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Consistent physics underlying ballistic motion prediction 
 

Kevin A Smith (k2smith@ucsd.edu),1 Peter Battaglia (pbatt@mit.edu),2 Edward Vul (evul@ucsd.edu)1 
1. University of California, San Diego, Department of Psychology, La Jolla, CA 92093 

2. MIT, Department of Brain and Cognitive Sciences, Cambridge, MA 02139 
 

Abstract 
Research into human models of intuitive physics typically 
falls into one of two camps, either claiming that intuitive 
physics is biased and not representative of real physics, or 
claiming that it consists of a collection of veridical physical 
laws. Here we investigate the causes of this tension, 
suggesting that prediction is based on real physics, but 
explanation is susceptible to biases. We gave participants 
three tasks based on the same physical principles: two 
prediction tasks and one task that required drawing the future 
path of motion. We found distinct biases in all three tasks; 
however, the two prediction tasks could be explained by 
consistent application of real physical principles under 
uncertainty, while the drawing task produced many more 
idiosyncratic biases. This suggests that different tests of 
intuitive physics are capturing different types of knowledge 
about the world.  

Keywords: intuitive physics; uncertainty; ballistic motion 
prediction 
 

Introduction 
Classic studies have suggested that many people base their 
physical intuitions on incorrect and inconsistent physical 
theories (Anzai & Yokoyama, 1984; McCloskey, 
Caramazza, & Green, 1980).  Others have reported that 
people are biased by surface-level differences between tasks 
(Kaiser, Jonides, & Alexander, 1986), and that their 
inferences about simple physical situations rely on shallow 
heuristics and are frequently mistaken (Proffitt & Gilden, 
1989; Todd & Warren, 1982).  However over the past few 
years, a number of researchers have explained human 
physical predictions using quantitative cognitive models that 
assume people have an accurate and consistent 
understanding of the laws of physics that they apply flexibly 
across tasks (Hamrick, Battaglia, & Tenenbaum, 2011; 
Sanborn, Mansinghka, & Griffiths, 2013; Smith & Vul, 
2013; Téglás et al., 2011).  

We suggest that a core difference between the above 
studies is the task given to participants. Some have asked 
participants to make a single judgment about the future state 
of the world, for instance, the direction a tower of blocks 
will fall (Hamrick, et al., 2011) or where a ball will cross a 
line (Smith & Vul, 2013). In contrast, classic studies tap 
into explicit explanations of physics, through verbal 
problems (Anzai & Yokoyama, 1984) or line drawings of 
motion (McCloskey, et al., 1980). Here we argue that people 
can apply correct physical principles consistently to 
simulate the world forward; however, explicit explanations 
of how the world will unfold draw upon an idiosyncratic set 
of background knowledge. 

We assessed participants’ understanding of the movement 
of balls after they had fallen off of pendulums in three 
separate tasks: predicting where a ball would land if cut 
from a pendulum, deciding when to cut a pendulum string 
such that the ball would fall into a fixed bucket, and 
drawing the path of the ball after the string is cut. We picked 
these tasks because there is evidence that people understand 
the motion of pendulums (Pittenger, 1985, 1990) and can 
predict the motion of projectiles under gravity (Saxberg, 
1987), both of which must be combined to determine the 
ultimate trajectory of the balls. But there is also evidence 
that people show systematic errors when asked to explicitly 
draw the path of the ball (Caramazza, McCloskey, & Green, 
1981), and that these errors are attenuated with kinematic 
information (Kaiser, Proffitt, Whelan, & Hecht, 1992).  

The same physical principles apply to each of these tasks, 
and so in the present experiment we investigated whether 
the tasks that require implicit prediction (catching the ball 
and cutting the string) can be explained by veridical 
physical principles. We find that subjects’ performance on 
the catching and cutting tasks differs between the tasks, but 
in the tasks that involved perceptually guided movements 
the differences can be reconciled by considering a single, 
valid model of physics that incorporates the different 
sources of perceptual and motor uncertainty from each task. 
Conversely, the sketches based on explicit conceptualization 
were inconsistent and idiosyncratic. 

Experiment 

Methods 
Fifty-seven UC San Diego undergraduates (with normal or 
corrected vision) participated in this experiment for course 
credit. All were treated in accordance with UCSD's IRB 
protocols. 
 
