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A B S T R A C T

CIRP has had a long history of research and publication on the development and implementation of

sensor monitoring of machining operations including tool condition monitoring, unmanned machining,

process control and, more recently, advanced topics in machining monitoring, innovative signal

processing, sensor fusion and related applications. This keynote follows a recent update of the literature

on tool condition monitoring and documents the work of the cutting scientific technical committee in

CIRP. The paper reviews the past contributions of CIRP in these areas and provides an up-to-date

comprehensive survey of sensor technologies, signal processing, and decision making strategies for

process monitoring. Application examples to industrial processes including reconfigurable sensor

systems are reported. Future challenges and trends in sensor based machining operation monitoring are

presented.
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1. Introduction

Previous comprehensive surveys published by CIRP on the
subject of sensor monitoring of machining operations were by
Micheletti et al., in 1976 [1], on tool wear monitoring in metal
cutting; Tlusty and Andrews [2], in 1983, on sensors for unmanned
machining; Tönshoff et al. [3], in 1988, covering monitoring and
control; Byrne et al. [4], in 1995, as an issue of the activities of the
CIRP STC-C Working Group on Tool Condition Monitoring (TCM
WG). A further issue of the TCM WG was the publication of ‘‘A
Review of Tool Condition Monitoring Literature Data Base’’ by Teti
et al. [5] that was updated in 2006 with 500 new publications in the
time frame 1996–2006 to comprise >1000 classified references.
This 2010 CIRP STC-C Keynote Paper on Advanced Monitoring of
Machining Operations has been developed on the basis of a large
number of contributions by CIRP members, non-CIRP researchers
and CIRP Annals papers review, emphasising the continuance and
expansion of the CIRP interest in this highly innovative production
engineering research area.

The typical machining process monitoring system operates
according to the following rationale. In the cutting region there are
several process variables, such as cutting forces, vibrations,
acoustic emission, noise, temperature, surface finish, etc., that
are influenced by the cutting tool state and the material removal
process conditions. The variables that are prospectively effective
for machining process monitoring can be measured by the
application of appropriate physical sensors. Signals detected by
these sensors are subjected to analogue and digital signal
* Corresponding author.
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conditioning and processing with the aim to generate functional
signal features correlated (at least potentially) with tool state and/
or process conditions. Sensor signal features are then fed to and
evaluated by cognitive decision making support systems for the
final diagnosis. This can be communicated to the human operator
or fed to the machine tool numerical controller in order to suggest
or execute appropriate adaptive/corrective actions.

The sequence of activities in sensor monitoring of machining
process conditions can be surmised as follows (in parenthesis:
paper sections where they are dealt with): process variable-
s! sensorial perception (Sections 2 and 3)! data processing and
feature extraction (Section 4)! cognitive decision making (Sec-
tion 6)! action (Sections 5, 7 and 8).

2. History of sensorial perception and knowledge acquisition

In the cognitive sciences, sensorial perception is the process of
attaining awareness or understanding of sensory information. It is
a task far more complex than was imagined in the ‘50s–19s’, when
it was predicted that building perceiving machines would take
about a decade, a goal which is still very far from fruition.

2.1. Historical/philosophical background of sensorial perception

Since the times of early ancient Greek philosophy, a number of
interesting considerations concerning Sensorial Perception (SP),
knowledge achievement and truth identification have emerged.
The diverse concepts, views and theories regarding SP and
knowledge acquisition may be grouped into a few categories that,
along with the predominant cultural tendency in the course of
epochs, attribute to SP a higher or lower role (Table 1).

http://dx.doi.org/10.1016/j.cirp.2010.05.010
http://www.sciencedirect.com/science/journal/00078506
http://dx.doi.org/10.1016/j.cirp.2010.05.010


Table 1
Concepts of sensorial perception (SP) and its role in knowledge acquisition and truth identification during the different epochs.

SP role Authors of concepts/theories of SP in the course of epochs

Trivial, minor or no value Heraclitus (535–475 B.C.); Parmenides (515–450 B.C.) and the Eleatics;

Pyrrho (360–320 B.C.) and the Sceptics

Initiates cognition Empedocles (490–430 B.C.); Democritus (460–370 B.C.) and the Atomists

Supports cognition Plato (427–347 B.C.); Plotinus (205–270 A.D.); St. Augustine (354–430 A.D.);

Hegel (1770–1831) and the Idealists

Indispensible for cognition Aristotle (384–322 B.C.); St. Thomas Aquinas (1221–1274); Ockam (1280–1349);

Spinoza (1632–1677); Leibniz (1646–1716); Locke (1632–1704) and the Empyrists;

Kant (1724–1804); Peirce (1839–1914) and the Pragmatists

Basis of all knowledge acquisition Epicurus (341–270 B.C.); Zeno (334–262 B.C.) and the Stoics; L. da Vinci (1452–1519);

Telesio (1509–1588); Galilei (1564–1642); F. Bacon (1561–1626); Newton (1642–1727);

Descartes (1596–1650) and the theory of passive perception; Condillac (1714–1780) and

the Sensists; Stuart Mill (1806–1873), Comte (1798–1857) and the Positivists

Continuous adaptation of sensing to environment Darwin (1809–1882), Avenarius (1843–1900), Mach (1838–1916) and the Empiriocriticists;

Dewey (1859–1952) and the Instrumentalists; Bergson (1859–1941); Gregory [6–8] and the

theory of active perception

[(Fig._1)TD$FIG]

Fig. 1. Measurable phenomena for online sensor monitoring.
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2.2. Modern theories of sensorial perception

Passive perception, initially conceived by R. Descartes and
surmised as a ‘‘static’’ sequence of events: surrounding! input
(senses)! processing (brain)! output (reaction), is still sup-
ported by mainstream philosophers, psychologists, neurologists
and scientists. However, it is a theory nowadays largely losing
momentum. The theory of active perception has emerged from
extensive research of sensory misapprehensions, most notably the
works of Gregory [6,7]. This theory, which is increasingly gaining
experimental support, can be surmised as the ‘‘dynamic’’ relation-
ship between description (in the brain)$ senses$ surrounding,
all of which holds true to the linear concept of experience. For more
information on the implications of active perception theory for
science and technology see [8].

3. Sensors and sensor systems for machining

The measuring techniques for the monitoring of machining
operations have traditionally been categorised into two
approaches: direct and indirect. In the direct approach the actual
quantity of the variable, e.g. tool wear, is measured. Examples of
direct measurement in this case are the use of cameras for visual
inspection, radioactive isotopes, laser beams, and electrical
resistance. Many direct methods can only be used as laboratory
techniques. This is largely due to the practical limitations caused
by access problems during machining, illumination and the use of
cutting fluid. However, direct measurement has a high degree of
accuracy and has been employed extensively in research
laboratories to support the investigations of fundamental measur-
able phenomena during machining processes.

Through indirect measurement approaches, auxiliary quanti-
ties such as the cutting force components can be measured. The
actual quantity is subsequently deduced via empirically deter-
mined correlations. Indirect methods are less accurate than direct
ones but are also less complex and more suitable for practical
applications. In contrast to the traditional detection of tool
conditions, the approach is that machining processes are being
continuously monitored via sensing devices to quantify the
process performance or provide information for process optimisa-
tion using sensors. Sensors that are commonly used for online
measurement are summarised in Fig. 1.

3.1. Motor power and current

Electric drives and spindles provide the mechanical force
necessary to remove material from the part. By the measurement
of motor related parameters such as motor power or current, both
process power and, more recently, measures of the machine tool
and drive condition can be realised. The major advantage of motor
related parameters to detect malfunctions in the cutting process is
that the measurement apparatus does not disturb the machining.
The capacity to measure power already exists in the drive
controller as part of the drive control loop or can be readily
retrofitted and is suitable for use in production environments [4].

3.1.1. Power and current measurement technology

Retrofit power measurement solutions are an economical
monitoring solution for many machining operations. However,
the latest modern open control systems allow access to internal
signals in the numerical controller such as motor power and motor
current [9]. Software can be seamlessly integrated into the CNC
control and provides the user with a dedicated monitoring
interface via the Human Machine Interface (HMI) [10]. Over the
last decade, this technology has become commonplace in industry.
A logical extension of this approach is the adaption of control
parameters based on internal control signals. Adaptive Control
Optimise (ACO) and Adaptive Control Constraint (ACC) based
algorithms have been developed and implemented using both
internal control signals and additional sensors [11,12]. An
emerging and interesting direction for power monitoring research
is to undertake the monitoring directly in the drive control (Fig. 2).
Pritschow and Kramer [13] proposed a methodology for increased
openness in drive controls demonstrating high quality signal
information for process and drive condition monitoring. Systems
based on power measurement technology have been applied in
production, but there are ongoing requirements to investigate the
sensitivity of internal signals and the compensation for drive
characteristics: e.g. the motor and drive train dynamics are
determined and removed from the power and current signals
[14,15].

3.1.2. Power monitoring signal features

Motor current and power sensing use the motor itself as an
indirect sensor of cutting force. Thus, when using sensor systems
based on motor current or power, it is crucial that the relationship
between input current/power and output force/torque is linear and
understood. The signal features and uses of current/power
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Fig. 2. Modular architecture for power monitoring on drive controller [13].

[(Fig._3)TD$FIG]

Fig. 3. Integrated force sensors in motor spindle [27].
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monitoring face a number of issues, including [4,16]: (i) the
amount of spindle power required for material removal may be a
very small part of total power, e.g. for small diameter drilling and
finish machining; (ii) the spindle motor power is proportional to
the resultant cutting force, the least wear sensitive parameter; (iii)
temperature rises inherent in electrical motors influence power
consumption; (iv) drive motors are highly dependant on the axis
lubrication state, transverse rate and axis condition.

The performance of indirect sensors, such as motor current/
power, can be improved by developing a model of the distortion
introduced by the sensor within the mechanical/electro-mechan-
ical system. A number of studies provided a better understanding
of signal features for various spindles and drive systems [15,17–
20]. Mannan and Broms [19] carried out investigations into the
temperature dependence of motor current measurements, finding
that input current increased with motor temperature from 4 to 9%.
The temperature in permanent magnet feed motors is governed by
magnetic material properties and errors from 1 to 15% can be
expected over the tool life duration. Also, increases in current from
15 to 20% were required to maintain torque and this was attributed
to magnetic losses. Laboratory investigations by Ketteler [16]
found a 12% variation in spindle power between the machine start
up time and when the machine was warm following a period of
operation.

An important outcome of the models developed by researchers
is the quantification of the sensitivity and dynamic bandwidth of
the motor power/current sensing loop. Stein and Wang [15] related
the sensitivity of the current drawn by the spindle and feed drive
motors to the cutting forces and noted that the currents were very
sensitive to the presence of Coulomb and viscous friction. The
bandwidth of the spindle drive was between 2 and 18 Hz, and for
the feed drive it was approximately 80 Hz. Prickett and Johns [21]
noted that the bandwidth of feed drives used in milling was
typically under 100 Hz, although Jeong and Cho [22] reported in
their experimental trials a current sensor bandwidth of 130 Hz.
The dynamic characteristics of the current feedback control loop of
the feed drive system determine the bandwidth of the current
sensing system for indirect cutting force measurements [17,23,24].
This feature is prevalent in milling, where the signal from the tooth
passing frequency can be 400 Hz for certain operations. This would
render power and current monitoring ineffective for some machine
configurations and monitoring operations, or it would seriously
reduce the sensory information quality. The high bandwidth of
linear motors as feed drive motors is beneficial in this context, as
these motors have no losses due to friction, although magnetic
losses can be notable.

3.2. Force and torque

Any cutting operation requires a certain force to separate and
remove the material. The monitoring of cutting forces in
machining for the validation of analytical process models, the
detection of tool failure, etc., has been used extensively by
researchers [25]. This is due to the high sensitivity and rapid
response of force signals to changes in cutting states. Torque
sensors, like force sensors, also consist of a mechanical structure
that responds to a deformation but in this case the applied load is
torsional. The underlying force measurement technology is often
identical but the application of torque sensors and the method of
signal transmission from rotating tool holders are different.

3.2.1. Force and torque measurement technology

Force and torque sensors generally employ sensing elements
that convert the applied force or torsional load into deformation of
an elastic element. The two main sensor types used are piezo-
electric based and strain based sensors.

3.2.2. Piezoelectric sensors

Direct force measurement using piezoelectric sensors is
possible when the force transducer is mounted in line with the
force path. In cases where more measurement flexibility is
required, multi-component force transducers have been developed
and are used extensively in lab based applications. Rotating cutting
force dynamometers are also available that contain the force
sensing elements capable to measure 3 components of force and
torque. The data is transmitted from the rotating part of the sensor
to a stator via telemetry. Rotating cutting force dynamometers can
operate at speeds of up to 20,000 rpm and have been used for high
speed milling of aerospace materials. Developments like the
integration of force sensors into the machine structure have taken
place over the last 10 years with concepts developed for drilling
[26] and milling [27]. Fig. 3 shows sensors integrated into the main
force flux of the motor spindle. These concepts have been slow to
transfer into practice because the spindle or structure itself must
be characterised and strategies to isolate process phenomena from
spindle and machine dynamics must be developed [28–32].

