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A B S T R A C T

Forecasts of electricity consumption and peak demand over time horizons of one or two decades are a key
element in electric utilities’ meeting their core objective and obligation to ensure reliable and affordable elec-
tricity supplies for their customers while complying with a range of energy and environmental regulations and
policies. These forecasts are an important input to integrated resource planning (IRP) processes involving uti-
lities, regulators, and other stake-holders. Despite their importance, however, there has been little analysis of
long term utility load forecasting accuracy. We conduct a retrospective analysis of long term load forecasts on
twelve Western U. S. electric utilities in the mid-2000s to find that most overestimated both energy consumption
and peak demand growth. A key reason for this was the use of assumptions that led to an overestimation of
economic growth. We find that the complexity of forecast methods and the accuracy of these forecasts are mildly
correlated. In addition, sensitivity and risk analysis of load growth and its implications for capacity expansion
were not well integrated with subsequent implementation. We review changes in the utilities load forecasting
methods over the subsequent decade, and discuss the policy implications of long term load forecast inaccuracy
and its underlying causes.

1. Introduction

From the origins of the U. S. electricity industry in the 19th century
with Thomas Edison's first power-generation plant in New York City,
electric utility planning and operations have become highly complex,
multi-faceted processes. Vertically integrated1 U. S. utilities or load-
serving entities (LSEs)2 operating in states with a regulated electricity
sector must determine how to provide electricity services to customers
while complying with a range of energy and environmental regulations
and policies, and respecting the economic objectives of both the utility
and customers. These functions entail the use of a range of quantitative
analytical methods, including computational modeling and statistical
analysis. LSEs’ core obligation is to ensure reliable, clean, and afford-
able electricity supplies for their customers. It follows that forecasts of
electricity consumption (GWh) and peak demand (MW) over the time
horizons of one or two decades are a cornerstone of LSE's planning
process.

Long term load forecasts are a key input to integrated resource
planning (IRP), which has become the core process whereby many U.S.
LSEs, in consultation with regulators and other stakeholders, determine

portfolios of electricity resources to meet demand over the long term.
Such forecasts form the basis of utilities’ capacity expansion planning,
which consists of building or acquiring power generation plants, pur-
chasing power from other sources, and other means of securing elec-
tricity supplies and services for their customers. Because energy and
environmental policy goals are also a major element of IRP in many
states, these forecasts also influence efforts to achieve larger social
objectives. An important example is the consideration of energy effi-
ciency and other demand side measures into utility planning, which has
become a high policy and regulatory priority in much of the U.S.

Load forecast horizons employed in the electric industry often range
from hours to decades. Hour and up to yearlong forecasts are categor-
ized as short and medium term and are commonly used for operational
efficiency. Decades long forecasts are categorized as long term and are
the type used in utility planning. Short and medium term electric load
forecasting has been and continues to be the focus of considerable re-
search, and is the subject of a sizable literature. Hong and
Shahidehpour (2015) provide a comprehensive overview. In contrast,
there has been relatively little study of long term load forecasting.
Willis and Northcote-Green (1984) compared methods and accuracy of

https://doi.org/10.1016/j.enpol.2018.04.060
Received 14 September 2017; Received in revised form 29 March 2018; Accepted 27 April 2018

⁎ Corresponding author.
E-mail address: jpcarvallo@lbl.gov (J.P. Carvallo).

1 Vertical integration refers to the combination of different stages of production or segments in a value chain under a single company.
2 “Load-serving entity” is a more precise term than “utility” to refer to firms that sell electric power to end-use customers. However, in this paper these terms will be used inter-

changeably.

Energy Policy 119 (2018) 410–422

0301-4215/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03014215
https://www.elsevier.com/locate/enpol
https://doi.org/10.1016/j.enpol.2018.04.060
https://doi.org/10.1016/j.enpol.2018.04.060
mailto:jpcarvallo@lbl.gov
https://doi.org/10.1016/j.enpol.2018.04.060
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enpol.2018.04.060&domain=pdf


14 distribution system load forecasts. Nelson and Peck (1985) analyzed
load forecasts from the 1970s prepared by the National Electricity Re-
liability Corporation (NERC), which combine individual utility service
territory and regional level forecasts into a national level forecast. They
found systematic over projection of demand. Mitchell et al. (1986)
retrospectively evaluated the accuracy of long term energy and peak
demand forecasts by utilities, government agencies, and academic re-
searchers.

This paper aims to help fill the knowledge gap on long term fore-
casting by focusing on forecast performance or accuracy. It reports the
results of a retrospective analysis of load forecasts produced in the mid-
2000s by twelve utilities in the western United States. It also reviews
the utilities’ forecast methodologies and sensitivity analyses. This ana-
lysis is the companion paper to Carvallo et al. (2017), which studies the
relationship between utilities’ planning processes – including load
forecasting – and their actual resource procurement decisions.

This paper is organized as follows. We report the sources of data
used in the analysis in Section 2, followed by a discussion of the LSEs’
forecasting methodologies in Section 3. In Section 4 we describe our
quantitative analysis of forecast error. We then turn in Section 5 to a
discussion of the effects of economic growth assumptions on forecast
accuracy. We present an analysis of the LSEs’ approaches to load sen-
sitivity analysis in Section 6, followed by a discussion of changes to
LSEs’ load forecasting methods and inputs over time in Section 7. We
conclude with Section 8, which holds a summary, discussion of policy
implications, and suggestions for further research.

2. Data sources and methods

2.1. Information on forecasts

We collect forecasts from IRP produced from 2003 to 2007 by
twelve LSEs across the Western Electricity Coordinating Council
(WECC). We focus on WECC because this territory includes the largest
U.S. LSEs that were required to file resource plans during this period
(Wilkerson et al., 2014). Three large California investor-owned utilities
(IOUs) were excluded because they did not use IRP during the analyzed
timeframe. Aside from the California IOUs, the LSEs selected for this
study are the twelve largest in WECC representing 34% and 32% of
customers and retail sales in 2014, respectively.

The vintage years for the IRPs, which correspond to the base years
for the forecasts, were selected for several reasons. These plans were
created sufficiently long ago that their forecasts could be compared to
actual3 values over periods long enough to allow substantive analysis –
to the year 2014, the most recent year for which these values were
available at the time this study was conducted4 (see Table 1). De-
pending on the LSE, between seven and eleven years of observed energy
and peak demand are available to be compared to the original forecast.
In addition, in reviewing plans older than those selected we found
several shortcomings, including limited data and documentation of the
type needed for this analysis. As discussed in Section 7, we also review
one recent plan (produced between 2011 and 2015) for each LSE to
understand whether and how the methodologies and techniques used to
produce forecasts have changed over time.

