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- Abstract

~ We give a procedure foi"c_onstructing solutigns to the Riemann problem for
gas dynamics with a general convex equation of siate, ,Approxinia_te pro_cedur-es;

involving a ll.o_c'al parametrization of the equatibn of state, are introduced in

“order to calculate numerical fluxes in conservative finite difference schemes.

This leads to diﬂefengé schemes which are as accurate and almost as fast as the

analogous schernes for polytropic gases. Numerical tfesults in one and two space

variables are‘bresented. .



Abstract

We give a procedure for constructing solutions to the Riemann problem for
gas dynamics with a general convex equation of state. Approximate procedures,
involving a local parametrization of the equation of state, are introduced in
order to calculate numerical fluxes in conservative finite difference schemes.
This leads to difference schemes which are as accurate and almost és fast as the
analogbus schemes for polytropic gases. Numerical results in one and two space

variables are presented.
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§ 0. Introduction

The solution of the Riemann problem in the context of the numerical solu-
tion of the equations of inviscid compressible flow is considered here. The con-

servation form of these equations in one Cartesian space variable is

ou BFSUQ_
—at+ A =0. (1)

The R_iginann problem is the initial value problem for (1) with initial data

U, . x<0 @)
U(x.0) = Up . x>0.
The solution is a function of the similérity variable £= -t’-:—arid consists of four

constant states separated by elementary waves.

Vith the exception of the random choice method, numerical schemes for
solving (1) which utilize the Riemann problem cannot make use of all of the
information which is available in‘ the exact solution. This is due to averaging
operations which are a part of such schemes. Therefore, one would like to
extract, as efficiently as possible, those pieces of information which are actually

used.

The goal of this work is the development of approximate solution algorithms
fof the Riemann problem for (1) with a general convex equation of state (EOS)
which can be used in multidimensional calcul;'at.ions with the higher-order
Godunov methods suéb as those described in [3],[6],[22],[24]. The requirements
for such an algorithm are that it be almost as efficient as the corresponding
polytropic algorithms, that it be sufficiently accurate to maintain the high-order
accuracy of the underlying finite difference scheme in smooth flow, and that it
correctly résolves strong wave interactions. The main difficulty encountered in

this program is the avoidance of multiple equation of state evaluations. To over-



come this problem, a local parameterization of the equation of state is con-
structed, and the jump conditions for this parameter are derived. The same for-
mulation is used for smooth and nonsmooth flow. Furthermore, no new itera-

tions are required by the introduction of these parameters.

In considering this problem, we shall restrict our attention to a specific
Riemann problem solver for use in unsteady gas dynamics. However, the tech-
niques used here can be applied in other situations, such as for the Riemann
problems arising in upwind algorithms for steady supersonic flow [12]. These
techniques can also be applied to the approximate Riemann solvers of the type
considered by Roe [19].[4].

The spécial case of a polytropic equation of state »has been treated exten-
sively in the literature. The main deveiopmenhs have concerned numerical
iteration schemes in the pressure - particle velocity plane plane to determine
the strengths of the two nonlinear waves. Godunov [14] introduced a fixed pq.int
iteration which was later improved substantially by Chorin [1]. It was noted by
van Leer [22] that very little extra work is involved in implementing a Newton
iteration which, of course, has a higher convergence rate. Colella [3] also used
the Newton approach but made the modification (applicable to other iteration
schemes as well) that the rarefaction jump formulas can be replaced by the
simpler shock jump formulas in the phase space iteration with only a small loss
of accuracy. The current situation is that robust, very efficient, and vectoriz-
able methods exist for this special case; in particular, the number of iteration
steps can be set to one or two for virtually any problem. Implemented in high-
order conservative finite difference schemes, the Riemann problem solver

requires only a modest percentage of the total computational effort.

The paper is divided into four sections. In § 1, the equations of gas dynamics

and the associated Riemann problem are described. The exact solution to this



¥
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problem is presented in detail along with numerical techniques for obtaining
this exact solution. These techniques require numerous equation of state
evaluations and are, therefore, prohibitively _expensvive for use in a finite
difference calculation. In § 2, our local model is introduced and is applied in the
construction of a Riemann problem éolver which satisfies our requirements; the

implementation of the new procedure in a second order Godunov scheme is also

~outlined. In the § 3, numerical results are presented which validate the approxi-

mate Riemann problem solver on a test problem and which demonstrate the
power of the overall scheme when ap;;lied to a difficult multidimensional prob-

lem with real gas effects. Our conclusions are presented in § 4.

