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Using multiple antennas at both the transmitter and the receiver is one

of the most promising techniques that can offer significant increases in channel

capacity of a communication system in a wireless fading environment. However,

the performance of the MIMO system depends heavily upon the availability of

the channel state information (CSI) at the transmitter (CSIT) and at the receiver

(CSIR). In this dissertation, we focus our attention on the design and analysis

of MIMO systems over wireless fading channels with practical CSI assumptions,

which can broadly be divided into the following two categories.

The first part considers the development of a general framework for the

analysis of multiple antenna systems with finite-rate feedback, wherein the CSI is

quantized at the receiver and conveyed back to the transmitter through a rate-

constrained reverse link. Inspired by the results of classical high resolution quan-

tization theory, the problem of finite rate quantized communication system is for-

mulated as a general fixed-rate vector quantization problem with side information

available at the encoder (or the quantizer) but unavailable at the decoder. The

xvii



framework of the quantization problem is sufficiently general to include quantiza-

tion schemes with general non-mean square distortion functions, and constrained

source vectors. Asymptotic distortion analysis of the proposed general quantiza-

tion problem is provided by extending the vector version of the Bennett’s integral.

Specifically, tight lower and upper bounds of the average asymptotic distortion

are provided together with useful insights from a source coding perspective. The

proposed general methodology provides a powerful analytical tool to study a wide

range of finite-rate feedback systems which includes both MISO systems over spa-

tially correlated fading channels and MIMO systems over i.i.d. fading channels.

The established framework is also versatile enough to provide analysis of sub-

optimal mismatched CSI quantizers and quantizers with transformed codebooks.

The second part of this dissertation is focused the on the design and

analysis of MIMO systems over fading channels with CSI unavailable both at the

transmitter and at the receiver. To be specific, we first provide an improved

capacity lower bound for MIMO systems with unknown CSI. By analyzing (and

optimizing) the proposed capacity lower bound with respect to different system

parameters, we improve our intuition and understanding of the effects of training

on the overall performance of MIMO systems under unknown CSI assumptions.

Moreover, based on the capacity analysis results, we also provide the design of

practical LDPC-coded MIMO systems under the same unknown CSI assumption

at both component level and structural level. We first propose at the component

level several soft-input soft-output MIMO detectors whose performances are much

better than the conventional MMSE-based detectors. At the structural level, an

unconventional iterative decoding scheme is proposed whose structure leads to a

simple and efficient LDPC code degree profile optimization algorithm with proven

global optimality and guaranteed convergence from any initialization.
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1 Introduction

In this dissertation, we consider systems with multiple antennas at the

transmitter and receiver, which are commonly referred to as multiple input multiple

output (MIMO) systems. Communication systems using multiple antennas at both

the transmitter and the receiver have recently received increased attention due to

their ability to provide great capacity increases in a wireless fading environment.

The initial excitement about MIMO was leaded by the pioneering work of Winters

[1], Foschini [2], Gans [3] and Telatar [4, 5], which predicts remarkable spectral

efficiencies for wireless systems with multiple transmit and receive antennas. The

performance of MIMO system depends on the availability of the channel state

information (CSI) at the transmitter and at the receiver. Most MIMO capacity

analysis and system design often assumes perfect knowledge of the CSI is available

at the receiver, and sometimes at the transmitter as well. This is not a realistic

assumption for most practical communication systems especially for systems using

frequency division duplexing schemes or over relatively fast fading channels. In

this dissertation, we examine multiple antenna systems with practical channel

state information assumptions.

1.1 Multiple Input Multiple Output Systems

Consider a MIMO system with MT transmit antennas and MR receive

antennas. One can denote the impulse response between the jth transmit antenna

and the ith receive antenna by hi,j(τ, t), the MIMO channel is given by the MR×MT

1
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Figure 1.1: MIMO system model

matrix H(τ, t) with

H(τ, t) =




h1,1(τ, t) h1,2(τ, t) · · · h1,MT
(τ, t)

h2,1(τ, t) h2,2(τ, t) · · · h2,MT
(τ, t)

...
...

. . .
...

h1,1(τ, t) h1,2(τ, t) · · · h1,MT
(τ, t)




. (1.1)

If one denotes sj(t) as the signal transmitted from the jth transmit antenna, the

signal received at the ith receive antenna, yi(t), can be represented as

yi(t) =

MT∑

j=1

hi,j(τ, t) ⋆ sj(t), i = 1, 2, · · · ,MR , (1.2)

where “⋆” represents the time domain convolution between the transmitted signal

and the channel impulse response.

In this dissertation, we consider a narrow-band MIMO system over block-

fading channels. A narrow-band (frequency-flat) point-to-point communication

system of MT transmit and MR receive antennas is shown in Fig. 1.1. This system

can be represented by the following concise discrete time model:

y = H · x + n , (1.3)
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where x represents the MT -dimensional transmitted symbol, y represents the MR-

dimensional received signal, n is the MR-dimensional noise vector, and H is the

MR × MT matrix of channel gains with the (i, j)th element hi,j representing the

gain from transmit antenna j to receive antenna i. The additive noise is assumed

to have a circularly symmetric complex Gaussian (CSCG) distribution with zero

mean and identity covariance matrix, i.e. n ∼ Nc(0, It). The transmitted signal

x is normalized to have a power constraint

E
[
‖x‖2

]
= ρ , (1.4)

where ρ represents the average signal to noise ratio (SNR) of the MIMO system

per receive antenna under unit channel gain. Furthermore, a block fading model is

adopted in this thesis in the sense that the channel impulse response H is assumed

to be constant within a coherent fading block and vary independently from one

coherent block to another.

1.2 System Performance versus CSI Assumptions

The performance of a MIMO system depends on the availability of the

channel state information at the transmitter as well as at the receiver. We briefly

describe in the following some capacity analysis results of MIMO systems under

several different CSI assumptions.

1.2.1 No CSIT and Perfect CSIR

For a MIMO system transmitting over i.i.d. Rayleigh flat fading chan-

nels, when the channel state information is perfectly accessible at the receiver side

(perfect-CSIR), and completely unknown at the transmitter side (no-CSIT), the

transmitted signal vector x is chosen to be statistically non-preferential, i.e.

E
[
xxH

]
=

ρ

MT

IMT
. (1.5)
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This means that the signals are independent and equal-powered at each transmit

antennas. The system capacity (or mutual information rate) of a MIMO system

under such CSI assumptions is given by [4],

C = E

[
log2

(
det

(
IMR

+ ρ · HHH

))]
. (1.6)

It is equivalent to the following form

C = E




min(MT ,MR)∑

i=1

log2

(
1 +

ρ · λi

MT

) 
 , (1.7)

where λi are the non-zero eigen-values of HHH.

1.2.2 Perfect CSIT and Perfect CSIR

When the channel state information is unknown to the transmitter, as

we have seen, equal power allocation across the transmit antenna array is a logical

transmission scheme. On the other hand, if perfect channel state information is

also available at the transmitter, adaptive transmission strategies, for example

various transmit pre-coding schemes, can be applied. In this case, the channel

capacity of a MIMO system under the perfect CSIR and perfect CSIT assumption

is given by [4]

C = E

[
max

Q:tr(Q)=1
log2

(
det

(
IMR

+ ρ · HQHH

))]
, (1.8)

where Q represents the covariance matrix of the input signal vector x based on a

particular channel realization.

Telatar [4] showed that the MIMO channel can be converted to paral-

lel, non-interfering single-input single-output (SISO) channels through a singular

value decomposition (SVD) of the channel matrix. The SVD yields min(MT ,MR)

parallel channels with gains corresponding to the eigen-values values of HHH.

Water-filling the transmit power over these parallel channels leads to the power

allocation

Pi =

(
µ − 1

ρλi

)+

, 1 ≤ i ≤ min(MT ,MR) , (1.9)



5

where Pi is the power in the ith eigen-mode of the channel, x+ is defined as x+ ∆
=

max(x, 0), and µ is the waterfill level that satisfies,

min(MT ,MR)∑

i=1

Pi = 1 . (1.10)

The channel capacity is shown to be given by the following concise form

C = E




min(MT ,MR)∑

i=1

log2

(
1 + ρ · Pi · λi

)

 . (1.11)

Note that the assumption of perfect CSIT and perfect CSIR models a fading chan-

nel that changes slow enough to be reliably measured by the receiver and fed back

to the transmitter without significant delay. However, for most practical channel

environments, it is a stringent condition to satisfy.

1.2.3 No CSIT and No CSIR

As described in last subsection, with perfect CSIR channel capacity grows

linearly with the minimum number of transmit and receive antennas. However, re-

liable channel estimation may not be possible for a mobile receiver that experiences

rapid fluctuations of the channel responses. Since user mobility is the principal

driving force for any wireless communication systems, the capacity behavior under

the assumption that both transmitter and receiver only have channel statistical

distributions is of particular interest.

In this section, we summarize some MIMO capacity results under the

CSI assumption that both CSIT and CSIR are absent. One of the first papers

to address this issue is by Marzetta and Hochwald [6], where they modeled the

components of the channel matrix as i.i.d. complex Gaussian random variables

that remain constant for a coherence interval of T symbol periods after which they

change to another independent realization. The authors proved that the capacity

is achieved when the transmitted signal matrix is equal to the product of two

statistically independent matrices, i.e.

S = Φ · V , (1.12)
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where S ∈ CMR×T is the capacity achieving transmitted signal, matrix Φ is a

T × T isotropically distributed unitary matrix, and V is a MR × T independent

real, nonnegative, diagonal matrix. Furthermore, the joint density of the diagonal

elements of V is unchanged by rearrangements of its arguments. Marzetta and

Hochwald showed that, for a fixed number of antennas, as the length of the co-

herence interval T increases, the capacity approaches the capacity obtained as if

the receiver knew the propagation coefficients. In contrast to the linear growth of

capacity with min(MR,MT ) under the perfect CSIR assumption, the most inter-

esting result shown in [6] is that in the absence of CSIT and CSIR, capacity does

not increase at all as the number of transmit antennas MT is increased beyond the

length of the coherence interval T .

The MIMO capacity for this model was further explored by Zheng and

Tse in [7]. The authors showed that in high SNR regimes, capacity is achieved

when using no more than M∗ = min
(
MT ,MR, T/2

)
transmit antennas. Particu-

larly, having more transmit antennas than receive antennas does not provide any

capacity increase in high SNR regions. Zheng and Tse also computed the asymp-

totic capacity of the non-coherent MIMO channel in high SNR regions in terms

of MT , MR, and T and showed that the capacity gain is M∗(1 − M∗/T ) bits per

second per hertz for every 3-dB increase in SNR.

1.2.4 Role of Channel State Information

It can observed from the aforementioned capacity analysis results that the

performance (e.g. in terms of capacity) of a MIMO system depends heavily upon

the availability of the channel state information at both the transmitter and the

receiver. It is also evident that MIMO systems with ideal CSIT and CSIR outper-

form systems with only CSIR and no CSIT, which also provide better performance

than systems with no CSIR and no CSIT. Therefore, intuitively speaking, the role

CSI in a MIMO system is to provide a mechanism for the transmitter and receiver

to better adjust or adapt their communication strategies and hence achieve better
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performance. However, a considerable amount of further effort is required in order

to design and analyze MIMO systems with different CSI assumptions especially

for practical environments.

1.3 Practical CSI Considerations

1.3.1 Systems with Partial CSIT

Considerable amount of work on the design and analysis of MIMO sys-

tems adopt two extreme CSIT assumptions: complete CSIT [4] [8] where channel

state information is perfectly known at the transmitter and no CSIT [4]. How-

ever, in practical situations, the CSI assumption usually lie in between these two

extremes, where the transmitter only has part of the channel information. Most

frequency division duplex (FDD) systems are perfect examples of this kind of CSI

assumptions, where the channel reciprocity is not valid due to asymmetry between

the uplink and downlink channels. Hence the CSIT in this case has to be con-

veyed from the receiver through a reverse link, which is always rate constrained

due to practical reasons. Even for time division dulplexing (TDD) systems, due to

the asymmetry of the power amplifiers, some marginal channel information is still

required from the receiver in order to gain full knowledge of the fading channel

status. Therefore, a practical MIMO system has to face the challenge of design-

ing transmission strategies that are able to make efficient usage of the partial CSI

available at the transmitter. It is also equally challenging to analyze multiple an-

tenna systems with partial CSIT, as well as to understand the effects of the rate

constraint of the reverse link on the overall system performance.

The first part of this dissertation, which include Chap. 2 - Chap. 5, is

focused on providing capacity analysis of multiple antenna systems with finite-

rate CSI feedback. In Chap. 2, a general framework for the analysis of quantized

feedback multiple antenna systems is developed by leveraging of the vast body of

source coding theory, particularly high resolution quantization theory. Specifically,
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the channel quantization is formulated as a general finite-rate vector quantization

problem with attributes tailored to meet the general issues that arise in feed-

back based communication systems, including encoder side information, source

vectors with constrained parameterizations, and general non-mean-squared dis-

tortion functions. Asymptotic (high quantization rate) distortion analysis of the

proposed general quantization problem is provided by extending the vector version

of the Bennett’s integral. Specifically, tight lower and upper bounds of the average

asymptotic distortion are proposed. The framework is then extended to provide

asymptotic distortion analysis for the important practical problem of sub-optimal

quantizers resulting from mismatches in the distortion functions, source statis-

tics, and quantization criteria. Moreover, sub-optimal quantizer with transformed

codebooks is also investigated and its distortion analysis is provided. Finally, dis-

tortion analysis of source variables with constrained parametrization, and analysis

of complex source variables are also provided in this chapter.

The proposed methodology in Chap. 2 is quite general and provides a

powerful analytical tool to study a wide range of finite rate feedback-based multi-

ple antenna systems. By utilizing the proposed general distortion analysis, Chap. 3

investigates the effects of finite-rate CSI quantization on MISO systems over both

spatially i.i.d. and correlated fading channels. Specifically, tight lower bounds of

the average asymptotic distortion, which is defined as the system capacity loss

due to the finite-rate channel quantization, are provided. Closed-form analysis

of the capacity loss in high-SNR and low-SNR regimes are also provided. As an

extended application of the proposed general framework, two types of mismatched

MISO CSI quantizers are investigated in Chap. 4. These include quantizers that

are designed with minimum mean square error (MMSE) criterion but the desired

measure is ergodic capacity loss (i.e. mismatched design criterion), and quantiz-

ers whose codebooks are designed with a mismatched channel covariance matrix

(i.e. mismatched statistics). Moreover, a MISO system transmitting over spatially

correlated fading channels but using channel quantizers whose codebook is trans-
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formed from spatially i.i.d. fading channels is also considered in Chap. 4. Bounds

on the system capacity loss of these sub-optimal CSI feedback schemes, i.e. MISO

systems with CSI quantizers using mismatched codebooks and transformed code-

books, are provided and compared to that of the optimal quantizers. Finally,

the analysis of CSI-feedback-based multiple antenna systems is further extended

to MIMO fading channels. In Chap. 5, tight lower bounds on the capacity loss

of MIMO systems over i.i.d. Rayleigh flat fading channels due to the finite-rate

channel quantization are provided. Moreover, MIMO CSI-quantizers using mis-

matched codebooks that only optimized for high-SNR and low-SNR regimes, as

well as MIMO systems using multi-mode spatial multiplexing transmission schemes

are also investigated in the same chapter.

1.3.2 Systems with unknown CSIR

MIMO capacity analysis and system design is often based on the assump-

tion that the fading channel coefficient between each transmit and receive antenna

pair is perfectly known at the receiver. In most of these cases, a quasi-static fading

channel model is adopted where and channel state changes extremely slow and suf-

ficient pilots are used to perform a close-to-ideal channel estimate. Based on the

ideal CSIR, a coherent data detection is performed at the MIMO receiver. How-

ever, ideal CSIR is not a realistic assumption for most practical communication

systems especially in fast fading channels. It is because perfect channel estimation

at the receiver requires a sufficient long training sequence which is not feasible for a

time-varying fading channel. Moreover, channel estimation always occupies some

time slots that can be used for data transmission which decreases the spectral effi-

ciency. Hence, there exists a trade-off between the amount of time and power spent

on data symbols and training symbols. It is therefore an interesting problem to

study the effects of training on the performance of multiple antenna systems with

unknown CSIR assumptions. On the other hand, it is also a challenging problem

to design practical coded MIMO systems under the same CSI assumptions.



10

The second part of this dissertation, which include Chap. 6 and Chap. 7,

is focused the on the design and analysis of MIMO systems over fading channels

with CSI unavailable both at the transmitter and at the receiver. In Chap. 6, a de-

tailed capacity analysis of a MIMO system composed of M transmit and N receive

antennas operating in a block fading environment with unknown CSI assumption

is provided. Specifically, we first propose a mutual information upper bound of the

unknown MIMO channel under the assumption that the input distribution is re-

stricted to a certain structure and form but without assuming any specific channel

estimation algorithm. The proposed mutual information upper bound is shown to

be tight when M is moderately large or the system SNR is small, thereby leading

to a valid capacity lower bound of the unknown MIMO channel. By analyzing the

proposed capacity lower bound with respect to different system parameters, the

effects of training symbols on the performance of MIMO systems are investigated

from several different perspectives, including the design of optimal pilot structure,

time slot allocation and power allocation between training and data symbols, as

well as the selection of active number of transmit antennas.

Chap. 7 of this dissertation focuses on the design of practical LDPC-coded

MIMO systems employing a soft iterative receiver structure with joint channel es-

timation and data detection scheme. To be specific, we first propose at the com-

ponent level several soft-input soft-output MIMO detectors whose performances

are much better than the conventional MMSE-based detectors. In particular, one

optimal soft MIMO detector and two simplified sub-optimal detectors are devel-

oped that do not require an explicit channel estimate and offer an effective tradeoff

between complexity and performance. In addition, a modified EM-based MIMO

detector is developed which completely removes positive feedback between input

and output extrinsic information and provide much better performance compared

to the direct EM-based detector that has strong correlations especially in fast

fading channels. At the structural level, the LDPC-coded MIMO receiver is con-

structed in an unconventional manner where the soft MIMO detector and LDPC
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variable node decoder form one super soft-decoding unit, and the LDPC check

node decoder forms the other component of the iterative decoding scheme. By

exploiting the proposed receiver structure, tractable extrinsic information transfer

functions of the component soft decoders are obtained, which further lead to a

simple and efficient LDPC code degree profile optimization algorithm with proven

global optimality and guaranteed convergence from any initialization.



2 Generalized Vector

Quantization Framework and

Asymptotic Analysis

2.1 Motivation

Communication systems using multiple antennas at both the transmitter

and the receiver have recently received much attention due to their promise of pro-

viding significant capacity increases in a wireless fading environment, as reported

by Telatar [4] and Foschini [2]. The performance of multiple antenna systems de-

pends on the availability of the channel state information (CSI) at the transmitter

(CSIT) and at the receiver (CSIR). Often in MIMO system design and analysis, two

extreme CSIT assumptions are adopted: complete CSIT [4] [8] where channel state

information is perfectly known at the transmitter and no CSIT [4]. This chapter

considers systems with CSI assumptions in between these extremes. Perfect CSIR

is assumed to be available at the receiver, and attention is focused on MIMO sys-

tems where CSI is conveyed from the receiver to the transmitter through a finite

rate feedback link. Recently, several interesting papers have appeared, proposing

design algorithms as well as analytically quantifying the performance of finite rate

feedback multiple antenna systems [9] - [29].

Most of the widely used models for studying the effects of partial CSI

at the transmitter fall into two categories: statistical feedback and instantaneous

12
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feedback. In the statistical feedback approach, it is assumed that the channel is

rapidly changing, and the coherence time is too small to feed back every instanta-

neous channel realization. However, the channel statistics varies sufficiently slowly,

so that the mean and variance of the channel can be fed back to the transmitter

accurately. The channel is then modeled as a Gaussian distribution with the given

mean and variance, and the system performance is optimized with respect to the

input distribution and analytically characterized [9]- [12]. In the instantaneous

feedback approach, which is the focus of this work, a block fading channel model is

assumed and the receiver conveys back to the transmitter current CSI through an

error-free feedback link with limited bandwidth. To focus attention on the effects

of the finite rate quantization of the CSI information, this chapter assumes there

is no delay in the feedback channel. More specifically, given B bits of feedback,

the receiver maps the current channel instantiation into one of N = 2B integer

indices, with each index representing a particular mode of the fading channel. The

transmitter hence optimizes or adapts its transmission strategy based on the feed-

back information. This imposes great challenges in the design and analysis of the

optimal quantizer that takes into account both the underlying channel distribu-

tion and the performance metric, such as received SNR, channel capacity, bit error

rate, etc. The topic of instantaneous channel feedback of multi-antenna systems

has received much attention in the past few years, notably in [13] - [29].

Skoglund et. al. [13] investigated the finite rate MIMO system from an

information theoretic perspective. They proved that when the receiver has full

knowledge of the CSI and the feedback information, the capacity-achieving encoder

can be split into two parts, a fixed codebook encoder and an adaptive weighting

matrix based on the feedback information. Lau et. al. [14] extended the results

to a more general case where the channel state s, the CSIR v, and the CSIT u

have a joint statistical relation p
(
s, u, v

)
. They proved that the system capacity

is obtained through a joint optimization of both the quantization partitions and

the conditional input distributions, which is difficult to solve and can only be
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resolved through numerical approximations. Therefore, most of the attention in

recent literature is focussed on the case of ideal CSIR with simple sub-optimal

(i.i.d. Gaussian) input distributions.

Narula et. al. considered in [15] a multiple transmit antennas and single

receive antenna (MISO) system which employs finite-rate feedback to describe

the beamforming vector. The Lloyd algorithm [16] was utilized to design the

optimum beamforming vector codebook, where both the channel gain and the

system mutual information were used as performance metrics. By relating the

problem to rate distortion theory, the authors obtained an analysis of the SNR

loss due to quantized beamforming and connect it to the system feedback rate B

and the number of antennas t (when t is large). Based on the geometrical properties

of the channel space, Mukkavilli et. al. [17] derived a universal lower bound on

the outage probability of quantized MISO beamforming systems with arbitrary

number of transmit antennas t over i.i.d. Rayleigh fading channels. The authors

also proposed a codebook design criterion based on minimizing the maximum inner

product between any two distinct beamforming vectors in the codebook. Love and

Heath [18] [19] also derived the same min-max criterion in a i.i.d. Rayleigh fading

MIMO channel setting, and related the problem to that of Grassmannian line

packing [20], and proposed a random computer search algorithm to generate the

codebook that optimizes the Grassmannian beamforming criterion. The authors

also investigated in [21] the problem of quantizing the beamforming vector under a

per-antenna power constraint, also referred to as quantized equal gain transmission.

Vector quantization (VQ) techniques along with the Lloyd algorithm can

be used to design codebooks that specifically optimize for both the statistical distri-

bution of the vector (or matrix) channel as well as the specific performance metric

(for example, the mutual information rate). This approach was used by Xia et. al.

in [22] [23] and Roh et. al. in [24] [25], where the authors derived an (weighted) in-

ner product criterion and used the Lloyd algorithm [16] to generate the codebook.

Both of these works analyzed the performance of MISO systems with limited rate-
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feedback in the case of i.i.d. Rayleigh fading channels, and obtained closed-form

expressions of the capacity loss (or SNR loss) in terms of feedback rate B and an-

tenna size t. In [26] [27], Roh et. al. extended the results from MISO channels to

the case of MIMO systems with quantized feedback. They employed a transmission

scheme with a fixed number of spatial channels and equal power allocation, and

proposed a new criterion for designing the codebook of beamforming matrices. By

utilizing the complex multivariate beta distribution and tractable approximations

to the Voronoi regions, they also provided corresponding analytical results of the

system capacity loss for the case of i.i.d. Rayleigh fading channel in high SNR

regimes. Furthermore, a multi-mode spatial multiplexing transmission strategy

was proposed to compensate for the degradation due to the equal power allocation

assumption which achieved a significant amount of the system capacity. A variant

of the multi-model spatial multiplexing was also presented in [28]. The problem of

quantized equal gain transmission was recently revisited by Murthy et. al. wherein

a VQ approach was suggested for codebook design [29] and a closed-form capacity

loss analysis was conducted.

The analysis of finite rate feedback systems has proven to be difficult

and results available to date are quite limited: i.i.d. channels and mainly MISO

channels. This chapter attempts to provide a general framework for the analysis

of quantized feedback multiple antenna systems. This is done by exploiting the

similarities between classical fixed-rate source coding and the channel quantiza-

tion. For example, in the fixed-rate quantization problem, the encoder attempts

to describe a random source (scalar or vector) using a finite number of bits with

the goal being to minimize a chosen distortion measure (for example, a power of

the Euclidean norm of the quantization error). In multiple antenna feedback sys-

tems, the channel state information is described using a finite number of bits with

the goal being to optimize a given performance metric (such as the received SNR,

system mutual information rate or BER). These similarities would be extremely

helpful in the design and analysis of finite rate feedback MIMO systems as they
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would benefit from the vast body of source coding theory, particularly high resolu-

tion quantization theory and VQ-based codebook design methodology. Although

several authors have remarked on this similarity (including [15], [17] [23]), the ex-

act and deeper connection between the two fields still remains elusive. A closer

examination reveals that there are enough differences between the problems that a

direct use of high resolution results from source coding is not feasible. Fortunately,

however, it is possible to extend some of the results to the problem at hand and

provide an interesting general framework for analyzing finite rate feedback systems.

Without narrowing the scope to a specific multi-antenna channel quanti-

zation scheme, this chapter formulates the problem as a general finite rate vector

quantization problem with attributes tailored to meet the general issues that arise

in feedback based communication systems. These attributes include side infor-

mation available at the encoder (or quantizer) but unavailable at the decoder,

general non-mean square distortion functions, and source vectors with constraints.

Source coding with side-information-dependent distortion measures has been con-

sidered in [30] [31]. Those works focused on the classic rate-distortion approach,

which is suited to variable rate coders, whereas this work focuses on the problem

of fixed-rate quantizers and their associated high-rate theory. Additionally, those

works considered a more limited form of the distortion measure than this paper.

Asymptotic distortion analysis of the proposed general quantization problem with

side information, constrained quantization space, and general distortion functions

is provided by extending Bennett’s classic analysis [32] as well as its correspond-

ing vector extensions [33] [34] [35]. To be specific, tight lower and upper bounds

of the average asymptotic distortion are proposed. Sufficient conditions on the

achievability of the distortion bounds are also provided and related to correspond-

ing classical fixed-rate quantization problems. Based on the general framework,

the asymptotic distortion analysis is further extended to the important practi-

cal problem of sub-optimal quantizers resulting from mismatches in the distortion

functions, source statistics, and quantization criteria. As a further demonstration



17

of the utility of the framework, sub-optimal vector quantizers using transformed

codebooks are also investigated. Moreover, distortion analysis of complex source

variables are also investigated in this chapter. It is shown that under certain nec-

essary and sufficient conditions, the distortion analysis of complex source variables

can be performed in a concise manner without first transforming the problem into

real domains.

The proposed methodology from the source coding perspective provides

a powerful analytical tool to study a wide range of finite rate feedback systems.

Specific applications of the proposed general framework as well as the high-rate

distortion analysis to multiple antenna systems over fading channels with finite-

rate CSI feedback are provided in Chap. 3-5.

2.2 Generalized Vector Quantization Framework

In this section, the finite rate feedback based multiple antenna system is

formulated as a generalized fixed-rate vector quantization problem and analyzed

by adapting tools from high resolution quantization theory. The new attributes of

this generalization are additional side information available to the encoder, con-

strained parameterizations of the vectors to be quantized, and non-mean-squared

performance metrics.

2.2.1 Motivation for Generalization

To better understand the need for this generalization, an illustrative ex-

ample is useful. For this purpose, consider a MISO system with t transmit antennas

and a single receive antenna where the CSI to be quantized is the vector channel

realization h ∈ Ct, which is equivalent to a real vector of 2t dimensions. In clas-

sical source coding, the encoder (or the quantizer) describes the random source

s ∈ Rk by one of the entries of a finite alphabet codebook denoted
{
ŝ1, · · · , ŝN

}
,

where ŝi ∈ Rk. The encoder and the codebook are designed to minimize the dis-
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tortion between s and its quantized representation ŝi (for example, the expected

rth power of the Euclidean distance). The design of finite rate MISO feedback

systems is a generalized channel (vector or matrix) quantization problem because

of the following key differences:

1. Redundant Parameters: Not all channel parameters need to be quantized.

For example, consider the quantization of the maximum ratio transmission

(MRT) beamforming vector in a MISO system, which is given by v = h/‖h‖
[36]. The transmitter only requires the channel directional information (vec-

tor) v. Therefore, it is redundant to directly quantize the channel instantia-

tion h.

2. Constrained Vector Parameterization: The channel instantiation and the

actual variable to be quantized may lie in different spaces and may have

different dimensions because the information to be quantized may have cer-

tain constraints. In the example of quantized MRT beamforming, the vector

v ∈ Ct to be quantized is constrained to be unit-norm and hence lies on the

unit hyper-sphere or manifold, whereas the channel instantiation h could be

anywhere in Ct space.

3. Encoder Side Information: The side information which is not the quanti-

zation objective, for example the gain ‖h‖ of the MISO channel, can be

utilized as side information at the quantizer (or the encoder) to improve the

quantization performance.

4. Non mean-squared performance metric: The distortion measure is often a

more general non-mean-square error function1. In the example of quantized

MRT beamforming, if the average received SNR loss ρL is the performance

metric, then the distortion measure is given by

ρL = ρP − ρQ = Eh

[
ρ · ‖h‖2 ·

(
1 −

∣∣〈v, v̂〉
∣∣2

)]
,

1Such distortion measures have also been considered in the source coding literature, and it is an
unavoidable new attribute in the context of analyzing the multiple antenna systems with finite rate
feedback.
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where ρP is the expected received SNR with perfect beamforming feedback

and ρQ is the expected received SNR with quantized beamforming, and ρ is

the average system SNR. Notice that the distortion function is clearly not of

the form ‖v − v̂‖r.

Due to the above-mentioned differences, high resolution quantization the-

ory results from classical source coding cannot be directly applied to the design

and analysis of finite rate feedback systems. In order to take advantage of the vast

body of literature on source coding, the analysis must be extended to allow for en-

coder side information, constrained quantization variables and non-mean-squared

distortion measures. The following sections extend Bennett’s asymptotic distor-

tion analysis to this more general framework thereby providing insight (asymptotic

analysis) into the finite rate feedback based communication system problem.

2.2.2 Problem Formulation

Let y be a kq × 1 random vector belonging to vector space Q
(
Rkq×1

)
,

and z be a kz × 1 random vector belonging to vector space Z
(
Rkz×1

)
respectively.

Vector y and z can be combined into x =
(
y, z

)
, which belongs to space S = Q×Z

and has joint probability density p
(
x
)

= p
(
y, z

)
. A quantization scheme is to be

designed to quantize the random vector y into one of the N vectors (or code points)

ŷ1, ŷ2, · · · , ŷN , each belonging to space Q. The performance of the quantizer is

measured by the distortion function DQ. In the conventional source coding context,

where the objective is to quantize and reproduce the source information y, the

most commonly used distortion measure is the rth power of the mean-squared

quantization error (ỹ = y − ŷ), i.e.

Dnorm = E
[ ∥∥y − ŷ

∥∥r

2

]
, (2.1)

where ‖ · ‖2 denotes the l2 norm. The definition of the distortion measure is

extended to a general non-mean-square form, which is also parameterized by the
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side information z, and given by

D = Ex

[
DQ

(
y, ŷ ; z

)]
, (2.2)

where for a given instantiation of z, DQ

(
· , · ; z

)
is a mapping from space Q × Q

to the real domain R+. The distortion function DQ can be viewed as a generalized

multi-dimensional distance function between y and ŷ that is parameterized by z,

and it is assumed to have the following property

DQ

(
y, ŷ ; z

)
≥ 0 , (2.3)

with equality in the neighborhood of ŷ if and only if y = ŷ (local minima). It

is also assumed that the side information z is available at the encoder (or the

quantizer), but not available at the decoder. Therefore, the quantized output ŷ is

a function of both the quantization variable (objective) y and the side information

z, i.e.

ŷ = Q
(
x
)

= Q
(
y , z

)
.

Due to the unavailability of the side information z at the decoder, a single codebook

(not multiple codebooks indexed by z) is used and known to both the encoder and

the decoder.

This chapter considers a fixed-rate2 (B bits) quantizer with N = 2B

quantization levels. For each of the N vectors (or code points) in the codebook,

there is an unique region Si ⊆ S corresponding to the set of the source input that

is quantized into ŷi, defined as

Si =
{
x

∣∣∣ Q
(
x
)

= ŷi

}
. (2.4)

A quantizer can be specified by the output points (“codebook”) and by the parti-

tion of the input source space S, which is composed of N disjoint and exhaustive

regions S1, S2, · · · , SN , i.e.

S =
N⋃

i=1

Si, Si

⋂
Sj = φ, i 6= j .

2The asymptotic analysis provided in this chapter can be extended to variable rate quantizers with
fixed output entropy (or the average message length) following the work in [33].
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Finally, viewed from a conventional source coding perspective, the de-

scribed general quantization problem is equivalent to the quantization of a mixed

density source with each source component having probability density given by

p
(
y
∣∣z

)
, and parameterized distortion function given by DQ

(
y, ŷ ; z

)
. The side in-

formation z (index information of the source component) is available at the encoder

(or the quantizer) but not available at the decoder. In the following subsections, a

detailed asymptotic distortion analysis is provided for the proposed general vector

quantization problem.

2.2.3 Optimal Partitioning of the Source Space

Similar to the analysis provided in [33], this analysis begins by exploring

the geometrical properties of the partitions of the source space S. First observe the

partitions in the space Q by projecting the partition region Si onto Q conditioned

on z:

Qz,i =
{
y

∣∣∣
(
y, z

)
∈ Si

}
. (2.5)

Therefore, the conditional space Qz, given by

Qz =
{
y

∣∣∣
(
y, z

)
∈ S

}
, (2.6)

can be represented as a union of all the non-overlapping projected partitions Qz,i

conditioned on z, i.e.

Qz =
N⋃

i=1

Qz,i .

In order to separate the effects of the original source distribution on the

quantization systems, following the approach in [33], first consider the optimal

quantizer for a random source which is uniformly distributed on space S. The op-

timal quantizer that minimizes distortion will satisfy the following two conditions.

First, for any quantization points (or codebook) ŷ1, ŷ2, · · · , ŷN in Q, the optimal

quantizer has a Dirichlet partition, given by

Si =
{
x

∣∣ DQ

(
y, ŷi ; z

)
≤ DQ

(
y, ŷj ; z

)
, ∀ j 6= i

}
, 1 ≤ i ≤ N . (2.7)
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It is known that a quantizer is characterized by the its Voronoi partitions

as well as the corresponding centroid (or code points). For an optimal quantizer,

first it can be shown that each projected partition conditioned a particular side

information is also Dirichlet partition.

Lemma 1 With uniformly distributed input source x, if partition S1, S2, · · · , SN is

a Dirichlet partition with respect to the quantization points (or codebook) ŷ1, ŷ2, · · · , ŷN

in Q, then each projected partition Qz,1, Qz,2, · · · , Qz,N is also a Dirichlet partition

w.r.t. points ŷ1, ŷ2, · · · , ŷN in space Qz, i.e.

Qz,i =
{
y

∣∣ DQ

(
y, ŷi ; z

)
≤ DQ

(
y, ŷj ; z

)
, ∀ j 6= i

}
, 1 ≤ i ≤ N . (2.8)

Proof: According to the definition of the projected partitions Qz,i in (2.5),

for any two elements yi ∈ Qz,i and yj ∈ Qz,j, there exists xi and xj such that

xi =
(
yi, z

)
∈ Si, xj =

(
yj, z

)
∈ Sj . (2.9)

Therefore, according to the definition of the Dirichlet partition given by (2.7), the

following inequality is true for any j 6= i,

DQ

(
y, ŷi ; z

)
≤ DQ

(
y, ŷj ; z

)
. (2.10)

This is exactly the condition of the Dirichlet partion on projected space Qz given

by (2.8).

Second, each output point ŷi is the centroid of its corresponding region,

in the sense that

ŷi = arg min
ŷ

∫∫

(y, z)∈ Si

DQ

(
y, ŷ ; z

)
dy dz . (2.11)

Note that generally, the centroid point ŷi of Si might not be the centroid of each

projected region Qz,i.

Due to the assumption that the side information z is only available at

the encoder (or the quantizer), all source components (y conditioned on different
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instantiations of z) share the same codebook ŷ1, ŷ2, · · · , ŷN . Therefore, once the

codebook is fixed, the Dirichlet partitions on each projected space Qz are deter-

mined by the distortion function DQ

(
· , · ; z

)
parameterized by z. This means

that the partitions of a specific quantizer on each different projected space Qz are

related to each other. Therefore, the optimal codebook (or the placement of the

code points) should be designed to minimize the overall distortion, as opposed to

the distortion for any one conditional source component. This imposes a great

challenge not only on the quantizer design but also on the distortion analysis.

2.2.4 Normalized Inertial Profile

By performing a Taylor series expansion on the distortion function DQ

(
y, ŷ ; z

)

about y = ŷ, the distortion measure can be represented in the following form:

DQ

(
y , ŷ ; z

)
= DQ

(
ŷ , ŷ ; z

)
+ dz

(
ŷ
) (

y − ŷ
)

+
(
y − ŷ

)T

Wz

(
ŷ
) (

y − ŷ
)

+ O(‖y − ŷ‖3) , (2.12)

where dz

(
ŷ
)
∈ R1×kq is the gradient of DQ given by

d
(
ŷ
)

=
∂

∂ y

∣∣∣∣
y=ŷ

DQ

(
y , ŷ ; z

)
,

and Wz

(
ŷ
)
∈ Rkq×kq is the Hessian matrix of the distortion function with the

(i, j)th element given by

wi,j =
1

2
· ∂2

∂ yi∂ yj

∣∣∣∣
y=ŷ

DQ

(
y , ŷ ; z

)
.

According to the definition of the distortion function as well as the property given

by (2.3) that y = ŷ is the local minimum of DQ, both DQ

(
ŷ , ŷ ; z

)
and dz

(
ŷ
)

are zero, and the Hessian matrix Wz

(
ŷ
)

is positive semi-definite. Therefore, as N

(or B) gets large (i.e. the high resolution assumption) DQ can be approximated

by the following second order Taylor series expansion:

DQ

(
y , ŷ ; z

)
≈

(
y − ŷ

)T

Wz

(
ŷ
) (

y − ŷ
)

. (2.13)
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The quadratic matrix Wz

(
ŷ
)

is an extension of the “sensitivity matrix” defined in

[34], which describes the scalar sensitivities of the parameters and cross-sensitivity

terms related to the interaction in quantizing multiple parameters simultaneously.

The quantization region Qz,i can be viewed as a shifted area Ez,i centered

at ŷi, defined as

Ez,i =
{
e

∣∣∣ e + ŷi ∈ Qz,i

}
, (2.14)

where Ez,i is the Voronoi region of code point ŷi in space Qz. Therefore, the

average distortion Dz,i in the quantization region Qz,i depends on its location ŷi

and the adopted Voronoi shape Ez,i, which is given by

Dz,i =

∫

Qz,i

DQ

(
y , ŷi ; z

)
dy =

∫

e+ŷi∈Qz,i

DQ

(
e + ŷi , ŷi ; z

)
d e

≈
∫

e∈Ez,i

eT Wz

(
ŷi

)
e d e = V

(
Qz,i

)1+ 2
kq · I

(
ŷi ; z ; Ez,i

)
, (2.15)

where V
(
Qz,i

)
or V

(
Ez,i

)
is the volume of the region Qz,i defined as

V
(
Qz,i

)
= V

(
Ez,i

)
=

∫

Ez,i

de , (2.16)

and I
(
ŷi ; z ; Ez,i

)
is the normalized inertial profile defined as

I
(
ŷi ; z ; Ez,i

)
△
= V

(
Ez,i

)−(1+ 2
kq

)
∫

e∈Ez,i

eT Wz

(
ŷi

)
e d e . (2.17)

The normalized inertial profile given by (2.17) depends on the shape, but not the

size, of the region Ez,i and on the sensitivity matrix Wz(ŷi). Hence, it is invariant

to an arbitrary scaling, which is proved in the following lemma.

Lemma 2 The normalized inertial profile I
(
ŷi ; z ; Ez,i

)
(including the constraint

inertial profile) given by (2.17) and (2.97) depends only on the shape of the Voronoi

region Ez,i and the local smoothness of the distortion function at its current location

ŷi. It is invariant to the following scaling operation (within the small neighborhood

of point ŷi), i.e.

I
(
ŷi ; z ; Ez,i

)
= I

(
ŷi ; z ; α Ez,i

)
. (2.18)
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Proof: First, according to the definition of the volume of the region Ez,i given

by (2.16), it is clear that the volume of the scaled region αEz,i, defined as

αEz,i =
{

α e
∣∣ e ∈ Ez,i

}
, (2.19)

is given by

V
(
α Ez,i

)
=

∫

α Ez,i

de =

∫

Ez,i

d
(
α e′

)
=

∫

Ez,i

αkq d e′ = αkq · V
(
Ez,i

)
. (2.20)

With the same reasoning, the inertial profile of a scaled region is given by

I
(
ŷi ; z ; α Ez,i

)
= V

(
α Ez,i

)−(1+ 2
kq

)
∫

e∈αEz,i

eT Wz

(
ŷi

)
e d e

=
(
αkq V

(
Ez,i

))−
(
1+ 2

kq

) ∫

e′∈Ez,i

αe′T Wz

(
ŷi

)
αe′ d

(
αe′

)

= α−(kq+2) αkq+2 · V
(
Ez,i

)−(1+ 2
kq

)
∫

e′∈Ez,i

e′T Wz

(
ŷi

)
e′ d e′

= I
(
ŷi ; z ; Ez,i

)
. (2.21)

According to Gersho’s conjecture [33], for large N most cells of the op-

timal quantizer are congruent (shifted, rotated, scaled, and elongated versions) of

the tessellating polytope H. Therefore, the optimal Voronoi region that minimizes

the inertial profile must belong to the set of admissible tessellating polytopes in

space Qz (i.e. regions that can tile the space). The optimal inertial profile is

defined as the minimum inertia of all admissible regions Ez,i, i.e.

Iopt

(
ŷi ; z

)
= min

Ez,i∈HQ

I
(
ŷi ; z ; Ez,i

)
, (2.22)

where HQ is the class of all admissible polytopes. It is proved in [34] [37] [35] [38]

that the inertial profile of any Voronoi shape Ez,i is lower bounded by that of a

“M-shaped” hyper-ellipsoid, i.e.

I
(
ŷi ; z ; Ez,i

)
= V

(
Ez,i

)−(1+ 2
kq

)
∫

e∈Ez,i

eT Wz

(
ŷi

)
e d e

≥ V
(
Ez,i

)−(1+ 2
kq

)
∫

e∈T
(
0,Wz(ŷi), V (Ez,i)

) eT Wz

(
ŷi

)
e d e , (2.23)
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where T
(
y, M, v

)
is the hyper-ellipsoidal set centered at y with volume v, defined

as

T
(
y, M, v

)
=

{
x

∣∣∣∣
(

κ2
kq

v2|M|

)1/kq(
x − y

)T

M
(
x − y

)
≤ 1

}
, (2.24)

where κn is the volume of a n-dimensional unit sphere [39] given by

κn =
πn/2

Γ(n/2 + 1)
.

Carrying out the multi-dimensional integration using the same approach as in [34]

[38], the lower bound of the inertial profile is given by,

Iopt

(
ŷi ; z

)
' Ĩopt

(
ŷi ; z

)
=

kq

kq + 2
·
(∣∣Wz

(
ŷi

)∣∣
κ2

kq

)1/kq

. (2.25)

As reported in [38], the lower bound is tight (denoted as “'”) in most cases and

the optimal Voronoi regions can be well approximated by the “M-shaped” hyper-

ellipsoids. In [40], the error introduced by the hyper-ellipsoidal approximation was

investigated for spaces up to dimensions 10 and was shown to be insignificant.

