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ABSTRACT

We present Golden Gate, an FPGA-based simulation tool that de-

couples the timing of an FPGA host platform from that of the target

RTL design. In contrast to previous work in static time-multiplexing

of FPGA resources, Golden Gate employs the Latency-Insensitive

Bounded Dataflow Network (LI-BDN) formalism to decompose the

simulator into subcomponents, each of whichmay be independently

and automatically optimized. This structure allows Golden Gate

to support a broad class of optimizations that improve resource

utilization by implementing FPGA-hostile structures over multi-

ple cycles, while the LI-BDN formalism ensures that the simula-

tor still produces bit- and cycle-exact results. To verify that these

optimizations are implemented correctly, we also present lime, a

model-checking tool that provides a push-button flow for checking

whether optimized subcomponents adhere to an associated cor-

rectness specification, while also guaranteeing forward progress.

Finally, we use Golden Gate to generate a cycle-exact simulator

of a multi-core SoC, where we reduce LUT utilization by up to 26%

by coercing multi-ported, combinationally read memories into sim-

ulation models backed by time-multiplexed block RAMs, enabling

us to simulate 50% more cores on a single FPGA.

1 INTRODUCTION

As the semiconductor industry ventures further into the twilight

of transistor scaling, there is broad consensus that improvements

in computing performance and energy efficiency must come from

innovations higher up in the computing stack. At the same time,

myriad emerging applications, in domains like AI, virtual and aug-

mented reality, and the Internet of Things, depend on the availabil-

ity of higher-performance, more efficient computing systems. As

a result, system architects have turned to specialization: in mod-

ern SoCs, application cores increasingly yield area to specialized

accelerators [8]. However, this specialization begets complexity

that makes these systems harder to build, verify, and program. This

drives the non-recurring engineering (NRE) costs of developing

custom silicon out of reach for all but high-volume markets.

The lack of an affordable full-system simulation technology that

is both fast and accurate is one key driver of these NRE costs. A sim-

ulator that is too slow cannot exercise bugs that manifest deep into

execution and is thus unusable for software development. However,

a faster, less detailed simulator may differ too greatly from the ac-

tual silicon to exhibit the same bugs and performance pathologies,

precluding effective pre-silicon verification and validation.

FPGAs have long been used for prototyping and emulation of

ASICs in both industry [16] and academia [13, 26]. While FPGAs

have great potential as a commercial-off-the-shelf technology that

offers radical speedups over software simulation, no current FPGA-

based system offers the ideal combination of simulation speed,

capacity, affordability, and ease of use. Direct FPGA prototypes are

affordable and fast, but require the user to manually model the

external environment of the device and to invest signficant effort

to meet resource constraints. Commercial emulation platforms offer

automated scaling to larger designs, but suffer from high cost of

entry and pay a large performance cost when partitioning designs

across many FPGAs. While manually time-multiplexed simulators

such as RAMP Gold [23] present large increases in per-FPGA ca-

pacity, they require excessive engineering effort. Recent academic

simulation platforms like FireSim [13] omit capacity-enhancing

optimizations to focus on providing fully automated, open-source

platforms for co-simulation and debugging of networked devices.

In this paper, we contribute Golden Gate, an open-source tool

to enhance FPGA emulation capacity through automatic resource

optimization of FPGA-hosted simulation models derived from ASIC

RTL. These optimizations trade simulation time (FPGA cycles) for

FPGA resources, allowing more of the ASIC to fit on a single FPGA.

While this technique could be applied in a partitioned setting, it

also enables commodity FPGA boards to elastically scale in capacity

to avoid the economic or performance cost of partitioning. While

prior work manually applied these optimizations to develop ab-

stract processor models, Golden Gate is the first to apply them

automatically. We also contribute lime, a push-button checker that

verifies that an optimized model simulates its ASIC source exactly.

Finally, we perform a case study, where Golden Gate and lime

are used to time-multiplex highly ported memories, optimizing a

traditionally FPGA-hostile element of ASIC designs [27]. This en-

ables us to emulate a large RISC-V multiprocessor SoC on a single

FPGA, where a partitioned prototype would otherwise have been

required. To facilitate wider use, Golden Gate has been released

as a new, optimizing compiler for the FireSim simulation platform.