3.2.3. Strain gauges

Strain gauge force transducers, consisting of a structure that
deforms under a force, offer reasonably high frequency response
and long-term stability. Kim and Kim [30] developed a combined
tool dynamometer utilising the best features of strain gauge and
piezoelectric sensor types: strain sensing for static force measure-
ments and a piezoelectric thin film accelerometer for dynamic
force measurements. The total cutting force could be obtained by
the summation of the static and dynamic forces. Korkut [31]



[(Fig._4)TD$FIG]

Fig. 4. Sources of AE in machining [11].
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developed a strain based force measurement platform to measure
3 cutting force components during milling. The dynamometer
consisted of four elastic octagonal rings, on which strain gauges
were mounted, clamped between upper and lower plates forming a
platform. The precision of the strain based dynamometer was 5 N,
with bandwidth 192 Hz and maximum loading 1500 N. Smith et al.
[32] designed a strain based sensor to fit between tool and holder
on conventional milling tooling. The sensor provided virtually
distortionless torque measurement over a bandwidth DC –
2000 Hz for a 100 mm diameter face-milling cutter. A compensat-
ing filter with the reciprocal response of the sensor accounted for
the frequency response distortion due to vibrational modes of the
integrated sensor spindle assembly. An air core transformer
operating at 10 kHz was used to couple power to the electronics
rotating with the spindle. Opto-electronic devices in the form of
light emitting diodes and photo-detectors were used to establish
two way digital communications.

3.2.4. Other force sensor types

The ongoing development of silicon micro fabrication technol-
ogy has facilitated the realisation of micro force sensors [33]. Good
results have been reported indicating measurement ranges from as
low as 1 mN. Surface Acoustic Wave (SAW) sensors have
significant potential as passive strain sensors where wireless
interrogation eliminates the need for the sensor to have power
[34]. The properties of ferromagnetic materials have been
investigated for use in force sensor technology. One approach is
to fix a soft magnetic amorphous ribbon to the shaft under load and
measure the resulting magnetic flux density. Aoyama and Ishii [35]
used the Villari effect to detect cutting forces, cutting torque and
tool deflection. The Villari effect is based on changes in material
magnetic properties with applied load. A magneto-strictive film
was deposited on a cutting tool shank and a detection system was
developed where impedance changes in pick-up coils indicated a
strain. Initial results indicated that both axial loading and torque
could be measured, while further work was necessary to improve
accuracy in comparison to piezo based force measurement
systems. However, the techniques cited can offer advantages over
the piezoelectric effect in that no direct contact is required to the
structure surface, making it ideal for torque or force measurements
during shaft rotations.

The new era in cutting force dynamometry using piezoelectric
transducers has made the accurate measurement of cutting forces
possible. However, instead of having a straightforward signal that
can be easily decoded using a static calibration curve, signals now
contain contributions from dynamic unevenness of machine
fixture, cutting tool and environmental noise. Methods for online
compensation of force measurement errors can be broadly
arranged into two classes. In the first class, there are the systems
that attenuate the impact of forces caused by vibration of the
dynamometer and mass; this is accomplished by the estimation of
the errors caused by inertia and the subtraction of these errors
from the recorded signal [36]. In the second class of online
methods, the compensation is accomplished by means of adaptive
filtering [27,37–39].

3.3. Acoustic emission measuring technology and sensors

Piezoelectric sensor technology is particularly suitable for
measuring acoustic emission (AE) [40,41] in machining process
monitoring. With very wide sensor dynamic bandwidth from 100
to 900 kHz, AE can detect most of the phenomena in machining,
though significant data acquisition and signal processing is
required [11] (Fig. 4). This presents problems for signal processing
and bandpass filters usually provide great flexibility for AE
detection by selecting appropriate frequency ranges. The output
signal from the AE sensor is fed through a preamplifier that has a
high input impedance and low output impedance. A root mean
square (RMS) converter, gain selection unit and filters are also
typically contained within the preamplifier housing. The capaci-
tance principle can also be used for detecting AE, as the capacitance
of two parallel plates changes with the distance between plates.
The accuracy of this AE detection method is higher than many
other techniques and capacitance based AE sensors are used for
calibrating other AE sensors. However, capacitance type displace-
ment sensors for AE are very sensitive to sensor position and
surface mounting. Thus, they are not suitable for machining
process monitoring where the operating environment is often
quite severe on the sensor [42].

Another sensing method for AE detection is the application of a
piezoelectric thin film sensor deposited on a shim and located
between cutting insert and tool holder. The coating materials can
be AlN or ZnO. The sensor is reported to have advantages over
commercially available AE sensors: it is located close to the cutting
process and is characterised by a very large frequency bandwidth.
Good signal quality has been reported, particularly in the high
frequency range, with less interference and lower geometrical
propagation loss and absorption rate [43]. An alternative approach
using fibre optics was investigated in [44,45]. This sensing method
has reported advantages over conventional AE sensors such as a
broader bandwidth, flat frequency response and absolute calibra-
tion. More significantly, the fibre optic interferometer is a non-
contacting method of signal transmission from source to sensor.
The latter two methods have largely only been developed in the
laboratory and have not been significantly used in industrial
applications.

3.3.1. AE signal transmission and sensor location

The high frequency and low amplitude nature of AE means that
signal transmission via a coupling fluid is possible. By the location
of the AE sensor on the coolant supply nozzle, the coolant can be
used as transmission path [46]. Hutton and Hu [47] used a non-
intrusive coupling fluid to couple the AE sensor to the spindle drive
shaft, similar to Li et al. [48]. These signal transmission methods
had a distinct advantage for rotating tools such as in milling and
drilling. Various other methods of signal transmission from AE
sensor to AE coupler/signal processor are common to other sensing
applications, including slip rings, inductive coupling, and radio
frequency transmission [46,49]. Jemielniak [50] investigated
aspects of AE signal processing in machining and proposed that
in the machine tool environment the AE signal is repeatedly
reflected from the inner surfaces of the structure where the sensor
is mounted. This resulted in prolonged duration of the signal
recorded by the sensor.

AE sensor mounting requires a couplant between sensor and
material surface. The latter should be free from dirt, paint, and any
other barrier that may influence the acoustic coupling. The farther
the sensor is placed from the AE source, the greater the signal
attenuation. This has significant implications for measuring AE
during machining. If the AE sensor is mounted on the workpiece
side, the changing distance between sensor and source during
machining is a factor that requires consideration. This sensor
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Fig. 5. Signal processing logical scheme.

Fig. 6. Typical measuring chain for AE detection during machining.
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location also presents difficulties regarding sensor mounting, e.g.
should the AE sensor be located on the workpiece or on some
stationary part of the machine tool [51].

3.4. Vibration and other sensor types

A large variety of sensing principles are used for sensing
vibration. However, piezoelectric transduction is the most
common type in vibration sensing of machining operations.

Vibrations that occur during metal cutting can be divided into
two groups: (i) dependant and (ii) independent of the cutting
process. The two groups are not mutually exclusive. Vibration
independent of metal cutting include forced vibration caused by
other machines or machine components, e.g. vibration transmitted
through foundations, unbalance of rotating parts, inertia forces of
reciprocating parts and kinematic inaccuracies of drives. Vibration
dependant on metal cutting can demonstrate a number of
characteristics as a function of the process, e.g. interrupted
cutting. The varying cutting forces that occur during metal cutting
may result from non-homogeneity and properties variations in the
work material. Tool engagement conditions during machining play
a notable role in the vibration produced. The self excited vibration
characteristic known as chatter is the most renowned type of
vibration in machining and is detrimental to surface finish and tool
life. Chatter mainly occurs due to the waviness regeneration
caused by the interaction between material surface and tool at
particular spindle rotational frequencies, and by mode coupling
where relative vibration between workpiece and tool occurs
concurrently in two directions in the plane of cut.

3.5. Other sensor types

Many other sensor types have been the subject of research
including the use of micro sensors such as the integration of
temperature sensors into the tool insert [52–54]. Temperature
measurement in machining has been extensively reviewed by
Davies et al. [55]. The use of vision systems for monitoring tool
condition has been comprehensively reviewed by Kurada and
Bradley [56]. As in many applications using machine vision, object
illumination notably impacts the process and for industrial
applications can lead to process unreliability. Ryabov et al. [57]
used lasers to examine the profile of the cutting edge of milling
cutter inserts. A 3D tool image was realised using this technique.
The tool condition was assessed using a histogram method for
signal pre-processing of noisy input signals and a hybrid technique
for detection and measurement of tool failures. Various research-
ers used multi-phenomenon sensing to detect tool conditions.
Some of the lesser used techniques include the monitoring of
sound and image analysis by Mannan [58], and the use of strain
and temperature by Shinno and Hashizume [59]. The use of
displacement to examine the workpiece dimension and surface
quality in relation to tool wear has been a theme for a number of
researchers. The techniques used were bifurcated optic fibre with
reflected light intensity measurement [60], laser light with
reflected light intensity measurement [61] and capacitive sensing
[62]. The use of ultrasonics has also been attempted by Abu-Zahra
and Yu [63], and by Nayfeh et al. [64]. These applications were
limited to turning and the sensor/tool interface considerations and
calibration techniques were topics for future work. The use of
capacitance sensors to detect the spindle shaft displacement due to
cutting load was investigated by Albrecht et al. [65]. A capacitive
displacement sensor was integrated into the spindle to measure
the static and dynamic variations of the gap between sensor head
and rotating spindle shaft under load. A Kalman filter based
scheme was used to compensate for spindle dynamic effects.
Capacitance sensing allowed the observation of roundness error,
spindle unbalance and spindle shaft dilation due to temperature
variations. Auchet et al. [66] used the measured command voltages
of magnetic bearings in the motor spindle to indirectly determine
the cutting forces. The spindle was treated as a black box where the
transfer function linking the unknown cutting forces was
experimentally established. The cutting forces calculated from
the command voltages were found in good agreement with
platform dynamometer force measurements. The bandwidth of the
indirect force measurement using active magnetic bearings
(4 kHz) was found to be notably in excess of that available with
dynamometer based solutions. Further work was deemed neces-
sary to deal with gyroscopic influences.

4. Advanced signal processing

It is generally acknowledged that reliable process condition
monitoring based on a single signal feature (SF) is not feasible.
Therefore, the calculation of a sufficient number of SFs related to
the tool and/or process conditions [67–70] is a key issue in
machining monitoring systems. This is obtained through signal
processing methods that comprise the stages shown in Fig. 5.

First, pre-processing (filtering, amplification, A/D conversion,
and segmentation) including, on occasion, signal transformation
into frequency or time–frequency domain (Fourier transform,
wavelet transform, etc.). The next stage is the extraction of signal
or signal transform features changing with tool or process
conditions. There are many diverse descriptors from different
sensor signals, but most cannot be easily related with the process
being monitored. Thus, feature selection is of critical importance
and the identified relevant features are finally integrated into the
tool or process condition diagnosis system.

4.1. Signal pre-processing

The analog signal from the sensor usually cannot be connected
directly to the A/D converter but needs pre-processing by a
conditioner specific to the sensor (piezotron coupler, charge
amplifier, etc.). For example, a typical procedure of analog AE
signal pre-processing follows the pattern schematically shown in
Fig. 6.

The piezoelectric AE sensor is usually placed as close as possible
to the cutting zone, e.g. on the tool shank, the tool post, the head
stock or the spindle. Because of its high impedance, the sensor
must be directly connected to a buffer amplifier which converts the
charge signal from the sensor into a proportional voltage signal.
This is typical also of other piezoelectric sensors such as
dynamometers or accelerometers. The analog signal should be
filtered to keep it within the range of the frequency response of the
sensor, suppress high frequency noise or continuous biases. The
filtered signal is then subjected to further processing and/or
recording. The frequency range of the raw AE reaches 1 MHz
(typically 80–700 kHz) so dealing with it requires a high sampling
frequency (>1 MS/s) and large memory resources with high
computing costs. Thus, in many cases the AE signal is demodulated
to RMS (AERMS) to obtain a low frequency variable, which can be
further processed with less expensive signal processing devices.[(Fig._6)TD$FIG]
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Fig. 7. Orbit diagram of cutting force signals in dual directions measured by

integrated force sensors for different level of tool wear [98].
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The integration time constant of the RMS converter should be
carefully selected, depending on the subsequent SF extraction.
Signal averages can be calculated with other features such as burst
rate, event counts, etc. In such cases, the integration time constant
should be 10 times shorter than the typical burst duration, which is
approximately 2 ms [50].