The analysis period includes the 2008/2009 economic recession,
which would be expected to have a substantial or even disproportionate
effect on the accuracy of load forecasts made prior to its onset. It is a
truism that all forecasts, including those of electricity use, are subject to
error due to unforeseen circumstances. As we discuss later in the paper,
the documentation indicates that the LSEs view economic and

demographic variables as the primary drivers of demand, and the in-
evitable but always uncertain timing of events such as recessions means
that such events are essentially guaranteed to affect long term load
forecasts in not fully predictable ways, regardless of the forecast in-
terval. Thus, an analysis period including the downturn that began in
2008, which was unusually severe, can if anything allow greater insight
into the nature of load forecast accuracy and how forecast errors are
addressed in the IRP process than might be available from studying a
period without such an event. Put differently, the 2008/2009 recession
provides an interesting "stress test" of LSE load forecasting procedures
in the context of IRP.

We collect three basic types of numerical forecast information from
each IRP: electricity use, peak demand, and the demand side resources
of energy efficiency (EE) and demand response (DR).5 For the forecast
to actual comparison we used the base or reference case load forecast in
each resource plan (all 12 LSEs produced these cases for energy and 11
for peak). We use high and low load forecasts where these were
available for sensitivity analysis. LSEs account differently their energy
efficiency and demand response measures, with some subtracting pro-
jected savings from these resources into their load forecasts, and some
reporting them separately. For the forecasts that had not already done
so, we subtract these savings from the raw energy and peak demand
forecasts in order to calculate net load.6 The use of net forecasts is
appropriate for comparison with actual energy and peak demand, since
the latter have embedded within them the effects of demand side pro-
grams and other acquired energy efficiency over the periods considered
in the analysis.

2.2. Information on actual energy use and peak demand

Data on energy consumption and peak demand is obtained pri-
marily from the Velocity Suite system supplied by ABB-Ventyx—an
online database system that compiles publicly-available data and also
contains proprietary values for variables that are not always publicly-
available, including retail fuel prices and marginal costs (ABB-Ventyx,
2016).

The Velocity Suite system contains load data as measured by retail
sales, which is typically reported through the Energy Information
Administration (EIA) Form 861 (EIA, 2016). In order to compare
forecasts to actual values, it was necessary to identify the types of sales
that utilities themselves considered as part of the position7 for the re-
source planning process. All 12 IRPs in our sample accounted for retail
sales to ultimate consumers when creating their forecasts, and most (10
LSEs) included transmission and distribution losses to reflect demand at
the generation level. For the remaining two cases, we added transmis-
sion and distribution losses.

In addition, we review the IRP documentation to determine which
LSEs accounted explicitly for selected wholesale sales for which they
had firm contracts at the time of the forecasts, and use data from EIA
Form 412 and FERC Form 1 to identify and include appropriate
wholesale sales as necessary. Finally, we use historical load information
when available in the most recent LSEs plans to check our estimates for
actual values.

3 We refer to these also as “realized” or “observed” through the paper.
4 In the case of PNM and PGE we selected the oldest plans we were able to find that

included the required data. PNM filed its first resource plan in 2005 but it did not include
most of the quantitative data required for the analysis.

5 By the time the IRP documents we analyze were issued, adoption of demand side
resources such as distributed generation or storage was very limited and usually not
considered. Therefore, we limit our analysis to EE and DR.

6 By doing this, we implicitly include in our assessment the performance of energy
efficiency and demand response forecasts. We recognize that the actual demand side
resources may differ from these forecasts, but we lack the data to test this.

7 The position is a term used to describe the annual expected difference between load
and resources to meet it. When load is expected to be higher than the available resources,
it is referred to as a negative position.
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3. Description of forecasting methodologies

In this section we provide an overview of the LSEs’ load forecasting
methods.

Economic-demographic projections, historical sales data, and
weather variables are employed by all forecasts (see Fig. 1). Most
methods rely on historical data for each variable, but some LSEs de-
velop variable projections (see Table A-1 and A-2 in the Appendix).
Roughly three quarters of the LSEs in our sample relied on externally-
developed demographic and economic forecasts, from a mix of public
and private sources, including universities, state/federal agencies, and
consulting firms. Most of these sources were proprietary.

Load forecast complexity varies widely across the LSEs examined in
this study. We qualitatively assess the complexity of the load forecast by
comparing the number of variables used to forecast residential and
commercial/industrial demand and the analytical methods employed8

(see Table 2). For example, utilities including PNM, NW and SierraPa-
cific use simpler models compared to the models employed by COPSC,
LADWP, and PugetSound.

Four types of modeling approaches, of varying degrees of com-
plexity, were used by the various LSEs to create energy, peak demand,
and hourly load forecasts: time-series regression, cross-sectional re-
gression, engineering or bottom-up, and statistically adjusted end-use
(SAE). Time series and cross-sectional regressions consistently use his-
torical sales and weather variables as determinants of electricity de-
mand. SAE models have a hybrid structure combining engineering end-

Table 1
Load serving entities (LSEs) and integrated resource plans analyzed in this study.

LSE short name LSE name First plan year Recent plan year Intermediate plan year(s) Reference

Avista Avista Corporation 2005 2013 2006–2011 (Avista, 2013, 2005)
COPSCa Public Service Company of Colorado (Xcel Energy) 2003 2011 None (COPSC, 2011, 2004)
Idaho Idaho Power Company 2006 2013 2008, 2009, 2011 (Idaho, 2013, 2006)
LADWP Los Angeles Department of Water and Power 2006 2012 2011 (LADWP, 2012, 2006)
NVPower Nevada Power Company 2006 2012 2007, 2010 (NVPower, 2012, 2006)
NW NorthWestern Corp. dba NorthWestern Energy 2004 2013 2007, 2011 (NW, 2013, 2004)
PacifiCorp PacifiCorp 2004 2015 2007, 2009, 2011 (PacifiCorp, 2015, 2005)
PGE Portland General Electric Company 2007 2013 2009, 2011 (PGE, 2014, 2007)
PNM Public Service Company of New Mexico 2007 2011 None (PNM, 2011, 2007)
PugetSounda Puget Sound Energy, Inc. 2005 2013 2007, 2009, 2011 (PugetSound, 2013, 2005)
Seattlea Seattle City Light 2006 2012 2008, 2010 (Seattle, 2012, 2006)
SierraPacifica Sierra Pacific Power Company 2004 2013 2007, 2010 (SierraPacific, 2013, 2004)

a These LSEs are also known as PSCo (COPSC), PSE (PugetSound), SCL (Seattle), and SPP (SierraPacific). We use our own short names through this paper.
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Historical sales 0 RCIRCIRCIRCIRCIRCI 0 0 RCIRCIRCI