2 PRIORWORK IN FPGA EMULATION

Pre-silicon evaluation of ASICs has long been a core application

for FPGAs [7]. While this takes many forms, including prototyping,

emulation, and hardware-accelerated simulation, each involves

mapping a target system (the device being simulated) onto a host

system that includes one or more FPGAs.

2.1 FPGA Prototyping

Direct FPGA prototypes, where designs are directly mapped onto

FPGA fabric, are a common way to enable pre-silicon software

development and functional validation [1]. Ideally, this would be a

push-button flow, but in reality multiple hurdles often necessitate

the labor-intensive development of an “FPGA version” of the design:

(1) Device capacity: nontrivial ASICs must be partitioned across

multiple FPGAs at the expense of slower execution rates,

longer compile times, and more expensive host platforms [9].
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(2) Resource conversions: ASIC power, reset, and clocking struc-

tures do not map directly to the host FPGA and must be

replaced [1, 10].

(3) I/O modeling: I/O devices and environment models may not

map well to the fabric, necessitating adapters for in-situ

prototyping. One recurring example of this issue is the need

to slow down external I/O to match the reduced speed of an

FPGA prototype.

With a traditional FPGA prototype, the burden of overcoming

these hurdles is left to the user.

2.2 Commercial Emulation Systems

Commercial FPGA-based emulation systems generally consist of

a custom hardware platform, along with a set of software tools

to streamline the partitioning and I/O modeling problems [16].

These tools build on advances in inter-chip routing [10, 14] and

time-multiplexing of pins [3] to reduce the speed and productivity

overhead of using multi-FPGA host platforms. Furthermore, they

may offer mechanisms for interfacing with I/O models that are

co-simulated in a software environment [11], which can resolve the

issue of I/O speed matching by gating the clock in the target design

to wait for software. However, these features come at a price: large

monetary cost of entry and slowdowns due to partitioning.

2.3 Decoupled FPGA-Accelerated Simulators

While computer architecture research has long relied on software

simulators in lieu of complete RTL implementations, the RAMP [26]

project aimed to use FPGAs to increase the speed and fidelity of

microarchitectural simulations of manycore systems. To avoid the

resource limitations of FPGA prototypes, RAMP simulators such

as HASim [19] and RAMPGold [23] used optimized RTL timing

models to model FPGA-hostile structures like multi-ported RAMs

over multiple FPGA cycles. This host-target decoupling, the ability

to simulate one target clock cycle over a variable number of FPGA-

host clock cycles, is the hallmark of these decoupled simulators.

To support host-target decoupling, the target machine can be

simulated as a synchronous dataflow graph [18] of models; we give

an example in Figure 1. To simulate one target cycle, a model de-

queues one token from each of its input ports and enqueues a token

into each of its output ports. The simplest RTL implementation

of a model waits for all of its input tokens to be available and all

output ports to be ready before executing; this is a direct application

of Carloni et al. [5]. Simulation models that properly implement

this formalism tolerate latency on the arrival of tokens and may

take variable number of host cycles to compute their outputs. This

makes it possible to apply these optimizations without changing

the target’s RTL behavior.

An important measure of decoupled simulator performance is

the FPGA-Cycle-To-Model-Cycle Ratio (FMR) [20]: the average

number of FPGA cycles elapsed per simulated target cycle over a

full simulation. The simulation rate of a decoupled simulator can

thus be given as fFPGA/FMR. In contrast, a direct FPGA prototype

by definition has FMR = 1 and a resulting simulation rate of fFPGA
1.

1In some partitioned FPGA prototypes, “FMR" is actually a fixed number greater than

one to allow for serialization-deserialization of target signals that span multiple FPGAs.

To date, such optimized simulators have seen little adoption,

as their RTL timing models are difficult to design, optimize, and

validate—which for nontrivial models may be far more complex

than simply implementing the target design.

2.4 Transformed Decoupled Simulators

To avoid the challenges of developing custom RTL timing models,

recent work in decoupled simulation, such as FireSim [13], aims to

strike a balance between prototyping and decoupled simulation. In

these simulators, handwritten models are largely replaced with a

single cycle-exact model that is transformed from ASIC RTL.

