated as a Markov chain structure. We therefore

apply the standard factor graph belief propagation (sum-product) algorithm to infer the

semantic human attributes of a trajectory.

A short summary of our proposed inference algorithm is shown in Algorithm 1.

3.6 Experiment

To evaluate the proposed method, we compare with other state-of-the-arts on two datasets:

(1) CAMPUS dataset [XLL16]. This is a newly published dataset targeting multi-view
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tracking. There are four sequences, i.e., two gardens, parking lot, auditorium, each of which

is shot by 3-4 1080P cameras. The recorded videos are 3-4 minutes long and with 30 FPS.

This dataset contains people with huge pose variations and lots of actions (e.g., running,

riding bikes, sitting), providing richer semantic human attributes.

(2) PPL-DA dataset. We collect a new dataset aiming to cover people’s daily activities.

The new dataset consists of 3 public facilities: foot court, office reception, plaza. The scenes

are recorded with 4 GoPro cameras, mounted on around 1.5 meters high tripods. The

produced videos are also around 4 minutes long and in 1080P high quality. We further

annotate the trajectories of every person inside the scene with cross-view consistent ID.

For both datasets, we incorporate 10% of the videos as augmented training set and the

rest as testing set. The augmented data, together external dataset described in previous

section, helps us learn the action labels and transitions. The learning process is only done

once and applied to both datasets. All parameters are fixed in the experiment. We use Fast

R-CNN [Gir15] to generate people’s bounding boxes. The pruning threshold is set to 0.3.

We apply Sequential Shortest Path (SSP) [PRF11] to initialize tracklets. The sampling is

set to finish after 1000 iterations, which achieves decent results.

The proposed approach is compared with 3 state-of-the-arts methods: Probabilistic Oc-

cupancy Map (POM) [FBL08], K-Shortest Path (KSP) [BFT11] and Hierarchical Trajectory

Composition (HTC) [XLL16]. The public implementations of POM and KSP are adopted.

We further implement HTC on our own using the default parameters. For quantitative re-

sults, we apply multi-object tracking accuracy (TA), multi-object tracking precision (TP),

mostly tracked/lost trajectories (MT/ML), identity switches (IDSW) and trajectory frag-

ments (FRG). DA, DP, TA and TP mainly measure the percentage of true positives while

MT/ML, IDSW and FRG mainly measure the completeness and identity consistency of the

result trajectories. A higher value means better for TA, TP and MT while a lower value

means better for ML, IDSW and FRG.

We report quantitative results on CAMPUS datasets in Fig. 3.5 and on PPL-DA dataset

in Table 3.1. From the results, the proposed method obtains a significant improvement over
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Seq-Court TA(%) TP(%) MT(%) ML(%) IDSW FRG

Our-full 34.47 72.38 18.52 25.93 79 55

Our-1 26.82 70.23 11.11 33.33 114 90

HTC 29.51 71.87 14.81 25.93 91 77

KSP 24.72 64.40 0.00 44.44 318 291

POM 22.26 65.39 0.00 51.85 296 269

Seq-Office TA(%) TP(%) MT(%) ML(%) IDSW FRG

Our-full 47.38 73.70 42.86 0.00 45 31

Our-1 39.79 68.99 28.57 0.00 71 64

HTC 41.17 70.65 28.57 0.00 66 59

KSP 39.62 58.01 28.57 0.00 83 76

POM 36.86 58.77 28.57 0.00 89 82

Seq-Plaza TA(%) TP(%) MT(%) ML(%) IDSW FRG

Our-full 25.18 67.10 16.28 11.63 165 133

Our-1 20.59 65.15 11.63 18.60 244 199

HTC 23.11 66.24 11.63 18.60 202 178

KSP 17.30 57.49 6.98 27.91 356 311

POM 16.71 57.87 4.65 32.56 339 295

Table 3.1: Quantitative results and comparisons on PPL-DA dataset. Our-1 and Our-full

are two variants of the proposed framework. See text for detailed explanations.
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Figure 3.6: Sampled qualitative results of our proposed method on CAMPUS and PPL-DA

datasets.
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the competing methods. An interesting observation is that tracking by associating bounding

boxes (i.e., KSP, POM) yields much worse results than tracking by associating tracklets

(i.e., Ours, HTC).

We set up a baseline Our-1 to further analyze the effectiveness of leveraged semantic

attributes. Our-1 only uses appearance and geometry information for multi-view tracking.

From the results we can observe that when people with various actions present, the proposed

method is able to exploit this visual information and significantly improves the tracking

results. However, when lack of such variations (e.g., Auditorium, ParkingLot, Plaza), the

proposed method can only utilize people motion information and obtains slightly better

results. some qualitative results are visualized in Fig. 3.6.

We implement the proposed method with MATLAB and test it on a workstation with

I7 3.0GHz CPU, 32GB memory and GTX1080 GPU. For a scene shot by 4 cameras and

lasting for around 4 minutes, our algorithm obtains 5 frames per second on average. With

further code optimization and batch-based data parallelization, our proposed method can

run in real-time.

3.7 Summary

In this chapter, we propose a novel multi-view multi-object tracking approach. Tracking

people is leveraged with rich semantic attributes and therefore the association of tracklets

are further constrained. By incorporating the motion attributes, pose attributes and action

attributes, our algorithm outperforms the competing methods only using appearance and

geometry information. In the future, we will continue to explore more high-level information

(e.g., people interactions, group information) among tracklets and more efficient inference

algorithms.
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CHAPTER 4

3D Scene Understanding by Scene-centric Joint

Parsing

4.1 Introduction

During the past decades, remarkable progress has been made in many vision tasks, e.g., image

classification, object detection, pose estimation. Recently, more comprehensive visual tasks

probe deeper understanding of visual scenes under interactive and multi-modality settings,

such as visual Turing tests [GGH15, QWL15] and visual question answering [AAL15]. In ad-

dition to discriminative tasks focusing on binary or categorical predictions, emerging research

involves representing fine-grained relationships in visual scenes [KZG17, ABY16] and unfold-

ing semantic structures in contexts including caption or description generation [YYL10], and

question answering [TML14, ZGB16].

In this chapter, we present a framework for uncovering the semantic structure of scenes in

a cross-view camera network. The central requirement is to resolve ambiguity and establish

cross-reference among information from multiple cameras. Unlike images and videos shot

from single static point of view, cross-view settings embed rich physical and geometry con-

straints due to the overlap between fields of views. While multi-camera setups are common

in real-word surveillance systems, large-scale cross-view activity dataset are not available

due to privacy and security reasons. This makes data-demanding deep learning approaches

infeasible.

Our joint parsing framework computes a hierarchy of spatio-temporal parse graphs by

establishing cross-reference of entities among different views and inferring their semantic
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Figure 4.1: An example of the spatio-temporal semantic parse graph hierarchy in a visual

scene captured by two cameras.
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attributes from a scene-centric perspective. For example, Fig. 4.1 shows a parse graph

hierarchy that describes a scene where two people are playing a ball. In the first view,

person 2’s action is not grounded because of the cluttered background, while it is detected

in the second view. Each view-centric parse graph contains local recognition decisions in an

individual view, and the scene centric parse graph summaries a comprehensive understanding

of the scene with coherent knowledge.

The structure of each individual parse graph fragment is induced by an ontology graph

that regulates the domain of interests. A parse graph hierarchy is used to represent the

correspondence of entities between the multiple views and the scene. We use a probabilistic

model to incorporate various constraints on the parse graph hierarchy and formulate the

joint parsing as a MAP inference problem. A MCMC sampling algorithm and a dynamic

programming algorithm are used to explore the joint space of scene-centric and view-centric

interpretations and to optimize for the optimal solutions. Quantitative experiments show

that scene-centric parse graphs outperforms the initial view-centric proposals.

Contributions. The contributions of this work are three-fold: (i) a unified hierarchical

parse graph representation for cross-view person, action, and attributes recognition; (ii) a

stochastic inference algorithm that explores the joint space of scene-centric and view-centric

interpretations efficiently starting with initial proposals; (iii) a joint parse graph hierarchy

that is an interpretable representation for scene and events.

4.2 Related Work

Our work is closely related to three research areas in computer vision and artificial intelli-

gence.

Multi-view video analytics. Typical multi-view visual analytics tasks include object

detection [LS10, UB11], cross-view tracking [BFT11, LPR12, XLL16, XLQ17], action recog-

nition [WNX14], person re-identification [XLZ13, XMH14] and 3D reconstruction [HWR13].

While heuristics such as appearances and motion consistency constraints have been used

to regularize the solution space, these methods focus on a specific multi-view vision task
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whereas we aim to propose a general framework to jointly resolve a wide variety of tasks.

Semantic representations. Semantic and expressive representations have been devel-

oped for various vision tasks, e.g., image parsing [HZ09], 3D scene reconstruction [PBH13,

LZZ14], human-object interaction [KS16], pose and attribute estimation [WZZ17]. In this

chapter, our representation also falls into this category. The difference is that our model

is defined upon cross-view spatio-temporal domain and is able to incorporate a variety of

tasks.

Interpretability. Automated generation of explanations regarding predictions has a

long and rich history in artificial intelligence. Explanation systems have been developed for

a wide range of applications, including simulator actions [VFM04, LCV05, CLV06], robot

movements [LCC12], and object recognition in images [BM14, HAR16]. Most of these ap-

proaches are rule-based and suffer from generalization across different domains. Recent

methods including [RSG16] use proxy models or data to interpret black box models, while

our scene-centric parse graphs are explicit representations of the knowledge by definition.

4.3 Representation

A scene-centric spatio-temporal parse graph represents humans, their actions and attributes,

interaction with other objects captured by a network of cameras. We will first introduce the

concept of ontology graph as domain definitions, then we will describe parse graphs and

parse graph hierarchy as view-centric and scene-centric representations respectively.

Ontology graph. To define the scope of our representation on scenes and events, an

ontology is used to describe a set of plausible objects, actions and attributes. We define an

ontology as a graph that contains nodes representing objects, parts, actions, attributes re-

spectively and edges representing the relationships between nodes. Specifically, every object

and part node is a concrete type of object that can be detected in videos. Edges between

object and part nodes encodes “part-of” relationships. Action and attribute nodes connected

to an object or part node represent plausible actions and appearance attributes the object

can take. For example, Fig. 4.2 shows an ontology graph that describes a domain including
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Figure 4.2: An illustration of the proposed ontology graph describing objects, parts, actions

and attributes.

people, vehicles, bicycles. An object can be decomposed into parts (i.e., green nodes), and

enriched with actions (i.e., pink nodes) and attributes (i.e., purple diamonds). The red edges

among action nodes denote their incompatibility. The ontology graph can be considered a

compact AOG [LZZ14, WZZ17] without the compositional relationships and event hierarchy.

In this chapter, we focus on a restricted domain inspired by [QWL15], while larger ontology

graphs can be easily derived from large-scale visual relationship datasets such as [KZG17]

and open-domain knowledge bases such as [LS04].

Parse graphs. While an ontology describes plausible elements, only a subset of these

concepts can be true for a given instance at a given time. For example, a person cannot

be both “standing” and “sitting” at the same time, while both are plausible actions that a

person can take. To distinguish plausible facts and satisfied facts, we say a node is grounded

when it is associated with data. Therefore, a subgraph of the ontology graph that only

contains grounded nodes can be used to represent a specific instance (e.g. a specific person)

at a specific time. In this chapter, we refer to such subgraphs as parse graphs.
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Figure 4.3: The proposed spatio-temporal parse graph hierarchy. (Better viewed electroni-

cally and zoomed).

Parse graph hierarchy. In cross-view setups, since each view only captures an incom-

plete set of facts in a scene, we use a spatio-temporal hierarchy of parse graphs to represent

the collective knowledge of the scene and all the individual views. To be concrete, a view-

centric parse graph g̃ contains nodes grounded to a video sequence captured by an individual

camera, whereas a scene-centric parse graph g is an aggregation of view-centric parse graphs

and therefore reflects a global understanding of the scene. As illustrated in Fig. 4.3, for

each time step t, the scene-centric parse graph gt is connected with the corresponding view-

centric parse graphs g̃
(i)
t indexed by the views, and the scene-centric graphs are regarded as a

Markov chain in the temporal sequence. In terms of notations, in this chapter we use a tilde

notation to represent the view-centric concepts x̃ corresponding to scene-centric concepts x.

4.4 Probabilistic Formulation

Given the input frames from video sequences I = {I(i)
t } captured by a network of M cameras,

the task of joint parsing is to infer the spatio-temporal parse graph hierarchy G

G =< Φ, g, g̃(1), g̃(2), . . . , g̃(M) >, (4.1)
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where Φ is an object identity mapping between scene-centric parse graph g and view-centric

parse graphs g̃(i) from camera i. Φ defines the structure of parse graph hierarchy. In this

section, we discuss the formulation assuming a fixed structure, while defer the discussion of

how to traverse the solution space to section 4.5.

We formulate the inference of parse graph hierarchy as a MAP inference problem in a

posterior distribution p(G|I) as follows

G∗ = arg max
G

p(I|G) · p(G). (4.2)

Likelihood. The likelihood term models the grounding of nodes in view-centric parse

graphs to the input video sequences. Specifically,

p(I|G) =
M∏
i=1

T∏
t=1

p(I
(i)
t |g̃

(i)
t )

=
M∏
i=1

T∏
t=1

∏
v∈V (g̃

(t)
i )

p(I(v)|v),

(4.3)

where g̃
(i)
t is the view-centric parse graph of camera i at time t and V (g̃

(i)
t ) is the set of nodes

in the parse graph. p(I(v)|v) is the node likelihood for the concept represented by node v

being grounded on the data fragment I(v). In practice, this probability can be approximated

by normalized detection and classifications scores [PRF11].

Prior. The prior term models the compatibility of scene-centric and view-centric parse

graphs across time. We factorize the prior as

p(G) =p(g1)
T−1∏
t=1

p(gt+1|gt)
M∏
i=1

T∏
t=1

p(g̃
(i)
t |gt), (4.4)

where p(g1) is a prior distribution on parse graphs that regulates the combination of nodes,

and p(gt|gt−1) is a transitions probability of scene-centric parse graphs across time. Both

probability distributions are estimated from training sequences. p(g̃
(i)
t |gt) is defined as a

Gibbs distribution that models the compatibility of scene-centric and view-centric parse

51



graphs in the hierarchy (we drop subscripts t and camera index i for brevity).

p(g̃|g) =
1

Z
exp{−E(g, g̃)}

=
1

Z
exp{−w1ES(g, g̃)− w2EA(g, g̃)

− w3EAct(g, g̃)− w4EAttr(g, g̃)},

(4.5)

where energy E(g, g̃) is decomposed into four different terms described in detail in the sub-

section below. The weights are tuning parameters that can be learned via cross-validation.

We consider view-centric parse graphs for videos from different cameras are independent

conditioned on scene-centric parse graph under the assumption that all cameras have fixed

and known locations.

4.4.1 Cross-view Compatibility

In this subsection, we describe the energy function E(g, g̃) for regulating the compatibility

between the occurrence of objects in the scene and an individual view from various aspects.

Note that we use a tilde notation to represent the node correspondence in scene-centric and

view-centric parse graphs (i.e., for a node v ∈ g in a scene-centric parse graph, we refer to

the corresponding node in a view-centric parse graph as ṽ).

Appearance similarity. For each object node in the parse graph, we keep an appear-

ance descriptor. The appearance energy regulates the appearance similarity of object o in

the scene-centric parse graph and õ in the view-centric parse graphs.

EA(g, g̃) =
∑
o∈g

||(φ(o)− φ(õ)||2, (4.6)

where φ(·) is the appearance feature vector of the object. At the view-level, this feature

vector can be extracted by pre-trained convolutional neural networks; at the scene level, we

use a mean pooling of view-centric features.

Spatial consistency. At each time point, every object in a scene has a fixed physical

location in the world coordinate system while appears on the image plane of each camera

according to the camera projection. For each object node in the parse graph hierarchy, we
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keep a scene-centric location s(o) for each object o in scene-centric parse graphs and a view-

centric location s(õ) on the image plane in view-centric parse graphs. The following energy

is defined to enforce the spatial consistency:

ES(g, g̃) =
∑
o∈g

||s(o)− h(s(õ))||2, (4.7)

where h(·) is a perspective transform that maps a person’s view-centric foot point coordinates

to the world coordinates on the ground plane of the scene with the camera homography, which

can be obtained via the intrinsic and extrinsic camera parameters.

Action compatibility. Among action and object part nodes, scene-centric human ac-

tion predictions shall agree with the human pose observed in individual views from different

viewing angles:

EAct(g, g̃) =
∑
l∈g

− log p(l|p̃), (4.8)

where l is an action node in scene-centric parse graphs and p̃ are positions of all human

parts in the view-centric parse graph. In practice, we separately train a action classifier that

predicts action classes with joint positions of human parts and uses the classification score

to approximate this probability.

Attribute consistency. In cross-view sequences, entities observed from multiple cam-

eras shall have a consistent set of attributes. This energy term models the commonsense

constraint that scene-centric human attributes shall agree with the observation in individual

views:

EAttr(g, g̃) =
∑
a∈g

1(a 6= ã) · ξ, (4.9)

where 1(·) is an indicator function and ξ is a constant energy penalty introduced when the

two predictions mismatch.

4.5 Inference

The inference process consists of two sub-steps: (i) matching object nodes Φ in scene-centric

and view-centric parse graphs (i.e. the structure of parse graph hierarchy) and (ii) estimating
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optimal values of parse graphs {g, g̃(1), . . . , g̃(M)}.

The overall procedure is as follows: we first obtain view-centric objects, actions, and

attributes proposals from pre-trained detectors on all video frames. This forms the initial

view-centric predictions {g̃(1), . . . , g̃(M)}. Next we use a Markov Chain Monte Carlo (MCMC)

sampling algorithm to optimize the parse graph structure Φ. Given a fixed parse graph

hierarchy, variables within the scene-centric and view-centric parse graphs {g, g̃(1), . . . , g̃(M)}

can be efficiently estimated by a dynamic programming algorithm. These two steps are

performed iteratively until convergence.

4.5.1 Inferring Parse Graph Hierarchy

We use a stochastic algorithm to traverse the solution space of the parse graph hierarchy

Φ. To satisfy the detailed balance condition, we define three reversible operators Θ =

{Θ1,Θ2,Θ3} as follows.

Merging. The merging operator Θ1 groups a view-centric parse graph with an other

view-centric parse graph by creating a scene-centric parse graph that connects the two. The

operator requires the two operands to describe two objects of the same type either from

different views or in the same view but with non-overlapping time intervals.

Splitting. The splitting operator Θ2 splits a scene-centric parse graph into two parse

graphs such that each resulting parse graph only connects to a subset of view-centric parse

graphs.

Swapping. The swapping operator Θ3 swaps two view-centric parse graphs. One can

view the swapping operator as a shortcut of merging and splitting combined.

We define the proposal distribution q(G→ G′) as an uniform distribution. At each itera-

tion, we generate a new structure proposal Φ′ by applying one of the three operators Θi with

respect to probability 0.4, 0.4, and 0.2, respectively. The generated proposal is then accepted

with respect to an acceptance rate α(·) as in the Metropolis-Hastings algorithm [MRR53]:

α(G→ G′) = min

(
1,
q(G′ → G) · p(G′|x)

q(G→ G′) · p(G|x)

)
, (4.10)
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where p(G|x) the posterior is defined in Equation (4.2).

4.5.2 Inferring Parse Graph Variables

Given a fixed parse graph hierarchy, we need to estimate the optimal value for each node

within each parse graph. As illustrated in Fig. 4.3, for each frame, the scene-centric node gt

and the corresponding view-centric nodes g̃
(i)
t form a star model, and the whole scene-centric

nodes are regarded as a Markov chain in the temporal order. Therefore the proposed model

is essentially a Directed Acyclic Graph (DAG). To infer the optimal node values, we can

simply apply the standard factor graph belief propagation (sum-product) algorithm.

4.6 Experiments

4.6.1 Setup and Datasets

We evaluate our scene-centric joint-parsing framework in tasks including object detection,

multi-object tracking, action recognition, and human attributes recognition. In object de-

tection and multi-object tracking tasks, we compare with published results. In action recog-

nition and human attributes tasks, we compare the performance of view-centric proposals

without joint parsing and scene-centric predictions after joint parsing as well as additional

baselines. The following datasets are used to cover a variety of tasks.

The CAMPUS dataset [XLL16]1 contains video sequences from four scenes each cap-

tured by four cameras. Different from other multi-view video datasets focusing solely on

multi-object tracking task, videos in the CAMPUS dataset contains richer human poses and

activities with moderate overlap in the fields of views between cameras. In addition to the

tracking annotation in the CAMPUS dataset, we collect new annotation that includes 5

action categories and 9 attribute categories for evaluating action and attribute recognition.