Portions of this work have appeared in preliminary form in [5].
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§ 1. Exact Solution of the Riemann Problem

The conserved gquantities U and fluxes F in the system of conservation laws

(1) are
Pl pu
U=jpu| , F=| pu?+p |. (3)
pE pEu+ pu

Here, p is the dénsity. E=e+ ;—uz is the total energy per unit mass, e is the

internal energy per unit mass, and u is the velocity. The pressure p is derived

from these quantities via an equation of state which we assume to be of the form

p=p(re) (4)

where 7=p7! is the specific volume. The function p(-,-) will be assumed to satisfy
conditions which insure that the system (1) is hyperbolic and that the Riemann
problem (2) always possesses a unique solution. The inequalities p,<0,p, >0 a;'e

sufficient [17] but not necessary [20] for this purpose.

The characteristic speeds for (1), i.e., the eigenvalues of the Jacobian

matrix VyF, are A*® = utc, u where the sound speed c is defined by

c? = 7%(ppe —p-) - | | (5)

This formula exhibits the wave speeds as functions of state and that an explicit

isentropic law is not required for their determination. However, an equivalent
definition [17] is ¢ = %‘;Lls where S is the entropy. In order to insure that the

only elementary hydrodynamic waves we need to consider in the Riemann prob-

lemn are either shocks or rarefactions, we restrict our attention to equations of

2
state that are convex, i.e., a—'&|s>0.



The Lagrangian sound speed is defined by
C=pc. _ (6)

In analogy with the special case of a polytropic gas, we define a dimensionless |

"isentropic I

Mre)= | (7)
T.8) = —.
PP
Another d.imensionlesls quantity is
¥(T.e) = EeT—+ 1. (8)

For polytropic gases, v is the ratio of specific heats and y=T". Neither statement

is true in general.

We also need the equations (1) expressed in nonconservation form:

Vi +A(V)V, =0 S (9)
-where
T u -0 :
V=|u| , AM={0 u =|. (10)
P 0 pc? u

The systems (1) and (9) are equivélent for smooth flow. The matrix A has left
and right eigenvectors (1*,r*), (1,r"), and (1%,r°) associated with the eigenvalues
A0 defined above. If these vectors are suitably normalized, it can be shown that
&ey are biorthonormal, i.e., 1%r? = 6,4. The characteristic equations for (9) are

obtained by setting I'1dV = 0 for | = 120

C 'dp +du =

1*-dqv = =0 '
17-dV = C'dp —=du =0 (11)
199V = C3dp +dr = 0.

These relations hold along characteristic curves in physical spaée given by

dx/ dt = A*9, as well as in V (phase) space.



The solution of the Riemann problem (1),(2) is illustrated in Figure 1 for
shock tube initial data. The backwafd facing wave (Us,Uy) and the forward fac-
ing wave (U, UR) fnay be either shock waves or rarefaction waves for general ini-_
tial data. The center wave (Usq,Uswg) must be a contact discontinuity across
which there is no pressure or velocity jump. The exact wave structure cannot be
uniquely determined by the jump conditions alone, and an entropy condition

vmust be added. Note that a rarefaction wave has finite extent in {-space

whereas a shock wave is infinitely thin. -

In Figure 2, the problem is presented in the pressure-particle velocity |
plane; the case shown corresponds to Figure 1. The two curves consist of those
states which can bé connected on thé right to Uy and on the left to Ug by ele-
mentary nonlinear waves (i.e., shock waves or rarefaction waves) satisfying the
entropy condition. For further details on Riemann problems and such diagrams,
see [7]. We now consider the structure of the shock and rarefaction curves in
the p—u plane. “

The shock curves are determined by the Rankine-Hugoniot conditions:

[u] =t[%]—

[‘?g_ = -[r] | (12)
(e] = —pl7].

Here, [q_] = qe—qg denotes the jump in q across a wave, S = LR, § = ¥{q.+qs),

and VW is the Lagrangian wave speed or mass flux crossing the wave. The
interpretation of W as a slope in the p—u plane is quite useful. The first two
equations in (12) are equivalent to conservation of mass and momentum and the
third .equation is conservation of energy. The choice of sign is positive (negative) |
for forward (backward) facing shocks. Given Ug and p., the jump conditions (12)

and the equation of state uniquely determine the postshock state U..



The rarefactién curves may be defined as the projection onto the p—u plane
of the integral curves of ry in V-space. It follows from our éssumptions on the
equation of state that the pressure is monotone across a rarefa.ction wave.

Therefore, the equations may be taken to be

dr/dp = -C™?

dwdp = +C1" (13)

The first of these equations is the isentropic law, and the second states that the
appropriate Riemann invariant is constant across the wave. For the special case

of a centered wave (as illustrated in Figure 1), the additional equation
¢=x/t=uzc . (14)
holds because ¢ = constant lines are A*-characteristics.