These model transformations have been simple: they automati-

cally add handshaking interfaces that effectively “pause” the for-

ward progress of the target to allow the model to stall while it waits

for tokens. This technique enables co-simulation of network inter-

faces to model networks of thousands of target machines [13] and

FPGA-accelerated modeling of the external DRAM interfaces of the

target ASIC [4]. While this resembles the clock-gating approach

used to support transactional emulation [11], the flexible decou-

pled interface with the target simplifies instrumentation to support

power modeling and debugging features [15]. However, while the

explicit decoupling of the target is similar to the RAMP simulators,

the ASIC RTL used within the model is largely unchanged, yielding

the same resource utilization challenges as FPGA prototypes.

3 ON COMPOSITIONAL SIMULATORS

With Golden Gate, we extend the notion of a decoupled simulator

with compositional simulation, which enables RAMP-style resource

optimizations to be automatically applied to subcomponents of the

target design. By introducing internal decoupling to the design,

different parts of the target design may be optimized for the host

platform in heterogeneous ways. While RAMP Gold [23] employed

internal decoupling to connect a time-multiplexed processor model

simulating 64 independent cores with the rest of the simulator, it

did so in an ad-hoc manner. Automating this approach presents

two main challenges:

(1) Decomposing the simulator into decoupled “islands” that

may be independently optimized.

(2) Expressing optimizations—such as time-multiplexing—as

transforms that modify the “islands” yet still maintain the

correct, cycle-exact behavior of the whole simulator.

To ensure that Golden Gate can produce robust, optimized

FPGA simulators with no human intervention, we must rely on

a formalism that addresses both of these challenges. Therefore,

we model our system as a Latency-Insensitive Bounded Dataflow

Network (LI-BDN) [25] to provide both correctness and forward

progress guarantees.

3.1 The LI-BDN Target Formalism

LI-BDNs are a class of dataflow networks that may be constructed

in correspondence to and represent the behavior of arbitrary syn-

chronous circuits. In this capacity, they implement a deadlock-free,

cycle-accurate simulation of reference RTL design, while allowing

the underlying implementation to use variable-latency handshaking

interfaces among its constituent subcomponents.

A general LI-BDN is defined by a set of restrictions:
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Figure 1: A 32-bit adder model and environment simulating a single cycle of target time.

(1) Nodes of an LI-BDN are connected via bounded queues.

(2) Each node of a LI-BDN must itself be an LI-BDN.

(3) The base case is a primitive LI-BDN, which is a circuit where

all I/O is mediated over handshaking interfaces or channels.

To be a legal primitive LI-BDN, a module must obey the No

Extraneous Dependencies (NED) and Self-Cleaning (SC) formal

properties, described in detail in Section 5. In short, these

properties specify when a primitive LI-BDN is obligated to

produce and accept tokens over its I/O channels.

In the context of simulation, LI-BDNs allow arbitrary partitions

of the input circuit to be mapped to latency-insensitive implemen-

tations, while still correctly modeling its synchronous behavior.

Furthermore, it also defines rules of composition that guarantee

that the composite LI-BDN will correctly simulate the full input

design in aggregate. Finally, the specification for the constituent

primitive LI-BDNs is presented as a concrete set of properties, which

includes the NED and SC properties mentioned above, along with

an obligation that the tokens exchanged on its I/O channels adhere

to a functional relation with the signals crossing the corresponding

partition in the original design. While other formalisms may exist

for demonstrating the theoretical soundness of FPGA simulation

tools, Golden Gate uses the LI-BDN abstraction to enable flexible

optimization and push-button model checking.

3.2 LI-BDNs in Golden Gate

While Vijayaraghavan et al. [25] introduce the concept of emu-

lating synchronous circuits with LI-BDNs, they stop short of im-

plementing that concept in a real simulator; others have since

done so in handwritten simulators. To the best of our knowledge,

Golden Gate is the first tool to automatically produce FPGA-

accelerated simulators structured as LI-BDN networks, and addi-

tionally, lime is the first tool to formally verify primitive LI-BDNs.