Therefore, although the hyper-ellipsoids cannot form a lattice partition of space

Qz, the difference in the inertial profiles is insignificant. On the other hand, it is

also evident that the inertial profile of any admissible polytope is an upper bound

on Iopt

(
ŷi ; z

)
.

In some practical cases, the sensitivity matrix Wz

(
ŷi

)
is independent of

the location ŷi, i.e.

Wz

(
ŷi

)
= Wz . (2.26)

Then, it is reasonable to assume that the cell regions Ez,i of an optimal quantizer

are only scaled and rotated versions of the polytope shape H. Hence, the inertial

profile Iopt

(
ŷi ; z

)
of an optimal quantizer reduces to be the optimal inertia coeffi-

cient Iopt(z), which is constant for any location vector ŷi. This is also true for the

tight lower bound Ĩopt(z) given by (2.25).

2.2.5 Heuristic Derivation of the Asymptotic Distortion Integral

To generalize the concept of point density introduced by Lloyd [41] in

one-dimensional quantization, and extended to vector quantization in [33], denote
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by λz,N

(
ŷi

)
the specific point density function for a given side information z, i.e.

λz,N

(
ŷi

)
=

1

NV
(
Qz,i

) , (2.27)

where V
(
Qz,i

)
is the volume of Qz,i. When the number of the quantization level

N is sufficiently large, λz,N

(
ŷi

)
has an asymptotic point density given by

λz

(
ŷ
)

= lim
N→∞

λz,N

(
ŷi

)
. (2.28)

Similar to Bennett’s integral provided in [32], the system distortion con-

ditioned on a particular side information z can be rewritten in the following form:

D(z) = Ey|z

[
DQ

(
y , Q

(
y, z

)
; z

)]

=

∫

Qz

DQ

(
y , Q

(
y, z

)
; z

)
· p

(
y| z

)
dy

=
N∑

i=1

∫

Qz,i

DQ

(
y , Q

(
y, z

)
; z

)
· p

(
y| z

)
dy

≈
N∑

i=1

p
(
ŷi

∣∣z
) ∫

Qz,i

DQ

(
y , ŷi ; z

)
dy =

N∑

i=1

p
(
ŷi

∣∣z
)
· Dz,i

=
N∑

i=1

2
− 2B

kq · I
(
ŷi ; z ; Ez,i

)
· p

(
ŷi

∣∣z
)
· λz,N

(
ŷi

)− 2
kq · V

(
Qz, i

)

≈
(∫

Qz

I
(
y ; z ; Ez(y)

)
· p

(
y
∣∣z

)
· λz

(
y
)− 2

kq dy

)
· 2−

2B
kq , (2.29)

where Ez(y) denotes the asymptotic Voronoi shape of the cell that contains y when

N approaches infinity.

Since the code points of the quantizer (or the codebook) do not depend

on z, it is shown in the following lemma that the asymptotic point density function

λz

(
y
)

given by (2.28) does not depend on the side information z.

Lemma 3 If the side information z is only available at the encoder (or quantizer)

but not at the decoder, the asymptotic point density function λz

(
ŷ
)

does not depend

on z, i.e.

λz

(
ŷ
)

= λ
(
ŷ
)

, (2.30)
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assuming the distortion function DQ has a continuous sensitivity matrix Wz(y)

w.r.t. source variable y.

Proof: The original definition of point density function λz(y) is given by

equation (2.27) and (2.28). In order to see the independence of the point density

function on side information z, let us consider an alternative definition λalt(y),

which is given by the following form

λalt

(
ŷ
)

= lim
V
(
R(ŷ)

)
→0

n
(
ŷ
)
/N

V
(
R(ŷ)

) , (2.31)

where R(ŷ) is a small neighborhood region centered at ŷ, and V
(
R(ŷ)

)
is the

volume of this small region. n
(
ŷ
)

is the number of code points in R(ŷ), and

n
(
ŷ
)
/N is the relative frequency of the points in R(ŷ). It is evident from the

definition that λalt

(
ŷ
)

does not depend on the side information z, simply because

n
(
ŷ
)

is independent of z. If the distortion function DQ has a continuous sensitivity

matrix, Wz(y) can be regarded as constant matrix equal to Wz(ŷ) for source

variables in the infinitesimal regions R(ŷ) centered at ŷ such that V
(
R(ŷ)

)
→ 0.

Then, conditioned on a particular realization of z, any projected quantization cells

Qz,i within region R(ŷ) should be of the same shape and size3. Hence, one can

rewrite the alternative point density definition (2.31) by the following form,

λalt

(
ŷ
)

= lim
V
(
R(ŷ)

)
→0

1

N ·
(
V

(
R(ŷ)

)
/n (ŷ)

) = lim
N→∞

1

N · V
(
Qz,i

) , (2.32)

which is equivalent to the original definition λ
(
ŷ
)

given by (2.28). Therefore, by

establishing the equivalence of the two definitions of the point density function,

one can show that λz

(
ŷ
)

is independent of z.

Note that the independence between the point density and the side in-

formation proved in Lemma 3 does not necessarily mean that the encoder side

information does not affect the quantizer performance. In fact, it plays an impor-

tant role in determining the partitions (or tessellations) of the quantization space

3Due to the high-rate assumption, one can always find a sufficiently small (with infinitesimal volume)
neighboring region R(ŷ) that contains enough code points, so that the edge effects can be ignored.
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Qz. Hence the shapes of quantization cells Qz, i corresponds to the same code point

ŷi but conditioned on different realizations of z are different and closely depend

on z. This represents the finer structure of the quantizer, whereas point density

function is a coarser characteristic.

Hence, by the substituting (2.30) into (2.29), the overall distortion of a

finite rate quantization system can be represented as

D = Ez

[
D(z)

]
=

∫

Z

D(z) · p (z) d z

=

(∫ ∫

(y,z)∈ S

I
(
y ; z ; Ez(y)

)
· p (y, z) · λ

(
y
)− 2

kq dy d z

)
· 2−

2B
kq . (2.33)

Note that the integration given by equation (2.33) can be viewed as an extension

of Bennett’s integral to a generalized fixed-rate vector quantization problem with

additional encoder side information and general distortion metric function.

2.3 Minimization of the Distortion Integral & Different

Distortion Bounds

Due to the new attribute of the encoder side information, the general-

ized vector quantization problem can be viewed as quantizing a multi-component

source with different distortion functions. Therefore, the codebook should be de-

signed to match the overall distortion averaged over all source components. A

tight distortion lower bound is derived in this section to characterize the minimum

system distortion achieved by the optimal quantizer. Furthermore, due to the un-

availability of encoder side information at the decoder, a quantization scheme with

multiple codebooks, designed to match each of source component, is not feasible.

Hence, an alternative distortion lower bound is derived based on the distortion of

this virtual multi-codebook quantization scheme. On the other hand, the general-

ized vector quantizer also benefits from the availability of the side information at

the encoder. Therefore, the distortion of a side-information-aided quantizer is less

than that of quantizing a mixed source with an average distortion function over the
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components, which leads to a distortion upper bound. In the rest of this section,

derivations of these distortion bounds are provided and related to corresponding

classical fixed-rate quantization problems.

2.3.1 Asymptotic Distortion Lower Bound

The distortion integral (2.33) allows the minimization of the system dis-

tortion by optimizing the choice of the Voronoi shape Ez(y) and the point density

function λ(y). By substituting the lower bound of the inertial profile (2.22) into

equation (2.29), the following conditional distortion lower bound of the optimal

quantizer can be obtained:

D(z) ≥ Dopt(z)
a

≥
(∫

Qz

Iopt

(
y ; z

)
· p

(
y
∣∣z

)
· λz

(
y
)− 2

kq dy

)
· 2−

2B
kq . (2.34)

Detailed discussion on the achievability of the above inequality is provided in

Section 2.3.5. After some manipulations, the overall distortion of the finite rate

quantization system can be represented by the following form

DOpt = Ez

[
Dopt(z)

]
≥

(∫

Q

Iw
opt

(
y
)
· p

(
y
)
· λ

(
y
)− 2

kq dy

)
· 2−

2B
kq , (2.35)

where DOpt represents the distortion of the optimal quantizer, and Iw
opt

(
y
)

is the

average optimal inertial profile defined as

Iw
opt

(
y
)

=

∫

Z

Iopt

(
y ; z

)
· p

(
z
∣∣y

)
d z . (2.36)

By utilizing the Holder’s inequality, the optimal point density that mini-

mizes the asymptotic distortion (2.35) is given by

λ∗
(
y
)

=
(
Iw
opt

(
y
)
· p

(
y
)) kq

2+kq ·
( ∫

Q

(
Iw
opt

(
y
)
· p

(
y
)) kq

2+kq
dy

)−1

. (2.37)

By substituting (2.37) into (2.35), the asymptotic distortion of the optimal quan-

tizer is lower bounded by the following form,

DOpt ≥ DLow,1 =

(∫

Q

(
Iw
opt

(
y
)
· p

(
y
)) kq

2+kq
dy

) 2+kq
kq

· 2−
2B
kq . (2.38)
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Furthermore, by substituting the inertial profile lower bound (2.25) into the above

equation, a tight lower bound on DLow,1 can be obtained:

DLow,1 ' D̃Low,1 =

(∫

Q

(
Ĩw
opt

(
y
)
· p

(
y
)) kq

2+kq
dy

) 2+kq
kq

· 2−
2B
kq , (2.39)

where ' means the lower bound is tight and D̃Low,1 well approximates DLow,1, and

Ĩw
opt

(
y
)

is given by

Ĩw
opt

(
y
)

=

∫

Z

Ĩopt

(
y ; z

)
· p

(
z
∣∣y

)
d z . (2.40)

The above analysis results (equations (2.38) and (2.39)) can be viewed as an ex-

tension of the asymptotic distortion analysis provided in [34] to the generalized

quantization problem with side information.

2.3.2 An Alternative Distortion Lower Bound

In some cases, the weighted inertial profile (2.36) is hard to obtain due

to the intractability of the conditional probability p
(
z
∣∣y

)
. In these situations, a

second lower bound DLow,2 is proposed which is itself a lower bound on DLow,1.

To be specific, the following lower bound on the conditional distortion Dopt(z) is

obtained from equation (2.34) without restricting the point density λz(y) to be

independent of z:

Dopt(z) ≥ DLow,2

(
z
)

=

(∫

Q

(
Iopt

(
y ; z

)
· p

(
y
∣∣ z

)) kq
2+kq

dy

) 2+kq
kq

· 2−
2B
kq , (2.41)

with equality if and only if λz

(
y
)

satisfies

λz

(
y
)

= λ∗
z

(
y
)

=
(
Iopt

(
y ; z

)
· p

(
y
∣∣ z

)) kq
2+kq ·

(∫

Q

(
Iopt

(
y ; z

)
· p

(
y
∣∣ z

)) kq
2+kq

dy

)−1

. (2.42)

Therefore, the overall asymptotic distortion is lower bounded as follows,

DOpt ≥ DLow,1

a

≥ DLow,2 = Ez

[
DLow,2

(
z
)]

=

∫

Z

DLow,2

(
z
)
· p

(
z
)

d z . (2.43)
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where (a) is due to the fact that inequality (2.41) is valid for any point den-

sity including the optimized point density (2.37). Again, by applying the hyper-

ellipsoidal approximation on the Voronoi shapes, similar tight distortion lower

bounds (or approximations) of DLow,2

(
z
)

and DLow,2 can be obtained, i.e.

DLow,2

(
z
)

' D̃Low,2

(
z
)

=

(∫

Q

(
Ĩopt

(
y ; z

)
·p

(
y
∣∣ z

)) kq
2+kq

dy

) 2+kq
kq

·2−
2B
kq , (2.44)

and

DLow,2 ' D̃Low,2 = Ez

[
D̃Low,2

]
=

∫

Z

D̃Low,2

(
z
)
· p

(
z
)

d z . (2.45)

An intuitive explanation of the above asymptotic distortion lower bound

can be provided as below. First, each conditional distortion DLow,2

(
z
)

can be

viewed as the minimal (or optimum) asymptotic distortion by quantizing a source

y with distribution p
(
y
∣∣ z

)
, and distortion function DQ

(
y, ŷ ; z

)
. Each com-

ponent quantizer (parameterized by z) is assumed to have independent optimal

Voronoi shapes and hence independent optimal inertial profile Iopt

(
y ; z

)
. In or-

der to achieve the lower bound DLow,2

(
z
)
, each component quantizer also uses

different optimized point density λ∗
z(y). This means that multiple codebooks

ŷz,1, ŷz,2, · · · , ŷz,N are utilized for each source component. This is equivalent to say-

ing that the system distortion is lower bounded by quantizing a multi-component

mixed source with the component index (or the side information) z available at

both the encoder (or the quantizer) and the decoder. Therefore, DLow,2 can be

viewed as the average minimum distortion of a class of finite rate quantizers with

different source distributions and distortion functions.

2.3.3 Asymptotic Distortion Upper Bound

This subsection provides a distortion upper bound that can be used as an

alternative distortion measurement of a finite rate quantization system. Suppose a

sub-optimal quantizer is constructed by applying the same conditional partitions

Qz, i = Qi (or Ez, i = Ei) for different instantiations of z, the asymptotic distortion
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of the optimal quantizer is upper bounded by the following form

DOpt ≤ DUpp =

(∫

Q

Iw
Upp

(
y
)
· p

(
y
)
· λ

(
y
)− 2

kq dy

)
· 2−

2B
kq , (2.46)

where the sub-optimal average inertial profile Iw
Upp

(
y
)

is given by

Iw
Upp

(
ŷi

)
= min

Ei∈HQ

∫

Z

I
(
ŷi ; z ; Ei

)
· p

(
z
∣∣ ŷi

)
d z

= min
Ei∈HQ

(
V

(
Ei

)−(1+ 2
kq

)
∫

e∈Ei

eT Ww
(
ŷi

)
e d e

)
, (2.47)

with the average sensitivity matrix Ww
(
ŷi

)
given by

Ww
(
ŷi

)
=

∫

Z

Wz

(
ŷi

)
· p

(
z
∣∣ ŷi

)
d z . (2.48)

By applying the same hyper-ellipsoidal approximation on the cell shape Ei, similar

tight inertia lower bound (or approximation) can be obtained

Iw
Upp

(
ŷi

)
' Ĩw

Upp

(
ŷi

)
=

kq

kq + 2
·
(∣∣Ww

(
ŷi

)∣∣
κ2

kq

)1/kq

. (2.49)

Therefore, by utilizing Holder’s inequality, the asymptotic distortion of an optimal

quantizer can be upper bounded by the following form,

DOpt ≤ DUpp =

(∫

Q

(
Iw
Upp

(
y
)
· p

(
y
)) kq

2+kq
dy

) 2+kq
kq

· 2−
2B
kq , (2.50)

with the optimal point density that minimizes (2.50) given by

λ∗
(
y
)

=
(
Iw
Upp

(
y
)
· p

(
y
)) kq

2+kq ·
( ∫

Q

(
Iw
Upp

(
y
)
· p

(
y
)) kq

2+kq
dy

)−1

. (2.51)

Similarly, by substituting (2.49) into the distortion analysis (2.50), one can also

obtain the tight lower bound4 (or good approximation) of the asymptotic upper

bound DUpp, which is given by

DUpp ' D̃Upp = 2
− 2B

kq ·
(∫

Q

(
Ĩ w
Upp

(
y
)
· p

(
y
)) kq

2+kq
dy

) 2+kq
kq

. (2.52)

4Note that D̃Upp is a lower bound on the distortion upper bound DUpp. Hence, it may not even be a
valid bound. However, since the lower bound D̃Upp is very tight and well approximates DUpp, it remains
to be a valid upper bound of the optimal distortion DOpt in most of the cases.
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The asymptotic distortion upper bound DUpp also has an intuitive con-

nection to the traditional source coding problem. By using the same quantization

region Ez,i = Ei for different instantiations of z, the side information z is com-

pletely ignored at the encoder (or the quantizer) and the quantization variable

(or objective) y is quantized directly. Therefore, it can viewed as an equivalent

problem of quantizing the source vector y with marginal distribution p
(
y
)
, and a

weighted distortion function Dw
Q given by

Dw
Q

(
y, ŷ

)
=

∫

Z

DQ

(
y, ŷ ; z

)
· p

(
z
∣∣y

)
d z . (2.53)

By performing a second order Taylor series expansion on the weighted distortion

function (2.53), it results in the weighted sensitivity matrix Ww
(
y
)

given by (2.48).

A classical asymptotic distortion analysis [34] of a source vector y (without side

information) with pdf p
(
y
)

and distortion function Dw
Q(y, ŷ) will lead to the same

distortion upper bound given by (2.50) and (2.52).

2.3.4 Losses Due in the Context of Side Information

Armed with the above-derived bounds and their corresponding interpre-

tations, the performance loss for quantization with side information can be quan-

tified. First, consider the loss due to ignorance of the side information at the

decoder. As discussed above, the point density is constrained to be independent

of the side information in this case, giving rise to a performance loss:

Ldec =
D̃low,1

D̃low,2

. (2.54)

Next, consider the loss due to ignorance of the side information at both the encoder

and decoder. In this case, the cell-shapes are constrained to be constant, and

should be designed under an ”averaged” distortion measure. The performance loss

in this case is given by:

Lenc =
D̃Upp

D̃low,1

. (2.55)



35

This term represents the additional loss due solely to encoder ignorance, and so

the total loss of a system with no access to the side information, relative to a

system in which both the encoder and receiver have the side information, is given

by Ltot = Lenc ·Ldec. Note that these loss functions specify the penalty in terms of

excess distortion, and so the minimum loss is 1. The units can easily be converted

into bits per dimension as 1
2
log2(L).

2.3.5 Achievability of the Asymptotic Distortion Bounds

According to the connections of the distortion bounds provided in Sec-

tion 2.3 and their related conventional fixed-rate quantization problems, the en-

coder side information plays an important role in determining the achievability of

these bounds. In this part, strict achievability is first provided that corresponds to

the case where the encoder side information is irrelevant to the encoding process.

Hence there is no penalty of only knowing the side information at the encoder, and

no advantages of knowing it at the decoder. Moreover, for large-dimensional source

having factorable determinant of the sensitivity matrix, by utilizing a properly de-

signed random codebook, sources can be quantized as if the side information is also

available at the decoder. Detailed discussions of the achievability of the distortion

bounds are provided in the rest of this section.

Strict Achievability of DLow,1 and DUpp

Due to the unavailability of the side information z at the decoder, a

single codebook is used in a sense that the codebook, ŷ1, ŷ2, · · · , ŷN , is fixed

for any realizations of z. Consequently, the projected quantization regions Qz,i

are different for different instantiations of z but depend on each other. To be

specific, once the codebook is fixed, the Voronoi regions Qz,i are determined by

the distortion function DQ

(
y, ŷi ; z

)
or the sensitivity matrix Wz

(
ŷi

)
. Therefore,

the code points in general cannot be located in a way that the Voronoi region

Qz,i (or Ez,i) is optimal, in a sense minimizing the inertial profile I
(
ŷi ; z ; Ez,i

)
,
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for all different realizations of z. Hence, inequality (a) in (2.34) is strict and both

equation (2.35) and (2.46) are strict asymptotic distortion lower and upper bounds

respectively, if the optimal Voronoi regions Qz,i for different z are not the same. A

sufficient condition which guarantees the achievability of the distortion lower and

upper bounds is given by

DQ

(
y, ŷ ; z

)
= f

(
z
)
· DQ

(
y, ŷ

)
. (2.56)

For the asymptotic analysis provided in this chapter, where the distortion function

is approximated by its second order Taylor series expansion, the sufficient condition

can be reduced to the following form

Wz

(
ŷ
)

= f
(
z
)
· W

(
ŷ
)

. (2.57)

In such cases, it is easy to prove that the Voronoi regions Qz,i for different re-

alizations of z are the same, and hence the optimal inertial profile Iopt

(
y ; z

)
is

achievable for every instantiations of z and also proportional to f
(
z
)
, i.e.

Iopt

(
y ; z

)
= f

(
z
)
· Iopt

(
y
)

. (2.58)

From another point of view, the side information z at the quantizer is irrelevant

to the quantization process if the distortion function or the sensitivity matrix

satisfies the product structure given by (2.56) or (2.57). It is therefore equivalent to

quantizing vector y directly. The overall distortion in this situation is the average

distortion of a mixed source with each component having the same optimal Voronoi

shape and point density λ(y), but with different conditional source distributions

p
(
y
∣∣ z

)
and weighted distortion function f(z) · DQ

(
y, ŷ

)
.

Strict Achievability of DLow,2

If the distortion function satisfies factorable condition (2.57) and the

source vector y and encoder side information z are further statistically indepen-

dent from each other, it can be easily proved that the optimal point density λ∗
z(y)
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given by (2.42) does not depend on side information z. In this case, all proposed

distortion bounds are achievable, i.e.

DOpt = DUpp = DLow,1 = DLow,2 , (2.59)

and the system asymptotic distortion can be viewed as the distortion of a mixed

source with marginal distribution p
(
y
)

and weighted distortion function Dw
Q

(
y, ŷ

)

given by

Dw
Q

(
y, ŷ

)
=

( ∫

Z

f
(
z
)

d z

)
· DQ

(
y, ŷ

)
.

Asymptotic Achievabilities of Sources With Large Dimensions

Interestingly, for cases where the distortion function or sensitivity matrix

does not satisfy the factorable condition (2.56) or (2.57), the distortion bounds

DLow,1 and DUpp provided in previous sections are also tight for sources with large

dimensions and under high resolutions. To see this, consider a sub-optimal encoder

that employs a random codebook [42] [43], code vectors ŷ1, ŷ2, · · · , ŷN generated

independently from a known pdf, denoted by pc(y). Following the same deriva-

tions provided in [42] [43], and the average value (expectation over the random

codebook) of the asymptotic distortion of the generalized vector quantizer with

random codebook can be represented as the following form

DRand =
(
1 +

2

kq

)
Γ
(
1 +

2

kq

)
·
(∫

Q

Iw
opt

(
y
)
· p

(
y
)
· pc

(
y
)− 2

kq dy

)
· 2−

2B
kq , (2.60)

where Γ(·) is the Gamma function. Optimizing the right-hand side of equation

(2.60) with respect to pc(y) will lead to the same optimal point density given by

(2.37), i.e.

pc(y) = λ∗(y) , (2.61)

and the optimal performance of a random codebook quantizer is given by

Dopt-Rand = η(kq) · Dopt , η(kq) =
(
1 +

2

kq

)
Γ
(
1 +

2

kq

)
. (2.62)

It can be observed from equation (2.62) that the ratio η(kq) between the distortions

of the random codebook and the minimal system distortion approaches 1 as kq
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increases. This means that the distortion lower bound DLow,1 can be achieved by

a quantizer with random codebook for source vectors with large dimensions even

though the sensitivity matrix Wz(y) is not factorable.

Furthermore, if the following product is factorable

Iopt

(
y ; z

)
· p

(
y
∣∣ z

)
= g1(y) · g2(z) , (2.63)

it can be shown after straightforward manipulations that optimal point density

λ∗
z(y) given by equation (2.42) does not depend on the side information z. Hence,

the distortion lower bound DLow,2 is achievable. Moreover, as a direct result of the

above condition, if the distortion lower bound D̃Low,2 is considered and vector y and

z are independent, the achievability condition further reduces to the factorablity

of the determinant of the sensitivity matrix Wz(y), given by

∣∣Wz(y)
∣∣ = g1(y) · g2(z) , (2.64)

which is weaker than the matrix factorable condition given by (2.57).

2.4 Distortion Analysis of Mismatched Quantizers

In the previous section and in past work, the analytical results were de-

rived under the assumption that both the encoder and the decoder have perfect

knowledge of the source distribution, distortion function, and are using the most

efficient quantization algorithm. This is clearly not always true as practical con-

straints often result in approximations and various types of suboptimal choices in

the design of feedback-based wireless communication systems. These suboptimal

choices often result in various types of mismatches. In this subsection, asymp-

totic analysis of mismatched quantizers is provided for the following three differ-

ent categories: dimensionality mismatch, distortion function mismatch and source

distribution mismatch.
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2.4.1 Dimensionality Mismatch

The optimal quantizer is designed to quantize the source variable y (or

objective) with the minimal free dimensions kq or k′
q = kq − kc in the case of

constraint source. Dimensionality mismatch occurs when the sub-optimal quan-

tizer is designed to quantize a redundant source variable yR. As an example, for

the MISO problem one may quantize directly the channel vector h instead of the

directional vector v = h/‖h‖. Hence, vector quantization is carried out in a space

with dimension kR-q (kR-q > kq), and the distortion function DQ is represented in

its redundant form DQ-R (yR, ŷR ; z). In this case, by following the methodology

provided in [44] [45], the final asymptotic analysis of the mismatched quantizer

can be obtained which has a form similar to the lower bounds give by (2.39) and

(2.45), i.e.

Dmis-R-Low = c · 2−
2B

k R-q , (2.65)

where c is a constant coefficient that depends on kR-q, distortion function DQ-R,

and the source distribution p (yR, z). An important and general observation from

equation (2.65) is that by quantizing the redundant source variable yR, the system

asymptotic distortion will have a smaller exponential slope (−2/kR-q) when com-

pared to that of quantizing the minimal free-dimensional vector y with exponential

distortion slope (−2/kq).

2.4.2 Distortion Function Mismatch

In some cases, the quantizer (or the codebook) is designed or trained by

using a distortion measure Dmis-Q that is different from the actual system distortion

function DQ. An example of such a situation in practice is when the approximated

distortion function Dmis-Q leads to simple and efficient quantization schemes and

codebook design algorithms [38]. More specifically for the MISO problem, one can

envision designing a quantizer based on an SNR maximization criteria for simplicity

and evaluating it using the capacity loss criteria. We provide in this subsection
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an asymptotic analysis of the general vector quantizer with mismatched distortion

function.

The distortion of interest is denoted by DQ and the distortion function

used for designing the quantizer is denoted by Dmis-Q. Since Dmis-Q is the basis of

the quantizer, it determines the Voronoi region and the point density function. A

parameter of interest in this context is the sensitivity matrix of the mismatched

distortion function Dmis-Q which is denoted by Wmis, z(y) and is the Hessian ma-

trix of Dmis-Q w.r.t. vector y. Codebook generated or trained by the mismatched

sensitivity matrix leads to a mismatched Voronoi region Emis,z(y), which can be

approximated by a hyper ellipsoid T
(
0, Wmis, z(ŷi), V (Emis,z)(y)

)
with its defini-

tion given by equation (2.24), where V
(
Emis,z(y)

)
is the volume of the mismatched

Voronoi region. Since the quantizer is evaluated using the true distortion func-

tion DQ, by substituting the approximated Emis,z(y) into (2.17), the mismatched

inertial profile utilizing the sub-optimal codebook can be closely approximated by

Imis-D

(
y ; z

)
≈ Ĩmis-D

(
y ; z

)
= V

(
Emis,z(y)

)− 2+kq
kq

·
∫

y′ ∈T
(
0,Wmis, z(y), V (Emis,z(y))

) (y′ − y)T Wz

(
y

)
(y′ − y) dy′ , (2.66)

Following the multi-dimensional integration approach provided in [34] [38], the

mismatched inertial profile Ĩmis-D

(
ŷi ; z

)
can be shown to be given by the following

closed form expression

Ĩmis-D

(
y ; z

)
=

1

kq + 2

(∣∣Wmis, z

(
y
)∣∣

κ2
kq

) 1
kq

tr
(
W−1

mis, z

(
y
)
Wz

(
y
))

≥ Ĩopt

(
y ; z

)
.

(2.67)

Consequently, the average mismatched inertial profile Ĩw
mis-D

(
y
)

can be represented

as

Ĩw
mis-D

(
y
)

=

∫

Z

Ĩmis-D

(
y ; z

)
· p

(
z
∣∣y

)
d z . (2.68)

In addition, the mismatched sensitivity matrix also leads to a mismatched point

density function having the following form, from (2.37)

λmis-D

(
y
)

=
(
Ĩw
opt-mis

(
y
)
·p (y)

) kq
2+kq ·

( ∫

Q

(
Ĩw
opt-mis

(
y
)
·p (y)

) kq
2+kq

dy

)−1

, (2.69)
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where Ĩw
opt-mis

(
y
)

is the optimal average inertia profile of a system with actual dis-

tortion function equal to Dmis-Q. Finally, by substituting the above mismatched

average inertial profile (2.68) and mismatched point density (2.69) into the dis-

tortion lower bound DLow,1 (D̃Low,1) given by (2.39), the average distortion of a

quantizer with mismatched distortion function can be obtained as:

D̃mis-D-Low,1 = 2
− 2B

kq ·
∫

Q

Ĩw
mis-D

(
y
)
· p

(
y
)
· λ̃mis-D

(
y
)− 2

kq dy , (2.70)

Utilizing a similar approach, other mismatched distortion analysis, such as distor-

tion lower bound D̃mis-D-Low,2, can also be obtained.

2.4.3 Source Distribution Mismatch

It is evident that the optimal quantizer (or the optimal codebook) is

designed to match not only the distortion function DQ but also the underlying

source distribution p(y, z). In situations where the source distribution is hard

to obtain or is subject to errors, the performance of the quantized system will

degrade with the use of the sub-optimal codebook generated using the mismatched

source distribution, which is denoted as pmis

(
y, z

)
. As an example, for the MISO

problem one may use a codebook designed assuming i.i.d. channels for correlated

channels. The mismatched source distribution results in a mismatched average

inertial profile, which is given by

Ĩw
mis-P

(
y
)

=

∫

Z

Ĩopt

(
y ; z

)
· pmis

(
z
∣∣y

)
d z . (2.71)

The mismatched average inertial profile Ĩw
mis-P

(
y
)

together with pmis

(
y
)

further

lead to a mismatched point density function λmis-P

(
y
)
,

λmis-P

(
y
)

=
(
Ĩw
mis-P

(
y
)
· pmis

(
y
)) kq

2+kq ·
( ∫

Q

(
Ĩw
mis-P

(
y
)
· pmis

(
y
)) kq

2+kq
dy

)−1

,

(2.72)

which is not optimized to match the actual source distribution as compared to

the optimal point density function given by (2.37). Therefore, the asymptotic
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distortion of a sub-optimal quantizer with mismatched source distribution is given

by

D̃mis-P-Low,1 = 2
− 2B

kq ·
∫

Q

Ĩw
opt

(
y
)
· p

(
y
)
· λ̃mis-P

(
y
)− 2

kq dy . (2.73)

Again, other asymptotic distortion bounds due to the source distribution mis-

match, such as D̃mis-P-Low,2 can also be obtained.

In summary, the mismatched analysis provided in this section shows that

the system performance degradation (or the distortion increment) due to the mis-

match in the distortion function as well the source distribution only impacts the

coefficient in front of the exponential term 2−2B/kq . However, the dimensionality

mismatch caused by quantizing a redundant source vector yR has a more signif-

icant effect on the system performance. It reduces the slope of the exponential

components in equations (2.39) and (2.45), and hence leads to a larger distortion

2−2B/kR-q
(
2−2B/kR-q ≫ 2−2B/kq

)
than that of an optimal quantizer especially in the

high resolution regimes.

2.5 Distortion Analysis of Quantizers with Transformed

Codebook

In certain situations, the underlying source distribution p(y, z) or the

distortion function DQ of the source variable varies during the quantization pro-

cess. It is practically infeasible to design separate codebooks optimized for every

different source distribution and distortion function, or the encoder and the de-

coder may not have the ability to store a large number of codebooks. In these

situations, it is convenient to use a quantizer whose codebook is constructed by

a transformation of a given codebook, potentially optimum for a particular set of

statistical conditions, to best match the statistical environment at hand. This type

of quantizers are generally called transformed quantizers [35] [46], and have been

used in conventional source coding area with a linear orthogonal transformation

followed by a product quantizer. We provide in this section an analysis of the gen-
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eralized vector quantizer, which is described in Section 2.2, when a transformed

codebook is used. Detailed applications to finite-rate feedback MISO systems with

transformed codebook over correlated fading channels are provided in Chap. 4.

2.5.1 Problem Formulation

It is first assumed that all the codebooks are generated from one fixed

codebook C0 which is designed to match source distribution p 0(y, z), and distortion

function D0, Q with sensitivity matrix W0, z(y). Codebook C0 has a point density

given by λ0(y), and a normalized inertial profile I0

(
y; z; E0,z(y)

)
that is optimized

to matches the distortion function D0, Q, with E0,z(y) representing the asymptotic

Voronoi cell that contains y with side information z. Let the source distribution

change from p 0(y, z) to p(y, z) and the distortion function become DQ instead of

D0, Q with sensitivity matrix Wz(y) instead of W0, z(y). Then the encoder and

decoder will correspondingly adopt a transformed codebook C obtained from C0 by

a general one-to-one mapping F(·) with both of its domain and codomain in space

Q, i.e.

C =
{
F(ŷ)

∣∣ ŷ ∈ C0

}
. (2.74)

2.5.2 Sub-optimal Point Density & Sub-optimal Voronoi Shape

Assuming the codebook transformation function F(·) has continuous first

order derivative, two types of sub-optimality arise when the transformed quantizer

is used. One comes from the sub-optimal point density λtr(y), which can be derived

from λ0(y) by the following transformation

λtr(y) =
λ0 (F−1(y))∣∣Fd

(
F−1(y)

)∣∣ , Fd(y) =
∂ F(y)

∂ y
. (2.75)

If the source variable is subject to kc constraints given by the vector equation

g(y) = 0, the transformed point density is given by

λc-tr(y) =
λ0 (F−1(y))∣∣∣V2(y)T · Fd

(
F−1(y)

)
· V2

(
F−1(y)

)∣∣∣
, (2.76)
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where V2(y) is an orthonormal matrix with its columns constituting an orthonor-

mal basis of the null space N
(

∂
∂ y

g(y)
)
. Compared to the optimal point density

λ∗(y) given by equation (2.37) that matches to p(y, z), λtr(y) given by equation

(2.75) is always sub-optimal and hence results in performance degradation. The

other sub-optimality arises from the fixed location of the code points in the trans-

formed codebook C, in the sense that the Voronoi shape of the transformed code

cannot match to the distortion function DQ and hence is not optimized to minimize

the inertial profile. Note that these two sub-optimalities, named as point density

loss and cell shape loss, were also discussed in [35] in the setting of the conven-

tional product quantizers and further applied to study the distortion performance

of quantizers with transformed codebooks.

2.5.3 Characterizing the Inertial Profile of the Transformed Codebook

Unfortunately, the Voronoi region Etr,z

(
ŷ′

i

)
of code points ŷ′

i in the trans-

formed codebook C, which is defined to be

Etr,z

(
ŷ′

i

) △
=

{
y

∣∣∣ DQ

(
y, ŷ′

i ; z
)
≤ DQ

(
y, ŷ′

j ; z
)
, ∀ ŷj ∈ C & ŷ′

j 6= ŷ′
i

}
,

(2.77)

is hard to characterize and depends both on the transformation F as well as the

distortion function DQ. In order to characterize the effects of the transformed

Voronoi shape on the system distortion, lower and upper bounds of the normalized

inertial profile of the transformed code are provided. First, let us consider a sub-

optimal quantizer Qsub(·) with transformed codebook C but using a sub-optimal

encoding process, given by

ŷ = Qsub

(
y, z

)
= F

(
Q

(
F−1

(
y, z

)))
, (2.78)

where Q(·) is the optimal encoder that matches to distortion function D0,Q. This

sub-optimal encoder can be viewed as an extension of the “companding” model

introduced by Bennett in [32] to the general vector quantization problem. It was
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originally used in conventional scalar quantizers, where the encoder is a combi-

nation of a monotonically increasing nonlinear mapping E(x), the compressor,

followed by a uniform quantizer; and the corresponding decoder is composed of

a uniform decoder followed by an inverse mapping E−1, the expander. In the

case of the generalized vector quantizer discussed here, the Voronoi shape of the

sub-optimal transformed encoder Qsub can be analytically characterized as

Esub,z

(
F(y)

)
=

{
F(y′)

∣∣∣ y′ ∈ E0,z(y)
}

, (2.79)

where E0,z(y) is the optimal Voronoi shape of the original codebook C0 corre-

sponding to distortion function D0, Q. Due to the sub-optimality of encoder Qsub,

the normalized inertial profile of the transformed Voronoi shape Etr,z(y) is upper

bounded by the inertial profile of Esub,z(y) given by (2.79), but lower bounded

the inertial profile of the optimal Voronoi shape Ez(y) corresponding to distortion

function DQ.

Proposition 1 Under high resolution assumptions, the approximated inertial pro-

file Ĩtr

(
F(ŷ) ; z

)
of a quantizer with transformed codebook can be upper and lower

bounded by the following form,

kq

kq + 2
·
(∣∣Wz

(
F(y)

)∣∣
κ2

kq

) 1
kq

= Ĩopt

(
F(y) ; z

) a

≤ Ĩtr

(
F(y) ; z

) b

≤ Ĩsub

(
F(y) ; z

)

=

∣∣Fd(y)
∣∣− 2

kq

kq + 2

(∣∣W0, z

(
y)

∣∣
κ2

kq

) 1
kq

tr
(
W0, z(y)−1 · Fd(y)T · Wz

(
F(y)

)
· Fd(y)

)
.

(2.80)

Furthermore, if the source variable is subject to kc constraints given by the vector

equation g(y) = 0, the constrained inertial profile Ĩc-tr

(
F(ŷ) ; z

)
can be similarly
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bounded by

k′
q

k′
q + 2

·




∣∣∣V2

(
F(y)

)T · Wz

(
F(y)

)
· V2

(
F(y)

)∣∣∣
κ2

k
q′




1
k
q′

= Ĩc-opt

(
F(y) ; z

) a

≤ Ĩc-tr

(
F(y) ; z

) b

≤ Ĩc-sub

(
F(y) ; z

)

=

∣∣∣V2

(
F(y)

)T · Fd(y) · V2(y)
∣∣∣
− 2

k′q

k′
q + 2




∣∣∣V2(y)T · W0, z

(
y) · V2(y)

∣∣∣
κ2

k′

q




1
k′q

·tr
((

V2(y)TW0, z(y)V2(y)
)−1

· V2(y)TFd(y)T Wz

(
F(y)

)
Fd(y)V2(y)

)
,

(2.81)

where V2(y) is an orthonormal matrix with its columns constituting an orthonor-

mal basis of the null space N
(

∂
∂ y

g(y)
)
.

Proof: Due to the fixed location of the code points in the transformed code-

book C, which can not be optimized to minimize the normalized inertial profile, it

is evident that the transformed inertial profile Ĩtr is lower bounded by the optimal

inertial profile Ĩopt given by equation (2.25). Hence, inequality (a) in (2.80) can be

obtained after some manipulations. The same reasonings are valid for inequality

(a) in (2.81) for the constraint source.

As for inequality (b) in (2.80), since function F(·) is first order continuous,

any points in the vicinity of the transformed code point F(ŷ) can be first order

Taylor series expanded as

F(y) ≈ F(ŷ) + Fd(ŷ) · (y − ŷ) , Fd(ŷ) =
∂

∂ y

∣∣∣∣
y=ŷ

F(y) . (2.82)

Moreover, due to the fact the F(·) is a one-to-one mapping, for any point y′ in the

vicinity of F(ŷ), there exists a unique point y in the neighborhood of ŷ such that

y′ = F(y). Therefore, under high resolutions, the distortion function DQ can be

expanded around point F(ŷ) by the following form

DQ

(
y′, F(ŷ) ; z

)
≈

(
y′ − F(ŷ)

)T

Wz

(
F(ŷ)

) (
y′ − F(ŷ)

)

≈ (y − ŷ)T ·
(
Fd(ŷ)T · Wz

(
F(ŷ)

)
· Fd(ŷ)

)
· (y − ŷ) , (2.83)
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which has quadratic format but with transformed sensitivity matrix. By substitut-

ing equation (2.83) as well as the Voronoi shape of the sub-optimal encoder given

by equation (2.79) into the definition of the inertial profile given by (2.17), we

can obtain the following normalized inertial profile of the transformed code with

sub-optimal encoder,

Ĩtr

(
F(ŷ) ; z

)
≤ Ĩsub

(
F(ŷ) ; z

)

=

∣∣Fd(ŷ)
∣∣−2/kq

kq + 2

(∣∣W0, z

(
ŷ)

∣∣
κ2

kq

) 1
kq

· tr
(
W0,z(ŷ)−1Fd(ŷ)TWz

(
F(ŷ)

)
Fd(ŷ)

)
,

(2.84)

which corresponds to inequality (b) in (2.80).

If the source variable (vector) y is further subject to kc constraints given

by the vector equation g(y) = 0, the distortion function DQ can be similarly

expanded around point F(ŷ) as

DQ

(
y′, F(ŷ) ; z

)
≈ (y − ŷ)T ·

(
Fd(ŷ)T · Wz

(
F(ŷ)

)
· Fd(ŷ)

)
· (y − ŷ)

eT ·
(
V2(ŷ)T · Fd(ŷ)T · Wz

(
F(ŷ)

)
· Fd(ŷ) · V2(ŷ)

)
· e , (2.85)

where e is the projected error vector with respect to point ŷ given by

e = V2(ŷ)T · (y − ŷ) . (2.86)

Similarly, by substituting (2.85) and the sub-optimal Voronoi shape (2.79) into the

inertial profile definition (2.17), we can obtain the sub-optimal inertial profile of

the transformed code with constraint source

Ĩtr-c

(
F(ŷ) ; z

)
≤ Ĩsub-c

(
F(ŷ) ; z

)

=

∣∣∣V2(ŷ)T · Fd(ŷ) · V2(ŷ)
∣∣∣
− 2

k′q

k′
q + 2




∣∣∣V2(ŷ)T · W0, z

(
ŷ) · V2(ŷ)

∣∣∣
κ2

kq




1
kq

·tr
((

V2(ŷ)TW0, z(ŷ)V2(ŷ)
)−1

· V2(ŷ)T Fd(ŷ)T Wz

(
F(ŷ)

)
Fd(ŷ)V2(ŷ)

)
,

(2.87)

which corresponds to inequality (b) in (2.81).
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2.5.4 Distortion Integral of the Transformed Codebook

By substituting the transformed point density (2.75) and the bounds

of the transformed inertial profile given by (2.80) into the distortion integration

(2.33), we can upper and lower bound the asymptotic system distortion of a trans-

formed quantizer by the following form

D̃tr-Low = 2
− 2B

kq ·
(∫

Z

∫

Q

Ĩopt

(
y ; z

)
· p

(
y, z

)
· λ tr

(
y
)− 2

kq dy d z

)

≤ D̃tr = 2
− 2B

kq ·
(∫

Z

∫

Q

Ĩtr

(
y ; z

)
· p

(
y, z

)
· λ tr

(
y
)− 2

kq dy d z

)

≤ D̃tr-Upp = 2
− 2B

kq ·
(∫

Z

∫

Q

Ĩsub

(
y ; z

)
· p

(
y, z

)
· λ tr

(
y
)− 2

kq dy d z

)
. (2.88)

Similarly, by substituting (2.76) and (2.81) into (2.33), the asymptotic distortion

of a constrained quantizer with transformed codebook is bounded by

D̃c-tr-Low = 2
− 2B

kq′

(∫

Z

∫

Q

Ĩc-opt

(
y ; z

)
· p

(
y, z

)
· λc-tr

(
y
)− 2

k′q dy d z

)

≤ D̃c-tr = 2
− 2B

kq′

(∫

Z

∫

Q

Ĩc-tr

(
y ; z

)
· p

(
y, z

)
· λc-tr

(
y
)− 2

k′q dy d z

)

≤ D̃c-tr-Upp = 2
− 2B

k′q

(∫

Z

∫

Q

Ĩc-sub

(
y ; z

)
· p

(
y, z

)
· λc-tr

(
y
)− 2

k′q dy d z

)
. (2.89)

Similar to conventional product transformed code [35], there exist trade-

offs between the two sub-optimalities: point density loss and Voronoi shape loss.

To be specific, it is always possible to find a transformation F(·) such that the

transformed point density λtr(y) matches exactly the optimal point density λ∗(y).