Cooling degree days RCIRCIRCIRCIRCIR 0 0 0 RCI 0 R

Heating degree days RCIRCIRCIRCIRCIR 0 0 0 RCI 0 R

Population growth RCI 0 0 RCI 0 0 RCI 0 0 RCIRCIR

Electricity price/tariffs 0 RCI 0 RCIRCIR CI 0 0 RCI 0 0

Employment RCI 0 CI 0 0 0 RCI 0 0 RCICI 0

Household size 0 R 0 0 0 0 R 0 R RCI 0 0

Number of customers 0 0 0 0 CI R 0 0 R 0 0 R

Energy intensity trends 0 CI 0 0 0 CI CI 0 0 0 0 CI

Appliance saturation 0 R RCIRCI 0 0 R 0 0 0 0 0

Time dummies (day,month,season,year) 0 R 0 RCIRCI 0 0 0 0 RCI 0 0

Housing stock 0 R R 0 0 0 0 0 0 0 R 0

Household income 0 R 0 0 0 0 R 0 0 RCI 0 0

Gross product (national/regional) 0 CI 0 0 0 0 0 0 0 RCIRCI 0

Air conditioning usage 0 0 0 0 0 0 0 0 R 0 0 0

Model

complexity M H M H M L M L H M L

Coding Low complexity Residential

Medium complexity Commercial/Industrial

High complexity All

Fig. 1. Variables used for residential and commercial/industrial load forecasts, and model complexity. There is no information available for PGE in their 2007 plan.
Blank spaces in the table indicate that the variable was not documented or formally employed in the forecast.

8 We create an index that is the sum of squares of the number of variables used for
forecasting in each segment (residential, commercial, and industrial). We then rank LSEs
using this index and classify the bottom third as low complexity, the middle third as
medium, and the top third as high complexity. Therefore, the complexity classification is
relative, not absolute.
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use technology models with econometric equations. This type of data
intensive model represents demand in terms of a saturation component
(for appliance ownership), an engineering component (for appliance
energy intensity), and a behavioral component (Hirst et al., 1977; Hirst
and Carney, 1978; Sanstad et al., 2014). SAE models were employed by
three of the twelve LSEs in our sample, while the two pure regression
models are used by the majority of the LSEs.

LSEs developed customized forecast for three general customer
classes: residential, commercial, and industrial. Residential and com-
mercial forecasts were typically split into numbers of customers and use
per customer, using different methods to forecast each separately. For
example, PacifiCorp used a moving average method for short term
forecasting and an SAE for long term projections while SierraPacific
used an ARIMA (autoregression, integrative, moving average) method
for the number of customers and a regression method for the use per
customer. These methods were applied to both residential and com-
mercial customer classes. In contrast, industrial consumption forecasts
were mostly based on direct feedback from the largest customers,
complemented by regional or sectoral market research reports. Finally,
only a few of the LSEs evaluated in this paper reported load forecast
results by customer class.

A key aspect of load forecasting frameworks is the extent to which
they represent customer reductions in electricity consumption, fuel
switching, or both, in response to changes in electricity prices. About
half of the LSEs in our sample reported specific information about price
elasticities, but only Avista reported cross-price elasticities with natural
gas, although Idaho also pointed out the importance of relative fuel
price changes for electricity demand. In contrast, NW and SierraPacific
reported that they found no empirical evidence for statistically sig-
nificant price elasticities for electricity or for natural gas.

Finally, we note that the breadth and depth of technical doc-
umentation on load forecasting varied widely among the LSEs in the
older IRPs. In some cases, detailed information – including input types
and values, mathematical formulae, and parameter estimates - were
provided; in others, there was only narrative description. In no case,
however, was there sufficient information to actually replicate the in-
dividual LSE forecasts or to test their sensitivity to the error in the input
parameters.

4. Quantitative analysis of forecast error

To estimate forecast errors, we compare forecasts to actual results
using two metrics: sum of errors and annual average growth rate, as
defined in Hyndman (2006):

Sum of errors: Annual forecast errors for each LSE were calculated as
the differences between that LSE's forecasted value and the actual
value for each year of the forecast. We divide the sum of these errors
by the corresponding sum of total load that was actually realized by
the LSE during the forecast period. This serves to normalize the
metric in order to compare forecast performance across LSEs of
varying sizes. This technique averages out positive and negative
deviations, which is useful for identifying systematic error that is
expected given the variability of loads.

● Annual average growth rate (AAGR): We compare the first and last
year forecast and actual values to estimate an average annual
growth rate for each. The AAGR represents the rate at which the first
year forecast or actual value would need to grow to match the final
year assuming a compound growth rate. This relationship is cap-
tured in equation (1) and (2) below:

= × ++Y Y AAGR(1 )t n t
n (1)

where Yt is a forecast variable of interest (in our case energy and
peak demand). Rearranging terms we have:

⎜ ⎟= ⎛
⎝

⎞
⎠

−+AAGR Y
Y

1t n

t

n
1

(2)

The sum of errors is a relative metric, so a larger % difference im-
plies larger forecast error over the time period of analysis. The AAGR
captures, on average, the implied growth rate for a given variable. The
difference between a forecast and an observed growth rate is, in this
case, a measure of forecast error.

4.1. Energy consumption

Fig. 2 shows forecast and observed energy consumption normalized
using the corresponding first year value (forecast or observed). This
normalization essentially yields growth rates for both forecasted and
observed values. The analysis time frame corresponds to the range of
years between the first year in the forecast and 2014 (the most recent
year for which we have observed values). For some LSEs, sales seem
relatively inelastic to the 2008/2009 economic crisis and actual energy
sales are close to the base forecast. However, sales for most LSEs slowed
during and after the recession.

Table 3 compares the sum of errors in each LSE's analysis period
with the sum of actual energy consumed in that period. The table shows
that proportional forecast error varies considerably across the LSEs in
our sample, ranging from a small negative value9 to almost 20%. We
note that with this metric, forecasts from earlier plans have greater
chance of having larger proportional error. However, we do not find a
correlation between age of plans and error in our analysis, probably
because the plans are at most 3 years apart.

In Fig. 2, the depicted growth rate for each LSE reflects the ratio
between a given year's forecasted value and the first year forecast (and
similarly for observed values). Growth rates are relevant because we
can compare growth expectations of different LSEs regardless of their
current consumption levels. Some LSEs’ growth rates were less sensitive
to the recession than others’, and several have not shown signs of re-
covery in energy sales growth rates by 2014.

We calculate the AAGR to facilitate comparison of growth estimates
(Table 4). The AAGR condenses the medium-term accuracy of the
forecast when compared to observed values as it is calculated by taking
2014 as the end year for all samples.