The AE energy from the cutting zone can be considerable.
Because of the pre-processing units characteristics, these high
amplitude signals may cause overloading of the buffer amplifier
and signal saturation. High-pass filtering of saturated signals
results in temporal vanishing of the signal value [71]. This can
often result in misleading data evaluation. It should be noted that
this signal distortion cannot be detected in the AERMS signal and, in
this case, such signals must be considered completely distorted
and useless. To avoid these problems, the gain of the buffer
amplifier should be as small as possible and any further necessary
amplification should be done after signal filtering. This is critically
important when AERMS is used instead of AEraw [71].

Just before conversion into digital form, for the highest
possible accuracy, the signal is usually amplified so that the
signal maximum voltage range equals the maximum input range
of the A/D converter. The digital signal is often subjected to
further pre-processing. Digital filtering reduces frequency bands
not correlated with the monitored process or extracts informa-
tion necessary for specific pattern recognition stages. For
example while using a spindle-integrated force sensor system
on a machining center, the cutting force signals are distorted
when the spindle speed harmonics coincide with the spindle
natural modes. Kalman filters eliminate the influence of
structural modes on force measurement and significantly
increase the frequency bandwidth of the force measurement
system [72]. Scheffer and Heyns [73] investigated possible SFs
related to tool wear in interrupted cutting. They applied digital
filters to separate two frequency ranges of cutting force signals:
the low frequency range was an indication of static cutting
forces and the high-frequency range of the natural frequencies
of the toolholder which resulted from the excitation of the
cutting operation. Jemielniak [74] used low-pass filtering of
cutting force signals for catastrophic tool failure detection in
turning based on the detection of sudden force value changes.
The filtering allowed a much lower tolerance band on the limit
set on force value. In many applications, a digital signal is
filtered to prevent high frequency noise and signal oscillations
due to transient mechanical events [75,76].

Another sensor signal pre-processing method is segmentation.
Signal information should be extracted when the tool is actually
removing metal in a steady state, since only this signal portion
contains information about process or tool conditions [77,78].
Dong et al. [79] calculated SFs from force samples in one spindle
rotation, instead of one tooth period, to reduce the influence of run-
out. Similarly in [80], where tool failure detection in interrupted
turning was analyzed, the data points taken into consideration
contained the AE data from at least one full workpiece revolution.
Jemielniak et al. [81] noted that, despite constant cutting
conditions in single micro-milling cut, AE was not constant; thus,
separate SFs were calculated for all the cut and for the 1st and the
2nd third of the cut.

4.2. Feature extraction

4.2.1. Time domain

4.2.1.1. General purpose time domain features. From the sensor
signal, SFs need to be derived that can describe the signal
adequately and maintain the relevant information about the
process or tool conditions. There are several SFs that can be
extracted from any time domain signal. The most common are: (i)
arithmetic mean, average value, magnitude [69,75,79,82–89]; (ii)
effective value (root mean square – RMS) [69,75,83–85,87,89,90];
(iii) variance (or standard deviation) [75,79,82–84,86,90,91]; (iv)
skewness [79,83–87,91]; (v) kurtosis [79,83–87,91,92]; (vi)
signal power [77,87,91]; (vii) peak-to-peak, range, or peak-to-
valley amplitude, [69,73,75,79,83,87]; (viii) crest factor
[69,79,84,85,87]; and (ix) ratios of the signals, signal increments
[69,93].

4.2.1.2. Acoustic emission time domain features. Some features are
applicable only to vibration and AE signals: (a) ring down count or
pulse rate: number of times AEraw signal crosses the threshold level
[68,71,89,90,94]; (b) pulse width: the percentage of time during
which AEraw remains above the threshold level [71,94]; (c) burst
rate number of times AERMS signal exceeds preset thresholds per
second [68,71,87]; and (d) burst width – percentage of time AERMS

signal remains above each threshold [71,94]. Kannatey-Asibu and
Dornfeld [95] assumed that AERMS signal has a b distribution. They
showed that skew and kurtosis are sensitive to both the stick-slip
transition for chip contact along the tool rake face and progressive
tool wear on the flank of the cutting tool. Jemielniak and Otman
[80,96] applied these parameters to catastrophic tool failure
detection.

4.2.1.3. Time series modeling. Three main time series modeling
techniques are frequently used in machining monitoring: Auto
Regressive (AR), Moving Average (MA) and Auto Regressive
Moving Average (ARMA) [21,68,79,84]. Early research work
developed AR models of high order, up to the 28th order [21].
These were considered of little practical use because of the high
computing load inadequate for online process monitoring. Thus,
the 1st or the 1st and the 2nd AR, MA or ARMA coefficients were
used as features [68,79,84]; sometimes higher AR coefficients of
the 3rd–5th order [97]. Recently, Suprock et al. [97] applied the
100th order AR model for failure prediction in endmilling. They
noticed that, while lower-order models may achieve ‘‘adequacy’’,
as defined in statistical terms, higher-order models produce more
stable trends.

4.2.1.4. Principal component analysis. Principal component analy-
sis (PCA), also known as the Karhunen–Loeve transformation, has
been widely used in system identification and dimensionality
reduction in dynamic systems. Shi and Gindy [98] investigated the
PCA technique to extract features from multiple sensory signals
treated as a high-dimensional multivariate random matrix,
composed of several vectors formed by the signals. By imple-
mentation of PCA, the signals can be reduced to a new reduced-size
feature vector. Shi and Gindy used two perpendicular cutting force
signals for tool wear monitoring in broaching. The pattern of
cutting forces in the 2D space orbit diagram (Fig. 7) formed as
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Fig. 8. A long-term feed-motor current signal and its permutation entropy Hp during

normal cutting and tool breakage [76].
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scatter ellipse and was closely related to tool wear. This relation
was quantitatively evaluated by PCA through the length of the
major/minor axes (a/b) and the ellipse inclination angle (b).
Moreover, the origin (Fy, Fz) of the scatter ellipse was related to the
average value of the cutting force in two orthogonal directions and
could also be included in the feature set. Finally, the feature set
normalized elements were specified as {Fy, Fz, a, b, b} and fed to the
tool wear prediction model. Abellan-Nebot and Subirón [99]
extracted several standard SFs from cutting force signals, applied
PCA to reduce the number of SF and constructed a new set of
features that were a combination of the original SFs.

4.2.1.5. Singular spectrum analysis. Singular spectrum analysis
(SSA) is a non-parametric technique of time series analysis
incorporating the elements of classical time series analysis,
multivariate statistics, multivariate geometry, dynamical sys-
tems and signal processing [83]. SSA decomposes a given time
series into the sum of three independent components: a slowly
varying trend representing the signal’s local mean, the difference
between the original signal and the trend, called detrended signal
or oscillatory component, and a structureless noise presenting no
latent structure. Basically, the method projects the original time
series onto a vector basis obtained from the series itself,
following the procedure of PCA. Salgado and Alonso [83] applied
SSA to vibration signals from a turning process to extract
information correlated with the tool state or for in-process
prediction of surface roughness [100]. They decomposed two
vibration signals (longitudinal and transverse) into the trend and
the detrended signals, and extracted from them several
statistical features. It appeared that only the RMS and variance
of the detrended signals showed a monotonic behavior with tool
wear, which meant that the information in the vibration signals
about flank wear was mostly contained in the high-frequency
components. Later, they extended their technique by applying
cluster analysis to group the SSA decomposition of the vibration
signals [101]. This time, they found that only the RMS and
standard deviation of the medium and high frequency signals of
the longitudinal vibration and the RMS and standard deviation of
the high-frequency components of the transverse vibration
showed a monotonic behavior with tool wear. Salgado and
Alonso [102] also used SSA to extract information correlated with
tool wear from audible sound signals.

4.2.1.6. Permutation entropy. Another relatively new parameter of
time series complexity measure applied in machining monitoring
is permutation entropy [76]. For time series {xt, t = 1. . .T} of n

different signal values, there are n! permutations p of ordered
patterns. The permutation entropy for the time series is defined as:

H pðnÞ ¼ �
Xn!

i¼1

pðpiÞ ln pðpiÞ (1)

where p(pi) is the relative frequency of permutation pi.
The normalized permutation entropy is then:

H p ¼
H pðnÞ
ln ðn!Þ (2)

and the smaller the value of Hp, the more regular the time series.
Li et al. [76] used permutation entropy as a feature of feed-

motor current signals to detect tool breakage in endmilling. Fig. 8
shows long-term feed-motor current signals and the matching
normalized permutation entropy. The feed-motor current during
normal cutting conditions is similar to a regular periodic signal.
Thus, the Hp values were small: from 0.75 to 0.8 between the 8th
and the 38th second of experiment. This meant that the feature
values were insensitive to noise influences such as different effects
of friction coefficients at diverse positions. When a cutter flute was
broken, the regular periodic quality of the motor current was
disturbed and the Hp values increased.
4.2.2. Frequency and time–frequency domain

4.2.2.1. Fast Fourier transform. The determination of SFs in the
frequency domain is usually based on a discrete windowed Fourier
transform. Discrete Fourier transform (DFT) maps a discrete–time
sequence of N samples x[n] (n = 0. . .N � 1) into a discrete–
frequency representations X[m] (m = 0. . .N � 1). Practically, one
of the several commonly known fast Fourier transform (FFT)
algorithms is used. For example, if tool wear influences the
frequency contents of the sensor signal, FFT gives an inside view of
this process. El-Wardany et al. [92] investigated spectral maps of
vibration signals for TCM in drilling and observed that the signal
magnitude in the frequency range 2–5 Hz increased sharply just
before drill breakage. Verl et al. [103] applied frequency and
distance domain parameters to quantify the wear of feed drives.

The use of single Fourier coefficients X[m] is not practical due to
leakage effects. Thus, further SFs are usually considered: (i)
amplitude of dominant spectral peaks [69,78,87,90,92,104]; (ii)
signal power in specific frequency ranges [69,71,85,87,105,106];
(iii) energy in frequency bands [72,78,84]; (iv) statistic features of
band power spectrum such as mean frequency, variance, skewness,
kurtosis of the power spectrum distribution [87]; and (v)
frequency of the spectrum highest peak [69,89,107].

Even though the sensor signals detected during machining are
essentially nonstationary, the FFT averages the frequency compo-
sition over the duration of the signal with fixed resolution of the
entire frequency spectrum. To address this issue, a time–frequency
analysis as the short time Fourier transform (STFT) can be applied.
STFT uses a window w½n� sliding along the time axis to characterize
the change of frequency components at different time intervals.
Spectral coefficients are calculated for this short length of data; the
window is then moved to a new position k and the calculation
repeated. Thus, STFT provides the time information by computing
different FTs for consecutive time intervals, and then putting them
together. Marinescu, and Axinte [78,108] studied the effectiveness
of AE signals to detect tool and workpiece failures in milling
operations and applied STFT to precisely determine the moment
when the inserts are in contact with the workpiece in milling.

4.2.2.2. Wavelet transform. The STFT is a form of joint time–
frequency analysis but it has a major drawback: the window width
which decides on both time and frequency resolution. Both time
and frequency resolutions cannot be arbitrarily high (Heisenberg’s
uncertainty principle). To overcome the preset resolution problem
of the STFT, the wavelet theory was developed in the late 1980s by
Mallat [109] and Daubechies [110]. The wavelet transform (WT)
uses windows of different lengths for different frequencies: high
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Fig. 9. Cutting force detail level-5 DWT at each spindle revolution during normal,

worn tool and tool breakage conditions in milling [93].
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frequencies are analyzed with narrower windows for better time
resolution, while at low frequencies wider windows are used for
better frequency resolution. Thus, the WT can extract more
information in the time domain at different frequency bands. The
WT decomposes a signal through the wavelet scale function and
scaled and shifted versions of the mother wavelet. Practically, it
can be reduced to filtering the signal by high-pass and low-pass
filters derived from the wavelet and the scaling function. The
discrete wavelet transform (DWT) decomposes the signal into the
scaling coefficients (approximations A) and the wavelet coeffi-
cients (details D) by convolution of the signal and impulse
response of the low-pass and high-pass filters.

Another type of WT is the wavelet packet transform (WPT)
where both approximations and details are decomposed, generat-
ing many more frequency bands. This provides more opportunities
to find useful SFs. On the other hand, for n levels of decomposition,
the DWT produces 2n sets of coefficients as opposed to (2n+1 � 2)
sets for the WPT. Thus, the computational cost of the DWT is much
less than for the WPT.

WT have been used in machining monitoring for more than
decade [111–117]. Kamarthi and Pittner [113], who used force and
vibration signals for flank wear estimation in turning, compared
the performance of FFT and WT. They noticed that, differently from
FFT, short time delays of the signal can cause large changes in WT
coefficients, especially at fine scales. According to the results, they
recommended WT for force signals, while FFT seemed better
matched to vibration signals.

It is worth noting that, in general, the type of wavelet is
arbitrarily selected without any explanation. Occasionally, state-
ments such as ‘‘the coiflet 3 wavelet was chosen for analysis
because it yielded the best results after experimenting with a
number of different wavelets’’ [84] can be found.