However, by doing so, the transformation may cause severe “oblongitis” of the

Voronoi shape in some cases, which will lead to significant increment of the nor-

malized inertial profile. Therefore, a compromised transformation that optimally

trades off the two losses should be employed. This tradeoff is directly reflected in

the distortion bound D̃tr, Upp where both Ĩsub (y ; z) and λ tr(y) in (2.88) depend

on the transformation F(·). So is distortion bound D̃c-tr, Upp given by (2.89).
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2.6 Asymptotic Analysis of Constrained Source

The analysis provided above is for the case that the input source y is a

free random vector of dimension kq. In some situations, it is required to quantize

the kq dimensional source vector y ∈ Q subject to constraints,

g
(
y
)

= 0 , (2.90)

where g(·) is a multi-dimensional function of size kc × 1. In this case, the degrees

of freedom in y reduce from kq to k′
q = kq − kc. This subsection provides an

asymptotic analysis for such a constrained source y, which is an extension of the

problem addressed in Section 2.2.2

First perform a singular value decomposition (SVD) on the derivative5 of

the constraint function g(y) at point y = ŷ, which is given by

G
(
ŷ
)

=
∂

∂ y
g
(
y
)∣∣∣∣

y=ŷ

= UG

[
ΣG 0

]
VT

G , (2.91)

where ΣG is the kc × kc diagonal matrix, and UG and VG are unitary matrices of

sizes kc × kc and kq × kq with matrix VG further decomposed into VG =
[
V1 V2

]

with V1 of size kq×kc and V2 of size kq×k′
q. Hence, in the neighborhood of point

ŷ, the distance vector (y − ŷ) is approximately constrained to lie in the tangential

space of g (v) at v̂, which is invariant to the following orthogonal projection

y − ŷ =
(
I − V1V

T

1

)
· (y − ŷ) = V2V

T

2 · (y − ŷ) . (2.92)

By substituting the above equality into the conventional Taylor series expansion

given by (2.12), one can obtain the constraint Taylor expansion (second order) of

the distortion function DQ

(
y, ŷ ; z

)
about y = ŷ

DQ

(
y , ŷ ; z

)
= DQ

(
ŷ , ŷ ; z

)
+dc, z

(
ŷ
)
·e+ eT ·Wc, z

(
ŷ
)
·e+O(‖y− ŷ‖3). (2.93)

where e of size k′
q × 1 is the transformed distance vector given by

e = VT

2 ·
(
y − ŷ

)
, (2.94)

5It is assumed that for points y satisfying constraint (2.90), the derivative G
(
y
)

exists and is contin-
uous and full rank.
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and the corresponding transformed gradient vector dc, z

(
ŷ
)
∈ R1×k′

q and Hessian

matrix Wc, z

(
ŷ
)
∈ Rk′

q×k′

q (for the case of constraint source) are given by,

dc, z

(
ŷ
)

= dz

(
ŷ
)
· V2 , Wc, z

(
ŷ
)

= VT

2 · Wz

(
ŷ
)
· V2 . (2.95)

Employing the same reasoning that y = ŷ is the local minimum of the distortion

function, one obtains the following similar second order distortion approximation:

DQ

(
y , ŷ ; z

)
≈ eT · Wc, z

(
ŷ
)
· e , (2.96)

where Wc, z

(
ŷ
)

(of size k′
q × k′

q) is the constraint sensitivity matrix with respect

to the transformed distance vector e.

Under high resolution assumptions, the Jacobian matrix J(e) between

the original constraint vector y and the re-parameterized free vector e can be

approximated as,

J(e) =
∂

∂ e

(
y
∣∣
g(y)=0

)
≈ J(0)

a
=

(
VT

2 V2

)−1
= Ik′

q
,

with determinant |J(e)| ≈ 1, where (a) follows the derivative chain-rule given by

∂e

∂y|g(y)=0

=

(
∂e

∂y

)(
∂y

∂y|g(y)=0

)
.

Therefore, similar to the definition given by (2.17), the normalized inertial profile

for the constraint source y can be approximated as

I
(
ŷi ; z ; Ez,i

)
≈ Ic

(
ŷi ; z ; Ec

z,i

)
= V

(
Ec

z,i

)−(1+ 2
kq′

)
∫

e∈Ec
z,i

eT Wc, z

(
ŷi

)
e d e,

(2.97)

where Ec
z, i is the projected Voronoi region defined as Ec

z, i =
{
V2 ·e

∣∣ e ∈ Ez, i

}
with

Ez, i defined in (2.14), and V
(
Ec

z, i

)
is the corresponding volume of the projected

cell, given by

V
(
Ec

z,i

)
=

∫

e∈Ec
z,i

d e . (2.98)

Similarly to the case of the un-constrained source case, the normalized

inertial profile of the constrained source given by (2.97) depends only on the shape



51

Ez,i (or Ec
z,i), and the constrained sensitivity matrix Wc

z

(
ŷi

)
of the distortion

function at its current location. Moreover, derivations similar to the ones given in

Lemma 2 can be carried out to prove that the inertial profile has the same invariant

scaling property, given by the following form

Ic

(
ŷi ; z ; Ec

z,i

)
= Ic

(
ŷi ; z ; αEc

z,i

)
, (2.99)

where the definition of the scaling transformation αEc
z,i is given by (2.19). Fur-

thermore, it is also true that the normalized inertial profile of any Voronoi shape

Ez,i for a constrained source y is also lower bounded by that of a “M-shaped”

hyper-ellipsoid, i.e.

Ic

(
ŷi ; z ; Ec

z,i

)
≥ Ic, opt

(
ŷi ; z

)
≥ Ĩc, opt

(
ŷi ; z

)

= Ic

(
ŷi ; z ; T

)
=

k′
q

k′
q + 2

·
(∣∣Wc, z

(
ŷi

)∣∣
κ2

k′

q

)1/k′

q

, (2.100)

where T
(
ŷi, Wc, z

(
ŷi

)
, V (Ec

z,i)
)

is the hyper-ellipsoid centered at ŷi with volume

V (Ec
z,i), which is defined in (2.24).

All the asymptotic analysis provided in Section 2.2.3–Section 2.3.5 are

still valid as long as the dimension of the quantized space is replaced by k′
q, the

sensitivity matrix is replaced by the constraint one Wc, z

(
ŷ
)
, while the asymptotic

distortion integrations are over the constrained space (2.90). For example, the

asymptotic distortion lower bound DLow,1 for the constrained source input, denoted

as Dc-Low,1, can be obtained as

Dc-Opt ≥ Dc-Low,1 =

(∫

g(y)=0

(
Iw
c,opt

(
y
)
· p

(
y
))1

/(
1+ 2

k′q

)
dy

)1+ 2
k′q

· 2−2B/k′

q ,

(2.101)

where the constrained average inertial profile Iw
c,opt

(
y
)

is given by

Iw
c,opt

(
y
)

=

∫

Z

Ic,opt

(
y ; z

)
· p

(
z
∣∣y

)
d z . (2.102)

Following similar derivations, other asymptotic analysis bounds, such as Dc-Low,2,

Dc-Upp, D̃c-Low,1, D̃c-Low,2, and D̃c-Upp can also be readily obtained.
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2.7 Asymptotic Analysis of Complex Source

In some cases, the source variable to be quantized is a complex vector. In

order to apply the asymptotic distortion analysis provided in [45], one can always

transform the source vector from the complex domain to the real domain. However,

under certain conditions, the proposed distortion analysis can also be extended to

deal with complex source variables directly without increasing the vector size (due

to the transformation) and hence save derivation efforts.

2.7.1 Quantization of Unconstrained Source

By utilizing the Wirtinger Calculus [47], the distortion function DQ can

be Taylor series expanded in the complex domain (without first transforming into

the real domain) since DQ is a real function of complex vector y ∈ Ckq . With

the local minimal assumption of DQ w.r.t. y at point y = ŷ, the second order

approximation of the distortion function is given by

DQ

(
y , ŷ ; z

)
≈

(
y−ŷ

)H

Wz

(
ŷ
) (

y−ŷ
)
+ℜ

[(
y − ŷ

)T

W′
z

(
ŷ
) (

y − ŷ
)]

, (2.103)

where Wz

(
ŷ
)
,W′

z

(
ŷ
)
∈ Ckq×kq are complex Hessian matrices with (i, j)th element

given by

wi,j =
∂2

∂ y∗
i ∂ yj

DQ

(
y , ŷ ; z

) ∣∣∣∣
y=ŷ

, w′
i,j =

∂2

∂ yi ∂ yj

DQ

(
y , ŷ ; z

) ∣∣∣∣
y=ŷ

(2.104)

with y∗
i representing the complex conjugate of yi. If the distortion function DQ

satisfies the condition that matrix W′
z

(
ŷ
)

= 0, by extending the same reasonings

used in the analysis of real vectors, the corresponding normalized inertial profile

of complex source is given by

I
(
ŷi ; z ; Ez,i

)
= V

(
Ez,i

)−(1+ 2
kq

)
∫

e∈Ez,i

eH Wz

(
ŷi

)
e d e , (2.105)
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whose tight6 lower bound (having a “M-shaped” Hyper-ellipsoidal Voronoi region)

can be represented as

Iopt

(
ŷi ; z

)
' Ĩopt

(
ŷi ; z

)
=

kq

kq + 1
·
(∣∣Wz

(
ŷi

)∣∣2

κ2
2kq

)1/2kq

. (2.106)

2.7.2 Quantization of Constrained Source

Now let us consider the case where the complex source variable y is

further restricted under some real constraints denoted as g(y). Suppose function

g(y) is of size 2kc×1, and can be partitioned into the following form under certain

orderings

g(y) =
[

gT

1 (y) gT

2 (y)
]T

, g1(y), g2(y) ∈ Rkc×1 .

The following proposition states the necessary and sufficient condition for the in-

ertial profile of the complex constrained source to have a concise format similar to

the real case.

Proposition 2 The normalized inertial profile of the constrained complex source

y can be represented as the following form

Ic

(
ŷi ; z ; Ez,i

)
= V

(
Ez,i

)−(1+ 2
k′q

)
∫

e∈Ec

z,i

eH Wc, z

(
ŷi

)
e d e , (2.107)

where k′
q = kq − kc and the constrained sensitivity matrix Wc, z

(
ŷi

)
is given by

Wc, z

(
ŷ
)

= VH

2 · Wz

(
ŷ
)
· V2 . (2.108)

with the unconstrained sensitivity matrix Wz

(
ŷ
)

given by equation (2.104) and

matrix V2 being an orthonormal matrix with its columns constituting an orthonor-

mal basis of the null space N
(

∂
∂ y

g1(y)
)
, if and only if there exists a non-singular

matrix Φ satisfies the following equation,

∂ g1(ỹ
′)

∂ ỹ′
= Φ · ∂ g2(ỹ)

∂ ỹ
, ỹ =

[
yT, yH

]T

, ỹ′ =
[
−yT, yH

]T

. (2.109)

6Symbol ”'” represents that the low bound is tight, and can be used as a good approximation in
most cases.
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In this case, the constrained inertial profile can also be tightly lower bounded by the

following form

Ic,opt

(
ŷi ; z

)
' Ĩc,opt

(
ŷi ; z

)
=

k′
q

k′
q + 1

·
(∣∣Wc,z

(
ŷi

)∣∣2

κ2
2k′

q

) 1
2k′q

. (2.110)

Proof: (Sufficient Condition:) According to the property of the complex

derivative provided in [48], the following equality is valid

∂ g(y)

∂ y
=

∂ g(ỹ)

∂ ỹ
·


 Ikq j Ikq

Ikq −j Ikq


 , y =

[
yT

R, yT

I

]T

, y′ =
[
− yT

I , yT

R

]T

,

(2.111)

where yR and yI are the real and imaginary part of y. By substituting (2.109) into

(2.111) and after some manipulations, we can obtain the following relation7,

∂ g1(y)

∂ y
=


 Ikc 0

0 j · Φ


 ∂ g(y)

∂ y
, (2.112)

Since the column vectors of matrix V2 ∈ Ckq×k′

q span the null space given by

N
(

∂
∂ y

g1(y)
)
, it is evident that column vectors of V2 should span the null space

of N
(

∂
∂ y

g1(y)
)
. Moveover, according to equation (2.112), columns of matrix

V2 also span the null space N
(

∂
∂ y

g(y)
)
. By employing the same reasoning used

in [45], one can obtain the following second order Taylor series expansion of the

distortion function after some manipulations,

DQ

(
y , ŷ ; z

)
≈ (y − ŷ)

T · V2V
T

2 · Wc, z

(
ŷ
)
· V2V

T

2 · (y − ŷ) = eH Wc, z

(
ŷ
)
e,

(2.113)

where vector e ∈ Ck′

q × 1 is given by e = VH

2 · (y − ŷ). Again, by extending

the same reasonings used in the analysis of real vectors, the constrained complex

inertial profile (2.107) as well as its tight lower bound (2.110) can be obtained.

(Necessary Condition:) On the other hand, if the distortion function DQ

has a concise second order approximation given by (2.113), which can further lead

7Operation A of a matrix A is defined to be A =

[
AR AI

−AI AR

]
, where AR and AI represents the

real and imaginary part of matrix A.
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to a concise inertial profile expression, the column vectors of matrix V2 span the

null space N
(

∂
∂ y

g(y)
)
. This means that the two range spaces R

((
∂

∂ y
g(y)

)T
)

and R
((

∂
∂ y

g1(y)
)T

)
are equivalent. Moveover, it can be shown that the following

equality is valid

R




(
∂ g1(y)

∂ y

)T

 = R

([
∂ g1(y)

∂ y

T

,
∂ g1(y

′)

∂ y′

T
])

= R
(

∂ g1(y)

∂ y

T
)

⊕R
(

∂ g1(y
′)

∂ y′

T
)

, (2.114)

where “⊕” represents the subspace summation. Similarly, one can also obtain the

following equality

R
((

∂ g(y)

∂ y

)T
)

= R
([

∂ g1(y)

∂ y

T

,
∂ g2(y)

∂ y

T
])

= R
(

∂ g1(y)

∂ y

T
)

⊕R
(

∂ g2(y)

∂ y

T
)

. (2.115)

It is evident from (2.114) and (2.115) that the two range spaces represented by

R
((

∂
∂ y′ g1(y

′)
)T

)
and R

((
∂

∂ y
g2(y)

)T
)

are equivalent and there exists a non-

singular matrix Ψ such that

∂ g1(y
′)

∂ y′ = Ψ · ∂ g2(y)

∂ y
. (2.116)

From equation (2.116), one can further obtain the following equality after some

manipulations
∂ g1(ỹ

′)

∂ ỹ′
=

(−jΨ

2

)
· ∂ g2(ỹ)

∂ ỹ
. (2.117)

Therefore, as long as the rows of two derivatives matrices ∂ g1(ỹ′)
∂ ỹ′

and ∂ g2(ỹ)
∂ ỹ

span

the same subspace, the complex constrained inertial profile can be expressed in a

concise form.

2.8 Summary

This chapter has developed a general framework for the analysis of mul-

tiple antenna systems with finite rate feedback from a source coding perspective.
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Without narrowing the scope to a specific channel quantization scheme, the prob-

lem was formulated as a general fixed-rate vector quantization problem with side

information available at the encoder but unavailable at the decoder. The pro-

posed framework is sufficiently general to include quantization schemes with non-

mean square distortion functions, and cases where the source vector is constrained.

Asymptotic distortion analysis of the proposed general quantization problem was

provided by extending Bennett’s classic analysis. More specifically, tight lower

and upper bounds of the average asymptotic distortion and sufficient conditions

for the achievability of the distortion bounds were provided. Based on the general

framework, the asymptotic distortion analysis was further extended to the im-

portant practical problem of sub-optimal quantizers resulting from mismatches in

the distortion functions, source statistics, and quantization criteria. As a further

demonstration of the utility of the framework, sub-optimal vector quantizers using

transformed codebooks were investigated. Moreover, the problem of quantizing

complex source variables was also investigated in this chapter. It was shown that

under certain necessary and sufficient conditions, the distortion analysis of com-

plex source variables can be performed in a concise manner in the complex domain

without first transforming the problem into real domains. The text of this chapter

is in part a reprint of the material which was coauthored with Ethan R. Duni and

Bhaskar D. Rao and has been accepted for publication in IEEE Transactions on

Signal Processing under the title “Analysis of multiple antenna systems with finite

rate feedback using high resolution quantization theory”.



3 Capacity Analysis of MISO

Systems with Finite-Rate CSI

Feedback

3.1 Motivation

Due to the complexity of the analysis, most of the past works on multi-

ple antenna systems with finite-rate feedback are case specific, limited to spatially

i.i.d. fading channels and mainly MISO channels, and are difficult to extend to

more general scenarios. By utilizing the high-rate distortion analysis described in

Chap. 2, we investigate in this chapter the performance of a MISO beamforming

system with finite-rate CSI feedback over spatially correlated fading channels. The

analysis of system capacity loss due to the finite-rate quantization of the channel

state information is provided, and is further compared with that of MISO systems

over spatially i.i.d. fading channels. The obtained analytical results provide in-

teresting insights and demonstrate the general nature as well as the utility of the

high-resolution analytical framework.

3.2 System Model

This section considers a MISO system, with t transmit antennas and one

receive antenna, signaling through a frequency flat block fading channel. For the

57
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sake of simplicity, the time index is omitted, and hence the channel model can be

represented as the following form

y = hH · x + n , (3.1)

where y is the received signal (scalar), n is the additive complex Gaussian noise

with zero mean and unit variance, and hH ∈ C1×t is the correlated1 MISO channel

response with distribution given by h ∼ Nc

(
Σh

)
. The transmitted signal vector x

is normalized to have a power constraint given by E
[
‖x‖2

]
= ρ, with ρ representing

the average receiver signal to noise ratio.

In this chapter, the channel state information h is assumed to be perfectly

known at the receiver but only partially available at the transmitter through a

finite-rate feedback link of B bits per channel update between the transmitter and

receiver. More specifically, a quantization codebook C =
{
v̂1, · · · , v̂N

}
, which is

composed of unit-norm transmit beamforming vectors, is assumed known to both

the receiver and the transmitter. Based on the channel realization h, the receiver

selects the best code point v̂ from the codebook and sends the corresponding index

back to the transmitter. At the transmitter, the unit-norm vector v̂ is employed

as the beamforming vector, i.e.

y = 〈h, v̂〉 · s + n = ‖h‖ · 〈v, v̂〉 · s + n , E
[
|s|2

]
= ρ . (3.2)

where v is the channel directional vector given by v = h/‖h‖. The corresponding

ergodic capacity or the maximum system mutual information rate of the quantized

MISO beamforming system is given by

CQ = E
[
log2

(
1 + ρ · ‖h‖2 · |〈v, v̂|2

)]
. (3.3)

With perfect channel state information available at the transmitter, which cor-

responds to the case of infinite rate feedback B = ∞, it is optimal to choose

1For the sake of fair comparisons, we normalize the channel covariance matrix such that the mean of
the eigen values equals to one (equal to the i.i.d. channel case Σ h = It).
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v = h/‖h‖ as the transmit beamforming vector, and the corresponding system

ergodic capacity is given by

Cp = E
[
log2

(
1 + ρ · ‖h‖2

)]
. (3.4)

Therefore, the performance of a CSI-feedback-based MISO system can be charac-

terized by the capacity loss CLoss due to the finite-rate quantization of the transmit

beamforming vectors, which is defined as the expectation of the instantaneous mu-

tual information rate loss,

CLoss = Cp − CQ = E
[
CL(h, v̂)

]
, (3.5)

where CL(h, v̂) is given by the following form

CL(h, v̂) = − log2

(
1 − ρ · ‖h‖2

1 + ρ · ‖h‖2
·
(
1 − |〈v, v̂〉|2

))
(3.6)

This performance metric was also used in [27] and [45].

3.3 Problem Formulation

This section provides insight into MISO beamforming systems with finite

rate feedback by utilizing the proposed generalized asymptotic analysis obtained

in Section 2.2. Derivations of the bounds for MISO systems are carried out step by

step and with references back to the corresponding equations of the general theory

in Section 2.2 for a better understanding. According to the capacity loss formula

given by equation (3.5), the directional vector v of the MISO channel response be-

comes the actual variable to be quantized (or the quantization objective), denoted

as

v =
[
r1 ejθ1 , r2 ejθ2 , · · · , rt e

jθt

]T

, (3.7)

where the magnitudes ri have constraint
∑t

i=1 r2
i = 1. Furthermore, the capacity

loss is also invariant to an arbitrary phase rotation ejφ on vector v. Therefore, only

the relative phase θi−θ1, with 2 ≤ i ≤ t, is of interest and hence a phase constraint
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θ1 = const can be set on vector v. Due to the invariant transformation of the

arbitrary phase rotation and also for simplifying the derivations of the distortion

analysis, an equivalent phase constraint on v is imposed for the points in the

neighborhood of v̂,

∡〈v, v̂〉 = 0 . (3.8)

To make use of the framework, represent the vectors v and v̂ as having the following

real and imaginary components,

v = vR + j vI , v̂ = v̂R + j v̂I , (3.9)

where vR, vI, v̂R, and v̂I are all real vectors of sizes t × 1. Further stack the

real and imaginary part of v together into a 2t × 1 real vector denoted as v, i.e.

v =
[
vT

R, vT

I

]T

. The finite rate feedback MISO transmit beamforming problem is

now described as below. The source input x is equal to h, with the quantization

variable (or objective) y = v of dimension kq = 2t, and the side information z = α

(α = ‖h‖2) of dimension kz = 1. The constraint conditions on the quantization

vector v, denoted as g(v), can be represented as the following multi-dimensional

real function, i.e.

g
(
v
)

=


 vT

RvR + vT

I vI − 1

vT

Rv̂I − vT

I v̂R


 , (3.10)

with the first element representing the unit norm constraint on v, and the second

element the phase constraint. Function g(v) has size kc = 2, which leads to the

actual degrees of freedom of the quantization variable v to be k′
q = 2t − 2. The

distortion function DQ is given by

DQ

(
y, ŷ ; z

)
= DQ

(
v, v̂ ; α

)
= − log2

(
1 − ρα

1 + ρα
·
(
1 −

∣∣〈v, v̂〉
∣∣2

))

= − log2

(
1 − ρα

1 + ρα
· vT

(
I2t − Ω

)
v

)
, (3.11)

where matrix Ω ∈ R2kq×2kq is given by

Ω =


 v̂Rv̂T

R + v̂Iv̂
T

I v̂Rv̂T

I − v̂Iv̂
T

R

v̂Iv̂
T

R − v̂Rv̂T

I v̂Rv̂T

R + v̂Iv̂
T

I


 . (3.12)
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This corresponds back to the definition of the distortion function and satisfies the

local minimal property given by (2.3).

3.4 Statistical Properties of the Channel Information

It is know that both the design as well as the analysis of a vector quantizer

depends heavily on the source statistical distributions. Therefore, before dipping

into the details of the analysis of MISO beamforming systems with finite-rate

feedback, let us first look at some of statistical properties of the channel state

information to be quantized. To be specific, we are interested in the joint and

marginal probability density functions of the constrained source vectors v and

the encoder side information α. After some manipulations, the results of the

distribution functions can be described into the following lemma.

Lemma 4 Suppose the MISO channel h ∈ Ct×1 has a complex Gaussian distribu-

tion given by h ∼ Nc

(
0, Σh

)
, and its constrained directional vector is defined to

be,

v =
(√

α ejθ
)−1 · h , α = ‖h‖2, θ = ∡ 〈v0, h〉 − φ , (3.13)

where v0 is a fixed unit norm vector, and φ ∈ [0, 2π] is a fixed phase . It is

equivalent as saying that vector v satisfies the following constraints

‖v‖ = 1, ∡ 〈v0, v〉 = φ . (3.14)

Then the following statements are true,

1. Random phase variable θ is independent of the channel power gain α as well

as the directional vector v, and θ is uniformly distributed between 0 and 2π,

i.e. θ ∼ U (0, 2π).

2. If the elements of vector h are i.i.d., i.e. Σh = It , the channel power gain α

is statistically independent of the directional vector v. The probability density
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functions of random variables (or vector) α and v are given by

pα(x) =
xt−1 · e−x

(t − 1)!
, (3.15)

pv (x) = 1/γt , (3.16)

where γt = πt−1/(t − 1)!.

3. If the singular values of Σ h are positive and distinct, i.e. λh,1 > · · · > λh,t >

0, the marginal probability density functions of α and v are given by

pv (x) = γ−1
t · |Σ h|−1 ·

(
xHΣ−1

h x
)−t

, (3.17)

pα(x) =
t∑

i=1

∏

j 6=i

(
1 − λh, j

λh, i

)−1

· 1

λh, i

exp

(
− x

λh, i

)
. (3.18)

And the corresponding conditional distributions are given by

pv|α (x) =

(
t∑

i=1

∏

j 6=i

(
1 − λh, j

λh, i

)−1

· 1

λh, i

exp

(
− α

λh, i

))−1

× αt−1 · exp
(
−α · xHΣ−1

h x
)

πt−1 · |Σ h|
, (3.19)

pα|v (x) =
xt−1 ·

(
vHΣ−1

h v
)t · exp

(
−x · vHΣ−1

h v
)

(t − 1)!
. (3.20)

Proof: Let us first denote unitary matrix P ∈ Ct×t as the following form

P =
[
v0, P1

]
=

[
v0, v2, v3, · · · ,vt

]
, (3.21)

where the columns of P (and P1) are orthonormal vectors. Left multiplying both

sides of equation (3.13) by matrix PH, we can obtain

h′ = PHh =
√

α ejθ · PHv =
√

α ejθ · v′ , (3.22)

where v′ is given by

v′ =


 〈v0, v〉

PH

1 v


 =

[
r′1 ejφ, r′2 eθ′2 , · · · , r′t e

θ′t

]T

. (3.23)
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It is evident that vector h′ has the same distribution as h under the unitary trans-

formation P, i.e. h′ ∼ Nc

(
0, Σh

)
. By taking the following variable transformation

(
h′

R,1, h
′
I, 1, · · · , h′

R, t, h
′
I, t

)
−→

(
α , θ, r′2, θ′2, · · · , r′t, θ′t

)
, (3.24)

such that

h′
R,1 =

√
α ·

(
1 − ∑t

i=2 r′i
2
)1/2 · cos

(
θ + φ

)
,

h′
I, 1 =

√
α ·

(
1 − ∑t

i=2 r′i
2
)1/2 · sin

(
θ + φ

)
,

h′
R,2 =

√
α · r′2 · cos

(
θ + θ′2

)
,

h′
I, 2 =

√
α · r′2 · sin

(
θ + θ′2

)
,

...

h′
R,t =

√
α · r′t · cos

(
θ + θ′t

)
,

h′
I, t =

√
α · r′t · sin

(
θ + θ′t

)
,

(3.25)

the channel vector h′ can be equivalently transformed into (α, θ, v′) . After some

manipulations, the determinant of the Jacobian matrix of the above transformation

(3.25) is given by

det


J




∂
(
h′

R,1, h
′
I, 1, · · · , h′

R, t, h
′
I, t

)

∂
(
α , θ, r′2

2, θ′2, · · · , r′t
2, θ′t

)





 =

1

2
αt−1

t∏

i=2

r′i . (3.26)

Therefore, the probability density function of h′ under the variable transformation

(3.25) is given by

p (α, θ, v′) =
αt−1 · ∏t

i=2 r′i · exp
(
−α · v′HΣ−1

h′ v′
)

2 πt · |Σh′| , (3.27)

where Σh′ = PHΣhP. It can be observed from the PDF expression (3.27) that θ is

independent of α and v′, and has uniform distribution θ ∼ U (0, 2π). Furthermore,

due to the one-to-one mapping between v′ and v under the constraint (3.14), θ is

also independent of the constrained vector v.

According to the above derivations, the joint density function of (α, v′)

is therefore given by

p (α, v′) =
αt−1 · ∏t

i=2 r′i · exp
(
−α · v′HΣ−1

h′ v′
)

πt−1 · |Σh′| . (3.28)
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For the sake of simplicity, the above PDF can be represented in a more efficient

way by replacing vector v′ by a redundant representation v subject to norm and

phase constraint given by (3.14). After some manipulations, the determinant of

the Jacobian matrix of the transformation v = Pv′, i.e.

( r′2, θ′2, · · · , r′t, θ′t ) −→
(
vR, 2, vI, 2, · · · , vR, t, vI, t

)
, (3.29)

can be obtained as

det

[
J

(
∂

(
vR, 2, vI, 2, · · · , vR, t, vI, t

)

∂ ( r′2, θ′2, · · · , r′t, θ′t )

)]
=

(
t∏

i=2

r′i

)−1

. (3.30)

Therefore, the joint PDF of (α, v) is reduced to be the following form

p (α, v) =
αt−1 · exp

(
−α · vHΣ−1

h v
)

πt−1 · |Σh|
. (3.31)

If the elements of vector h are i.i.d. Gaussian distributed, i.e. Σh = It , the joint

PDF (3.31) is further reduced to be

p (α, v) =

(
αt−1 · exp (−α)

(t − 1)!

)(
(t − 1)!

πt−1

)
, (3.32)

where the first term corresponds to the marginal PDF of α, which is given by

equation (3.15), and second term is the marginal PDF of v, given by

p (v) =
(t − 1)!

πt−1
. (3.33)

Therefore, the directional vector v is uniformly distributed over the unit norm

constrained space (3.14) and is independent of the power gain variable α of the

MISO channel.

If the channel vector h is correlated, whose covariance matrix Σ h has

distinct positive eigen values, i.e. λh,1 > · · · > λh,t > 0, it is shown in [49] that

the marginal distribution of random variable α is given by equation (3.18). By

substituting the marginal pdf pα(x) given by equation (3.18) into the joint pdf

p (α, v) given by equation (3.31), the conditional distribution of v conditioned on

z can therefore be obtained, and represented as equation (3.19). Moveover, by
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integrating the joint pdf p (α, v) given by equation (3.31) w.r.t. to variable α over

the region from zero to infinite, one can obtain the marginal pdf of random variable

v, which is given by equation (3.17). Similarly, by substituting the marginal pdf

pv(x) given by equation (3.17) into the joint pdf p (α, v) given by equation (3.31),

the conditional distribution of α conditioned on v can therefore be obtained, which

can be represented by equation (3.20).

3.5 Distortion Analysis for i.i.d. MISO Fading Channels

Under high resolution assumptions, a second order Taylor series expan-

sion2 is performed on the system distortion function given by (3.11), and the

un-constrained sensitivity matrix Wα

(
v̂
)

can be obtained as

Wα

(
v̂
)

=
ρα

ln 2 · (1 + ρα)
·
(
I − Ω

)
. (3.34)

According to the constraint condition given by (3.10), the derivative of function

g(v) (Jacobian matrix) at point v = v̂ after singular value decomposition (SVD)

has the following form

∂

∂ v

∣∣∣∣
v=v̂

g
(
v
)

=


 2 0

0 1


 ·


 v̂R v̂I

v̂I −v̂R




T

= ΣG · VT

1 , (3.35)

and satisfies the definition given by (2.91). Therefore, the constrained sensitivity

matrix is given by

Wc, α

(
v̂
)

=
ρα

ln 2 · (1 + ρα)
· VT

2

(
I − Ω

)
V2 =

ρα

ln 2 · (1 + ρα)
· I2t−2 , (3.36)

where V2 is an orthonormal column matrix such that VG =
[
V1 V2

]
is a unitary

matrix. This corresponds to the definition given by equation (2.95).

2In most communication systems, the quantization variables or objectives are complex vectors. With
some modifications by utilizing the results of Wirtinger Calculus [47], the asymptotic distortion analysis
can also be extended to complex distributed vectors without first transforming to the real domain.
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It is evident from (3.36) that the sensitivity matrix Wc, α

(
v̂
)

is factorable,

i.e.

Wc, α

(
v̂
)

= f(α) · I2t−2 , f(α) =
ρα

ln 2 · (1 + ρα)
, (3.37)

which satisfies the sufficient condition of the achievability of the lower bound given

by (2.57). Furthermore, the sensitivity matrix is also independent of its location v̂,

which corresponds to equation (2.26). Therefore, the normalized inertial profile is

reduced to be the moment of inertia coefficient Iopt(α). By substituting equation

(3.36) into the definition of the normalized inertial profile given by (2.97), one

obtains the following inertial profile

Ic

(
v̂i ; α ; E c

α,i

)
= V

(
E c

α,i

)−t/(t−1)
∫

e∈E c
α,i

ρα

ln 2 · (1 + ρα)
· ‖e‖2 d e . (3.38)

As discussed in Section 2.6, the normalized inertial profile of any Voronoi shape

E c
α,i for a constrained source v is lower bounded by that of a “M-shaped” hyper-

ellipsoid, which is a hyper-sphere in this case. Therefore, by substituting (3.37)

into the lower bound given by (2.100), the optimal moment of inertia coefficient is

tightly lower bounded (or approximated) by the following form

Ic, opt

(
v̂i ; α

)
= Ic, opt(α) ' Ĩc, opt(α) =

(t − 1) · γ−1/(t−1)
t

t
· f

(
α
)

, (3.39)

where parameter γt is given by

γt =
πt−1

(t − 1)!
. (3.40)

When the elements of the channel response h are i.i.d. Gaussian dis-

tributed, one can observe that α and v are statistically independent. This is shown

in Section 3.4. Hence, the weighted constrained moment of inertia coefficient is

given by

Iw
c,opt ' Ĩw

c, opt =
(t − 1) · γ−1/(t−1)

t

t
· E

[
f(α)

]
, (3.41)

which corresponds to equation (2.102). By substituting (3.41) into the distortion

lower bound (2.101), the asymptotic capacity loss of a finite rate feedback MISO
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beamforming system can be tightly lower bounded (or approximated) by the fol-

lowing form

Dc-Low,1 ' D̃c-Low,1 =
(t − 1) · 2−B/(t−1)

t
· E

[
f(α)

]

·
∫

v:‖v‖=1, θ1=0

p (v) ·
(
γt · λ (v)

)−1/(t−1)

dv , (3.42)

where the integration of v is over the unit hyper-sphere with phase constraint

θ1 = 0. By utilizing the obtained probability density function pv(x) given in

Section 3.4, one can derive the following results, (also shown in [25])

E
[
f
(
α
)k

]
=

Γ(k + t) · ρk

ln 2k · Γ(t)
· 2F0

(
t + 1, 1; ; −ρ

)
, (3.43)

where 2F0 is the generalized hypergeometric function. Therefore, by substituting

(3.17) and (3.43) into equation (3.42) and after some manipulations, the final

asymptotic capacity loss CL of MISO system with finite rate feedback is given by

D̃c-Low,1 =
(t − 1) 2−B/(t−1)

ln 2
·
(

2F0

(
t + 1, 1; ; −ρ

)
· ρ

)
, (3.44)

with the optimal point density λ∗ (v) being a uniform distribution given by

λ∗ (v) = γ−1
t , v ∈

{
v

∣∣∣g (v) = 0
}

. (3.45)

Finally, note that for MISO channels with finite rate feedback, the fac-

torable condition given by equation (3.37) is satisfied and the distortion lower

bound Dc-Low,1 is hence achievable. Further due to the statistical independence

between α and v of uncorrelated MISO channels, the asymptotic distortion lower

bounds DLow,1 and DLow,2, upper bound DUpp, as well as the distortion of the op-

timal quantizers DOpt are all the same, which is described in (2.59). Hence, due

to the fact that D̃c-Low,1 is tight, the obtained lower bound D̃c-Low,1 given by (3.44)

is a good approximation of the asymptotic distortion of a system employing an

optimal quantizer. Moreover, the obtained distortion lower bound D̃c-Low,1 is con-

sistent with the capacity loss analysis provided in [25], which was obtained from

a statistical approach. Distortion bounds by adopting the system SNR loss as the
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performance metric, which is not shown here due the space limitation, can also

be obtained by utilizing the proposed framework and can be further shown to be

consistent with the SNR loss analysis provided in [23].
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Figure 3.1: Capacity loss of a 3×1 MISO transmit beamforming system with finite

rate feedback

Some numerical experiments were conducted to get a better feel for the

utility of the bounds. Fig. 3.1 shows the capacity loss due to the finite rate quan-

tization of the CSI versus feedback rate B for a 3 × 1 MISO system over i.i.d.

Rayleigh fading channels under different system SNRs at ρ = −10, 0 and 20 dB,

respectively. The simulation results are obtained from a MISO system using opti-

mal CSI quantizers whose codebooks are generated by the mean squared weighted

inner-product (MSwIP) criterion proposed in [25]. The analytical evaluations of

the distortion lower bound Dc-Low,1 provide by equation (3.44) are also included
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in the plot for comparisons. It can be observed from the plot that the proposed

distortion (or the capacity loss) lower bound is tight and predicts very well the

actual system capacity loss obtained from Monte Carlo Simulations.

3.6 Distortion Analysis for Correlated MISO Fading Chan-

nels

In this section, the distortion (or capacity loss) analysis of MISO system

with finite-rate feedback is further extended to correlated fading channels. The

results provide interesting insights and demonstrate the effects of finite-rate CSI

quantization and the channel correlation on system performance.

For correlated MISO fading channels h ∼ Nc

(
0, Σh

)
with channel cor-

relation matrix Σh having distinct eigen-values, i.e. λh,1 > · · · > λh, t > 0, the

high-resolution analysis for i.i.d. fading channels up to equation (3.39) is still

valid. To restate the results, first of all, the constrained sensitivity matrix of the

finite-rate quantized MISO beamforming system is given by

Wc, α

(
v̂
)

=
ρα

ln 2 · (1 + ρα)
· I2t−2 . (3.46)

Moreover, the optimal inertial profile is tightly lower bounded (or approximated)

by the following form

Ĩc, opt

(
v̂ ; α

)
=

(t − 1) · γ− 1
t−1

t · ρα

ln 2 · t · (1 + ρα)
. (3.47)

Having obtained the inertial profile (3.47), one can then derive the following two

distortion lower bounds.

3.6.1 Distortion lower bound Dc-Low, 1 for correlated channels

By substituting the conditional PDF pα|v(x) given by (3.20), the marginal

PDF pv(x) given by (3.17) and the inertial profile Ĩc, opt

(
v ; α

)
given by (3.47) into

the distortion lower bound (2.39), the system asymptotic distortion lower bound
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D̃c-Low,1 can be expressed in the following form,

D̃c-Low,1 (Σh) =
(t − 1) γ

− t
t−1

t · ρ · β1 (ρ, t, Σh)

ln 2 · |Σh|
· 2− B

t−1 , (3.48)

where β1 (ρ, t, Σh) is a constant coefficient that only depends on the number of

antennas t, channel correlation matrix Σh and system SNR ρ. It is given by

β1 (ρ, t, Σh)

=




∫

v:g(v)=0

(
(
vHΣ−1

h v
)−(t+1) · 2F0

(
t + 1, 1; ; − ρ

vHΣ−1
h v

) ) t−1
t

dv




t
t−1

,

(3.49)

with 2F0( ; ; ) representing the generalized hypergeometric function. The optimal

point density λ∗ (v) that achieves the minimal distortion is given by

λ∗ (v)

= β1 (ρ, t, Σh)
− t−1

t ·
(

(
vHΣ−1

h v
)−(t+1) · 2F0

(
t + 1, 1; ; − ρ

vHΣ−1
h v

) ) t−1
t

.

(3.50)

The evaluation of the coefficient β1 is provided in the following subsections.

3.6.2 Distortion lower bound Dc-Low, 2 for correlated channels

Similarly, by substituting the conditional PDF pv|α(x) given by equation

(3.19), the marginal PDF pα(x) given by (3.17) and the inertial profile Ĩc, opt

(
v ; α

)

given by (3.47) into the distortion lower bound (2.45), the asymptotic distortion

lower bound D̃c-Low,2 can be expressed in the following form,

D̃c-Low,2 (Σh) =

(
(t − 1)! · |Σh|

) 1
t−1 · t t−1 · β2 (ρ, t, Σh)

ln 2 · (t − 1)t−1
· 2− B

t−1 , (3.51)

where β2 (ρ, t, Σh) is a constant coefficient depends on system SNR ρ, number of

antennas t and channel covariance matrix Σh. It is given by

β2 (ρ, t, Σh) =

∫ ∞

0

ρ

1 + ρ x
· pα

(
x(t − 1)

t

) t
t−1

d x . (3.52)

The evaluation of the coefficient β2 is provided in the next subsection.
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3.6.3 Interesting Observations of the Distortion Bounds

Based on the expressions for the average distortion lower bounds D̃c-Low,1 (Σh)

and D̃c-Low,2 (Σh), the following observations can be made:

1. The asymptotic distortion lower bounds provided by equation (3.48) and

(3.51) are described in a general format and are suitable for arbitrary channel

correlations with covariance matrix Σh. The average distortion of i.i.d. MISO

channels is a special case where the covariance matrix Σh equals to the

identity matrix. By substituting Σh = It into equation (3.49), the coefficient

β1 reduces to be the following form

β1 (ρ, t, It) = 2F0

(
t + 1, 1; ; −ρ

)
· γ

t
t−1

t . (3.53)

Moreover, by substituting β1 given by (3.53) into equation (3.48), the aver-

age system distortion lower bound D̃c-Low,1 for i.i.d. MISO systems can be

obtained as

D̃c-Low,1 =

(
t − 1

ln 2
· 2F0

(
t + 1, 1; ; −ρ

)
· ρ

)
· 2− B

t−1 . (3.54)

Similar derivations can be carried out by substituting Σh = It into equations

(3.51) and (3.52). It can be shown that for i.i.d. fading channels, Dc-Low,2

equals to Dc-Low,1, which is given by equation (3.44). This result is consistent

to the capacity loss analysis obtained in Section 3.5 as well as the results

provided in [26].

2. Since the sensitivity matrix Wc, α

(
v̂
)

given by (3.46) satisfies the factorable

condition given by equation (2.57), the distortion lower bound Dc-Low,1 is

hence achievable and equal to the asymptotic distortions of the optimal

quanizer, i.e.

Dc-Low,1 = DOpt ' D̃c-Low,1 = D̃Q-opt . (3.55)

3. Both the distortion lower bounds D̃c-Low,1 and D̃c-Low,2 of correlated MISO

channels, as well as the distortion of i.i.d. MISO channels, can be expressed
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as a weighted exponential function given by

D = c · 2− B
t−1 ,

where c is a constant coefficient that is independent of the quantization

(feedback) rate B.

4. Due to the multi-dimensional integration required to evaluate the coefficient

β1 (ρ, t, Σh) given by equation (3.49), the distortion lower bound D̃c-Low,1

lacks a closed-form expression and can only be evaluated through a Monte-

Carlo simulation or a (2t− 2)-dimensional numerical integration. Compared

to the distortion lower bound D̃c-Low,1, D̃c-Low,2 (or the coefficient β2) can be

evaluated through a one-dimensional integration.

5. The distortion bounds of correlated MISO channels are smaller than that of

the i.i.d. MISO channels, and satisfy the following the inequality

0 < D̃ c-Low,2

(
Σh

) a

≤ D̃ c-Low,1

(
Σh

) b

≤ D̃ c-Low,1

(
It

)
. (3.56)

with equality of (a) and (b) if and only if Σh = It. This means that i.i.d.

channels are the worst channel to quantize in a sense of having the largest dis-

tortion (or capacity loss)3. This result is proved in the following proposition.

Detailed comparisons of the above distortion bounds and the distortions of

mismatched quantizers are provided in Section 3.7 and Section 4.2.

Proposition 3 For a MISO system with finite-rate CSI feedback, the following

orderings of the system distortions are valid for any correlated fading channels

with covariance matrix Σh satisfying tr
(
Σh

)
= t,

0 < D̃ c-Low,2

(
Σ h

) a

≤ D̃ c-Low,1

(
Σh

) b

≤ D̃c-Low,1

(
It

)
. (3.57)

3This does not necessarily mean that correlated MISO channels have larger system capacities than
i.i.d. channels. Since the capacity of i.i.d. MISO channels are better than that of correlated MISO
channels with ideal CSI at the transmitter, the overall capacity of the finite-rate feedback-based MISO
system still favors i.i.d. fading channels in the capacity sense.