Utilities in our sample expected between 0.6% and 2.6% average
growth rates for energy net of demand side resources. Observed growth

Table 2
Modeling approaches for residential and commercial load forecasting.a

Time series
regression
(ARb, MAc)

Cross section
regression

Engineering
model

Statistically
Adjusted End-
use (SAE)

Avista RC
COPSC RC
Idaho RC
LADWP RC
NVPower RC RC
NW C R
PacifiCorp
PGE
PNM RC
PugetSound RC
Seattle RC
SierraPacific

R: Residential; C: Commercial.
a There is no information available for PGE in their 2007 plan.
b Auto-regressive.
c Moving average.

9 Northwestern (NW) had − 2% error because it was the only utility that under-
forecasted energy consumption.
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rates for energy were much smaller, averaging close to zero across our
sample of LSEs. About half of our sample shows negative observed
AAGR and the ones that show positive AAGR are just above zero. The
two exceptions are PacifiCorp, which grew at roughly two thirds of its
expected rate, and NW, whose observed growth doubled its forecast
growth for energy consumption. Comparing the results in Tables 3 and
4 shows that, in general, LSEs with smaller proportional errors also had
more accurate forecast AAGR.

Accuracy of energy and peak demand forecasts differs across LSEs.
The emphasis placed on energy forecast accuracy compared to peak
demand forecast accuracy suggests the greater importance of the former
for utilities that own or rely on hydropower to cover large portions of
their retail obligations. Systems with high presence of reservoir hy-
dropower are sensitive to hydrological conditions, as rain and snowfall
determines how much energy will be available to generate on a given
basin. These systems are energy-constrained but not capacity-con-
strained, since they can almost always meet peak demand by dis-
patching reservoir hydropower at peak load hours. This short term
flexibility lowers the pressure for accurate peak demand forecast, but

makes the system sensitive to long term energy consumption forecast
accuracy.

4.2. Peak demand

Peak demand forecasts are qualitatively different from energy con-
sumption forecasts, particularly due to their greater sensitivity to
weather variation. The accuracy of energy consumption forecasting for
a given utility does not necessarily correlate with the accuracy of its
peak demand forecasts. In addition, several utilities reported pro-
gressive reductions of load factors (the ratio of average load to peak
load) in their residential customer base. This means that historical
hourly profiles and load factor assumptions may be less informative for
peak demand forecast and make the latter more difficult to assess.

Forecasting results for several LSEs (COPSC, PGE, and NVPower) are
mixed — for some years underestimating and for others over-esti-
mating. Other LSEs (Avista, Idaho, SierraPacific, NVPower, and Seattle)
consistently over-estimated in the period after the financial crisis,

Fig. 2. Forecasted and actual energy consumption growth with alternative load growth forecast (sensitivity).

Table 3
Sum of errors as a proportion of total load for forecast horizon of 2014.

LSE Sum of errors
(1) [TWh]

Sum of actual load
(2) [TWh]

Proportional Error
(1)/(2)

Avista 14.73 85.36 17%
NVPower 26 199.01 13%
SierraPacific 10.57 89.37 12%
PGE 16.1 164.37 10%
Idaho 13.47 138.43 10%
PNM 5.64 85.17 7%
COPSC 21.41 365.05 6%
LADWP 13.04 236.45 6%
PacifiCorp 33.43 580.63 6%
Seattle 5.15 100.48 5%
PugetSound 2.09 206.15 1%
NW − 1.29 68.5 − 2%

Table 4
Average annual growth rate for actual and forecast energy consumption.

Energy AAGR (%)

LSE Base forecast Actual Difference

PNM 2.2% − 1.4% 3.6%
PGE 2.6% 0.2% 2.4%
SierraPacific 1.4% − 0.9% 2.3%
COPSC 1.8% − 0.4% 2.2%
NVPower 2.3% 0.1% 2.2%
PugetSound 1.7% − 0.2% 1.9%
Avista 1.7% − 0.1% 1.8%
Idaho 1.4% − 0.1% 1.5%
Seattle 1.1% 0.2% 0.9%
LADWP 0.6% 0.0% 0.6%
PacifiCorp 1.9% 1.3% 0.6%
NW 0.6% 1.2% − 0.6%
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which is symptomatic of a slower than expected recovery. Finally, some
LSEs (PacifiCorp, LADWP, and PNM) had small systematic under or
over-estimation of energy and peak load, but reasonably accurate
average growth rate forecasts. This occurred with forecasts that un-
derestimated and overestimated actual values in different periods. The
average over longer periods of time yields reasonably accurate growth
rates, but still shows errors in energy and/or peak load forecast.

As with energy consumption, we calculate and compare the implicit
growth rates in both forecasted and observed peak demand values (see
Fig. 3). We also calculate the AAGR to facilitate comparison (Table 5).
Peak demand growth rates generally show a slowdown after the eco-
nomic crisis, but not for all LSEs. Seattle, Avista, PGE, and PugetSound
– all in the Pacific Northwest – show a lagged halt in growth compared
to other utilities (e.g. COPSC, NVPower, and PNM) whose growth rates
reflect an immediate impact. PacifiCorp, LADWP and NW were rela-
tively less affected by the crisis. Peak demand growth rates are more
resilient when compared to energy consumption growth rates, which is

consistent with the LSEs reporting reduced load factors after the eco-
nomic crisis.

Utilities in our sample expected growth rates between 0.3% and
2.4% for peak demand net of demand side resources. Growth rates for
peak demand are much higher than for energy. In addition, several
utilities reported higher peak demand growth than forecasted, even in
the presence of the 2008/2009 crisis. This is consistent with statements
in recent IRPs that report a reduction of load factors among residential
and commercial customers. In addition, comparison of energy and peak
demand observed values indicates that peak demand forecast error
shows much larger variance across utilities. This supports the notion
that it is more difficult to forecast long term peak demand than energy
consumption.

A comprehensive and exhaustive assessment of load forecast error
would require weather normalization of actual values. Unfortunately,
we neither have access to the data nor the resources to perform this
level of analysis. It is important to note, however, that weather nor-
malization typically has a larger effect on short term forecast perfor-
mance. Normalizing weather has less of an impact on long term fore-
casts like those analyzed in this paper.10 To show this, we examine the
historical record for cooling and heating degree-days (CDD and HDD)
for the Pacific U.S. region to characterize the weather in the period
analyzed. We find that 2014 and 2015 were warmer than average, but
that all other years in our period of analysis were considered normal.
For this reason, we believe that our findings would be largely un-
changed if we included weather normalization for each observed value
and for every LSE. Interestingly, LSEs do not report weather as a pri-
mary source of long term forecast error, which also supports the
aforementioned point.