Sometimes, especially in earlier works, the wavelet coefficients
were applied directly. Tansel et al. [114] used them as inputs to
neural networks for tool failure detection in milling based on
cutting force measurements. Xiaoli [115] and Tarng and Lee [116]
applied wavelet coefficients of AC servo motor current signals
directly for drill breakage detection. Kwak [117] did the same for
tool failure detection based on cutting force measures.

As the WT outputs have relatively large size, informative
features must be extracted from the coefficients. WT coefficients
are usually treated as separate signals, each characterized by
features used for time domain signals: average value
[111,112,118], RMS [118], standard deviation or variance
[104,112,118,119], crest factor [84,112], peak-to-valley or peak-
to-peak value [112,118], kurtosis [84,112,118,119].

Wu and Du [112] introduced an automatic feature extraction
and assessment procedure using WPT for machining monitoring.
They selected the wavelet packets according to their energy, as
such packets contained large amounts of information. To
identify the effectiveness of the selected features, four criteria
were proposed: cross-correlation and cross-coherence of the
signal and the reconstructed signal, correlation of the residue
and power spectrum of the residue. Scheffer and Heyns [84]
used a similar method but applied Shannon entropy to choose
the optimal packets. On the other hand, wavelet packets energy
itself can be used as a SF [86,113,119,120]. Kamarthi and Pittner
[113], using force and vibration signals for flank wear estimation
in turning, first grouped the wavelet coefficients into clusters;
then, the wavelet coefficient energy in the cluster was used as
single robust feature. This method was later applied in [120] for
tool wear estimation in turning based on AE signals. Rene et al.
[93] used asymmetry of compressed cutting force signals in
milling for catastrophic tool failure detection. During normal
milling with both inserts in good conditions, cutting force
signals are alike and asymmetry is close to zero. When breakage
takes place, cutting force signals of the inserts are different and
the waveform is asymmetric. The asymmetry was calculated as
the point-to-point variance between detail level-5 DWT
coefficients of the cutting force signals for each insert in a full
tool revolution:

A ¼
X4

i¼1

ðBiþ4 � BiÞ2 (3)

where Bi – DWT coefficient for the first insert, Bi+4 – DWT
coefficient for the second insert. Fig. 9 shows the normalized
asymmetry data from the tool breakage detection system plotted
for each milling tool revolution. A similar method was applied later
to the motor current signal [121].

Mori et al. [122] noticed that the breakage of small drill bits is
characterized by two transient types (‘sawtooth’ and ‘screeching’)
in the cutting force signal. To detect such transients they applied
DWT coefficients reduced to three indices: energy, waviness, and
irregularity. When chipping or tool breakage occurs, the signals
often contain abrupt changes or a sudden shift to a different level,
which are singularity points. Local singularity can be estimated
from the regularity of function f(x) at a certain point x0 and the rate
of decay of the coefficients near this point using Lipschitz
exponents from equation [123]:

j f ðxÞ � f ðx0Þj � Ajx� x0ja (4)

where A > 0, (x, x0) 2 [a, b], and 0 � a � 1.
The function f(x) is called uniformly Lipschitz a over the interval

[a, b]. The larger the value of a the smoother the function f(x). The
exponent a indicates the degree of singularity and is often used as a
feature in TCM [124]. Chen and Li [125] applied this method to
detect singularities in wavelet coefficients by looking for time
points where the Lipschitz exponent drops from positive values
towards zero or below. Zhu et al. [86], who applied singularity
analysis to detect tool wear in milling, noted that, with wear
increase, force signal singularities and singularity ranges increased
too. They also stressed that particular attention should be given to
choosing the mother wavelet type for this kind of analysis. The
wavelet should be the 1st order differentiation of a certain smooth
function (i.e. Gaussian). The selected wavelet must be also
sufficiently regular, i.e. a larger vanish moment, otherwise
singularities could be overlooked. WT is sometimes used for
signal de-noising before applying another signal processing
technique [76,117,126]. It is based on the rule that wavelet
expansions tend to concentrate data energy into a relatively small
number of large coefficients. Wavelet-based de-noising is done by
first transforming the data into the wavelet domain, zeroing all the
wavelet coefficients below a threshold and inverse transforming
back into the time domain. An interesting review of WT
applications in tool condition and process monitoring can be
found in [124].
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Fig. 11. Feed-motor current signals and detection results for small cutting edge

fracture: (a) original signal, (b) combined instantaneous energy, (c) SNEO output

and (d) threshold results [126].
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4.2.2.3. Hilbert–Huang transform. A further new method of time–
frequency analysis recently applied to extract the key features of
sensor signals for machining operation monitoring is the Hilbert–
Huang transform (HHT) [127], especially designed for nonsta-
tionary and nonlinear signals. Unlike spectrograms, wavelet
analysis or Wigner-Ville Distribution, the HHT is more like an
algorithm applied to a data set (empirical approach), rather than a
theoretical tool. It consists of two steps: the Empirical Mode
Decomposition (EMD) to decompose a signal into a set of
monocomponent signals, called Intrinsic Mode Functions (IMFs),
and the application of the HHT to the IMFs. The Hilbert Spectral
Analysis (HSA) examines the IMFs instantaneous frequency and
generates effective time–frequency distributions called Hilbert
spectra.

Peng [128] used this method for tool breakage detection based
on cutting force signal during milling. The tool breakage could be
detected directly in the Hilbert spectrum or by means of the
energies of the characteristic IMFs associated with characteristic
frequencies of the milling process. When tool breakage occurs, the
energies of the associated characteristic IMFs change in opposite
directions, which is different from the effect of changes of the
cutting conditions, e.g. depth of cut and spindle speed (Fig. 10).
Thus, they were not only able to capture the significant
information on the tool condition but also reduced the sensitivity
to the effect of diverse uncertainties.

Bassiuny and Li [126] applied HHT analysis to detect end mill
flute breakage via feed-motor current signals (Fig. 11a). They noted
that some IMF components have higher amplitude in case of tool
breakage than the matching components in case of normal cutting.
The instantaneous energy of the most informative IMFs was
combined to form a new signal for further analysis (Fig. 11b). Then,
the energy signal was processed by the Smoothed Nonlinear
Energy Operator (SNEO) emphasizing the breakage-waves that
corrupt the pure feed-motor current signals (Fig. 11c). The SNEO
output was thresholded to separate breakage regions from
background signal regions (Fig. 11d).
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Fig. 10. Milling process with increased depth of cut and tool breakage; (a) cutting

force signal, (b) instantaneous frequency, and (c and d) average energies of two

dominant frequency regions f1 and f2 [128].
4.3. Signal feature selection

The number of features originating from one or more signals
can be very large but most of them are very distorted or indifferent
to process conditions, whereas the selected SFs should be relevant
and sensitive to process or tool conditions. However, even the well
correlated SFs can be sometimes randomly disturbed. Hence, the
number of SFs should be high enough to cover the possible random
disturbances of any single SF. On the other hand, especially in
neural network based systems, the more the features, the more
training samples are needed [111]. If the system is supposed to
work already after the first training session, the amount of training
samples may not be large enough to properly train a complex
neural network necessary for large numbers of SF inputs [71]. Thus,
the second objective of signal processing is to preserve as much of
the relevant information as possible by removing redundant or
irrelevant SFs. In industrial applications, feature selection should
be automatically carried out, without operator intervention. Sick
[69] presented an interesting classification of feature selection
procedures for tool wear estimation in turning. In 38% of 138
papers, SFs were selected without any reason (or based on
literature review), in 26% SFs were defined after analyzing the
measured signals, in 21% the most appropriate SFs were selected
without considering the behavior of the subsequent tool wear
model. Only in 15% of the papers, the optimal set of SFs was found
after analyzing of the influence of the diverse SFs on tool wear
estimation.

Quan et al. [129] applied the Pearson correlation coefficient r to
find the features that can best characterize tool wear conditions.
The correlation coefficient between a selected feature x and a tool
wear value y can be expressed as follows:

r2 ¼
P

iðxi � x̄Þðyi � ȳÞ
� �2

P
iðxi � x̄Þ2

P
iðyi � ȳÞ2

(5)

where x̄ and ȳ are the mean values of x and y, respectively. The
correlation coefficient r is a measure of the strength of linear
dependence between x and y. Also Scheffer and Heyns [73,84] used
this coefficient for SF selection, assuming that with lower r, the
lower the chance for the selected feature to show any trend
towards tool wear. They ignored the fact that, even if the SF is
perfectly correlated with tool wear, the correlation is not linear and
the correlation coefficient is <1.

To avoid any uncertain assumption about the SF dependence on
tool wear, Jemielniak et al. [94] used the coefficient of determina-
tion which is a statistical measure of how well any SF-tool wear
model approximates the real data points:

R2 ¼ RSS

TSS
¼ TSS� ESS

TSS
¼
P

iðyi � ȳÞ2 �
P

iðyi � ŷiÞ
2

P
iðyi � ȳÞ2

(6)
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where TSS ¼
P

iðyi � ȳÞ2, total square sum; ESS ¼
P

iðyi � ŷiÞ
2
,

residual square sum; RSS = TSS � ESS, regression square sum; yi; ȳ,
single and mean values of the SF; ŷi, SF value evaluated based on
any SF-tool wear function.

They proposed to group the SF values into four ranges of tool
wear KT and to replace the ŷi values with mean group values.

Jemielniak et al. [70,81] evaluated the correlation between SFs
and used-up parts of tool life (ratio of cutting time to tool life DT = t/
T). Each SF was correlated with DT, using a 2nd order polynomial
approximation, and the RMS error of this correlation was a measure
of the SF applicability to tool wear monitoring. Later, the method was
improved by substituting the polynomial approximation by low-
pass filtering of the time series representing the SF [130]. Al-
Habaibeh et al. [91] extracted ‘‘sensory characteristic features’’
sensitive to cutter conditions. They applied average dependency
values, obtained from Taguchi’s orthogonal arrays, as indicators of
the usefulness of a combination of specific sensor and characteristic
SFs for cutter fault prediction (the higher the dependence, the more
appropriate the sensor for fault prediction). Sun et al. [85] identified
the most effective SFs using a Bayesian framework and Support
Vector Machine (SVM). They evaluated the error between the tool
condition modeled with a candidate feature and the actual tool
condition (fresh or worn): the worst SFs were deleted.

Another method to verify the quality of the selected SFs
proposed by Scheffer and Heyns [73] is the Statistical Overlap
Factor (SOF), determining the degree of separation of a feature
between the new and worn tool conditions (the higher the better).
The SOF is defined by:

SOF ¼ x̄1 � x̄2

ðs1 � s2Þ=2

����
���� (7)

where x̄1, s1, x̄2, s2 is the mean and the standard deviation of data
collected from new (1) and worn (2) tools. The authors noticed that
automated feature selection paradigms often select SFs that are too
similar or dependent on one another, and thus cannot achieve the
goal of actual sensor fusion. In these cases, they recommended
‘‘engineering judgment’’ rules entailing automatic feature selec-
tion suspension and scientist manual intervention. Such procedure
is hardly acceptable in shop floor situations, making this
monitoring system a purely laboratory solution. Nevertheless,
they raised the important issue of removing the similar features
that do not contain additional information. Jemielniak et al.
[70,81,130] applied RMS error calculation of the best selected SFs
and all others. Those with RMS errors higher than a threshold were
rejected. From the remaining SFs, again the best one is chosen and
the SFs correlated with it are rejected, etc.

Dong et al. [79] applied neural networks to select relevant
features and design neural estimators for tool wear estimation in
face-milling. First, they extracted 16 features from the force signals
in one spindle rotation. Then, they used a neural network based on
Bayesian Multilayer Perceptrons (BMLP) for feature selection. 16
hyperparameters (a1, a2, . . ., a16) were assigned to the 16 extracted
features, respectively, representing the inverse variance of the
prior distribution of the weights on the connections from this
feature to hidden neurons. A smaller value of a means that larger
weights are allowed and the corresponding feature is relevant; a
larger a value means that the weights are near zero and the
corresponding feature is less relevant. Based on these values, the
relative importance of inputs is decided. They also applied a neural
network based on Bayesian Support Vector Machines for Regres-
sion (BSVR) with similar SF selection results. The comparison
between the tool wear estimation results showed that the BSVR
method was more accurate than the BMLP one, but at the cost of
higher computing load. Zhu et al. [86] applied WPD of cutting force
signals (5 levels, 62 packets) and an algorithm to reduce the SFs
number. They used Fisher’s linear discriminant analysis for ranking
features (mean energy of the packets) according to their class-
discriminability. The selected top discriminant SFs were modeled
and recognized by Hidden Markov Models. Binsaeid et al. [87]
presented a correlation-based feature selection method which
evaluated the SF relevance taking into account the level of
correlation of individual SFs with the predicted class (tool
condition) and the level of inter-correlation among SFs. High
scores were assigned to SFs that were highly correlated with the
class, yet had low inter-correlation with each other. The merit
coefficient was:

m ¼ Nr̄cfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ NðN � 1Þr̄ff

p (8)

where N, number of features; r̄cf , r̄ff , average feature–class and
feature–feature inter-correlations, respectively. The correlation
was evaluated by entropy measures.