73

Proof: First of all, inequality (a) can be proved easily according to the defini-

tion. In order to prove inequality (b), first notice that the uniform distribution is a

sub-optimal solution of the point density function. Hence the resulting the average

distortion is an upper bound of the optimal system distortion. By substituting the

uniform point density function λ(y) into the distortion integral (2.33), the averge

system distortion can be upper bounded by

D̃c-Low,1 (Σh) ≤ D̃upp (Σh) =
(t − 1) · β5 (ρ, Σh)

ln 2 · t · 2− B
t−1 , (3.58)

where the constant coefficient β5 (ρ, Σh) is given by the following form

β5 (ρ, Σh) = E

[
ρ · ‖h‖2

1 + ρ · ‖h‖2

]
= E

[
ρ · hH

0 Σh h0

1 + ρ · hH

0 Σh h0

]
, (3.59)

where vectors h and h0 have the following distribution

h ∼ Nc (0,Σh) , h0 ∼ Nc (0, It) . (3.60)

It is evident from equation (3.59) that β5 is invariant under the following transfor-

mation,

β5 (ρ, Σh) = β5

(
ρ, UΣhU

H
)

, (3.61)

where U is any unitary matrix. Hence according to equation (3.61), if the unitary

matrix U is set to be the eigenvectors of Σh, we only need to focus our attention

on the case where Σh is a diagonal matrix.

Furthermore, it is also true that β5 is invariant to any permutations on

the diagonal elements of Σh,

β5 (ρ, Σh)
a
=

1

t!

∑

P

β5

(
ρ, PHΣh P

) b

≤ β5

(
ρ,

( 1

t!

∑

P

PHΣh P
))

= β5 (ρ, It) ,

(3.62)

where P is any permutation matrix, equality (a) follows the same reasoning as

the invariant transformation (3.61), and (b) follows from the concavity property of

function f(x) = x/(1+x). At this point, by substituting the inequality (3.62) into

the system distortion expression given by (3.58), inequality (b) of the distortion

ordering given by (3.57) can be obtained.
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3.6.4 Numerical and Simulation Examples
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Figure 3.2: Capacity loss versus CSI feedback rate B of a 3 × 1 correlated MISO

transmit beamforming system with normalized antenna spacing D/λ = 0.5, and

signal to noise ratio ρ = −10, 0 and 20dB.

Some numerical experiments are now presented to provide a better feel

for the utility of the bounds. Fig. 3.2 shows the capacity loss due to the finite-

rate quantization of the CSI versus feedback rate B for a 3× 1 MISO system over

correlated Rayleigh fading channels under different system SNRs at ρ = −10, 0 and

20 dB, respectively. The spatially correlated channel is simulated by the correlation

model in [50]: A linear antenna array with antenna spacing of half wavelength,

i.e. D/λ = 0.5, uniform angular-spread in [−30◦, 30◦] and angle of arrival φ =

0◦. The simulation results are obtained from a MISO system using optimal CSI

quantizers whose codebooks are generated by the mean-squared weighted inner-
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product (MSwIP) criterion proposed in [25]. The distortion lower bounds D̃c-Low,1

and D̃c-Low,2 given by equations (3.48) and (3.51) are also included in the plot for

comparisons. It can be observed from the plot that the proposed distortion (or

the capacity loss) lower bounds are tight and predict very well the actual system

capacity loss obtained from Monte Carlo simulations.
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Figure 3.3: Capacity loss versus CSI feedback rate B of a 3 × 1 correlated

MISO transmit beamforming system with normalized antenna spacing D/λ =

0.2, 0.3, 0.5, 2.0, and signal to noise ratio ρ = 20dB.

In order to see the effects of channel correlation on CSI quantization in a

MISO system, we show in Fig. 3.3 the curves of capacity loss versus quantization

rate (both simulation and analytical lower bound D̃c-Low,1) of the same MISO

system under different channel correlations obtained with adjacent antenna spacing

D/λ = 0.2, 0.3, 0.5, 2.0 at SNR ρ = 20dB. As a comparison to uncorrelated MISO
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Figure 3.4: Normalized capacity loss (w.r.t. the capacity loss of uncorrelated

fading channels) versus transmit antenna spacing D/λ of a 3 × 1 MISO transmit

beamforming system with signal to noise ratio ρ = 5dB under CSI feedback rate

B = 10 bits.

channels, we also show in Fig. 3.4 the ratio of the distortion for correlated MISO

channels over the distortion for i.i.d. fading channels with quantization rate B = 10

bits, signal to noise ratio ρ = 5dB, and under different channel correlations. It can

be observed from the plot that the system distortion of correlated MISO channels

is strictly less than that of the i.i.d. channels and the analytical result agree well

with the actual simulation results.
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3.7 Distortion Analysis in High-SNR and Low-SNR Regimes

3.7.1 High-SNR Distortion Analysis

In high SNR regimes, the constrained sensitivity matrix Wc, α reduces to

be

WH-snr
c, α

(
v, α

)
= lim

ρ→∞

ρα

ln 2 · (1 + ρα)
· I =

I

ln 2
, (3.63)

which is independent of v, the side information information α as well as the SNR

ρ. This means that 1) the encoder can discard the available side information α

without any loss of system performance; 2) one single codebook is used for different

system SNRs in high SNR regions. In this case, the inertial profile Ĩopt(v, α) and

the average inertial profile Ĩw
opt(v, α) also reduce to be a constant independent of

the location v as well as side information α

ĨH-snr
opt = Ĩw,H-snr

opt =
(t − 1) · γ− 1

t−1

t

ln 2 · t . (3.64)

By substituting (3.64) into the distortion lower bound given by (2.39),

the system capacity loss of i.i.d. MISO channels in high SNR regime is given by

D̃ H-snr
c-Low,1

(
Σh = It

)
=

t − 1

t
· 2− B

t−1 , (3.65)

which is consistent with the analysis obtained in [25] based on a statistical ap-

proach. For correlated MISO fading channels, by substituting the average inertia

profile Ĩw,H-snr
opt given by equation (3.64) as well as the marginal pdf pv (x) given

by (3.17) into the distortion bound given by (2.39), lower bound D̃ H-snr
c-Low,1 (Σh) can

be represented by the following form,

D̃ H-snr
c-Low,1 (Σh) =




(t − 1) ·
(∏

T

i=1 λh, i

) 1
t−1

ln 2 · t · (β6)
t

t−1


 · 2− B

t−1 , (3.66)

where the coefficient β6 is given by

β6 = E

[
hHΣ−1

h h

hH h

]
, (3.67)
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which is a ratio of Gaussian quadratic variables. The moments of ratios of random

variables, including central quadratic forms in normal variables, were investigated

in [51], and the results can described as the following integration

E

[ (
X

Y

)n ]
= Γ(n)−1

∫ ∞

0

vn−1M
(n)
X,Y (0,−v) d v , (3.68)

where MX,Y (u, v) is the joint moment generating function (m.g.f.) of random

variables X and Y , and M
(n)
X,Y (0,−v) stands for ∂nMX,Y (u,−v)/∂vn evaluated at

u = 0. Therefore, by setting X = hHΣ−1
h h and Y = hH h, the joint m.g.f. of

variables X and Y can be represented as

MX,Y (u, v) =
1

det
(
I −

(
u · I + v · Σh

)) =

(
t∏

k=1

(1 − u − v · λh,k)

)−1

. (3.69)

By substituting the joint m.g.f. given by equation (3.69) into the moments inte-

gration function (3.68), coefficient β6 has the following closed-form expression

β6 = (t − 1)
t∑

i=1

(
ln λh, i

)
/λh, i∏

k 6=i

(
1 − λh, k/λh, i

) . (3.70)

Finally, by substituting (3.70) into equation (3.66), distortion lower bound D̃ H-snr
c-Low,1 (Σh)

can be shown to have the following closed-form expression,

D̃ H-snr
c-Low,1 (Σh)

=
(t − 1) ·

(∏
T

i=1 λh, i

) 1
t−1

ln 2 · t ·
(

(t − 1)
t∑

i=1

(
ln λh, i

)
/λh, i∏

k 6=i

(
1 − λh, k/λh, i

)
) t

t−1

· 2− B
t−1 .

(3.71)

3.7.2 Low-SNR Distortion Analysis

In low SNR regimes, i.e., ρ → 0, the constrained sensitivity matrix Wc, α

reduces to be

WL-snr
c, α = lim

ρ→0

2ρα

ln 2 · (1 + ρα)
· I =

2 ρα

ln 2
· I . (3.72)
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Therefore, the inertial profile Ĩopt(v, α) and the average inertial profile Ĩw
opt(v, α)

are given by

Ĩ L-snr
opt (v, α) =

(t − 1) · γ− 1
t−1

t · ρα

ln 2 · t , Ĩ w,L-snr
opt (v, α) =

(t − 1) · γ− 1
t−1

t · ρ
ln 2 ·

(
vHΣ−1

h v
) .

(3.73)

Similarly, by substituting (3.73) into the distortion lower bound given by (2.39),

the MISO system capacity loss in low SNR regimes over both i.i.d. and correlated

fading channels can be represented as:

D̃ L-snr
c-Low,1 (Σh = It) =

(t − 1) ρ

ln 2
· 2− B

t−1 , (3.74)

D̃ L-snr
c-Low,1 (Σh) =

(t − 1) ρ · γ− t
t−1

t · β3 (t, Σh)

ln 2 ·
∣∣Σh

∣∣ · 2− B
t−1 , (3.75)

where β3 (t, Σh) is a constant coefficient given by

β3 (t, Σh) =

(∫

v :g(v)=0

(
vHΣ−1

h v
)− t2−1

t dv

) t
t−1

. (3.76)

Moveover, when there are a large number of transmit antennas, the high-dimensional

approximation of the distortion lower bound D̃L-snr
c-Low,1 can be represented by the

following closed-form expression (obtained after some manipulation of equation

(3.74))

D̃ L-snr,H-dim
c-Low,1 =

ρ · (t − 1) ·
(∏t

i=1 λh, i

) 1
t−1

ln 2
· 2− B

t−1 . (3.77)

3.8 Distortion Comparisons between i.i.d. and Correlated

channels

Through numerical evaluations, the second product term in the R.H.S of

the equation (3.71) is found to be close to 1 in most cases leading to the following

approximate relationship

D̃ H-snr,H-dim
c-Low,1

(
Σh

)

D̃ H-snr,H-dim
c-Low,1

(
It

) =
D̃ L-snr,H-dim

c-Low,1

(
Σh

)

D̃ L-snr,H-dim
c-Low,1

(
It

) ≈ η (Σh) , (3.78)
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where the constant coefficient η (Σ h) is given by

η (Σh) =

(∏
T

i=1 λh, i

) 1
t

∑t
i=1 λh, i/t

≤ 1 , (3.79)

and represents the relative capacity loss of quantizing a correlated MISO channel

as compared to that of an i.i.d. MISO channel in high-SNR and low-SNR regimes

with large number of antennas. This means that 1) the ratio of the geometric mean

over the arithmetic mean of the eigen-values of the channel covariance matrix is a

key parameter that characterizes the system performance; 2) the capacity loss of

a MISO system with finite-rate CSI feedback is proportional to this ratio.
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Figure 3.5: Normalized capacity loss (w.r.t. the capacity loss of uncorrelated

fading channels) versus transmit antenna spacing D/λ of a 3 × 1 MISO transmit

beamforming system in high-SNR regime with ρ = 20dB.

As a numerical example, we show in Fig. 3.5 the normalized capacity loss
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(distortion ratio of correlated MISO channels over i.i.d. fading channels) versus

antenna spacing D/λ in high-SNR regimes with ρ = 20dB and quantization rate

B = 10 bits. For comparison purpose, the ratio of the distortion lower bound, i.e.

D̃c-Low,1(Σh)/D̃c-Low,1(It), as well as its high-SNR and high-dimensional approxi-

mation η(Σh) given by equation (3.79) are also included in the plot. Interestingly,

it can be observed from Fig. 3.5 that the obtained high-dimensional approximation

of the distortion ratio agree well with the simulation results even for cases with a

small number of antennas t = 3.

3.9 Summary

This chapter employed high resolution quantization theory to study the

effects of finite-rate quantization of the CSI on the performance of MISO systems

over both i.i.d. and correlated fading channels. To be specific, tight lower bounds

on the capacity loss of correlated MISO systems due to the finite-rate channel

quantization were provided. Interestingly, in high-SNR and low-SNR regimes, the

capacity loss of correlated MISO channels was shown to be related to that of i.i.d.

fading channels by a simple multiplicative factor which is given by the ratio of the

geometric mean to the arithmetic mean of the eigenvalues of the channel covari-

ance matrix. The text of this chapter is in part a reprint of the paper which was

coauthored with Bhaskar D. Rao and has been submitted for publication in IEEE

Transactions on Signal Processing under the title “Analysis of multiple antenna

systems with finite-rate channel information feedback over spatially correlated fad-

ing channels”.



4 Analysis of MISO CSI

Quantizers with Mismatched

Codebooks and Transformed

Codebooks

4.1 Motivation

In Chap. 3, the analysis of MISO systems with finite-rate feedback were

derived under the assumption that both the encoder and the decoder have perfect

knowledge of the source distribution, distortion function, and are using the most

efficient quantization algorithm. This is clearly not always true as practical con-

straints often result in approximations and various types of suboptimal choices in

the design of feedback-based wireless communication systems. These suboptimal

choices often result in various types of mismatches. Mismatched conditions arise

in practical situations due to various reasons such as enabling reduced design and

encoding complexity, imperfect knowledge of the source distribution, among oth-

ers. As an extended application of the distortion analysis provided in Chap. 2,

capacity analysis of multiple antenna systems using sub-optimal CSI quantizers is

provided in this chapter. Specifically, two types of mismatched MISO CSI quan-

tizers are investigated, which include quantizers that are designed with minimum

mean square error (MMSE) criterion but the desired measure is ergodic capacity

82
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loss (i.e. mismatched design criterion), and quantizers whose codebooks are de-

signed with a mismatched channel covariance matrix (i.e. mismatched statistics).

Moreover, MISO systems over spatially correlated fading channels with CSI quan-

tizers using transformed codebooks are also investigated. Finally, the performance

of these sub-optimal channel quantization schemes is further compared to that of

the optimal CSI quantizers.

4.2 Mismatched Analysis of Quantized MISO Beamform-

ing Systems

As an application of the mismatched analysis provided in Section 2.4,

this section provides a capacity loss analysis of a finite-rate feedback-based MISO

beamforming system when the CSI quantizer is mismatched and suboptimal. This

is in contrast to the distortion analysis provided in Chap. 3 of MISO systems

with optimal CSI quantizers wherein the codebook and the encoding algorithm

were designed to perfectly match the distortion function as well as the source

distribution. Imperfect codebook and suboptimal quantizer are quite prevalent

in practice which makes this study interesting. Mismatched conditions may arise

in practical situations due to various reasons such as enabling reduced design and

encoding complexity, imperfect knowledge of the source distribution, among others.

4.2.1 Dimensionality Mismatch and Quantization Criterion Mismatch

In this subsection, we present the analysis of a suboptimal (mismatched)

quantizer that directly quantizes the CSI using the mean-squared error (MSE)

as the distortion measure. The results illustrate the importance of encoding the

appropriate parameters as well as the distortion function of interest.

For an MMSE channel quantizer, the channel state information h is di-

rectly quantized and results in a conventional vector quantization problem with

the source variable having 2t free (real) dimensions and with no encoder side in-
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formation. The corresponding distortion function of the MMSE channel quantizer

is given by

Dmis-R

(
h, ĥ

)
= ‖h − ĥ‖2 , (4.1)

whose sensitivity matrix Wmis-R is given by Wmis-R = I2t. At the transmitter, the

unit norm beamforming vector v̂ is obtained by normalizing the quantized channel

vector ĥ, i.e. v̂ = ĥ
/
‖ĥ‖. Hence, the actual system distortion function (or the

capacity loss) can be expressed in terms of vectors h and ĥ as

DQ-R

(
h, ĥ

)
= log2

(
1 + ρ · ‖h‖2

)
− log2

(
1 + ρ · |〈h, ĥ 〉|2

‖ĥ‖2

)
, (4.2)

Its corresponding sensitivity matrix can be shown to have the following form

W
(
ĥ

)
=

ρ

ln 2 ·
(
1 + ρ · ‖ĥ‖2

) ·
(
I − Ω

)
, (4.3)

where matrix Ω ∈ R2kq×2kq is given by

Ω =


 v̂Rv̂T

R + v̂Iv̂
T

I v̂Rv̂T

I − v̂Iv̂
T

R

v̂Iv̂
T

R − v̂Rv̂T

I v̂Rv̂T

R + v̂Iv̂
T

I


 . (4.4)

The MMSE channel quantizer being analyzed suffers from two types of mismatches:

1) The quantizer is designed to quantize a redundant channel state information

vector h of dimensions 2t instead of 2t−2 in the optimal quantizer, which leads to a

dimensionality mismatch; 2) The quantizer uses a mismatched distortion function

Dmis-R given by (4.1) as compared to DQ given by equation (3.11). Since the

MMSE codebook is designed to match the mismatched sensitivity matrix Wmis-R,

the Voronoi region of the MMSE quantizer is close to a hyper-sphere of dimension

2t, which leads to a sub-optimal point density given by [33]

λmis-R(h) = p (h)
t

t+1 ·
(∫

p (h)
t

t+1 dh

)−1

, (4.5)

where p(y) is the PDF of the MISO channel impulse response h. Furthermore,

from equation (2.67), the suboptimal MMSE quantizer also leads to a mismatched

normalized inertial profile given by,

Imis-R(h) =
(t − 1)(t!)

1
t ρ

ln 2 · (t + 1) · π · (1 + ρ ‖h‖2)
. (4.6)
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By substituting equations (4.5) and (4.6) into the asymptotic distortion integration

given by (2.33), the average system distortion of a mismatched MMSE channel

quantizer can be represented by the following form

D̃mis-R-Low,1 (Σh) =
(t − 1) ·

(
t ! ·

∣∣Σh

∣∣
) 1

t ·
(

t+1
t

)t

· β4 (ρ, t, Σh)

ln 2 · t · 2−B
t , (4.7)

where β4 (ρ, t, Σh) is a constant coefficient given by

β4 = E

[
ρ

1 + ρ · (t + 1)/t · hH h

]
. (4.8)

Moreover, it can be shown that coefficient β4 has a analytically closed-form expres-

sion. To see this, first note that β4 can be viewed as the first order moment of a ratio

of Gaussian quadratic variables, i.e. β4 = E
[
X/Y

]
. By taking a similar approach

which is utilized in Section 3.7.1, one can set X = ρ and Y = 1+ρ · (t+1)/t ·hH h,

whose joint m.g.f. is given by

MX,Y (u, v) =
exp(u ρ + v)

det
(
I − ρ · (t + 1)/t · v · Σh

)

= exp(u ρ + v) ·
(

t∏

k=1

(
1 − ρ · t + 1

t
· v · λh,k

))−1

. (4.9)

By substituting the joint m.g.f. (4.9) into the integration (3.68) provided in [51],

closed-form expression of coefficient β4 can be obtained,

β4 (ρ, t, Σh) = − t

t + 1

t∑

i=1

(
λh, i

∏

k 6=i

(
1 − λh, k

λh, i

))−1

exp

(
t

ρ (t + 1)λh, i

)
· E i

(
− t

ρ (t + 1)λh, i

)
, (4.10)

with E i(·) representing the exponential integral function.

It can be observed from (4.7) that the system distortion of the mismatched

MMSE channel quantizer decays slower (with slope −1/t in the exponent) than

that of the optimal quantizer (with slope −1/(t− 1)
)
. This is a significant system

performance degradation especially for systems with a small number of antennas,

emphasizing the importance of choosing an appropriate CSI quantization scheme.
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Figure 4.1: Capacity loss of a 3 × 1 correlated MISO system with normalized

antenna spacing D/λ = 0.5 versus CSI feedback rate B using different channel

quantization codebooks (Optimal codebook vs MMSE quantizer).

In order to get a better understanding of the degradation caused by the

mismatched MMSE channel quantizer, we plot in Fig. 4.1 the capacity loss due

to the finite-rate CSI quantization versus feedback rate B for a 3 × 1 MISO sys-

tem over correlated fading channels with adjacent antenna spacing D/λ = 0.5 and

different system SNRs of ρ = −10, and 20 dB respectively. Codebooks are de-

signed by using both the optimal mean-squared weighted inner-product (MSwIP)

criterion proposed in [27] and the simple MMSE criterion mentioned in this sec-

tion. The analytical evaluations of the system distortion lower bound D̃c-Low,1

provide by (3.48) and the mismatched distortion D̃mis-R-Low,1 provided by (4.7) are

also included in the plot for comparisons. It can be observed from the plot that
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the system performance is significantly degraded by the mismatched quantizer,

especially for systems with small number of antennas. Moreover, the proposed

distortion analysis is tight and matches very well the actual system capacity loss

obtained from Monte Carlo simulations.

4.2.2 Source Distribution Mismatch (or Point Density Mismatch)

For the correlated MISO channels, the channel distribution depends on

the covariance matrix Σh, which needs to be estimated and is subject to estimation

error. Moreover, it is also practically infeasible to redesign codebooks for every

Σh, store them and use them adaptively. Therefore, in practical situations, only

very limited codebooks are available and so the mismatched channel covariance

matrix Σm
h will cause performance degradation.

Based on the mismatched covariance matrix Σm
h , a sub-optimal codebook

is generated with the mismatched point density given by (from equation (3.50))

λmis-P (v) = β1 (ρ, t, Σm
h )−

t−1
t

·
(

(
vH (Σm

h )−1 v
)−(t+1)

2F0

(
t + 1, 1; ; − ρ

vH (Σm
h )−1 v

) ) t−1
t

. (4.11)

By substituting the mismatched point density λmis-P given by (4.11) into the distor-

tion integral (2.73), the system distortion lower bound of the source-distribution-

mismatched quantizer can be obtained as

D̃mis-P-Low,1 =

(∫

x: g(x)=0

Ĩw
c, opt

(
x
)
· pv (x) · λmis-P

(
x
)− 1

t−1 dx

)
· 2− B

t−1 . (4.12)

As a special case, if the codebook designed for i.i.d. MISO channels is used for

correlated MISO systems1, i.e. Σm
h = It, the mismatched point density λmis(v) is

uniform and the asymptotic distortion of the mismatched quantizer can be repre-

sented as the following form

D̃mis-P-Low,1 (Σh) =
(t − 1) · β5 (ρ, Σh)

ln 2 · t · 2− B
t−1 , (4.13)

1This can be also viewed as the case where the channel covariance matrix is completely unavailable at
both the transmitter and the receiver, and hence one single codebook is used for any channel correlation.
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where the constant coefficient β5 (ρ, Σh) is given by

β5 = E

[
ρ · hH h

1 + ρ · hH h

]
, (4.14)

which is also a ratio of Gaussian quadratic random variables. It is evident from

equation (4.14) that β5 is related to β4 given by equation (4.8) through the following

connection

β5 (ρ,Σh) = 1 − 1

ρ
β4

(
t ρ

t + 1
,Σh

)
. (4.15)

By substituting the results given by (4.10) into equation (4.15), β5 can be expressed

as the following closed-form expression

β5 (ρ, Σh) = 1 +
t∑

i=1

(
ρ λ h, i

∏

j 6=i

(
1 − λ h, j

λ h, i

))−1

· exp

(
1

ρ λh, i

)
· Ei

( −1

ρ λh, i

)
.

(4.16)

As a numerical example, we demonstrate in Fig. 4.2 the capacity loss due

to the finite-rate CSI quantization versus feedback rate B for the same 3×1 MISO

system over correlated fading channels with adjacent antenna spacing D/λ = 0.5

and different system SNRs at ρ = −10, and 20 dB, respectively. Both the optimal

codebooks with correct channel covariance matrix as well as the mismatched i.i.d.

codebooks are employed for simulation. The analytical evaluations of the distortion

lower bound D̃c-Low,1 provide by (3.48) and the mismatched distortion D̃mis-P-Low,1

provided by (4.13) are also included in the plot for comparison. It can be observed

from the plot that the system performance is degraded by the mismatched i.i.d.

codebook but with the same exponential decaying factor 2−B/(t−1). Moreover, the

proposed distortion analysis closely matches the system capacity loss obtained from

simulations.

4.2.3 Comparisons with Other Channel Quantizers

In order to understand how the mismatched channel covariance matrix
(
Σm

h = It

)
affects the MISO system performance, a distortion comparison be-

tween optimal and mismatched quantizers under both correlated and i.i.d. fading
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Figure 4.2: Capacity loss of a 3 × 1 correlated MISO system with normalized an-

tenna spacing D/λ = 0.5 versus CSI feedback rate B using different channel quan-

tization codebooks (Optimal codebook vs Mismatched codebook for i.i.d. fading

channels).

channels is formed. To be specific, we first denote D̃mis-P-Low, 1 (Σh) as the average

distortion of a mismatched quantizer using i.i.d. codebook in a correlated envi-

ronments with channel covariance matrix Σh, whereas D̃c-Low,1 (Σh) represents the

system distortion of an optimal quantizer with codebook designed to match the

same correlated MISO fading channel. The following proposition establishes the

relations between the two system distortions.

Proposition 4 For a MISO system with finite-rate CSI feedback, the following

inequality of the system distortions is valid for any correlated fading channels with
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covariance matrix Σh satisfying tr
(
Σh

)
= t,

0 < D̃mis-P-Low,1

(
Σh

)
≤ D̃c-Low,1

(
It

)
. (4.17)

Moreover, the mismatched system distortion D̃mis-P-Low, 1 (Σh) converges to the dis-

tortion of i.i.d. MISO channels with optimal quantizers in high-SNR and low-SNR

regimes, i.e.

lim
ρ→0,∞

D̃mis-P-Low,1

(
Σh

)

D̃c-Low,1

(
It

) = 1 . (4.18)

Proof: First, note that the asymptotic distortion of the mismatched quantizer

can be represented as the following form after some manipulations

D̃mis-P-Low,1 (Σh) =
(t − 1) · β7 (ρ, Σh)

ln 2 · t · 2− B
t−1 , (4.19)

where the constant coefficient β7 (ρ, Σh) is given by the following form

β7 (ρ, Σh) = E

[
ρ · ‖h‖2

1 + ρ · ‖h‖2

]
= E

[
ρ · hH

0 Σh h0

1 + ρ · hH

0 Σh h0

]
, (4.20)

where vectors h and h0 have the following distribution

h ∼ Nc (0,Σh) , h0 ∼ Nc (0, It) . (4.21)

It is evident from equation (4.20) that β7 is invariant under the following transfor-

mation,

β7 (ρ, Σh) = β7

(
ρ, UΣhU

H
)

, (4.22)

where U is any unitary matrix. Hence according to equation (4.22), if the unitary

matrix U is set to be the eigenvectors of Σh, we only need to focus our attention

on the case where Σh is a diagonal matrix.

Furthermore, it is also true that β7 is invariant to any permutations on

the diagonal elements of Σh,

β7 (ρ, Σh)
a
=

1

t!

∑

P

β7

(
ρ, PHΣh P

) b

≤ β7

(
ρ,

( 1

t!

∑

P

PHΣh P
))

= β7 (ρ, It) ,

(4.23)
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where P is any permutation matrix, equality (a) follows the same reasoning as

the invariant transformation (4.22), and (b) follows from the concavity property of

function f(x) = x/(1+x). At this point, by substituting the inequality (4.23) into

the system distortion expression given by (4.19), inequality (4.17) can be obtained.

According to the definition of β7 given by (4.20), the following equations

can be obtained

lim
ρ→0

β7 (ρ, Σh) = ρ t , lim
ρ→∞

β7 (ρ, Σh) = 1 , (4.24)

which further lead to the convergence of the system distortions given by equation

(4.18).

The above results mean that: 1) The capacity loss of a correlated MISO

channel by using the mismatched quantizer is larger than that of the optimal

quantizer, but still less than that of an uncorrelated MISO channel even with

optimal codebook. 2) The performance of the mismatched quantizer is strongly

affected by the sub-optimality caused by the mismatched codebook. In high-SNR

and low-SNR regimes, mismatched CSI quantizers using i.i.d. codebooks will lead

to the same “worst” system distortion D̃ H-snr
c-Low,1

(
It

)
regardless of the actual fading

channel correlations, or channel covariance matrix Σh.

We plot in Fig. 4.3 the normalized capacity loss (distortion ratio over i.i.d.

fading channels) of a correlated 3 × 1 MISO system versus antenna spacing D/λ

with the mismatched i.i.d. codebooks, and with system SNR ρ = −10, 20 dB and

quantization rate B = 10 bits. For comparison purpose, the ratio of the average

distortion of the same MISO system and at the same correlated channel conditions

but with optimal codebooks are also included in the plot. The curves provided in

Fig. 4.3 further confirm the two observations made in the previous paragraph.
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Figure 4.3: Normalized capacity loss (w.r.t. the capacity loss of uncorrelated fading

channels) comparison of a 3 × 1 MISO transmit beamforming with optimal and

mismatched codebooks versus antenna spacing d = D/λ, in high and low SNR

regimes (ρ = −10 and 20 dB).

4.3 Analysis of MISO Channel Quantizers with Transformed

Codebook

In practically situations, the spatial correlation conditions of the fading

channel responses may change during transmission process. However, for a real sys-

tem, it is impossible to design different codebooks optimized for every instantiation

of the channel covariance matrix and it might also be infeasible for the transmitter

and receiver to store a large amount of codebooks and use them adaptively. In

these cases, it is convenient to use a channel quantizer whose codebook is gener-
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ated from a fixed pre-designed codebook through a transformation parameterized

by the channel covariance matrix.

4.3.1 Problem Formulation

To be specific, suppose C0 is the optimal codebook designed for the i.i.d.

MISO fading channels. When the elements of the fading channel response h are

correlated, i.e. h ∼ Nc(Σh), it is evident that codebook C0 is no longer optimal. In

order to compensate the mismatch between C0 and the current channel statistics,

a transformed codebook C can be generated by the following manner,

C =

{
F

(
v̂
) ∣∣∣∣ v̂ ∈ C0

}
, (4.25)

where F(·) is a general non-linear transformation that depends on the channel

statistics. Optimization of the transformation F(·) turns out to be difficult, and

hence a simple sub-optimal transformation,

F(v̂) =
Gv̂

‖Gv̂‖ , (4.26)

was proposed in [23] [52] where G ∈ Ct×t is a fixed matrix depends on the channel

covariance matrix Σh. In the next subsection, distortion analysis of CSI-quantizers

with transformed codebooks is provided.

4.3.2 Distortion Analysis of Transformed Codebooks

First of all, according to the codebook transformation given by (4.26),

the transformed point density function λc-tr(v) can be obtained as the following

form, from equation (2.76),

λc-tr(v) = γ−1
t · |Σ|−1 ·

(
vHΣ−1 v

)−t
, Σ = G · GH . (4.27)

which is equivalent to the PDF of a unit-norm complex vector x/‖x‖ with x having

complex Gaussian distribution x ∼ Nc(0, Σ). It is evident that the transformed

point density given by (4.27) does not match to the optimal point density function
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λ∗(v) given by (3.50) in the general case. However, for MISO systems with a large

number of antennas and in high-SNR and low-SNR regimes, it can be shown that

the optimal point density λ∗(v) reduces to be the source distribution pv(x) given

by the following form

lim
t→∞

λ∗(x) = pv (x) = γ−1
t · |Σh|−1 ·

(
xHΣ−1

h x
)−t

. (4.28)

In this case, by choosing matrix G as a product G = UΛ
1
2 with matrices U

and Λ form the eigen-value decomposition of the channel covariance matrix Σh =

UΛUH, one can generate a transformed codebook with optimal point density

λc-tr(v) ≈ λ∗(v). Hence, there is no distortion loss caused by the point density

mismatch, though the system also suffers from the oblongitis of the Voronoi shape.

By substituting the transformation given by (4.26) into equation (2.81),

the inertial profile of the transformed codebook with sub-optimal encoder Qsub (or

encoding process) can be represented as

Ĩc-sub

(
v ; α

)
=

γ
− 1

t−1

t · ρα ·
(
vH Σ−1 v

)

t · ln 2 · (1 + ρα)
· tr

( (
I − v vH

)
· Σ

)
≥ Ĩc-opt

(
v ; α

)
.

(4.29)

where Ĩc-opt

(
v ; α

)
is the optimal inertia profile given by equation (3.39). It is

evident from (4.29) that except unitary rotations of the i.i.d. codebook, any non-

trivial transformation of the codebook will lead to mismatched Voronoi shape

and hence causes inertial profile loss. Therefore, a codebook transformation that

compromises both the point density loss and the inertial profile loss is favored.

Finding the optimal codebook transformation F that minimizes the sys-

tem distortion turns out to be a difficult problem. In this chapter, instead of

optimizing the overall distortion w.r.t. matrix G, we provide a distortion analysis

of MISO systems with transformed CSI-quantizers using codebooks generated by

the heuristic choice Σh = G ·GH (or2 G = UΛ
1
2 ). To be specific, by substituting

the transformed point density (4.27) and transformed inertia profile (4.29) into

2Note that the codebook transformation is not unique. Any right unitary rotation G · P on matrix
G, with P · PH = I, can generate another codebook transformation (or codebook) with the same
performance.
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distortion integral (2.89), the corresponding upper and lower bounds of the aver-

age system distortion of a MISO CSI-quantizer with transformed codebook can be

expressed in the following forms

D̃c-tr-Low =
(t − 1) · |Σh|

1
t−1

ln 2 · t · E




ρ ·
(
hHΣ−1

h h
) t

t−1

(
1 + ρ · ‖h‖2

)
· ‖h‖ 2

t−1


 · 2− B

t−1 , (4.30)

D̃c-tr-Upp =
|Σh|

1
t−1

ln 2 · t · E




ρ ·
(
hHΣ−1

h h
) 2t−1

t−1 ·
(
t · ‖h‖2 − hHΣh h

)

(
1 + ρ · ‖h‖2

)
· ‖h‖ 4t−2

t−1


 · 2− B

t−1 .

(4.31)
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Figure 4.4: Capacity loss of a 3 × 1 correlated MISO system with normalized

antenna spacing d = D/λ = 0.5 versus CSI feedback rate B using different channel

quantization codebooks (Optimal codebook vs Transformed codebook).

Some numerical experiments were conducted to get a better feel for the
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utility of the bounds. Fig. 4.4 shows the system capacity loss due to the finite-

rate quantization of the CSI versus feedback rate B for a 3× 1 MISO system over

correlated Rayleigh fading channels under different system SNRs at ρ = −10 and 20

dB, respectively. The spatially correlated channel is simulated by the correlation

model in [50]: A linear antenna array with antenna spacing of half wavelength,

i.e. D/λ = 0.5, uniform angular-spread in [−30◦, 30◦] and angle of arrival φ = 0◦.

Simulation results of both the optimal designed codebook using the minimal mean-

squared weighted inner product (MSwIP) criterion proposed in [26] as well as the

sub-optimal transformed codebook are plotted. For comparison purpose, distortion

lower bound D̃c-tr-Low given by (4.30) and the distortion upper bound D̃c-tr-Upp given

by (4.31) are also included in the plot. It can be observed from Fig. 4.4 that the

distortion lower bound D̃c-tr-Low is tight and the performance of the CSI quantizer

with transformed codebook is close to that of the optimal codebooks.

4.3.3 Comparison with Optimal MISO CSI-Quantizers

In order to see sub-optimality caused by codebook transformation, one

would like to compare the system performance in terms of the average distortion

of quantizers using transformed codebooks with that of the optimally designed

codebooks. Interestingly, in high-SNR and low-SNR regimes with a large number

transmit antennas t, the average system distortion of CSI quantizers with trans-

formed codebook can be upper and lower bounded by some multiplicative factors

of the optimal quantization distortion.

Proposition 5 For MISO systems with a large number of transmit antennas, i.e.

t → ∞, the following inequalities are satisfied

1
a
=

D̃ H-dim, H-SNR
c-tr-Low

D̃ H-dim, H-SNR
c-Low,1

≤ D̃ H-dim, H-SNR
c-tr

D̃ H-dim, H-SNR
c-Low,1

≤
D̃ H-dim, H-SNR

c-tr-Upp

D̃ H-dim, H-SNR
c-Low

b

≤ c1 , (4.32)

1
a
=

D̃ H-dim, L-SNR
c-tr-Low

D̃ H-dim, L-SNR
c-Low,1

≤ D̃ H-dim, L-SNR
c-tr

D̃ H-dim, L-SNR
c-Low,1

≤
D̃ H-dim, L-SNR

c-tr-Upp

D̃ H-dim, L-SNR
c-Low,1

b

≤ c2 , (4.33)
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where constant coefficients c1 and c2 are given by

c1 =

(
δ(t − 2)

λh, 1 · λh, 2

− (t − 1)(t − 2)
t∑

i=1

(
ln λh, i

)
/λ2

h, i∏
k 6=i

(
1 − λh, k/λh, i

)
)/

c
t

t−1

1 ,

(4.34)

c2 = (t − 1)
t∑

i=1

(
ln λh, i

)
/λh, i∏

k 6=i

(
1 − λh, k/λh, i

) . (4.35)

Proof: First of all, in high-SNR regimes, distortion bounds D̃ H-dim, H-SNR
c-tr-Low and

D̃ H-dim, H-SNR
c-tr-Upp can be represented as the following forms

D̃ H-dim, H-SNR
c-tr-Low =

(
(t − 1) · |Σh|

1
t−1 · β2

ln 2 · t

)
· 2− B

t−1 ≈ D̃ H-dim, H-SNR
c-Low,1 , (4.36)

D̃ H-dim, L-SNR
c-tr-Upp ≤

(
(t − 1) · |Σh|

1
t−1 · β3

ln 2 · t

)
· 2− B

t−1 =

(
β3 · β

− t
t−1

2

)
D̃ H-dim, H-SNR

c-Low,1 ,

(4.37)

where coefficients β2 and β3 can be expressed as the expected powers of the ratios

of Gaussian quadratic variables, which is given by

β2 = E

[
hHΣ−1

h h

hH h

]
, β3 = E

[ (
hHΣ−1

h h

hH h

)2
]

. (4.38)

The moments of ratios of random variables, including central quadratic forms in

normal variables, were investigated in [51], and the results can described as the

following integration

E

[ (
X

Y

)n ]
= Γ(n)−1

∫ ∞

0

vn−1M
(n)
X,Y (0,−v) d v , (4.39)

where MX,Y (u, v) is the joint moment generating function (m.g.f.) of random

variables X and Y , and M
(n)
X,Y (0,−v) stands for ∂nMX,Y (u,−v)/∂vn evaluated at

u = 0. Therefore, by setting X = hHΣ−1
h h and Y = hH h, the joint m.g.f. of

variables X and Y can be represented as

MX,Y (u, v) =
1

det
(
I −

(
u · I + v · Σh

)) =

(
t∏

k=1

(1 − u − v · λh,k)

)−1

. (4.40)
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By substituting the joint m.g.f. given by equation (4.40) into the integration (4.39)

with n = 1, coefficient β2 can be obtained as the following closed-form expression

after some manipulations,

β2 = (t − 1)
t∑

i=1

(
ln λh, i

)
/λh, i∏

k 6=i

(
1 − λh, k/λh, i

) . (4.41)

Finally, by substituting (4.41) into equation (4.36), equality (a) of (4.32) is proved.

With similar reasoning, by substituting the joint m.g.f. (3.69) into equation (4.39)

with n = 2, coefficient β3 is obtained. Correspondingly, a closed-form expression of

coefficient c1 = β3 · β
− t

t−1

2 , which is given by equation (4.34), can also be obtained,

and inequality (b) of (4.32) is proved.

Similarly, in Low-SNR regimes, distortion bounds D̃ H-dim, L-SNR
c-tr-Low and D̃ H-dim, L-SNR

c-tr-Upp

can be represented as the following forms

D̃ H-dim, L-SNR
c-tr-Low =

(
(t − 1) · |Σh|

1
t−1 · β4 · ρ

ln 2

)
· 2− B

t−1 = β4 · D̃ H-dim, L-SNR
c-Low,1 ,

(4.42)

D̃ H-dim, L-SNR
c-tr-Upp ≤

(
(t − 1) · |Σh|

1
t−1 · β5 · ρ

ln 2

)
· 2− B

t−1 = β5 · D̃ H-dim, L-SNR
c-Low,1 ,

(4.43)

where the coefficients β4 and β5 are given by

β4 = E

[
hHΣ−1

h h

t

]
, β5 = E

[ (
hHΣ−1

h h
)2

t · hH h

]
. (4.44)

From equation (4.44), it is evident that β4 = 1, and hence the equality (a) of

equation (4.33) can be proved. Moreover, by extending the results of the moments

of the quadratic forms provided in [51], the following expectation can be obtained

after some manipulations

E

[
X2

Y

]
=

∫ ∞

0

∂2 MX,Y (u,−v)

∂ u2

∣∣∣∣
u=0

d v , (4.45)

Therefore, by setting X = hHΣ−1
h h and Y = hH h, and substituting the joint

m.g.f. given by equation (3.69) into the integration (4.45), coefficient β5 can be
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obtained. It is equivalent to coefficient c2 given by equation (4.35), and hence the

inequality (b) of (4.33) can be proved.

Note from proposition 5 that constants c1 and c2 can be viewed as the

upper bounds of the penalty paid for using a transformed codebook instead of

optimal design. Further verified by the numerical example shown below, c1 and

c2 are slightly greater than 1 for most channels that are not “highly” correlated.

This means that the intuitive choice of F given in [23] [52] is a fairly good solu-

tion especially for cases when the channel covariance matrix having relative small

condition numbers.

We plot in Fig. 4.5 the distortion ratio of correlated fading channels over

i.i.d. fading channels (normalized capacity loss) of a 3 × 1 MISO system versus

antenna spacing D/λ with both optimal and transformed codebooks. The average

system signal to noise ratio is ρ = −10 dB, and the quantization resolution is

B = 10 bits per channel update. For comparison purpose, the ratio of the dis-

tortion bounds, i.e. D̃c-tr-Low(Σh)/D̃c-tr-Low(It) and D̃c-tr-Upp(Σh)/D̃c-tr-Upp(It), are

also included in the plot. It can be observed from Fig. 4.5 that the analytical

bounds agree well with the obtained simulation results.

In order to demonstrates the tightness of the distortion bounds D̃c-tr-Upp

and D̃c-tr-Low in high-SNR and low-SNR regimes, Fig. 4.6 plots the constant co-

efficient c1 and c2 versus the number of transmit antennas t for correlated MISO

channels with adjacent antenna spacing D/λ = 0.5. From the plot, it can be ob-

served that the performance degradation caused by the transformed codebook is

less than 10% in low-SNR regimes and 22% in high-SNR regimes for MISO systems

with more than 10 transmit antennas.



100

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Adjacent Antenna Distance D/λ

D
is

to
rt

io
n 

R
at

io
s

Distortion Comparison of (Channel distribution) Mismatched CSI Quantizers

Simu, Optimal Codebook, D(Σ
h
)/ D(I

t
)

Simu, Transformed Codebook, D
tr
(Σ

h
)/ D(I

t
)

Analysis, Mismatched Codebook, D
c−tr−Low

(Σ
h
)/ D(I

t
)

Analysis, Mismatched Codebook, D
c−tr−Upp

(Σ
h
)/ D(I

t
)

SNR = −10dB

Figure 4.5: Normalized capacity loss (w.r.t. the capacity loss of uncorrelated

fading channels) comparison of a 3× 1 MISO transmit beamforming with optimal

and transformed codebooks versus antenna spacing d = D/λ, in low SNR regimes

(ρ = −10 dB).

4.4 Summary

In this chapter, the analysis of MISO systems with finite-rate feedback

was extended to sub-optimal CSI-quantizers using mismatched and transformed

codebooks. In particular, two types of mismatched MISO CSI quantizers were

investigated: quantizers designed with MMSE criterion, and quantizers whose

codebooks are designed with a mismatched channel covariance matrix. More-

over, capacity analysis of a feedback-based MISO system over correlated fading

channels using channel quantizers with codebooks transformed from i.i.d. channel

environments were also investigated. Bounds on the channel capacity loss of the
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0.5.