Procedure 
Participants viewed a computer monitor from a distance of 
approximately 60cm, which initially depicted a ball 
swinging from a string, consistent with pendulum motion. 
At some point in time the string would be cut and the ball 
would be released, thus entering ballistic motion. Beneath 
the pendulum there was always a bucket, and in every trial 
the participant's goal was to cause the ball to drop into the 
bucket after being released. How they were allowed to 
interact with the scene differed between two tasks, which 
were organized into blocks that were randomized across 
participants. With the exception of one initial practice trial 
per task that familiarized participants with the task, the path 
of the falling ball was occluded in order to prevent 
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participants from learning a simple relationship between the 
ball's release position and its landing position. At the end of 
each trial, participants were given binary feedback that 
indicated whether or not the ball successfully landed in the 
bucket. After the two tasks on the computer, participants 
were asked to draw the ball’s motion in a diagram task. 

 
Catching task. Participants were instructed to adjust the 
bucket's horizontal position using the mouse so that the ball 
would land in the bucket after being released. The release 
time was pre-determined and varied across trials. To relieve 
time pressure placed on participants, at the moment the 
string was cut, all ball and string movement was paused.  
Once the participant chose a bucket position, they could 
unpause the motion by clicking the mouse. The center of the 
bucket was recorded as the participant’s judgment about 
where the ball would land.  

 
Cutting task. The bucket was held fixed at a pre-
determined position and participants were instructed to cut 
the pendulum string by clicking the mouse at a time that 
would cause the ball to drop into the bucket. The time at 
which the string was cut was recorded for each trial.  

 

 

 
Figure 1: Diagram of the two tasks: catching on top, 

cutting on the bottom. (A) The pendulum swings freely to 
start; this ends at a predetermined time (catching) or when 

the participant clicks the mouse (cutting). (B) An occluder is 
placed over the string. In the catching task, the action is 

paused until participants click the mouse, during which time 
they can move the bucket. In the cutting task, there was no 
pause, but the falling motion of the ball was occluded. (C) 

Participants are given feedback on success or failure. 
 

Trials.  For each task, participants repeated 48 distinct trials 
five times each. Trials were matched across tasks such that 
where the ball landed in a catching trial was the bucket 
position in the matched cutting trial. In the catching task, 
there were 16 distinct release times, crossed with three 
vertical distances between the nadir of the pendulum and 
position of the bucket – either 20, 35 or 50% of the total 
screen height. No participant indicated they were aware that 

the trials were repeated or matched across task in an 
informal post-experiment survey.1 

 
Simulating pendulum motion.  Both tasks and all trials 
used the same pendulum. This pendulum had a length of 
half of the screen, and reached a maximum angle of 35° 
from vertical of the nadir. The period of the pendulum was 
2.46s. The string was assumed to be massless, and therefore 
the position of the pendulum at any time could be calculated 
according to the laws of physics.2 

Both the pendulum motion and the falling ball obeyed 
Newtonian mechanics as if the pendulum was positioned at 
a depth of 6m from the participants. This value was selected 
through pilot tests to conform to participants' general 
expectations about the natural period of the pendulum. 

 
Diagram task.  After participants completed both tasks, 
they were given diagrams of pendulums and asked to draw 
the path of the ball if the string was cut at four positions 
indicated in those diagrams (a replication of Caramazza, et 
al., 1981). One participant did not perform this task due to a 
logistical error. 

 

 
Figure 2: The four problems in the diagram task. 

Participants were asked to draw the expected path of the ball 
if the pendulum string were cut at each of the four points. 

Results 
Accuracy in the catching and cutting tasks was measured as 
the proportion of trials in which the ball successfully landed 
in the bucket. Participants’ mean accuracies were 30.7% 
(s.d. 14.1%) on the catching task, and 47.4% (s.d. 15.6%) on 
the cutting task. Participants' individual accuracies were 
(Pearson) correlated across tasks, r = 0.68. There was no 
evidence that participants improved over trials on the 
cutting task (z=1.23, p=0.22), but they did improve on the 
catching task (z=3.04, p=0.0024), from 28.8% accuracy on 
the first half to 32.8% on the second half. 

The remaining analyses quantified participants' 
performance as the displacement between the ball's landing 
position and the bucket's position; in the catching task the 
bucket position was under participants' control and the 
landing position was under experimental control, and vice 
versa for the cutting task. We aggregated performance by 

                                                             
1 One participant noted that they solved trials by “remembering 

where the ball should go” but it was not clear whether this was 
memory for the trials or prior knowledge of pendulum motion. 