1Available at https://bitbucket.org/merayxu/multiview-object-tracking-dataset
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The TUM Kitchen dataset [TBB09]2 is an action recognition dataset that contains

20 video sequences captured by 4 cameras with overlapping views. As we only focusing

on the RGB imagery inputs in our framework, other modalities such as motion capturing,

RFID tag reader signals, magnetic sensor signals are not used as inputs in our experiments.

To evaluate detection and tracking task, we compute human bounding boxes from motion

capturing data by projecting 3D human poses to the image planes of all cameras using the

intrinsic and extrinsic parameters provided in the dataset. To evaluate human attribute

tasks, we annotate 9 human attribute categories for every subject.

In our experiments, both the CAMPUS and the TUM Kitchen datasets are used in all

tasks. In the following subsection, we present isolated evaluations.

4.6.2 Evaluation

Object detection & tracking. We use FasterRCNN [RHG15] to create initial object

proposals on all video frames. The detection scores are used in the likelihood term in

Equation (4.3). During joint parsing, objects which are not initially detected on certain

views are projected from object’s scene-centric positions with the camera matrices. After

joint parsing, we extract all bounding boxes that are grounded by object nodes from each

view-centric parse graph to compute multi-object detection accuracy (DA) and precision

(DP). Concretely, the accuracy measures the faction of correctly detected objects among all

ground-truth objects and the precision is computed as fraction of true-positive predictions

among all output predictions. A predicted bounding box is considered a match with a

ground-truth box only if the intersection over union (IoU) score is greater than 0.5. When

more than one prediction overlaps with a ground-truth box, only the one with the maximum

overlap is counted as true positive.

When extracting all bounding boxes on which the view-centric parse graphs are grounded

and grouping them according to the identity correspondence between different views, we

obtain object trajectories with identity matches across multiple videos. In the evaluation,

2Available at https://ias.in.tum.de/software/kitchen-activity-data
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CAMPUS-S1 DA (%) DP (%) TA (%) TP (%) IDSW FRAG

Fleuret et al. 24.52 64.28 22.43 64.17 2269 2233

Berclaz et al. 30.47 62.13 28.10 62.01 2577 2553

Xu et al. 49.30 72.02 56.15 72.97 320 141

Ours 56.00 72.98 55.95 72.77 310 138

CAMPUS-S2 DA (%) DP (%) TA (%) TP (%) IDSW FRAG

Fleuret et al. 16.51 63.92 13.95 63.81 241 214

Berclaz et al. 24.35 61.79 21.87 61.64 268 249

Xu et al. 27.81 71.74 28.74 71.59 1563 443

Ours 28.24 71.49 27.91 71.16 1615 418

CAMPUS-S3 DA (%) DP (%) TA (%) TP (%) IDSW FRAG

Fleuret et al. 17.90 61.19 16.15 61.02 249 235

Berclaz et al. 19.46 59.45 17.63 59.29 264 257

Xu et al. 49.71 67.02 49.68 66.98 219 117

Ours 50.60 67.00 50.55 66.96 212 113

CAMPUS-S4 DA (%) DP (%) TA (%) TP (%) IDSW FRAG

Fleuret et al. 11.68 60.10 11.00 59.98 828 812

Berclaz et al. 14.73 58.51 13.99 58.36 893 880

Xu et al. 24.46 66.41 24.08 68.44 962 200

Ours 24.81 66.59 24.63 68.28 938 194

TUM Kitchen DA (%) DP (%) TA (%) TP (%) IDSW FRAG

Fleuret et al. 69.88 64.54 69.67 64.76 61 57

Berclaz et al. 72.39 63.27 72.20 63.51 48 44

Xu et al. 86.53 72.12 86.18 72.37 9 5

Ours 89.13 72.21 88.77 72.42 12 8

Table 4.1: Quantitative comparisons of multi-object tracking on CAMPUS and TUM

Kitchen datasets.
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CAMPUS

Methods Run PickUp PutDown Throw Catch Overall

view-centric 0.83 0.76 0.91 0.86 0.80 0.82

baseline-vote 0.85 0.80 0.71 0.88 0.82 0.73

baseline-mean 0.86 0.82 1.00 0.90 0.87 0.88

scene-centric 0.87 0.83 1.00 0.91 0.88 0.90

TUM Kitchen

Methods Reach Taking Lower Release OpenDoor CloseDoor OpenDrawer CloseDrawer Overall

view-centric 0.78 0.66 0.75 0.67 0.48 0.50 0.50 0.42 0.59

baseline-vote 0.80 0.63 0.77 0.71 0.72 0.73 0.70 0.47 0.69

baseline-mean 0.79 0.61 0.75 0.69 0.67 0.67 0.66 0.45 0.66

scene-centric 0.81 0.67 0.79 0.71 0.71 0.73 0.70 0.50 0.70

Table 4.2: Quantitative comparisons of human action recognition on CAMPUS and TUM

Kitchen datasets.

we compute four major tracking metrics: multi-object tracking accuracy (TA), multi-object

track precision (TP), the number of identity switches (IDSW), and the number of fragments

(FRAG). A higher value of TA and TP and a lower value of IDSW and FRAG indicate the

tracking method works better. We report quantitative comparisons with several published

methods [XLL16, BFT11, FBL08] in Table 4.1. From the results, the performance measured

by tracking metrics are comparable to published results. We conjecture that the appearance

similarity is the main drive for establish cross-view correspondence while additional semantic

attributes proved limited gain to the tracking task.

Action recognition. View-centric action proposals are obtained from a fully-connected

neural network with 5 hidden layers and 576 neurons which predicts action labels using hu-

man pose. For the CAMPUS dataset, we collect additional annotations for 5 human action

classes: Run, PickUp, PutDown, Throw, and Catch in total of 8,801 examples. For the TUM

Kitchen dataset, we evaluate on the 8 action categories: Reaching, TakingSomething, Low-

ering, Releasing, OpenDoor, CloseDoor, OpenDrawer, and CloseDrawer. We measure both

individual accuracies for each category as well as the overall accuracies across all categories.
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Figure 4.4: Confusion matrices of action recognition on view-centric proposals (left) and

scene-centric predictions (right).

CAMPUS

Methods Gender Long hair Glasses Hat T-shirt Long sleeve Shorts Jeans Long pants mAP

view-centric 0.59 0.77 0.56 0.76 0.36 0.59 0.70 0.63 0.35 0.59

baseline-mean 0.63 0.82 0.55 0.75 0.34 0.64 0.69 0.63 0.34 0.60

baseline-vote 0.61 0.82 0.55 0.75 0.34 0.65 0.69 0.63 0.35 0.60

scene-centric 0.76 0.82 0.62 0.80 0.40 0.62 0.76 0.62 0.24 0.63

TUM Kitchen

Methods Gender Long hair Glasses Hat T-shirt Long sleeve Shorts Jeans Long pants mAP

view-centric 0.69 0.93 0.32 1.00 0.50 0.89 0.91 0.83 0.73 0.76

baseline-mean 0.86 1.00 0.32 1.00 0.54 0.96 1.00 0.83 0.81 0.81

baseline-vote 0.64 1.00 0.32 1.00 0.32 0.93 1.00 0.83 0.76 0.76

scene-centric 0.96 0.98 0.32 1.00 0.77 0.96 0.94 0.83 0.83 0.84

Table 4.3: Quantitative comparisons of human attribute recognition on CAMPUS and TUM

Kitchen datasets.
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Figure 4.5: The breakdown of action recognition accuracy according to the number of camera

views in which each entity is observed.

Table 4.2 shows the performance of scene-centric predictions with view-centric proposals, and

two additional fusing strategies as baselines. Concretely, the baseline-vote strategy takes ac-

tion predictions from multiple views and outputs the label with majority voting, while the

baseline-mean strategy assumes equal priors on all cameras and outputs the label with the

highest averaged probability. When evaluating scene-centric predictions, we project scene-

centric labels back to individual bounding boxes and calculate accuracies following the same

procedure as evaluating view-centric proposals. Our joint parsing framework demonstrates

improved results as it aggregates marginalized decisions made on individual views while also

encourages solutions that comply with other tasks. Fig. 4.4 compares the confusion ma-

trix of view-centric proposals and scene-centric predictions after joint parsing for CAMPUS

dataset. To further understand the effect of multiple views, we break down classification

accuracies by the number of cameras where persons are observed (Fig. 4.5). Observing an

entity from more cameras generally leads to better performance, while too many conflicting

observations may also cause degraded performance. Fig. 4.6 shows some success and failure

examples.

Human attribute recognition. We follow the similar procedure as in the action

recognition case above. Additional annotations for 9 different types of human attributes are

collected for both CAMPUS and TUM Kitchen dataset. View-centric proposals and score
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Figure 4.6: Success (1st row) and failure examples (2nd row) of view-centric (labels overlaid

on the images) and scene-centric predictions (labels beneath the images) of action and at-

tribute recognition tasks. For failure examples, true labels are in the bracket. “Occluded”

means that the locations of objects or parts are projected from scene locations and therefore

no view-centric proposals are generated. Better viewed in color.

are obtained from an attribute grammar model as in [PNZ15]. We measure performance with

average precisions for each attribute categories as well as mean average precision (mAP) as

in human attribute literatures. Scene-centric predictions are projected to bounding boxes

in each views when calculating precisions. Table 4.3 shows quantitative comparisons be-

tween view-centric and scene-centric predictions. The same baseline fusing strategies as in

the action recognition task are used. The scene-centric prediction outperforms the original

proposals in 7 out of 9 categories while remains comparable in others. Notably, the CAM-

PUS dataset is harder than standard human attribute datasets because of occlusions, limited

scales of humans, and irregular illumination conditions.

4.6.3 Runtime

With initial view-centric proposals precomputed, for a 3-minute scene shot by 4 cameras con-

taining round 15 entities, our algorithm performs at 5 frames per second on average. With

further optimization, our proposed method can run in real-time. Note that although the
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proposed framework uses a sampling-based method, using view-based proposals as initial-

ization warm-starts the sampling procedure. Therefore, the overall runtime is significantly

less than searching the entire solution space from scratch. For problems of a larger size,

more efficient MCMC algorithms may be adopted. For example, the mini-batch acceptance

testing technique [CSP16] has demonstrated several order-of-magnitude speedups.

4.7 Summary

We represent a joint parsing framework that computes a hierarchy of parse graphs which

represents a comprehensive understanding of cross-view videos. We explicitly specify various

constraints that reflect the appearance and geometry correlations among objects across mul-

tiple views and the correlations among different semantic properties of objects. Experiments

show that the joint parsing framework improves view-centric proposals and produces more

accurate scene-centric predictions in various computer vision tasks.

We briefly discuss advantages of our joint parsing framework and potential future direc-

tions from two perspectives.

4.7.0.1 Explicit Parsing

While the end-to-end training paradigm is appealing in many data-rich supervised learning

scenarios, as an extension, leveraging loosely-coupled pre-trained modules and exploring

commonsense constraints can be helpful when large-scale training data is not available or

too expensive to collect in practice. For example, many applications in robotics and human-

robot interaction domains share the same set of underlying perception units such as scene

understanding, object recognition, etc. Training for every new scenarios entirely could end

up with exponential number of possibilities. Leveraging pre-trained modules and explore

correlation and constraints among them can be treated as a factorization of the problem

space. Therefore, the explicit joint parsing scheme allows practitioners to leverage pre-

trained modules and to build systems with an expanded skill set in a scalable manner.
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4.7.0.2 Interpretable Interface

Our joint parsing framework not only provides a comprehensive scene-centric understanding

of the scene, moreover, the scene-centric spatio-temporal parse graph representation is an

interpretable interface of computer vision models to users. In particular, we consider the

following properties an explainable interface shall have apart from the correctness of answers:

• Relevance: an agent shall recognize the intent of humans and provide information

relevant to humans’ questions and intents.

• Self-explainability : an agent shall provide information that can be interpreted by hu-

mans as how answers are derived. This criterion promotes humans’ trust on an intelligent

agent and enables sanity check on the answers.

• Consistency : answers provided by an agents shall be consistent throughout an inter-

action with humans and across multiple interaction sessions. Random or non-consistent

behaviors cast doubts and confusions regarding the agent’s functionality.

• Capability : an explainable interface shall help humans understand the boundary of

capabilities of an agent and avoid blinded trusts.

Potential future directions include quantifying and evaluating the interpretability and

user satisfaction by conducting user studies.
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CHAPTER 5

Human Parsing by Joint Bottom-up and Top-down

Inference

5.1 Introduction

Neural networks are currently revolutionizing computer vision. Their wide-ranging success

has proven their strong representation power and end-to-end learning ability. However, they

may not directly encode interpretable structures and top-down information. For example,

it’s difficult to incorporate the knowledge of human body decomposability into networks since

the intrinsic mechanism of a network is often hard to explain. Alternatively, graphical models

are powerful to build structured representations, which is the incentive for their prevalence

in computer vision. Such structured representations could reflect task-specific relations and

constraints. For example, in cloth landmark localization (see Fig. 5.1), nodes represent

atomic components (e.g., collars, hems, etc.), and edges describe node inter-relations (e.g.,

kinematic dependencies among cloth landmarks). Graphical models allow domain experts

to inject their high-level knowledge, but often require significant feature engineering.

We propose a deep structured network, named α-β-γ network, which augments the hier-

archical graphical representation with the learning capability of neural network, and pursue

to connote three information flows, straight pass (i.e., α process), bottom-up process (i.e.,

β process) and top-down process (i.e., γ process), in hierarchical models. As illustrated in

Fig. 5.1, when predicting the location of upper-body cloth of a person, we consider three

kinds of information: image regions directly revealing itself, the decompositional relation

from parent full-body cloth, and the compositional relations from children l.&r. collar and

l.&r. hem. Different information flows confer different portions of contributions to the final
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Figure 5.1: Illustration of joint bottom-up and top-down inference. Given a hierarchy

of human cloth, three types of information (i.e., α, β, and γ processes) contribute to the

final prediction of upper body cloth node. With α-β-γ network, these three processes can be

explicitly learned in an end-to-end manner with post-hoc interpretability.

prediction. There are some interesting properties about α-β-γ network:

• Encodings of joint bottom-up and top-down inference. Our structured network

models graph nodes as CNNs and takes into account the dependencies (e.g., composition, de-

composition, and contextual relation) within the hierarchical graph. It provides a principled

algorithm for learning hierarchical graphical models jointly with neural networks. The pro-

posed model approaches three basic inference processes [WZ11b] with end-to-end learning: α

process directly generates predictions based on image features, β process makes predictions

by binding child node(s) in bottom-up fashion and γ process utilizes contextual informa-

tion from parent node(s) in top-down style. We show that, with the suggested model, the

hierarchical graph with above three processes can be efficiently learned in a stochastic way.

• Post-hoc interpretability. A major benefit of our network lies in the post-hoc inter-

pretability. Taking human pose detection as an example, it is intuitive that people usually

directly observe a certain node (e.g., human arm), without occlusion. When the arm node

is partially occluded, people rely more on bottom-up process that considers the information

from those non-occluded child nodes (e.g., hand). When the arm node is heavily occluded

or becomes indistinguishable, people would still recognize this node with the high-level prior
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knowledge of human body articulation. As seen, α, β and γ processes are straightforward

and interpretable, which leads to more interpretability compared with previous structured

deep learning methods. Thus our model is able to provide information that can be inter-

preted by humans as how results are inferred and combined from top-down/bottom pro-

cesses. Additionally, such self-interpretability is also measurable, which can be evaluated as

the agreement between inference processes and respective human performance.

We conduct experiments on two tasks, i.e., cloth landmark localization and human pose

detection, to verify the effectiveness and generalization of our model. The selected two

tasks by nature implies complex hierarchical structures. Results show that our method

outperforms competing methods with the similar model complexity. From the experimental

results, we further observe that: (i) α process is generally stronger than β and γ processes;

(ii) α process is favored for low-level nodes (e.g., cloth landmarks, human joints), while β

and γ processes are preferred for high-level nodes (e.g., full-body cloth, or upper-body pose);

(iii) combining three inference processes is beneficial to final predictions.

Contributions. The contributions are three-field: i) a deep network representing hierar-

chical graphical structures; ii) explicit encodings of three inference processes with end-to-end

learning; iii) post-hoc interpretability.

The rest of this chapter is organized as follows. We first review the related work in § 5.2,

then discuss the representation and formulation of our model in § 5.3 and § 5.4, respectively.

We further elaborate the learning process in § 5.5. We report experiments and comparisons

in § 5.6, and finally summarize this chapter in § 5.7.

5.2 Related Work

We give a categorized overview of the related literature, yet not limited to specific tasks.

In general, there are three main characteristics differentiating our work from existing tech-

niques: being flexible to any deep networks, outlining a unified framework for modeling the

bottom-up/top-down processes with end-to-end training, and being fully trainable and bet-

ter interpretable with explicit inference processes. In general, our work is closely related to
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two streams of research in the literature:

Hierarchical graphical models have an enormous impact in computer vision, as they

are powerful for expressing and capturing inherent structures, contextual information and

high-level human knowledge. Their applications span from low-level problems, e.g., hi-

erarchical clustering, image restoration, to high-level tasks, e.g., object parsing, human-

object interaction. Commonly used models include MRF/CRF [JFY09], part-based mod-

els [FGM10, LLA16], and And-Or Graph [KMY06, WZ11b, SWJ13]. For inference, bottom-

up process passes information in a feed-forward manner while top-down process in a feed-back

fashion over the hierarchy. In this work, we extend deep learning algorithm to hierarchical

graphical model for end-to-end learning bottom-up and top-down processes jointly and au-

tomatically.

Deep learning with graphical models has recently received growing interests. Many

recent works [CSY15, ZJR15, ZSG15, CPK16] focus on incorporating CRF into networks

with end-to-end training. Others extend RNN [MJ99], or LSTM [SLM11] from chain struc-

tures to tree or graph structures [TSM15, JZS16, LLS17, CLX16]. However, they largely

address the bottom-up process over structured architectures or work in a mixed fashion of

bottom-up and top-down manners. In comparison, our model formulates the bottom-up and

top-down inference processes in an explicit way. It is also a more principled and interpretable

framework for modeling complex graph structures, rather than previous models limited to

MRF assumptions or implicit mechanics.

Some works explore the top-down mechanism in neural networks and demonstrate

success in their specific tasks. More specifically, bottom-up/top-down network architectures

are proposed for leveraging both low-level and high-level features from different layers in

semantic segmentation [LSD15, NHH15]. Some investigations [CLY15, HR16] focus on in-

spiring information flow between feed-forward and feedback loops in networks. However,

these works (i) often perform inference over DNN hierarchy, without considering semantic

hierarchical structures and relations in graph models; (ii) very few touch how to explicitly

learn the bottom-up and top-down processes over a hierarchical graph. Additionally, the

proposed model is more favored due to its post-hoc interpretability that specifies how its
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Figure 5.2: The proposed α-β-γ network. (a) The encoded hierarchical graph G. (b)-(d)

α-, β-, and γ- networks encoding α, β, γ process. (e) Joint inference based on neural network.

(f) Fusion of three information flows. See text for detailed explanations.

outputs are inferred from different information flows.

5.3 Representation

Given a graph G=(V , E), where nodes V represent problem components, and edges E capture

the relationships between nodes (see Fig. 5.2(a)). Since we concentrate on hierarchical

graphical model, we decompose nodes V into L layers: V=V1∪. . .∪VL, where V l indicates

the set of the nodes in l-th layer and the root node locates in the first layer (l=1). Edges can

be further decomposed into three categories: E=Ecom ∪Edec ∪Erel. Ecom and Edec are sets of

vertical edges connecting parent nodes with their child nodes, which represent hierarchical

constraints of composition and decomposition. Note vertical edges work in both bottom-

up and top-down directions (i.e., undirected edges), we use Ecom and Edec denote edging

directing upwards and downwards, respectively. Erel refers to the set of horizontal edges

connecting among siblings with the same parent, which describes contextual relations in

hierarchy. As suggested in [WZ11b], three inference processes, termed α, β and γ processes,

can be derived for each node v∈V .

α process detects node v directly based on image features. The α process is the basic

inference, which can work alone (without taking advantage of surrounding context). Most

structured networks [TJL14, CSY15, LSH16, CPK16] in literature are proposed in this line.

It can be viewed as either bottom-up or top-down. By bottom-up, it means that discrimi-

native models. By top-down, it means that generative models are used.
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Figure 5.3: Graphical representations for cloth landmark localization (a) and hu-

man pose estimation (b), where blue circles illustrate the α, β, γ processes of upper-body

cloth node and right arm node, respectively.