MISO systems using mismatched and transformed codebooks were provided and

compared to that of the optimal quantizers. Finally, numerical and simulation

results were presented and they confirm the accuracy of the obtained theoretical

distortion bounds. The text of this chapter as well as Chap. 3, in part and under

some rearrangements, are reprints of papers which were coauthored with Bhaskar

D. Rao and have been submitted for publication in IEEE Transactions on Sig-

nal Processing under the title “Analysis of multiple antenna systems with finite-

rate channel information feedback over spatially correlated fading channels”, and

in IEEE Journal on Selected Areas in Communications under the title “Analysis
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of vector quantizers using transformed codebook with application to feedback-based

multiple antenna systems” respectively.



5 Capacity Analysis of MIMO

Systems with Finite-Rate CSI

Feedback

5.1 Motivation

In this chapter, the analysis of CSI-feedback-based multiple antenna sys-

tems is further extended to MIMO fading channels. Compared to the MISO sys-

tems investigated in Chap. 3 and 4, where the CSI information is only a vector, the

quantization objective in the MIMO context is a matrix. As a consequence, more

complicated transmit pre-coding schemes and even more involved system capacity

analysis are required. By employing the high resolution quantization framework

described in Chap. 2, the effects of finite-rate CSI feedback on the performance of

MIMO systems over i.i.d. Rayleigh flat fading channels are studied in this chapter.

Specifically, tight lower bounds on the capacity loss of MIMO systems over fad-

ing channels due to the finite-rate channel quantization are provided. Moreover,

MIMO CSI-quantizers using mismatched codebooks that only optimized for high-

SNR and low-SNR regimes are investigated. As an application of the obtained

distortion analysis, the performance of MIMO systems using multi-mode spatial

multiplexing transmission schemes with finite-rate CSI feedback is also provided.

103
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5.2 System Model of MIMO Systems with Finite Rate CSI

Feedback

5.2.1 Fading Channel Model

We consider a MIMO system with t transmit antennas and r receive

antennas, signaling through a frequency flat Rayleigh fading channel. The channel

model can be represented as

y = H · x + n , (5.1)

where y is the received signal, n is the additive complex Gaussian noise with

distribution Nc

(
0, Ir

)
, and H is the MIMO channel response of size r×t with each

of its element having independent complex Gaussian distribution with zero mean

and unit variance. The transmitted signal vector x is normalized to have a power

constraint given by E
[
‖x‖2

]
= ρ, with ρ representing the average signal to noise

ratio at each receive antenna. With probability one, the MIMO channel matrix H

has rank m equal to the minimum number of the transmit and receive antennas, i.e.

m = min (t, r). The singular value decomposition (SVD) of matrix H is denoted

as H = UH Σ
1
2
H VH

H, where UH ∈ Cr×m and VH ∈ Ct×m are orthonormal column

matrices and ΣH = diag
[
λ1, λ2, · · · , λm

]
is a diagonal matrix with λ1 ≥ λ2 ≥

· · · ≥ λm > 0 representing the sorted eigen-values of matrix HHH.

5.2.2 Finite-Rate Channel State Information Feedback

In this chapter, the channel state information H is assumed to be perfectly

known at the receiver but only partially available at the transmitter through a

finite-rate feedback link of B bits per channel update between the transmitter and

receiver. More specifically, a quantization codebook C =
{
F̂1, · · · , F̂N

}
, which is

composed of unit-norm1 transmit pre-coding matrices, is assumed known to both

the receiver and the transmitter. Based on the channel realization H, the receiver

selects the best code point F̂ from the codebook and sends the corresponding index

1A matrix norm is defined to be the standard Froebinius norm given by ‖A‖ = tr
(
AAH

)
.
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back to the transmitter. At the transmitter, the unit-norm matrix F̂ is employed

as the pre-coding matrix, and the channel model can be represented as

y = H ·
(
F̂ · s

)
+ n, E

[
s · sH

]
= ρ · In . (5.2)

With perfect channel state information available at the transmitter, which

corresponds to the case of infinite feedback rate B = ∞, it is optimal to choose

F = VH P
1
2 as the transmit pre-coding matrix, where VH is the right singular

matrix of H, and the diagonal matrix P represents the optimal water-filling power

allocation matrix given by the following form

P = diag
[
p1, p2, · · · , pm

]
, pi =

(
µ − 1

ρ λi

)†

, 1 ≤ i ≤ m , (5.3)

where “†” is an operation defined as a† = max(a, 0), and µ is a constant coefficient

(water-level) that satisfies
∑m

i=1 pi = 1. When the feedback rate B is limited,

the quantized pre-coding matrix F̂ can also be represented as a product given by

F̂ = V̂H P̂
1
2 , where V̂H represents the quantized sigular matrix and P̂ represents

the quantized power allocation. It is evident that quantizing the power allocation

reduces the bit budget for the finite-rate representation of beamforming matrix

V̂H. Therefore, we focus our attention only on MIMO systems using transmit

pre-coders with equal power allocations among the spatial beams. Furthermore,

in order to compensate the equal power allocation scheme when compared to the

optimal water-filling solution, a multi-mode spatial-multiplexing (MMSM) strategy

was proposed in [26], whose performance was shown to be close to that of systems

using pre-coders with optimal power allocations.

Notice that in practical systems, the channel error and feedback delay

also exist in the reverse link, which will impact the overall system performance.

However, this chapter assumes the feedback is error-free and delay-less, and focuses

solely on the effect of finite-rate quantization of the channel state information.
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5.2.3 Practical Transmit Pre-Coders with Quantized CSIT

Under practical situations, in order to simplify the codebook design com-

plexity or simply reduce the amount of feedback information, a sub-optimal CSI

quantization scheme using orthonormal pre-coding matrix with equal power allo-

cation on each of its spatial beams is utilized in [25]. To be specific, first denote

the following decomposition of matrices UH, ΣH and VH, given by

UH =
[
U U′

]
, VH =

[
V V′

]
, ΣH =


 ΣH,n 0

0 Σ′


 , (5.4)

where U is of size r × n, V is of size t × n, and ΣH,n is of size n × n containing

the first (largest) n eigen-values of HHH with 1 ≤ n ≤ m. For a transmit pre-

coder only using n spatial beams, orthonormal matrix V becomes the channel

quantization objective, and the equivalent MIMO channel can be represented as

y = H ·
(

1√
n

V̂ · s
)

+ n , (5.5)

where V̂ is the quantized pre-coding matrix from codebook C =
{
V̂1, · · · V̂N

}
,

whose elements are orthonormal column matrices of sizes t × n.

When the channel state information is perfectly known at the transmitter,

the system capacity2 by using a n-beam transmit pre-coding scheme with equal

power allocation is given by

Cperf = E
[
Cp

(
H

)]

= E

[
log2 det

(
I +

ρ

n
· VHHH HV

)]
= E

[
log2 det

(
I +

ρ

n
ΣH,n

)]
. (5.6)

When the feedback link is restricted to a finite rate (B bits per channel update),

the system capacity with finite-rate CSI feedback can be represented as

Cquan = E
[
Cq

(
H, V̂

)]
= E

[
log2 det

(
I +

ρ

n
· V̂HHHHV̂

)]
, (5.7)

2The system capacity here refers to the mutual information rate of a specific setting. The actual
capacity without the restriction of equal power allocation among the spatial bemas is presumably larger
than the aforementioned mutual information rate.



107

where the quantized beamforming matrix V̂ is a function of the current channel

realization H, i.e. V̂ = V̂
(
H

)
∈ C. Therefore, the performance of a CSI-feedback-

based MIMO system can be characterized by the system capacity loss CLoss due

to the finite-rate quantization of the CSI. It is defined as the expectation of the

instantaneous capacity loss, i.e.

CLoss = Cperf − Cquan = E
[
CL

(
H, V̂

)]
, (5.8)

where the instantaneous capacity loss CL(H, V̂) is given by the following form

CL

(
H, V̂

)
= Cp

(
H

)
− Cq

(
H, V̂

)

= log2 det
(
I +

ρ

n
ΣH,n

)
− log2 det

(
I +

ρ

n
V̂HVHΣHVH

H V̂
)

. (5.9)

This performance metric was also used in [26] and [27].

5.3 Analysis of MIMO Pre-coders with Quantized CSI

As an extended application of the general distortion analysis provided

in [44] and [45], we provide in this section the performance analysis of a finite-rate

CSI-feedback-based MIMO system using transmit precoding schemes with equal

power allocation on multiple spatial beams.

5.3.1 Formulating the MIMO CSI-Quantizer as A General Vector Quan-

tization Problem

Similar to the case of MISO systems with finite-rate feedback provided

in [53], one can formulate the CSI-feedback-based MIMO system into a fixed-rate

general vector quantization problem by utilizing the framework provided in [45].

To be specific, the source variable to be quantized is the right singular matrix V of

the fading channel response H. It is a complex matrix of size t×n, which contains

kq = 2tn real dimensions. The system distortion function DQ is chosen to be the

instantaneous capacity loss CL given by equation (5.9), whose second order Taylor

series expansion is given by the following lemma.
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Lemma 5 The system distortion function DQ (or CL) can be approximated by the

following second order Taylor series expansion,

DQ

(
V, V̂ ; ΣH,n

)
= log2 det

(
I +

ρ

n
ΣH,n

)
− log2 det

(
I +

ρ

n
ΣH · VH

HV̂V̂HVH

)

≈ 1

ln 2
· tr

(
VH

(
I − V̂ V̂H

)
V · ρ

n
ΣH,n

(
I +

ρ

n
ΣH,n

)−1
)

. (5.10)

Proof: It is noted that the distortion function DQ (or capacity loss CL) given

by equation (5.9) is a real-valued function of complex variable VH. We therefore

utilize the Wirtinger calculous [47] to obtain the complex derivative and complex

Hessian matrix of the distortion function with respect to VH.

Let us first consider a real-valued complex function f(X) given by the

following form

f
(
X; A1, A2

)
= log2 det

(
I + A1X

HA2X
)

, (5.11)

where A1 and A2 are semi-definite complex Hessian matrices. According to the

definitions given in [48], the generalized complex derivative of function f(X) can

be obtained by the following form,

d f =

[
∂

∂ x⋆
f
(
X

)]T

=
1

ln 2
vec

(
A2 X ·

(
I + A1X

HA2X
)−1 · A1

)
, (5.12)

where x = vec
(
X

)
. Furthermore, the complex Hessian matrices of f(X) can also

be obtained as,

Φ f =
∂ d f

∂ x
=

1

ln 2

(
AT

1

(
I + A1X

HA2X
)−T

)

⊗
(
A2 − A2X

(
I + A1X

HA2X
)−1

A1X
HA2

)
, (5.13)

Φ′
f =

∂ d f

∂ x⋆
=

−1

ln 2

((
AT

1

(
I + A1X

HA2X
)−T

XTAT

2

)

⊗
(
A2X ·

(
I + A1X

HA2X
)−1

A1

) )
· P, (5.14)
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where P (of size tn × tn) is a permutation matrix defined as

P =
t∑

r=1

n∑

s=1

Ers ⊗ Esr , (5.15)

where Ers (of size t×n) and Esr (of size n× t) are elementary matrices which have

unity in the (r, s)th or (s, r)th position and all other elements are zero.

The distortion function DQ (or capacity loss CL) given by equation (5.9)

can also be represented as the following form

DQ = CL = f


VH;




ρ
n
ΣH,n 0

0 0


 , It


 − f

(
VH;

ρ

n
ΣH , V̂V̂H

)
. (5.16)

After some manipulations, the complex derivative of function DQ can be obtained

dQ =

[
∂

∂ v⋆
H

DQ

(
VH

)]T
∣∣∣∣∣
VH=V̂H

= 0 , V̂H =
[
V̂, V′

]
, v⋆

H
= vec (VH) ,

(5.17)

Moreover, according to equations (5.13) and (5.14), the Hessian matrices of DQ

can also be obtained as

ΦQ =
∂ dQ

∂ v
H

∣∣∣∣
VH=V̂H

=
1

ln 2


 Σ̃H,n 0

0 0


 ⊗

(
I − V̂ V̂H

)
, (5.18)

and

Φ′
Q =

∂ dQ

∂ v⋆
H

∣∣∣∣
VH=V̂H

= 0 , (5.19)

where matrix Σ̃H,n is given by

Σ̃H,n =
ρ

n
ΣH,n ·

(
I +

ρ

n
ΣH,n

)−1

. (5.20)

It is shown in [48] that a real-valued complex function has the following

second order Taylor series expansion,

DQ(VH) = DQ

(
V̂H

)
+ 2ℜ

[(
v

H
− v̂

H

)H · dQ

]

+ ℜ
[(

v
H
− v̂

H

)H

ΦQ

(
v

H
− v̂

H

)
+

(
v

H
− v̂

H

)
Φ′

Q

(
v

H
− v̂

H

)⋆
]

+ h. o. t ,

(5.21)
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where vector v̂
H

= vec
(
V̂H

)
. By substituting equation (5.17) and (5.18) into the

Taylor series expansion give by (5.21), one can obtain the following result

DQ ≈ 1

ln 2

(
v

H
− v̂

H

)H ·





 Σ̃H,n 0

0 0


 ⊗

(
I − V̂ V̂H

)

 ·

(
v

H
− v̂

H

)

=
1

ln 2
tr

( (
V − V̂

)H

·
(

I − V̂ V̂H

)
·
(

V − V̂
)
· Σ̃H,n

)

=
1

ln 2

(
v − v̂

)H ·
(
Σ̃H,n ⊗

(
I − V̂ V̂H

))
·
(
v − v̂

)
. (5.22)

It can be observed from equation (5.22) that DQ (up to the second order approx-

imation) is a function between V and V̂, which is only parameterized by ΣH,n.

It can be observed from equation (5.10) that the distortion function DQ

between V and V̂ is only parameterized by ΣH,n, under the second order ap-

proximation. The diagonal elements of matrix ΣH,n represent the first n non-zero

eigen-values of matrix HH H. Therefore, the encoder side information in this case

can be denoted as z = ΣH,n of n degrees of freedom.

In contrast to the conventional quantization problems, the source variable

to be quantized in this case is subject to some constraints. First of all, according

to the SVD definition, matrix V has orthonormal column vectors, i.e.

VH V = In , V ∈ Ct×n , (5.23)

which corresponds to n2 independent constrained equations. Furthermore, the

distortion function DQ can also be rewritten in the following form after some

manipulations

DQ

(
V, V̂ ; ΣH,n

)

=
1

ln 2
· tr

( (
I −

(
VHV̂

)
·
(
VHV̂

)H
)
· ρ

n
ΣH,n

(
I +

ρ

n
ΣH,n

)−1
)

. (5.24)

From the above equation, it can be observed that the distortion function DQ

depends only on the matrix product VH V̂ and the encoder side information ΣH,n.

Hence, the distortion function can be denoted as DQ

(
VHV̂ ; ΣH,n

)
. Moveover,
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it also can be shown that DQ is invariant under any unitary rotations on matrix

VHV̂ at the right hand side, i.e.

DQ

(
VHV̂QR ; ΣH,n

)
= DQ

(
VHV̂ ; ΣH,n

)
, (5.25)

where QR is an arbitrary unitary matrix. Suppose matrix product VHV̂ has a

unique R-Q decomposition given by the following form

B = VHV̂ = Rp · Qp , (5.26)

where Qp is a unitary matrix and Rp is an upper triangle matrix with real diagonal

elements. Hence, for any realizations of V (or B), there always exists a unitary

rotation QR = QH

p such that BQR is an upper triangle matrix. Therefore, with out

loss of generality, one can impose on matrix B the following constrained conditions,

such that for points V in the small neighborhood of V̂ matrix B is an upper triangle

matrix with real diagonal elements, i.e.

∡ b i, i = 0 , b i,j
i<j

= 0 , (5.27)

where b i, j is the (i, j)th element of matrix B. Note that the above constraints on V

given in equation (5.27) count for another n2 independent constrained equations.

According to the constraints given by (5.23) and (5.27), there are total

kc = 2n2 independent constrained conditions (equations), and the number of free

dimensions of matrix V reduces to be k′
q =

(
2tn− 2n2

)
. These constrained condi-

tions can be further represented as the following concise manner, which is denoted

as a multi-dimensional real function g(V) given by

g
(
V

)
=

[
gT

1

(
V

)
, gT

2

(
V

)]T

= 0 , (5.28)

where vectors g1

(
V

)
and g2

(
V

)
can be represented by

gi

(
V

)
=

[
gi,1

(
V

)
, gi,2

(
V

)
, · · · , gi,n2

(
V

)]
, i = 1, 2 , (5.29)



112

whose element functions gi,j(·) are given by the following form

g1,(i−1)n+i = vH

i vi − 1 , g2,(i−1)n+i = j
(
vH

i v̂i − v̂H

i vi

)
, 1 ≤ i ≤ n

g1,(i−1)n+k = vH

i vk + vH

k vi , g2,(i−1)n+k = j
(
vH

i vk − vH

k vi

)
, 1 ≤ i < k ≤ n

g1,(i−1)n+k = vH

i v̂k + v̂H

k vi , g2,(i−1)n+k = j
(
vH

i v̂k − v̂H

k vi

)
, 1 ≤ k < i ≤ n.

(5.30)

In the above equation, vectors vi and v̂i are the ith column of matrices V =[
v1, · · · ,vn

]
and V̂ =

[
v̂1, · · · , v̂n

]
respectively.

5.3.2 High-Resolution Distortion Analysis

In most communication problems, the CSI is usually represented as a

complex vector or complex matrix. However, the high-resolution analysis provided

in [44] and [45] is only suitable for real vectors. Hence, in most of the cases, the

complex CSI is first converted to real vectors by expanding its real and imaginary

parts. Fortunately, in some special cases including the MIMO CSI quantization

problem investigated in this section, the distortion analysis can be performed in the

complex domain directly. A detailed distortion analysis of finite-rate quantization

of complex source variables is provided in Section 2.7, which includes the necessary

and sufficient conditions that guarantee a concise distortion analysis in the complex

domain.

According to the second order Taylor series expansion (5.10) provided in

Lemma 5, distortion function DQ can also be represented by the following form

DQ

(
V, V̂ ; ΣH,n

)
=

(
v − v̂

)H · W
(
V̂ ; ΣH,n

)
·
(
v − v̂

)
(5.31)

where the (complex) unconstraint sensitivity matrix W
(
V̂ ; ΣH,n

)
is given

W
(
V̂ ; ΣH,n

)
=

1

ln 2
Σ̃H,n ⊗

(
I − V̂ V̂H

)
, Σ̃H,n =

ρ

n
ΣH,n ·

(
I +

ρ

n
ΣH,n

)−1

.

(5.32)

In order to obtain the constrained sensitivity matrix, the derivative of the

constrained equation g(·) needs to be derived. First of all, it is clear that g(·) given
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in equation (5.30) is a multi-dimensional real function of size 2n2 × 1. According

to the method of Wirtinger calculus [48], we can first obtain the following partial

derivative of function g(·) w.r.t. vector v∗,

∂

∂ v∗
g1(V)

∣∣∣∣
V=V̂

=
(
I + P

)
·
(
In ⊗ V̂T

)
, (5.33)

∂

∂ v∗
g2(V)

∣∣∣∣
V=V̂

= j
(
I − P

)
·
(
In ⊗ V̂T

)
, (5.34)

where P ∈ Rn2×n2
is a sparse matrix with its elements given by

p (i−1)n+k, m =





1 for m = (k − 1)n + i & i < k ,

0 otherwise ,
(5.35)

where 1 ≤ i, k ≤ n and 1 ≤ m ≤ n2. After similar manipulations, the partial

derivative of g(·) w.r.t. vector v can also be obtained, which is given by

∂

∂ v
g1(V)

∣∣∣∣
V=V̂

=
(
I + P

)
·
(
In ⊗ V̂H

)
, (5.36)

∂

∂ v
g2(V)

∣∣∣∣
V=V̂

= −j
(
I − P

)
·
(
In ⊗ V̂H

)
. (5.37)

Therefore, by defining ṽ =
[
vT, vH

]T

and ṽ′ =
[
−vT, vH

]T

, the partial derivatives

of function g(·) w.r.t. vectors ṽ and ṽ′ can be obtained as the following form

∂

∂ ṽ
g1(V)

∣∣∣∣
V=V̂

=
(
I + P

)
·
[
−

(
In ⊗ V̂H

) (
In ⊗ V̂T

) ]
, (5.38)

∂

∂ ṽ
g2(V)

∣∣∣∣
V=V̂

= j
(
I − P

)
·
[
−

(
In ⊗ V̂H

) (
In ⊗ V̂T

) ]
, (5.39)

which satisfies the necessary and sufficient condition give by equation (2.109) in

Section 2.7.2. According to Proposition 2, the constrained sensitivity matrix of

the CSI-quantized MIMO system is given by

Wc

(
V̂ ; ΣH,n

)
= VH

2 · W
(
V̂ ; ΣH,n

)
· V2 , (5.40)

where matrix W
(
V̂ ; ΣH,n

)
is the unconstrained sensitivity matrix given by equa-

tion (5.32), and V2 is an orthonormal matrix with its columns constituting an

orthonormal basis of the null space N
(

∂
∂ v

g1(v)
)
, which is given by

V2 = In ⊗ V̂2 , (5.41)
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with V̂2 being an orthonormal matrix with its columns constituting an orthonormal

basis of the null space N
(
V̂H

)
. After some manipulations, it can be shown that

the constrained sensitivity matrix can be represented by the following form,

Wc

(
V̂ ; ΣH,n

)
=

1

ln 2
Σ̃H,n ⊗ I(t−n) . (5.42)

By substituting equation (5.42) into the hyper-ellipsoidal approximation given by

(2.110), the optimal inertial profile is tightly lower bounded by the following form

Ĩc,opt

(
V̂ ; ΣH,n

)
=

(tn − n2) ·
∣∣∣Σ̃H,n

∣∣∣
1/n

ln 2 · (tn − n2 + 1) · γ1/(tn−n2)
0

, (5.43)

where γ0 is a constant given by

γ0 =
πtn−n2

(tn − n2)!
. (5.44)

It can be observed from equations (5.42) and (5.43) that the constrained sensitivity

matrix as well as its corresponding normalized inertial profile are independent of

the location V̂.

When the elements of the channel matrix H are assumed to have i.i.d.

complex Gaussian distributions, it is shown in [49] that matrix V is independent

of the side information ΣH,n. According to the definition, matrix V belongs to the

set of all t×n (t ≥ n) complex matrices with orthonormal columns, which is called

the complex Stiefel manifold, denoted as Vn,t =
{
V : VHV = In

}
. The volume of

the complex Stiefel manifold is found in [54], which is given by

Vol
(
Vn,t

)
=

∫

Vn,t

dV =
2nπnt

Γ̃n(t)
, (5.45)

where Γ̃n(·) is the complex multivariate gamma function given by Γ̃n(t) = πn(n−1)/2
∏n

k=1 Γ(t−
k + 1). Therefore, for random matrix V uniformly distributed over Vn,t, the joint

density function for V is simply given by the following form

p
(
V

)
= Vol

(
Vn,t

)−1
, V ∈ Vn,t . (5.46)

Since we are interested in the case of constrained source variables, where

V is subject to constrained condition (5.30), the joint density function given by
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(5.46) can not be directly applied. If we denote the constrained source space by

Q, then the complex Stiefel manifold Vn,t can be represented by expanding space

Q under a unitary rotation QR, given by

Vn,t =
{
V · QR : V ∈ Q, QR ∈ Vn,n

}
. (5.47)

Therefore, the probability density function of the constrained source V variable is

given by the following form

p
(
V

)
=

∫

Vn,n

Vol
(
Vn,t

)−1
dQR =

(t − 1)̃!

πtn−n2(t − n − 1)̃! (n − 1)̃!
, (5.48)

where we define k!̃ ,
∏k

i=1 i!.

Therefore, by substituting the obtained pdf given by (5.48) into the defi-

nition of the average inertial profile given by (2.36), the average normalized inertial

profile of the CSI-quantized MIMO system can be obtained as

Ĩw
c,opt

(
V ; ΣH,n

)
=

(tn − n2) · β1

ln 2 · (tn − n2 + 1) · γ1/(tn−n2)
0

, (5.49)

where the constant coefficient β1 is given by

β1 = E

[∣∣∣Σ̃H,n

∣∣∣
1/n

]
= E




(
n∏

i=1

ρ λi/n

1 + ρ λi/n

)1/n

 , (5.50)

where λ1, · · · , λn are the largest n eigenvalues of matrix HH H. Finally, the asymp-

totic distortion (or the system capacity loss) of a finite-rate CSI-quantized MIMO

system with spatially equal power allocated transmit beamforming scheme is given

by the following form

CLoss = D ≥ D̃Low

=

(
(tn − n2) · β1

ln 2 · (tn − n2 + 1)
·
((tn − n2)! (t − n − 1)̃! (n − 1)̃!

(t − 1)̃!

) 1
tn−n2

)
· 2−

B

tn−n2 .

(5.51)

The optimal point density function λ∗ (V) that achieves the minimal system dis-

tortion is a uniform distribution, which is given by

λ∗ (V) =
(t − 1)̃!

πtn−n2(t − n − 1)̃! (n − 1)̃!
, for V ∈ Vn,t & g

(
V

)
= 0 .

(5.52)
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5.3.3 Interesting Observations of the Distortion Lower Bounds

Based on the expressions of the average distortion lower bound D̃Low given

by (5.51), the following observations can be made.

1. MIMO system with finite-rate CSI feedback using quantized transmit beam-

forming scheme is a special case of the analysis provided in Section 5.3.2. In

this case, n = 1 and V ∈ Ct×1 is the dominant eigenvector of HH H. The

average system distortion can be lower bounded by

D̃BF
Low =

(
(t − 1) · β2

ln 2 · t

)
· 2− B

t−1 , β2 = E

[
ρ λ1

1 + ρ λ1

]
, (5.53)

where λ1 is the largest eigenvalue of matrix HH H. By utilizing the statistical

properties of the largest eigenvalues of a central Wishart matrix given in [55],

coefficient β2 can be expressed in a closed-form expression.

To be specific, it was shown in [55] that when the elements of the channel

matrix H are i.i.d. complex Gaussian distributed with zero mean and unit

variance, the probability density function of the maximum eigenvalue λ1 of

the Wishart matrix HH H is given by the following form

fλ1(u) =
1∏m

i=1 (m − i)! (l − i)!
· d

d u
det

(
S(u)

)
, (5.54)

where m = min(t, r) and l = max(t, r). Matrix S(u) is an m × m Hankel

matrix with its (i, j)th element given by Si,j(u) = Γ(l − m + i + j − 1, u),

where the incomplete gamma function Γ(k + 1, u) for k = 0, 1, 2, · · · , and

u > 0 has the representation

Γ(k + 1, u) =

∫ u

0

xk exp(−x) d x = k!

(
1 − e−u

k∑

i=0

ui

i!

)
. (5.55)

The density function fλ1(u) can be written as a finite linear combination of

elementary gamma pdfs, i.e.

fλ1(u) =
m∑

i=1

(l+m)i−2i2∑

j=l−m

di,j

(
ij+1 · uj · e−iu

j!

)
, (5.56)
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where di,j is given by

di,j =
j! · ci,j

ij+1 ·
( ∏m

i=1 (m − i)! (l − i)!
) , (5.57)

and ci,j is the coefficient of in front of term e−iu uj when expanding the

matrix determinant
∣∣S(u)

∣∣. By substituting the density function fλ1(u) into

the expectation of β2, one can obtain the following result

β2 =

∫ ∞

0

(
ρ u

1 + ρ u

)
fλ1(u) d u

=
m∑

i=1

(l+m)i−2i2∑

j=l−m

di,j ·
(

(j + 1) · ρ
i

)
· 2F0

(
j + 2, 1; ; −ρ

i

)
. (5.58)

As a special case of a 2 × 4 MIMO system with t = 4, r = 2, β2 is given by

the following form

β2 = ρ ·
(

12 2F0

(
4, 1; ; −ρ

)
− 24 2F0

(
5, 1; ; −ρ

))
+ 20 2F0

(
6, 1; ; −ρ

)

−3

4
2F0

(
4, 1; ; −ρ

2

)
− 3

4
2F0

(
5, 1; ; −ρ

2

)
− 5

16
2F0

(
6, 1; ; −ρ

2

) )
.

(5.59)

2. MISO system with t transmit antennas and single receive antenna is an even

more special case, i.e. r = n = 1, where the average system distortion reduces

to be the following form

D̃MISO
Low =

(
t − 1

ln 2
· 2F0

(
t + 1, 1; ; −ρ

)
· ρ

)
· 2− B

t−1 . (5.60)

This result is consistent to the analysis provided in [26] and [45].

3. In high-SNR regimes, β1 → 1 and the average system distortion can be

represented by

D̃H-SNR
Low

=

(
tn − n2

ln 2 · (tn − n2 + 1)

((tn − n2)! (t − n − 1)̃! (n − 1)̃!

(t − 1)̃!

) 1
tn−n2

)
· 2−

B

tn−n2

(5.61)
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It can be shown that in high-SNR regimes, the average distortion (or system

capacity loss) of a t× r MIMO system using a precoder with n beams (with

equal power allocation) is exactly the same as that of the same system using

a precoder with (t − n) beams. This means that for a MIMO system with

t transmit antennas, quantizing the first n singular vectors (matrix V) is

equivalent to quantizing the rest (t − n) singular vectors (matrix V2). In

another word, quantizing the orthonormal matrix V under the constrained

condition given by (5.30) is the same as quantizing the projection matrix

VVH (or V2V
H

2 ) with 2(tn − n2) degrees of freedom.

4. The average system distortion decreases exponentially with a factor of 2−B/(tn−n2),

where the exponential component is inverse proportional to the degrees of

freedom of the source variable to be quantized, which is equal to (2tn− n2).

It is interesting to note that the MIMO system has the maximum number

of free parameters to quantize when the number of spatial beams used by

the transmit pre-coders equals to half of the transmit antennas, i.e. n = t/2,

but not the minimal number of the transmit and receive antennas min(t, r).

When n = t/2, the average system distortion function give by equation (5.51)

has the minimal exponential slope 2−2B/n2
.

5.3.4 Analysis of CSI-Quantizers using Mismatched High-SNR and

Low-SNR Codebooks

Revisit of the Codebook Design of the Transmit Pre-coding Matrices

In order to obtain an in-depth understanding of MIMO CSI-quantizers

using various codebooks, let us recall some codebook design criterions proposed

in [26]. First of all, a generalized mean squared weighted inner product (MSwIP)

criterion was proposed in the context that it minimizes the system capacity loss.

This criterion can be represented by the following form

max
C,Q

E

[∥∥∥V̂HV · Σ̃
1
2
H,n

∥∥∥
2
]

, V̂ = Q(H) , (5.62)
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where the maximization is w.r.t. to both the codebook C as well as the encoder

algorithm Q. It is not hard to show that the codebook design criterion given by

(5.62) is equivalent to the following criterion

max
C,Q

E

[
tr

( (
I −

(
VHV̂

)
·
(
VHV̂

)H
)
· Σ̃H,n

)]
, V̂ = Q(H) , (5.63)

which is directly related to the distortion function DQ considered in this chapter

given by equation (5.10).

A drawback of the generalized MSwIP design method is that the codebook

is optimized for a particular system SNR ρ. Multiple codebooks are needed for

MIMO systems operating in an environment with a wide SNR range. Therefore,

two alternative codebook design criterions were also proposed in [26], which do not

depend on the system SNR. The first design criterion is called high-SNR criterion,

where ρ → ∞ and Σ̃H,n → In. The optimized high-SNR codebook is designed to

maximize the following expectation

max
C,Q

E
[∥∥V̂HV

∥∥2
]

, V̂ = Q(H) , (5.64)

which is related to the following high-SNR distortion function

DH-snr
Q

(
V, V̂

)
=

1

ln 2
· tr

(
VH

(
I − V̂ V̂H

)
V

)
. (5.65)

Similarly, in the low-SNR regimes, ρ → 0 and Σ̃H,n → ρ
n
ΣH,n. Hence, the low-SNR

codebook design criterion is given by

max
C,Q

E
[∥∥V̂HV · Σ

1
2
H,n

∥∥2
]

, V̂ = Q(H) , (5.66)

which is again is related to the following low-SNR distortion function

DL-snr
Q

(
V, V̂ ; ΣH,n

)
=

1

ln 2
· tr

(
VH

(
I − V̂ V̂H

)
V · ρ

n
ΣH,n

)
. (5.67)

Mismatched Analysis of High-SNR and Low-SNR Codebooks

By utilizing the mismatched analysis provided in Section 2.4, we pro-

vide in this subsection a distortion (or capacity) analysis of MIMO CSI-quantizers
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using high-SNR and low-SNR codebooks. First, by the extending the second or-

der expansion results given by (5.42), the complex constrained sensitivity matrix

WH-snr
c

(
V ; ΣH,n

)
, which corresponds to distortion function DH-snr

Q given by (5.65),

can be represented by the following form in high-SNR regimes,

WH-snr
c

(
V ; ΣH,n

)
=

1

ln 2
· Itn−n2 . (5.68)

By substituting the mismatched (high-SNR) sensitivity matrix (5.68) into equation

(2.67), the mismatched inertial profile of the high-SNR codebook can be obtained

as

ĨH-snr
mis-D

(
V ; Σ̃H,n

)
=

(tn − n2) · tr
(
Σ̃H,n

)

ln 2 · (tn − n2 + 1) · n · γ1/(tn−n2)
0

. (5.69)

Moreover, since the optimal point density given by (5.52) is a uniform distribution

that does not depend on the system SNR, there is not point density mismatch

for quantizers using the high SNR codebook. Finally, by substituting equation

(5.69) and (5.52) into the distortion integral given by (2.70), the average system

distortion of a MIMO CSI quantizer using high-SNR codebook is given by

D̃H-snr
mis =

(
(tn − n2) · β3

ln 2 · (tn − n2 + 1)

((tn − n2)! (t − n − 1)̃! (n − 1)̃!

(t − 1)̃!

) 1
tn−n2

)
2
− B

tn−n2 ,

(5.70)

where coefficient β3 is given by

β3 = E

[
1

n

n∑

i=1

ρ λi/n

1 + ρ λi/n

]
. (5.71)

By utilizing similar derivations, the low-SNR constrained sensitivity ma-

trix can also be obtained

WL-snr
c

(
V ; ΣH,n

)
=

ρ

ln 2 · n · ΣH,n ⊗ It−n , (5.72)

which leads the following mismatched inertial profile

ĨL-snr
mis-D

(
V ; Σ̃H,n

)
=

(tn − n2) ·
∣∣∣ ρ
n
ΣH,n

∣∣∣
1/n

· tr
(
I + ρ

n
ΣH,n

)−1

ln 2 · (tn − n2 + 1) · n · γ1/(tn−n2)
0

. (5.73)
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Once again, by substituting equation (5.73) and (5.52) into the distortion integral

(2.70), the average system distortion of a MIMO CSI quantizer using low-SNR

codebook is given by

D̃L-snr
mis =

(
(tn − n2) · β4

ln 2 · (tn − n2 + 1)

((tn − n2)! (t − n − 1)̃! (n − 1)̃!

(t − 1)̃!

) 1
tn−n2

)
2
− B

tn−n2 ,

(5.74)

where coefficient β4 is given by

β4 = E




(
n∏

i=1

ρ

n
λi

)1/n

·
(

1

n

n∑

i=1

1

1 + ρ λi/n

)
 . (5.75)

As a direct results of the above mismatched analysis, MIMO CSI-quantizers

using mismatched high-SNR and low-SNR codebooks give rise to the following per-

formance losses:

LH-snr =
D̃H-snr

mis

D̃Low

=
β3

β1

, LL-snr =
D̃L-snr

mis

D̃Low

=
β4

β1

. (5.76)

The performance losses LH-snr and LL-snr defined in (5.76) can be viewed as a capac-

ity penalty by using the mismatched high-SNR and low-SNR codebooks instead of

the optimal codebook designed to match a specific SNR point. Both losses can be

shown to be greater than one, i.e. LH-snr, LL-snr ≥ 1, and are independent of the

quantization resolution (feedback rate) B.

5.3.5 Analysis of MIMO Pre-Coding Schemes with Multi-Mode spatial

Multiplexing Strategy

In order to compensate the degradations due to the equal power allocation

among the spatial beams used by the transmit pre-coder, the multi-mode spatial

multiplexing (MMSM) scheme was proposed in [26], where the number of active

spatial beams adopted by the transmitter is adjusted adaptively accordingly to the

current system SNR. As an example, we plot in Fig. 5.1 the normalized capacity

of a 4 × 3 MIMO system (t = 4, r = 3) over i.i.d. fading channels with finite-rate

CSI feedback of B = 8 bits per channel update. The normalized MIMO capacity
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is defined to be the ratio of the system capacity with quantized CSI to that of a

system using optimal transmit pre-coder with ideal CSI at the transmitter. The

proposed multi-mode transmission strategy is employed for the simulation, where

the MIMO transmit precoder used for each mode has n active spatial beams with

equal power allocation. For this particular case, there are total min(t, r) = 3

modes available for the current MIMO system, i.e. 1 ≤ n ≤ 3. The codebooks

of the CSI quantizer used at each mode are generated by the so-called generalized

mean-squared weighted inner-product (MSwIP) criterion proposed in [26]. It can

be observed from Fig. 5.1 that by switching the modes based on the SNR, one can

therefor make the best of each modes and the system capacity of using the MMSM

scheme is the maximum capacity of all the available modes.
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Figure 5.1: Normalized system capacity of a 4 × 3 MIMO system (t = 4, r = 3)

over i.i.d. Rayleigh fading channels with finite-rate CSI feedback (B = 8), and

using multi-mode spatial multiplexing transmission schemes.
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As a direct result of the high-rate analysis obtained in Section 5.3.4, the

system capacity of a t×r MIMO system with finite-rate CSI feedback of B bits per

channel update, and using MMSM transmission scheme with high-SNR codebooks

can be represented by the following form

CMMSM = max
1≤n≤min(t,r)

(
E

[
n∑

i=1

log2

(
1 +

ρ

n
λi

)]
− αn · 2−

B

tn−n2

)
, (5.77)

where αn is a coefficient that depends on t, r, n and ρ, which is given by

αn(ρ) =
(tn − n2) · β3

ln 2 · (tn − n2 + 1)
·
((tn − n2)! (t − n − 1)̃! (n − 1)̃!

(t − 1)̃!

) 1
tn−n2

, (5.78)

with β1 given by equation (5.71). Consequently, for a particular operating SNR of

the system, which is assumed to change at a much slower rate than the channel

itself, the best transmission mode is given by

nopt = arg max
1≤n≤min(t,r)

(
E

[
n∑

i=1

log2

(
1 +

ρ

n
λi

)]
− αn · 2−

B

tn−n2

)
. (5.79)

Based on the analysis result of the MMSM pre-coder given by (5.77) and (5.79),

the boundary points of the mode transitions (such as ρT,1 and ρT,2 in Fig. 5.1) can

be calculated analytically without actual simulations.

5.4 Numerical and Simulation Results

5.4.1 High-Rate Capacity Analysis

Some numerical experiments are now presented to provide a better feel

for the utility of the distortion analysis. Fig. 5.2 shows the capacity loss due to the

finite-rate quantization of the CSI versus feedback rate B for a 4×2 MISO system

(t = 4, r = 2) over i.i.d. Rayleigh fading channels under different system SNRs

at ρ = −10, 0 and 20 dB, respectively. The transmit precoder used for the MIMO

system has n = 2 spatial beams with equal power allocations. The codebook of the

CSI quantizer is generated the generalized mean-squared weighted inner-product

(MSwIP) criterion [26]. The distortion lower bounds D̃Low given by equation (5.51)
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Figure 5.2: Capacity loss versus CSI feedback rate B of a 4 × 2 MIMO system

(t = 4, r = 2 and n = 2) over i.i.d. Rayleigh fading channels and with signal to

noise ratio ρ = −10, 0 and 20dB.

are also included in the plot for comparisons. It can be observed from the plot that

the proposed distortion (or system capacity loss) lower bounds are tight and predict

very well the actual system capacity loss obtained from Monte Carlo simulations.

5.4.2 Analysis of Mismatched High-SNR and Low-SNR Codebooks

In order to understand the performance degradation caused by the mis-

matched CSI-quantizers using high-SNR and low-SNR codebooks, we plot in Fig. 5.3

the performance losses LH-snr and LL-snr versus the system SNR ρ of a 4×3 MIMO

system (t = 4, r = 3) with finite-rate CSI feedback of B = 8 bits per channel

update. The performance loss LH-snr and LL-snr) represents the ratio of the aver-
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Figure 5.3: Performance losses (LH-snr and LL-snr) versus signal to noise ratio ρ of

a 4×3 MIMO system (t = 4, r = 3, and n = 2 over i.i.d. Rayleigh fading channels

with feedback rate B = 8 bits per channel update.

age system distortion of a mismatched quantizer to that of the optimal quantizer,

whose definition is given by equation (5.76). The transmit pre-coder used for the

MIMO system has n = 2 spatial beams with equal power allocations. The code-

book of the CSI quantizer is also generated the generalized MSwIP criterion. For

comparison purpose, the ratios of the distortion bounds, i.e. D̃H-snr
mis /D̃Low and

D̃L-snr
mis /D̃Low, are also included in the plot. It can be observed from Fig. 5.3 that

the obtained performance losses (or system distortion ratios) agree well with the

simulation results.
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Figure 5.4: Normalized system capacity of a 4×3 MIMO system (t = 4, r = 3) over

i.i.d. Rayleigh fading channels with feedback rate B = 8 bits per channel update,

and using multi-mode spatial multiplexing (MMSM) transmission schemes.

5.4.3 Performance of Multi-Mode spatial Multiplexing Schemes

In order to see the utility of the proposed distortion analysis to MIMO

systems using multi-mode spatial multiplexing transmission schemes, we demon-

strate in Fig. 5.4 the normalized capacity of the same 4× 3 MIMO system (t = 4,

r = 3), which is described in Section 5.3.5, over i.i.d. Rayleigh fading channels with

B = 8 bits CSI feedback. The MIMO pre-coder again employs the MMSM scheme,

with total three modes available (n = 1, 2, 3). Both the capacity analysis given by

equation (5.77) as well as the results obtained from Monte Carlo simulations are

shown in Fig. 5.4. It can be observed from the plot that the proposed capacity

analysis closely matches the simulation results, where the two curves almost fall
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Figure 5.5: Normalized system capacity of a 4 × 3 MIMO system (t = 4, r = 3)

over i.i.d. Rayleigh fading channels using MMSM transmission scheme, and with

several different CSI feedback rate (B = 1, 3, 5, 8 bits per channel update).

on top of each other.

We also demonstrate in Fig. 5.5 the analytical results of the normal-

ized system capacity of the same 4 × 3 MIMO system using MMSM transmission

schemes but with different rate of CSI feedback of B = 1, 3, 5, 8 bits per channel

update. For the sake of comparison, we also include in the plot the normalized

capacity of MIMO system with no CSI feedback, which corresponds to the case

where no CSIT is available and the MIMO transmitter sends independent data

stream on each of its antennas with equal power allocations. It can observed from

Fig. 5.5 that the system capacity improves significantly as the feedback rate B

increases. To be specific, we can see that with a feedback rate of B = 8 bits, a
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4 × 3 MIMO system with MMSM scheme can almost achieve %90 of the capacity

of a system with ideal CSIT. Compared with the total free dimensions of the orig-

inal CSI information H, which is 24, only 1/3 bits per dimension is needed for a

properly designed MIMO CSI feedback scheme. Therefore, as a rough conclusion,

in order to achieve a performance in terms of capacity close to that of systems

with ideal CSIT, only limited CSI feedback rate per dimension is required.