2 For computational reasons, this was calculated using the small 
angle approximation to pendulum motion, which should be correct 
to within 2.4% of actual pendulum timing.  
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trial across participants in each task to determine how trial 
factors influenced participants’ decisions.  

 
Catching task. Participants' mean bucket positions were 
correlated with the ball's actual landing positions (r=0.95, 
SumSq = 880*103), and were highly consistent with each 
other (split-half correlation: r=0.993). Participants also 
demonstrated a systematic bias: on average their judgments 
were slightly shifted away from the actual landing position, 
toward the center of the pendulum (see Fig. 3). The 
consistency across participants suggests that the position 
bias is shared, capturing a commonality in physical models. 

 
Figure 3: Catching task. Actual landing positions (x-axis) 

versus participants' mean bucket positions (y-axis) for each 
trial (individual trials, error bars are 95% CIs). 

 
Cutting task.  We calculated the projected landing 
positions of the ball as a function of each release time 
chosen by participants, per trial. Participants' mean landing 
positions were highly correlated with the actual bucket 
positions (r=0.98, SumSq = 187*103), and were again 
highly consistent with each other (split-half correlation: 
r=0.998).  Participants also demonstrated a distinct bias, 
which differed from that in the catching task: when the 
bucket was near the horizontal position of the pendulum's 
nadir, participants' mean landing positions were shifted 
away from it, but when the bucket was far from the nadir, 
their mean landing positions were shifted toward it (note the 
sigmoid curvature in Fig. 4). This high inter-participant 
correlation again suggests a common bias across people. 

 
Figure 4: Cutting task. Actual bucket positions (x-axis) 

versus mean ball landing positions (y-axis) for each trial 
(individual trials, error bars are 95% CIs). 

Comparison. Both tasks required using the same physical 
principles to determine where the bucket should be placed 
or when the rope should be cut, yet showed divergent 
biases. Moreover, the correlation between the mean bucket 
position and mean landing position for matched trials was 
high (r = 0.93), but this demonstrates only that participants 
were in general accurate at this task – the inter-task 
correlation was less than each task’s correlation with the 
ideal response, suggesting that the sources of deviation from 
the ideal response are distinct.  

 
Diagram task. Two research assistants naïve to the purpose 
of this experiment sorted participants’ diagram trajectories 
into one of eight types (see Figure 5). Inter-rater reliability 
was high (Cohen’s kappa = 0.826) – the raters agreed for 47 
of the 56 of the participants; where they disagreed, the first 
author acted as a tie-breaker. Twenty-one percent of the 
participants’ figures were idiosyncratic and could not be 
categorized. Only 4 (7%) of participants drew the correct 
path for all diagrams. 

 

 
Figure 5: Diagram patterns drawn by more than one 

participant. Excludes 12 participants who drew idiosyncratic 
paths. The top pattern represents correct physics. 

 
We reviewed subjects’ beliefs about trajectories under 

gravity: whether they demonstrated that balls would fall in a 
curved pattern: only 18% of our participants did (less than 
the 55% reported by Caramazza, et al., 1981). If participants 
were learning principles about pendulums from the catching 
or cutting task, we would have expected a higher proportion 
of curved paths. 

Thus participants display high inter-subject reliability on 
the catching and cutting tasks (despite large differences 
between the two) but when explicitly drawing pendulum 
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trajectories they show much less agreement and consistency 
with any kind of physical or non-physical principles. We 
believe this discrepancy arises because the diagram task taps 
into idiosyncratic, strategic explanations of physics, but the 
cutting and catching task behaviors arise from a single 
consistent application of physical principles under different 
task demands. We designed a model to test the latter claim. 

Physics-based model observer 
We designed a model observer that used a single system of 
physical mechanics rules to predict participants’ behavior on 
both the catching and cutting tasks. These model predictions 
used real-world physics, just as was used in the experiment 
to determine the trajectory of the ball both on and off of the 
pendulum string. The model adapted to each task by 
adjusting how its physical predictions were applied to the 
judgment. In the catching task it computed the expected 
landing position of the ball and selected that as its bucket 
position, but biased its estimates of the ball’s pre-release 
velocity toward a slower speed based on “misremembering” 
the velocity through a pause. In the cutting task it computed 
which release time would cause the ball to land in the 
bucket and selected that as its judgment, but this timing was 
subject to errors that reflected realistic constraints on 
people's timing precision.  