β process computes node v by binding the detected child nodes in bottom-up fashion,

where the child nodes’ α processes are activated. An intuitive interpretation of this inference

is to infer an occluded node, like human head, from its detected sub-nodes, say eye node or

mouth node. Most component or part based models [LLS17] belong to this process.

γ process predicts node v top-down from its parent nodes whose α processes are acti-

vated. The parent node passes contextual information, such as we can detect human head

node even we only see the outline of the person. Most of the context-based methods belong

to this process.

We propose a deep learning algorithm to learn above processes over the graph G. In the

high level, each node v is parameterized as a stack of CNNs by means of learning capacity

and differentiable property. Each node accepts the information from other nodes, in bottom-

up (β process) or top-down (γ process) manner as input, or directly uses the deep learning

features from an underlying network (α process) for inference. In this way, we build a

structured and fully differentiable network, which efficiently models G and explicitly learns

inferences with powerful back-propagation.
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5.4 Problem Formulation

According to Bayes rule, G can be solved by maximizing a posterior (MAP), that is,

G∗ = arg max
G

p(G|I; θ) ∝ arg max
G

p(I|G; θ) · p(G; θ), (5.1)

where θ indicates the model parameters.

Likelihood p(I|G; θ) measures how well the observed image data I satisfies the hierar-

chical model G. We assume each node in G only corresponds to a certain region of image,

thus the likelihood p(I|G; θ) can be decomposed as:

p(I|G; θ)=
∏
v∈V

p(IΛv |v; θ) = pbg(IΛ)
∏
v∈V

pfg(IΛv |v; θαv )

pbg(IΛv)
, (5.2)

where Λ denotes image lattice and Λv denotes the image region occupied by node v, pbg(·) and

pfg(·) denote background and foreground probability, respectively. Similar to [SK04, CZY09],

pbg(IΛ) can be assumed as a constant and the likelihood ratio g(·) = pfg(·)/pbg(·) can be

regarded as a logistic regression. This ratio represents the straight pass inference (i.e., α

process). For each node, the α process consists of two sub-steps: (i) extracting features φI

from raw images and (ii) making direct predictions based on the extracted features.

Prior p(G; θ) imposes constraints on the hierarchy, measuring the compatibilities among

composition edges Ecom, decomposition edges Edec and contextual edges Erel:

p(G; θ)=
∏
v∈V

p(v; θcv)·p(nb(v)|v),

=
∏
v∈V

p(v;θcv)·p(ch(v)|v;θβv )·p(pr(v)|v;θγv )·p(sb(v)|v),
(5.3)

where nb(v), ch(v), pr(v) and sb(v) denote neighbors, children, parents, siblings of node v,

respectively. Note that, for some nodes, the composition or decomposition edges (i.e., β or

γ processes) might not exist. Terminal leaf nodes only have α and γ processes, while the

root node only has α and β processes. For clarity, we omit such cases, as they do not affect

the method description.

Prior term p(v; θcv) measures to what extent we should trust different information sources

(i.e., information flows from α, β, γ processes). For each v, the fusion term p(v; θcv) is defined
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as a weighted combination of α, β, γ processes:

p(v; θcv) = [θcαv , θ
cβ
v , θ

cγ
v ],

s.t. θcαv ≥ 0, θ
cβ
v ≥ 0, θcγv ≥ 0, θcαv + θ

cβ
v + θcγv = 1.

(5.4)

Prior term p(ch(v)|v; θβv ) represents the bottom-up inference (i.e., β process), which

considers information flow upward from descendants. Each node v is fed with the information

flow from its child nodes ch(v), which composes composition edges Ecomv .

Prior term p(pr(v)|v; θγv ) represents the top-down inference (i.e., γ process). Each node

v is fed with the information flow from its parent nodes pr(v) in γ process, which conveys

the high-level information in a top-down manner. This describes decomposition edges Edecv .

So far, we have discussed the formulation of nodes with vertical connections in the graph

G, which allows us to utilize information from straight pass (i.e., α process), bottom-up

process (i.e., β process) and top-down process (i.e., γ process). This generally covers com-

position relations Ecom and decomposition relations Edec. Last but not least, our model

should be able to capture contextual relations Erel.

Prior term p(sb(v)|v) describes horizontal edges Erel among siblings, which could rep-

resent many possible contextual relations, such as object-object interactions, dependency

grammars and kinematic relations. In this , we consider contextual relations are encoded

in prior terms p(ch(v)|v; θβv ) and p(pr(v)|v; θγv ), which are joint distributions for child nodes

and parent nodes given node v, respectively, while prior work usually assumes conditional

independence among siblings. Thus we choose to implicitly model contextual relations in

our α-β-γ network, which will be elaborated in next section.

In summary, our model encodes four probability distributions for each node v, parame-

terized by

θ = {(θαv , θβv , θγv , θcv) : v ∈ V}. (5.5)
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5.5 Learning

For each v∈ V , we further derive three sub-networks, namely α-, β-, and γ- network, for

learning α, β, and γ processes.

α-process. The α-network fαv , parameterized by θαv , is learned for node v. It takes

cropped images under corresponding lattice Λv as inputs and prediction score maps as out-

puts:

g(IΛv |v; θαv ) = fαv (φIΛv ; θαv ), (5.6)

where the image features φIΛv are extracted from a underlying network. As shown in

Fig. 5.2(b), the final score map can be obtained by applying logistic sigmoid activation

function.

β-process. As shown in Fig. 5.2(c), the β-network fβv for node v utilizes the information

of its child nodes ch(v) in α process, and outputs prediction score as the result of β process:

p(ch(v)|v; θβv ) ∝ fβv (φch(v); θ
β
v ),

φch(v) = Pavg( {fαv′(v′) : v′ ∈ ch(v)} ),
(5.7)

where we use channel-wise average-pooling operation Pavg for combining the output scores

from child nodes. Such operation is important for transforming features from a variable

number of predictions from child nodes to a fixed-size feature representation. Note that any

commutative operations can be used as alternatives (e.g., sum-pooling, max-pooling).

γ-process. γ process works on the knowledge transferred from the parent node which is

activated in α process. For node v, γ-network fγv takes the information φpr(v) from parent

nodes pr(v) as input, and generates prediction as the output of γ process (see Fig. 5.2(d)):

p(pr(v)|v; θγv ) ∝ fγv (φpr(v); θ
γ
v ),

φpr(v) = Pavg( {fαv′(v′) : v′ ∈ pr(v)} ).
(5.8)

Fusion of α, β, γ processes. As illustrated in Fig. 5.2(f), the final prediction is made by

a weighted combination of outputs generated from α-, β-, and γ- networks, parameterized

by θcv = [θcαv , θ
cβ
v , θ

cγ
v ]. We represent the combination weights as 1× 1 convolution layer con-
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Nodes Configuration

α-network conv(256,(3,3)) → conv(128,(5,5)) → conv(64,(3,3)) → conv(32,(3,3))

β-network conv(32, (7,7)) → conv(32, (7,7)) → conv(32,(7,7)) → conv(32,(7,7)) → conv(32,(5,5))

γ-network conv(32, (7,7)) → conv(32, (7,7)) → conv(32,(7,7)) → conv(32,(7,7)) → conv(32,(5,5))

Table 5.1: Configurations of α-, β-, and γ- networks. Keras notations (channels, kernel)

are used to define the conv layers.

3rd Layer 2nd Layer 1st Layer
Methods

L.Collar R.Collar L.Sleeve R.Sleeve L.Waistline R.Waistline L.Hem R.Hem U.Body L.Body F.Body

FashionNet CVPR’16 [LLQ16] .0784 .0803 .0975 .0923 .0874 .0821 .0802 .0893 - - -

DFA ECCV’16 [LYL16] .048 .048 .091 .089 - - .071 .072 - - -

DLAN AAAI’17 [YLL17] .0531 .0547 .0705 .0735 .0752 .0748 .0693 .0675 - - -

FashionGrammar CVPR’18 [WXS18] .0463 .0471 .0627 .0614 .0635 .0692 .0635 .0527 - - -

α-network .0457 .0450 .0619 .0628 .0623 .0705 .0643 .0530 .1220 .1186 .0935

β-network - - - - - - - - .1100 .1105 .0820

γ-network .0503 .0512 .0721 .0713 .0643 .0821 .0703 .0627 .1002 .1013 -

α-β-γ network w/o share .0441 .0415 .0606 .0615 .0620 .0702 .0624 .0515 .0994 .0986 .0790

α-β-γ network .0435 .0426 .0597 .0612 .0614 .0690 .0631 .0511 .0989 .0977 .0778

Table 5.2: Comparison of normalized error (NE) on FLD dataset. Lower values are

better. The best score is marked in bold.

necting three channels (without bias term) and enforce the non-negativity and normalization

constraints in Equation (5.4) to preserve model interpretability.

α-β-γ network. As shown in Fig. 5.2(e), the joint framework composes all the above

components into a unified network, which can be learned in an end-to-end manner. Given

ground-truth v̂ for each node in the hierarchy V̂ with total K training samples, the α-β-γ

network can be learned as:

θ∗=arg max
θ

K∏
k=1

p(V̂k|Ik, θ) = arg min
θ

K∑
k=1

∑
v̂∈V̂k

L(v̂|θv), (5.9)

where L(v̂|θv) is the prediction loss for node v. The losses are defined as per the respective

tasks, which are elaborated in next section. Our whole model is differentiable, and thus all

the parameters θ of the graph model (in Equation (5.5)) can be trained in a stochastic way.

Parameter sharing. Noticing that CNNs are naturally inherited to describe relations

among all nodes in higher layer V l and all nodes in lower layer V l+1. We thus employ
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Figure 5.4: Results of cloth landmark localization. We show the prediction scores of

each layer in our hierarchical graph, where the brighter pixel indicates higher prediction

values, and the red circle indicates the location of highest score of each node.

parameter sharing among siblings to encourage information exchange, instead of modeling

Erel explicitly. We partition nodes V l in l-th layer into N unconnected groups: V l = V l1∪. . .∪

V lN , according to their sibling relations. Then we enforce parameter sharing among nodes

from same groups, instead of learning distinct parameters for each node. Taking Fig. 5.3(b) as

an example, there exist kinematic relations (represented as dotted lines) among human body

parts: r. shoulder ↔ r. elbow and r. elbow ↔ r. wrist, where three nodes are siblings with

the same parent node r. arm. We model these three nodes with the same parameterization,

which represents the knowledge sharing among them. Parameter sharing not only enables

our network to capture complex inter-sibling relations and allows siblings to bootstrap each

other capabilities, but also brings higher flexibility and better training efficiency on a large

hierarchical structure. Overall, our entire model (including the underlying network) is fully

differentiable, thus can be trained in end-to-end manner.

5.6 Experiments

We validate our α-β-γ network on two vision tasks: cloth landmark localization and human

pose estimation. Then, we study post-hoc interpretability.
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Figure 5.5: Results of human pose estimation on LSP dataset. In the first row, we

show the predictions of each layer. For each layer, we select one node to demonstrate its

prediction score. Then, in the second and third rows, we present the contributions of α, β,

and γ processes over such node, which estimated from our model and human behavior.

5.6.1 Cloth Landmark Localization

Fashion landmarks are functional keypoints defined on clothes, such as corners of neckline,

cuff [LYL16], which are effective representation for visual fashion understanding. Cloth

landmark detection is a good example with inherent structures and obvious components, yet

challenging due to background clutters, deformations, and scales.

Dataset. We use Fashion Landmark Detection (FLD) [LYL16]1, which contains totally

123, 016 clothes images. For each image, 8 fashion landmarks (l.&r. collar, l.&r. sleeve, l.&r.

waistline, l.&r. hem) are annotated. For each image, cloth bounding box is also annotated.

Network architecture. A three-layer graph G is derived for representing human cloth

(Fig. 5.3 (a)). We build our structured network following G. The first five convolutional

stacks of ResNet50 [HZR16] are opted as our underlying network. For preserving detailed

spatial information, we modify the last two blocks by changing the strides to 1. Specifications

of α-, β-, and γ- networks are listed in Table 5.1. Note that 1 × 1 convolution layer with

sigmoid layer is applied to produce final predictions. The principle behind such design is

mainly for pursuing large enough receptive field and simplicity. The input images are resized

into 224× 224. Thus if sliding our network over the input image, we could obtain a 28× 28

prediction map of each nodes for their specific tasks.

1Available at http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion/LandmarkDetection.html
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4th Layer 3rd Layer 2nd Layer 1st Layer

Methods Head

&Neck

Shoulder

(L.&R.)

Elbow

(L.&R.)

Wrist

(L.&R.)

Hip

(L.&R.)

Knee

(L.&R.)

Ankle

(L.&R.)

Arm

(L.&R.)

Leg

(L.&R.)

Head

&Torso
U.Body L.Body F.Body

[WL13] 89.1 78.5 62.5 52.3 85.2 69.6 65.9 - - - - - -

[CY14] 91.8 78.2 71.8 65.5 73.3 70.2 63.4 - - - - - -

[TJL14] 90.6 79.2 67.9 63.4 69.5 71.0 64.2 - - - - - -

[FZL15] 92.4 75.2 65.3 64.0 75.7 68.3 70.4 - - - - - -

[YOL16] 90.6 78.1 73.8 68.8 74.8 69.9 58.9 - - - - - -

[HR16] 93.4 83.2 77.3 72.1 87.6 79.6 76.8 - - - - - -

[WRK16] 94.1 86.0 78.9 76.0 88.7 82.3 77.4 - - - - - -

[LLA16] 88.4 76.5 70.6 66.3 75.6 68.7 67.5 67.4 63.2 73.4 74.7 76.2 78.9

[PNZ18] 90.7 79.8 76.8 68.1 78.9 70.2 75.4 76.9 75.1 82.5 84.9 82.0 81.5

α-network 94.4 86.4 79.3 75.2 89.1 82.6 77.1 78.4 76.2 83.4 89.1 85.5 84.7

β-network - - - - - - - 77.6 78.3 83.5 90.7 92.5 91.7

γ-network 92.5 82.1 76.5 71.1 85.7 78.3 72.2 80.3 81.0 82.4 90.2 90.3 -

α-β-γ w/o. share 95.1 85.0 80.6 78.5 90.3 83.2 78.6 80.7 79.3 84.2 91.3 93.4 92.4

α-β-γ full 95.6 85.3 81.6 77.3 91.3 83.7 80.5 82.5 81.3 86.5 93.4 94.9 92.8

Table 5.3: Comparison of PCKh metric on LSP dataset. Higher values are better.

The best score is marked in bold.

Training. For all nodes, ground-truth heatmaps are generated by convolving binary

annotation maps with a small Gaussian kernel. For those higher-layer nodes without anno-

tation, such as upper-body cloth or full-body cloth, we generate their annotation according to

child nodes’ configurations. This annotation process is similar to [LLA16]. For node v, we

would have an output prediction score map S∈ [0, 1]28×28 and its corresponding ground-truth

map Ŝ∈ [0, 1]28×28 for a 224×224 training image. Then we adopt Kullback-Leibler Divergence

to measure the loss:

L(v̂|θv) = DKL(Sv, Ŝv) = 1(v̂) ·
∑28×28

k
ŝk · log

ŝk
sk
. (5.10)

where the indicator function 1(·) is employed for remedying missing ground truth locations

of the landmarks, in the sense that the error is not propagated back when a landmark is

occluded (according to the visibility annotation). Here we drop subscript v for sk and ŝk for

simplicity.

Performance comparison. We compare α-β-γ network with four deep learning based

fashion landmark detectors: [LLQ16, LYL16, YLL17, WXS18]. For all the methods, stan-
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dard train/validation/test settings (83, 033/19, 992/19, 991) in FLD dataset are used for fair

comparisons. We adopt normalized error (NE) metric suggested by FLD dataset for eval-

uation. NE refers to the `2 distance between predicted landmarks and ground-truth in the

normalized coordinate space (i.e., divided by the width/height of the image). We report the

results in Table 5.2, where the baselines: α-network, β-network, and γ-network indicate the

results obtained from α, β, and γ processes independently. α-β-γ w/o. share corresponds to

the results of α-β-γ network without parameter sharing, equivalent to ignoring the horizon-

tal relations Erel in graph G. As seen, the proposed structured network outperforms other

competitors. Some qualitative results can be found in Fig. 5.4.

Discussion. The improvement would be attributed to the integration of deep learn-

ing and graph model. Unstructured models like FashionNet and DFA are hard to model

the inherent structures of fashion cloth, which offers strong contextual information about

cloth landmark locations. Our solution is more favored due to its structural modeling with

underlying graphical representation and powerful joint bottom-up and top-down inference.

We can further observe that, α inference performs better for those low-level nodes (e.g.,

l. collar, r. waistline), while β and γ processes are more informative for high-level nodes

like lower-body cloth or full-body cloth. Compared with those explicit junctions, the nodes

in higher layers are often companied with more ambiguities, in which sense more complex

bottom-up/top-down inference processes are preferred. For α-β-γ network w/o share, we can

observe a drop of performance. This demonstrates the importance of structure information,

and thus verifies our design. Besides, parameter sharing would bring extra advantage of

better generalization.

5.6.2 Human Pose Estimation

In this section, we present our structured network for another vision task, human pose

estimation, which is a popular vision task requiring both powerful detection of human body

parts and effective modeling of relationship among parts.

We compare our methods with several previous pose estimators using graphical structures
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Figure 5.6: Examining interpretability with masked examples. See text for more

details.

or pure networks, which show the benefits of capturing the interactions between body parts

with graphical models. In this experiment, we demonstrate our structured network is able

to generate more accurate pose estimations via explicitly and jointly considering bottom-up

and top-down information.

Dataset. We use the standard pose estimation benchmark: LSP dataset [JE10]2, con-

taining 11, 000 images for training and 1, 000 images for testing. The images are of people

in various sport poses.

Network architecture. In Fig. 5.3 (b), human pose is represented as a 4-level hi-

erarchical structured network. The bottom level of our hierarchy is comprised of the 14

atomic parts corresponding to the annotated joints. The third level consists of 5 composite

parts formed by grouping parts belonging to each of the limbs, a composite part for the

head and torso. The second-layer nodes refer to the upper-human body and lower-human

body, and the root node presents full-human body. Such settings are similar to previous

graphical models [LLA16, RMH14]. The base network of our model is built upon [WRK16].

For consistency, we adopt the same network architectures of α-, β-, and γ- networks as in

Table 5.1.

Training. We follow the standard protocol in the area of pose estimation. For each

node, a ground-truth confidence map is created by putting Gaussian peaks at ground-truth

locations of corresponding part. We infer the ground-truth locations of higher-level parts

following the annotation procedure in fashion landmark detection. We also resize the input

2Available at http://sam.johnson.io/research/lsp.html
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Figure 5.7: Illustration of bottom-up and top-down inference. We select one node in

the 3rd layer of human pose graph and show the predictions from α-, β-, and γ- processes,

and draw the distribution of contribution of above processes in the final prediction.

images into 224×224. Then we use `2 distance to measure the loss, which is widely used in

human pose estimation:

L(v̂|θv) = D`2(Sv, Ŝv) =
∑28×28

k
‖sk − ŝk‖2, (5.11)

where the S ∈ [0, 1]28×28 and Ŝ ∈ [0, 1]28×28 denote the output score map and the ground-

truth, respectively.

Performance comparison. For evaluation, we use the PCKh metric [APG14], which is

a modification of the Percentage Correct Keypoints (PCK) metric with a matching threshold.

We compare the performance of our method with several pose estimators. We also investigate

the performance of individual inference processes, and simplified model without horizontal

relations. As seen in Table 5.3, our model outperforms other competitors. We visualize

detection results in Fig. 5.5.

Discussion. The proposed model offers a powerful tool that has the complementary

strengths of neural network and graphics models. It is not limited to CRF-like assumptions,

which are widely used in previous graphical pose models. Therefore, α-β-γ network is able

to better represent rich internal relations among human body parts. When comparing the

performance of individual inference process and our full model, we again get the similar ob-

servations that α, β, and γ processes are favored under different scenarios and the integration

of three processes would improve final performance.
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5.6.3 Study of Post-hoc Interpretability

We further explore the post-hoc interpretability conferred by our model, specifically, how

the contribution made by different inference processes coincides with human knowledge. The

contribution of a process is defined as the ratio between its own weighted prediction and the

final score. Taking α process as an example, the contribution of α process for node v can be

formulated as:

Cα(v) =
θcαv ·fαv (v)

θcαv ·fαv (v) + θ
cβ
v ·fβv (v) + θ

cγ
v ·fγv (v)

. (5.12)

We first perform a user study to measure the agreement between human behavior and

our model. A corpus of 20 participants (9 female) with diverse backgrounds are recruited

to participate in our studies. 100 images were randomly selected from the test set of LSP

dataset. For each node, participants were asked to label the most informative inference

process. Generally, for the cases that a node can be directly recognized, it is labeled as α

label. In the situation that compositional or contextual information are needed, β or γ are

annotated accordingly. We average the votes from all the participants as human consensus.