5. Monitoring scopes

In this section, a survey of applications related to the main goals
of advanced monitoring of machining operations is presented and
a summary of viable solutions as a function of the monitoring
scopes is reported in Table 2.

5.1. Tool conditions

Kuljanic et al. [131] focus on the application of AE for tool wear
estimation in milling using WPD to build an automatic tool wear
classification system. Axinte and Gindy [132] try to correlate
broaching tool conditions to output signals of multiple sensors: AE,
vibration, cutting force and broaching machine hydraulic pressure.
In [14], they assess the use of spindle power signal for TCM in
milling, drilling and turning: this method is successful for
continuous turning and drilling while it shows low sensitivity
for discontinuous milling. Teti and Baciu [133] apply an intelligent
monitoring system based on audible sound energy for in-process
tool state recognition in band sawing of Al alloy and low C steel. Lee
et al. [24] present a real-time tool breakage monitoring system for
milling based on cutting force indirect measurement through feed
drive AC motor current, whose sensitivity is sufficient to identify
tool breakage. Ryabov et al. [57] develop an online tool geometry
measurement system based on a laser displacement meter. Ahn
et al. [134] build up a vision system to detect small diameter tap
breaks hardly perceived by indirect in-process monitoring
methods as AE, torque and motor current; in [135], they propose
an online drill wear estimation method based on spindle motor
power signal during drilling. Arrazzola [136] uses micro-scale
thermal imaging to identify effects of steel machinability change
on cutting zone temperature and related tool wear mechanisms. In
[137], he analyses and compares cost effective methods for tool
breakage detection by performing trials on an ultra-precision
micro-milling machine.

5.2. Chip conditions

Govekar et al. [105] use filtered AE spectrum components for
chip form classification. Kim and Ahn [82] propose a method of
chip disposal state monitoring in drilling based on spindle motor
power features. Teti et al. [118,119,138] apply WPT and spectral
estimation of cutting force signals for chip form recognition.
Venuvinod et al. [139] use a variety of sensors to obtain stable
clusters of chip form under varying dry cutting conditions through
geometric transformations of the control variables: they aimed at
recognising chip entanglements, chip size (including continuity),
and chip shape. Andreasen and De Chiffre [140] develop and test a
laboratory system for automatic chip breaking detection via
frequency analysis of cutting forces.

5.3. Process conditions

Brophy et al. [141] classify drilling operations as ‘normal’ or
‘abnormal’ (tool breakage or missing tool) using spindle power



Table 2
Summary of machining operations monitoring scopes and related viable solutions.

Monitoring scope Sensor system Signal analysis Machining process

Tool conditions: tool wear [14,131–133,192,193–197,

200,203–205,210,211,227], tool breakage [14,24,134,

192,227], tool geometry [57], tool temperature [136]

AE [131–133,193,194,204,205], vibrations

[132,133,195–197], cutting force [24,133,

192,195–197,203,210], hydraulic pressure [133],

motor power [14,135], laser [57], camera [134],

thermal imaging [136], audible sound [133,200],

multiple sensors [210,211,227]

Wavelet transform [131,193,197], time and

frequency domain analysis [133,192,200,

203–205,210,227], image analysis [134,136,227],

histogram method [57], thermal analysis [136],

fractal dimensions [195,196]

Milling [14,24,57,131,227], band sawing [133],

broaching [132,192], drilling [14,135], turning

[14,136,193–197,200,203–205,210], tapping [134]

Chip conditions: chip form [105,118,119,138,139],

chip disposal [82,199], chip breakage [140]

AE [105], motor power [82,141,199], cutting force

[118,119,138,140], multiple sensors [139]

Wavelet transform [118,119,138], spectral

estimation [105,118,119,138], frequency analysis

[140], statistics [199]

Drilling [82,199], turning [105,118,119,138,139,140]

Process conditions: process fault [141,142], process

variations [144–146], process state [143,147–149,

215–219], cutting variables [150], process simulation

[143]

Motor power [141,143], torque and forces [142],

audible sound sensor [144–146], internet-based

process optimisation and monitoring [147], AE

[148,149], high speed photography [150],

multi-sensor fusion [215–219,225,226]

Frequency analysis [144–146,215–219,225,226],

cross-correlation [143], short time Fourier

transform [143], statistical analysis [143,148]

Drilling [141], tapping [142], broaching [143],

turning [143,150,215–219,225,226], milling

[143–147], slicing [148], polishing [149]

Surface integrity: surface finish and roughness [88,89,

100,107,151,152,154,160], white layer formation [89],

surface integrity [89,90,153,155–159], plucking and

smearing [158,159], delamination [160]

Cutting force [88,151,153,155–157,160], vibrations

[100,107,152,153,157], AE [89,90,153,155,156,158,159],

spindle motion displacement [154], temperature [160]

Statistical methods [88,151], spectrum analysis

[100], time series [152], frequency and time

domain analysis [89,90,107,153,156], linear

regression model [154]

Turning [100,107,151], broaching [153,155–157],

hard machining [89], grinding [90], milling

[88,155,156], drilling [160]

Machine tool state: feed drives wear [103], fault diagnosis

and maintenance planning [161], spindle bearings [162]

Motor current [103], power [161], AE [162], vibrations

[161,162], temperature [161], pressure [161], shock

pulse [162]

Time and frequency domain analysis

[103,161,162]

Turning [162], diverse machining processes

[103,161]

Chatter detection: chatter state [163–166,198], chatter

onset [105,106], chatter vibration [90]

Multi-sensor system [163,198], cutting force [105,106,

164,165], AE [90,106,166]

Wavelet transform [164,165], entropy rate [105],

power spectrum density [106], FFT analysis

[163,166]

Turning [105,106,164], grinding [90,166],

milling [163,165,198]

Other monitoring scopes: work material heat treatment

conditions [167–169], workpiece mass, tool-workpiece

contact [170], workpiece diameter [172], cutting force

measurements [173,174,176,177], product conditions [175],

process, tool and workpiece states [177], ultra-precision

machining conditions [178–180], collision detection [29],

machining environment monitoring [59]

AE [167–169,171,178–180], vibrations [170], optical

fibers [172], rotating dynamometer [173],

spindle-integrated force sensor [174], virtual

maintenance system [175], cutting force [29,167–169],

tool integrated strain gauges [176], capacitive

displacement sensor [177], multi-sensing [59,167–169],

micro-thermosensor [178–180]

Time and frequency domain analysis

[167–169,171,174,176]

Turning [167–169,172,176], grinding [171],

milling [173,174,177], drilling [29]
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Fig. 12. Percentage values of (a) failure frequency and (b) downtime [162].
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signals. Mezentsev et al. [142] develop a method for fault detection
in tapping based on torque and radial force; the method allows to
identify typical faults of tapping operations: axial misalignment,
tap runout, tooth breakage both singly and in a combined way.
Axinte et al. [143] develop an online machining monitoring system
based on PXI and LabVIEW platforms experimentally validated for
broaching, turning and milling of aero engine materials. Teti et al.
[144–146] use a process monitoring system based on inexpensive
sound energy sensors, audible sound frequency analysis and neural
network processing of audible sound SFs to identify variable
process conditions in Al alloy milling. Chen et al. [147] implement a
generalised internet-based process monitoring facility to provide
clients with a virtual manufacturing process optimisation facility
combining process simulation software with a Remote Machine
Monitoring System (RMMS). In [148], state monitoring in the
slicing of quartz glass ferrules is studied using AE detected during
normal and abnormal states and extracting SFs for each symptom:
a monitoring algorithm is proposed to reliably discriminate
abnormal from normal states even under noisy circumstances.
In [149], a polishing expert system integrated with sensory
information is proposed which can modify even the polishing
conditions initially recommended by the system itself, depending
on the on-site polishing status; a real system using AE signals is
developed. Pujana et al. [150] report on a new method to assess
cutting variables (shear angle, chip thickness, tool vibration
amplitude, strain, strain rate) and chip topology by means of high
speed photography combined with laser printed square grid
patterns on the workpiece at industrial cutting speeds and feeds.

5.4. Surface integrity

Azouzi and Guillot [151] apply cutting parameters and two
cutting force components for online estimation of surface finish
and dimensional deviations. Huang and Chen [88] employ a
statistical approach to correlate surface roughness and cutting
force in endmilling operations. Abouelatta and Madl [107] develop
a method of surface roughness prediction in turning based on
cutting parameters and FFT analysis of tool vibrations. Salgado
et al. [100] use singular spectrum analysis to decompose the
vibration signals for in-process prediction of surface roughness in
turning. Song et al. [152] investigate time series analysis of
vibration acceleration signals measured during cutting operations
for real-time prediction of surface roughness. Axinte et al. [153] try
to correlate the quality of the machined surface after broaching, in
terms of geometrical accuracy, burr formation, chatter marks and
surface anomalies, and the output signals from multiple sensors:
AE, vibration, cutting force; the former proved efficient to detect
small surface anomalies such as plucking, laps and smeared
material. Guo and Ammula [89] investigate the sensitivity of a
broad range of AE parameters to white layer, surface finish and tool
wear in hard machining: AERMS, frequency and count rate have
good correlation with white layer formation and may be used to
monitor surface integrity factors. Kwak and Song [90] apply AE
signal analysis to recognise grinding burns in cylindrical plunge
grinding processes. Chang et al. [154] develop a method for in-
process surface roughness prediction based on the displacement
signal of spindle motion. Axinte et al. [155,156], using AE signals
backed up by cutting force data, report on process monitoring to
detect surface anomalies when abusively broaching and milling
difficult-to-machine aerospace materials. In [157], they report on
the dynamics of broaching of complex part features: force and
acceleration signal analysis revealed that damped coupled
vibrations, resulting in tilted chatter surface marks, occur due to
specific geometry of cutting edges that enable coupling of 3D
vibrations. In [158,159], the detection of workpiece surface
discontinuities, plucking, and smearing is attempted through an
array of 3 AE sensors during multiple cutting edge machining.
Rawat and Attia [160] investigate the effect of cutting speed and
feed rate on the quality features of drilled holes in carbon fibre
composites (delamination, geometric errors, surface finish) by
recording cutting forces with a dynamometer and inserting two K
type thermocouples inside the drill.

5.5. Machine tool state

Verl et al. [103] propose a system for feed drives wear
monitoring based only on signals available in controlled drives:
position, speed and motor current. The algorithm compares
current characteristic parameters with those detected when the
machine is new. Zhou et al. [161] introduce a systematic method to
design and implement an integrated intelligent monitoring
system, with modular and reconfigurable structure, to monitor
power, vibration, temperature and drive and spindle pressure for
condition monitoring, fault diagnosis and maintenance planning in
flexible manufacturing cells. Saravanan et al. [162] present an
analysis of failure frequency and downtime of critical subsystems
in a lathe: it can be seen from Fig. 12 that the highest number of
failures took place in electrical and headstock subsystems. The
latter however has suffered more downtime than the former. By
analysing the failure modes in the headstock subsystem, they
observe that gear and bearing elements are the most significant
components. Thus, they focus on spindle bearings condition
monitoring techniques like vibration, AE, shock pulse and surface
roughness monitoring for fault identification.

5.6. Chatter detection

Kuljanic et al. [163] analyse chatter identification methods used
in research and investigate an industrial chatter detection system
by comparing several sensors: the best results were given by a
multi-sensor system using an axial force sensor and two
accelerometers. Berger et al. [164] apply wavelet decomposition
of cutting force signals to discriminate between chatter and non
chatter states. Govekar et al. [105] use entropy rate of resultant
cutting force signals to detect broken chip formation and chatter
onset in turning. Kwak and Song [90] develop a method based on
AE signals to recognise chatter vibration in grinding. Yoon and Chin
[165] apply wavelet transform of cutting force signals for real-time
detection of chatter in endmilling operations. Griffin and Chen
[166] propose a multiple classification of AE signals to obtain
signatures for both chatter and burn phenomena in grinding.
Tangjitsitcharoen [106] utilizes power spectrum density of
dynamic cutting forces during machining to detect continuous
chip formation, broken chip formation, and chatter onset.