5.5 Summary

This chapter employs a high resolution quantization framework to study

the effects of finite-rate quantization of the channel state information (CSI) on the

performance of MIMO systems over i.i.d. Rayleigh flat fading channels. Specifi-

cally, tight lower bounds on the capacity loss of MIMO systems due to the finite-

rate channel quantization were provided. The obtained analytical results reveal an

interesting fact that the system capacity loss decreases exponentially as the ratio

of the quantization rate to the total number of degrees of freedom of the channel

state information to be quantized. Moreover, MIMO CSI-quantizers with mis-

matched codebooks that only optimized for high-SNR and low-SNR regimes were

investigated. The performance analysis of the sub-optimal CSI-quantizer analyti-

cally quantifies the penalties caused by the mismatched codebooks. As a further

application of the obtained distortion analysis, the performance of MIMO systems

using multi-mode spatial multiplexing transmission schemes with finite-rate CSI

feedback were also provided. Finally, numerical and simulation results were pre-

sented which confirm the tightness of theoretical distortion bounds. The text of

this chapter is in part a reprint of the paper which was coauthored with Bhaskar D.

Rao and has been accepted in Proceedings of IEEE Asilomar Conference 2006, and

will be submitted for publication in IEEE Transactions on Signal Processing un-

der the title “Analysis of MIMO systems with finite-rate channel state information

feedback”.



6 Capacity Analysis of MIMO

Systems with Unknown Channel

State Information

6.1 Motivation

In order to meet the increasing demands of high speed data services re-

quired by next-generation communication systems, considerable effort is being ex-

pended to develop advanced system architectures and algorithms that can support

high data rate communications. Using multiple antennas at both the transmitter

and the receiver is one of the most promising techniques that can offer signifi-

cant increases in channel capacity of a communication system in a wireless fading

environment [2, 3, 5, 56]. However, the capacity gains reported are based on the

assumption that the fading channel coefficients between each transmit and receive

antenna pairs are perfectly known at the receiver at no cost, which is not a rea-

sonable assumption for most practical communication systems especially for fast

fading channels.

Recently, several researchers have considered the capacity of non-coherent

fading channels, where neither the transmitter nor the receiver has channel state

information. Abou-Faycal et al. provide in [57] that the capacity achieving distri-

bution for the single-input single-output (SISO) unknown fading channel is discrete

and with a finite number of mass points. Lapidoth and Moser provide in [58] the

129
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asymptotically tight upper and lower capacity bounds for this unknown SISO chan-

nel and Chen et al. provide in [59] the optimal input distribution for the unknown

Gaussian Markov channel. Marzetta and Hochwald provide in [6] the capacity

analysis of an unknown block fading MIMO channel with a finite coherent time

interval T . They showed that there is no benefit in making the number of transmit

antennas M greater than the length of the coherent time T , and that the capacity

is achieved when the T × M transmitted signal matrix is equal to the product of

two statistically independent matrices: a T × T isotropically distributed unitary

matrix and a T ×M random diagonal matrix with real, nonnegative diagonal ele-

ments. Zheng and Tse [7] extend the SISO asymptotic results to the MIMO case,

and compute the asymptotic capacity of the non-coherent MIMO channel at high

signal to noise ratios in terms of M,N and T and show that the capacity gain is

M⋆(1−M⋆/T ) bits per second per hertz for every 3-dB increase in SNR, where the

optimal number of transmit antennas is M⋆ = min(M,N, ⌊T/2⌋). Furthermore,

Liang and et al. study in their recent paper [60] the non-coherent channel capacity

for time-selective fading channels, and provide the asymptotic first order term of

the high SNR expansion of the capacity.

All the theoretical analysis so far provides the fundamental transmission

limits of the non-coherent channel, which shed interesting insight into what is feasi-

ble. However, in practice finding the optimal input distribution to achieve capacity

is an involved task which requires difficult numerical optimization. Furthermore,

the known block fading signaling schemes for non-coherent MIMO channels gen-

erally fall into into two categories: MIMO differential modulation [61]– [63] and

unitary space-time modulation (USTM) scheme [64]– [70]. Both of these schemes

cannot approach the non-coherent MIMO capacity limit due to their suboptimal

code structure and in the later case (USTM) only achieves asymptotic (or the

diversity) optimality in high SNR regimes and suffers from exponential decoding

complexity. Therefore, we adopt a more pragmatic approach and focus on systems

that are able to take advantages of the existing channel estimation algorithms
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and the powerful forward error correction coding techniques, like turbo or LDPC

codes. In this context, Hassibi and Hochwald propose in [71] a channel model that

separates one coherent block into two phases: training and data. Based on the

two phase channel model, as well as by applying the MMSE channel estimation

algorithm, they provide a capacity lower bound for the unknown MIMO channel.

Through the analysis of the proposed capacity lower bound, they demonstrate how

training affects the capacity and show that the optimal number of training symbols

is equal to Tτ = M when the training and data powers are allowed to vary.

The capacity lower bound provided in [71] assumes the channel estima-

tion (linear minimal mean square error (LMMSE) channel estimator) is obtained

by only using the training symbols, and therefore does not make use of the chan-

nel information contained in the received data symbols. Consequently, the lower

bound is pessimistic. Our aim in this chapter is to develop an improved lower

bound that better represents the system capacity behavior and to carry out opti-

mization over the different system parameters to further extend and confirm the

observations made in [71]. To this end, we first propose a mutual information up-

per bound for the unknown MIMO channel under the assumption that the input

distribution is restricted to a certain structure and form but without assuming

any specific channel estimation algorithm. The proposed upper bound is shown

to have a fast convergence rate to the system mutual information as the number

of transmit antennas M increases, and then becomes an improved capacity lower

bound of the unknown MIMO channel. Through the analysis of the mutual in-

formation upper bounds (or the improved capacity lower bounds) with respect to

different system parameters, we show that the orthogonal pilots structure not only

minimizes the mean square estimation error, but also maximizes the mutual infor-

mation rate upper bound. We also prove that the mutual information upper bound

is a monotonically decreasing function with respect to the number of pilot symbols

Tτ . Furthermore, numerical evaluation of the upper bounds also show that there

is an insignificant rate increment when Tτ decreases below the number of transmit
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antennas M . By setting the number of pilot symbols Tτ equal to M , which is a

good trade-off point between achievable capacity and system complexity, we show

that there is no benefit in making the number of transmit antennas M greater than

N . Numerical results also show that there is an insignificant amount of rate gain

by utilizing optimal power allocations between pilot and data symbols compared

to equal power allocation schemes in moderate to high signal to noise ratio (SNR)

ranges.

6.2 System Model

Figure 6.1: MIMO system model composed of M transmit antennas and N receive

antennas

We consider a MIMO system with M transmitter antennas and N receive

antennas, signaling through a frequency flat fading channel with i.i.d channel co-

efficient between each transmit and receive antenna pairs. The system model is
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illustrated in Fig. 6.1. Furthermore, the MIMO channel is assumed to be block

fading, where the fading coefficient H remains static within a coherent time inter-

val of T symbol periods, and varies independently from one coherent time block

to another. Hence, the signal model can be written in the following form

Y = X · H + w , (6.1)

where Y is a T × N received complex signal matrix, X is a T × M transmitted

complex signal matrix, H a M × N complex channel matrix, and w is a T × N

matrix of additive Gaussian noise. Both matrix H and w have zero mean unit

variance independent complex Gaussian entries. We also assume that the entries

of the transmitted signal matrix X have the following average power constraint,

1

T
· E

[
tr

(
XHX

)]
= ρ , (6.2)

where ρ is the average received signal to noise ratio at each receive antenna. Ac-

cording to the above non-coherent MIMO fading channel setup (6.1), the channel

transitional probability (or the conditional probability density of the received sig-

nal Y given the transmitted signal X) is given by [6],

p
(
Y

∣∣X
)

=

exp

(
− tr

{[
IT + XXH

]−1

· YYH

})

πTN detN
[
IT + XXH

] . (6.3)

Therefore, the capacity (or the maximum mutual information rate) of the unknown

MIMO channel can be represented as the following optimization problem,

C = max
p(X)∈Pρ

1

T
I(X;Y) , Pρ =

{
p(X)

∣∣∣E
[
tr

(
XHX

)]
/T ≤ ρ

}
. (6.4)

It was shown in [6] that the capacity of the unknown channel described in equation

(6.4) is achieved when the T × M transmitted signal matrix X is equal to the

product of two statistically independent matrices: a T ×T isotropically distributed

unitary matrix and a certain T × M random matrix that is diagonal, real, and

nonnegative. However, finding the optimal input distribution is an involved task.

Furthermore, there are no known space-time codes that can approach this capacity.
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Figure 6.2: Transmitted symbol structure of the MIMO system

In this chapter, we restrict our attention to a conventional MIMO sys-

tem with the input signal matrix having a two-phase (training followed by data)

structure proposed and utilized for capacity analysis in [71]. The symbol structure

of the transmitted signal X is illustrated in Fig. 6.2, where the first p symbols are

training pilots, followed by (TM − p) data symbols. For the sake of simplicity, we

only consider the case where the pilot numbers p = Tτ ×M , a multiple of the num-

ber of transmit antennas M . Hence, the transmitted signal X can be separated

into two sub-matrices: training followed by data, which is represented as

X =




(
ρτ/M

) 1
2 · Sτ

(
ρd/M

) 1
2 · Xd


 , (6.5)

where Sτ is the fixed pilot symbols and Xd is the information bearing data symbols,

whose structures are given by

Sτ =
[
sH
1 , · · · , sH

Tτ

]H
, Sτ ∈ CTτ×M ,

Xd =
[
x1

H , · · · ,xTd

H
]H

, Xd ∈ CTd×M . (6.6)
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Conservation of time and energy leads to the following constraints,

tr
(
SH

τ · Sτ

)
= MTτ , EXd

[
tr

(
Xd

H · Xd

)]
= MTd ,

T = Tτ + Td, ρT = ρτTτ + ρdTd . (6.7)

In the following sections, we provide analysis of the system mutual information

rate (or system capacity) based on the two-phase input signal structure described

above.

6.3 Improved Capacity Lower Bound of Unknown MIMO

Channels

6.3.1 Upper Bound of System Mutual Information Rate

The non-coherent nature of the MIMO fading channel imposes great chal-

lenge in measuring the system capacity and we therefore focus our attention on

analyzing the mutual information rate of the unknown MIMO system with in-

put signal having a two-phase structure described in Section 6.2. However, even

under this simplified signaling structure, the optimal input distribution of data

Xd that maximizes the mutual information between input Xd and output Y is

also analytically intractable. In principle, the optimal input distribution of Xd

depends on the system parameters such as pilots structure Sτ , data and training

slot allocations (Td, Tτ ), power allocations (ρτ , ρd), as well as number of transmit

and receiver antennas (M,N), and can be evaluated only through involved nu-

merical optimizations. In this chapter, we simplify the problem by designing (or

optimizing) the system parameters for a given input distribution. For the sake of

analytical tractability, we assume in this chapter that the input data matrix Xd

has a multivariate Gaussian distribution, denoted as g(Xd), with each of its row

vectors xi being i.i.d. Gaussian distributed, i.e.

g(Xd) ⇐⇒
{
xi ∼ Nc

(
0 , IM

)
, E

[
xH

i · xj

]
= δi,j · IM

}
. (6.8)
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It is the same assumption of the input distribution as in [71], which is equivalent

as saying that the transmit antennas send independent data streams with equal

power allocation.

In order to avoid possible confusions with the actual channel capacity C,

we denote R as the mutual information rate between X and Y when the input

signal has a two-phase structure with data signal Xd having distribution g(Xd)

(denoted as Xd ∼ g(Xd)), i.e.

R =
1

T
I
(
X;Y

)
=

1

T
I
(
Xd;Y

)
. (6.9)

It is obvious that the by restricting the input distribution (6.8) to a certain struc-

ture and form, the mutual information rate R between input signal X and output

signal Y is not optimized and is always a lower bound of the unknown MIMO

capacity C. However, the restricted input signal structure does allow us to obtain

a tractable upper bound of the mutual information rate R as described in the

following proposition.

Proposition 6 The mutual information rate R between X and Y with input dis-

tribution g(Xd) is upper bounded by,

R ≤ R =
N

T

(
log2

∣∣∣IM +
ρτ

M
SH

τ Sτ

∣∣∣ + Td · log2(1 + ρd)

−EXd

[
log2

∣∣∣IM +
ρτ

M
SH

τ Sτ +
ρd

M
XH

d Xd

∣∣∣
])

, (6.10)

where the expectation EXd

[
·
]

is taken with respect to data Xd.

Proof: First, conditioned on any input data sequences Xd (or X), vec
(
Y

)
is

a Gaussian distributed vector1 of zero mean and variance

ΣY|X = Cov
(
vec

(
Y

)∣∣X
)

=
(
IN ⊗ X

)
·
(
IN ⊗ IT

)
·
(
IN ⊗ XH

)
+

(
IN ⊗ IT

)

= IN ⊗
(
XXH + IT

)
. (6.11)

1For a matrix X of size m × n, vec
(
X

)
is the mn × 1 vector defined as vec

(
X

)
=

[
xT

1 , · · · ,xT
n

]T

,

where xi, i = 1, · · · , n is the ith column of X.
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Taking expectation of (6.11) with respect to Xd, the covariance matrix of vec
(
Y

)

is obtained as,

ΣY = Cov
(
vec

(
Y

))
= EXd

[
Cov

(
vec

(
Y

)∣∣X
)]

= IN ⊗
(
EXd

[
XXH

]
+ IT

)
= IN ⊗

(


ρτ

M
· SτS

H
τ 0

0 ρd · ITd


 + IT

)
.

(6.12)

Due to the fact that Gaussian distribution has the maximum entropy among any

vector distributions with the same covariance matrix, entropy h(Y) can be upper

bounded by

h
(
Y

)
≤ log2

(
(πe)NT ·

∣∣ΣY

∣∣
)

. (6.13)

Therefore, we have the following mutual information upper bound

R =
1

T
I
(
X;Y

)
=

1

T

(
h
(
Y

)
− h

(
Y

∣∣X
))

a
=

1

T

(
h
(
Y

)
− EXd

[
log2

(
(πe)NT ·

∣∣ΣY|X

∣∣
)])

b

≤ 1

T

(
log2

(
(πe)NT ·

∣∣ΣY

∣∣
)
− EXd

[
log2

(
(πe)NT ·

∣∣ΣY|X

∣∣
)])

=
N

T

(
log2

∣∣∣IM +
ρτ

M
SH

τ Sτ

∣∣∣ + Td · log2(1 + ρd)

−EXd

[
log2

∣∣∣IM +
ρτ

M
SH

τ Sτ +
ρd

M
XH

d Xd

∣∣∣
])

, (6.14)

where the second term of equality (a) is from a direct expansion of the conditional

entropy according to the definition, and inequality (b) is from (6.13).

As an example, we demonstrate in Fig. 6.3 the actual non-coherent MIMO

system mutual information R (obtained by Monte Carlo simulation) and the pro-

posed mutual information upper bound R of a 2 × 2 MIMO system over un-

known fading channels. For comparison purpose, we also include in the plot the

MMSE-based capacity (or mutual information rate) lower bound provided in [71].

The 2 × 2 non-coherent MIMO system considered here has signal to noise ratio
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Mutual Information Rate Comparison of a 2× 2 MIMO system with Coherent Time T=6

Real System Mutual Information Rate
Mutual Information Rate Upper Bound
MMSE−based Mutual Information Lower Bound

SNR  ρ = 4dB

Figure 6.3: Mutual information rate comparison (between actual system mutual

information rate, MMSE-based capacity (or mutual information) lower bound, and

the proposed mutual information rate upper bound) of a 2×2 MIMO system with

channel coherent time T = 6 and signal to noise ratio ρτ = ρd = 4dB.

ρτ = ρd = 4dB, and with channel coherent time T = 6. From Fig. 6.3, we can

observe that the mutual information upper bound R can be viewed as a shifted

version (vertical direction) of the actual mutual information R and hence repre-

sents the non-coherent MIMO mutual information rate more accurately than the

MMSE-based lower bound. From the plot, we also notice that the MMSE-based

lower bound matches to the system mutual information rate more closely when Tτ

is large (or Td is small), which is due to improved channel estimation made possible

by the presence of a large number of training symbols. However, as the number of

training symbol Tτ decreases (or Td increases), the MMSE-based lower bound di-

verges from the system mutual information rate (as well as the capacity) due to its

two-phase processing limitation (training followed by detection). This is the high
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capacity (or information rate) region that is likely to be of interest. Therefore, the

proposed mutual information upper bound R can be viewed as an improved mea-

surement of the system mutual information compared to the MMSE-based lower

bound, and hence provides a better representation of the mutual information (or

capacity) behavior of MIMO systems with unknown channel state information.

6.3.2 Tight Mutual Information Rate Upper Bound Leads to Improved

Capacity Lower Bound

In order to study the tightness of the mutual information rate upper

bound, we now examine the nature of the approximation made in arriving at

(6.14) (inequality (b)). The received signal Y can be viewed as a continuous mul-

tivariate Gaussian mixture consists of an uncountably infinite number of Gaussian

components, whose distribution is given by,

p
(
Y

)
= EXd

[exp

(
− tr

{[
IT + XXH

]−1 · YYH
})

πTN detN
[
IT + XXH

]
]

. (6.15)

Therefore, the tightness of the upper bound provided in Proposition 6 depends on

the closeness of the above mixture density to the Gaussian density with the same

covariance matrix. By expanding the received signal structure in the following

manner

Y = XH + W = V + W =


 V1

V2


 + W , (6.16)

where

V = XH, V1 =

√
ρτ

M
· SτH, V2 =

√
ρd

M
· XdH , (6.17)

it is evident that the only non-Gaussian part in Y is matrix V2, which is a product

of two Gaussian random matrices with every element vi,j a weighted sum of M

independent complex Gaussian products, i.e.

vi,j =

√
ρd

M
·

M∑

k=1

xk · hk, xk, hk ∼ Nc

(
0, 1

)
. (6.18)
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According to the central limit theorem, each element vi,j of matrix V2 converges

to the Gaussian distribution when the number of transmit antennas M increases.

Analytically speaking, both the characteristic function Ψv(u) of a single element

vi,j and the joint characteristic function ΨV(U) of the entire matrix V are proved

to converge to Gaussian (and multivariate Gaussian) characteristic functions with

the same variance (and covariance matrix). Further due to its particular product

structure, it is proved in the following proposition that the convergence rate in

this case is much faster than that of an arbitrary sum of independent variables (or

matrices).

Proposition 7 The joint characteristic function of the Gaussian product ma-

trix V = XH, where both H and X are multivariate Gaussian distributed and

have structures described in Section 6.2, converges to the characteristic function

of Gaussian random matrix with the same mean and variance. The convergence

rate O
(
1/M

)
is faster than that of an arbitrary sum of independent variables (or

matrices) with rate O
(√

1/M
)
.

Proof: First of all, one can extend the definition of joint characteristic func-

tion to the case of complex random vectors,

Φz(u) = Ez

[
exp

(
juT

r · zr + juT
i · zi

)]

= Ez

[
exp

(
j · ℜ

[
uHz

])]
= Ez

[
exp

(
j · uHz + zHu

2

)]
, (6.19)

where z is a complex random vector and u is the corresponding multi-dimensional

variable of the characteristic function. Both u and z are complex vectors of the

same size, and can be decomposed (real and imaginary part) in the following

manner

z = zr + j · zi , u = ur + j · ui . (6.20)
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Similarly, the concept can also be extended to the case of complex random matrices,

i.e.

ΨZ

(
U

)
= EZ

[
exp

(
j · vec(Ur)

T · vec(Zr) + j · vec(Ui)
T · vec(Zi)

)]

= EZ

[
exp

(
j · ℜ

[
vec(U)H · vec(Z)

])]

= EZ

[
exp

(
j · ℜ

[
tr

(
UHZ

)])
]

, (6.21)

where Z is a complex random vector and U is the corresponding matrix variable

of the characteristic function. It is also well known that the joint characteristic

function of a Gaussian random vector z is given by

Φz(u) = Ez

[
exp

(
j · ℜ

[
uHz

])]
= exp

(
− uHΣ u

4
+ j · ℜ

[
uH

µ
])

, (6.22)

where vector z has Gaussian distribution z ∼ Nc

(
µ,Σ

)
.

By representing matrices H and X in the following manner,

H =
[
h1 h2 · · · h

M

]H

, X =
1√
M

·
[
x1 x2 · · · x

M

]
, xi =




√
ρτ · si

√
ρd · xdi


 ,

(6.23)

matrix product V = XH can be rewritten as the following summation form, given

by

V = XH =
1√
M

M∑

i=1

Vi =
1√
M

M∑

i=1

xi · hH
i , Vi = xi · hH

i . (6.24)

According to definition (6.21), the joint characteristic function of V (or vec(V))

is given by

ΨV(U) = EV

[
exp

(
j · ℜ

[
tr

(
UHV

)])
]

= EV

[
exp

(
j√
M

·
M∑

i=1

ℜ
[
tr

(
UHVi

)])
]

a
= ΠM

i=1 EVi

[
exp

(
j√
M

· ℜ
[
tr

(
UHVi

)])
]

= ΠM
i=1 ΨVi

( U√
M

)
, (6.25)
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where (a) is due to the fact that random matrices
{
Vi

}
are independently dis-

tributed.

According to the product structure given by (6.24), matrix Vi is condi-

tionally Gaussian distributed (conditioned on vector hi), and can be represented

as

vec
(
Vi

∣∣hi

)
∼ Nc

(
µc, Σc

)
, (6.26)

where mean µc and covariance matrix Vc are given by

µc = vec

(


√
ρτ · si · hH

i

0




)
,

Σc = Cov
(
vec

(
Vi

)∣∣hi

)
=


 0 0

0 ρd · ITd


 ⊗

(
hi · hH

i

)
. (6.27)

Therefore, by substituting the conditional mean and covariance matrix (6.27) into

equation (6.22), the conditional characterisitic function ΨVi|hi

(
U

)
can be obtained

as,

ΨVi|hi

(
U

)
= exp

(
− hH

i UHΣ1 Uhi + j · ℜ
[√

ρτ · hH
i UHsi

])
, (6.28)

where matrix Σ1 is given by

Σ1 =
1

4


 0 0

0 ρd · ITd


 . (6.29)

After some manipulations, the joint characteristic function of the matrix product

Vi is obtained

ΨVi

(
U

)
= Ehi

[
ΨVi|hi

(
U

)]

=

exp

(
− tr

[(
UHΣ1U + I

)−1

·
(
UHΣ2,i U

)] )

∣∣∣UHΣ1U + I
∣∣∣

, (6.30)

where Σ2,i is given by

Σ2,i =
1

4


 ρτ · sis

H
i 0

0 0


 . (6.31)
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By substituting equation (6.31) into (6.25), we can finally obtain the joint charac-

teristic function of V, represented as

ΨV(U) =

exp

(
− tr

[(
UHΣ1U/M + I

)−1

·
(
UHΣ2 U/M

)] )

∣∣∣UHΣ1U/M + I
∣∣∣
M

, (6.32)

where Σ2 is given by

Σ2 =
M∑

i=1

Σ2,i =
1

4


 ρτ · SτS

H
τ 0

0 0


 . (6.33)

When the number of transmit antennas M is large, we can further have the fol-

lowing convergence property,

ΨV(U)

= exp

(
−tr

[(
UHΣ1U

M
+ I

)−1 (
UHΣ2 U

M

)]
− M log

∣∣∣
UHΣ1U

M
+ I

∣∣∣
)

= exp

(
−tr

(
UHΣ2 U

M

) (
1 + O

( 1

M

))
− M

(
tr

(
UHΣ1U

)

M
+ O

(
1

M2

)))

= exp

(
−

tr
(
UHΣ3 U

)

4
+ O

( 1

M

) )
, (6.34)

where Σ3 is given by

Σ3 =




ρτ

M
· SτS

H
τ 0

0 ρd · ITd


 . (6.35)

It is also clear that matrix V has mean and variance given by

µV = 0 , ΣV = Cov
(
vec

(
V

))
= Σ3 ⊗ I . (6.36)

For multivariate Gaussian matrix V′ having the same mean and covariance matrix,

i.e.

vec
(
V′

)
∼ Nc

(
0,ΣV

)
, (6.37)

its joint characteristic function ΨV′ can be represented as

ΨV′

(
U

)
= exp

(
− vec(U) · ΣV · vec(U)H

4

)
= exp

(
−

tr
(
UHΣ3 U

)

4

)
. (6.38)
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Therefore, from the obtained characteristic functions (6.34) and (6.38), we can

observe that ΨV

(
U

)
converges to Gaussian characteristic function ΨV′

(
U

)
with

convergence rate O(1/M). And this convergence rate is much faster than that

of an arbitrary sum of independent variables (vectors or matrices) with rate only

O
(
1/
√

M
)
.

For a special case when Tτ = 0, Td = 1, and N = 1, matrix product V

reduces to be a scalar random variable v, i.e.

v =
ρd√
M

M∑

i=1

xi · hi , xi, hi ∼ Nc(0, 1) , (6.39)

with characteristic function Ψv given by

Ψv(u) =
(
1 +

ρd · |u|2
4M

)−M

= exp

(
− ρd · |u|2

4
+

∞∑

i=2

(−ρd · |u|2/4)i

(i − 1) · M i−1

)

= exp
(
− ρd · |u|2

4
+ O

( 1

M

))
. (6.40)

According to the central limit theory, it is clear that v converges to Gaussian

distribution as M increases. Further due to its particular product structure, its

characteristic function Ψv(u) converges to Gaussian characteristic function with

rate O(1/M) as shown in (6.40).

As an example, we demonstrate in Fig. 6.4 the histogram of the real

part of random variable vi,j with different number of transmit antennas M . From

the plot, it is quite clear that vi,j has a fast convergence rate to the Gaussian

distribution with its histogram almost falling on top of the Gaussian PDF when

M ≥ 3. We also show in Fig. 6.5 the differential entropy of random matrix V

versus the number of transmit antennas M of a M × 2 unknown MIMO system

with equal power allocation. The entropy is evaluated at an average signal to

noise ratio of ρ = 4dB, with channel coherent time T = 4, and with training and

data slot allocation (Tτ , Td) = (2, 2). Simulation results shown in Fig. 6.5 further
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Figure 6.4: Histogram of ℜ[vi,j] with different number of transmit antennas M =

1, 2, 3.

confirm the fast convergence rate of the Gaussian mixture matrix V to a Gaussian

distribution from an information theoretical perspective, which leads to a tight

mutual information upper bound.

From the channel model represented in (6.16), we know that the distri-

bution of the received signal Y is dominated by the Gaussian noise W at low

SNR range (ρτ , ρd ≪ 1). Hence, the upper bound is expected to be tight and can

represent the mutual information rate R accurately. When the MIMO system is in

moderate to high SNR regimes, according to the above convergence discussion and

simulation results, the entropy of the Gaussian mixture density is tightly upper

bounded by the Gaussian entropy (inequality (b) in (6.14)) with a moderate num-

ber of transmit antennas M . Hence, the mismatch between the upper bound R

and the actual mutual information rate R can rapidly decrease to an insignificant
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Figure 6.5: Differential entropy h(V) of Gaussian product matrix V versus the

number of transmit antennas M .

amount as the number of transmit antennas M increases. Further due to the sub-

optimality of the input signal structure, the unknown MIMO channel capacity C is

always lower bounded by the mutual information rate R (C ≥ R). Therefore, it is

reasonable to assume that when the number of transmit antennas M is larger than

a certain threshold Mth, channel capacity C of the non-coherent MIMO system is

lower bounded by the mutual information rate upper bound R, i.e.

C ≥ R , M ≥ Mth , (6.41)

where Mth is a threshold that depends on system parameters Tτ , Td, ρτ , ρd, and

N .

According to inequality (6.41), the proposed mutual information upper

bound R is a valid and improved capacity lower bound of the unknown MIMO

system under certain conditions (with moderate to high transmit antennas M
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Figure 6.6: Capacity and mutual information comparison between non-coherent

MIMO channel capacity C, the actual system mutual information rate R, and the

proposed mutual information upper bound R of an M × 2 MIMO system with

channel coherent time T = 1 and signal to noise ratio ρτ = ρd = 4dB.

or within low SNR regimes). It is hence reasonable to maximize (or optimize)

the mutual information upper bounds (or capacity lower bounds) with respect to

different system parameters, which is provided in Section 6.4. As an example, we

demonstrate in Fig. 6.6 the capacity comparison curves of the non-coherent MIMO

channel capacity C, the proposed mutual information rate upper bound R, and

the actual system mutual information rate R. The simulation is performed on a

M × 2 MIMO system over an unknown fast fading channel with coherent time

T = 1. The reason for choosing a small MIMO system over a rapidly changing

channel is that the optimal input distribution can be reduced to a complex scalar

having uniformly distributed phase and a magnitude with a discrete probability

density [6], which makes the optimization of the input distribution numerically
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tractable (in contrast to the intractable higher dimensional density optimizations

when min(T,M) ≥ 2).

From the plot of this particular example, we can observe that the mutual

information upper bound R becomes a valid and hence improved capacity lower

bound (as compare to the MMSE-based lower bound) of the unknown MIMO

channel when the number of transmit antennas M is greater than 1. The only

problem arises when M is extremely small (M = 1 in this case) in high SNR

regimes and can be attributed to insufficient entropy convergence.

6.4 Analysis of the Mutual Information Upper Bound

Having obtained the mutual information rate upper bound (or the im-

proved capacity lower bound under certain conditions) in Section 6.3, we provide

in this section the detailed analysis (or optimization) of the mutual information

bounds with respect to different system parameters such as channel coherent in-

tervals, training and data slot allocations, power allocations, number of active

transmit and receive antennas, as well as pilot structures.

6.4.1 Optimization of Pilot Structures

The most commonly used pilots have an orthogonal structure. They are

optimal in a sense that they minimize the mean square error of the linear MMSE

channel estimator [72]. More specifically, the minimal mean square error (MMSE)

channel estimation as well as its error covariance matrix for the unknown MIMO

channel are given by

vec
(
Ĥ

)
= Cov−1

(
vec

(
H

)
,vec

(
Y

))
· Cov−1

(
vec

(
Y

)
,vec

(
Y

))
· vec

(
Y

)
,

(6.42)

and

Cov
(
vec

(
H̃

)
,vec

(
H̃

))
= Cov

(
vec

(
H

)
,vec

(
H

))
− Cov

(
vec

(
H

)
,vec

(
Y

))

·Cov−1
(
vec

(
Y

)
,vec

(
Y

))
· Cov

(
vec

(
Y

)
,vec

(
H

))
, (6.43)
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where H̃ = H − Ĥ is the channel estimation error. After some manipulation, we

can obtain the following result,

vec
(
Ĥ

)
= IN ⊗

(√
ρτ

M
SH

τ

( ρτ

M
SτS

H
τ + ITτ

)−1
)
· vec

(
Y

)
,

Ĥ =

√
ρτ

M
SH

τ

( ρτ

M
SτS

H
τ + ITτ

)−1

· Y , (6.44)

and

C
H̃,H̃ = Cov

(
vec

(
H̃

)
,vec

(
H̃

))
= IN ⊗

(
IM +

ρτ

M
SH

τ Sτ

)−1
. (6.45)

From (6.45), it is obvious that the mean square error of the channel estimation

tr
(
C

H̃,H̃

)
= N × tr

((
IM +

ρτ

M
SH

τ Sτ

)−1
)

, (6.46)

is minimized when the non-zero eigenvalues of SH
τ Sτ are all equal. Therefore, the

following orthogonal pilot structure, represented as

SH
τ Sτ = Tτ · IM , Tτ ≥ M ,

SτS
H
τ = M · ITτ

, Tτ < M . (6.47)

minimizes the MIMO MMSE channel mean square estimation error.

Although orthogonal pilot structure given by (6.47) minimizes the MMSE

estimation error, it does not necessarily imply maximization of the system mutual

information rate. In order to obtain the optimal pilot structure with respect to the

mutual information upper bound R, we utilize the following concavity property.

Proposition 8 The mutual information upper bound obtained in Proposition 6 is

concave with respect to matrix Q = SH
τ Sτ , i.e.,

λ ·R
(
Q1

)
+ (1− λ) ·R

(
Q2

)
≤ R

(
λ ·Q1 + (1− λ) ·Q2

)
, 0 ≤ λ ≤ 1 . (6.48)

Proof: First, the partial derivative of equation (6.10) with respect to matrix

Q is given by,

∂R

∂Q
=

Nρτ

ln 2 · TM

((
IM +

ρτ

M
Q

)−1

−EXd

[(
IM +

ρτ

M
Q+

ρd

M
XH

d Xd

)−1
])

, (6.49)
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and the corresponding gradient can be represented as

∂R

∂vec
(
Q

) = vecH
(∂R

∂Q

)
. (6.50)

Based on (6.50), the Hessian of the upper bound R can be obtained,

∂2R

∂2vec
(
Q

) = − Nρ2
τ

ln 2 · TM2
· EXd

[
Σ−1

1 ⊗ Σ−1
1 − Σ−2

2 ⊗ Σ−1
2

]
, (6.51)

where Σ1 and Σ2 are given by

Σ1 = IM +
ρτ

M
Q , Σ2 = IM +

ρτ

M
Q +

ρd

M
XH

d Xd . (6.52)

It can be shown that the Hessian matrix is negative semi-definite, due to the fact

that (
IM +

ρτ

M
Q

)−1

>
(
IM +

ρτ

M
Q +

ρd

M
XH

d Xd

)−1

, (6.53)

and hence the mutual information rate upper bound is concave with respect to Q.

As a direct result of Proposition 8, we have the following optimal pilot

structure.

Proposition 9 The optimal pilot structure, which maximizes the mutual informa-

tion rate upper bound (6.10), satisfies the following orthogonal conditions

Q = SH
τ Sτ =

MTτ

min(Tτ ,M)


 Imin(Tτ ,M) 0

0 0


 , (6.54)

which is equivalent to (6.47).

Proof: First, substituting (6.52) into (6.10), the mutual information upper

bound can be represented as

R =
N

T

(
Td · log2(1 + ρd) + log2

∣∣Σ1

∣∣ − EXd

[
log2

∣∣Σ2

∣∣
])

. (6.55)
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The following equality is true

EXd

[
log2

∣∣Σ2(Q)
∣∣
]

= EXd

[
log2

∣∣UHΣ2U
∣∣
]

= EXd

[
log2

∣∣∣IM +
ρτ

M
UHQU +

ρd

M
(XdU)H(XdU)

∣∣∣
]

a
= EXd

[
log2

∣∣∣IM +
ρτ

M
UHQU +

ρd

M
XH

d Xd

∣∣∣
]

= EXd

[
log2

∣∣Σ2

(
UHQU

)∣∣
]
,

(6.56)

where U is any unitary matrix, and (a) follows from the fact that XdU has the

same distribution as Xd. Further due to the fact that

∣∣Σ1(Q)
∣∣ =

∣∣UHΣ1U
∣∣ =

∣∣IM +
ρτ

M
UHQU

∣∣ =
∣∣Σ1(U

HQU)
∣∣, (6.57)

the mutual information upper bound (6.55) is hence invariant under the following

transformation

R(Q) = R(UHQU) . (6.58)

If the unitary matrix U is set to be composed of the eigenvectors of Q, then

according to (6.58) we only need to focus our attention on the case where Q is a

diagonal matrix.

Furthermore, it is also true that any permutations on the non-zero diag-

onal elements of Q will not change the upper bound,

R
(
Q

) a
= R

(
PHQP

)
=

1

K!

∑

P

R
(
PHQP

) b

≤ R
( 1

K!

∑

P

PHQP
)

, (6.59)

where K = min(Tτ ,M) and P is any permutation matrix that permutes the first

K rows (or columns), equality (a) follows the same reasoning as the invariant

transformation (6.58), and (b) follows from the concavity property of the upper

bound. At this point, it is evident that the optimal pilot, which achieves the

maximum mutual information upper bound, has an orthogonal structure given by

(6.54).

Therefore, although starting from different perspectives, orthogonal pilots

structure not only minimize the estimation mean square error, but also maximize
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the mutual information rate upper bounds. Substituting the optimal structure

(6.54) into the equation (6.10), we obtain the following mutual information upper

bound

R =
N

T

(
Td · log2(1 + ρd) − EXd

[
log2

∣∣∣IM +
ρd

M
Λ−1XH

d Xd

∣∣∣
])

, (6.60)

where Xd is of size CTd×M , and Λ is given by

Λ =




(
1 + ρτ Tτ

min(Tτ ,M)

)
· Imin(Tτ ,M) 0

0 IM−min(Tτ ,M)


 . (6.61)

By utilizing the known results of the joint probability density function

(PDF) of the eigenvalues of a Wishart matrix [73], the mutual information upper

bound can be further expressed in a concise form given by the following proposition,

which facilitates the evaluation of the bounds.

Proposition 10 In general, except for the case
(
0 < Td, Tτ < M

)
, mutual infor-

mation upper bound R can be given by

R =



N

T

(
Td · log

2
(1 + ρd) − F

(
min

(
Td,M)

)
, max(Td,M), f1(·)

))
if Tτ ≥ M

N

T

(
Td · log

2
(1 + ρd) − F1

(
Td, Tτ ,M, ρ

))
if Td ≥ M > Tτ > 0

N

T

(
Td · log

2
(1 + ρd) − F

(
min

(
Td,M)

)
, max(Td,M), f2(·)

))
if Tτ = 0

.

(6.62)

where mapping F is given by

F
(
m,n, f(·)

)
=

∫ ∞

0

f(λ)
m−1∑

k=0

k!

(n − m + k)!

[
Ln−m

k (λ)
]2

λn−me−λdλ , (6.63)

where Ln−m
k (λ) is the associated Laguerre polynomial [74] of order k, given by

Ln−m
k (λ) =

1

k!
eλλm−n · dk

dλk

(
e−λλn−m+k

)
, (6.64)

and functions f1(·) and f2(·) are given by

f1(λ) = log2

(
1 +

ρd/M

1 + ρτTτ/ min(Tτ ,M)
λ
)

,

f2(λ) = log2

(
1 +

ρd

M
λ
)

. (6.65)
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And mapping F1 is given by

F1

(
Td, Tτ ,M, ρ

)
=

∫ ∞

0

· · ·
∫ ∞

0

M∑

i=1

f2(λi) ·
1

K

∣∣Λ
∣∣Td

M∏

i=1

λTd−M
i ·

M∏

i<j

(λi − λj)
2

× 0F̃0

(
− Λ,diag

(
λ1, · · · , λM

))
· dλ1 · dλ2 · · · dλM , (6.66)

where 0F̃0

(
A,B

)
is the hypergeometric function of Hermitian matrix arguments,

which is defined in terms of a series involving zonal polynomials [75]. Normaliza-

tion factor K is given by

K = M ! ·
M∏

i=1

(Td − i)! · (M − i)! . (6.67)

Proof: Since Xd has a multivariate normal distribution, which is denoted as

NM,Td

(
0, IM

)
, it is obvious that XH

d Xd or XdX
H
d have Wishart distributions [73]

given by

XH
d Xd ∼ WM

(
Td, IM

)
if M ≤ Td

XdX
H
d ∼ WTd

(
M, ITd

)
if M > Td . (6.68)

It is well known that the joint probability density function of the eigenvalues of

the Wishart matrix S ∼ Wn

(
m,Σ

)
is given by

pλs
(λ1, λ2, · · · , λn) =

1

K

n∏

i=1

λm−n
i e−λi

∏

i<j

(λi − λj)
2 , (6.69)

where K is given by

K = n! ·
m∏

i=1

(n − i)! · (m − i)! . (6.70)

And the marginal distributions of the unordered eigenvalues of XH
d Xd, given by

Telatar in [5], is

pλi
(λi) =

1

min(Td,M)

min(Td,M)−1∑

k=0

k!(
k + |Td − M |

)
!
·
[
L
|Td−M |
k (λi)

]2

λ
|Td−M |
i e−λi .

(6.71)
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Hence, substituting the marginal p.d.f. function (6.71) into the mutual information

upper bound (6.60), we can obtain the concise form expression for the case where

Tτ ≥ M and Tτ = 0. When Td ≥ M > Tτ > 0, the mutual information upper

bound can be rewritten as,

R =
N

T

(
Td · log2(1 + ρd) − EXd

[
log2

∣∣∣IM +
ρd

M
Λ− 1

2XH
d XdΛ

− 1
2

∣∣∣
])

, (6.72)

where matrix X′
d = XdΛ

− 1
2 follows a multivariate normal distribution given by

NM,Td

(
0,Λ−1

)
, and X′

d
HX′

d has a Wishart distribution WM

(
Td,Λ

−1
)
, whose eigen-

values have a joint p.d.f given by

pλ(λ1, λ2, · · · , λM)

=
1

K

∣∣Λ
∣∣Td

0F̃0

(
− Λ,diag

(
λ1, · · · , λM

))
·

M∏

i=1

λTd−M
i ·

M∏

i<j

(λi − λj)
2 .

(6.73)

Plugging (6.73) into the mutual information upper bound (6.60), we can obtain

the expression for the case Td ≥ M > Tτ > 0. When 0 < Td, Tτ < M , matrix

X′
d
HX′

d has a so-called pseudo Wishart distribution, whose eigenvalues do not

have a simple close form p.d.f., and hence the proposed upper bound can not be

expressed in a concise form.

6.4.2 Optimization of Pilot and Data Slot Allocations (under Equal

Power Assumptions)

For some communication systems, it might not be possible to vary the

power during the training slots and data slots. Hence the mutual information up-

per bound, assuming training symbol and data symbol share the same power, is

obtained by substituting the power allocations (ρτ = ρd = ρ) into (6.60). The up-

per bound is further optimized with respect to the data allocation scheme (Tτ , Td),

and we have the following important result concerning the dependence on Td, the

number of data symbols.
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Proposition 11 Mutual information rate upper bounds under equal power alloca-

tion schemes are monotonically increasing with respect to the number of data slots

Td, i.e.