4 THE GOLDEN GATE TOOLCHAIN

A major barrier to FPGA prototyping is the necessity to buy in

to a proprietary host FPGA or private cloud platform. Therefore,

Golden Gate is implemented as an extension to FireSim [13], an

open-source tool that enables system designers to simulate their

target RTL designs on commodity FPGAs hosted in Amazon’s AWS

public cloud. FireSim already provides a baseline compiler, MI-

DAS [15], that relies on decoupling to support co-simulation of

models of network and DRAM interfaces. However, it does not

actually apply any optimizations to the transformed target design,

so the resource utlization of the target RTL is nearly identical to

an FPGA prototype. In contrast, Golden Gate adds an optimizing

compiler to significantly reduce resource utilization with minimal

engineering effort.

In order to make Golden Gate as widely applicable as possible,

it is designed to support a variety of optimizations across different

FPGA host platforms. The extensible nature of the compiler makes

it easier to add new optimizations, which are intriniscally supported

by the push-button lime flow.

4.1 Inputs and Outputs

Like FireSim, our compiler consumes an RTL description of the

target specified in FIRRTL [12], an RTL intermediate representation

convenient for expressing compiler transformations. As output,

Golden Gate produces a FIRRTL implementation of LI-BDN cor-

responding to the target. To complete the simulator, this network

is composed with existing FireSim I/O models that produce input

tokens and consume output tokens; this yields a closed system.

4.2 Compiler Organization

The Golden Gate compiler is divided into two main phases: Target

Transformation and Simulator Synthesis, as shown in Figure 2.

4.2.1 Target Transformation. Here, optimization candidates are

identified and the target’s module hierarchy is mutated into a struc-

ture that corresponds directly with the final LI-BDN. Target trans-

formations are performed as a series of small operations that pre-

serve the target’s RTL timing at every step. This makes it possible

to do logic-equivalence checking on the input and output of each

pass. Each optimization has its own analysis pass, which inspects

the circuit and consumes designer-provided hints captured with

FIRRTL annotations. When the pass finds a candidate subcircuit,

it wraps it in a module and then labels the module with annota-

tions that indicate how it should optimized and how its I/O will

correspond to token ports. Once all candidates are identified, the

wrapper modules are "promoted" to the top of the module hierarchy.

This process is then repeated for the next optimization.
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Figure 2: Golden Gate Compiler

4.2.2 Decomposed Target Form. At the end of target transforma-

tion, the RTL is in decomposed target form, in which every top-level

module corresponds with a model in the eventual LI-BDN. All mod-

ules are labeled with annotations that indicate how they should

be transformed or optimized, and how their inputs and outputs

should be coalesced into token channels. Again, here the RTL is

functionally identical to the source RTL.

4.2.3 Simulator Synthesis. Here, model-implementation passes

construct the LI-BDN by replacing modules with a model based on

its annotation. This fundamentally changes the structure of the cir-

cuit, but as we will show, this can be verified using lime (Section 5).

Model-implementation passes come in two varieties:

(1) Transformation-based: these modify the corresponding tar-

get RTL module to produce a primitive LI-BDN.

(2) Generator-based: these inspect the structure of the target

RTL to parameterize an LI-BDN model generator.

4.3 The Default LI-BDN Transform

The default model-implementation pass is transformation-based

and converts a target module into a primitive LI-BDN as follows:

(1) For each output channel, it finds all input channels to which

it is combinationally connected (CC).

(2) For each output channel, it generates a predicate, firing,
that is asserted when all CC input tokens are available, and

a register, fired, that is set when that output channel has
enqueued but the rest of the model has not yet advanced.

(3) It gates all state updates with a finishing predicate. When

this signal is high, all fired bits are reset.
(4) It drives finishing by taking the conjunction across all

output channels of the term firedo ∨ firingo .

4.4 Adding New Optimizations

Adding a new optimization consists of adding an analysis pass to

the target transformation, to identify, wrap and label a candidate

subcircuit, and adding a model-implementation pass to replace this

block with an LI-BDN model in simulator synthesis. To ease inte-

gration of such passes, including the multi-ported RAM optimizer

in Section 6, we next introduce lime, a push-button model checker

for simulation LI-BDNs.