Catching task 
Description. Because the ball was motionless while 
participants placed the bucket, participants were required to 
remember the velocity of the ball and form their judgment 
based on that memory. This could introduce biases that 
would cause participants to recall the velocity as slightly 
different than it had actually been before the pause 
(Brouwer & Knill, 2009), especially favoring slower speeds 
(Stocker & Simoncelli, 2006; Weiss, Simoncelli, & 
Adelson, 2002). This bias was treated as a single parameter 
(vadj) that determined the proportion of the original velocity 
the ball would have upon being released. This proportion 
was constant across all trials. 

Based on this (mis)remembered velocity, the model 
calculated the expected landing position of the ball when it 
would hit the paddle, and assumed all deviation from that 
position was Gaussian noise. This placement noise could 
arise from noise in either the motor system during 
placement, uncertainty in estimation of the velocity of the 
ball, or simulation uncertainty that accumulates 
symmetrically around the position over time (e.g., Smith & 
Vul, 2013).3 

 
Model fit. The model explained participants’ average 
bucket positions well (r=0.994, SumSq = 41*103, see Fig. 
6), and accounted for participants' center-shift bias. The 
model predicted participants’ responses as well as 

                                                             
3 Simulations indicated that noise in the initial velocity (speed 

and direction) would give rise to roughly Gaussian error, 
suggesting that this is a reasonable assumption. 

participants predicted each other, which suggests that the 
model captures nearly all of the systematicity in people's 
underlying judgments. 

The best fitting parameters assumed that participants 
recalled the ball as having 51.7% of its pre-pause velocity 
magnitude, which caused their judgments of its predicted 
final horizontal distance to be shifted nearer to the center 
when it reached the ground. Although this is directionally 
consistent with our assumption that people remember 
velocity as slower than it was, the magnitude was larger 
than expected. Individual errors were predicted to be 
distributed around that point with a standard deviation equal 
to 14.5% of the screen width. 

Although accuracy increased across trials in the catching 
task, this had relatively little impact on the model 
parameters (first half vadj: 47%, second half vadj: 55%). 
Therefore we do not believe that this pattern of errors was 
driven by feedback during the task. 

 

 
Figure 6: Catching task. Model's bucket positions (x-axis) 

versus participants' mean bucket positions (y-axis) for each 
trial (individual points, error bars are 95% CIs). 

 
Uncertainty The model assumed that the error in the 
catching task arose from Gaussian noise in the bucket 
position around the expected location. This implies a 
constant error in paddle position regardless of where the ball 
lands. Thus error should be constant across trials. 

 
Figure 7: Catching task. Actual landing position (x-axis) 

versus participants' bucket positions' SD (y-axis) for each 
trial (individual points). 
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As can be seen in Figure 7, there is no evidence for a 
linear (F(1,46)=0.27, p=0.61) or quadratic (F(2,45)=1.31, 
p=0.28) relationship between the landing position of the 
ball on each trial and the standard deviation of participants’ 
bucket positions on that trial.4 This suggests that error does 
not vary as a function of bucket position, which agrees with 
our prediction that this is only a combination of motor error 
and unbiased prediction noise. 

Cutting task 
Description Participants' release time choices were 
variable, likely due to imprecise visual estimates of the 
ball's position and velocity as well as noise inherent to fine 
motor behaviors. As a result, if the participant intended to 
release the ball at time t, they may have instead released it at 
time t+ε. Because the physical dynamics induce a non-
linear relationship between ε and the error in landing 
position, a rational participant should select a time for which 
the probability of the ball landing in the bucket is highest 
rather than when it would land closest to the bucket center. 
If people understand their own timing imprecision (as 
reported in Hudson, Maloney, & Landy, 2008), then they 
should marginalize over ε in order to maximize their chance 
of success. If R* is the intended release time, R is the actual 
release time, and terr is the variability in timing, the 
probability of hitting the bucket given R* is: 

 

! ℎ!" !∗, !!"" = ! ℎ!" ! ∗ !(!|!∗, !!"") 