R(Td = k) ≥ R(Td = k − 1), k ≤ T − M,

R(Td = T ) ≥ R(Td = T − M) . (6.74)

Proof: We begin with the first part of (6.74) when Tτ ≥ M , where equation

(6.60) is reduced to

R =
N

T

(
Td · log2(1 + ρ) − EXd

[
log2

∣∣∣IM +
ρ/M

1 + ρTτ/M
· XH

d Xd

∣∣∣
])

, (6.75)

where we further separate Xd into X′
d and xTd

,

Xd =


 X′

d

xTd


 , X′

d ∈ CTd−1×M , xTd
∈ C1×M . (6.76)

Then we have the following inequality,

EXd

[
log2

∣∣∣IM +
ρ′

M
XH

d Xd

∣∣∣
]

= EXd

[
log2

∣∣∣IM +
ρ′

M

(
X′

d
H
X′

d + xH
Td

xTd

)∣∣∣
]

a

≤ EX′

d

[
log2

∣∣∣IM +
ρ′

M

(
X′

d
H
X′

d + ExTd

[
xH

Td
xTd

])∣∣∣
]

,

(6.77)

where (a) follows from the fact that log | · | is a concave function. Therefore, using

assumption (6.8), we can obtain the following result for the mutual information
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rate difference

∆R = R(Td = k) − R(Td = k − 1)

=
N

T

(
log2(1 + ρ) − EXd

[
log2

∣∣∣IM +
ρ · Xd

HXd

M + ρTτ

∣∣∣
]

+EX′

d

[
log2

∣∣∣IM +
ρ · X′

d
HX′

d

M + ρ(Tτ + 1)

∣∣∣
])

a

≥ N

T

(
log2(1 + ρ) − EX′

d

[
log2

∣∣∣IM +
ρ · X′

d
HX′

d + IM

M + ρTτ

∣∣∣
]

+EX′

d

[
log2

∣∣∣IM +
ρ · X′

d
HX′

d

M + ρ(Tτ + 1)

∣∣∣
])

=
N

T

(
log2(1 + ρ) − M log2

(1 + ρ(Tτ + 1)/M

1 + ρTτ/M

))

=
N

T
· ∆f(ρ) , (6.78)

where (a) follows from inequality (6.77) and scaler function ∆f(ρ) represented as

∆f(ρ) = log2(1 + ρ) − M log2

(1 + ρ(Tτ + 1)/M

1 + ρTτ/M

)
≥ 0 , (6.79)

is a positive function due to the following fact

∆f(0) = 0,

∆′f(ρ) =
1

1 + ρ
− Tτ + 1

1 + ρ(Tτ + 1)/M
+

Tτ

1 + ρTτ/M
> 0 . (6.80)

For the second part of (6.74), let us first denote ∆R as the following

mutual information rate difference,

∆R = R
(
Td = T

)
− R

(
Td = T − M

)
=

1

T

(
M · log2(1 + ρ)

−EX1

[
log2

∣∣∣IM +
ρ

M
· XH

1 X1

∣∣∣
]

+ EX2

[
log2

∣∣∣IM +
ρ

M(1 + ρ)
· XH

2 X2

∣∣∣
])

,

(6.81)

where X1 and X2 are of sizes

X1 ∈ CT×M , X2 ∈ C(T−M)×M . (6.82)
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We can further separate X1 into the following form,

X1 =


 X′

1

x


 , X′

1 ∈ CT−M×M , x ∈ CM×M . (6.83)

Then the following inequality is obtained,

EX1

[
log2

∣∣∣IM +
ρ

M
· XH

1 X1

∣∣∣
]

= EX1

[
log2

∣∣∣IT +
ρ

M
· X1X

H
1

∣∣∣
]

= EX′

1

[
Ex

[
log2

∣∣∣IT +
ρ

M
· X1X

H
1

∣∣∣
]]

a

≤ EX′

1

[
log2

∣∣∣∣IT +
ρ

M
· Ex

[
X1X

H
1

]∣∣∣∣

]

= EX′

1

[
log2

∣∣∣∣IT +
ρ

M
·


 X′

1X
′
1
H 0

0 M · IM




∣∣∣∣

]

= M · log2(1 + ρ) + EX′

1

[
log2

∣∣∣IM +
ρ

M
· X′

1
H
X′

1

∣∣∣
]

, (6.84)

where (a) follows from the fact the log2 | · | is a concave function. Therefore,

substituting (6.84) into (6.81), we can establish the following inequality

∆R =
1

T

(
M · log2(1 + ρ) + EX2

[
log2

∣∣∣IM +
ρ

M(1 + ρ)
· XH

2 X2

∣∣∣
]

−EX1

[
log2

∣∣∣IM +
ρ

M
· XH

1 X1

∣∣∣
])

≥ 1

T

(
EX2

[
log2

∣∣∣IM +
ρ

M(1 + ρ)
· XH

2 X2

∣∣∣
]

EX′

1

[
log2

∣∣∣IM +
ρ

M
· X′

1
H
X′

1

∣∣∣
])

= 0 . (6.85)

According to the above proposition, we have shown that the mutual in-

formation rate upper bound is monotonically increasing with respect to Td up to

Td ≤ T − M , and all of them are upper bounded by the rate where there is no

training at all. As an example, we show in Fig. 6.7 the mutual information upper

bounds versus the number of data slots Td of a 6 × 6 MIMO system under equal

power allocation schemes. The mutual information bounds are evaluated at an

average signal to noise ratio of ρ = 4dB, and with several different coherent time

intervals T = 4, 5, 6, 7, 8, 10, 15, 20, which parameterize the upper bound curves.
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Figure 6.7: Mutual information rate upper bound of a 6× 6 MIMO system under

equal power allocation scheme of SNR ρ = 4dB, and with different coherent time

intervals T = 4, 5, 6, 7, 8, 10, 15, 20

As illustrated by the numerical results in the plot, the mutual information rate up-

per bound is indeed monotonically increasing with respect to Td, even for the case

Td > T −M . However, the rate gain is insignificant after Td grows beyond T −M

especially when T is larger than M . Therefore, Td = T − M,T > M is a good

trade-off point between the achievable information rate and system complexity,

where the mutual information upper bound can be reduced to

R(ρ) = N

(
Td·log2(1+ρ)−EXd

[
log2

∣∣∣IM +
ρ/M

1 + ρ
XH

d Xd

∣∣∣
])

, T > M = Tτ . (6.86)

6.4.3 Optimization of the Number of Active Transmit Antennas

Since the channel state information is not known to the transmitter nor

to the receiver, using a large number of transmit antennas will definitely intro-
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duce more channel uncertainties and hence prevent us from correctly decoding the

transmitted information. From another point of view, for a fixed channel coherent

time interval T , introducing more transmit antennas means we have to allocate

more time slots to training symbols and sacrifice the data rates and hence the

channel capacity. Therefore, we provide in the following proposition the choice of

the appropriate number of active transmit antennas.

Proposition 12 Under equal power allocation schemes, and with pilots number

Tτ equal to the number of transmit antennas M , mutual information rate upper

bound is monotonically decreasing with respect to the number of transmit antennas

M , i.e.

R(M + 1) ≤ R(M), M ≥ N, T > N . (6.87)

Proof: First notice that the second term in equation (6.86) is actually the

ergodic capacity for a MIMO system composed of M transmit antennas and Td re-

ceive antennas, where channel state information is perfectly known at the receiver.

The equivalent signal to noise ratio is equal to ρ′ = ρ/(1+ρ). Due to the fact that

MIMO channel capacity with perfect CSIR is a monotonically increasing function

with respect to the number of transmit antennas M , we can have the following

inequality,

EX1

[
log2

∣∣∣IM+1+
ρ/(M + 1)

1 + ρ
·XH

1 X1

∣∣∣
]
≥ EX2

[
log2

∣∣∣IM +
ρ/M

1 + ρ
·X2

HX2

∣∣∣
]
, (6.88)

where matrices X1, X2, and X3 are of sizes given by,

X1 ∈ CTd×(M+1), X2 ∈ CTd×M , X3 ∈ C(Td+1)×M , x ∈ C1×M , X3 =


 x

X2


 ,

(6.89)

with each of their elements follow i.i.d. zero mean complex Gaussian distribution

with unit variance. Furthermore, since log | · | is a concave function, the following
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inequality can be obtained

EX3

[
log2

∣∣∣IM +
ρ/M

1 + ρ
· X3

HX3

∣∣∣
]

= EX3

[
log2

∣∣∣ITd+1 +
ρ/M

1 + ρ
· X3X3

H
∣∣∣
]

≤ EX2

[
log2

∣∣∣∣ITd+1 +
ρ/M

1 + ρ
· Ex

[
X3X3

H
]∣∣∣∣

]

= EX2

[
log2

∣∣∣∣ITd+1 +
ρ/M

1 + ρ
·


 M 0

0 X2X
H
2




∣∣∣∣

]

= log2

(
1 +

ρ

1 + ρ

)
+ EX2

[
log2

∣∣∣IM +
ρ/M

1 + ρ
· X2

HX2

∣∣∣
]
. (6.90)

Therefore, for a fixed coherent time interval T , the mutual information upper

bound (6.86) has the following inequality,

R(M + 1) =
N

T

(
Td · log2(1 + ρ) − EX1

[
log2

∣∣∣IM +
ρ/M

1 + ρ
· XH

1 X1

∣∣∣
])

≤ N

T

(
Td · log2(1 + ρ) − EX2

[
log2

∣∣∣IM +
ρ/M

1 + ρ
· XH

2 X2

∣∣∣
])

≤ N

T

(
Td · log2(1 + ρ) + log2

(
1 +

ρ

1 + ρ

)
− EX3

[
log2

∣∣∣IM +
ρ/M

1 + ρ
· XH

3 X3

∣∣∣
])

≤ N

T

(
(Td + 1) · log2(1 + ρ) − EX3

[
log2

∣∣∣IM +
ρ/M

1 + ρ
· XH

3 X3

∣∣∣
])

= R(M) .

(6.91)

Although inequality (6.91) is true for any M > 0, it is only reasonable to

maximize the above mutual information upper bound R(M) up to M ≥ Mth. This

is because the upper bound R provides tight measurement of the system mutual

information rate R and serves as a valid capacity lower bound of the unknown

MIMO system only when M is beyond a certain threshold Mth. Generally speaking,

it is very difficult to determine Mth by a close form expression and can be resolved

only through numerical simulations. However, a straightforward condition that

is necessary of leading to a tight mutual information upper bound (and hence a

valid capacity lower bound) is that the number of independent random variables

of the mixture Gaussian distribution Y should at least be larger than that of the
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approximated Gaussian distribution, given by

Mth × N + Td × Mth ≥ T × N , (6.92)

which is equivalent to the following condition after some manipulations,

M ≥ Mth ≥ TN

Td + N
⇐⇒ M ≥ N . (6.93)

Therefore, for a MIMO communication system having N receive antennas and

transmitting over an unknown channel with coherent time interval T (T > N)

with equal training and data power allocation, an appropriate choice of the system

design parameters would be

Tτ = M = N, Td = T − N . (6.94)

We demonstrate in Fig. 6.8 the mutual information rate upper bounds

versus the number of active transmit antennas of a M ×6 unknown MIMO system

under equal power allocations. The MIMO system shown in the plot has data and

training allocation scheme (Td, Tτ ) given by (T −M,M). The mutual information

upper bounds are evaluated at an average SNR of ρ = 4dB, and with several dif-

ferent coherent time intervals T = 8, 10, 12, 14, 16, 18, 20. As illustrated in Fig. 6.8,

the upper bound (6.86) is monotonically decreasing with respect to the number of

active transmit antennas M = Tτ , and hence there is no benefit in using transmit

antennas greater than N when T > N .

6.4.4 Optimization of Power Allocations (ρτ , ρd) between Training and

Data Symbols

For communication systems where the power allocation can be varied

between training and data symbols, the optimal mutual information upper bound

is obtained by solving the following constrained optimization problem

Ropt

(
Tτ , Td

)
= max

(ρτ ,ρd)
R

(
ρτ , ρd, Tτ , Td

)
, ρτTτ + ρdTd = ρT . (6.95)



162

6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Number of Active Transmit Antennas M

M
ut

ua
l I

nf
or

m
at

io
n 

R
at

e 
R

, (
B

its
 p

er
 T

ra
ns

m
is

si
on

)

Mutual Information Upper Bound of a M by 6 MIMO system
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Figure 6.8: Mutual information upper bound of a M × 6 MIMO system with

SNR ρ = 4dB and Tτ = M , under different coherent time intervals T =

8, 10, 12, 14, 16, 18, 20

As an example, we show in Fig. 6.9 the mutual information upper bounds

versus the the number of data slots Td of a 6 × 6 unknown MIMO system under

optimal power allocation strategies. The upper bounds are evaluated at an average

SNR of ρ = 4dB, and with several different channel coherent time intervals T =

4, 5, 6, 7, 8, 10, 15, 20 that parameterize the curves. From Fig. 6.9, we can observe

that the mutual information rate upper bounds under optimal power allocations

have the same monotonically increasing property and behave very similarly to the

mutual information upper bounds with equal power allocations.

We also demonstrate in Fig. 6.10 the optimal power ρ⋆
d allocated to data

symbols versus the data slot number Td for the same MIMO system with differ-

ent coherent time intervals T . From the plot, we can observe that the optimal
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Figure 6.9: Mutual information upper bound of a 6 × 6 MIMO system under

optimal power allocation scheme of SNR ρ = 4dB, and with different coherent

time intervals T = 4, 5, 6, 7, 8, 10, 15, 20
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allocation scheme
(
ρ⋆

d, ρ
⋆
τ

)
always has the following fact

ρ⋆
d ≥ ρ ≥ ρ⋆

τ , (6.96)

which is equivalent as saying that the average data power is always larger than

the average training power. Furthermore, the optimal power allocation
(
ρ⋆

τ , ρ
⋆
d

)

is quite close to equal power allocation scheme when Tτ is small (or Td is large),

especially in the regime where Tτ ≤ M (or Td ≥ T − M).

As a comparison between optimal and equal power allocation schemes,

we show in Fig. 6.11 the normalized mutual information rate gain
(
∆R/Ropt

)

versus the number of data slots Td for the same unknown MIMO system with

different coherent time intervals T . It can be observed from the plot that there

is an insignificant amount of rate loss by using equal power allocation schemes,

which are much easier for implementation, as compared to applying optimal power

allocations. The loss of the mutual information rate is negligible in the regime

where Tτ ≤ M (or Td ≥ T − M), which is the high capacity region of interest.

6.4.5 Low SNR Regimes

According to the mutual information upper bound given by (6.60), we

can obtain a concise closed form approximation of the upper bound in the low

SNR regime, given by

R ≈ N

ln 2 · TM
·
(
ρdTd · ρτTτ + µ

(
ρdTd

)2
)

=
N

ln 2 · TM
· ρdTd ·

(
ρT − (1 − µ) · ρdTd

)
, (6.97)

where µ is given by

µ =
1

2M

M∑

i=1

E
[
λ2

i

]
≥ 1

2
, (6.98)

with {λi}M
i=1 being the eigenvalues of the Wishart matrix XH

d Xd. Therefore, op-

timization (w.r.t to power and data slot allocation) of the mutual information

upper bound (6.97) in the low SNR regime reduces to be a constraint quadratic
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maximization problem, with solution given by

(ρdTd)
⋆ = ρT ⇐⇒

(
ρ⋆

d, ρ
⋆
τ

)
= (ρ, 0),

(
T ⋆

d , T ⋆
τ

)
= (T, 0), R

⋆
=

N · µ · ρ2T

ln 2 · M .

(6.99)

Furthermore, the mutual information upper bound R under equal power allocation

schemes at low SNR regime can be obtained as

R ≈ Nρ2

ln 2 · M · Td ·
(

1 − (1 − µ) · Td

T

)
. (6.100)

It is evident from (6.100) that R is a monotonically increasing function w.r.t the

number of data slots Td. As a comparison to the low SNR approximation of the

MMSE-based unknown MIMO capacity lower bound provided in [71], which is

given by

C⋆ ≈ N · ρ2T

4 ln 2 · M , (ρdTd)
⋆ = (ρτTτ )

⋆ =
1

2
ρT , (6.101)

the optimal mutual information upper bound R
⋆

(or the improved capacity lower

bound with moderately large M) has a rate gain

R
⋆

C⋆ = 4µ ≥ 2 . (6.102)

We can observe from (6.97), (6.100), and (6.101) that both R and C decay

as ρ2 at low power ranges. However, the true unknown channel capacity, which

does not require training to achieve, decay as ρ rather than ρ2 reported in [76] [57].

Therefore, it implies that not only the two-phase signal processing scheme (training

and using channel estimate as if it were correct) is highly suboptimal when ρ is

small (as stated in [71]), the suboptimal structure and its distribution of the input

signal is the main reason that causes capacity (or rate) loss.

6.5 Numerical and Simulation Results

Although some very important numerical results of the mutual informa-

tion upper bound have already been demonstrated in the previous sections, we

are going to provide in this section a few more numerical examples to support the

remaining obtained results.
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6.5.1 Orthogonal Pilot Structure
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Mutual Information Upper Bounds Comparison of a 6 by 6 MIMO system with Different Pilot Structures

Orthogonal Pilots, T=10, Td=1
Orthogonal Pilots, T=10, Td=2
Orthogonal Pilots, T=10, Td=3
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Random Pilots, T=10, Td=1
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Random Pilots, T=10, Td=4

Figure 6.12: Mutual information upper bound comparison between orthogonal

pilot structures and random pilot structures under equal power allocation schemes

of a 6 × 6 MIMO system with coherent time intervals T = 10, and data interval

Td = 1, 2, 3, 4.

We know from Section 6.4.1 that the orthogonal pilot structure not only

minimizes the mean square estimation error, but also maximizes the mutual in-

formation rate upper bound (6.10). Fig. 6.12 is a demonstration of the sensitivity

of the mutual information upper bound with respect to different pilots structures.

We compare in the plot the mutual information upper bounds of a MIMO system

using orthogonal pilot structure with those of using random pilot structure having

the same training power. The upper bounds are evaluated assuming a 6 × 6 un-

known MIMO system with coherence time interval T = 10, and for varying data

slot number Td = 1, 2, 3, 4. As can be observed from Fig. 6.12, the mutual infor-
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mation upper bounds of using random pilots, which are denoted as doted curves,

are inferior to those of applying orthogonal pilots. There is significant rate gain

by using orthogonal pilot structures as compared with random pilots when Td is

large, which are the high information rate curves of interest.

6.5.2 Pilot and Data Slot Allocations (under Equal Power Assump-

tions)
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Figure 6.13: Mutual information rate upper bound of 6 × 6 MIMO system

with coherent time interval T = 10, with different data slots allocation Td =

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

As is shown in Proposition 11, the mutual information upper bound is

monotonically increasing with respect to the number of data slots Td. We demon-

strate in Fig. 6.13 the mutual information rate upper bounds versus the average

SNR ρ. The mutual information bounds are evaluated assuming a 6× 6 unknown

MIMO system with channel coherence time T = 10, and for varying data slot
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Mutual Information Upper Bound of a 6 by 6 MIMO System with Equal Power Allocation
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SNR  ρ = −4dB 

Figure 6.14: Mutual information rate upper bound of a 6×6 MIMO system under

equal power allocation scheme of SNR ρ = −4dB, and with different coherent time

intervals T = 4, 5, 6, 7, 8, 10, 15, 20
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Mutual Information Rate Upper Bounds of a 6 by 6 MIMO System

Eqaul power allocation, Td=1
Eqaul power allocation, Td=2
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Figure 6.15: Mutual information upper bound comparison between equal power

allocation and optimal power allocation schemes of a 6× 6 MIMO system with co-

herent time intervals T = 10 and different data slot allocation Td = 1, 2, 3, 4, 5, 6, 10

allocations Td = 1, 2, · · · , 10. As is expected, we can easily observe from the plot

that the information rate is monotonically increasing, and the rate increment is

insignificant when Td ≥ T − M .

As a complement to Fig. 6.7, which demonstrates the monotonically in-

creasing property of the mutual information upper bounds versus Td for a moderate

SNR of ρ = 4dB, we show in Fig. 6.14 the mutual information upper bounds un-

der the same system settings in a low SNR environment of ρ = −4dB. It can be

observed from the plot that very similar monotonically increasing property of the

mutual information rate upper bounds exists even in a low SNR regime.
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Capacity Bounds Comparison of a 6 by 6 MIMO system

Mutual information upper bound, T=10, Td=1
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Figure 6.16: Comparison between the MMSE-based capacity lower bounds and the

improved capacity lower bounds (mutual information upper bounds) under equal

power allocation schemes of a 6 × 6 MIMO system with coherent time intervals

T = 10, and data interval Td = 1, 2, 3, 4

6.5.3 Power Allocations between Training and Data Symbols

We demonstrate in Fig. 6.15 the mutual information rate upper bound

comparison between equal power and optimal power allocation schemes. The upper

bounds are evaluated versus the average SNR ρ for a 6×6 unknown MIMO system

with channel coherence time T = 10, and for varying data slot allocations Td =

1, 2, 3, 4, 5, 6, 10. As can be observed from the plot, the information rate gain

achieved by using optimal power allocation is insignificant especially when Td ≥
T − M , which is the high rate (capacity) region of interest.
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6.5.4 Comparison with Other Capacity Analysis Results

In order to compare the capacity analysis results obtained in this chap-

ter with previous publications, we show in Fig. 6.16 both the proposed mutual

information upper bounds (or the improved capacity lower bounds) as well as the

MMSE-based capacity lower bounds provided in [71] for the same unknown MIMO

system. Again, the capacity bounds are evaluated assuming a 6×6 MIMO system

with channel coherence time T = 10, for varying data slot allocations Td = 1, 2, 3, 4.

It can be observe from the plot that the two bounds have a significant capacity

difference when the number of the data symbols Td is large, which corresponds to

the high capacity achieving data slot allocations of interest.

6.6 Summary

In this chapter, we studied the intrinsic role of training symbols in a

MIMO communication system. First, we propose a system mutual information

upper bound, which is tight and becomes a valid capacity lower bound of the

unknown MIMO channel when we have a moderate number of transmit antennas

M . Through the analysis (or optimization) of the proposed upper bound with

respect to different system parameters, we show that orthogonal pilot structure is

optimal in a sense that it not only minimizes the mean square estimation error,

but also maximizes the proposed mutual information upper bound. We also prove

that under equal power allocations, the mutual information upper bound is a

monotonically increasing function with respect to the number of data slots Td.

Through numerical evaluations, we also demonstrate that the rate increment is

insignificant when Td is larger than T − M , suggesting a training duration of M

time slots provides excellent trade-off between complexity and performance. By

setting Tτ = M , followed by further analysis on the proposed bounds, we show

that there is no benefit in making the number of transmit antennas M greater

than N . Furthermore, in an optimal power allocation scheme, the power allocated
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to data symbols ρd is always larger than that of the training symbols ρτ . Also,

the information rate gain by applying optimal power allocations is insignificant

compared with equal power allocation schemes in high mutual information rate

regimes where Tτ ≤ M (or Td ≥ T − M). The text of chapter is in part a reprint

of the paper which was coauthored with Bhaskar D. Rao and has been submitted

for publication in IEEE Transactions on Information Theory under the title “A

study of limits on training via capacity analysis of MIMO systems with unknown

channel state information”.



7 Design of LDPC-Coded

MIMO Systems With Unknown

Block Fading Channels

7.1 Motivation

Communication systems using multiple antennas at both the transmitter

and the receiver have recently received increased attention due to their ability to

provide great capacity increases in a wireless fading environment [5] [2]. However,

MIMO capacity analysis and system design is often based on the assumption that

the fading channel coefficient between each transmit and receive antenna pair is

perfectly known at the receiver. This is not a realistic assumption for most practical

communication systems especially in fast fading channels.

For communication systems with unknown channel state information

(CSI) at both ends, conventional receivers usually have a two-phase structure,

data-aided channel estimation using the preset training symbols followed by co-

herent data detection by treating the estimated channel as the actual channel

coefficients. Due to the importance of channel estimator, which directly deter-

mines estimation quality and hence the overall system performance, various MIMO

channel estimation algorithms have been studied [77]– [79]. However, conventional

channel estimators form estimates based only on the training symbols, thereby fail-

ing to make use of the channel information contained in the received data symbols.

175
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Consequently, the two-phase model limits the performance and can not approach

the MIMO channel capacity (or the maximum achievable information rate), espe-

cially in a fast fading environment (with small channel coherence time). Possible

solutions to the above problem include use of blind source signal separation algo-

rithms [80]– [82], MIMO differential modulation [61]– [63], and unitary space-time

modulation (USTM) [64]– [70]. However, none of these schemes can approach the

non-coherent MIMO capacity limit due to their sub-optimal code structure, and in

the later case, USTM, only asymptotic (or the diversity) optimality is achieved in

high SNR regimes and the approach suffers from exponential decoding complexity.

In order to achieve better spectral efficiency than the conventional data-

aided estimation algorithm that uses large number of training symbols for accurate

channel estimation, the so-called code-aided joint channel estimation and data de-

tection algorithms have recently received much attention. By treating the unknown

channel as unobserved (or missing) data, ML sequence estimation of the coded data

frames using the EM algorithm was proposed by Georghiades [83] and Kaleh [84]

over single input single output fading channels and extended to MIMO channels

by Cozzo [85]. Alternatively, several recent publications [86]- [88] have developed

EM-based algorithms that can iteratively improve the channel estimate based on

the soft extrinsic information from the outer soft decoder, and the schemes work

well in an iterative receiver structure.

In this chapter, we focus on the design of practical LDPC-coded MIMO

systems employing a soft iterative receiver structure consisting of three soft de-

coding component blocks, a soft MIMO detector and two soft LDPC component

decoders (variable node and check node decoders). At the component level, we

first propose a soft optimal MIMO detector, which can generate soft log likeli-

hood ratio (LLR) of each coded bit under the condition of unknown CSIR without

forming any explicit channel estimate. Based on the proposed soft optimal detec-

tor, we develop two simplified sub-optimal MIMO detectors with polynomial and

log polynomial decoding complexities. In addition, motivated by the EM-based
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detection algorithm in [88], we also propose in the MIMO context a modified EM-

based detector that completely removes the positive feedback between the input

and output extrinsic information and provides much better performance compared

to the direct EM-based detector that has strong correlations. By analyzing the

mutual information transfer characteristic [89] of the proposed soft MIMO detec-

tors, system performance of different MIMO detection algorithms are analyzed and

compared under various channel conditions. At the structural level, inspired by

the turbo iterative principle [90], the LDPC-coded MIMO receiver is constructed

in an unconventional manner where the soft MIMO detector and LDPC variable

node decoder form one super soft-decoding unit and the LDPC check node de-

coder forms the other component of the iterative decoding scheme. Utilizing the

proposed receiver structure, tractable extrinsic information transfer functions of

the component soft decoders are obtained, which lead to a simple and efficient

LDPC code degree profile optimization algorithm. This algorithm is shown to

have global optimality and guaranteed convergence from any initialization, and

is an improvement over the sub-optimal manual curve fitting technique proposed

in [91]. Numerical and simulation results of the LDPC-coded MIMO system using

the optimized degree profile further confirm the advantages of the proposed design

approach for the coded MIMO system.

The rest of the chapter is organized as follows. Section 7.2 describes the

LDPC-coded MIMO system structure as well as the unknown block fading channel

model. Section 7.3 proposes several different soft MIMO detectors that can be used

as the building blocks for the turbo iterative MIMO receivers. In section 7.4, the

receiver design of the coded MIMO systems is addressed in detail, which includes

the overall receiver structure in Section 7.4.1, the extrinsic mutual information

transfer characteristic analysis in Section 7.4.2, and the LDPC code degree profile

optimization algorithm in Section 7.4.3. In Section 7.5, the simulation results of

the LDPC-coded MIMO system under various channel conditions are presented.

Finally, conclusions are drawn in Section 7.6.
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7.2 System Model

7.2.1 MIMO transmitter structure

Figure 7.1: Transmitter model of LDPC-coded MIMO systems

We consider a MIMO system with M transmit antennas and N receive an-

tennas signaling through a frequency flat fading channel with independent channel

propagation coefficient between each transmit and receive antenna pair. As illus-

trated in Fig. 7.1, a block of k binary information bits denoted d = {d1, · · · , dk}
is first encoded by an outer LDPC encoder with code rate Router = k/n into a

codeword c = {c1, · · · , cn} of length n. The codeword c is further segmented into

L consecutive sub-blocks Ci of length K. Each sub-block Ci is then encoded by

the inner space-time encoder into a coherent space-time sub-frame Xi. This en-

coder is composed of an interleaver, modulator, serial-to-parallel converter, and a

pilot insertion operator. The symbol structure of each sub-frame Xi is illustrated

in Fig. 7.2, where the first p symbols are training pilots, followed by (TM − p)

data symbols. For the sake of simplicity, we only consider the case where both

the number of pilot symbols
(
p = Tτ × M

)
and the number of data symbols

(
TM − p = Td × M

)
are multiples of the transmit antenna number M . We fur-

ther denote the average signal to noise ratio (SNR) of pilot symbols by ρτ and

data symbols by ρd. Hence, the transmitted signal Xi can be partitioned into two

sub-matrices: training followed by data, which is represented as

Xi =




(
ρτ/M

) 1
2 · Xτ

(
ρd/M

) 1
2 · Xd, i


 , (7.1)
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Figure 7.2: Transmitted symbol structure of the coded MIMO system

where Xτ ∈ CTτ×M are the fixed pilot symbols sent over Tτ time intervals, and

Xd, i ∈ CTd×M are the information bearing data symbols sent over Td transmission

intervals. Each element of the transmitted data signal Xd, i is a member of a

finite complex alphabet X of size |X |. One entire MIMO codeword X consists of

l = LTM complex symbols, which are transmitted from M transmit antennas and

across L consecutive coherent sub-frames of length TM symbols.

It is assumed that the fading coefficient matrix Hi remains static within

each coherent sub-block and varies independently from one sub-block to another.

Hence, the signal model can be written as

Yi = Xi · Hi + wi, 1 ≤ i ≤ L , (7.2)

where Yi is a T × N received complex signal matrix, Xi is a T × M transmitted

complex signal matrix, Hi is an M ×N complex channel matrix, and wi is a T ×N

matrix of additive noise matrix. Both matrices Hi and wi are assumed to have

zero mean unit variance independent complex Gaussian entries. We also assume

that the entries of the transmitted signal matrix Xi have, on average, the following
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power constraint,
1

T
· E

[
tr

(
XH

i Xi

)]
= ρ . (7.3)

where ρ is the average signal to noise ratio at each receive antenna. Conservation

of time and energy leads to the following constraints,

tr
(
XH

τ · Xτ

)
= MTτ , EXd, i

[
tr

(
XH

d, i · Xd, i

)]
= MTd ,

T = Tτ + Td, ρT = ρτTτ + ρdTd . (7.4)

Due to the insignificant capacity gain resulting from using optimal power allocation

between training and data symbols as reported in [71] [92], equal power allocation

is assumed in this chapter, with

ρτ = ρd = ρ . (7.5)

7.2.2 MIMO receiver structure

Figure 7.3: Conventional receiver structure of LDPC-coded MIMO systems

The MIMO receiver decodes the transmitted information bits d based on

received signal matrices
{
Yi

}L

i=1
without knowing any instantaneous channel state

information
{
Hi

}L

i=1
. The channel statistical distribution p

(
Hi

)
is assumed to be

known both to the receiver and to the transmitter throughout the chapter. We

know that even with ideal CSI, the optimal decoding algorithm for this system

has an exponential complexity. Hence the near-optimal iterative receiver structure

based on turbo principle [90] becomes a promising alternative.

As a standard iterative decoding procedure, the structure of the LDPC-

coded MIMO receiver is demonstrated in Fig. 7.3. It consists of two important
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components, an inner soft-input soft-output MIMO detector (or MIMO demodula-

tor) and an outer soft LDPC decoder, which form a bipartite graph structure [93].

Soft log likelihood ratio of each transmitted bit is passed forward and backward

between these two soft decoders with increasing accuracy as the number of the

iterations increase. At each iteration, the MIMO detector forms soft extrinsic in-

formation of each coded bit based on the received symbols
{
Yi

}L

i=1
and the apriori

information coming from the soft LDPC decoder through proper interleaving, and

serves as the apriori information for the LDPC decoder in the next iteration. Con-

vergence is reached after certain number of the iterations and decoded bits are

hence obtained.

Notice that the LDPC decoder in Fig. 7.3 is itself composed of two compo-

nent soft decoders (variable node decoder and check node decoder), and the entire

MIMO receiver can be viewed as a complicated graph code structure. Therefore,

any bipartite separation other than the conventional structure can lead to an al-

ternative iterative decoder. We utilize in Section 7.4.1 an unconventional MIMO

receiver structure, which combines the soft MIMO detector and LDPC variable

node decoder together as a super component soft-decoder. The proposed receiver

structure has great design advantages that can easily lead to an efficient LDPC

code degree profile optimization algorithm as shown in Section 7.4.3.

7.3 Soft-Input Soft-Output MIMO Detector

As described in Section 7.2.2, the soft-input soft-output MIMO detector

is an important decoding component of the MIMO receiver, and plays an im-

portant role in determining the performance of the entire coded MIMO system.

Regular communication systems with unknown channel state information typically

employ a two-stage decoding procedure, which consists of channel estimation fol-

lowed by coherent decoding based on the estimated channel parameters. However,

conventional channel estimators perform estimation based only on the training pi-
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lots, thereby failing to make use of the channel information contained in the data

symbols. Due to the mismatch between the actual and estimated channel, system

performance suffers severe degradation especially in a communication environment

with low signal to noise ratio, or limited training pilots in fast fading channels.

In this section, several better MIMO detectors which include the soft

MIMO detector, EM-based MIMO detector, as well as their modified versions are

proposed that offer an effective tradeoff between detection complexity and perfor-

mance. The MIMO detection algorithms proposed in this section are block-based

in the sense that the data detections are performed within each coherent fading

block. By considering the channel coefficient correlations between adjacent coher-

ent blocks, one could achieve even better performance by performing data detec-

tion on several adjacent coherent blocks together. In this case, the data detection

algorithm has higher computational complexity and depends heavily on the corre-

lations of the fading channel, and is beyond the scope of this chapter. Therefore

for simplicity, it is reasonable to use a block fading channel model in this situation

and the performance penalty of the simple block-based MIMO detection algorithm

would be small by properly tuning the channel coherence time T according to the

actual channel correlations.

For the sake of simplicity, subscript (or time index) i, denoting the ith

coherent block, is dropped in this section while describing the block-wise soft

MIMO detection algorithms. To be specific, we denote X =
[
XT

τ , XT
d

]T
, H, and

Y =
[
YT

τ , YT
d

]T
as the transmitted signal, channel matrix, and received signal in

each coherent block, respectively. Furthermore, sub-matrices Xτ , Xd, Yτ , and Yd

have the following structures, i.e.

Xτ =
[
xT

τ,1, · · · ,xT
τ,Tτ

]T

, Xd =
[
xT

d,1, · · · ,xT
d,Td

]T

,

Yτ =
[
yT

τ,1, · · · ,yT
τ,Tτ

]T

, Yd =
[
yT

d,1, · · · ,yT
d,Td

]T

,
(7.6)

where xτ,k, xd,k, yτ,k, and yd,k represent complex row vectors of size 1×M . Simi-

larly, the binary sub-codeword C that maps to the transmitted signal X can also
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be decomposed into

C =
[
cT

1 , · · · , cT
Td

]T

, ck

∣∣Td

k=1
∈ B1×M · log2 |X | , (7.7)

where B is binary set {0, 1} and each row ck represents the corresponding binary

information that maps to xd,k.

7.3.1 Optimal soft MIMO detector

First, according to the channel model (7.2), the conditional probability

density of the received signal matrix Y given the transmitted signal matrix X is

given by [6]

p
(
Y

∣∣X
)

=

exp

(
− tr

{[
IT + XXH

]−1

· YYH

})

πTN detN
[
IT + XXH

] . (7.8)

It is evident from the above transitional probability that the unknown MIMO

channel is actually a memoryless vector channel and hence the optimal MIMO

detector does not necessarily need to form a specific channel estimate.

In order to obtain the a posteriori probability of each coded bit, the a

priori probability of the input signal matrix X is first calculated as

p
(
X

)
= p

(
Xd

)
= p(C) =

Td∏

k=1

p(xk) =

Td∏

k=1

p(ck) =

Td∏

k=1

M log2 |X |∏

j=1

p(ck,j) , (7.9)

where each element of matrix Xd is a member of a complex alphabet X of size

|X |, and corresponding to log2 |X | LDPC-coded bits. Therefore, the log likelihood

ratio of each LDPC coded bit is given by

Lpos(ck,j) = log

(
p
(
ck,j = 1

∣∣Y
)

p
(
ck,j = 0

∣∣Y
)
)

= log

(
ΣX∈D+

k,j
p
(
Y

∣∣X
)
· p

(
X

)

ΣX∈D−

k,j
p
(
Y

∣∣X
)
· p

(
X

)

)
, (7.10)

where 1 ≤ k ≤ Td, 1 ≤ j ≤ M · log2 |X |, and D+
k,j (D−

k,j) is the set of X for which

the (k, j)th bit ck,j of the LDPC coded sub-block C is “ + 1” (“ − 1”). Finally,
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by subtracting the input a priori information from the obtained a posterior log

likelihood ratio, the soft extrinsic information of each coded bit is obtained as

Lext(ck,j) = Lpos(ck,j) − Lapp(ck,j), Lapp(ck,j) = log
(p

(
ck,j = 1

)

p
(
ck,j = 0

)
)

, (7.11)

where Lapp(ck,j) is the a priori information of the coded bit ck,j from the last

iteration. Notice that there is no channel estimation stage in the soft MIMO

detector described above, and therefore the proposed detection algorithm does not

depend on the unknown channel state H but only on its underlying statistical

distribution. Furthermore, the optimality of the proposed soft MIMO detection

algorithm is restricted within the component level and does not depend on the

overall receiver structure of the coded-MIMO system.

7.3.2 Sub-optimal soft MIMO detector

The optimal soft MIMO detection algorithm proposed in Section 7.3.1

provides the optimal extrinsic LLR values of each coded bit. However, the sum-

mation in both the numerator and the denominator of equation (7.10) consists

of 2K−1 items, with K
(
=TdM log2 |X |

)
increasing linearly with number of data

slots Td (or coherence time T ). It has an unaffordable exponential complexity for

practical communication systems, especially when the coherence time T is large.

Hence, we propose a sub-optimal MIMO detector in this section with complexity

increasing linearly with Td.

Figure 7.4: Sub-optimal soft MIMO detector structure

Notice that the optimal extrinsic LLR value of bit ck,j depends on the

input a priori information as well as the channel observations of the entire coherent
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block. Taking another point of view, the obtained extrinsic LLR is a combination of

all the input information through the utilization of the proposed algorithm (7.10)

in an implicit manner. Therefore, instead of performing soft MIMO detection

in one operation, we can extract partial extrinsic information by processing only

two rows of the data matrix Xd at a time, and then combining different partial

extrinsic information to form the final extrinsic LLR. As illustrated in (the right

side of) Fig. 7.4, in order to combine information from coded rows xd,k and xd,k′ ,

we first perform the optimal MIMO detection algorithm on the following reduced

size sub-coherent block

X[k,k′] =
[
Xτ

T ,xT
d,k , xT

d,k′

]T

, Y[k,k′] =
[
Yτ

T ,yT
d,k , yT

d,k′

]T

. (7.12)

Therefore, the partial extrinsic LLR value Lext, k′

(
ck,j

)
of bit ck,j obtained from the

a priori information of row ck, ck′ , and channel observation Y[k,k′] is given by

Lext, k′

(
ck,j

)
= log

(
ΣX[k,k′]∈D

+
k,j

p
(
Y[k,k′]

∣∣X[k,k′]

)
p
(
X[k,k′]

)

ΣX[k,k′]∈D
−

k,j
p
(
Y[k,k′]

∣∣X[k,k′]

)
p
(
X[k,k′]

)

)
− log

(
p
(
ck,j = 1

)

p
(
ck,j = 0

)
)

,

(7.13)

where

1 ≤ k, k′ ≤ Td, 1 ≤ j ≤ M log2 |X | ,

and D+
k,j (D−

k,j) is the set of X[k,k′] for which bit ck,j is “ + 1” (“ − 1”). By the

same reasoning, partial extrinsic information of bit ck,j, related to (and contained

in) the a priori information of ck and channel observations Yτ and yd,k can also

be obtained by performing optimal detection on the following sub-coherent block

X[k] =
[
XT

τ , xT
d,k

]T

, Y[k] =
[
YT

τ , yT
d,k

]T

, (7.14)

with the corresponding extrinsic LLR value given by

Lext-p

(
ck,j

)
= log

(
ΣX[k]∈D

+
k,j

p
(
Y[k]

∣∣X[k]

)
· p

(
X[k]

)

ΣX[k]∈D
−

k,j
p
(
Y[k]

∣∣X[k]

)
· p

(
X[k]

)

)
− log

(
p
(
ck,j = 1

)

p
(
ck,j = 0

)
)

,(7.15)

where

1 ≤ k ≤ Td, 1 ≤ j ≤ M log2 |X | .
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Having obtained extrinsic information Lext, k′

(
ck,j

)
and Lext-p

(
ck,j

)
, one can obtain

by the following substraction,

Lext-d, k′

(
ck,j

)
= Lext, k′

(
ck,j

)
− Lext-p

(
ck,j

)
, (7.16)

the extrinsic information of bit ck,j extracted solely from the channel observation

yd,k′ and the a priori information of ck′ . In contrast to the situation of perfect

channel state information at the receiver (CSIR) where Lext(ck,j) only depends on

the a priori knowledge of ck and observation yd,k, a non-zero extrinsic information

of ck,j can be obtained from the a priori knowledge of ck′ and observation yk′ (with

k′ 6= k) in an unknown MIMO fading environment. An intuitive explanation of

the above difference can be made by viewing ck′ as partially fixed pilots based

on the input a priori information. Therefore, better channel knowledge is learned

(although no explicit channel estimation exists), which translates into a better a

posterior probability of ck,j. Hence, a non-zero partial extrinsic information solely

from the a priori probability of ck′ and the channel observation yk′ is obtained.

Due to the assumption that the input a priori information of different bits

are independent, all the partial extrinsic information Lext-d,k′(ck,j) and Lext-p(ck,j)

can be viewed as being close to independent. As illustrated in (the left side of)

Fig. 7.4, the final output extrinsic information Lext(ck,j) is obtained by summing all

the independent partial extrinsic information obtained from different coded rows

ck′ and pilot observations, i.e.

Lext

(
ck,j

)
=

Td∑

k′=1
k′ 6=k

Lext-d, k′

(
ck,j

)
+ Lext-p

(
ck,j

)

=

Td∑

k′=1
k′ 6=k

Lext, k′

(
ck,j

)
− (Td − 2) · Lext-p

(
ck,j

)
, (7.17)

where

1 ≤ k ≤ Td, 1 ≤ j ≤ M log2 |X | .

A summation of 22M log2 |X | terms is required to extract the partial extrin-

sic information Lext,k′(ck,j) in equation (7.13) and 2M log2 |X | terms for Lext-p(ck,j) in
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equation (7.15). Therefore, in order to obtain the output soft extrinsic LLR values,

a total number of
(
(Td − 1) · 22M log2 |X | + 2M log2 |X |

)
terms of probability summa-

tion is required for each coded bit, as opposed to 2TdM log2 |X | terms in the original

optimal soft MIMO detector. Furthermore, the proposed sub-optimal soft MIMO

detection algorithm can be easily generalized by extracting partial extrinsic infor-

mation through combining more than two (E in general) rows of the sub-codeword

C together. By choosing different combination size of 2 ≤ E ≤ Td, a group of

sub-optimal MIMO detectors can be constructed which offer a varying degree of

detection complexity to system performance tradeoff.

7.3.3 Sub-optimal butterfly soft MIMO detector

Figure 7.5: Sub-optimal soft MIMO detector using butterfly structure

Motivated by the fast Fourier transform (FFT) algorithm, we can further

reduce the complexity of the soft MIMO detector to
(
log2 Td ·22M log2 |X |+2M log2 |X |

)

terms of summation per coded bit by using a sub-optimal butterfly MIMO detector

structure as illustrated in Fig. 7.5. It is first assumed that the number of the data

slots Td = 2m, a power of 2. If not, we can appropriately zero-pad the transmitted

signal matrix X. As demonstrated in (the left part of) Fig. 7.5, the sub-optimal

butterfly detection algorithm obtains the extrinsic information through a multi-

level structure similar to the fast Fourier transform, where the extrinsic information

is accumulated from level to level. Specifically, if the partial extrinsic LLR value

of coded bit ck,j at the nth level is Ln
ext-d

(
ck,j

)
, then the extrinsic LLR value of the

(n + 1)th level can be updated by the following form, which is illustrated in (the
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right part of) of Fig. 7.5,

Ln+1
ext-d

(
ck,j

)
= Ln

ext-d

(
ck,j

)
+ ∆Ln+1

ext-d

(
ck,j

)
, 0 ≤ n ≤ m − 1 , (7.18)

where the second term ∆Ln+1
ext-d

(
ck,j

)
of equation (7.18) represents the additional

partial extrinsic information obtained from the information of coded bits ck′ , with

sub-codeword row index k′ given by

k′ =





k + 2m−n−1 if k (mod 2m−n
)

< 2m−n−1

k − 2m−n−1 if k (mod 2m−n
)
≥ 2m−n−1

. (7.19)

Similar to the extraction algorithm provided in (7.16), ∆Ln+1
ext-d

(
ck,j

)
is given by

the following form

∆Ln+1
ext-d

(
ck,j

)
= Ln+1

ext

(
ck,j

)
− Lext-p

(
ck,j

)
, (7.20)

where Lext-p

(
ck,j

)
is given by equation (7.15), and partial extrinsic information

Ln+1
ext

(
ck,j

)
is obtained by performing optimal soft MIMO detection on the sub-

coherent block X[k,k′] and Y[k,k′] with modified input a priori information, i.e.

Ln+1
ext

(
ck,j

)
= log

(
ΣX[k,k′]∈D

+
k,j

p
(
Y[k,k′]

∣∣X[k,k′]

)
pn+1

app

(
X[k,k′]

)

ΣX[k,k′]∈D
−

k,j
p
(
Y[k,k′]

∣∣X[k,k′]

)
pn+1

app

(
X[k,k′]

)

)
−log

(
p
(
ck,j = 1

)

p
(
ck,j = 0

)
)

.