Notwithstanding the general pattern of forecast inaccuracy, fore-
casts for some LSEs performed significantly better than others, even in

Fig. 3. Forecasted and actual peak demand growth, with alternative load growth forecasts.

Table 5
Average annual growth rate for actual and forecast peak demand.

Demand AAGR (%)

LSE Base forecast Actual Difference

PNM 1.9% − 0.8% 2.7%
COPSC 2.1% − 0.5% 2.6%
NVPower 2.4% − 0.1% 2.5%
Avista 1.8% 0.4% 1.4%
PGE 1.9% 0.8% 1.1%
Idaho 1.4% 0.4% 1.0%
Seattle 1.7% 1.2% 0.5%
PugetSound 1.1% 0.8% 0.3%
PacifiCorp 1.3% 1.3% 0.0%
LADWP 0.3% 1.8% − 1.5%
SierraPacific 1.7% 3.4% − 1.7%
NW NA 4.1% NA

10 Climate change will impact CDD and HDD in the very long term. However, changes
in CDD and HDD will not be large enough in the 10–20 year periods used for resource
planning to be a relevant source of forecast error.
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the presence of the economic recession. Our results suggest that this
was not correlated with the size of the utility or with its geographical
location, although the relative ranking in Table 3 indicates that larger
utilities have intermediate forecast error (see Appendix B). This is
perhaps a consequence of having a diverse and large pool of customers
that smooths economic impacts on forecast. This very preliminary as-
sessment suggests that load composition may have an important effect
on the planning strategy and load sensitivity analyses. For example, we
find that LSEs with lower forecast error tend to have lower sales to
industrial customers in proportion to their total sales. This makes in-
tuitive sense: industrial customers are probably the most elastic cus-
tomer class in relation to economic growth.11 This makes their load is
hard to forecast and its lumpy nature has a significant impact on
forecast results. As some LSEs report in their plans, industrial customers
commonly communicate their intention to move in to their service area
or to increase load, but they rarely report an impending termination of
operations or downsizing.

5. Economic forecasts and revisions to load growth forecasts

5.1. Economic forecasts

Long term energy modeling, including load forecasting, is un-
avoidably subject to considerable uncertainty. As noted above, a key
issue for the present analysis is the U. S. national recession that began in
2008. Although the macroeconomic business cycle is an established
phenomenon, predicting the timing and magnitudes of economic

downturns remains an inexact process, and moreover the magnitude
and duration of the recession that began in 2008 are widely (though
perhaps not universally) recognized to have been unusually severe.

However, despite the ex-ante unpredictability of the exact macro-
economic details, in the case of load forecasting it might be expected
that the frequent revision and updating within the LSE's ongoing IRP
processes would have served to progressively reduce forecast errors by
accounting for dramatically reduced economic activity and its effects on
electricity use (along with other influences on load growth subsequent
to the year the original forecasts were created).

To investigate this, we examine load forecasts in IRPs for certain
years following those in which the above-discussed forecasts were
made. We call these IRPs “intermediate” in the context of this analysis
since they were produced between the “older” and “recent” IRPs em-
ployed throughout this study. Dates for intermediate IRPs can be found
in Table 1. Intermediate IRPs were available for all but two of the
utilities in our sample. These plans reveal that the LSEs themselves
devote varying levels of attention to retrospective examination, eva-
luation, and correction of their own load forecasts and forecast errors.
In some cases, there is both considerable analysis of this type and also
improvements in forecasting methods in order to obtain greater accu-
racy. In others, while forecasts are updated, there is little or no retro-
spective discussion in the documents we examined.

In those cases in which forecast errors are discussed ex post, the LSEs
highlight reduced economic activity as the key factor for previous
overestimation of load growth along with resulting reductions in
growth rates of population and the numbers of customers. In some
cases, the underestimation of the effects of demand side management
programs to promote energy efficiency are also cited as reducing
growth more than had been anticipated. As we note previously, the
available documentation is not sufficient to replicate the load forecasts
and fully determine the quantitative importance of different inputs.

Fig. 4. Intermediate energy consumption forecasts.

11 The intuition behind this is that industrial activity is highly correlated with eco-
nomic performance, as reported in several of the IRP documents revised. In addition, Paul
et al. (2009) and Ros (2015) report that industrial customers have the highest short and
long run elasticities among electric customer classes.
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However, in the plans that cite these demand side effects, they are re-
ported as significantly secondary to those of reduced economic growth.

5.2. Revisions of load growth rates in subsequent forecasts

One particular interest is the extent to which forecast errors are
reduced during the planning periods corresponding to our forecasts to
actuals comparisons. Among other reasons, this in turn facilitates
comparison of load forecasts with capacity expansion decisions over
these periods. As discussed above, we are focusing on the years up to
and including 2014 since that is the most recent year for which esti-
mates of actual load are available from the EIA. Thus, consider a load
forecast made in 2005 that extends to 2014 or beyond. Although the
forecast may, in retrospect, embody non negligible errors over the
2005–2014 horizon, updated forecasts made after 2005 might have
reduced these errors and thus mitigated their potential impact on ca-
pacity expansion. Economic factors contributed significantly to the
lower load growth than was forecast in the older IRPs. Moreover, sig-
nificant economic recovery, and therefore a possible return to higher
load growth rates, was not forthcoming for a number of years.
However, review of the intermediate forecasts shows that most of the
LSEs continued to expect some degree of economic recovery and pre-
dicted increased load growth rates (see Fig. 4).

For most LSEs their errors remain non negligible. Indeed, in most
cases there is a sustained overestimation of load growth to 2014 even as
the year in which the forecast was conducted approaches 2014.
Specifically, actual load growth to 2014 was in most cases small or even
negative as the forecast years approached 2014, but the forecasts
themselves continue to project positive growth at rates that have turned
out to be higher than actual rates and in some cases of the opposite sign
(negative rather than positive).

Given the LSE's reliance on macroeconomic forecasting services
such as Global Insight, these findings may reflect the fact that fore-
casters and economists did not anticipate the very slow and partial
recovery from the recession that began in 2008. In any case, given the
considerable apparent impact of economic factors on load growth over
the period we are studying, these facts highlight the importance of
economic and demographic forecasting in the IRP process, including
the relative impact of these factors compared to others

This pattern of forecast errors highlights the importance of sensi-
tivity analysis. In the following section, we explore load growth sensi-
tivities reported in older plans to understand the methods and strategies
they developed and planned for to deal with this inevitable uncertainty.

6. Load forecast sensitivities in resource planning

The pattern of actual load growth rates underestimation for most of
the LSEs in our sample raises the question of whether there was a risk of
building excessive capacity if expansion plans were not revised after the
initial IRP was filed. This risk of acquiring more resources than needed
– either by overbuilding capacity or through power purchase agree-
ments – may translate to higher costs to consumers if these resources
were actually procured and included in the rate base. This is a reason to
analyze the low and high load sensitivities from older IRPs to under-
stand whether and how utilities were required to analyze ex ante the
implications of different forecast input assumptions. A summary of load
sensitivity methods can be found in Table 6.