5 LIME: VERIFYING MULTI-CYCLE MODELS

With Golden Gate, we demonstrate that pervasive area optimiza-

tion can be applied to a large, FPGA-accelerated hardware simulator

by substituting FPGA-hostile elements of the design for optimized

models. However, these optimizations are only practical if it is pos-

sible to establish that the optimized simulator maintains cycle- and

bit-exact correspondence with the original target design. Fortu-

nately, the LI-BDN formalism provides a framework to do this, if

it can be shown that each model satisfies formal equivalence and

deadlock-avoidance guarantees. However, this is nontrivial, as the

the LI-BDN notion of equivalence is distinct from the trace con-

tainment concept used in other hardware equivalence checks. To

address this gap, we introduce lime, a push-button tool for checking

the correctness of Golden Gate simulation models.

5.1 Structure of the LIME Checker

At a high level, verifying LI-BDN simulator implementations in-

volves checking the three properties introduced in Section 3: Partial

Implementation (PI) of the reference design, along with the No

Extraneous Dependencies (NED) and Self-Cleaning (SC) properties

that guarantee that the simulator will not deadlock. lime achieves

this by automatically generating a Bounded Model Checking (BMC)

problem for each of the three properies for a given model, with each

BMC case structured as an input to the UCLID5 [22] verification

system. The lime flow is depicted in Figure 3, which shows the

how a model-checking problem is created from FIRRTL circuits

specifying the model (Model.fir) and associated target compo-
nent (RTL.fir). lime has two primary phases: it translates the

FIRRTL inputs into the semantics of UCLID5, and then it constructs

a model-checking problem for each of the LI-BDN properties.

5.1.1 A UCLID5 Backend for FIRRTL. To check formal properties

of FIRRTL circuits like PI, NED, and SC, it is necessary to have both

a formal model of FIRRTL semantics and an automated tool for

representing FIRRTL circuits in a model-checking environment. To

this end, we developed a UCLID5 backend for the FIRRTL compiler.

As described in [12], the FIRRTL compiler is composed of many

lowering passes that progressively remove higher-level constructs

from the IR until it is in a lowered form. At this point, one of multiple

emitters is invoked to produce output in a preferred form. Typically,

designs are emitted as Verilog for use by downstream CAD tools,

whereas lime uses our UCLID5 emitter.
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We targeted the UCLID5 modeling system as it is open-source,

and provides strong support for compositional modeling across both

synchronous and asynchronous systems. While lime was designed

to check LI-BDN properties, the UCLID5 backend is considerably

more versatile. Using Chisel and FIRRTL, designers can write anno-

tations that carry UCLID5 assumptions, invariants, and properties

to be emitted alongside the UCLID5 implementation of the circuit.

This enables designers of hardware generators to co-generate verifi-

cation collateral, easing the challenge of verifying a generator with

a large space of possible output designs. Since lime is intended to

help hardware designers write formally verified LI-BDN models,

we extended UCLID5 to optionally emit VCD waveforms in order

to make counterexamples easier to interpret.

5.1.2 Modeling Environment Generation. The Environment Genera-

tor is a Python program that generates UCLID5 testbenches to verify

Partial Implementation, NED, and SC for a given reference RTL and

LI-BDN model pair. Since each of these has slightly different model-

ing environment requirements, we split checking these properties

into three separate testbenches. To enable a “push-button” verifica-

tion tool, we use metadata produced during FIRRTL compilation

to establish correspondences among the token channels of the LI-

BDN simulation model and the I/O of the reference RTL component,

and lime automatically specializes the generated environment to

have the appropriate structure. Because appropriate invariants for

k-induction must constrain internal state of the simulation model,
they require introspecting on the model implementation in a man-

ner that is currently incompatible with our automatic testbench

generation. Instead, we use Bounded Model Checking to verify the

three properties, and leave an inductive approach to future work.

5.2 Model Checking LI-BDNs

In all lime property checking flows, the general structure of the

model resembles the diagram shown in Figure 4. Here, the system

is the LI-BDN that simulates a given reference RTL component, and

the environment is the set of sources that generate input tokens

for the LI-BDN and the set of sinks that consume output tokens.

Figure 4: Partial Implementation Model

In this section, “simulation LI-BDN” is used in lieu of “simulation

model,” to avoid confusion with the “model” from model checking.

When checking PI, NED, and SC properties of simulation LI-

BDNs, the environments always model the sources and sinks as

abstract queues. Input queues nondeterministically present tokens

to the simulation LI-BDN and track the number of consumed to-

kens (dequeue count). Output queues use credits rather than a finite

capacity, with a credit nondeterministically being added each step.