5.7. Other monitoring scopes

Teti et al. [167–169] apply sensor monitoring during turning of
annealed and tempered Al alloys using AE time and frequency
domain features, backed up by cutting force data, for in-process,
real-time identification of work material heat treatment condi-
tions independently of cutting parameters variations. Klocke et al.
[170] study the impact of the workpiece mass on the piezoelectric
force sensor dynamic behaviour by taking into account not only the
natural vibration of the sensor but also the vibration characteristics
of the whole machinery; methods to improve the measurement
system’s dynamic accuracy are proposed. Oliveira and Dornfeld
[171] apply fast AE RMS analysis to monitor grinding events such
[(Fig._12)TD$FIG]
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as contact, spark out, and dressing in the presence of process
disturbances. Choudhury [172] apply an optical fiber transducer
and a predictive system based on a neural network for online
monitoring of tool wear and control of workpiece diameter. Klocke
et al. [173] develop a new rotating dynamometer to measure
milling forces acting at each cutting edge separately and with good
dynamic characteristics. The design of the ‘‘intelligent cutter’’,
composed of a telemetry system, a cutter body and integrated 3D
force sensors for each cutting edge, is illustrated. Altintas and Park
[174] present a dynamically compensated spindle-integrated force
sensor system to measure milling forces for tool breakage
monitoring, adaptive process control and optimization of cutting
conditions. Van Houten and Kimura [175] develop a virtual
maintenance system to relate predicted product behaviour and
specific signals which can be detected by sensors and used to avoid
catastrophic failures. This system is applied for condition-based
maintenance and design for maintainability. O’Donnell et al. [29]
integrate two piezoelectric force sensor rings in a direct driven
motor spindle for online process monitoring of machining,
encompassing TCM, spindle condition monitoring and collision
detection. Santochi et al. [176] develop a new concept of cutting
tool using strain gauges for the measurement of forces in turning
by integrating the sensor within the tool shank. Kim et al. [177]
build up a cylindrical capacitive displacement sensor to monitor
endmilling and propose a mechanistic model considering tool
deflection for quantitative estimation of dynamic cutting forces.
Shinno and Hashizume [59] propose a multi-functional in-process
monitoring method based on simultaneous multi-phenomena
sensing to monitor the complete machining environment: process,
tool and workpiece states. In [178–180], they report on an online
process monitoring and adaptive control system for ultra-precision
machining. First, a sensorless process monitoring method is
studied; then, a sensor based approach, using a new micro-sized
Pt temperature sensor mounted on the single crystal diamond tool
rake face, is developed to keep constant the cutting point
temperature by cutting parameters adaptive control. Finally, a
multi-sensor system comprising the micro-thermosensor and an
AE sensor to monitor ultra-precision machining conditions with
high sensitivity and reliability is proposed.

6. Decision making support systems and paradigms

In monitoring and control activities for modern untended
manufacturing systems, the role of cognitive computing methods
employed in the implementation of intelligent sensors and
sensorial systems is a fundamental one [181]. A conspicuous
number of schemes, techniques and paradigms have been used to
develop decision making support systems functional to come to a
conclusion on machining process conditions based on sensor
signals data features. The cognitive paradigms most frequently
employed for the purpose of sensor monitoring in machining,
including neural networks, fuzzy logic, genetic algorithms and
hybrid systems able to synergically combine the capabilities of the
various cognitive methods, are briefly reviewed before presenting
their applications relevant to the scopes of this paper.

6.1. Neural networks

6.1.1. Neural network paradigms

An artificial neural network (NN) is a computational model of
the human brain that assumes that computation is distributed over
several simple interconnected processing elements, called neurons
or nodes, which operate in parallel [182]. A NN provides a mapping
through which points in the input space are associated with
corresponding points in an output space on the basis of designated
attribute values, of which class membership can be one. NN can
capture domain knowledge from examples, do not archive
knowledge in an explicit form such as rules or databases, can
readily handle both continuous and discrete data, and have a good
generalisation capability. NN can be employed as mapping devices,
pattern classifiers or patterns completers. For more information on
NN, see [183,184].

Knowledge is built into a NN by training. Some NN can be
trained by feeding them with typical input patterns and expected
output patterns. The error between actual and expected outputs is
used to modify the weight of the connections between neurons.
This method is known as supervised training.

Other NN are trained in an unsupervised mode where only the
input patterns are provided during training: the NN learns
automatically to cluster them in groups with similar features.

6.1.1.1. Supervised learning. Among supervised learning para-
digms, backpropagation (BP) NN, which are multiple-layered
feedforward (FF) NN [182], have been very popular for their
performance. Jemielniak et al. [94] noticed that conventional
training of FF BP NN very soon leads to overtraining and
deterioration of the NN response. Training of these NN depends
very much on the initial weight values. A good way to obtain
satisfactory results is to introduce random distortions to the
weight system, which efficiently push the NN out of local minima
of testing errors. An even more effective method is to employ
temporary shifts in the weights, alternately negative and positive.
This brings the NN to a balance between training and testing errors
and enables a notable reduction in the number of hidden nodes.

Further supervised NN approaches are also considered here due
to their use in decision making during monitoring of machining:
probabilistic NN (PNN) [185], recurrent NN (RNN) [186–188],
artificial cellular NN (ACNN) [189], fuzzy logic NN (FLNN) or neuro-
fuzzy systems (NFS) combining NN and FL methods to integrate the
benefits of both paradigms [190].

6.1.1.2. Unsupervised learning. In unsupervised learning, only
input stimuli are shown to the NN that organises itself internally
so that each hidden processing element responds strongly to a
different set or closely related group of stimuli. These sets of
stimuli represent clusters in the input space which typically stand
for distinct real concepts. Among unsupervised learning para-
digms, the self-organising map (SOM) NN has been largely used for
their performance [191]. The SOM NN creates a 2D feature map of
input data so that order is preserved: if two input vectors are close,
they will be mapped to processing elements that are close together
in the 2D layer that represents the features or clusters of the input
data.

6.1.2. NN applications to sensor monitoring of machining

The use of PNN for automated classification of broaching tool
conditions utilising cutting force data is described in [192]. Trials
with short broaching tools that simulate the roughing stage of
industrial broaching were carried out to produce square profile
slots while detecting cutting force signals. To reproduce real
industrial tool failures, where both tool wear and single tooth
chipping or breakage may randomly occur, the broaching tools had
cutting teeth in different conditions: fresh, worn, chipped tooth,
broken tooth. The push-off force Fy was selected as the most
sensitive to tool conditions. Tool failure recognition was based on
the extraction of a set of N characteristic points from the Fy plot by
repetitive selection of local maxima to construct N-elements
feature vectors (pattern vectors). Pattern vectors for different tool
conditions were used as inputs to a PNN with 4 tool state classes:
fresh, worn, chipped, broken. The success rate achieved was as high
as 92%. A scheme of the tool failure recognition paradigm is shown
in Fig. 13.

Recurrent NN with simple architecture were used in [193–197]
for the evaluation of tool wear in turning. In [193], features from
wavelet representation of AE signals were related to flank wear.
Using RNN data processing, accurate flank wear estimations were
obtained for the operating conditions adopted in the experimenta-
tion [194]. In [195], fractal dimensions were used as input features
to a RNN for flank wear land estimation [196]. The development of
this estimator comprised four stages: (i) signal representation, (ii)
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Fig. 13. . Schematic of the tool condition recognition system.
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signal separation, (iii) feature extraction, and (iv) state estimation
(flank wear land). In stage (i), a compact Suboptimal Wavelet
Packet Representation (SWPR) [194], superior to other wavelet-
based signal representation schemes, was used. In stage (ii), a
method for suppressing noise components from measured time
series data, called Modified Wavelet Method (MWM) [197], was
selected for signal separation due to its high performance. The
capacity, correlation and information fractal dimensions were
extracted as features of a 4D time series vector formed by
combining cutting force and vibration signals. The extracted
features were related to flank wear land using a trained RNN that
out-performed earlier tool wear estimators in terms of architecture
simplicity and estimation accuracy. Due to the high signal
sampling rate, this estimator may be used for real-time flank
wear estimation at time epochs of few milliseconds, which can
help with early detection of undue tool wear and related
machining process faults [195].

In [198], an intelligent multi-sensor chatter detection system
for milling using two accelerometers and one axial force sensor
embedded in the milling machine was investigated (Fig. 14).
Particular attention was paid to industrial needs: (a) no reduction
in machine stiffness; (b) compatibility with pallet and tool
changers; (c) no restriction on tools, parts and cutting parameters;
(d) robustness against sensing units failures; and (d) independence
from cutting conditions and system dynamics. To evaluate the
system capability for a broad application range, different test set-
ups with diverse milling machines, toolings, sensor systems and
work materials were used. A NN approach was used for decision
making, comprising an ACNN [189] applied to acceleration signals
and a fuzzy NN [190] for axial force signals. Good levels of NN
accuracy were obtained with all single sensor signals.

To realise the concept of multi-sensor chatter detection, the NN
outputs for each single sensor signal were combined through: (i)
linear combination of single sensor chatter indicators; (ii) a
separate NN for multi-sensor classification; (iii) fuzzy logic
classification (Sugeno fuzzy model); and (iv) statistical inference
classification based on conditional probability, i.e. the probability
that the system is unstable for a specific combination of single
chatter indicators. The accuracy of the first three approaches was
very high: 95–96%. But residual accuracy in case of sensing unit
[(Fig._14)TD$FIG]

Fig. 14. Outline of the multi-sensor chatter detection system.
malfunctions dropped notably: 50–75%. The behaviour of the forth
approach was quite different: accuracy was slightly lower, 94%, but
insensitivity to malfunctions was extremely robust: 90–92%. Thus,
the statistical inference multi-sensor chatter indicator, combining
NN data processing and statistical methods to achieve both high
accuracy and high robustness, was assessed as the most suitable
for industrial milling applications.

In [199], a sensor monitoring method, based on spindle motor
power sensing and NN processing, was evaluated for chip disposal
state detection in drilling. Spindle motor power measurements
have the advantage of being easily realised during machining.
From them, selected features such as variance/mean, mean
absolute deviation, gradient, and event count were calculated to
form input vectors to a FF BP NN for decision making on chip
disposal state. The selected features were experimentally shown to
be sensitive to changes in chip disposal state and relatively
insensitive to changes in drilling conditions. So, the proposed
monitoring system could effectively recognize chip disposal states
over a wide range of drilling parameters, even if training was
carried out under diverse process conditions.

Among the various sensing techniques, audible sound energy
appears as one of the most practical ones since it can replace the
traditional ability of the operator, based on his experience and
senses (mainly vision and hearing), to determine the process state
and react adequately to any machine performance decay [200].
This monitoring technology, however, has not been exhaustively
investigated for process monitoring in machining, even though it is
extensively used by machine tool operators for real-time decision
making. In [133,144–146], audible sound energy generated by
milling and band sawing of Al alloy and C steel under different
process and tool conditions was analysed in the frequency domain
by a real-time spectrum analyser to develop an automatic process
monitoring system based on inexpensive sound sensors. Signal
analysis was carried out by suppressing the noise generated by the
machine and the environment from the sound emitted during
machining. Classification of audible sound SFs was performed by a
NN approach that could successfully identify the process and tool
conditions solely on the basis of sound sensor monitoring.

6.2. Fuzzy logic

6.2.1. Fuzzy logic paradigms

Fuzzy logic (FL) has two different meanings. In a narrow sense,
FL is a logical system, which is an extension of multivalued logic.
But in a wider sense, which is in predominant use today, FL is
almost synonymous with the theory of fuzzy set [201]. A fuzzy set
is a set without a crisp, clearly defined boundary. It can contain
elements with only a partial degree of membership. A fuzzy set
defines a mapping between elements in the input space (some-
times referred to as the universe of discourse) and values in the
interval [0,1]. A membership function is a curve that defines how
each point in the input space is mapped to a membership value
(degree of membership or truth degree) between 0 and 1. The
membership function can be any arbitrary curve, the shape of
which can be defined as a function suitable from the point of view
of simplicity, convenience, speed and efficiency. Typically
employed membership function shapes are triangular, rectangular,
trapezoidal, gaussian, sigmoidal, etc. The processing core of a FL is
based on a collection of IF-THEN rules, where the IF part is called
the ‘‘antecedent’’ and the THEN part is called the ‘‘consequent’’.
Fuzzy rule sets usually have several antecedents that are combined
using fuzzy operators. The combination is called a ‘‘premise’’ and it
generates a single truth value that determines the rule’s outcome.
In general, one rule by itself does not do much good. What’s needed
are two or more rules that can play off one another. The output of
each rule is a fuzzy set, but in general the output for an entire
collection of rules should be a single number. Thus, first the output
fuzzy sets for each rule must be aggregated into a single fuzzy set.
The most common aggregation methods are: MAX (maximum),
PROBOR (probabilistic or) and SUM (sum of each rule’s output set).
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Fig. 17. Structure of genetic algorithms and genetically based operators.

[(Fig._15)TD$FIG]

Fig. 15. Fuzzy logic data processing.
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Then, the resulting set is defuzzified or resolved to a single number.
The most popular defuzzification methods are: centre of area,
bisector, middle of MAX, largest of MAX, and smallest of MAX. The
process of mapping from input to output using FL is called fuzzy
inference, involving all that was discussed above. Thus, a fuzzy
inference system calculation comprises the 5 steps illustrated in
Fig. 15. This global inference method, due to [202], is the most
popular one.

