UC Riverside UC Riverside Previously Published Works

Title

Conditions for Maximizing and Minimizing Diagonal Elements of a Hermitian Matrix

Permalink https://escholarship.org/uc/item/53p55458

Journal SIAM Review, 30(4)

ISSN 0036-1445

Authors

Hua, Y Sarkar, TK

Publication Date 1988-12-01

DOI

10.1137/1030143

Peer reviewed

eScholarship.org

PROBLEMS AND SOLUTIONS

EDITED BY MURRAY S. KLAMKIN

COLLABORATING EDITORS: CECIL C. ROUSSEAU OTTO G. RUEHR

All problems and solutions should be sent, <u>typewritten in duplicate</u>, to Murray S. Klamkin, Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1. An asterisk placed beside a problem number indicates that the problem was submitted without solution. Proposers and solvers whose solutions are published will receive 5 reprints of the corresponding problem section. Other solvers will receive just one reprint provided a self-addressed stamped (U.S.A. or Canada) envelope is enclosed. Proposers and solvers desiring acknowledgment of their contributions should include a self-addressed stamped postcard (no stamps necessary for outside the U.S.A. and Canada). Solutions should be received by March 31, 1989.

PROBLEMS

Birthday Candles Blowout Problem

Problem 88-16, by M. PACHTER (National Research Institute for Mathematical Sciences, Pretoria, South Africa).

A straight-line high-pressure front approaches at constant speed and sweeps through a given array of n lit candles (supposedly arranged on top of a birthday cake). The candles are extinguished one at a time at the instant of passage through the moving front (see Fig. 1). The blowout sequence of the candles is observed (this is a permutation of n elements), and on the basis of this "measurement," it is required that we estimate the direction from which the front came. Obviously, the estimate consists of a confidence "interval" C, which is an angular sector.

For a given array of *n* candles, we have the following questions.

(a) From the numerical sequence information, how should we calculate the uncertainty C in the direction of arrival of the front?

(b) If there is no a priori information on the possible direction of arrival of the front, how should we arrange n available candles to minimize the maximal possible measure of uncertainty C in the estimated direction of movement of the front?

(c) If it is known that the possible direction of arrival of the front is confined to an a priori known angular sector of extent $2\alpha\pi$ radius, where $0 < \alpha < 1$, then how should *n* available candles be arranged to minimize the maximal possible measure of uncertainty *C* in the direction of movement of the front?

Conditions for Maximizing and Minimizing Diagonal Elements of a Hermitian Matrix

Problem 88-17*, by Y. HUA and T. K. SARKAR (Syracuse University).

Let $\omega_1, \omega_2, \dots, \omega_M$ be distinct real numbers and let e_1, e_2, \dots, e_M be complex numbers satisfying $|e_1| = |e_2| = \dots = |e_M| = 1$. With $N \ge M$, let Z be the $N \times M$ complex matrix whose (r, s) elements is exp $(ir\omega_s)$. Set

$$Y = \begin{bmatrix} Z \\ ZE \end{bmatrix},$$

where $E = \text{diag}[e_1, e_2, \dots, e_M]$. Define the Hermitian matrix

$$J = Y^+ \begin{bmatrix} R & 0 \\ 0 & R \end{bmatrix} Y^{+H},$$

FIG. 1. *n* birthday candles are arranged at the *n* vertices of the regular *n*-gon.

where *H* denotes complex conjugate transpose, + denotes the Moore–Penrose generalized inverse, and *R* is an $N \times N$ Hermitian Toeplitz matrix with positive eigenvalues. (Since *Y* has full column rank, $Y^+ = (Y^H Y)^{-1} Y^H$.) Prove or disprove that, with respect to variations in e_1, e_2, \dots, e_M , we have the following:

(1) All diagonal elements of J are maximized if and only if $e_1 = e_2 = \cdots = e_M$.

(2) For M = 2, all diagonal elements of J are minimized if and only if $e_1 = -e_2$.

To clarify (1), note that if $e_1 = e_2 = \cdots = e_M = \exp(i\theta)$ then J is constant for all θ . Statements (1) and (2) are our conjectures supported by the analysis in [1] and by many numerical examples. The problem arose from our perturbation analysis in [1] of an estimator of $\omega_1, \omega_2, \cdots, \omega_M$ from a short data sequence (y_k) where

$$y_k = \sum_{s=1}^M a_s \exp(ik\omega_s), \qquad k = 1, 2, \cdots, N.$$

REFERENCE

 Y. HUA AND T. K. SARKAR, Perturbation analysis of TK method for harmonic retrieval problems, IEEE Trans. Acoust. Speech Signal Process., ASSP-36 (1988), pp. 228–240.

A Probability Generating Function

Problem 88-18, by A. A. JAGERS (Universiteit Twente, Enschede, the Netherlands).

Let h_n denote the probability generating function of the maximum Z_n of n independent identically distributed geometric random variables X_1, X_2, \dots, X_n with $P\{X_i = k\} = pq^k \ (k = 0, 1, 2, \dots; 0 . It is shown in [1] that$

$$h_n(z) = Q_n(z) \prod_{m=1}^n \frac{1-q^m}{1-q^m z}$$

where $Q_n(z)$ is a probability generating function as well. Prove that $Q_n(z)$ is the (unique) polynomial of degree n-1 such that for all $m = 1, 2, \dots, n$,

$$Q_n(q^{-m}) = q^{-m(m-1)/2} \binom{n}{m} / \binom{n}{m}_q$$