6.1. Review of load forecast sensitivity analysis

An analysis of older IRP plans reveals that at the time they were
produced about half of the LSEs in our sample were not required to
either perform sensitivity analysis, or examine changes in their pro-
jected preferred portfolios in light of alternative load growth assump-
tions. Across the sample, we find three general approaches to load
forecast sensitivity analysis in older plans. First, some LSEs did not Ta
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perform any sensitivity analyses, even when estimating alternative load
forecasts. Second, some LSEs performed the analysis, but did not pro-
duce an alternative portfolio. Third, some LSEs analyzed the effects of
alternative load forecasts on their preferred resource portfolios. The
difference between the second and third approaches is that the second
holds investments as fixed to test the impact of load deviation on op-
erational costs/savings in their portfolios to verify that their preferred
portfolio remained as the least-cost solution. The third approach, in
contrast, produces an adapted portfolio that can be the basis of an
adjustment strategy to alternative load conditions. In all cases, most
LSEs used percentiles or deviations from the base forecast as their
sensitivity metric.

In most of the cases in which preferred resource portfolios were
reassessed in response to load forecast sensitivity analysis, the result
was a substantial change in the projected timing and magnitude of
required resource additions. As part of IRP, LSEs are required to de-
velop and compare several resource portfolios to find the least cost and
lowest risk (i.e., preferred) portfolio. We call this an “inter-portfolio”
comparison, as it is performed keeping all other assumptions fixed. In
addition, LSEs assess the revenue requirement effects from varying as-
sumptions in key variables including load growth, natural gas prices,
capital costs, etc. We call this an “inter-scenario” comparison. We find
that in both older and recent IRP inter-scenario utility revenue re-
quirement differences are much larger than inter-portfolio revenue re-
quirement differences. In some cases, the inter-portfolio valuation dif-
ference was small enough that it could be statistically insignificant. In
contrast, several LSEs reported adjustments up to± 20–40% of capa-
city under low or high load conditions.

The development of sensitivity scenarios was not always accom-
panied by a strategy to deal with the effects of these uncertain

outcomes. In the older IRPs, most LSEs did not report any type of
analysis on the effects that alternative load growth scenarios would
have on their planning outcomes. For those plans that did report these
analyses, we identify two approaches to deal with this uncertainty:
resource flexibility and market transactions. Resource flexibility refers
to the procurement of smaller and quick-deployment supply or demand
side technologies to adjust rapidly to new conditions (e.g. Idaho and
Avista). LSEs report that they would expedite or defer deployment of
these smaller and modular (flexible) resources in response to un-
expected load conditions. Market transactions pertain to purchases or
sales using non-firm transactions as a buffer for long term and structural
adjustment due to unexpected customer load (e.g. PGE).12 LSEs report
using market transactions to sell their output to the market if load
conditions were lower than anticipated and purchase if load was higher.

Both of these strategies have limitations. The focus on flexible re-
sources restricts the types of technologies that would be deployed and
reduces opportunities for larger capital intensive projects. The use of
market transactions, as suggested by some LSEs, assumes that market
purchases are always on the margin, which is not necessarily accurate
in all cases. Also, national or global economic performance will jointly
affect electricity market conditions as well as load growth. Economic
downturn may create surplus on electricity markets due to load con-
traction and therefore make market purchases more attractive. The use
of market purchases or sales as buffers may not recognize this strategy.
Finally, relying on market purchases as a strategy for long term

Table 8
Average annual growth rate for actual and forecast peak demand, with sensitivities.

Peak demand AAGR (%)

LSE Low forecast Base forecast High forecast Observed

Avista 0.3% 1.8% 2.9% 0.4%
COPSC 1.9% 2.1% 2.5% − 0.5%
Idaho 1.5% 1.7% 2.3% 0.4%
LADWP – 0.3% 1.1% 1.8%
NVPower – 2.4% – − 0.1%
NW – NA – 4.1%
PGE 1.3% 1.9% 2.9% 0.8%
PNM – 1.9% 2.4% − 0.8%
PacifiCorp – 1.3% – 1.3%
Puget Sound 0.9% 1.1% 1.8% 0.8%
Seattle – 1.7% – 1.2%
Sierra Pacific − 0.8% 1.7% 2.8% 3.4%

Table 7
Average annual growth rate for actual and forecast energy consumption, with sensitivities.

Energy AAGR (%)

LSE Low forecast Base forecast High forecast Observed

Avista 0.3% 1.7% 2.9% − 0.1%
COPSC 1.6% 1.8% 2.0% − 0.4%
Idaho 1.5% 1.7% 2.3% − 0.1%
LADWP – 0.6% – 0.0%
NV Power – 2.3% – 0.1%
NW − 1.7% 0.6% 1.9% 1.2%
PGE 1.2% 2.6% 3.1% 0.2%
PNM – 2.2% – − 1.4%
PacifiCorp 1.1% 1.9% 2.1% 1.3%
Puget Sound 1.2% 1.7% 2.3% − 0.2%
Seattle 0.3% 1.1% 1.9% 0.2%
Sierra Pacific − 0.2% 1.4% 2.5% − 0.9%

12 Other LSEs did mention in their IRPs market purchases as a hedging tool for short
term supply-demand mismatches, but these market purchases are not discussed within the
context of a load sensitivity analysis.
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adjustment implies coupling electricity price uncertainty with load
growth uncertainty. This makes the entire strategy formulation much
more complex.

6.2. Quantitative analysis of load sensitivities

In this section we discuss the base forecast, the range covered by the
high and low load growth forecast estimates, and the actual load.13

Two LSEs, Northwestern and Sierra Pacific, developed very large
envelopes, or spreads, around their base forecast that encompassed
their actual retail energy sales and obligations (Figs. 2 and 3). All other
LSEs, including those with a smaller forecast error, did not produce
alternative forecasts that encompassed actual outcomes for energy
sales. Most of the LSEs developed symmetrical and narrow forecast
envelopes with a low AAGR forecast boundary that was significantly
higher than the observed average annual growth rate for energy (see
Tables 7 and 8). The preceding is an example of the challenges of
producing alternative forecasts that can span a wider range of possible
future outcomes. It also reflects the tradeoff between the span of al-
ternative forecasts and the complexity of the strategies to address them:
a larger span requires a more sophisticated sensitivity analysis and
strategy development.