6.2.2. Fuzzy logic applications to sensor monitoring of machining

In [203], the application of a Fuzzy Decision Support System,
(FDSS ‘‘Fuzzy Flou’’) is presented for tool wear estimation during
turning using cutting force components measurements. The
architecture of the FDSS consists of a knowledge base, an inference
engine and a user interface. The knowledge base has two
components: the linguistic term base and the fuzzy production
rule base. The linguistic term base is divided into fuzzy premises and
fuzzy conclusions. Knowledge is represented by a set of if-then rules
which specify a relationship between observations (causes) and
conclusions (effects). The knowledge base can be created directly
from the monitor using the tree view (see below) or can be written in
a text editor and loaded into the FDSS. For tool wear estimation using
cutting force components, the FDSS database comprised 3 premises
(f, Fc, Ff), 2 conclusions (ap, VB), and 18 if-then rules (Fig. 16). The
results showed that the accuracy of tool wear assessment through
the FDSS is sufficient for online tool wear monitoring.

In [204,205], in-process monitoring during quasi orthogonal
cutting of metal alloys was attempted through sensor fusion of
frequency features extracted from AE signals through diverse
forms of signal analysis. These features were processed by a FL
based pattern recognition method to develop a multi-purpose
intelligent sensor system for classification of tool wear level and
workpiece heat treatment state for two work materials: low C steel
and 7075 Al alloy. The obtained results were considered positive
for both monitoring scopes as, in the worst classification cases, a
success rate not lower than 75% was obtained from the FL based
decision making system, capable to take many factors into account
without incurring in undue complexity.

6.3. Other methods (genetic algorithms, hybrid systems, etc.)

Genetic algorithms (GA) belong to a branch of computer science
called ‘‘natural computation’’ where programmers, inspired by[(Fig._16)TD$FIG]
Fig. 16. Screen view of the FDSS ‘‘Fuzzy Flou’’ with knowledge base structure (left)

and complete evaluation of depth of cut and flank wear (right).
phenomena in the biological world, create models of these systems
on a computer. This technique can solve complex problems by
imitating Darwinian theories of evolution on a computer
[206,207]. The first step in the use of a GA is building a computer
model to represent a given problem [208]. Interacting variables in
the problem are first combined and encoded into a series of binary
strings (rows of ones and zeros) to form numerical ‘‘chromo-
somes’’. The computer randomly generates an entire ‘‘population’’
of these chromosomes and ranks them based on a ‘‘fitness
function’’ which determines how well they solve the problem.
Those strings which are deemed the ‘‘fittest’’ are allowed to
‘‘survive’’ and ‘‘reproduce’’ with other chromosome strings,
through genetic operators such as ‘‘crossover’’ and ‘‘mutation’’,
to create ‘‘offspring’’ chromosomes. This population of strings
evolves by continuously cycling the genetic operators [209]
(Fig. 17). A powerful search engine is thus available which
inherently preserves the balance between exploitation (take
advantage of information already obtained) and exploration
(search new areas). The result is then decoded back to its original
value to reveal the solution. Although simplistic from a biologist’s
viewpoint, these algorithms are sufficiently complex to provide
robust and powerful search mechanisms.

In [210], GA are utilised to automatically construct a FL
knowledge base (KB) from a set of experimental data on tool wear
monitoring during turning without requiring any human expert
intervention. The performance of this FL-GA system is compared
with the performance of classical FL and NN systems for
application to tool wear estimation. The construction of a FL KB
necessitates skills and expertise. The operator has to analyze the
dependence of Fc on VB so that the experimental results have to be
presented in a conveniently understandable form. This makes FL
systems rather difficult for practical implementation in their
human manual form. This problem can be solved using a GA to
automatically construct the FL KB (Fig. 18).

The operator no longer needs to analyze the experimental data.
He only needs to select the maximum level of complexity he wants
to consider. The learning time of the GA method was the shortest
among the considered methods, making it very convenient for shop
floor use. Moreover, one can specify the maximum complexity level

[(Fig._18)TD$FIG]

Fig. 18. GA learning process of the FDSS Fuzzy Flou knowledge base.
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Fig. 19. Reconfigurable multi-sensor monitoring system.
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together with how much emphasis the GA must place on accuracy
increase versus complexity reduction. There are definite advantages
for practical applications since the GA provides more generality to
the KB.

6.3.1. Hierarchical algorithms

In general, when a single NN is used for sensor monitoring of
machining, several SFs are fed to the NN input nodes, while the
process or tool conditions estimation is obtained at the NN output.
However, the use of several SFs as input to a single NN requires a
large number of experimental data that are usually not available if
the monitoring system is supposed to be trained during the first
tool life period and be ready for monitoring during the next ones
[81]. A different approach is presented by Kuo and Cohen [211],
who proposed a hierarchical monitoring system for tool conditions
consisting of two modules: the first estimates the tool wear using
all the SFs from one sensor and the cutting parameters using a NN
with single radial-basis function. The results are then integrated in
the final system’s response in the second module, where a fuzzy
NN is used. Jemielniak et al applied a strategy based on a large
number of AE and cutting force SFs and a hierarchical algorithm for
tool wear monitoring in conventional turning [70] and micro-
milling [81]. In the 1st stage of the hierarchical algorithm, the tool
wear is estimated separately for each SF using a 3rd degree
polynomial approximation. In the 2nd stage, the results obtained
are integrated (averaged) in the final tool condition evaluation. In
[70], the efficiency of the TCM strategies based on a single NN with
several input signals and on a hierarchical algorithm was analyzed.
The latter proved to be much more efficient, which was attributed
to insufficient NN learning data (collected during the first tool life)
in relation to the necessary network size. Decomposition of the
multi SFs tool wear estimation into hierarchical algorithms shows
the considerable advantage of the hierarchical models over the
single-step approach. A higher number of SFs can be used, since the
SF-tool wear relationship for a single feature is simple, easy to
model, and easy to reverse, while direct determination of the tool
wear dependence on many SFs requires copious learning data and
long learning times.

6.4. Sensor fusion technology

6.4.1. Sensor fusion concepts and paradigms

When measuring a particular variable, a single sensory source
for that variable may not be able to meet all the required
performance specifications. A solution to this problem is sensor
fusion that combines sensory data from disparate sources so that
the resulting information is better than would be possible when
these sources are used individually. The term ‘‘better’’ can mean
more accurate, more complete, more dependable, more robust, or
refer to the result of an emerging view, such as stereoscopic vision
that calculates depth information by combining 2D images from
two cameras at slightly different viewpoints. One can distinguish
direct fusion, indirect fusion and fusion of the outputs of the former
two. Direct fusion is the fusion of sensor data from a set of
heterogeneous or homogeneous sensors, soft sensors, and history
values of sensor data, while indirect fusion uses information
sources like a priori knowledge about the environment and human
input [212–214].

6.4.2. Reconfigurable monitoring system for sensor fusion research

Sensor fusion for machining process monitoring has been
extensively investigated in [215–219] within a multi-annual
project aiming at the implementation of a reconfigurable multi-
sensor monitoring system (Fig. 19), endowed with cutting force,
vibration, AE, motor current, audible sound and optical sensors, for
application to diverse machining processes (orthogonal cutting,
turning, milling, drilling, and broaching), work materials (steels,
composite materials, Ti alloys, Ni alloys, Ni–Ti alloys) and
monitoring scopes (tool wear, chip form, process conditions, work
material state, and machinability assessment).
Sensor signal characterisation is based on frequency domain
analysis, accomplishing sensor signal spectral estimation through
a parametric method that allows for feature extraction from the
signal frequency content [4]. In this procedure, the signal spectrum
is assumed to take on a specific functional form, the parameters of
which are unknown. The spectral estimation problem, therefore,
becomes one of estimating these unknown parameters of the
spectrum model rather than the spectrum itself [220]. From each
signal specimen (measurement vector), p features {a1, . . ., ap}
(feature vector), characteristic of the spectrum model, are obtained
through Linear Predictive Analysis (LPA) by applying Durbin’s
algorithm [221]. The details of this procedure are given in [222].
Feature vectors are used to construct input pattern vectors for
pattern recognition paradigms [223]. If single signal specimens are
utilised as inputs, the feature vector and pattern vector coincide. If
signal specimens’ inputs come from two or more diverse sensor
signals, input patterns are complex vectors integrating sensory
data from diverse sources to realise the concept of sensor fusion.
Pattern recognition and decision making in the reconfigurable
multi-sensor monitoring system is carried out by three layers FF BP
NN whose architecture is automatically configured as a function of
the monitoring application. The constructed input pattern vectors
are the input of the first NN layer that, accordingly, assumes a
number of nodes equal to the number of input pattern vector
elements. The hidden layer takes up a number of nodes as a
function of the number of input nodes. The output layer contains
one or more nodes, yielding coded values associated with the
monitored process variables that need to be recognised. For NN
learning, the leave-k-out method, particularly useful when dealing
with relatively small training sets, is typically utilised [224]: one
homogeneous group of k patterns, extracted from the training set,
is held back in turn for testing and the rest of the patterns is used
for training. The NN output is correct if the actual output, Oa, is
equal to the desired output, Od, �50% of the difference between the
numerical codes for different process conditions. By setting error
E = (Oa � Od), process conditions identification is correct if
�0.5 � E � + 0.5; otherwise, a misclassification case occurs. The ratio
of correct classifications over total training cases yields the NN
success rate.

6.4.3. Sensor fusion application to machining process monitoring

The NN pattern recognition paradigm of the reconfigurable
multi-sensor monitoring system proved able to effectively realise
the concept of sensor fusion for a broad range of machining process
monitoring applications, yielding satisfactory results also under
unfavourable situations by synergically combining the knowledge
extracted from multiple sources of information. In [217,225,226]
the system was applied to process condition and machinability
evaluation during cutting of difficult-to-machine materials such as



Fig. 20. MTConnect setup.
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Ti alloys and NiTi alloys, using cutting force and acceleration
signals through both single signal and sensor fusion data analysis.
Training sets with input pattern vectors of different size and nature
were built: (a) signal specimen feature vectors of single cutting
force or acceleration component: Fx, Fy, Fz, ax, ay, az; (b) integrated
pattern vectors of the 3 cutting force or acceleration components:
[F] = [Fx Fy Fz]; [A] = [ax ay az]; (c) sensor fusion pattern
vectors combining cutting force and acceleration pattern vectors:
[S] = [F A] = [Fx Fy Fz ax ay az]. The NN outputs were coded
values to evaluate process condition and machinability. Results
showed that the use of single component signal data as pattern
inputs provided acceptable accuracy: 78–85%. If the integrated 3
acceleration or 3 cutting force components signal data are used as
inputs, accuracy improves notably: 92–97%. By applying sensor
fusion technology to fully combine information from cutting force
and acceleration signal data, a very high accuracy is obtained: 99–
100%.

In Teti and Segreto [216], sensor monitoring during cutting of
plastic matrix fibre reinforce composites was performed for
consistent and reliable identification of tool state. AE and cutting
force signals were subjected to the NN based sensor fusion
paradigm. The superior classification results found by merging
cutting force and AE data stressed sensor fusion aptitude for data
analysis enhancement and decision making reinforcement [5,118].

It is worth noting that the above results were achieved via
sensor fusion of multimodal data which is far less common than
fusion of data from the same sensor type. This highlights the NN
ability to efficiently realize the concept of sensor fusion as well as
to deal with incomplete or noisy data sets, yielding satisfactory
results also under adverse situations by synergically combining
knowledge extracted from multiple sources of information.

In [227], the combination of a direct sensor (vision) and an
indirect sensor (force) is proposed to create an intelligent
integrated TCM system for online monitoring of tool wear and
breakage in milling, using the complementary strengths of the two
types of sensors. For tool flank wear, images of the tool are
captured and processed in-cycle using successive moving-image
analysis. Two features of the cutting force, which closely indicate
flank wear, are extracted in-process and appropriately pre-
processed. A SOM network is trained in a batch mode after each
cutting pass, using the two features from the cutting force, and
measured wear values obtained by interpolating the vision-based
measurements. The trained SOM network is applied to the
succeeding machining pass to estimate the flank wear in-process.
The in-cycle and in-process procedures are employed alternatively
for the online monitoring of flank wear. To detect tool breakage,
two time domain features from cutting force are used, and their
thresholds are determined dynamically. Again, vision is used to
verify any breakage identified in-process through cutting force
monitoring. Experimental results show that this sensor fusion
scheme is feasible and effective to implement online TCM in
milling and is independent of cutting conditions.

7. Industrial initiatives, experiences and applications

The development and growth of precision machining applica-
tions to a wide field of mechanical products (from medical devices
to automotive drivetrain, power systems and aerospace) due to the
demand for higher performance, better energy efficient and more
complex products has pushed the ‘‘commercialization’’ of preci-
sion machining. This requires highly reproducible processes in
spite of work material properties variability, tool wear, thermal
distortion, etc., and thus has called for the increased use of sensors
in precision machining. Recent CIRP Keynotes [228] highlighted
the challenges in this field requiring advanced sensors. Simple
tasks such as ‘‘finding the part’’ are complicated in precision micro-
machining due to the small tool size (<few 10s of mm), complex
part shapes, and small work areas. As a result, attention is directed
to the use of sensor technology to aid in part setup and
machinining [229]. A comprehensive review of the challenges to
precision machining monitoring and applications in typical
processes (e.g. grinding, wheel dressing, abrasive polishing, and
ultraprecison turning/diamond turning) is given in [230].