Fig. 5.8 (a-b) plot the contribution distributions of the three processes annotated from human

and learned via our model, showing that α process is important in low-level nodes, while β

and γ processes are relatively strong in high-level nodes. This observation is also verified in

previous experiments, that α, β and γ processes are effective in different layers. We also find

the contribution distribution of our model is close to human consensus.

In Fig. 5.7, we select one node in the 3rd layer of human pose graph and show the

prediction scores from α, β, and γ processes and the final score from the fusion of above

three processes. We also present the distribution of contribution of above processes in the

final prediction. As seen, the combination of α, β, and γ inference processes would get the

best results. Quantitatively, our model obtains 61.3%, 50.7% and 31.5% average precision

(AP) of α, β, and γ processes with human consensus over all nodes, respectively.

We further conduct a counter-factual experiment using data manipulation. For each im-

age, we generate a mask (20×20) to cover certain nodes. Afterwards, we obtain manipulated

images with occlusions on body parts and re-estimate human poses (see Fig. 5.6). The statis-
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Figure 5.8: Numerical study of contributions of three inference processes: (a)

human behavior; (b) performance of α-β-γ network; and (c) α-β-γ network with masked

images. We average the scores from same-layer nodes.

tics regarding contributions of three processes are reported in Fig. 5.8 (c). Interestingly, we

find that, when a node suffers occlusion, β and γ processes provide more supports in final

predictions.

5.7 Summary

In this chapter, we propose a deep structured network for combining hierarchical graph

representations with deep learning. The α-β-γ network is capable of modeling rich struc-

tures, incorporating top-down/bottom-up inference learned in end-to-end manner. It gains

better interpretability via separating explicit inferences from the underlying implicit me-

chanics of neural network. Performance and interpretability of the proposed model are well

demonstrated through extensive experiments on fashion landmark detection and human pose

estimation.
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CHAPTER 6

Human Parsing using Fashion Grammar

6.1 Introduction

With the rapid development of electronic commerce and the boom of online shopping, visual

clothing analysis has attracted lots of interests in computer vision. More recently, benefited

from the availability of large-scale fashion datasets, deep learning based models gained as-

tonishing success in this area, such as clothing item retrieval [HHL15, HFC15], and fashion

image classification [SFM15, LLQ16, LKZ17], to name a few.

In this chapter, we address two key problems in visual fashion analysis, namely fashion

landmark localization and clothing category classification. The success of previous deep

learning based fashion models [HFC15, LLQ16, LXS15, CBR17] has proven the potential of

applying neural network in this area. However, few of them attacked how to inject high-level

human knowledge (such as geometric relationships among landmarks) into fashion models.

In this chapter, we propose a fashion grammar model that combines the learning power

of neural network and domain-specific grammars that capture the kinematic and symmetric

relations between clothing landmarks. For modeling the massage passing process over fashion

grammars, we introduce a novel network architecture, Bidirectional Convolutional Recurrent

Neural Network (BCRNN), which is flexible to our tree-structured models and generates

more reasonable landmark layouts with global grammar constraints. Crucially, our whole

deep grammar model is fully differentiable and can be trained in end-to-end manner.

This work also proposes two important attention mechanisms for boosting fashion image

classification. The first one is fashion landmark-aware, which leverages the strong represen-

tation ability of fashion landmarks and can be learned in supervised manner. This attention
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is able to generate landmark-aligned clothing features, which makes our model look for the

informative semantic parts of garments. The second attention is clothing category-driven

and trained in goal-driven way. Such attention mechanism learns to directly enhance task-

related features and thus improves the classification performance. The attentions provide

the model with more robust clothing representations and filter out useless information.

Comprehensive evaluations on two large-scale datasets [LLQ16, LYL16] demonstrate that

our fashion grammar model outperforms the state-of-the-arts. Additionally, we experimen-

tally demonstrate that our BCRNN based fashion grammars and attention modules give

non-trivial improvements.

Contribution. Our main contribution is three-fold: i) We develop a deep grammar net-

work to encode a set of knowledge over fashion clothes. The fashion knowledge, represented

in grammar format, explicitly expresses the relations (i.e., kinematics, and symmetry) of

fashion landmarks, and serve as basis for constructing our fashion landmark detection mod-

ule. ii) We present Bidirectional Convolutional Recurrent Neural Network (BCRNN) for

approaching message passing over the suggested fashion grammars. The chain-structure

topology of BCRNNs efficiently represents the rich relations of clothes, and our fashion

model is fully differentiable which can be trained in end-to-end manner. iii) We introduce

two attention mechanisms, one is landmark-aware and domain-knowledge-involved, and the

other one directly focuses on the category relevant image regions and can be learned in goal

driven manner.

6.2 Related Work

Visual fashion understanding has drawn lots of interests recently, due to its wide spec-

trum of human-centric applications such as clothing recognition [CGG12, LLQ16, HG17,

HWH17, ASG17], retrieval [WZ11a, HHL15, LSL12, YHB13], recommendation [KYB14,

SFM15, LLQ16, HWJ17], parsing [YKO12, YLL14] and fashion landmark detection [LLQ16,

LYL16]. Earlier fashion models [CGG12, KYB14, WZ11a, LSL12] are mostly relied on

handcrafted features (e.g., SIFT, HOG) and seek for powerful clothing representations,
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such as graph models [CXL06], contextual information [SWH11, HHL15], general object

proposals [HHL15], human parts [SWH11, LSL12], bounding boxes [CHF15] and semantic

masks [YHB13, YKO12, YLL14, LXS15, GLZ17].

With the availability of large-scale fashion datasets [SFM15, LLQ16, LYL16], deep learn-

ing based models [HFC15, LLQ16, LYL16, LXS15, LKZ17, CBR17] were proposed and out-

performed prior work by a large margin. In particular, Huang et al. [HFC15] introduced

a Dual Attribute-aware Ranking Network (DARN) for clothing image retrieval. Liu et

al. [LLQ16] proposed a branched neural network, for simultaneously performing clothing

retrieval, classification, and landmark detection. More recently, in [LYL16], a deep learning

based model was designed as a combination of three cascaded networks for gradually refining

fashion landmark estimates. Yan et al. [YLL17] combined selective dilated convolution and

recurrent spatial transformer for localizing cloth landmarks in unconstrained scenes. The

success of those deep learning based fashion models demonstrate the strong representation

power of neural network. However, they barely explore the rich domain-specific knowledge

of clothes. In comparison, we propose a deep fashion grammar network that incorporates

both powerful learning capabilities of neural networks and high-level semantic relations in

visual fashion.

Grammar models in computer vision are powerful tool for modeling high-level human

knowledge in specific domains, such as the decompositions of scenes [HZ09, LCK14, QZH18],

semantic relations between human and objects [ZZ11, QHW17], dependencies between hu-

man parts [XLZ13, FXW18], and the compatibility relations between human attributes over

human hierarchy [XLL16, XLQ17, PNZ18]. They are a natural choice for modeling rich

relations and diverse structures in this world. Grammar models allow an expert inject

domain-specific knowledge into the algorithms, thus avoiding local ambiguities and hard

decisions [AT07, PNZ18]. In this chapter, we first propose two fashion grammars that ac-

count for dependent and symmetric relations in clothes. In particular, we ground these

knowledge in a BCRNN based deep learning model which can be end-to-end trained with

back-propagation.

Attention mechanism in computer vision has been popular in the tasks of image cap-
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Figure 6.1: Illustration of the proposed Attentive Fashion Grammar Network. (a)

Input fashion image. (b) Network architecture of our deep fashion model. A set of BCRNNs

(yellow cubes) are established for capturing kinematics and symmetry grammars as global

constraints for detecting clothing landmarks (blue cubes), detailed in §6.3.1. Fashion land-

mark-aware attention AL and clothing category-driven attention AC (red cubes) are further

incorporated for enhancing clothing features and improving clothing category classification

and attribute estimation (§6.3.2). (c) Results for clothing landmark detection, category

classification and attribute estimation.

tion [XBK15], Visual Question Answering (VQA) [SSH16, YHG16], object detection [CLY15,

XXY15] and image recognition [WS18, CYW16, WJQ17, JSZ15]. Those methods show that

top-down attention mechanism is effective as it allows the network to learn which regions

in an image to attend to solve their tasks. In this chapter, two kinds of attentions, namely

category-directed and landmark-aware attentions, are proposed. As far as we know, no

attention mechanism has been applied to the feed-forward network structure to achieve

state-of-the-art results in visual fashion understanding tasks. Besides, in contrast to pre-

vious part-based fashion models [SWH11, LSL12, LLQ16, LYL16] with hard deterministic

constraints in feature selection, our attentions act as soft constraints and can be learned in

a stochastic way from data.

6.3 Our Approach

We first describe our fashion grammar network for fashion landmark detection (§6.3.1). Then

we introduce two attention mechanisms for clothing image classification (§6.3.2).
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6.3.1 Fashion Grammar Network for Fashion Landmark Detection

Problem Definition. Clothing landmark detection aims to predict the positions of K

functional key points defined on the fashion items, such as the corners of neckline, hemline,

and cuff. Given an image I, the goal is to predict cloth landmark locations L:

L = {Lk : k = 1, . . . , K}, Lk ∈ R2, (6.1)

where Lk can be any pixel locations (u, v) in an image.

Previous fashion landmark methods [LLQ16, LYL16] formulate this problem as regres-

sion. They train a deep learning model and use a function f(I; θ) ∈ R2K which for an image

I directly regresses to a landmark vector. They minimize the mean square error over N

training samples:

f ∗ = min
f

1

N

∑N

n=1
‖f(In; θ)− Ln‖2. (6.2)

However, recent studies in pose estimation [TJL14, PCZ15] demonstrate this regression is

highly non-linear and very difficult to learn directly, due to the fact that only one single

value needs to be correctly predicted.

In this work, instead of regressing landmark positions L directly, we learn to predict a

confidence map of positional distribution (i.e., heatmap) for each landmark, given the input

image. Let Sk ∈ [0, 1]w×h and Ŝk ∈ [0, 1]w×h denote the predicted heatmap and the ground-

truth heatmap (with size of w×h) for the k-th landmark, respectively, our fashion network is

learned as a function f ′(I; θ′)∈ [0, 1]w×h×K , via penalizing following pixel-wise mean squared

differences,

f ∗ = min
f ′

1

N

∑N

n=1

∑K

k=1
L(f ′(In; θ′), Lnk),

L(f ′(In; θ′), Lnk)=
∑w

u=1

∑h

v=1
‖Snk (u, v)−Ŝnk (u, v)‖2.

(6.3)

The ground-truth heatmap Ŝk is obtained by adding a 2D Gaussian filter at the ground-truth

location Lk.

Fashion Grammar. We consider a total of eight landmarks (i.e., K=8), namely,

left/right collar, left/right sleeve, left/right waistline, and left/right hem, following previous

settings [LLQ16, LYL16]. The natural of clothes that rich inherent structures are involved
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Figure 6.2: (a) Illustration of our fashion grammars, where green circles indicate

ground-truth cloth landmarks, blue and red lines correspond to kinematics and symmetry

grammars, respectively. (b) Illustration of our message passing over fashion gram-

mars, where the blue rectangles indicate heatmaps of landmarks, and the red circles indicate

BCRNN units. Within a certain BCRNN, we perform message passing over fashion gram-

mars (one time, two directions). With stacked of BCRNNs, the messages are iteratively

updated and refined landmark estimations are generated. (c) Illustration of the refined

estimations by message passing over our fashion grammars. With the efficient message

passing over grammar topology, our fashion network is able to predict more kinematically

and symmetrically possible landmark layouts with high-level constraints.

in this task, motivates us to reason the positions of landmarks in a global manner. Before

going deep into our grammar network, we first detail our grammar formulations that reflect

high-level knowledge of clothes. Basically, we consider the two types of fashion grammars:

• Kinematics grammar RK describes kinematic relations between clothing landmarks.

We define 4 kinematic grammars to represent the constraints among kinematically connected

clothing parts:

RK1 : l. collar↔ l. waistline↔ l. hem,

RK2 : l. collar↔ l. sleeve,

RK3 : r. collar↔ r. waistline↔ r. hem,

RK4 : r. collar↔ r. sleeve.

(6.4)

Such grammar focuses on the clothing landmarks that connected in a human-parts kinematic

chain, which satisfies human anatomical and anthropomorphic constraints.

• Symmetry grammar RS describes bilateral symmetric property of clothes. Symmetry
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of clothes is defined as the right and left sides of the cloth being mirrored reflections of each

other. We consider 4 symmetric relations between clothing landmarks:

RS1 : l. collar↔ r. collar,

RS2 : l. sleeve↔ r. sleeve,

RS3 : l. waistline↔ r. waistline,

RS4 : l. hem↔ r. hem.

(6.5)

Message Passing over Fashion Grammar. As illustrated in Fig. 6.2 (a), our pro-

posed grammars upon cloth landmarks constitute a graph, where vertices specifying cloth

landmark heatmaps and edges describing possible connections among vertices. To infer the

optimal landmark configuration, message passing [YOL16, COL16] is favored on such loopy

structures. To simulate this process, we make an approximation by performing message

passing on each grammar independently and merging the output afterwards to disentangle

the loopy structure.

More specifically, within the chain structure of grammar R, the passing process is per-

formed iteratively for each node i, consisting of two phases: the message passing phase and

the readout phase. The message passing phase runs for T iterations and is defined w.r.t.

message function M(·) and vertex update function U(·). In each iteration, hidden states hi

of node i is updated by computing messages coming from its neighbors j, that is,

mi ←
∑

j∈N (i)
M(hj),

hi ← U(mi),

(6.6)

where N (i) denotes neighbors of vertex i specified in the grammar R.

The second phase, i.e., the readout phase, infers the marginal distribution (i.e., heatmaps)

for each node i using hi and readout function Γ(·), namely,

yi = Γ(hi). (6.7)

Implementation with Recurrent Neural Network. For implementing above mes-

sage passing process over grammar topology, we introduce Bidirectional Convolutional Re-
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current Neural Network (BCRNN) (see Fig. 6.3), which is achieved by extending classical

fully connected RNNs with convolution operation [SCW15, SP97].

In a high level, the bi-directionality and recurrent nature of BCRNN are favored to

simulate the message passing over the grammar neighborhood system. Additionally, with

the convolution operation, our model could preserve the spatial information of convolutional

feature map and is able to produce pixel-wise heatmap prediction.

All the proposed grammars consist of short chain structures (i.e., at most 3 vertices in-

volved) [GSR17], connoting that every node i in the grammar can at most have two neighbors

(i.e., previous node i-1 and post node i+1). Specifically, given a BCRNN, message functions

M(·) for node i (in forward/backward directions) are represented as

mf
i = M f (hfi−1) = W f ∗ hfi−1,

mb
i = M b(hbi+1) = W b ∗ hbi+1,

(6.8)

where ∗ denotes the convolution operator, M f (·) and M b(·) denote the forward and backward

message function, hf and hb refer to the hidden states inferred from forward and backward

neighbors, respectively. The hidden state hi is thus updated accordingly

hfi = U(mf
i ) = tanh(mf

i + bfh) ,

hbi = U(mb
i) = tanh(mb

i + bbh) ,
(6.9)

where bfh and bbh refer to the bias term used in forward and backward inference, respectively.

The readout function Γ(·) is defined as

yi = Γ(hi) = σ(W x ∗ xi + hfi + hbi), (6.10)

where σ is the soft-max function, xi is the input generated by the base convolution network.

We illustrate the implementation of message passing mechanism in Fig. 6.2 (b). By

implementing massage passing with BCRNN, our network maintains the fully differentiability

and obtains decent results by exchanging information along the fashion grammars.

Network Architecture. Our fashion network is based on VGG-16 architecture [SZ15].

First, we employ features from conv4-3 layer (the last convolution layer of the forth block)
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Figure 6.3: (a) BCRNN with a fashion grammar. (b) Architecture of BCRNN. With

the input landmark predictions, the corresponding BCRNN is used for approaching massage

passing over the grammar topology (a), resulting more reasonable landmark estimations.

See §6.3.1 for more details.

to produce K landmark heatmaps with sigmoid activation. Due to the max-pooling opera-

tion, we achieve ×8 down-scaled heatmaps. We employ eight BCRNNs to simulate message

passing procedures among cloth landmarks in each chain. A grammar BCRNN takes ini-

tial heatmaps and features from conv4-3 as inputs and the forward process correspond to a

passing process (on two directions). Generally, message passing takes several iterations to

converge, while in practice three iterations are sufficient to generate satisfactory results (see

more detailed discussions in §6.4.4). In implementation, we stack three BCRNNs (i.e., T=3)

for each grammar (totally 3×8 BCRNNs for all the grammars) and updated estimation via

a max-pooling of predicted heatmaps from corresponding BCRNNs at the end of each stack.

6.3.2 Attention Modules for Clothing Category Classification

Previous studies in VQA [SSH16, YHG16] and object detection [CLY15, XXY15] indicate

that top-down attention is good at selecting task-related locations and enhancing important

features. As demonstrated in Fig. 6.1(b), we incorporate our fashion model with two kinds

of attentions, namely fashion landmark-aware attention and category-driven attention, to

improve the classification accuracy.
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Fashion Landmark-Aware Attention. Clothing landmarks are keypoints centered

in functional parts of clothes [LLQ16, LYL16]. Such representation actually provides useful

information about fashion styles. Based on this observation, we introduce a landmark-aware

attention mechanism that constrains our fashion model to concentrate on functional clothing

regions.

For the predicted heatmaps {Si}Ki=1, we apply cross-channel average-pooling operation to

generate a 28× 28 weight map, AL:

AL =
1

K

∑K

i=1
Si, (6.11)

where AL ∈ [0, 1]28×28. We call AL as the landmark-aware attention. Let F ∈ R28×28×512

denote features obtained from conv4-3 layer in VGG-Net, F is further updated by the

landmark-aware attention AL with same spatial dimensions, that is,

GL
c = AL ◦ Fc, c ∈ {1, . . . , 512}, (6.12)

where ◦ denotes the Hadamard product, Fc denotes the 2D tensor from the c-th channel of F ,

and GL denotes the refined feature map. The feature is re-weighted by the landmark-aware

attention and has the same size as F . Here the attention AL works as a feature selector which

produces fashion landmark aligned features. In contrast to spatial attention [JSZ15], our

attention is learned in a supervised manner and encodes semantic and contextual constraints.

Clothing Category-Driven Attention. Our landmark-aware attention enhances the

features from functional regions of clothes. However, such mechanism may be insufficient

to discover all the informative locations to accurately classify diverse fashion categories and

attributes. Inspired by recent advances in attention models [CYW16, WJQ17], we further

propose a cloth category-driven attention AC , which is goal directed and learned in top-down

manner.

Given features F from the conv4-3 layer, we apply a bottom-up top-down network [LSD15,

NYD16] (e.g., ×2 down-pooling→3×3 conv→×2 down-pooling→3×3conv→×4 up-pooling)

to learn a global attention map AC ∈ [0, 1]28×28×512. The attention features are first pooled

down to a very low resolution 7×7, then are ×4 up-sampled. Thus the attention module
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gains a large receptive field covers all the fashion image, but is the same size as the feature

map. For each position in AC , sigmoid function is applied to shrink the attention values,

ranging from [0, 1]. Afterwards, we use the attention AC to softly weight output features F :

GC = AC ◦ F. (6.13)

With the bottom-up top-down network, the attention obtains a large receptive field and

directly enhances the task-related features from a global view. Such attention facilitates our

model to learn more discriminative representations for fashion style recognition. Different

from our landmark-aware attention, the category-driven attention AC is goal-directed and

learned without explicit supervision. Visualization of our attention mechanisms can be found

in Fig. 6.4.

Network Architecture. With the feature F from the conv4-3 layer, we consider

landmark-aware attention AL ∈ [0, 1]28×28 and clothing category-driven attention AC ∈

[0, 1]28×28×512 simultaneously:

Gc = (1 + AL + ACc ) ◦ Fc, c ∈ {1, . . . , 512}. (6.14)

Such design is inspired by works in residual learning [HZR16, WJQ17]. If the attention

models can be constructed as identical mapping, the performance should be no worse than

its counterpart without attention. We offer more detailed analyses for our attention modules

in §6.4.4.

As seen, the updated feature G has the same size of the feature F from conv4-3 layer.