The advantage of this is that it allows for arbitrary token arrivals

and output back-pressure while offering guarantees that are not

respected by randomizing inputs to the LI-BDN; specifically, valid-

ity of source data and readiness of sinks are stable, meaning that a

source will not cease to have a valid token if it is not consumed and

a sink will not cease to be ready if it is not provided with a token.

5.2.1 Partial Implementation. PI guarantees that the behavior of

the simulation LI-BDN will be a cycle-exact representation of a par-

ticular Synchronous Sequential Machine (SSM), if its environment

is itself a cycle-exact simulation of the inputs of the SSM. Formally,

Vijayaraghavan et al. [25] define PI as:

A BDN R partially implements an SSM S iff
(1) There is a bijective mapping between the inputs of S and

[the input tokens of] R, and a bijective mapping between
the outputs of S and [the output tokens of] R.

(2) The output histories of S and R match whenever the input

histories match, i.e.,

∀n > 0

I (k) for S and R matches (1 ≤ k ≤ n)

⇒O(j) for S and R matches (1 ≤ j ≤ n)

To provide matching input histories and compare output his-

tories, the PI model composes the simulation LI-BDN with the

reference SSM RTL. For each input channel, a nondeterministic se-

quence of input values is provided to the two implementations: as

synchronous, cycle-by-cycle signal for the SSM, and as an abstract

source FIFO model for the LI-BDN. On the output side, abstract

sinks record the output token histories of the SSM, which are then

compared with the cycle-by-cycle output histories of the SSM.

Using this construction, the environment forces the input his-

tories of the LI-BDN and the SSM to match, while capturing their
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output histories. In this environment, we define PI as a conjunction

of invariants, each ensuring for some output oj that the output
histories of the SSM and LI-BDN match according to correspon-

dence operator =̂ based on the bijection between output tokens and

outputs. Here, the model check must assert the conjunction of the

PI invariant PIj for every oj ∈ O .

Invariant PIj

∀i ∈ [0, cycles) i < enq_cntj ⇒ SSM_histj (i) =̂ BDN_histj (i)

5.2.2 No Extraneous Dependencies. Vijayaraghavan et al. [25] for-

mally define the No Extraneous Dependencies (NED) property:

A primitive BDN has the NED property if all output FIFOs

have been enqueued at leastn−1 times, and for each outputOi ,

all the FIFOs for the inputs in CombinationallyConnected(Oi )

are enqueued n times, and all other input FIFOs are enqueued
at leastn−1 times, thenOi FIFOmust eventually be enqueued

n times.

To express this property, we represent it as the conjunction

of multiple LTL [21] properties, each of which enforces that a

particular output o may have no extraneous dependencies. Here,
n − 1 from the above description corresponds with the minimum

number of tokens enqueued by any output channel of the LI-BDN;

therefore, the property expresses an obligation for o to produce
an output when at least n tokens have arrived at all the inputs to
which o is combinationally connected, at least n − 1 tokens have

arrived at all other inputs, and no more than n− 1 tokens have been
produced by o. This constraint on o may then be expressed as an
LTL property.

NED LTL property for output o

CCj (i) := output oj depends combinationally on input i

obligatedj := min
{i ∈I :CCj (i)}

enq_cnti > min
{o∈O }

enq_cnto

∧
min
{i ∈I }

enq_cnti ≥ min
{o∈O }

enq_cnto

∧
enq_cntoj = min

{o∈O }
enq_cnto

NEDj := G

(
obligatedj ⇒ F

(
out_readyj R out_validj

))

5.2.3 Self-Cleaning. Vijayaraghavan et al. [25] define SC:

A primitive BDN has the SC property, if when all the outputs

are enqueued n times, all the input FIFOs must [eventually]2

be dequeued n times, assuming an infinite source for each

input.

As with PI and NED, the SC property can be expressed as a

conjunction of LTL properties, each specifying when an input i is
obligated to eventually dequeue a token. A common term in all of

the properties is the minimum number of enqueued tokens by any

output port; this value corresponds with n in the English-language

description of the property. As part of the LTL property for input

channel i , we add a signal obligatedi indicating that the simulation
LI-BDN has dequeued fewer than n tokens from that channel.