The results for the peak demand forecasts are different than the
results for the energy forecasts. Observed energy consumption growth is
generally less than anticipated, but peak demand growth exhibits mixed
results with both over and underestimation of actual peak demand. In
addition, in most cases the spread of the forecast envelope is wider for
peak demand than for energy (e.g., COPSC, PGE, Puget Sound, and
Seattle). This wider spread may reflect the simultaneous consideration
of short term (e.g. weather) and long term (e.g. growth) uncertainty in
the sensitivity analysis (energy sensitivity only considers long term).
Sierra Pacific was the only utility whose forecast envelope consistently
encompassed the observed load over time, but it was also the sensitivity
with the largest spread (see Fig. 2).

7. Comparison between older and recent plan load forecast
methodologies

Over time, electric LSEs often make adjustments to their load
forecasting analysis frameworks such as the mix of customer classes
evaluated and makeup of forecast scenarios; choices of variables; ana-
lytical techniques such as time-series regression and SAE models; and
sources of key economic and demographic assumptions such as IHS
Global Insight Inc., EPRI, and Moody's Analytics Inc. These changes are
made in an effort to ultimately improve forecast accuracy in light of
evolving market and regulatory conditions; development of novel
analytical techniques; and access to more accurate forecast assump-
tions.

Older and newer forecasting methods, as documented in the uti-
lities’ IRPs, can be compared to determine the degree of change be-
tween filing dates as a possible response to forecast errors. Indeed, LSEs
that had relatively large errors may have had the most incentive to
make changes to their forecasting inputs and methods. Fig. 5 sum-
marizes the extent of changes made for each of the LSEs considered in
this study and the three categories related to forecast methodology
described in Section 3.

Overall, nearly all of the LSEs considered in this study found new
data sources for key modeling assumptions such as population or re-
gional economic activity. Half of the LSEs made changes to all three
components of their load forecasting methodology (analysis framework,
technique, and source of data). Some LSEs made significant changes to
load forecasting related variables and analytical techniques, but a
larger share of LSEs made very small or no changes within this specific
category. Most LSEs did not make significant changes to the analysis
framework between filings. NV Power, Sierra Pacific, and Avista made
the most significant methodological changes between plan filings.
Colorado Public Service Corporation, PacifiCorp, and Idaho Power
made the least number of changes.

7.1. Changes to analysis framework

Changes to load forecasting frameworks involved incorporating
additional sets of load forecasts based on a wider range of growth
scenarios (NV Power, PGE, LADWP, PacifiCorp, Seattle City Light) or
changing the mix (or number) of customer classes considered in the
analysis (Seattle City Light, LADWP, Avista, Puget Sound, NV Power).
In some cases, LSEs assumed that future load growth was lower than the
low growth rate reported in the earlier plan. Sierra Pacific and Puget

LSE Older IRP Year Recent IRP Year Analysis Framework
Variables/Analytical 

Techniques Key Data Sources Overall Change
NV Power 2006 2012

Sierra Pacific 2004 2013

Avista 2005 2013

LADWP 2006 2012

PNM 2007 2011

Seattle 2006 2012

Puget Sound 2005 2013

PGE 2007 2013

NW 2004 2013

Idaho 2006 2013

Pacificorp 2004 2015

COPSC 2004 2011

Legend: Change level
Little to none

Moderate

Significant

Load Forecasting Methodological Changes Since Older IRP Filing

Fig. 5. Load forecasting methodological changes since earlier IRP filing.

13 In the case of Pacificorp, which does not provide point estimates for its alternative
load growth forecast but a distribution of values, we use the 10th and 90th percentiles as
the low and high values, respectively. No alternative energy forecast information was
reported for LADWP, NVPower, and PNM, and no alternative peak demand forecast were
available for NVPower, NW, PacifiCorp, and Seattle.
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Sound Energy are two examples of LSEs that made changes to customer
classes to reflect the importance of new types of electric energy services
such as electric vehicles.

7.2. Changes to variables and analytical techniques

A number of changes to load forecast variables and analytical
techniques involved migrating from one modeling technique to an-
other. Both time series and cross sectional regressions have become the
typical analytical framework to produce base case forecasts for energy
and peak demand. For example, Sierra Pacific switched from an
econometric and time-series based modeling approach to a SAE mod-
eling approach. Conversely, Avista indicated that their load forecasting
methodology is “undergoing significant restructuring [and] involves
using an Auto Regressive Integrated Moving Average (ARIMA) tech-
nique” (i.e., time-series based econometric modeling). Other LSEs
simply incorporated new variables including those used to capture
adoption of electric vehicles (Idaho Power, LADWP, PNM, Seattle City
Light, Avista, NV Power) or saturation of energy efficiency initiatives
(PGE, NV Power, Idaho). Notwithstanding these various changes,
however, LSEs continue to report that economic and population growth
rates are the main drivers of their load forecasts.

7.3. Changes in sources of key exogenous assumptions

There has been a significant consolidation in the source of external
data used in the production of LSE load forecasts. A number of LSEs
used IHS Global Insight, Inc. in their earlier plans for demographic and
regional economic growth estimates, and the majority of the LSEs now
do so (COPSC, Sierra Pacific, PGE, NV Power, Avista, PacifiCorp, and
Seattle). A smaller number of LSEs relied on Moody's Analytics, Inc.,
local/state/federal government agencies, or post-secondary educational
institutions for regional demographic and economic assumptions. The
Electric Power Research Institute (EPRI) and Itron, Inc. were consistent
sources of assumptions about customer responses to prices and end use
saturation and efficiency projections.

7.4. Changes in sensitivity and stochastic analysis

The recent IRP documentation indicates that, in contrast to their
earlier approaches, most of the LSEs now develop comprehensive future
scenarios that reflect the interactions of several different fundamental
variables such as economic and population growth and alternative
technology adoption, among others. The LSEs’ methodologies have
evolved to consider the risks due to uncertainty of certain key variables,
including future customer load, and to analyze joint variation in such
inputs rather than sensitivity analysis of single variables. Most of the
LSEs that perform sensitivity or stochastic risk assessments also develop
new portfolios that are different than their original and preferred base
case. A number of the utilities use analytical techniques to measure how
robust resource portfolios are to exogenous changes to these key vari-
ables. These analysis techniques are classified as scenario-based or
sensitivity and probabilistic or stochastic risk assessments (see e.g.
Wilkerson et al., 2014).

While the design of future scenarios remains challenging, adopting
these approaches should provide a better basis for robust planning
processes. However, there is still a general absence of methods to
produce and follow up with clear strategies that respond to higher or
lower realized load. In one of the few examples of regulatory im-
plementation of adjustment strategies, the Utah Commission requires
PacifiCorp to produce resource acquisition paths (UT PUC, 1992). These
paths transparently lay out responses to specific potential outcomes of
relevant variables in the planning process and act as an extension of the
typical action plan included in most IRPs.