Thus the rest layers (pooling-4, conv5 s, pooling-5, and fcs) of VGG-Net can be stacked for

final cloth image classification. Our attention mechanisms incorporate semantic information

and global information into network and help constrain the network to focus on important

clothing regions. Refined features are further used to learn classifiers on foreground clothing

regions (please see Fig. 6.1(b)). Our whole fashion network is fully differentiable and can be

trained end-to-end.
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Methods
Category Texture Fabric Shape Part Style All

top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5

WTBI [CGG12] 43.73 66.26 24.21 32.65 25.38 36.06 23.39 31.26 26.31 33.24 49.85 58.68 27.46 35.37

DARN [HFC15] 59.48 79.58 36.15 48.15 36.64 48.52 35.89 46.93 39.17 50.14 66.11 71.36 42.35 51.95

FashionNet [LLQ16] 82.58 90.17 37.46 49.52 39.30 49.84 39.47 48.59 44.13 54.02 66.43 73.16 45.52 54.61

Lu et al. [LKZ17] 86.72 92.51 - - - - - - - - - - - -

Corbiere et al. [CBR17] 86.30 92.80 53.60 63.20 39.10 48.80 50.10 59.50 38.80 48.90 30.50 38.30 23.10 30.40

Ours 90.99 95.78 50.31 65.48 40.31 48.23 53.32 61.05 40.65 56.32 68.70 74.25 51.53 60.95

- Detailed results are not available.

Table 6.1: Quantitative results for category classification and attribute prediction

on the DeepFashion-C dataset [LLQ16]. Higher values are better. The best scores are

marked in bold.

Methods L.Collar R.Collar L.Sleeve R.Sleeve L.Waistline R.Waistline L.Hem R.Hem Avg.

FashionNet [LLQ16] .0854 .0902 .0973 .0935 .0854 .0845 .0812 .0823 .0872

DFA [LYL16] .0628 .0637 .0658 .0621 .0726 .0702 .0658 .0663 .0660

DLAN [YLL17] .0570 .0611 .0672 .0647 .0703 .0694 .0624 .0627 .0643

Ours .0415 .0404 .0496 .0449 .0502 .0523 .0537 .0551 .0484

Table 6.2: Quantitative results for clothing landmark detection on the DeepFash-

ion-C dataset [LLQ16] with normalized error (NE). Lower values are better. The best

scores are marked in bold.

6.4 Experiments

In this section, we evaluate the performance of the proposed fashion model on two large-scale

fashion datasets, DeepFashion: Category and Attribute Prediction Benchmark (DeepFashion-

C) [LLQ16] and Fashion Landmark Dataset (FLD) [LYL16]. Then ablation study is per-

formed for offering more detailed exploration for the proposed approach.
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6.4.1 Datasets

DeepFashion-C [LLQ16]1 is a large collection of 289, 222 fashion images with comprehen-

sive annotations. Those images are collected from shopping websites and Google image

search engine. Each image in this dataset is extensively labeled with 46 clothing categories,

1, 000 attributes, 8 landmarks and bounding box. The attributes are further categorized

into five groups, characterizing texture, fabric, shape, part, and style, respectively. Based on

this dataset, we extensively examine the performance of our deep fashion model in fashion

landmark detection, clothing category and attribute classification.

FLD [LYL16]2 is collected for fashion landmark detection. It contains 123, 016 clothing

images, with diverse and large pose/zoom-in variations. For each image, the annotations for

8 fashion landmarks are offered. In our experiments, we use this dataset to only evaluate

fashion landmark detection, as no garment category annotations are provided.

6.4.2 Experiments on DeepFashion-C Dataset

Experimental Setup. We follow the settings in DeepFashion-C [LLQ16] for training and

testing. More specifically, 209, 222 fashion images are used for training and 40, 000 images

are used for validation. The evaluation is performed on the remaining 40, 000 images. For

training and testing, following [LLQ16, LKZ17], we crop each image using ground truth

bounding box. For category classification, we employ the standard top-k classification ac-

curacy as evaluation metric. For attribute prediction, our measuring criteria is the top-k

recall rate following [LLQ16], which is obtained by ranking the 1, 000 classification scores

and determine how many attributes have been matched in the top-k list. For clothing fash-

ion detection, we adopt normalized error (NE) metric [LYL16] for evaluation. NE refers to

the `2 distance between predicted landmarks and ground-truth in the normalized coordinate

space (i.e., normalized with respect to the width/height of the image).

1Available at http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion/AttributePrediction.html

2Available at http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion/LandmarkDetection.html
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Methods L.Collar R.Collar L.Sleeve R.Sleeve L.Waistline R.Waistline L.Hem R.Hem Avg.

FashionNet [LLQ16] .0784 .0803 .0975 .0923 .0874 .0821 .0802 .0893 .0859

DFA [LYL16] .048 .048 .091 .089 - - .071 .072 .068

DLAN [YLL17] .0531 .0547 .0705 .0735 .0752 .0748 .0693 .0675 .0672

Ours .0463 .0471 .0627 .0614 .0635 .0692 .0635 .0527 .0583

- Detailed results are not released.

Table 6.3: Quantitative results for clothing landmark detection on the FLD

dataset [LYL16] with normalized error (NE). Lower values are better. The best scores

are marked in bold.

Implementation Details. Our network is built upon VGG-16 with fashion grammar

BCRNNs (§6.3.1) and attention modules (§6.3.2). We resize all the cropped images into

224×224. Thus our network would generate eight 28×28 heatmaps for clothing landmarks.

We replace the last fully connected layer by two branched fully connected layers for fash-

ion category classification and attribute estimation. In DeepFashion-C dataset, each image

receives one category label and multiple attribute labels (average 3.3 attributes per image).

For category classification, we apply 1-of-K softmax loss for training the branch of fash-

ion category. For training the other branch of attribute prediction, we apply asymmetric

weighted cross-entropy loss [MYS15], due to the data unbalance between positive and nega-

tive samples.

Our model is implemented in Python with the help of TensorFlow back-end, and trained

with Adam optimizer. For the BCRNNs and category-related attention module, we use 3×3

kernel for all the convolution operations. In each training iteration, we use a mini-batch

of 10 images, which are randomly sampled from DeepFashion-C dataset. We first pre-train

the former four convolution blocks of our network with cloth landmark detection with two

epochs. Then our whole model is trained with ten epochs. The learning rate is set as 0.0001

and is decreased by a factor of 10 every two epochs. We perform early-stopping without

improvements on the validation set. The entire training procedure takes about 40 hours

with a single NVIDIA TITAN X GPU and a 4.0 GHz Intel processor with 32GB memory.

95



Figure 6.4: Clothing category classification results and visualization of attention

mechanisms on DeepFashion-C dataset [LLQ16]. The correct predictions are marked in

green and the wrong predications are marked in red. Best viewed in color. For category-aware

attention, we randomly select attentions from 2 channels for visualization.

Performance Evaluation. For category classification and attribute prediction, we com-

pare our method with five recent deep learning models [CGG12, HFC15, LLQ16, LKZ17,

CBR17] that showed compelling performance in clothes recognition and human attribute

classification. For cloth landmark detection, we compare our model with three top-performing

deep learning models [LLQ16, LYL16, YLL17]. Note that the results are biased towards [LLQ16],

as it is pre-trained with 300, 000 images from DeepFashion and fine-tuned on the DeepFashion-

C. For the model [LYL16], the training settings follow the standard protocol in DeepFashion-

C. For unconstrained landmark detection model [YLL17], which is reimplemented according

to the authors’ descriptions, we use the cropped fashion images as inputs for the sake of fair

comparison.

Table 6.1 summarizes the performance of different methods on clothing category classifi-

cation and attribute prediction. As seen, the proposed fashion model achieves the best score

on clothing category classification (top-3: 90.99, top-5: 95.78) and the best average score over

all attributes (top-3: 51.53, top-5: 60.95). In Table 6.2 we present comparison results with

other models [LLQ16, LYL16, YLL17] for clothing landmark detection. Our total NE score

achieves state-of-the-art at 0.0484, which is much lower than the closest competitor (0.0643),

and it is noteworthy that our method consistently improves the accuracy in all landmarks.
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Figure 6.5: Visual results for clothing landmark detection on DeepFashion-C [LLQ16]

(first row) and FLD [LYL16] (bottom row). The detected landmarks are marked in blue

circles. Best viewed in color.

6.4.3 Experiments on FLD Dataset

Experimental Setup. FLD dataset [LYL16] is specially designed for fashion landmark

detection. Each image in this dataset is labeled with eight landmarks. With dataset, we

study the performance of deep fashion model on fashion landmark detection. Following

the protocol in FLD, 83, 033 images and 19, 992 fashion images are used for training and

validating, 19, 991 images are used for testing. NE metric suggested by FLD is used for

evaluation. The images are also cropped according to the available bounding boxes.

Implementation Details. Since we only concentrate on fashion landmark detection.

We preserve the former four convolution blocks (without pooling4 ) and our fashion grammar

BCRNNs, which are used for estimating heatmaps for landmarks. 3×3 convolution kernels

are also used in BCRNNs. Other settings are similar to the ones used for DeepFashion-C

dataset in § 6.4.2.

Performance Evaluation. We compare our model with FashionNet [LLQ16], DFA [LYL16]

and DLAN [YLL17]. For sake of fair comparison, we train FashionNet [LLQ16] and DLAN [YLL17]

following standard train/val/test settings in FLD. For DFA, we preserve their original re-

sults reported in [LYL16]. But the results are biased for DFA, since it’s trained with extra

clothing labels (upper-/lower-/whole-body clothes).

In Table 6.3, we report the comparison results on the FLD dataset with NE score. Our

model again achieves state-of-the-art at 0.0583 and consistently outperforms other competi-

tors on all of the fashion landmarks. Note that our method achieves such high accuracy

without any pre-processing (e.g., [LYL16] groups cloth images into different clusters and
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Variants
DeepFashion-C FLD

NE ↓ ∆NE ↓ NE ↓ ∆NE ↓

Ours (iteration 3) .0484 - .0583 -

Ours w/o RK .0525 .0041 .0659 .0076

Ours w/o RS .0538 .0054 .0641 .0058

Ours w/o RK & RS .0615 .0131 .0681 .0098

Ours-iteration 1 .0579 .0095 .0657 .0074

Ours-iteration 2 .0512 .0028 .0632 .0049

Table 6.4: Ablation study for the effect of fashion grammars and message passing

on DeepFashion-C [LLQ16] and FLD [LYL16] datasets.

considers extra clothing labels). Sampled landmark detection results are presented in Fig.

6.5.

6.4.4 Ablation Study

In this section, we perform an in-depth study of each component in our deep fashion network.

Effectiveness of Fashion Grammars and Message Passing. We first examine the

effectiveness of our fashion grammars, which are models via BCRNNs. In §6.3.1, we consider

two types of grammars that account for kinematic dependencies RK and symmetric relations

RS, respectively. Three baselines are considered:

• Ours w/o RK: training our model without considering kinematics grammar RK .

• Ours w/o RS: training our model without considering symmetry grammar RK .

• Ours w/o RK&RS: training our model without considering kinematics grammar RK

and symmetry grammar RK .

For accessing the effect of iterative message passing over grammars, we report two base-

lines: Ours-iteration 1, Ours-iteration 2, which correspond to the results from different

passing iterations. The final results (baseline Ours) can be viewed as the results in the third

passing iteration.
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Variants
Category Attribute

top-3 ↑ top-5 ↑ top-3 ↑ top-5 ↑

Ours (w/ AL & AC) 90.99 95.78 51.53 60.95

Ours w/o AL 85.27 91.32 48.29 56.65

Ours w/o AC 87.75 93.67 49.93 58.78

Ours w/o AL & AC 83.23 89.51 43.28 53.54

Table 6.5: Ablation study for the effectiveness of attention mechanisms on Deep-

Fashion-C [LLQ16] dataset.

We carry out experiments on the DeepFashion-C [LLQ16] and FLD [LYL16] datasets

with landmark detection task, and measure the performance using normalized error (NE).

Table 6.4 shows the performance of each of the baselines described above. We can observe

that fashion grammars provides domain-specific knowledge for regularizing the landmark

outputs, boosting further the results (0.0615→0.0484 on DeepFashion-C, 0.0681→0.0583 on

FLD). In addition, both kinematics and symmetry grammars contribute the improvement.

We also observe the massage passing is able to gradually improve the performance.

Effectiveness of Attention Mechanisms. Next we study the influence of our attention

modules. In §6.3.2, we consider two kinds of attentions, namely landmark-aware attention

AL and cloth category-driven attention AC , for enhancing landmark-aligned and category-

related features. Three variants derived from our method are considered:

• Ours w/o AL: training our model without considering landmark-aware attention AL.

• Ours w/o AC : training our model without considering cloth category-driven attention

AC .

• Ours w/o AL & AC : training our model without considering landmark-aware attention

AL and cloth category-driven attention AC .

We experiment on the DeepFashion-C dataset with tasks of cloth category classification

and fashion attribute estimation, and measure the performance using the top-k accuracy

and top-k recall. As evident in Table 6.5, by disabling attentions AC and AL, we observe
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significant drop of performance, on both tasks. This suggests that our attention models

indeed improve the discriminability of deep learning features. When enabling AC or AL

attention module, we can achieve better performance. The best performance is achieved via

combining AC and AL.

6.5 Summary

In this chapter, we proposed a knowledge-driven and attention-involved fashion model. Our

model extended neural network with domain-specific grammars, learning to a powerful fash-

ion network that inherits the advantages of both. In our fashion grammar representations,

kinetic dependencies and symmetric relations are encoded. We introduce Bidirectional Con-

volutional Recurrent Neural Networks (BCRNNs) for modeling the message passing over

our grammar topologies, leading to a fully differentiable network that can be end-to-end

training. We further introduced two types of attentions for improving the performance of

clothing image classification. We demonstrate our model on two benchmarks, and achieve

the state-of-the-art fashion image classification and landmark detection performance against

recent methods.
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CHAPTER 7

Human 3D Pose Estimation using Pose Grammar

7.1 Introduction

Estimating 3D human poses from a single-view RGB image has attracted growing interest

in the past few years for its wide applications in robotics, autonomous vehicles, intelligent

drones etc. This is a challenging inverse task since it aims to reconstruct 3D spaces from

2D data and the inherent ambiguity is further amplified by other factors, e.g., clothes,

occlusions, background clutters. With the availability of large-scale pose datasets, e.g., Hu-

man3.6M [IPO14], deep learning based methods have obtained encouraging success. These

methods can be roughly divided into two categories: i) learning end-to-end networks that

recover 2D input images to 3D poses directly, ii) extracting 2D human poses from input

images and then lifting 2D poses to 3D spaces.

There are some advantages to decouple 3D human pose estimation into two stages. i)

For 2D pose estimation, existing large-scale pose estimation datasets [APG14, CPM16] have

provided sufficient annotations; whereas pre-trained 2D pose estimators [NYD16] are also

generalized and mature enough to be deployed elsewhere. ii) For 2D to 3D reconstruction,

infinite 2D-3D pose pairs can be generated by projecting each 3D pose into 2D poses under

different camera views. Recent works [YIK16, MHR17] have shown that well-designed deep

networks can achieve state-of-the-art performance on Human3.6M dataset using only 2D

pose detections as system inputs.

However, despite their promising results, few previous methods explored the problem of

encoding domain-specific knowledge into current deep learning based detectors.

In this chapter, we develop a deep grammar network to explicitly encode a set of knowl-
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Figure 7.1: Illustration of human pose grammar, which express the knowledge of human

body configuration. We consider three kinds of human body dependencies and relations in

this chapter, i.e., kinematics (red), symmetry (blue) and motor coordination (green).

edge over human body dependencies and relations, as illustrated in Figure 7.1. These knowl-

edges explicitly express the composition process of joint-part-pose, including kinematics,

symmetry and motor coordination, and serve as knowledge bases for reconstructing 3D

poses. We ground these knowledges in a multi-level RNN network which can be end-to-end

trained with back-propagation. The composed hierarchical structure describes composition,

context and high-order relations among human body parts.

Additionally, we empirically find that previous methods are restricted to their poor gen-

eralization capabilities while performing cross-view pose estimation, i.e., being tested on

human images from unseen camera views. Notably, on the Human3.6M dataset, the largest

publicly available human pose benchmark, we find that the performance of state-of-the-art

methods heavily relies on the camera viewpoints. As shown in Table 1, once we change

the split of training and testing set, using 3 cameras for training and testing on the forth

camera (new protocol #3 ), performance of state-of-the-art methods drops dramatically and

is much worse than image-based deep learning methods. These empirical studies suggested

that existing methods might over-fit to sparse camera settings and bear poor generalization

capabilities.
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To handle the issue, we propose to augment the learning process with more camera views,

which explore a generalized mapping from 2D spaces to 3D spaces. More specifically, we

develop a pose simulator to augment training samples with virtual camera views, which

can further improve system robustness. Our method is motivated by the previous works

on learning by synthesis. Differently, we focus on the sampling of 2D pose instance from a

given 3D space, following the basic geometry principles. In particular, we develop a pose

simulator to effectively generate training samples from unseen camera views. These samples

can greatly reduce the risk of over-fitting and thus improve generalization capabilities of the

developed pose estimation system.

We conduct exhaustive experiments on public human pose benchmarks, e.g., Human3.6M,

HumanEva, MPII, to verify the generalization issues of existing methods, and evaluate the

proposed method for cross-view human pose estimation. Results show that our method can

significantly reduce pose estimation errors and outperform the alternative methods to a large

extend.

Contributions. There are two major contributions of the proposed framework: i) a

deep grammar network that incorporates both powerful encoding capabilities of deep neural

networks and high-level dependencies and relations of human body; ii) a data augmentation

technique that improves generalization ability of current 2-step methods, allowing it to catch

up with or even outperforms end-to-end image-based competitors.

7.2 Related Work

The proposed method is closely related to the following two tracks in computer vision and

artificial intelligence.

3D pose estimation. In literature, methods solving this task can be roughly classified

into two frameworks: i) directly learning 3D pose structures from 2D images, ii) a cascaded

framework of first performing 2D pose estimation and then reconstructing 3D pose from

the estimated 2D joints. Specifically, for the first framework, [LC14] proposed a multi-task

convolutional network that simultaneously learns pose regression and part detection. [TKS16]
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first learned an auto-encoder that describes 3D pose in high dimensional space then mapped

the input image to that space using CNN. [PZD17] represented 3D joints as points in a

discretized 3D space and proposed a coarse-to-fine approach for iterative refinement. [ZHS17]

mixed 2D and 3D data and trained an unified network with two-stage cascaded structure.

These methods heavily relies on well-labeled image and 3D ground-truth pairs, since they

need to learn depth information from images.

To avoid this limitation, some work [PVD03, Jia10, YIK16] tried to address this problem

in a two step manner. For example, in [YIK16], the authors proposed an exemplar-based

method to retrieve the nearest 3D pose in the 3D pose library using the estimated 2D pose.

Recently, [MHR17] proposed a network that directly regresses 3D keypoints from 2D joint

detections and achieves state-of-the-art performance. Our work takes a further step towards

a unified 2D-to-3D reconstruction network that integrates the learning power of deep learning

and the domain-specific knowledge represented by hierarchy grammar model. The proposed

method would offer a deep insight into the rationale behind this problem.

Grammar model. This track receives long-lasting endorsement due to its interpretabil-

ity and effectiveness in modeling diverse tasks [LCK14, XLL16, XLQ17]. In [HZ09], the

authors approached the problem of image parsing using a stochastic grammar model. After

that, grammar models have been used in [XLZ13, XMH14] for 2D human body parsing.

[PNZ15] proposed a phrase structure, dependency and attribute grammar for 2D human

body, representing decomposition and articulation of body parts. Notably, [NWZ17] repre-

sented human body as a set of simplified kinematic grammar and learn their relations with

LSTM. In this chapter, our representation can be analogized as a hierarchical attributed

grammar model, with similar hierarchical structures, BRNNS as probabilistic grammar. The

difference lies in that our model is fully recursive and without semantics in middle levels.

7.3 Representation

We represent the 2D human pose U as a set of NU joint locations

U = {ui : i = 1, . . . , NU , ui ∈ R2}. (7.1)
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Figure 7.2: The proposed deep grammar network. Our model consists of two major compo-

nents: a base network constituted by two basic blocks and a pose grammar network encoding

human body dependencies and relations w.r.t. kinematics, symmetry and motor coordina-

tion. Each grammar is represented as a Bi-directional RNN among certain joints. See text

for detailed explanations.

Our task is to estimate the corresponding 3D human pose V in the world reference frame.