(7.21)

Furthermore, the modified a priori probability pn+1
app

(
X[k,k′]

)
in equation (7.21) is a

combination of the a priori probability of ck and ck′ as well as the nth level extrinsic

information of ck′ , which can be represented as

pn+1
app

(
X[k,k′]

)
= p

(
ck

)
·p

(
ck′

)
·pn

ext

(
ck′

)
=

M log2 |X |∏

j=1

p
(
ck,j

)
·p

(
ck′,j

)
·pn

ext

(
ck′,j

)
, (7.22)

where pn
ext

(
ck′,j

)
is given by

pn
ext

(
ck′,j

)
=

exp
(
ck′,j · Ln

ext-d

(
ck′,j

))

1 + exp
(
Ln

ext-d

(
ck′,j

)) . (7.23)
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Therefore, ∆Ln+1
ext-d

(
ck,j

)
can be viewed as the partial extrinsic information obtained

solely from the a priori information of ck′ , channel observation yk′ , and its extrinsic

information at the nth level.

Starting from the initial condition L0
ext-d(ck,j) = 0, the extrinsic infor-

mation Ln
ext-d(ck,j) of each coded bit is accumulated at each level by absorbing

additional partial extrinsic information through the sub-coherent block combining

process. As illustrated in (the middle part of) Fig. 7.5, the final soft extrinsic

LLR value of each coded bit is formed by combining the extrinsic LLR informa-

tion at the mth (lowest) level with the extrinsic information obtained from pilot

observations, which is given by

Lext

(
ck,j

)
= Lm

ext-d

(
ck,j

)
+ Lext-p

(
ck,j

)
1 ≤ k ≤ Td, 1 ≤ j ≤ M log2 |X | .(7.24)

Note that both the sub-optimal structure in Section 7.3.2 as well as the

sub-optimal butterfly MIMO detector in the previous subsection are modifications

of the optimal soft MIMO detection algorithm provided in Section 7.3.1. The

two sub-optimal MIMO detection algorithms provided in Section 7.3.2 and 7.3.3

have the following structural differences. First, the sub-optimal MIMO detector

in Section 7.3.2 forms extrinsic information through a linear combining structure,

where there are a total of (Td − 1) partial extrinsic information terms (each cor-

responding to the partial extrinsic LLR obtained from other rows k′); each term

is computed by performing optimal detection on the sub-coherent block given by

(7.13)-(7.16). On the other hand, the sub-optimal butterfly MIMO detector in Sec-

tion 7.3.3 performs data detection by employing a multi-level structure, where the

extrinsic information is distributed at succeeding levels until all the input a priori

information and the channel observations are combined and exchanged between all

different rows.

7.3.4 Modified EM-based MIMO detector

The soft MIMO detector and its two sub-optimal modifications proposed

in previous sections perform data detection without forming any specific channel
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estimate. However, forming a channel estimation followed by coherent MIMO

detection is in some cases a promising alternative especially when there are enough

training pilots. Besides, the estimated channel state information Ĥ can be easily

fedback to the transmitter for better power allocation and spectral shaping of the

channel coding.

Recently, a lot of attention has been focused on turbo MAP EM estima-

tors, which can take into account not only the training pilots but also the a priori

information of the coded bits from the outer soft LDPC decoder. As reported

in [87] [88], the proposed turbo EM estimator provides better performance than

the conventional MMSE-based channel estimator and works well in an iterative

decoding algorithm, especially when Td is large. However, there exists positive

feedback between the input and output soft LLR values which can cause severe

performance degradation of the coded MIMO system. Therefore, we propose in

this section a modified EM-based MIMO detector that avoids positive feedback

and results in better performance than the direct EM-based detection algorithm.

Mutual information transfer characteristic of the modified EM-based detector as

well as the corresponding simulation results provided in Section 7.4 and 7.5 further

confirm our claims of superiority of the new detector.

To start with the detection algorithm, let us first look at the conventional

MAP EM estimator, whose objective is to find the channel estimation Ĥ that

maximizes a posterior probability

Ĥ = arg max
H

p
(
H

∣∣Y
)

= arg max
H

p
(
Y ,H

)
, (7.25)

which is intractable by direct maximization. Hence by taking the transmitted data

signal matrix Xd (or X) as the unobserved (or missing) data, the following iterative

expectation maximization (EM) algorithm (similar to [87]) is applied .

• E-step:

Q
(
H

∣∣Ĥ(n)
)

= E
X

∣∣Ĥ(n),Y

[
− log p

(
H,Y

∣∣X
)]

. (7.26)
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After some manipulations, we have the following concise form

Q
(
H

∣∣Ĥ(n)
)

= E
X

∣∣Ĥ(n),Y

[
tr

(
HHH +

(
Y − XH

)H(
Y − XH

))]

= tr
(
HHR H + YHY −

(
YHUH + HHUHY

))
, (7.27)

where R is given by

R = E
X

∣∣Ĥ(n),Y

[
XHX

]
+ IM

=
ρ

M
·
( Td∑

j=1

∑

xd,k∈XM

p
(
xd,k

∣∣Ĥ(n),yd,k

)
· xH

d,k xd,k + XH
τ Xτ

)
+ IM ,(7.28)

and U is given by

U = E
X

∣∣Ĥ(n),Y

[
X

]
=

√
ρ

M
·
[
XT

τ , µ
T
1 , · · · ,µT

Td

]T

,

µk =
∑

xd,k∈XM

p
(
xd,k

∣∣Ĥ(n),yd,k

)
· xd,k . (7.29)

The a posterior probability p
(
xd,k

∣∣Ĥ(n),yd,k

)
is given by

p
(
xd,k

∣∣Ĥ(n),yd,k

)
=

p
(
yd,k

∣∣Ĥ(n),xd,k

)
· p

(
xd,k

)
∑

xd,k∈XM p
(
yd,k

∣∣Ĥ(n),xd,k

)
· p

(
xd,k

) , (7.30)

with p
(
yd,k

∣∣Ĥ(n),xd,k

)
and p

(
xd,k

)
given as

p
(
yd,k

∣∣Ĥ(n),xd,k

)
=

1

πN
exp

(
−

∥∥yd,k −
√

ρ

M
· Ĥ(n)xd,k

)∥∥2
)

, (7.31)

where p
(
xd,k

)
is given by

p
(
xd,k

)
=

M log2 |X |∏

j=1

p
(
ck,j

)
. (7.32)

• M-step:

Ĥ(n+1) = arg min
H

Q
(
H

∣∣Ĥ(n)
)

. (7.33)

After some manipulations, the updated channel estimation Ĥ(n+1) is obtained

as

Ĥ(n+1) = R−1 · UH · Y . (7.34)
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• Initialization:

We use the conventional minimal mean square error (MMSE) channel esti-

mator for initialization, which is given by

Ĥ(0) =

√
ρ

M
· XH

τ ·
( ρ

M
XτX

H
τ + ITτ

)−1 · Yτ . (7.35)

Since the EM iteration is embedded within the large iterative decoding loop

of the soft MIMO receiver, we can also take the estimated channel H from the

last decoding iteration as an EM initialization. Compared with the simple

MMSE estimator, the obtained estimation from the last decoding iteration

(through an EM algorithm) provides a better initialization since additional

a priori information of the coded bits is used. Therefore, by using the alter-

native initialization, EM algorithm is able to begin at a better starting point

and hence results in smaller number of EM iterations.

Maximum a posterior channel estimation is obtained when the MAP EM

algorithm converge to Ĥ after certain number of iterations. Hence the soft extrinsic

information of each coded bit ck,j is provided by taking Ĥ as the true channel

coefficients followed by coherent MIMO detection,

Lext

(
ck,j

)
= log

(
Σxd,k∈D

+
k,j

p
(
yd,k

∣∣Ĥ,xd,k

)
· p

(
xd,k

)

Σxd,k∈D
−

k,j
p
(
yd,k

∣∣Ĥ,xd,k

)
· p

(
xd,k

)

)
− log

(
p
(
ck,j = 1

)

p
(
ck,j = 0

)
)

,

(7.36)

where

1 ≤ k ≤ Td, 1 ≤ j ≤ M log2 |X | .

D+
k,j (D−

k,j) is the set of xd,k for which bit ck,j is “ + 1” (“ − 1”), and probabilities

p
(
yd,k

∣∣Ĥ,xd,k

)
and p

(
xd,k

)
are given by (7.31) and (7.32) respectively.

It is well known that short girth in the LDPC Tanner graph is one of the

major performance bottleneck for short length LDPC code design [94] [95], where

positive feedback of the iterative LLR values generated by the existing short length

loops directly affects the iterative message passing algorithm. Similarly, positive
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feedback caused by the correlations between input and output extrinsic information

of the MIMO detector will also cause severe system performance degradation.

Therefore, considerable effort has been made in various detection algorithms to

avoid the same information from counting twice, or to avoid the output extrinsic

LLR values from containing any input a priori information.

Unfortunately, if we study the conventional direct EM-based soft MIMO

detection algorithm carefully, we will find that the estimated channel coefficient

does depend on the a priori information of the entire sub-codeword C. To be

specific, channel estimation Ĥ can be represented as a function given by

Ĥ = Ĥ
(
Y,AL-app

)
, (7.37)

where AL-app ∈ RTd×M log2 |X | is the a priori information matrix with each element

ak,j equal to the a priori LLR value Lapp(ck,j). Therefore, the extrinsic information

obtained by equation (7.36) contains the input a priori information through Ĥ, in

a sense that Lext(ck,j) depends on Lapp(ck,j), even though the a priori LLR value is

already subtracted from the log a posterior value as demonstrated by the second

term. In order to eliminate input-output correlations introduced by the direct

channel estimation Ĥ, which is a function of Lapp

(
ck,j

)
, we propose a modified

EM channel estimation algorithm that uses only part of the a priori information

(a subset of matrix AL-app) of the sub-codeword C. If we denote E as a subset

of {1, 2, · · · , Td} that includes k, the partial a priori information matrix can be

formed by the following weighting operation

AE
L-app = diag

(
s
)
· AL-app , (7.38)

where the selecting vector s of size 1 × Td is given by

s =
[
s1, s2, · · · , sTd

]
, sj =





1 if j /∈ E
0 if j ∈ E

. (7.39)

The modified channel estimation is hence obtained by applying the same APP EM

algorithm by using AE
L-app as the input a priori information matrix instead, i.e.

ĤE = Ĥ
(
Y,AE

L-app

)
. (7.40)
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The modified estimation ĤE can therefore be used to perform coherent detections

for coded rows ck with index k ∈ E ,

Lext

(
ck,j

)
= log

(
Σxd,k∈D

+
k,j

p
(
yd,k

∣∣ĤE ,xd,k

)
· p

(
xd,k

)

Σxd,k∈D
−

k,j
p
(
yd,k

∣∣ĤE ,xd,k

)
· p

(
xd,k

)

)
− log

(
p
(
ck,j = 1

)

p
(
ck,j = 0

)
)

.

(7.41)

Let us further assume that the entire set {1, 2, · · · , Td} can be decomposed

into the following disjoint sets with the same size, i.e.

{1, 2, · · · , Td} =
⋃

n

En, En

⋂
En′ = φ,

∣∣En

∣∣ = SE . (7.42)

Instead of having only one EM estimation in the direct EM-based detector, ⌈Td/SE⌉
separate EM estimations are to be completed during one entire soft decoding it-

eration in the modified EM-based detector. Note that En = {n} and En = φ

correspond to special cases: En = {n} has the maximum detection complexity, but

takes into account all available a priori information from the outer soft decoder,

while on the other hand En = φ corresponds to the case of conventional direct EM-

based detection algorithm. For a short complexity analysis, we know that within

each EM estimation, there are total NEM
sum = Ī ·

(
3Td · 2M log2 |X |

)
summation op-

erations, where Ī is the average number of iterations required by the convergence

of the EM algorithm. Therefore, the average number of the summations for each

coded bit in the modified EM-based MIMO detector is

NDEC
sum =

(
3Ī ·

⌈
Td/SE

⌉
+ 1

)
· 2M log2 |X | . (7.43)

The EM channel estimation algorithms proposed in this section can make

full use of the soft a priori information of the coded bits from the outer LDPC

decoder, and hence provide better (and more accurate) channel estimations. From

another point of view, the MAP EM estimator is generally equivalent to extending

the pilot structure to the entire transmitted signal matrix X. Instead of limiting

the pilots to Xτ , the receiver treats Xd as partially fixed pilots as well especially

when the LLR ratios are getting significantly improved as a result of the messages

being updated constantly through the iterations.
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Finally, a brief comparison of the pilots size required by the different

MIMO detection algorithms is as follow. First, we note that the proposed optimal

soft MIMO detector as well as its two sub-optimal modifications are able to provide

soft data detections with arbitrary number of pilot symbols and only need a small

number of pilots in order to remove detection ambiguity (in the first decoding

iteration). The modified EM-based detector only requires a small number (Tτ ≥
M) of pilots for the initialization of the EM estimation. Therefore, these four soft

MIMO detection algorithms provide a wide range of trade-offs between complexity

and performance and can work in different MIMO fading environments and support

various training sizes.

7.4 Design of LDPC-coded MIMO Systems

Conventionally the coded MIMO receiver is obtained by connecting the

inner soft MIMO detector and the outer LDPC decoder to form one large itera-

tive decoding loop. As evident from Fig. 7.6, the overall MIMO receiver actually

consists of two iterative decoding loops. In the outer loop, the soft MIMO detec-

tor forms extrinsic information of each coded bit
{
Ci

}L

i=1
based on the received

signal
{
Yi

}L

i=1
as well as the input a priori knowledge from the LDPC decoder,

and serves as the input a priori information for the LDPC decoder in the next

iteration. The soft LDPC decoder has an inner iterative decoding loop that is

composed of a variable node decoder, a check node decoder, and two connecting

edge interleavers. The soft extrinsic information, which describes the uncertainty

of each coded bit, is iteratively exchanged in the outer loop between the MIMO

detector and LDPC decoder as well as in the inner loop between variable node and

check node decoders inside the LDPC decoder.
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7.4.1 Receiver structure of the LDPC-coded MIMO systems

In this chapter, we structure the MIMO receiver differently by combin-

ing the soft MIMO detector and LDPC variable node decoder as a super soft-

decoder, a form also utilized in [91]. As illustrated in Fig. 7.7, the decoding loop

is formed by exchanging extrinsic information between the super decoder and the

LDPC check node decoder iteratively. Compared with the conventional iterative

MIMO receiver (named as bit-interleaved coded modulation with iterative decod-

ing (BICM-ID) algorithm) shown in Fig. 7.6, the new receiver structure has two

advantages. First, the proposed receiver structure has only one iterative decoding

loop and hence achieves smaller decoding complexity compared to the two iterative

loops (inner LDPC decoder loop and outer “MIMO detector ⇄ LDPC decoder”
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loop) in the conventional BICM-ID structure. Second, the proposed structure has

the advantage of enabling the extrinsic information transfer characteristic func-

tion of the soft component decoders to have tractable forms. By fully exploiting

the closed form EXIT functions, a simple and efficient LDPC code degree profile

optimization algorithm with proven global optimality and guaranteed convergence

is proposed in Section 7.4.3, which is superior to the sub-optimal manual curve

fitting technique [89] [91].

7.4.2 Analysis of extrinsic information transfer characteristics

In order to understand as well as design the iterative decoding systems

having bipartite graph structures, we use the extrinsic information transfer char-

acteristic of the soft MIMO detector and LDPC decoder, which was proposed by

Brink in [89], to analyze the convergence behavior of the iterative decoding schemes

of the coded MIMO system.

1. Brief introduction on EXIT-chart

We briefly describe in this section the EXIT-chart technique proposed in [89].

For readers who are familiar with the topic, please skip to Section 7.4.2-2

directly. The extrinsic information transfer (EXIT) function is used to the

describe the input-output (a priori information versus extrinsic information)

relations of the soft component decoders from an information theoretical

perspective. Taking the component soft decoders in Fig. 7.7 as an example,

the corresponding EXIT functions of the super soft-decoder and LDPC check

node decoder can be described by the following mapping (also depicted in

Fig. 7.7 accordingly),

IE,VND = fs

(
IA,VND

)
, IE,CND = fc

(
IA,CND

)
, (7.44)

where IA,VND represents the mutual information between the coded bit x and

the input a priori information of the super soft-decoder, and IE,VND, IE,CND,



198

as well as IA,CND are similarly defined. According to the iterative decoding

structure, where the output extrinsic information from one component de-

coder is treated as a priori input to the other one, the mutual information

between the extrinsic LLR values and the coded bits is updated through the

following evolution,

I k
E,CND = fc ◦ fs

(
I k−1
E,CND

)
, fc ◦ fs(·) = fc

(
fs(·)

)
, (7.45)

with index k indicating the kth decoding iteration and the initialization is

given by I 0
E,CND = 0. As an example, we demonstrate in Fig. 7.8 the EXIT

functions fs and fc (with x and y axis flipped) of the component soft decoders

as well as the decoding trajectory of an LDPC-coded MIMO system. The

2 × 2 MIMO system considered has BPSK modulation, uses optimal soft

MIMO detector at the receiver, and transmits over a fading channel with

coherence time T = 6, training number Tτ = 2, and signal to noise ratio

ρ = 4dB. The outer LDPC code is a regular (3, 6) code with codeword

length 8×104. We can observe from Fig. 7.8 that, as long as the EXIT chart

curve fs is above curve f−1
c (with the x and y axis flipped), i.e.

fs(x) ≥ f−1
c (x), 0 ≤ x ≤ 1 , (7.46)

the decoding trajectory is able to make its zigzag way until reaching the

successful decoding point (1, 1). Therefore, it can serve as a convergence cri-

terion of the iterative decoding algorithm for the LDPC code design purpose.

2. EXIT characteristic of the soft MIMO detector

According to the results provided in [89] [91], the extrinsic mutual informa-

tion IE,DET between the transmitted bit x and the output LLR values Lext(x),

which measures the information contents of the output extrinsic LLR values,

can be represented as

IE,DET(ρ; σ2
A) = I

(
Lext(x) ; x

)

=
1

2

∑

x=±1

∫ ∞

−∞

log2

( 2p
E
(ξ|x)

p
E
(ξ|x = +1) + p

E
(ξ|x = −1)

)
· p

E
(ξ|x) dξ, (7.47)
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where distribution p
E
(ξ|x = ±1) is obtained through Monte Carlo simula-

tion (histogram measurements) by setting the system SNR equal to ρ and

the input a priori LLR values conditioned on the transmitted bit x have a

Gaussian distribution given by

Lapp(x) = x · n, x ∈ {+1,−1}, n ∼ N
( 2

σ2
A

.
4

σ2
A

)
(7.48)

Therefore, the extrinsic mutual information IE,DET depends both on the sys-

tem SNR ρ and the noise variance level σ2
A of the input a priori information.

By viewing ρ as an index parameter, the EXIT function of the soft MIMO

detector is given by the following form

IE,DET = IE,DET

(
ρ ; σ2

A = J−1(IA,DET)
)

, F
∣∣
ρ
(IA,DET) , (7.49)

where function J(·) is given by (equivalent to equation (24) in the Appendix

of [91]),

J
(
σ2

A

)
= I

(
Iapp(x) ; x

)

=
1

ln 2

(
1

σ2
A

−
∫ ∞

−∞

σA√
2π

· ln cosh(y) · exp
(
− (σ2

A · y − 1)2

2σ2
A

)
dy

)
. (7.50)

Furthermore, input mutual information IA,DET of the soft MIMO detector is

related to mutual information IA,VND through the following equation for a

variable node of degree dv

IA,DET = J
(
dv · J−1

(
IA,VND

))
. (7.51)

3. EXIT characteristics of the LDPC variable node and check node decoders

Following the same reasoning as given in [91], the extrinsic mutual informa-

tion transfer characteristic of a variable node of degree dv is given by the

following form

IE,VND

(
IA,VND, dv

)
= J

(
(dv − 1) · J−1(IA,VND) + J−1(IE,DET)

)
. (7.52)
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According to the duality properties [96] of the EXIT curves between single

parity check codes and repetition codes over binary erasure channels, the

mutual information transfer characteristic of a degree dc check node over

binary input Gaussian output channels can be well approximated as

IE,CND(IA,VND) ≈ 1− IE,REP(1− IA,VND) = 1−J
(
(dc −1) ·J−1

(
1− IA,VND

))
.

(7.53)

7.4.3 LDPC code optimization

Following the methodology given in [89] [91], the EXIT functions of the

super MIMO soft-decoder (combination of the LDPC variable node decoder and

soft MIMO detector) can be obtained as

IE,VND = fs

(
IA,VND

)
=

Dv∑

i=1

λi · IE,VND

(
IA,VND, dv, i

)

=
Dv∑

i=1

λi · J
(

(
dv, i − 1

)
· J−1

(
IA,VND

)
+ J−1

(
F

∣∣
ρ

(
J
(
dv, i · J−1

(
IA,VND

))))
.(7.54)

where λi is the fraction of the variable nodes having edge degree dv, i, and Dv is the

number of different variable node degrees. Similarly according to (7.53), the check

nodes of the LDPC code have a transfer characteristic given by the following form

IE,CND = fc

(
IA,CND

)
≈ 1 −

Dc∑

i=1

ρi · J
((

dc, i − 1
)
· J−1

(
1 − IA,CND

))
, (7.55)

where ρi is the fraction of the check nodes having edge degree dc, i, and Dc is the

number of different check node degrees.

Following the successful decoding (convergence) criterion provided in [89],

the degree profile optimization problem can be reduced to the following maximiza-

tion problem by taking the LDPC code rate Router as the objective

max
{λi,ρi}

Router = max
{λi,ρi}

(
1 −

∑Dc

i=1 ρi/dc, i∑Dv

i=1 λi/dv, i

)
, (7.56)
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under linear constraints given by

IE,VND(IA,VND) ≥ IA,CND(IE,CND) = IA,CND(IA,VND),
Dv∑

i=1

λi = 1,
Dc∑

i=1

ρi = 1, 0 ≤ λi, ρi ≤ 1 . (7.57)

Utilizing the closed form EXIT functions of the component soft decoders given by

(7.54) and (7.55), we propose an efficient LDPC code degree profile optimization

algorithm in the following, which is composed of two simple linear optimization

steps.

• Variable node degree profile optimization:

For a fixed check node degree profile {ρk
i } from the kth iteration, the optimal

variable node degree profile {λk+1
i } is given by

{λk+1
i } = arg max

{λi}

Dv∑

i=1

λi/dv, i , (7.58)

under the constraints

fs

(
fc(an)

)
≥ an ,

Dv∑

i=1

λi = 1, 0 ≤ λi ≤ 1, 1 ≤ n ≤ N, (7.59)

where
{
an

∣∣an ∈ [0, 1]
}

is a set of specified constraint points, and N is the

total number of constraints on the curve.

• Check node degree profile optimization:

For a fixed variable node degree profile {λk+1
i } from the (k + 1)th iteration,

the optimal check node degree profile {ρk+1
i } is given by

{ρk+1
i } = arg min

{ρi}

Dc∑

i=1

ρi/dc, i , (7.60)

under the constraints

fc

(
fs(an)

)
≥ an ,

Dv∑

i=1

ρi = 1, 0 ≤ ρi ≤ 1, 1 ≤ n ≤ N, (7.61)
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where an and N are similarly defined as before.

• Initialization:

In general, we can start with any feasible degree profiles. Based on our

experience from numerical simulations, we find that it is always a good choice

to start with a regular check node degree dc.

If we stack the LDPC code degree profile {λi, ρi} into a super vector

η = [λ1, · · · , λ
Dv

, ρ1, · · · , ρ
Dc

]T . We can see that the objective Router given in

equation (7.56) is a concave function with respect to η and that all the constraints

given in (7.57) are linear. Hence, the above degree optimization problem has

only one unique optimal solution. Due to the non-decreasing property of the

proposed iterative maximization algorithm, it is guaranteed to converge to the

global maximum solution η⋆ from any initialization point. Therefore, in contrast

to the sub-optimal manual curving fitting technique proposed in [91], the above

iterative LDPC optimization algorithm provides much better performance and can

serve as an efficient tool for coded MIMO system design.

7.5 Numerical and Simulation Results

7.5.1 Elimination of positive feedback in EM-based MIMO detectors

We demonstrate in Fig. 7.9 the extrinsic information transfer functions

of the EM-based and modified EM-based soft MIMO detectors over an unknown

2 × 2 MIMO channel with coherence time interval T = 6 and 18, training length

Tτ = 2, and signal to noise ratio ρ = 4dB. BPSK modulation is assumed for all

the simulation results in this section unless explicitly mentioned. For comparison

purpose, the mutual information transfer characteristics of the simple MMSE-

based MIMO detector and detector with ideal CSIR are also included in the plot.

We can observe from the plot that for direct EM-based MIMO detector,

output extrinsic mutual information IE,DET is even greater than that of the detec-
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Figure 7.9: Extrinsic information transfer characteristic of the EM-based MIMO

detectors over a 2 × 2 unknown MIMO channel with training length Tτ = 2 and

signal to noise ratio ρ = 4dB.

tor with ideal CSIR in high IA,DET ranges, which directly indicates the existing

positive feedback between the input and output extrinsic information. Such strong

correlations between the output extrinsic information Lext(x) and the input a priori

information Lapp(x) will cause a severe performance degradation as verified by the

simulations results provided in Section 7.5.4. As expected, the modified EM-based

MIMO detectors successfully eliminate the correlation and achieve significant per-

formance gain compared to the simple MMSE-based detector especially when the

coherence time interval T is large.
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different MIMO detectors in a 2× 2 unknown MIMO system with coherence time

T = 6, training length Tτ = 2, and signal to noise ratio ρ = 4dB.

7.5.2 EXIT function comparison between different soft MIMO detec-

tors

As reported in [96], the area below the transfer function IE,DET = F (IA,DET)

well approximates the maximum achievable rate of the outer LDPC encoder.

Hence, the extrinsic information transfer characteristic F (·) can be easily used

to compare and evaluate the performance of different soft MIMO detectors. We

demonstrate in Fig. 7.10 the extrinsic information transfer functions of different

MIMO detectors described in Section 7.3 under the same 2 × 2 unknown MIMO

channel with coherence time T = 6, training length Tτ = 2, and system SNR

ρ = 4dB. For comparison purpose again, the mutual information transfer charac-

teristics of the simple MMSE-based MIMO detector and detector with ideal CSIR
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Figure 7.11: Comparison of the extrinsic information transfer characteristic of

different MIMO detectors in a 2× 2 unknown MIMO system with coherence time

T = 18, training length Tτ = 2, and signal to noise ratio ρ = 4dB.

are also included. As can be observed from the plot, all four soft MIMO detectors

have comparable performance in a small coherence time T channel environment,

i.e. T ≤ 10. All of them achieve significant performance gain over the simple

MMSE-based detector but are far away from the MIMO detector with ideal CSIR.

Furthermore, although the optimal soft MIMO detector is the best among

all MIMO detectors under the same channel condition, it is not always affordable

for practical communications systems due to its complexity especially when the

coherence time T is large. Therefore, sub-optimal soft MIMO detectors as well

as the EM-based detectors turn out to be promising alternatives for their excel-

lent trade-offs between complexity and performance over moderate to slow fading

channels. As illustrated in Fig. 7.11, the extrinsic information transfer functions
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Figure 7.12: EXIT-chart curve of a 2×2 regular (3, 6) LDPC-coded MIMO system

over a unknown fading channel with coherence time T = 6, and training number

Tτ = 2 using optimal soft MIMO detectors, under different signal to noise ratios

ρ = −2, 0, 2.2, 4, 6, 8 dB.

of these sub-optimal MIMO detectors are compared over the same 2× 2 unknown

MIMO channel with large coherence time T = 18. In this case (with large T ), the

modified EM-based MIMO detector outperforms other sub-optimal detectors and

tends to approach the performance of the MIMO detector with ideal CSIR.

7.5.3 LDPC code degree profile optimization

The analysis of the mutual information transfer characteristic provided

in Section 7.4.2 not only enables us to analyze the system performance, but also

provides a powerful design approach for the LDPC code optimization. We demon-

strate in Fig. 7.12 the EXIT-chart curves of a 2 × 2 regular (3, 6) LDPC-coded
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Figure 7.13: EXIT-chart curve of a 2 × 2 optimized LDPC-coded MIMO system

over a unknown fading channel with coherence time T = 6, and training number

Tτ = 2 using optimal soft MIMO detectors, under different signal to noise ratios

ρ = −2, 0, 1.3, 4, 6, 8 dB.

MIMO system with codeword length 8×104. The simulation is carried out over an

unknown fading channel with coherence time T = 6 and training number Tτ = 2,

using optimal soft MIMO detectors, and under several different system SNRs.

From the plot, we can observe that 2.2dB is the minimal SNR that can avoid

curve intersection and hence leads to successful decoding, which is further con-

firmed by the cliff region shown in the real simulation result of Fig. 7.14. We

also illustrate in Fig. 7.13 the EXIT-chart curves for the optimized LDPC-coded

MIMO system with outer code rate Router = 1/2 and codeword length 8× 104 un-

der the same system settings. It can be observed from the plot that after applying

LDPC code optimization, the two mutual information transfer functions match
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each other perfectly (almost fall on top of each other), and achieve about 0.9dB

gain in performance.

7.5.4 Overall coded MIMO system performance

We demonstrate in Fig. 7.14 the bit error rate of an LDPC-coded MIMO

system over unknown fading channels. For the sake of simulation simplicity, we

consider a small 2 × 2 MIMO system over a relatively fast unknown fading chan-

nel with coherence time T = 6. According to the non-coherent MIMO capacity

analysis provided in [71] [92], the number of training symbols Tτ is set equal to the

number of transmit antennas M , in a sense to maximizes the system capacity (or

mutual information rate). The outer LDPC code is a regular (3, 6) code with code

rate Router = 1/2, and codeword length 8× 104. By taking into account the pilots

cost, the overall system coding rate is Roverall = 1/3 bits per transmission. We

can observe from Fig. 7.14 that over 1.5dB performance gain can be achieved by

using optimal soft MIMO detectors than the simple MMSE-based detector. The

two sub-optimal MIMO detectors as well as the modified EM-based soft MIMO

detector also provide significant performance gain, and at the same time maintain

affordable decoding complexity. On the other hand, due to the existing positive

feedback, the direct EM-based MIMO detector has a 2dB performance degradation

compared to the modified EM-based detector and performs even worse than the

simple MMSE-based detector.

Using the optimization algorithm provided in Section 7.4.3, the optimal

LDPC code degree profiles (with outer code rate Router = 1/2 and codeword length

8×104) for the coded MIMO system using the different soft MIMO detection algo-

rithms are obtained and used in the overall performance simulation. We consider

the same 2×2 coded MIMO system used in Fig. 7.14 that transmits over the same

unknown fading channel with coherence time T = 6 and pilot number Tτ = 2

for simulations. The probability of bit error of the LDPC-coded MIMO system

with optimized LDPC code degree profile is shown in Fig. 7.15. Compared with
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Figure 7.14: Probability of bit error of a 2 × 2 regular (3, 6) LDPC-coded MIMO

system over a unknown fading channel with coherence time T = 6 and training

number Tτ = 2 using several different soft MIMO detectors.

Fig. 7.14, we can achieve about 0.6dB performance gain by using the optimized

LDPC degree profile as opposed to the simple regular (3, 6) LDPC code. Addi-

tional simulation results, not shown here, indicate that an even more significant

performance gain can be achieved by the proposed LDPC code optimization ap-

proach if higher modulation format (such as QPSK or 16-QAM) is used, or if the

coherence time interval T is larger. Under these channel conditions, the extrinsic

information transfer functions (7.54) and (7.55) of a regular LDPC-coded MIMO

system are very dissimilar to each other and this emphasizes the importance of the

proposed curve fitting technique.
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Figure 7.15: Probability of bit error of a 2 × 2 optimized LDPC-coded MIMO

system over a unknown fading channel with coherence time T = 6 and training

number Tτ = 2 using several different soft MIMO detectors.

7.6 Summary

In this chapter, we developed a practical LDPC-coded MIMO system

over a flat fading wireless environment with channel state information unavailable

both at the transmitter and the receiver. We first proposed several soft-input

soft-output MIMO detectors, including one optimal soft MIMO detector, two sub-

optimal soft detectors, and a modified EM-based MIMO detector, whose perfor-

mances are much better than the conventional MMSE-based detectors and offer an

effective tradeoff between complexity and performance. By analyzing the extrin-

sic information transfer characteristic of the soft MIMO detectors, performance of

the coded MIMO system using different MIMO detection algorithms are analyzed

and compared under various channel conditions. Motivated by the turbo iterative
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principle, the LDPC-coded MIMO receiver is constructed in an unconventional

manner where the soft MIMO detector and LDPC variable node decoder form

one super soft-decoding unit, and the LDPC check node decoder forms the other

component of the iterative decoding scheme. The proposed receiver structure has

lower decoding complexity and further leads to tractable EXIT functions of the

component soft decoders. Based on the obtained closed form EXIT functions, a

simple and efficient LDPC code degree profile optimization algorithm is developed

with proven global optimality and guaranteed convergence from any initialization.

Finally, numerical and simulation results of the LDPC-coded MIMO system using

the optimized degree profile further confirm the advantage of using the proposed

design approach for the coded MIMO system. The text of this chapter is in part a

reprint of the material which was coauthored with Bhaskar D. Rao and has been

published in IEEE Transactions on Signal Processing under the title “LDPC-coded

MIMO systems with unknown block fading channels: soft MIMO detector design,

channel estimation, and code optimization”.



8 Conclusions and Future Work

Using multiple antennas at both the transmitter and the receiver is one

of the most promising techniques that can offer significant increases in channel

capacity of a communication system in a wireless fading environment. However,

the performance of the MIMO system depends heavily upon the availability of

the channel state information (CSI) at the transmitter (CSIT) and at the receiver

(CSIR). In this dissertation, we focus our attention on design and analysis of

MIMO systems over wireless fading channels with practical CSI assumptions. The

contributions of this dissertation can be broadly classified into the following two

parts.

8.1 Analysis of MIMO Systems with Finite-Rate Feedback

The first part, which includes Chap. 2 - Chap. 5, considers the develop-

ment of a general framework for the analysis of multiple antenna systems with

finite-rate feedback, in the sense that the CSI is quantized at the receiver and

conveyed back to the transmitter through a rate-constrained reverse link.

By connecting the channel quantization problem to classical high resolu-

tion quantization theory, Chap. 2 developed a general framework for the analysis

of multiple antenna systems with finite-rate CSI feedback. The main contributions

of this chapter are listed below.

• The problem of finite-rate quantized communication system was formulated

as a general fixed-rate vector quantization problem with encoder side infor-

213
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mation, non-mean square distortion functions, and constrained source vari-

ables.

• Tight lower and upper bounds of the average asymptotic (high quantization

rate) distortion of the proposed general vector quantization problem as well

as the sufficient conditions for the achievability of the distortion bounds were

provided.

• The proposed distortion analysis was extended to the important problem of

sub-optimal quantizers with mismatched distortion functions, source statis-

tics, and quantization criteria. Bounds on the average distortion of these

different mismatched quantizers were provided.

• The framework was further extended to provide analysis for a generalized

vector quantizer with transformed codebook. Bounds on the average system

distortion of this class of quantizers were also provided.

• Finally, asymptotic distortion analysis of complex source variables as well as

source variables with constrained parameterizations was also provided.

The proposed general methodology provides a powerful analytical tool to

study a wide range of finite-rate feedback systems. Chap. 3 provides a detailed

capacity analysis of MISO systems with finite rate CSI feedback over both i.i.d and

spatially correlated fading channels, and the main contributions are listed below.

• As an extended application of the general distortion analysis, tight lower

bounds on the capacity loss of both spatially i.i.d. and correlated MISO

systems due to the finite-rate channel quantization were provided.

• In high-SNR and low-SNR regimes, analytically closed form expressions of

the MISO system capacity loss were provided.

• The capacity loss of correlated MISO channels was shown to be related to

that of i.i.d. fading channels by a simple multiplicative factor which is given
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by the ratio of the geometric mean to the arithmetic mean of the eigenvalues

of the channel covariance matrix.

The general framework developed in Chap. 2 is versatile enough and en-

ables the analysis of sub-optimal MISO CSI quantizers with mismatched codebooks

and quantizers with transformed codebooks, which were provided in Chap. 4. The

main contributions of this chapter are listed below.

• Two types of mismatched MISO CSI quantizers were investigated: quantiz-

ers whose codebooks are designed with MMSE criterion but the distortion

measure is the ergodic capacity loss (i.e. mismatched design criterion), and

quantizers with codebook designed with a mismatched channel covariance

matrix (i.e. mismatched statistics).

• Bounds on the channel capacity loss of the mismatched codebooks were pro-

vided and compared to that of the optimal quantizers.

• Upper and lower bounds on the capacity loss of MISO systems transmitting

over spatially correlated fading channels but using CSI quantizers whose

codebook is transformed from spatially i.i.d. fading channels were also pro-

vided.

• It was further proved that the average distortion of CSI quantizers with trans-

formed codebooks can be upper and lower bounded by some multiplicative

factors of the distortion of optimal quantizers. This factor was shown to be

close to one for fading channels whose channel covariance matrix has small

to moderate condition numbers.

In Chap. 5, the capacity analysis was further extended to MIMO systems

with finite rate CSI feedback. The main contributions are listed below.

• Tight lower bounds on the capacity loss of MIMO systems with finite-rate

CSI feedback transmitting over spatially i.i.d. Rayleigh flat fading channels

were provided.
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• MIMO CSI-quantizers with mismatched codebooks that only optimized for

high-SNR and low-SNR regimes were investigated.

• Capacity analysis of MIMO systems using multi-mode spatial multiplexing

transmission schemes with finite-rate CSI feedback were also provided.

8.2 Design and Analysis of MIMO Systems with Unknown

CSI

The second part of this dissertation, which includes Chap. 6 and Chap. 7,

is focused on the design and analysis of MIMO systems over fading channels with

CSI unavailable both at the transmitter and at the receiver.

To be specific, a capacity analysis of MIMO systems with unknown CSI

assumption was provided in Chap. 6. The main contributions of this chapter are

listed below.

• We proposed a system mutual information upper bound, which is shown to

be tight when the number of transmit antennas M is moderately large or the

system SNR is small, thereby leading to a valid capacity lower bound of the

unknown MIMO channel.

• The obtained analysis result is well suited for predicting capacities of systems

utilizing joint channel estimation and data detection algorithms with iterative

decoding structures.

• By analyzing the proposed capacity lower bound with respect to different

system parameters, we reenforce the advantages of using an orthogonal pilot

structure, which not only minimizes the mean square estimation error, but

also maximizes the proposed mutual information upper bound.

• It was shown that the mutual information upper bound is a monotonically

decreasing function with respect to the number of pilot symbols Tτ . Nu-

merical evaluation of the upper bound further demonstrated the fact that
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the rate gain is insignificant when the number of pilot symbols Tτ decreases

below M , suggesting a training duration of M time slots provides excellent

trade-off between complexity and performance.

• With the setting Tτ = M , it was also shown that there is no benefit in making

the number of transmit antennas M greater than N .

• Further numerical results demonstrated that only limited rate gain can be

achieved by using optimal power allocation between training and data sym-

bols compared to the simple equal power allocation scheme.

Based on the capacity analysis results, design of practical LDPC-coded

MIMO systems under the same unknown CSI assumption was provided in Chap. 7,

and the main contributions are listed below.

• We first proposed several soft-input soft-output MIMO detectors, includ-

ing one optimal soft MIMO detector, two sub-optimal soft detectors, and a

modified EM-based MIMO detector, whose performances are much better

than the conventional MMSE-based detectors and offer an effective tradeoff

between complexity and performance.

• Motivated by the turbo iterative principle, the LDPC-coded MIMO receiver

was constructed in an unconventional manner where the soft MIMO detector

and LDPC variable node decoder form one super soft-decoding unit, and

the LDPC check node decoder forms the other component of the iterative

decoding scheme.

• The proposed receiver structure has lower decoding complexity and further

leads to tractable EXIT functions of the component soft decoders.

• Based on the obtained closed form EXIT functions, a simple and efficient

LDPC code degree profile optimization algorithm was developed with proven

global optimality and guaranteed convergence from any initialization.
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8.3 Future Work

In this section, I summarize some of the possible extensions of this dis-

sertation. Most of the extensions focus on continuing the problem of design and

analysis of multiple antenna systems with finite-rate CSI feedback.

8.3.1 CSI Quantization with Practical Assumptions

As part of my dissertation, I have looked at the problem of design and

analysis of MIMO systems with finite-rate CSI feedback. However, for the sake of

simplicity, we adopted some ideal assumptions which include: the feedback channel

is delay-less and error-free, perfect CSIR is available at the receiver without channel

estimation error, and the fading channel keeps static within the coherent block

(block-fading model). Therefore, for practical communication systems, several

open problems remain in this area, which are discussed in the following three

directions.

Feedback Channel Error

In practice, the reverse link is not perfect and subject to noise. Hence,

the partial CSI at the transmitter is distorted by two types of errors: quantization

error and feedback error. Consequently, the CSI quantization schemes need to be

re-derived in this case to minimize the degradation caused by these errors.

Channel Estimation Error

The CSI at the receiver is always obtained by some form of channel esti-

mations. Inevitably, it is subject to estimation error in the sense that CSIR is not

perfect. Hence, quantizing an imperfect CSI (distorted source variable) is also a

very challenging problem and requires further investigation.
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Time-Varying Fading Channels

It is well known that block-fading is a simplified channel model for sys-

tems in a relatively slow fading environment. For fast fading channels, the ac-

tual channel might already change into a very different state before the quantized

CSI arrive at the transmitter. In these situations, it is more important to track

the channel rather than accurately quantize it. Some tentative solutions include:

quantizing the CSI difference between two consecutive states, quantizing the actual

physical parameters of the time-varying fading channel (such as angle to arrival,

angular spread, cluster number, and etc.), and utilizing proper channel prediction

techniques.

8.3.2 Practical Quantizer Design for CSI Feedback

Most of the CSI quantization schemes proposed so far are only limited

to VQ-based techniques, where brute-force searching algorithm is assumed in the

channel quantizer. To be specific, the receiver (or the channel quantizer) forms

quantization index by simply comparing the performance of every possible beam-

forming vectors or pre-coding matrices in the codebook. These kind of channel

quantizers work fine for MIMO systems with small number of antennas. How-

ever, for moderate to large systems or MIMO multicarrier systems over frequency-

selective fading channels, the CSI to be quantized has a large number of free

dimensions. Take for example, for an MISO system with 5 transmit antennas, the

CSI is a complex vector of size 5 × 1. If we quantize each of the real CSI dimen-

sions by 2 bits (with total 10 real dimensions described by 20 bits), the entire CSI

codebook consists of 106 beamforming vectors, which leads to 106 comparisons

in the brute-force search encoding algorithm. Therefore, design of practical CSI

quantizers by utilizing the rich source coding techniques, such as various product

quantizers, structured quantizers, sphere and ellipse wrapped codes and etc., would

be very beneficial. It is very interesting in the sense that not only the communica-

tion problem finds promising solutions but also the source coding theory extends
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its applications.

8.3.3 Precoder Design for Multiuser MIMO with Partial CSIT

Consider a MIMO downlink broadcast channel in a wireless fading en-

vironment. The CSI at the base-station is usually assumed perfect available in

most of the current literatures. However, for an FDD system without channel

reciprocity, every user has to feedback its own channel state to the base station

before any precoding or scheduling algorithm take place in the transmitter side.

Scaled by the multiuser number, usually in an order of hundreds, the amount of

CSI information need to be fedback increases dramatically in the multiuser en-

vironment. Hence, it is an urgent problem to design multiuser MIMO transmit

precoders that can efficiently use the partial CSI as well as design user-side CSI

feedback schemes with more strict rate-constraint. Moreover, multiuser scheduling

algorithms with finite-rate CSI feedback and other cross layer design problems are

also worth investigating.
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