2Clarified in [24].

SC LTL property for input i

obligatedi ⇔ input channel i has a dequeue obligation

obligatedi := deq_cnti < min
{o∈O }

enq_cnto

SCi : G
(
obligatedi ⇒ F

(
in_validi R in_readyi

) )

6 CASE STUDY: MULTI-PORTED MEMORIES

ASIC multi-ported RAMs are a classic culprit of poor resource

utilization in FPGA prototypes, as they cannot be trivially imple-

mented in BRAM and are instead decomposed into LUTs and reg-

isters [27]. While using double-pumping, BRAM duplication, or

FPGA-optimized microarchitectures [17] can help, Golden Gate

can automatically substitute a decoupled model to further reduce

resource utilization. This enables a target memory with M asyn-

chronous read ports and N write ports to be implemented by time-

multiplexing FPGA-friendly BRAMs.

6.1 Our Target ASIC

To motivate the need for this optimization, we use Golden Gate

to replace the register files in the application processor cores of

several multi-core SoC instances produced by the Rocket Chip

Generator [2]. This generator can emit a broad space of systems

based on the RISC-V ISA, each consisting of multiple cores, coherent

cache hierarchies, peripherals, and outer memory system interfaces.

Here, we study two different “core complexes”—consisting of the

cores and inner caches—each based on a different RISC-V core

implementation: Rocket [2], an in-order scalar core, and BOOM [6],

a unified physical register file, superscalar out-of-order core. In each

case, we evaluate the impact of substituting each core’s floating

point (FP) and integer register files for an optimized memory model.

Since these cores can be generated with a space of different register

files configurations, we describe register file parameters for the

instances we study in Table 1.

Type Size
Read Write BMC

Ports Ports Runtime

Rocket integer 31 × 64b 2 comb. 1 445 s

Rocket FP 32 × 64b 3 comb. 2 334 s

BOOM integer 100 × 64b 6 comb. 3 637 s

BOOM FP 64 × 64b 3 comb. 2 372 s

Table 1: Register file specifications for the two target cores.

6.2 Model Microarchitecture

The optimized memory model is structured around a dual-port,

synchronous read memory that stores the contents of the simulated

memory, which, unlike the FPGA-hostile memory it models, can

be implemented in BRAM. Access to this memory is mediated

by an arbiter that selects a maximum of two target read/write

requests per host clock cycle; this arbitration is dynamic, based

upon when the tokens associated with individual ports arrive on

their associated decoupled interfaces. As shown in Figure 6, an FSM

is associated with each target port; together, this vector of FSMs

tracks the model’s progress in consuming input tokens, performing

BRAM accesses, and producing output tokens.
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Figure 5: Total VU9P resource utilization for baseline and optimized simulators. Designs are labeled R[ocket]N or B[oom]N ,

with N corresponding to core count. FireSimMisc accounts for all resources in the Amazon-provided shell (v1.4.0) and FireSim

hardware for co-simulation; this is fixed across all designs.We omit DSP48s and URAMs as they are constant across all designs

and lightly used. Baseline penta- and hexa-core BOOM designs failed in placement due to over-utilization– we report post-

synthesis utilization. Optimized versions of the same designs use 26% fewer logic LUTs, and successfully place and route.

6.3 Verifying the Model With LIME

The lime flow can be applied to any Golden Gate simulation

model, but it is especially useful for the widely applicable memory

optimization. While each instance of the model is the output of

a parameterized generator, checking a large subspace of the opti-

mized models using lime provides a high degree of confidence in

the correctness of the transformation. In multi-core SoC, checks are

also amortized across multiple identically parameterized memories.

From a usability perspective, lime is an extremely convenient

tool to find bugs in optimized simulation models of highly ported

memories. Implementation bugs may appear only in specific corner

cases, such as a certain interleaving of I/O token arrivals interacting

pathologically with the write collision semantics of the memory.

In contrast with labor-intensive, model-specific directed random

testing, lime offers a push-button bounded model check that finds

all bugs that can manifest within the time horizon of the bound.

While a 20-cycle BMC bound has sufficient depth to cover the full

space of I/O token arrival interleavings over several target cycles,

Table 1 shows that this bound results in quick runtimes; longer BMC

checks can be amortized over many uses of common configurations.