Suppose the 2D coordinate of a joint ui is [xi, yi] and the 3D coordinate vi is [Xi, Yi, Zi], we

can describe the relation between 2D and 3D as a pinhole image projection


xi

yi

wi

 = K [R|RT ]


Xi

Yi

Zi

1

 , K =


αx 0 x0

0 αy y0

0 0 1

 , T =


Tx

Ty

Tz

 , (7.2)

where wi is the depth w.r.t. the camera reference frame, K is the camera intrinsic parameter

(e.g., focal length αx and αy, principal point x0 and y0), R and T are camera extrinsic

parameters of rotation and translation, respectively. Note we omit camera distortion for

simplicity.

It involves two sub-problems in estimating 3D pose from 2D pose: i) calibrating camera

parameters, and ii) estimating 3D human joint positions. Noticing that these two sub-

problems are entangled and cannot be solved without ambiguity, we propose a deep neural

network to learn the generalized 2D→3D mapping V = f(U; θ), where f(·) is a multi-to-

multi mapping function, parameterized by θ.
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7.3.1 Model Overview

Our model follows the line that directly estimating 3D human keypoints from 2D joint de-

tections, which renders our model high applicability. More specifically, we extend various

human pose grammar into deep neural network, where a basic 3D pose detection network is

first used for extracting pose-aligned features, and a hierarchy of RNNs is built for encoding

high-level 3D pose grammar for generating final reasonable 3D pose estimations. Above

two networks work in a cascaded way, resulting in a strong 3D pose estimator that inher-

its the representation power of neural network and high-level knowledge of human body

configuration.

7.3.2 Base 3D-Pose Network

For building a solid foundation for high-level grammar model, we first use a base network

for capturing well both 2D and 3D pose-aligned features. The base network is inspired by

[MHR17], which has been demonstrated effective in encoding the information of 2D and 3D

poses. As illustrated in Figure 7.2, our base network consists of two cascaded blocks. For

each block, several linear (fully connected) layers, interleaved with Batch Normalization,

Dropout layers, and ReLU activation, are stacked for efficiently mapping the 2D-pose fea-

tures to higher-dimensions. The input 2D pose detections U (obtained as ground truth 2D

joint locations under known camera parameters, or from other 2D pose detectors) are first

projected into a 1024-d features, with a fully connected layer. Then the first block takes

this high-dimensional features as input and an extra linear layer is applied at the end of

it to obtain an explicit 3D pose representation. In order to have a coherent understanding

of the full body in 3D space, we re-project the 3D estimation into a 1024-dimension space

and further feed it into the second block. With the initial 3D pose estimation from the first

block, the second block is able to reconstruct a more reasonable 3D pose. To take a full use

of the information of initial 2D pose detections, we introduce residual connections [HZR16]

between the two blocks. Such technique is able to encourage the information flow and fa-

cilitate our training. Additionally, each block in our base network is able to directly access
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to the gradients from the loss function (detailed in Sec.7.4), leading to an implicit deep

supervision [LXG15]. With the refined 3D-pose, estimated from base network, we again

re-projected it into a 1024-d features. We combine the 1024-d features from the 3D-pose

and the original 1024-d feature of 2D-pose together, which leads to a powerful representation

that has well-aligned 3D-pose information and preserves the original 2D-pose information.

Then we feed this feature into our 3D-pose grammar network.

7.3.3 3D-Pose Grammar Network

So far, our base network directly estimated the depth of each joint from the 2D pose detec-

tions. However, the natural of human body that rich inherent structures are involved in this

task, motivates us to reason the 3D structure of the whole person in a global manner. Here

we extend Bi-directional RNNs (BRNN) to model high-level knowledge of 3D human pose

grammar, which towards a more reasonable and powerful 3D pose estimator that is capable

of satisfying human anatomical and anthropomorphic constraints. Before going deep into

our grammar network, we first detail our grammar formulations that reflect interpretable

and high-level knowledge of human body configuration. Basically, given a human body, we

consider the following three types of grammar in our network.

Kinematic grammar Gkin describes human body movements without considering forces

(i.e., the red skeleton in Figure 7.1)). We define 5 kinematic grammar to represent the

constraints among kinematically connected joints:

Gkinspine : head↔ thorax↔ spine↔ hip , (7.3)

Gkinl.arm : l.shoulder↔ l.elbow↔ l.wrist , (7.4)

Gkinr.arm : r.shoulder↔ r.elbow↔ r.wrist , (7.5)

Gkinl.leg : l.hip↔ l.knee↔ l.foot , (7.6)

Gkinr.leg : r.hip↔ r.knee↔ r.foot . (7.7)

Kinematic grammar focuses on connected body parts and works both forward and backward.

Forward kinematics takes the last joint in a kinematic chain into account while backward
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kinematics reversely influences a joint in a kinematics chain from the next joint.

Symmetry grammar Gsym measure bilateral symmetry of human body (i.e., blue skele-

ton in Figure 7.1), as human body can be divided into matching halves by drawing a line

down the center; the left and right sides are mirror images of each other.

Gsymarm : Gkinl.arm ↔ Gkinr.arm , (7.8)

Gsymleg : Gkinl.leg ↔ Gkinr.leg . (7.9)

Motor coordination grammar Gcrd represents movements of several limbs combined in

a certain manner (i.e., green skeleton in Figure 7.1). In this chapter, we consider simplified

motor coordination between human arm and leg. We define 2 coordination grammar to

represent constraints on people coordinated movements:

Gcrdl→r : Gkinl.arm ↔ Gkinr.leg , (7.10)

Gcrdr→l : Gkinr.arm ↔ Gkinl.leg . (7.11)

The RNN naturally supports chain-like structure, which provides a powerful tool for mod-

eling our grammar formulations with deep learning. There are two states (forward/backward

directions) encoded in BRNN. At each time step t, with the input feature at, the output yt

is determined by considering two-direction states hft and hbt :

yt = φ(W f
y h

f
t +W b

yh
b
t + by), (7.12)

where φ is the softmax function and the states hft , h
b
t are computed as:

hft = tanh(W f
h h

f
t−1 +W f

a at + bfh) ,

hbt = tanh(W b
hh

b
t+1 +W b

aat + bbh) ,
(7.13)

As shown in Figure 7.2, we build a two-layer tree-like hierarchy of BRNNs for modeling

our three grammar, where each of the BRNNs shares same equation in Equation (7.12) and

the three grammar are represented by the edges between BRNNs nodes or implicitly encoded

into BRNN architecture.
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For the bottom layer, five BRNNs are built for modeling the five relations defined in

kinematics grammar. More specifically, they accept the pose-aligned features from our base

network as input, and generate estimation for a 3D joint at each time step. The infor-

mation is forward/backward propagated efficiently over the two states with BRNN, thus

the five Kinematics relations are implicitly modeled by the bi-directional chain structure of

corresponding BRNN. Note that we take the advantages of recurrent natures of RNN for cap-

turing our chain-like grammar, instead of using RNN for modeling the temporal dependency

of sequential data.

For the top layer, totally four BRNN nodes are derived, two for symmetry relations and

two for motor coordination dependencies. For the symmetry BRNN nodes, taking Gsymarm

node as an example, it takes the concatenated 3D-joints (totally 6 joints) from the Gkinl.arm
and Gkinr.arm BRNNs in the bottom layer in all times as input, and produces estimations for the

six 3D-joints taking their symmetry relations into account. Similarly, for the coordination

nodes, such as Gcrdl→r, it leverages the estimations from Gkinl.arm and Gkinr.leg BRNNs and refines

the 3D joints estimations according to coordination grammar.

In this way, we inject three kinds of human pose grammar into a tree-BRNN model and

the final 3D human joints estimations are achieved by mean-pooling the results from all the

nodes in the grammar hierarchy.

7.4 Learning

Given a training set Ω:

Ω = {(Ûk, V̂k) : k = 1, . . . , NΩ}, (7.14)

where Ûk and V̂k denote ground-truth 2D and 3D pose pairs, we define the 2D-3D loss of

learning the mapping function f(U; θ) as

θ∗ = arg min
θ

`(Ω|θ)

= arg min
θ

NΩ∑
k=1

‖f(Ûk; θ)− V̂k‖2.

(7.15)

The loss measures the Euclidean distance between predicted 3D pose and true 3D pose.
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Real 
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Figure 7.3: Illustration of virtual camera simulation. The black camera icons stand for real

camera settings while the white camera icons simulated virtual camera settings.

The entire learning process consists of two steps: i) learning basic blocks in the base

network with 2D-3D loss. ii) attaching pose grammar network on the top of the trained base

network, and fine-tune the whole network in an end-to-end manner.

7.4.1 Pose Sample Simulator

We conduct an empirical study on popular 3D pose estimation datasets (e.g., Human3.6M,

HumanEva) and notice that there are usually limited number of cameras (4 on average)

recording the human subject. This raises the doubt whether learning on such dataset can lead

to a generalized 3D pose estimator applicable in other scenes with different camera positions.

We believe that a data augmentation process will help improve the model performance and

generalization ability. For this, we propose a novel Pose Sample Simulator (PSS) to generate

additional training samples. The generation process consists of two steps: i) projecting

ground-truth 3D pose V̂ onto virtual camera planes to obtain ground-truth 2D pose Û, ii)

simulating 2D pose detections U by sampling conditional probability distribution p(U|Û).

In the first step, we first specify a series of virtual camera calibrations. Namely, a virtual

camera calibration is specified by quoting intrinsic parametersK ′ from other real cameras and
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Figure 7.4: Examples of learned 2D atomic poses in probability distribution p(U|Û).

simulating reasonable extrinsic parameters (i.e., camera locations T ′ and orientations R′). As

illustrated in Figure 7.3, two white virtual camera calibrations are determined by the other

two real cameras. Given a specified virtual camera, we can perform a perspective projection

of a ground-truth 3D pose V̂ onto the virtual camera plane and obtain the corresponding

ground-truth 2D pose Û.

In the second step, we first model the conditional probability distribution p(U|Û) to mit-

igate the discrepancy between 2D pose detections U and 2D pose ground-truth Û. Assuming

p(U|Û) follows a mixture of Gaussian distribution, that is,

p(U|Û) = p(ε) =

NG∑
j=1

ωj N(ε;µj,Σj), (7.16)

where ε = U − Û, NG denotes the number of Gaussian distributions, ωj denotes a combi-

nation weight for the j-th component, N(ε;µj,Σj) denotes the j-th multivariate Gaussian

distribution with mean µj and covariance Σj. As suggested in [APG14], we set NG = 42.

For efficiency issues, the covariance matrix Σj is assumed to be in the form:

Σj =


σj,1 0 0

0
. . . 0

0 0 σj,i

 , σj,i ∈ R2×2 (7.17)
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where σj,i is the covariance matrix for joint ui at j-th multivariate Gaussian distribution.

This constraint enforces independence among each joint ui in 2D pose U.

The probability distribution p(U|Û) can be efficiently learned using an EM algorithm,

with E-step estimating combination weights ω and M-step updating Gaussian parameters

µ and Σ. We utilizes K-means clustering to initialize parameters as a warm start. The

learned mean µj of each Gaussian can be considered as an atomic pose representing a group

of similar 2D poses. We visualize some atomic poses in Figure 7.4.

Given a 2D pose ground-truth Û, we sample p(U|Û) to generate simulated detections

U and thus use it augment the training set Ω. By doing so we mitigate the discrepancy

between the training data and the testing data. The effectiveness of our proposed PSS is

validated in Section 7.5.5.

7.5 Experiments

In this section, we first introduce datasets and settings for evaluation, and then report our

results and comparisons with state-of-the-art methods, and finally conduct an ablation study

on components in our method.

7.5.1 Datasets

We evaluate our method quantitatively and qualitatively on three popular 3D pose estimation

datasets.

Human3.6M [IPO14] is the current largest dataset for human 3D pose estimation,

which consists of 3.6 million 3D human poses and corresponding video frames recorded from

4 different cameras. Cameras are located at the front, back, left and right of the recorded

subject, with around 5 meters away and 1.5 meter height. In this dataset, there are 11 actors

in total and 15 different actions performed (e.g., greeting, eating and walking). The 3D pose

ground-truth is captured by a motion capture (Mocap) system and all camera parameters

(intrinsic and extrinsic parameters) are provided.
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Protocol #1 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD. Smoke Wait WalkD. Walk WalkT. Avg.

LinKDE (PAMI’16) 132.7 183.6 132.3 164.4 162.1 205.9 150.6 171.3 151.6 243.0 162.1 170.7 177.1 96.6 127.9 162.1

Tekin et al. (ICCV’16) 102.4 147.2 88.8 125.3 118.0 182.7 112.4 129.2 138.9 224.9 118.4 138.8 126.3 55.1 65.8 125.0

Du et al. (ECCV’16) 85.1 112.7 104.9 122.1 139.1 135.9 105.9 166.2 117.5 226.9 120.0 117.7 137.4 99.3 106.5 126.5

Chen & Ramanan (Arxiv’16) 89.9 97.6 89.9 107.9 107.3 139.2 93.6 136.0 133.1 240.1 106.6 106.2 87.0 114.0 90.5 114.1

Pavlakos et al. (CVPR’17) 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9

Bruce et al. (ICCV’17) 90.1 88.2 85.7 95.6 103.9 92.4 90.4 117.9 136.4 98.5 103.0 94.4 86.0 90.6 89.5 97.5

Zhou et al. (ICCV’17) 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6 75.2 111.6 64.1 66.0 51.4 63.2 55.3 64.9

Martinez et al. (ICCV’17) 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Ours 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4

Protocol #2 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD. Smoke Wait WalkD. Walk WalkT. Avg.

Ramakrishna et al.(ECCV’12) 137.4 149.3 141.6 154.3 157.7 158.9 141.8 158.1 168.6 175.6 160.4 161.7 150.0 174.8 150.2 157.3

Bogo et al. (ECCV’16) 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3 100.3 137.3 83.4 77.3 86.8 79.7 87.7 82.3

Moreno-Noguer (CVPR’17) 66.1 61.7 84.5 73.7 65.2 67.2 60.9 67.3 103.5 74.6 92.6 69.6 71.5 78.0 73.2 74.0

Pavlakos et al. (CVPR’17) – – – – – – – – – – – – – – – 51.9

Bruce et al. (ICCV’17) 62.8 69.2 79.6 78.8 80.8 72.5 73.9 96.1 106.9 88.0 86.9 70.7 71.9 76.5 73.2 79.5

Martinez et al. (ICCV’17) 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7

Ours 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7

Protocol #3 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SitingD. Smoke Wait WalkD. Walk WalkT. Avg.

Pavlakos et al. (CVPR’17) 79.2 85.2 78.3 89.9 86.3 87.9 75.8 81.8 106.4 137.6 86.2 92.3 72.9 82.3 77.5 88.6

Bruce et al. (ICCV’17) 103.9 103.6 101.1 111.0 118.6 105.2 105.1 133.5 150.9 113.5 117.7 108.1 100.3 103.8 104.4 112.1

Zhou et al. (ICCV’17) 61.4 70.7 62.2 76.9 71.0 81.2 67.3 71.6 96.7 126.1 68.1 76.7 63.3 72.1 68.9 75.6

Martinez et al. (ICCV’17) 65.7 68.8 92.6 79.9 84.5 100.4 72.3 88.2 109.5 130.8 76.9 81.4 85.5 69.1 68.2 84.9

Ours 57.5 57.8 81.6 68.8 75.1 85.8 61.6 70.4 95.8 106.9 68.5 70.4 73.8 58.5 59.6 72.8

Table 7.1: Quantitative comparisons of Average Euclidean Distance (mm) between the es-

timated pose and the ground-truth on Human3.6M under Protocol #1, Protocol #2 and

Protocol #3. The best score is marked in bold.
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HumanEva-I [SBB10] is another widely used dataset for human 3D pose estimation,

which is also collected in a controlled indoor environment using a Mocap system. HumanEva-

I dataset has fewer subjects and actions, compared with Human3.6M dataset.

MPII [APG14] is a challenging benchmark for 2D human pose estimation in the wild,

containing a large amount of human images in the wild. We only validate our method on

this dataset qualitatively since no 3D pose ground-truth is provided.

7.5.2 Evaluation Protocols

For Human3.6M, the standard protocol is using all 4 camera views in subjects S1, S5, S6,

S7 and S8 for training and the same 4 camera views in subjects S9 and S11 for testing. This

standard protocol is called protocol #1. In some works, the predictions are post-processed

via a rigid transformation before comparing to the ground-truth, which is referred as protocol

#2.

In above two protocols, the same 4 camera views are both used for training and testing.

This raise the question whether or not the learned estimator over-fits to training camera

parameters. To validate the generalization ability of different models, we propose a new

protocol based on different camera view partitions for training and testing. In our setting,

subjects S1, S5, S6, S7, and S8 in 3 camera views are used for training while subjects S9

and S11 in the other camera view are selected for testing (down-sampled to 10 FPS). The

suggested protocol guarantees that not only subjects but also camera views are different for

training and testing, eliminating interferences of subject appearance and camera parameters,

respectively. We refer our new protocol as protocol #3.

For HumanEva-I, we follow the previous protocol, evaluating on each action separately

with all subjects. A rigid transformation is performed before computing the mean recon-

struction error.

114



7.5.3 Implementation Details

We implement our method using Keras with Tensorflow as back-end. We first train our base

network for 200 epoch. The learning rate is set as 0.001 with exponential decay and the

batch size is set to 64 in the first step. Then we add the 3D-Pose Grammar Network on top

of the base network and fine-tune the whole network together. The learning rate is set as

10−5 during the second step to guarantee model stability in the training phase. We adopt

Adam optimizer for both steps.

We perform 2D pose detections using a state-of-the-art 2D pose estimator [NYD16]. We

fine-tuned the model on Human3.6M and use the pre-trained model on HumanEva-I and

MPII. Our deep grammar network is trained with 2D pose detections as inputs and 3D

pose ground-truth as outputs. For protocol #1 and protocol #2, the data augmentation is

omitted due to little improvement and tripled training time. For protocol #3, in addition to

the original 3 camera views, we further augment the training set with 6 virtual camera views

on the same horizontal plane. Consider the circle which is centered at the human subject

and locates all cameras is evenly segmented into 12 sectors with 30 degree angles each, and 4

cameras occupy 4 sectors. We generate training samples on 6 out of 8 unoccupied sectors and

leave 2 closest to the testing camera unused to avoid over-fitting. The 2D poses generated

from virtual camera views are augmented by our PCSS. During each epoch, we will sample

our learned distribution once and generate a new batch of synthesized data.

Empirically, one forward and backward pass takes 25 ms on a Titan X GPU and a forward

pass takes 10 ms only, allowing us to train and test our network efficiently.

7.5.4 Results and Comparisons

Human3.6M. We evaluate our method under all three protocols. We compare our method

with 10 state-of-the-art methods [IPO14, TRL16, DWL16, CR17, SNP16, RS16, BKL16,

PZD17, NWZ17, ZHS17, MHR17] and report quantitative comparisons in Table 7.1. From

the results, our method obtains superior performance over the competing methods under all

protocols.
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Figure 7.5: Quantitative results of our method on Human3.6M and MPII. We show the

estimated 2D pose on the original image and the estimated 3D pose from a novel view.

Results on Human3.6M are drawn in the first row and results on MPII are drawn in the

second to fourth row. Best viewed in color.

To verify our claims, we re-train three previous methods, which obtain top performance

under protocol #1, with protocol #3. The quantitative results are reported in Table. 7.1. The

large drop of performance (17% – 41%) of previous 2D-3D reconstruction models [PZD17,

NWZ17, ZHS17, MHR17], which demonstrates the blind spot of previous evaluation protocols

and the over-fitting problem of those models.

Notably, our method greatly surpasses previous methods (12mm improvement over the

second best under cross-view evaluation (i.e., protocol #3 ). Additionally, the large perfor-

mance gap of [MHR17] under protocol #1 and protocol #3 (62.9mm vs 84.9mm) demon-

strates that previous 2D-to-3D reconstruction networks easily over-fit to camera views. Our
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Methods
Walking Jogging

Avg.
S1 S2 S3 S1 S2 S3

Simo-Serra et al. (CVPR’13) 65.1 48.6 73.5 74.2 46.6 32.2 56.7

Kostrikov et al. (BMVC’14) 44.0 30.9 41.7 57.2 35.0 33.3 40.3

Yasin et al. (CVPR’16) 35.8 32.4 41.6 46.6 41.4 35.4 38.9

Moreno-Noguer (CVPR’17) 19.7 13.0 24.9 39.7 20.0 21.0 26.9

Pavlakos et al. (CVPR’17) 22.3 19.5 29.7 28.9 21.9 23.8 24.3

Martinez et al. (ICCV’17) 19.7 17.4 46.8 26.9 18.2 18.6 24.6

Ours 19.4 16.8 37.4 30.4 17.6 16.3 22.9

Table 7.2: Quantitative comparisons of the mean reconstruction error (mm) on HumanEva-I.