8. Summary and policy implications

We analyze load forecasting methods, performance and sensitivity
analyses using a set of electric IRPs created by utilities across the
Western U.S. A comparison of forecasts to actual energy use and peak
demand reveals that all but one of the LSEs overestimated energy
consumption growth over planning periods beginning in the mid-2000s
and ending in 2014, and that eight of the eleven LSEs that forecast peak
demand also overestimated this quantity, although to a lesser degree. In
addition, we find that most of the LSEs that had the highest expected
growth rates also experienced the lowest actual – in some cases nega-
tive – demand growth.

Furthermore, examination of forecasts from subsequent IRPs reveals
that while the utilities did adjust their forecasts of load growth down-
ward in response to much lower than expected demand growth, in most
cases, there continued to be over-estimation in subsequent planning
periods. For most LSEs, IRP documentation suggests that there was an
expectation among macroeconomic forecasters that the national and
regional economies would follow a historical pattern of relatively quick
recovery from the recession. It was expected that load growth would
also recover relatively quickly. The actual, slower-than-expected eco-
nomic recovery thus contributed significantly to persistent over-
estimates of future load.

There is some correlation between the complexity of forecast
methods and the accuracy of forecasts. LSEs with relatively more
complex models generally had less forecast error than those that em-
ployed simpler models. However, among the more complex techniques,
SAE models did not perform significantly better than other load fore-
casting methods and models. In addition, the LSEs that had the most
accurate peak demand forecasts were also among the most conservative
in terms of their expected peak demand growth. These results suggest
that there may be relatively small marginal benefits from employing
more complex models, but that there are other confounding variables
that influence forecast error beyond model complexity.

There are structural reasons that may also explain the relative ac-
curacy of load forecasts. For example, utilities with a larger share of
industrial load in their mix generally had larger forecast error. We
believe that this may be caused by the highly elastic and lumpy nature
of industrial customer load as well as the difficulty in predicting entry
and exit of industrial customers from an LSE service area. This suggests
that industrial loads should be modeled and risk-assessed separately
from other customers for a comprehensive evaluation of the potential
impacts of losing these large customers.

For most of the LSEs in our sample, load forecast methodologies
have evolved over the past fifteen years with respect to analysis fra-
meworks, techniques, and data sources. We find that some LSEs im-
proved their forecasting methodologies and achieved smaller forecast
errors in more recent periods. This suggests an active effort to at least
react to forecast error, although it remains to be seen whether these
changes will lead to long term improvements in accuracy.

Load sensitivity analysis is an important component of risk assess-
ment and management in IRP. In the context of our study, it is espe-
cially important because strategies derived from load sensitivity ana-
lysis may adjust and impact resource plans as new information comes
in. Over time, LSEs have improved the breadth and sophistication of
their sensitivity analysis of load forecasts. However, in most of the cases
we study actual load growth exceeded or was less than the sensitivity
bounds of what was considered possible in the original IRP analyses.
This is concerning because both older and more recent IRPs generally
lack an adaptive component that details how utilities would respond in
practice if actual conditions more closely followed the sensitivity ana-
lyses rather than the conditions assumed in the base case analysis. More
importantly, we find that the difference in revenue requirement across
resource portfolios for a given IRP is much smaller than the cost impact
of variation in load. This means that rates are much more likely to be
impacted by changes in load rather than by resource selection. IRP
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devotes considerable effort in selecting and testing a preferred port-
folio. It follows that the IRP and procurement processes should increase
their focus on their strategic response to load forecast accuracy at a
level similar to the effort involved in determining the preferred port-
folio.

Long term load forecasts are a key input to utility IRP. Given the
increasing importance of IRP as a locus, not just for utility operations,
but also for implementation of energy and environmental policies and
regulations, the forecasts have become a driver of the evolution of the
electric power system. To give just one example, by determining the
rate and magnitude of resource capacity additions, the forecasts help to
determine the extent to which energy efficiency can be used to meet
increasing demand, and therefore the need for new capacity. This in
turn may affect the deployment rate of renewable generation and thus
affect progress toward clean energy goals. In short, load forecasts—and
their accuracy—have important implications for energy and environ-
mental policy—and, in some cases, economic development; the role of
long term load forecast accuracy in the development of a large hydro-
electric project in British Columbia is one salient example.14

There is a disconnection between the strategic response to load
forecasting sensitivity and the actual procurement of resources. First,
processes involving the procurement of new resources may not be as
open to public scrutiny as IRP. This means that adjustment strategies
undertaken during the procurement phase may not fully reflect the
interests of the public as expressed during the long term planning
process. Second, the lack of integration between load forecasting sen-
sitivity and subsequent adjustment strategies may reflect a general
absence of information flows between the planning and procurement
phase (see Carvallo et al., 2017). Considering the extent, depth, and
complexity of risk analysis, regulators and utilities should revisit the
benefits of including comprehensive and costly risk-based analysis
within the long term planning process.

As discussed by Carvallo et al. (2017), the increasing number and
complexity of the issues evaluated by utilities is leading to increased
detail and complexity in modeling and other quantitative methods in
the long term planning process. Against this background, it is note-
worthy that the LSEs report that economic growth and demographic
change assumptions were the dominant influences on long-term load
forecasts and that load growth is generally the most important as-
sumption in sensitivity analyses conducted by the utilities. More so-
phistication and complexity in load forecasting modeling and other
analytical methods cannot improve the accuracy of macroeconomic or
demographic forecast inputs, which are determined independently from
the IRP process. Moreover, the latter are likely to remain a source of
significant uncertainty in electricity planning, along with the in-
troduction of unforeseen technologies, and energy and environmental
policies.

An important implication of these findings is that both regulators
and utilities should no longer assume that more complexity and detail
in load forecasting necessarily constitutes improvement in load fore-
casting or other forms of modeling. To address these issues, regulators
and utilities should undertake applied research to: identify and rigor-
ously analyze and quantify the gains from greater model complexity
both in load forecasting and in other IRP processes; determine specific
planning functions that would benefit from the transparency and ac-
countability of simpler models and tools; and develop, test, and im-
plement these models and tools in the IRP process. Such a program of
research could yield substantial benefits in expanding and improving
the informational output, and increase the usefulness of integrated re-
source planning.

For jurisdictions around the world that may be considering IRP or
are in the early stages of its development and implementation, a
stronger conclusion can be drawn: careful consideration should be
given as to whether to follow the example of complex and elaborate
modeling. It may be the case that simpler and more transparent and
accessible tools will not just suffice, but in fact be preferable for ful-
filling integrated resource planning functions as energy systems and
regulatory processes evolve.
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