Sc
he

du
ler Host

block
RAM Read 

output 
buffers

Vector of FSMs

Figure 6: A microarchitectural sketch of a three-read, two-

write, optimized Golden Gate memory model.

R4 R16 B4 B5 B6

Baseline 135 MHz 60 MHz 90 MHz N/A N/A

Optimized 135 MHz 60 MHz 80 MHz 60 MHz 50 MHz

Table 2: fF PGA for successfully implemented simulators.

6.4 Adding the Optimization To Golden Gate

To enable our optimization in Golden Gate, we added an analysis

pass that finds annotated RAMs and a model-implementation pass

that inspects the parameters of the target RAM (ports, width, and

depth) and invokes our model generator (Section 6.2). We also an-

notated the register file RAMs in the target RTL. With these passes

enabled, Golden Gate detects and promotes a pair of candidate

RAMs for each core of the SoC during target transformation. In

simulator synthesis, the implementation pass consumes the RAM

modules and produces equivalent models. At this point, the rest

of the flow proceeds as described in Section 4.2). Enabling mem-

ory substitution adds 5 and 69 seconds of FIRRTL compile time to

the quad-core Rocket and hexa-core BOOM configurations, respec-

tively the smallest and largest designs we studied. This is negligible

relative to their FPGA compile times of 6 and 22 hours.

6.5 Results

The results of applying the multi-ported memory optimization

are shown in Figure 5. Optimized BOOM designs use 26% fewer

LUTs than baseline designs, allowing up to six BOOM cores (the B5

and B6 configurations) to be simulated with a single VU9P FPGA,

a significant increase over the baseline maximum of four cores.

The sixteen-core, Rocket-based design also saw an appreciable

7.8% reduction in LUT utilization over the baseline, despite having

lesser-ported, shallower regfiles. We report FPGA frequencies for

all designs that closed timing in Table 2.

As discussed in Section 2.3, replacing components of the target

with decoupled models will impact the FMR, therefore lowering sim-

ulation throughput. FireSim, being a decoupled simulator, generally

has FMR greater than unity. In particular, FireSim uses a last-level-

cache and DRAM model [4] (utilization included in FireSim Misc.

of Figure 5) to implement deterministic simulation of the target’s

outer memory system using host FPGA DRAM. When booting

a Buildroot Linux distribution, adding multi-cycle RAM models

increases FMR from 1.9 and 1.8 to approximately 6.9 and 9.3 for

Rocket and BOOM designs, respectively. FMR is a function of the
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highest port-count model in each target, but is nearly constant

across core count, since the models are not combinationally cou-

pled and therefore execute concurrently. Finally, we note that the

performance penalty of using multi-cycle models may often be less

than that of partitioning—while using only one FPGA.

7 FUTUREWORK

Golden Gate is the first step toward a general optimizing compiler

for FPGA-accelerated simulators. Future research aims include:

(1) Other Resource Optimizations.CAMs are another FPGA-hostile

structure [27] that can be replaced with multi-cycle models.

We suspect large improvements lie in multi-threading [19,

23], where multiple instances of a module are multiplexed

over a single physical instance.

(2) Exploring Resource-Performance Tradeoffs. Users may wish to

use more hardware resources if doing so would improve sim-

ulation performance. Future versions of Golden Gate could

strike different Pareto-optimal points along the resource-

performance curve and automate selection of optimizations.

(3) Proving Model Correctness. We plan to extend lime to use

k-induction for unbounded checks of LI-BDN properties.

8 CONCLUSION

In this paper, we present Golden Gate, an open-source compiler

that automatically decomposes ASIC RTL into a graph of commu-

nicating, latency-insensitive simulation models. Golden Gate can

identify costly structures, pull them into separate models, and re-

place them with much smaller, multi-cycle implementations. Using

lime, multi-cycle models can be shown to simulate the RTL timing

of their ASIC source and to avoid deadlock when composed with

the rest of the simulator. Finally, to demonstrate the applicability of

this approach, we develop a multi-ported RAM optimization and ap-

ply it to a multi-core SoC, enabling the use of a single FPGA where

a partitioned prototype would otherwise have been necessary.
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