An additional area of development focuses on the communica-
tion between sensors, machines and the outside world. With the
increase in complexity of manufacturing systems and processes,
there is a growing need to bring together advances from different
realms of manufacturing research and application. It is no longer
adequate for manufacturers to focus on particular aspects of their
process for improvement: rather, they need to use a holistic
approach. Since sensors and sensing systems play an integral part
in the operation and control of most of these systems and
processing, they need to be included as well. Clearly, to harness and
process information across different levels, robust methods for
communication and interoperability in and between the levels are
needed [231]. Interoperability is defined as ‘‘the ability of two or
more systems or components to exchange information and to use
the information that has been exchanged’’ [232]. The Association
for Manufacturing Technology recently launched MTConnect, an
open software standard for data exchange and communication
between manufacturing equipment [233]. Currently, MTConnect
has been adopted primarily by machine tool manufacturers and
their end-users who see immense value in being able to
interoperate with other equipment. The MTConnect protocol
defines a common language and structure for communication in
manufacturing equipment, and enables interoperability by allow-
ing access to manufacturing data using standardized interfaces. It
does not define methods for data transmission or use, and is not
intended to replace the functionality of existing products and/or
data standards. It enhances the data acquisition capabilities of
devices and applications, moving towards a plug-and-play
environment that can reduce integration costs. MTConnect is
built upon prevalent standards in the manufacturing and software
industry, which maximizes the number of tools available for its
implementation and provides a high level of interoperability with
other standards and tools. MTConnet’s messages are encoded using
XML (eXtensible Markup Language), widely used as a portable way
of specifying data interchange formats. Fig. 20 shows a data
gathering setup using MTConnect: data are collected in near-time
from a machine tool and thermal sensors attached to it. Other
sensor inputs can be easily added, e.g. TCM or power monitoring.
Software tools can be developed which operate on the XML data
from the agent. Since the XML schema is standardized, the
software tools can be blind to the specific equipment configuration
from where the data is gathered. An added benefit of XML is that it
is a hierarchical representation, and this is exploited by designing
the hierarchy of the MT Connect schema to resemble that of a
conventional machine tool.

The schema itself functions as a metaphor for the machine tool
and makes the parsing and encoding of messages intuitive. Data
items are grouped based on their logical and not on their physical
organization. Although temperature sensors operate independent
[(Fig._20)TD$FIG]
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Fig. 21. Scheme of the EC FP7 CP 213855 ‘‘ACCENT’’ project [236].
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of the machine tool, sensory data are associated with specific
machine tool components, and hence temperature data is part of
the machine tool hierarchy. This simplifies data analysis, e.g. to
observe and control thermal distortion of a machine component
and relate it to a specific part geometry. Major machine tool
builders have recognized the need for better integration of their
hardware. Seiki [234] developed the Mori-Net system, which
allows remote monitoring of machine tool status over the internet
while simultaneously logging data for post processing. Mazak
[235] has similar systems (Cyber Monitor and Cyber Tool
Management) that help remotely track the machine tool status
in a factory. While these technologies are very robustly integrated
into the respective machine tool systems, they are proprietary
‘‘walled’’ systems. Only specific machine tools can be used with
them, which limits their applicability. Also, since these are not
extensible systems, they are limited by their inherent capabilities
and cannot be modified by the users. MTConnect does not aim to
replace these methods but provides the basic tools needed to ‘‘talk’’
to a machine tool. Value added applications can be built on the
MTConnect layer. So the benefits that advanced systems, such as
Mori-Net, bring to newer machine tools can be applied in older
systems as well. MTConnect interacts similarly with existing
interoperability standards used in industry and works in conjunc-
tion with other standards such as the NIST IEEE 1451 standard for
sensors and transducers [236]. As shown by MTConnect, inter-
operability standards and their application offer tremendous
potential to use advanced sensor system outputs, especially for
reconfigurable systems, and building high speed decision making
and control capability on existing sensor signal processing
techniques.

A notable instance of industrial initiative in the area of sensor
monitoring of machining can be found in the aerospace industry.
Following the Pensacola catastrophic event in 1996, the Aerospace
Industries Association (AIA) felt the urgent need of a research effort
to respond to accidents caused by manufacturing induced
anomalies in critical rotating parts. The 1997 Report of the AIA
Rotor Integrity Sub-Committee stated that about 25% of rotor
failure events are caused by manufacturing induced anomalies. It
was projected that, given the expected increase in air travel and the
evidence of component failures due to such anomalies, the
resulting loss of aircraft would be unacceptable. Accordingly,
three large industry led international research projects on
machining process monitoring were launched in the last decade:
AIA and FAA ‘‘ROMAN’’ project; EC FP5 ‘‘MANHIRP’’ project; and EC
FP7 ‘‘ACCENT’’ project.

By responding to the US Federal Aviation Administration (FAA)
initiative on critical rotating part manufacturing, the AIA and FAA
project on Rotor Manufacturing (ROMAN, 1998–2000) was started
by the main aero engine makers in USA and Europe.

The European aero engine manufacturers in the ROMAN project
joined in the ensuing EC FP5 project on Integrating Process
Monitoring and Control in Manufacturing to Produce High
Integrity Rotating Parts (MANHIRP, 2001–2005), to investigate
the use of sensor monitoring for machining induced anomaly
detection and evaluate the resulting loss in performance.

Today, also on the basis of the MANHIRP issues, the main
European aero engine manufacturers (Rolls Royce, UK; Snecma,
France; MTU, Germany; Volvo AC, Sweden; Avio SpA, Italy;
Turbomeca, France; ITP SA, Spain) join in the EC FP7 project on
Adaptive Control of Manufacturing Processes for a New Generation
of Jet Engines (CP 213855 ACCENT, 2009-11) involving leading
university research centres in the field of sensor monitoring of
machining (WZL-RWTH Aachen, Germany; University of Naples
Federico II, Italy; ENIT Tarbes, France; Mondragon University,
Spain; ENSAM Cluny, France; TUKE Kosice, Slovakia) [237]. This
initiative sets off from the fact that critical aero engine components
manufacturers are faced with machining highly complex parts
from difficult-to-machine superalloys, with large part variability
and small batch quantities. Stringent controls are placed on safety
critical component manufacture to ensure that parts will function
correctly and safely to a declared service life. Thus, the
manufacture of these parts is very conservative and process
parameters are often reduced or tools changed early to ensure part
integrity. In this situation, machining processes can never be fully
optimised. The industry method is to ‘‘freeze’’ the process
following qualification to first article inspection and part valida-
tion via laboratory tests. Once frozen, no process condition change
is allowed without time consuming, costly re-validation. In the
ACCENT project (Fig. 21), multi-sensor monitoring, using cutting
force, AE, vibrations and motor power, is being applied for process
optimisation in turning, milling, drilling and broaching of aero
engine parts made of Ni and Ti alloys. The initial results reveal the
feasibility of process adaptation to changing tool and component
states while operating in industrially approved multi-dimensional
process windows warranted by relevant sensor SFs.

The noise from disturbance sources that usually contaminate
the desired signal can be minimized using AE sensors, as AE
propagates at frequencies well above the characteristic ones in
machining, e.g. spindle RPM or natural frequencies. AE is more
advantageous than force or vibration, especially at the ultra-
precision scale, due to its relatively superior signal/noise ratio and
sensitivity. Hence, AE is very well suited to detect micro-scale
deformation mechanisms within a relatively ‘noisy’ machining
environment [238] (Fig. 22). In [238], the application of AE and
cutting force signals for TCM in micro-milling was presented. The
obtained results showed, that despite the small material removal
rate in micromachining, AE was strong, easy to record and had a
very short reaction time to tool-workpiece contact, making it an
ideal means of contact detection and integrity monitoring in the
cutting process (Fig. 23). Though the cutting force signals were
severely disturbed by the dynamometer resonance vibrations, the
measurements still appeared useful for TCM. New tasks of TCM
appearing in micro-machining, such as cutting edge offset [239]
(Fig. 24) and material structure, necessitate new approaches.
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Fig. 22. Sources of AE at different stages of material removal [238].
[(Fig._23)TD$FIG]

Fig. 23. Examples of AE and cutting force signals detected during tests; 1207 Hz:

tooth passing frequency, 4828 Hz: 4th harmonic of tool passing frequency, the

closest to the dynamometer natural frequency (5080 Hz) [238].[(Fig._24)TD$FIG]

Fig. 24. Micro-end mill with associated errors [239].
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8. Outlook on future challenges and trends

The EC FP6 Network of Excellence on ‘‘Innovative Production
Machines and Systems – I*PROMS’’ (2004–2009) [240], organised
by Prof. D.T. Pham, Cardiff University, with participation of 30
European research partners, comprised in its activities on
Production Automation and Control the task, coordinated by Prof.
R. Teti, University of Naples Federico II, of identifying and
proposing a roadmap of recommended research to solve the
needs and provide the key enabling technologies for ‘‘Intelligent
Sensor Technology in Manufacturing’’ by 2017.

The future challenges for ISTM were identified as the targets of
the following main key enabling technologies (KETs): (a) new
sensors and sensor systems; (b) advanced sensor signal data
processing; and (c) intelligent sensor monitoring.

8.1. New sensors and sensor systems

Targets: transformation of stand-alone sensors, used primarily
as diagnostic devices in a manufacturing process, to sensors that
are a part of an intelligent system for process, tool and machine
monitoring and control. Recommended measures: (i) more basic and
applied research in new sensors, (ii) more basic and applied
research in sensor system intelligence, and (iii) academia and
industry collaboration to identify the real needs for new sensors
and sensor systems.

8.2. Advanced sensor signal and data processing

Targets: innovative signal and data processing techniques,
assisted by cognitive tools and methods, to develop and apply
sensing systems for manufacturing monitoring. Recommended

measures: (i) more applied research in advanced signal and data
processing, (ii) more basic and applied research in decision making
systems, (iii) more manufacturing and ITC interdisciplinary
research, and (iv) training and formation of skilled operators.

8.3. Intelligent sensor monitoring

Targets: intelligent sensor monitoring systems including, as
part of their packaging, abilities for self-calibration and self-
diagnostics, signal conditioning, and decision making. Recom-

mended measures: (i) more applied research in intelligent sensor
monitoring applications to manufacturing, (ii) development of
high performance equipment, (iii) efforts towards standardisation,
(iv) promotion with industry, (v) robust pattern recognition
paradigms; and (vi) training and formation of skilled operators
in intelligent sensor monitoring.

The next and most important step in the roadmap compilation
is the definition of ‘‘development trajectories’’, i.e. logical/temporal
connections among KETs and gaps till 2017. Finally, the visionary
targets of the KETs after 2017 were identifies as: (i) intelligent
sensors and sensor systems technology achievement; (ii) smart
sensors integration; (iii) Ambient Intelligence (AmI) in manufac-
turing; (iv) strengthening the European Sensor System Suppliers
(SMEs) in their market position by developing smart sensors
platforms; and (v) less machine down time, less scraps, higher
productivity, easier system operability, less false alarm, higher
product quality and better knowledge about manufacturing
processes. For details on associated challenges to achieve the
visionary targets see [240].

9. Conclusions

The future enhancement of machining systems and their
operation performance will vitally depend upon the development
and implementation of innovative sensor monitoring systems.
These novel systems will need to be robust, reconfigurable,
reliable, intelligent and inexpensive in order to meet the demands
of advanced manufacturing technology. These demands include
increasingly small, precision and complex products for applica-
tions in biomedicine, transportation, MEMs devices, etc., as well as
ubiquitous sensor systems for machine and system monitoring to
reduce resource requirements and insure that manufacturing
systems operate efficiently with minimal energy consumption and
environmental impact. Luckily, today’s sensor systems are
becoming increasingly dependable and low-priced and the signal
processing capabilities of advanced algorithms and decision
making strategies are also rapidly progressing.

There are numerous techniques and methods of signal
processing (feature extraction, selection and refinement) and
feature integration (decision making) developed in laboratories
worldwide, most of them really effective for sensor monitoring of
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machining operations: the main achievements were reported in
Sections 3 and 5. Despite industrial data availability or industrial
conditions adoption in many studies, very few of these achieve-
ments found actual application in the shop floor or in commercially
available tool and process conditions monitoring systems. The
main reason seems to be the difficult, sophisticated usage of these
techniques and methods. Usually, author’s tuning of ‘‘hand made’’
configuration is inevitable, making the procedure hardly applic-
able in industry. Accordingly, one of the main challenges in future
machining process monitoring systems is the development of
algorithms and paradigms really autonomous from machine tool
operators, who are not required to know about methods like
wavelet transform, neural networks, etc., with signal feature
extraction and decision making performed without intervention of
the operator, who should provide only very simple (the lesser, the
better) input and information.
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