The best score is marked in bold.

general improvements over different settings demonstrate our superior performance and good

generalization.

HumanEva-I. We compare our method with 6 state-of-the-art methods [SQT13, KG14,

YIK16, Mor17, PZD17, MHR17]. The quantitative comparisons on HumanEva-I are re-

ported in Table 7.2. As seen, our results outperforms previous methods across the vast

majority of subjects and on average.

MPII. We visualize sampled results generated by our method on MPII as well as Hu-

man3.6M in Figure 7.5. As seen, our method is able to accurately predict 3D pose for both

indoor and in-the-wild images.

7.5.5 Ablation studies

We study different components of our model on Human 3.6M dataset under protocol #3, as

reported in Table 7.3.

Pose grammar. We first study the effectiveness of our grammar model, which encodes

high-level grammar constraints into our network. First, we exam the performance of our

baseline by removing all three grammar from our model, the error is 75.1mm. Adding the
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Component
Variants Error (mm) ∆

Ours, full 72.8 –

Pose grammar

w/o. grammar 75.1 2.3

w. kinematics 73.9 1.1

w. kinematics+symmetry 73.2 0.4

PSS

w/o. extra 2D-3D pairs 82.6 9.8

w. extra 2D-3D pairs, GT 76.7 3.9

w. extra 2D-3D pairs, simple 78.0 5.2

PSS Generalization

Bruce et al. (ICCV’17) w/o. 112.1 –

Bruce et al. (ICCV’17) w. 96.3 15.8

Martinez et al. (ICCV’17) w/o. 84.9 –

Martinez et al. (ICCV’17) w. 76.0 8.9

Table 7.3: Ablation studies on different components in our method. The evaluation is

performed on Human3.6M under Protocol #3. See text for detailed explanations.

kinematics grammar provides parent-child relations to body joints, reducing the error by

1.6% (75.1mm → 73.9mm). Adding on top the symmetry grammar can obtain an extra

error drops (73.9mm→ 73.2mm). After combing all three grammar together, we can reach

an final error of 72.8mm.

Pose Sample Simulator (PSS). Next we evaluate the influence of our 2D-pose samples

simulator. Comparing the results of only using the data from original 3 camera views in

Human 3.6M and the results of adding samples by generating ground-truth 2D-3D pairs from

6 extra camera views, we see an 7% errors drop (82.6mm → 76.7mm), showing that extra

training data indeed expand the generalization ability. Next, we compare our Pose Sample

Simulator to a simple baseline, i.e., generating samples by adding random noises to each

joint, say an arbitrary Gaussian distribution or a white noise. Unsurprisingly, we observe a

drop of performance, which is even worse than using the ground-truth 2D pose. This suggests

that the conditional distribution p(E|Ê) helps bridge the gap between detection results and

ground-truth. Furthermore, we re-train models proposed in [NWZ17, MHR17] to validate

the generalization of our PSS. Results also show a performance boost for their methods,
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which confirms the proposed PSS is a generalized technique. Therefore, this ablative study

validates the generalization as well as effectiveness of our PSS.

7.6 Summary

In this chapter, we propose a pose grammar model to encode the mapping function of

human pose from 2D to 3D. Our method obtains superior performance over other state-of-

the-art methods by explicitly encoding human body configuration with pose grammar and a

generalized data argumentation technique. We will explore more interpretable and effective

network architectures in the future.
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CHAPTER 8

Event Understanding using Causal And-Or Graph

8.1 Introduction

Tracking objects of interest in videos is a fundamental computer vision problem that has great

potentials in many video-based applications, e.g., security surveillance, disaster response,

and border patrol. In these applications, a critical problem is how to obtain the complete

trajectory of the object of interest while observing it moving in the scene through camera

view. This is a challenging problem since an object of interest might undergo frequent

interactions with the surrounding, e.g., entering a vehicle or a building, or with the other

objects, e.g., passing behind another subject. With these interactions, the visibility status

of a subject will be varying over time, e.g., changing from “invisible” to “visible” and vice

versa. In the literature, most state-of-the-art trackers utilize appearance or motion cues to

localize subjects in video sequences and are likely to fail to track the subjects whose visibility

status keep changing.

To deal with the above challenges, in this work, we propose to explicitly reason subjects’

visibility status over time, while tracking the subjects of interests in surveillance videos.

Traditional trackers are likely to fail when the target become invisible due to occlusion,

our proposed method could jointly infer objects’ locations and visibility fluent changes,

thus helping to recover the complete trajectories. The proposed techniques, with slight

modifications, can be generalized to other scenarios, e.g., hand-held cameras, driver-less

vehicles, etc.

The key idea of our method is to introduce a fluent variable for each subject of interest

to explicitly indicate his/her visibility status in videos. Fluent was firstly used by Newton to
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Figure 8.1: Illustration of visibility fluent changes. There are three states: visible,

occluded, contained. When a person approaches a vehicle, its state changes from “visible”

to “occluded” to “contained”, such as the person1 and person2 (a-e). When a vehicle passes,

the person4 is occluded. The state of person4 changes from “visible” to “occluded” in (d-e).

(f) shows the corresponding top-view trajectories of different persons. The numbers are the

persons’ IDs. The arrows indicate the moving direction.

denote the time varying status of an object. It is also used to represent the varying object

status in commonsense reasoning [Mue14]. In this chapter, the visibility status of objects can

be described as fluents varying over time. As illustrated in Fig. 8.1, the person3 and person5

are walking through the parking lot, while the person1 and person2 are entering a sedan.

The visibility status of person1’s and person2’s changes first from “visible” to “occluded”,

and then to “contained”. This group example demonstrates how objects’ visibility fluents

change over time along with their interactions to the surrounding.

We introduce a graphical model, i.e. Causal And-Or graph (C-AOG), to represent the

causal relationships between object’s activities (actions/sub-events) and object’s visibility

fluent changes. The visibility status of an object might be caused by multiple actions, and

we need to reason the actual causality from videos. These actions are alternative choices
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that lead to the same occlusion status, and form the Or-nodes. Each leaf node indicates

an action or sub-event that can be described by And-nodes. Taking the videos shown in

Fig. 8.1 for instance, the status of “occluded” can be caused by the following actions: (i)

walking behind a vehicle; (ii) walking behind a person; or (iii) inertial action that maintains

the fluent unchanged.

The basic hypothesis of this model is that, for a particular scenario (e.g., parking-lot),

there are only a limited number of actions that can cause the fluent to change. Given a video

sequence, we need to create the optimal C-AOG and select the best choice for each Or-node

in order to obtain the optimal causal parse graph, which is shown as red lines in Fig. 8.3(a).

We develop a probabilistic graph model to reason object’s visibility fluent changes using

C-AOG representation. Our formula integrates object tracking purposes as well to enable

joint solution of tracking and fluent change reasoning, which are mutually beneficial. In

particular, for each subject of interest, our method uses two variables to represent (i) subjects’

positions in videos; and (ii) visibility status as well as the best causal parse graph. We utilize

a Markov Chain Prior model to describe the transitions of these variables, i.e., the current

state of a subject is only dependent on the previous state. We then reformulate the problem

into an Integer Linear Programming model, and utilize dynamic programming to search the

optimal states over time.

In experimental evaluations, the proposed method is tested on a set of challenging se-

quences that include frequent human-vehicle or human-human intersections. Results show

that our method can readily predict the correct visibility status and recover the complete

trajectories. In contrast, most of the alternative trackers can only recover part of the tra-

jectories due to the occlusion or containment.

Contributions. There are three major contributions of the proposed framework: (i)

a Causal And-Or Graph (C-AOG) model to represent object visibility fluents varying over

time; (ii) a joint probabilistic formulation for object tracking and fluent reasoning; and (iii)

a new occlusion reasoning dataset to cover objects with diverse fluent changes.
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8.2 Related Work

The proposed research is closely related to the following three research streams in computer

vision and AI.

Multiple object tracking has been extensively studied in the past decades. In the past

literatures, tracking-by-detection has become the mainstream framework [WLY14, DTT15,

XLL16, XLQ17, DSY17, DSW18]. Specifically, a general detector [FGM10, RHG15] is

first applied to generate detection proposals, and then data association techniques [BFT11,

DAS15, YMZ16] are employed to link detection proposals over time in order to get object

trajectories. Our approach also follows this pipeline, but is more focused on the reasoning

of object visibility status.

Tracking interacting objects studies a more specific problem of tracking entangled

objects. Some works [WTF14, WTF16, MWF16] try to model the object appearing and

disappearing phenomena globally, yielding strong assumptions on appearance, location or

motion cues. On the contrary, other works attempt to model human-object and human-

human interactions under specific scenarios, such as social activities [CS12, STZ17], team

sports [LCC13], and people carrying luggage [BML13]. In this chapter, we propose a more

principled way to track objects with both short-term interactions, e.g., passing behind an-

other object, or long-term interactions, e.g., entering a vehicle and moving together.

Causal-effect reasoning is a popular topic in AI but has not received much attentions

in the field of computer vision. It studies, for instances, the difference between co-occurrence

and causality, and aims to learn causal knowledge automatically from low-level observations,

e.g., images or videos. There are two popular causality models: Bayesian Network [GT05,

Pea09] and grammar models [GT07, LZZ16]. Grammar models [XLZ13, FXW18, WXS18]

are powerful tool for modeling high-level human knowledge in specific domains. Notably,

Fire and Zhu [FZ16] have introduced a causal grammar to infer causal-effect relationship

between object’s status, e.g., door open/close, and agent’s actions, e.g., pushing the door.

They studied this problem using manually designed rules and video sequences in lab settings.

In this work, we extend the causal grammar models to infer objects’ visibility fluent and
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Figure 8.2: Illustration of a person’s actions and her visibility fluent changes when

she enters a vehicle.

ground the task on challenging videos in surveillance systems.

8.3 Representation

In this chapter, we define three states for visibility fluent reasoning: visible, (partially/fully)

occluded, and contained. Most multiple object tracking methods are based on tracking-

by-detection framework, which obtain good performance in visible and partially occluded

situations. However, when full occlusions take place, these trackers usually regard the

disappearing-and-reappearing objects as new objects. Although objects in fully occluded

and contained states are invisible, there are still evidences to infer the locations of objects

and fill-in the complete trajectory. We can distinguish object being fully occluded and object

being contained from three empirical observations.

Firstly, motion independence. In fully occluded state, such as a person staying behind

a pillar, the motion of the person is independent of the pillar. While in contained state,
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Figure 8.3: (a) The proposed Causal And-Or Graph (C-AOG) model for the fluent

of visibility. We use a C-AOG to represent the visibility status of an subject. Each OR node

indicates a possible choice and an arrow shows how visibility fluent transits among states.

(b) A series of atomic actions that could possibly cause visibility fluent change.

Each atomic action describes interactions among people and interacting objects. “P”, “D”,

“T”, “B” denotes “person”, “door”, “trunk”, “bag”, respectively. The dash triangle denotes

fluent. The corresponding fluent could be “visible”, “occluded” or “contained” for a person;

“open”, “closed” or “occluded” for a vehicle door or truck. See text for more details.

such as a person sitting in a vehicle, or a bag in the trunk, the position and motion of the

person/bag would be the same as the vehicle. Therefore, the inference of the visibility fluent

of the object is important in tracking objects accurately in a complex environment.

Secondly, coupling actions and object fluent changes. For example, as illustrated in

Fig. 8.2, if a person gets into a vehicle, the related sequential atomic actions are: approaching

a vehicle, opening the vehicle door, getting into the vehicle, and closing the vehicle door; the

related object fluent changes are vehicle door closed → open → closed. The fluent change

is a consequence of agent actions. If the fluent-changing actions do not happen, the object

should maintain its current fluent. For example, a person that is contained in a vehicle will

remain contained unless he/she opens the vehicle door and gets out of the vehicle.

Thirdly, visibility in the alternative camera views. In full occlusion state, such as a person

occluded by a pillar, though the person could not be observed from the current viewpoint,

125



he/she could be seen from the other viewpoints; while in contained state, such as a person

in a vehicle, this person could not be seen from any viewpoints.

In this work, we mainly study the interactions of humans and the developed methods

can also be expanded to other objects, e.g., animals.

8.3.1 Causal And-Or Graph

In this chapter, we propose a Causal And-Or Graph (C-AOG) to represent the action-fluent

relationship, as illustrated in Fig. 8.3(a). A C-AOG has two types of nodes: (i) Or-nodes that

represent the variations or choices, and (ii) And-nodes that represent the decompositions of

the top-level entities. The arrows indicate the causal relations between actions and fluent

transitions. For example, a C-AOG can be used to expressively model a series of action-fluent

relations.

The C-AOG is capable of representing multiple alternatives for causes of occlusion and

potential transitions. There are four levels in our C-AOG: visibility fluents, possible states,

state transitions and agent actions. Or nodes represent alternative causes in visibility fluents

and state levels; that is, one fluent can have multiple states and one state can have multiple

transitions. An event can be decomposed into several atomic actions and represented by an

And-node, e.g., an event of a person getting into a vehicle is a composition of four atomic

actions: approaching the vehicle, opening the door, entering the vehicle, and closing the

door.

Given a video sequence I with length T and camera calibration parameters H, we rep-

resent the scene R as

R = {Ot : t = 1, 2, ..., T} ,

Ot =
{
oit : i = 1, 2, ..., Nt

}
,

(8.1)

where Ot denotes all the objects at time t, and Nt is the size of Ot, i.e., the number of

objects at time t. Nt is unknown and will be inferred from observations. Each object oit is

represented with its location lit (i.e., bounding boxes in the image) and appearance features

φit. To study the visibility fluent of a subject, we further incorporate a state variable sit and
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an action label ait, that is,

oit =
(
lit, φ

i
t, s

i
t, a

i
t

)
. (8.2)

Thus, the state of a subject is defined as

sit ∈ S = { visible, occluded, contained } . (8.3)

We define a series of atomic actions Ω = {ai : i = 1, . . . , Na} that might change the visibility

status, e.g., walking, opening vehicle door, etc. Fig. 8.3(b) illustrates a small set of actions

Ω covering the most common interactions among people and vehicles.

Our goal is to jointly find subject locations in video frames and estimate their visibility

fluents M from the video sequence I. Formally, we have

M = {pgt : t = 1, 2, . . . , T},

pgt = {oit = (lit, φ
i
t, s

i
t, a

i
t) | i = 1, 2, ..., Nt},

(8.4)

where pgt can be determined by the optimal causal parse graph at time t.

8.4 Problem Formulation

According to Bayes’ rule, we can solve our joint object tracking and fluent reasoning problem

by maximizing a posterior (MAP),

M∗ = arg max
M

p(M |I; θ)

∝ arg max
M

p(I|M ; θ) · p(M ; θ)

= arg max
M

1

Z
exp {−E(M ; θ)− E(I|M ; θ)}.

(8.5)

The prior term E(M ; θ) measures the temporal consistency between successive parse graphs.

Assuming G is a Markov Chain structure, we can decompose E(M ; θ) as

E(M ; θ) =
T−1∑
t=1

E(pgt+1|pgt)

=
T−1∑
t=1

Nt∑
i=1

Φ(lit+1, l
i
t, s

i
t) + Ψ(sit+1, s

i
t, a

i
t).

(8.6)
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The first term Φ(·) measures the location displacement. It calculates the transition

distance between two successive frames and is defined as:

Φ(lit+1, l
i
t, s

i
t) =


δ(Ds(lit+1, l

i
t) > τs), s

i
t = Visible,

1, sit = Occ, Con,

(8.7)

where Ds(·, ·) is the Euclidean distance between two locations on the 3D ground plane, τs

is the speed threshold and δ(·) is an indicator function. The location displacement term

measures the motion consistency of object in successive frames.

The second term Ψ(·) measures the state transition energy and is defined as:

Ψ(sit+1, s
i
t, a

i
t) = − log p(sit+1|sit, ait), (8.8)

where p(sit+1|sit, ait) is the action-state transition probability, which can be learned from the

training data.

The likelihood term E(I|M ; θ) measures how well each parse graph explains the data,

which can be decomposed as

E(I|M ; θ) =
T∑
t=1

E(It|pgt)

=
T∑
t=1

Nt∑
i=1

Υ(lit, φ
i
t, s

i
t) + Γ(lit, φ

i
t, a

i
t),

(8.9)

where Υ(·) measures the likelihood between data and object fluents, and Γ(·) measures the

likelihood between data and object actions. Given each object oit, the energy function Υ(·)

is defined as:

Υ(lit, φ
i
t, s

i
t) =


1− ho(lit, φit), sit = Visible,

σ(Dς(ς i1, ς i2)), sit = Occluded,

1− hc(lit, φit), sit = Contained,

(8.10)

where ho(·) indicates the object detection score, hc(·) indicates the container (i.e., vehi-

cles) detection score, and σ(·) is the sigmoid function. When an object is in either visible or

contained state, appearance information can describe the probability of the existence of itself

or the object containing it (i.e., container) at this location. When an object is occluded,
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Figure 8.4: Illustration of Hierarchical And-Or Graph. The vehicle is decomposed

into different views, semantic parts and fluents. Some detection results are drawn below,

with different colored bounding boxes denoting different vehicle parts, solid/dashed boxes

denoting state “closed”/“open”.

there is no visual evidence to determine its state. Therefore, we utilize temporal information

to generate candidate locations. We employ the SSP algorithm [PRF11] to generate trajec-

tory fragments (i.e., tracklets). The candidate locations are identified as misses in complete

object trajectories. The energy is thus defined as the cost of generating a virtual trajectory

at this location. We compute this energy by computing the visual discrepancy between a

neighboring tracklet ς i1 before this moment and a neighboring tracklet ς i2 after this moment.

The appearance descriptor of a tracklet is computed as the average pooling of image descrip-

tor over time. If the distance is below a threshold τς , a virtual path is generated to connect

these two tracklets using B-spline fitting.

The term Γ(lit, φ
i
t, a

i
t) is defined over the object actions observed from data. In this work,

we study the fluents of human and vehicles, that is,

Γ(lit, φ
i
t, a

i
t) = σ(Dh(lit, φit|ait)) + σ(Dv(lit, φit|ait)), (8.11)

where σ(·) is the sigmoid function. The definitions of the two data-likelihood terms Dh and
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Dv are introduced in the rest of this section.

A human is represented by his/her skeleton, which consists of multiple joints estimated

by sequential prediction technology [WRK16]. The feature of each joint is defined as the

relative distances of this joint to four saddle points(two shoulders, the center of the body, and

the middle between the two hipbones). The relative distances are normalized by dividing

the length of head to eliminate the influence of scale. A feature vector ωht concatenating the

features of all joints is extracted, which is assumed to follow a Gaussian distribution:

Dh(lit, φit|ait) = − log N(ωht ;µait ,Σait
), (8.12)

where µait and Σait
are the mean and the covariance of the action ait respectively, which are

obtained from the training data.

A vehicle is described with its viewpoint, semantic vehicle parts, and vehicle part fluents.

The vehicle fluent is represented by a Hierarchical And-Or Graph, as illustrated in Fig. 8.4.

The feature vector of vehicle fluent ωv is obtained by computing fluent scores on each vehicle

part and concatenating them together. We compute the average pooling feature $ai for

each action ai over the training data as the vehicle fluent template. Given vehicle fluent ωvt

computed on image It, the distance Dv(lit, φit|ait) is defined as

Dv(lit, φit|ait) = ‖ωvt −$ait
‖2. (8.13)

8.5 Inference

We cast the intractable optimization of Equation (8.5) as an Integer Linear Formulation

(ILF) in order to derive a scalable and efficient inference algorithm. We use V to denote the

locations of vehicles, and E to denote the edges between all possible pairs of nodes, whose

time is consecutive and locations are close. The whole transition graph G = (V,E) is shown
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as Fig. 8.5. Then the energy function Equation (8.5) can be re-written as:

f ∗ = arg max
f

∑
mn∈Eo

cmnfmn,

cmn = −Φ(ln, lm, sm)−Ψ(sn, sm, am)−Υ(lm, φm, sm)

− Γ(lm, φm, am),

s.t. fmn ∈ {0, 1},
∑
m

fmn ≤ 1,
∑
m

fmn =
∑
k

fnk,

(8.14)

where fmn is the number of object moving from node Vm to node Vn, cmn is the corresponding

cost.