 
Here P(hit|R) is either 1 or 0, because hit depends 

deterministically on R. The distribution of R given R*, 
P(R|R*,terr), was assumed to be Gaussian distribution with 
mean and SD, R* and terr respectively. The model assumed 
that people selected R* such that P(hit|R*) was at a local 
maximum. The cutting task contained an important 
additional feature: for most trials (58%) there were two time 
spans in the pendulum period during which the string could 
be cut to get the ball into the bucket – usually one time 
while the pendulum is swinging left, and once while 
swinging right. In these cases, there were two locally 
maximum modes of P(hit|R*). Puzzlingly, people did not 
always choose the optimal (higher probability) mode given 
the model assumptions, but instead often favored the 
suboptimal mode. This suboptimality may have been due to 
participants' desire to accumulate more information by 
waiting for the later time (Battaglia & Schrater, 2007; Faisal 
& Wolpert, 2009), or minimize trial duration by selecting 
the earlier time. Since our model did not capture such 
factors, we simply set the model's choice of modes to match 
the participants' proportion. 

Timing errors were represented by two parameters in this 
model, describing the bias (tbias) and the noise (terr). These 

                                                             
4 We attempted to fit polynomial regressions up to fifth-order to 

this data but found no significant relationships (all ps > 0.1). 
 

parameters were fit to the observed cut timings, though for 
consistency, results are presented as the average landing 
position based on these cuts. 

 
Model fit. The model assumed that people tended to release 
the ball 38ms after the optimal time, and the variability in 
responses had a standard deviation of 165ms. This timing 
variability is similar in magnitude to that reported in another 
task that required physical prediction (130ms; Faisal & 
Wolpert, 2009). The correlation between people's mean 
projected landing position given their choice of release time 
and that of the model was high (r=0.993, SumSq = 87*103, 
see Fig. 8). 

 
Figure 8: Cutting task. Model's landing position (x-axis) 

versus participants' mean projected landing positions (y-
axis) for each trial (individual points, error bars are 95% 

CIs). 
 

Uncertainty. The model assumed that the source of error in 
landing positions was in the cutting time, but a constant 
error in time does not imply a constant error in landing 
position: if the ball is released near the apex when moving 
slowly, a small time error will lead to a small difference in 
landing position, while if the ball is released at the nadir 
when moving fastest, the same timing error will lead to a 
larger difference in landing position.  

  
Figure 9: (Left) Variability in empirical ball landings by 

where the ball will land. (Right) Model predictions of trial 
variability in the cutting task versus empirical observations.   

Each point represents a separate trial. 
 

Unlike the catching task, there is a quadratic relationship 
between the landing position of the bucket on each trial and 
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the SD of the ball landing positions on that trial 
(F(2,45)=13.8, p<0.001, see Fig. 9, left). Furthermore, the 
model predicts this variability. We calculated the SD of 
landing position that the model expected for each trial and 
found that it was correlated with participants' projected 
landing position SD with r = 0.67 (see Fig. 9, right), 
although the model's predicted SD was slightly lower on 
some trials. This suggests that the physics-based model 
captures differences in trial variance. 

Discussion 
In this experiment, we found that people show very different 
behaviors on three tasks that use the same underlying model 
of physics: predicting the trajectory of a ball on a pendulum 
after the string has been cut. Two of the tasks required 
people to make a judgment about the future state of the 
world: where the ball will land or when to cut the string to 
control the ball’s landing. While people responded in 
different ways on each of these two tasks, both sets of 
responses were consistent with veridical physical principles 
once task uncertainties were accounted for. On the other 
hand, participants were much more variable on the diagram 
task: they often drew trajectories that were physically 
impossible.  

These differences imply that the catching and cutting 
tasks are tapping a different sort of knowledge than the 
diagram task. Perhaps people can simulate the world 
forward in a way consistent with Newtonian physics, but the 
workings of these simulations are opaque, making 
description difficult and more reliant on conceptual 
understandings. This would suggest a need for both types of 
intuitive physics: research into how people make predictions 
informs how we use physics to plan our actions or make 
judgments about the world (e.g., Gerstenberg, Goodman, 
Lagnado, & Tenenbaum, 2012; Hamrick, et al., 2011), while 
research into how people describe physical events informs 
how we form concepts about the workings of the world 
(e.g., diSessa, 1993). 

It has been suggested before that “a person may possess a 
perceptual appreciation of… natural dynamics… yet be 
unable to draw upon this knowledge… in a representational 
context.” (Kaiser, Proffitt, & McCloskey, 1985, p. 539). 
Here we provide evidence that even when people cannot 
explain how the world will unfold, their predictions and 
actions are reflective of a veridical physical model of the 
world. 
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