Since the subject of interest can only enter a nearby container (e.g., vehicle), to discover

the optimal causal parse graph, we need to jointly track the container and the subject of

interest. Similar to Equation (8.14), the energy function of container is as follows:

g∗ = arg max
g

∑
mn∈Ec

dmn gmn,

dmn = hc(lm, φm)− 1,

s.t. gmn ∈ {0, 1},
∑
m

gmn ≤ 1,
∑
m

gmn =
∑
k

gnk,

(8.15)

where hc(lm, φm) is the container detection score at location lm. Then we add the contained

constrains as: ∑
mn∈Ec

gmn ≥
∑
ij∈Eo

fij,

s.t. tn = tj, ‖ln − lj‖2 < τc,

(8.16)

where τc is the distance threshold. Finally, we combine Equation (8.14)-(8.16) to obtain

objective function for our model:

f ∗, g∗ = max
f,g

∑
mn∈Eo

cmnfmn +
∑
ij∈Ec

dmn gmn,

s.t. fmn ∈ {0, 1},
∑
m

fmn ≤ 1,
∑
m

fmn =
∑
k

fnk,

gmn ∈ {0, 1},
∑
i

gmn ≤ 1,
∑
i

gmn =
∑
k

gnk,

tn = tj, ‖ln − lj‖2 < τc.

(8.17)
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Figure 8.5: Transition graph utilized to formulate the integer linear programming.

Each node m has its location lm, state sm, and time instant tm. Black solid arrows indicate

the possible transitions in the same state. Red dashed arrows indicate the possible transitions

between different states.

The re-formulated graph still follows a directed acyclic graph (DAG). Thus we can adopt the

Dynamic Programming technique to efficiently search for the optimal solution, as illustrated

in the Fig. 8.5.

8.6 Experiments

We apply the proposed method on two tracking interacting objects datasets and evaluate

the improvement in visual tracking brought by the outcomes of visibility status reasoning.

8.6.1 Implementation Details

We first utilize the Faster R-CNN models [RHG15] trained on the MS COCO dataset to de-

tect involved agents (e.g., person and suitcase). The used network is the VGG-16 net, with

score threshold 0.4 and NMS threshold 0.3. The tracklets similarity threshold τς is set as 0.8.

The contained distance threshold τc is set as the width of container 3 meters. The maximum

number of contained objects in a container is set to 5. For appearance descriptors φ, we

132



employ the dense sampling ColorNames descriptor [ZST15], which applies square root oper-

ator [AZ12] and Bag-of-word encoding to the original ColorNames descriptors. For human

skeleton estimation, we use the public implementation of [WRK16]. For vehicle detection

and semantic part status estimation, we use the implementation provided by [LWX16] with

default parameters mentioned in their paper.

We adopt the widely used CLEAR metrics [KGS09] to measure the performances of track-

ing methods. It includes four metrics, i.e., Multiple Object Detection Accuracy (MODA),

Detection Precision (MODP), Multiple Object Tracking Accuracy (MOTA) and Tracking

Precision (MOTP), which take into account three kinds of tracking errors: false positives,

false negatives and identity switches. We also report the number of false positives (FP), false

negatives (FN), identity switches (IDS) and fragments (Frag). A higher value means better

for MODA, MODP, MOTA and MOTP, while a lower value means better for FP, FN, IDS

and Frag. If the Intersection-over-Union (IoU) ratio of tracking results to ground-truth is

above 0.5, we accept the tracking result as a correct hit.

8.6.2 Datasets

People-Car dataset [WTF14]1. This dataset consists of 5 groups of synchronized sequences

on a parking lot, recorded from two calibrated bird-view cameras, with length of 300 ∼ 5100

frames. In this dataset, there are many instances of people getting in and out of cars. This

dataset is challenging for the frequent interactions, light variation and low object resolution.

Tracking Interacting Objects (TIO) dataset. For current popular multiple object

tracking datasets (e.g., PETS09 [FS09], KITTI dataset [GLU12]), most tracked objects are

pedestrian and no evident interaction visibility fluent changes. Thus we collect two new

scenarios with typical human-object interactions: person, suitcase, and vehicle on several

places.

Plaza. We capture 22 video sequences in a plaza that describe people walking around,

getting in/out vehicles.

1Available at https://cvlab.epfl.ch/research/research-surv/trackinteractobj/
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People-Car Metric Our-full Our-1 Our-2 POM SSP LP2D LP3D KSP-fixed KSP-free KSP-seq TIF-LP TIF-MIP

Seq.0

FP ↓ 0.17 0.34 0.20 0.06 0.04 0.05 0.05 0.46 0.10 0.46 0.07 0.07

FN ↓ 0.08 0.53 0.12 0.47 0.76 0.48 0.53 0.61 0.41 0.61 0.25 0.25

IDS ↓ 0.05 0.07 0.05 - 0.04 0.06 0.06 0.07 0.07 0.07 0.04 0.04

MODA ↑ 0.71 0.27 0.63 0.47 0.20 0.47 0.42 -0.07 0.49 -0.07 0.67 0.67

Seq.1

FP ↓ 0.21 0.70 0.28 0.98 0.75 0.77 0.75 0.77 0.71 0.75 0.17 0.17

FN ↓ 0.12 0.26 0.14 0.23 0.25 0.21 0.25 0.25 0.25 0.25 0.25 0.25

IDS ↓ 0.04 0.13 0.04 - 0.12 0.17 0.21 0.06 0.12 0.15 0.04 0.04

MODA ↑ 0.62 0.09 0.54 -0.21 0.00 0.02 0.00 -0.02 0.04 0.00 0.58 0.58

Seq.2

FP ↓ 0.03 0.05 0.04 0.03 0.00 0.03 0.00 0.05 0.00 0.05 0.03 0.03

FN ↓ 0.28 0.58 0.32 0.47 0.59 0.62 0.58 0.72 0.59 0.72 0.47 0.47

IDS ↓ 0.01 0.03 0.02 - 0.01 0.02 0.01 0.03 0.01 0.03 0.01 0.01

MODA ↑ 0.57 0.39 0.48 0.50 0.41 0.35 0.42 0.23 0.41 0.23 0.50 0.50

Seq.3

FP ↓ 0.18 0.39 0.21 0.59 0.35 0.43 0.27 0.46 0.43 0.43 0.14 0.14

FN ↓ 0.07 0.32 0.10 0.17 0.31 0.23 0.40 0.19 0.23 0.19 0.21 0.21

IDS ↓ 0.06 0.26 0.06 - 0.27 0.34 0.33 0.19 0.25 0.21 0.07 0.05

MODA ↑ 0.68 0.35 0.62 0.24 0.34 0.34 0.33 0.35 0.34 0.38 0.65 0.65

Seq.4

FP ↓ 0.16 0.27 0.18 0.40 0.19 0.26 0.13 0.32 0.25 0.31 0.08 0.07

FN ↓ 0.10 0.18 0.13 0.15 0.19 0.16 0.18 0.17 0.17 0.16 0.16 0.15

IDS ↓ 0.05 0.15 0.05 - 0.14 0.13 0.15 0.12 0.12 0.11 0.04 0.04

MODA ↑ 0.82 0.59 0.73 0.45 0.62 0.58 0.69 0.51 0.58 0.53 0.76 0.78

Table 8.1: Quantitative results and comparisons of false positive (FP) rate, false nega-

tive (FN) rate and identity switches (IDS) rate on People-Car Dataset. The best scores

are marked in bold.
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ParkingLot. We capture 15 video sequences in a parking lot that shows vehicles enter-

ing/exiting the parking lot, people getting in/out vehicles, people interacting with trunk/suitcase.

All video sequences are captured by a GoPro camera, with frame rate 30 FPS and resolu-

tion 1920×1080. We use the standard chessboard and MATLAB camera calibration toolbox

to obtain camera parameters. The total number of frames of TIO dataset is more than 30K.

There exist severe occlusions and large scale changes, making this dataset very challenging

for traditional tracking methods.

Beside the above testing data, we collect another set of video clips for training. To

avoid over-fitting, we set up different camera positions, different people and vehicles from

the testing settings. The training data consists of 380 video clips covering 9 events: walking,

opening vehicle door, entering vehicle, exiting vehicle, closing vehicle door, opening vehi-

cle trunk, loading baggage, unloading baggage, closing vehicle trunk. Each action category

contains 42 video clips on average.

Both the datasets and short video clips are annotated with bounding boxes for people,

suitcases, vehicles, and visibility fluents of people and suitcases. The types of status are

“visible”, “occluded”, and “contained”. We utilize VATIC [VPR13] to annotate the videos.

8.6.3 Results and Comparisons

For People-Car dataset, we compare our proposed method with 5 baseline methods and their

variants: successive shortest path algorithm (SSP) [PRF11], K-Shortest Paths Algorithm

(KSP-fixed, KSP-free, KSP-seq) [BFT11], Probability Occupancy Map (POM) [FBL08],

Linear Programming (LP2D, LP3D) [LFK14], and Tracklet-Based Intertwined Flows (TIF-

IP, TIF-MIP) [WTF16]. We refer the reader to [WTF16] for more details about the method

variants. The quantitative results are reported in Table 8.1. From the results, we can observe

that the proposed method obtains better performance than the baseline methods.

For TIO dataset, we compare the proposed method with 6 state-of-the-arts: succes-

sive shortest path algorithm (SSP) [PRF11], multiple hypothesis tracking with distinc-

tive appearance model (MHT D) [KLC15], Markov Decision Processes with Reinforcement
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Plaza MOTA ↑ MOTP ↑ FP ↓ FN ↓ IDS ↓ Frag ↓

Our-full 46.0% 76.4% 99 501 5 8

Our-1 31.9% 75.1% 40 643 29 36

Our-2 32.5% 75.3% 75 605 25 30

MHT D [KLC15] 34.3% 73.8% 56 661 15 18

MDP [XAS15] 32.9% 73.2% 24 656 9 7

DCEM [MSR16] 32.3% 76.5% 2 675 2 2

SSP [PRF11] 31.7% 72.1% 19 678 21 25

DCO [ASR12] 29.5% 76.4% 22 673 6 2

JPDA m [HMZ15] 13.5% 72.2% 163 673 6 3

ParkingLot MOTA ↑ MOTP ↑ FP ↓ FN ↓ IDS ↓ Frag ↓

Our-full 38.6% 78.6% 418 1954 6 5

Our-1 28.7% 78.4% 451 2269 15 17

Our-2 28.9% 78.4% 544 2203 14 16

MDP [XAS15] 30.1% 76.4% 397 2296 26 22

DCEM [MSR16] 29.4% 77.5% 383 2346 16 15

SSP [PRF11] 28.9% 75.0% 416 2337 12 14

MHT D [KLC15] 25.6% 75.7% 720 2170 15 12

DCO [ASR12] 24.3% 78.1% 536 2367 38 10

JPDA m [HMZ15] 12.3% 74.2% 1173 2263 28 17

Table 8.2: Quantitative results and comparisons of false positive (FP), false negative

(FN), identity switches (IDS), and fragments (Frag) on TIO dataset. The best scores are

marked in bold.
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TIO-Plaza TIO-ParkingLot People-Car

Figure 8.6: Sampled qualitative results of our proposed method on TIO dataset

and People-Car dataset. Each color represents an object. The solid bounding box means

the visible object. The dash bounding box denotes the object is contained by other scene

entities. Best viewed in color and zoom in.

Learning (MDP) [XAS15], Discrete-Continuous Energy Minimization (DCEM) [MSR16],

Discrete-continuous optimization (DCO) [ASR12] and Joint Probabilistic Data Association

(JPDA m) [HMZ15]. We use the public implementations of these methods.

We report quantitative results and comparisons in Table 8.2 for TIO dataset. From

the results, we can observe that our method obtains superior performance to the other

methods on most metrics. It validates that the proposed method can not only track visible

objects correctly, but also reason locations for occluded or contained objects. The alternative

methods do not work well mainly due to lack of the ability to track objects under long-term

occlusion or containment in other objects.

We set up three baselines to analyze the effectiveness of different components in the

proposed method:

• Our-1: no likelihood term and only prior term is used.

• Our-2: only human data-likelihood term and prior term are used.

• Our-full: all terms are used, including prior terms, human and vehicle data-likelihood

terms.
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Figure 8.7: Sampled failure cases. When people stay behind vehicles, it is hard to

determine whether or not they are interacting with the vehicle, e.g., entering, exiting.

Based on comparisons of Our-1, Our-2 and Our-full, we can also conclude that each type

of fluent plays its role in improving the final tracking results. Some qualitative results are

displayed in Fig. 8.6.

We further report fluent estimation results on TIO-Plaza sequences and TIO-ParkingLot

sequences in Fig. 8.8. From the results, we can see that our method can successfully reason

the visibility status of subjects. Note that the precision of containment estimation is not

high, since some people get in/out the vehicle from the opposite side towards the camera, as

shown in Fig. 8.7. Under such situation, there are barely any image evidence to reason the

object status and multi-view setting might be a better way to reduce the ambiguities.

8.7 Summary

In this chapter, we propose a Causal And-Or Graph (C-AOG) model to represent the causal-

effect relations between object visibility fluents and various human interactions. By jointly

modeling short-term occlusions and long-term occlusions, our method can explicitly reason

the visibility of subjects as well as their locations in the videos. Our method clearly outper-

forms the alternative methods in complicated scenarios with frequent object interactions. In
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Figure 8.8: Visibility fluent estimation results on TIO dataset.

this work, we focus on the human-interactions as a running-case of the proposed technique,

and we will explore the extension of our method to other types of objects (e.g., animal,

drones) in the future.
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CHAPTER 9

Conclusion

In computer vision, 3D scene and event understanding is an important yet under-explored

task, as it involves many independent vision tasks (e.g., object detection and tracking, hu-

man pose and attribute estimation, action and event recognition) and also heavily relies on

joint inference and reasoning of those tasks. In this dissertation, we propose several novel

approaches for multiple subtasks of 3D scene and event understanding and use extensive

experiment results on public datasets to demonstrate the benefits of our proposed methods.

In general, we solve those task by either introducing domain knowledge guided grammar

models or formulating multiple tasks into a joint learning and inference framework in order

to improve the performance of each other. Specifically, our contribution lies in six-fold.

First, we propose a Spatial and Temporal Attributed Parse Graph model (ST-APG) for

multi-view people tracking in crowded scenes. Given videos from multiple cameras with over-

lapping and non-overlapping field of view (FOV), our algorithm parses all people trajectories

in the scene into a scene-centric representation which explicitly encodes various fine-grained

attributes of humans in both spatial and temporal domains. Our representation encodes

two principles: (i) compositionality, i.e. decomposing a trajectory into sub-trajectories into

boxes, using multi-model information in both 2D image and 3D scene, e.g., appearance,

ground occupancy, motion, which are mutually complementary while tracking people over

time; (ii) attribution, i.e. augmenting each trajectory elements with a set of fine-grained

semantic attributes (e.g., activities), or geometric attributes (e.g., facing directions, pos-

tures and actions), to enhance multi-view tracklet associations. The inference of the optimal

representation is approached by iteratively grouping tracklets with cluster sampling and es-

timating people semantic attributes by dynamic programming. The two algorithms iterate
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until convergence.

Second, we propose a joint parsing framework that integrates view-centric proposals into

scene-centric parse graphs that represent a coherent scene-centric understanding of cross-view

scenes. Our key observations are that overlapping fields of views embed rich appearance and

geometry correlations and that knowledge fragments corresponding to individual vision tasks

are governed by consistency constraints available in commonsense knowledge. The proposed

joint parsing framework represents such correlations and constraints explicitly and generates

semantic scene-centric parse graphs.

Third, we propose a structured neural network that combines the learning power of

deep learning and the interpretable structured representation of graphical models. The

proposed deep hierarchical model, i.e., α-β-γ network, not only explores how hierarchical

graphical structures are represented in neural network, but also focuses on how predictions

are conducted. In particular, with the direct application of modern network architectures,

three kinds of information flows, from image input to label output (i.e., straight pass), low

level to high level (i.e., bottom-up process), high level to low level (i.e., top-down process),

are integrated and learned in end-to-end and back-propagation manner.

Fourth, we propose a knowledge-guided neural network for estimating human appearance

and attributes, e.g., fashion landmark localization and clothing category classification. The

suggested fashion model is leveraged with high-level human knowledge in this domain. We

propose two important fashion grammars: (i) dependency grammar capturing kinematics-like

relation, and (ii) symmetry grammar accounting for the bilateral symmetry of clothes. We

introduce Bidirectional Convolutional Recurrent Neural Networks (BCRNNs) for efficiently

approaching message passing over grammar topologies, and producing regularized landmark

layouts. For enhancing clothing category classification, our fashion network is encoded with

two novel attention mechanisms, i.e., landmark-aware attention and category-driven atten-

tion. The former enforces our network to focus on the functional parts of clothes, and learns

domain-knowledge centered representations, leading to a supervised attention mechanism.

The latter is goal-driven, which directly enhances task-related features and can be learned in

an implicit, top-down manner. Experimental results on large-scale fashion datasets demon-
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strate the superior performance of our fashion grammar network.

Fifth, we propose a pose grammar to tackle the problem of 3D human pose estimation.

Our model directly takes 2D pose as input and learns a generalized 2D-3D mapping function.

The proposed model consists of a base network which efficiently captures pose-aligned fea-

tures and a hierarchy of Bi-directional RNNs (BRNN) on the top to explicitly incorporate a

set of knowledge regarding human body configuration (i.e., kinematics, symmetry, motor co-

ordination). The proposed model thus enforces high-level constraints over human poses. In

learning, we develop a pose sample simulator to augment training samples in virtual camera

views, which further improves our model generalization ability.

Last, we focus on complex event understanding (i.e., tracking interacting objects). We

consider the visibility status of a subject as a fluent variable, whose change is mostly at-

tributed to the subject’s interaction with the surrounding, e.g., crossing behind another

object, entering a building, or getting into a vehicle, etc. We introduce a Causal And-Or

Graph (C-AOG) to represent the causal-effect relations between an object’s visibility fluent

and its activities, and develop a probabilistic graph model to jointly reason the visibility

fluent change (e.g., from visible to invisible) and track humans in videos. We formulate

this joint task as an iterative search of a feasible causal graph structure that enables fast

search algorithm, e.g., dynamic programming method. We apply the proposed method on

challenging video sequences to evaluate its capabilities of estimating visibility fluent changes

of subjects and tracking subjects of interests over time.

9.1 Future Work

In the future, we would like to develop explainable AI systems upon the results from 3D

scene and event understanding, which will effectively communicate with human users, e.g.

analysts or users collaborating with the system, so that users gain insights and trust by

understanding the inner functioning and inference trace of the system that derive its results

and decisions. We will develop explanations at three levels in increasing depth.

i) Concept compositions that are represented by fragments of parse graph. The latter
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Figure 9.1: Example of complex events captured by a network of cameras in a large space and

time range. The illustrative explanations are extracted from the interpretable representation

– parse graphs computed by AOG model.

show how information is aggregated from its constituents and contexts, how decisions are

made at various nodes under uncertainty, and confidence levels of these decisions.

ii) Causal and counter-factual reasoning which is realized by extracting causal diagrams

from STC-AOG, predicts what will happen and what could have happened if certain alter-

native actions had been performed, and thus answers the how and what if questions.

iii) Cognition (state value, decision loss and action cost) that is the ultimate answer to

why the system makes decisions in comparison with alternative actions and choices.

These explanations are mixed in dialogues with visualization and simulation in graphical

interface. As Fig. 9.1 illustrates, the developed system ingests videos captured by a network

of cameras (indoor, outdoor, mobile, infrared) and text input from human intelligence; re-

constructs and composes 3D scenes; infers the objects, human pose, actions, attributes and

group activities in the global context of the scene; and outputs spatial and temporal parse

graphs with probabilities associated with nodes. There are three key components in the
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proposed system:

i) Proposing models with state-of-the-art performance as well as interpretability for video

analytics,

ii) Integrating different vision modules and improving the results by joint inference,

iii) Expanding the system with dialogue functions and explanation interface.

For example, when it is asked “Why do you think person 1 and person 2 are playing a

baseball game?” and “Could it be a Frisbee game?”, the system will output diagnostic parse

graphs to support the baseball game event, in contrast to the Frisbee game. The former has

a high probability for the key ’swing’ action (0.9) and the latter has a low probability for

the key ’swing’ action (0.1).

For evaluation, we would like to work on two directions: data collection and QA system

development. For data collection, we notice that most popular dataset utilize RGB cameras

to record, which loses the information of 3D geometry and difficult to recover. Unlike

these datasets, we plan to employ motion capture systems to capture human activities and

RFID chips to record object key locations, which provides 3D ground-truth for scene and

human actions. Another way could be utilizing synthetic data from 3D animations and video

games. This guarantees a comprehensive recovery of the original scenario people staying at

and sensor-level error, leaving human supervision outside of the loop. For example, given

multi-modal sensor input, our QA system back-end first performs video analytics. Given

questions raised by the agent, our system then analyzes question types and transforms into

formal queries for the database storing parse graphs. Queried partial parse graphs are

further returned and formatted into formal answers. The agent can make judgment about

the returned answers whether the logic coincides with human cognition.
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