The main step in solving the Riemann problem is the computation of the
pair (psus) which is the unique intersection point of the two wave curves through
UL and Ug in the p—u plane. The solution cannot be obtained in closed form, -
even for a polytropic gas, and a numerical iteration is required; the details of
this procedure will be described below. We remark here that the wave curves
are C” except at Uy g where they are C2[7]. Thus, the standard numerical tech-
mques for determining the intersection of two plane curves can be expected to

converge at their design rates.
The second part of the procedure is to calculate the solution at some given

point ¢. Let x = sgn{é—u.) and define

(ULWpe) if x=-1,
(Us.anCS) - (UR WR'CR) lf X" 1 ’

l‘;s=xl-ls ' 3'=x$ . Go‘—'xuo.
In case ps> ps, so that the wave is a shock, the second jump condition (12)

implies that



(p+—ps) )

W3 (15)

pe = (pst -

The sound speed c. is then computed from the third jump condition and (7). In
case p.<ps, 5o that the wave is a rarefaction, the ordinary differential equations
(13) are solved with initial data U =Us to the final point p =p.. This yields pe ‘ -

from which c» may be calculated using the equation of state. Then define

Gs+Cs . Qe +cCo if pe<ps

. _XSOAQ = ws

Gs +
Ps

if p«>ps.

We then evaluate p,p,u at £ as follows:

[po,p-.llo if ESXO

P.pu = Ps:Ps.Us if ‘ t>xs .

If Rg >'§ >X., then the solution is being evaluated inside a rarefaction fan. In this
case, the system (13) is solved with initial data U = Ug to the final point

u+sc = §. Our assumptions on the equation of state are sufficient to guarantee

-~

the existence and uniqueness of such a point.

We now present the details of the iteration schemes for determining (u_.,p.)
given Uy and Ug. For either a shock or rarefaction wave, the post-wave state is
uniquely determined by the pre-wave state and p.. In particular, we can define
ues, the post-wave velocity as a function of ps and Us, S=L,R. We can also define

the mean Lagrangian wave speeds

Ws ={ | ues—us]| s (186) T
Cs if Ueg = Ug .

In the case of a shock, Ws is the quantity which appears in the Rankine-Hugoniot

conditions (12). In either case, Wg = Wg(p.;Us).



At the solution, us, =uwg=u. We will describe the secant method and

Newton’s method for the equation
u.L(p.) —u.ﬁ(p. =0. ' (17)

At each step of either of these iteration schemes, it is necessary to obtain values
for Wy R given the current iterate of p.. This involves an inner iteration loop

which we outline at the end of the section.

The secant method applied to the function (.17) becomes

pY ~ps
T

o p¥-p¥y

hodf, —udf ! +ulg - |

ul’s=ust

(18)

p¥*tl=pt - (ﬁl’é-—u!’ -1

forv=1.2, - - - . Here, and in what follows, the combination of (S, t) are to be
taken as either (L, =) or (R, +). The first two guesses used to start the iteration

are obtained using Godunov’s iteration scheme [14],[1].

Our derivation of a Newton iteration follows van Leer [22]. Applying

Newton's method to (17) yields

P¥—Ps
u% = f —_——
s = Us wé,
 ZuZa(um —ua) 9
Zr{ueg —uy
ot = op — Z1Zr(uw
p¥ P 2+ 75
dps . o
for v=0,1,2, - - -, where Zg =| Eu_l For a polytropic gas, Zg can be obtained in
3 .

closed form as a function of Us and the current iterate of p. [22]. Along the

dpo
dl.los

rarefaction curve, | | is given by integrating (13):

dpo - . )
| o = Clpepe)
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The derivation for the shock curves is somewhat more involved. We begin

by notin.g that

|dp°ll = Wz .

where the subscript S has been dropped for convenience. Equation (20) follows

“from the first jump condition (12). Since ¥ is known, this reduces the problem

to calculating £1—Vi--or. equivalently, —— dwe

dp. dpe” Noting that ep=Ppe ! and €; = —pr/ Pes
we compute
de. _ d .
-Ep—:' = dp e(p.,'r.)
= 3 2e(put- B [pl ) (21)

..4dW2).

pet = (=W R+ pIW

Differentiating ¥[p?] = W*[e] which follows from (12) and substituting (21), we
obtain
_ de. dw?
Pe —’ w2 d—p.'+ [e] -d——

: ] .
- [p,-l + B wee-(pw %] [ + Salel.

(22)

Multiplying both sides of (22) by p.. rearranging terms, and using (5), we obtain

v _ (CE-WW
dp. (I—JPe‘Pr)[P] '

(3)

where the derivatives of p are evaluated at (pe. Te). Upon substitution of (23)

into (20), we obtain a formula for Z(p«U) in closed form. ' -

There are several reasons for preferring the secant iteration to the Newton
iteration in practice. Most important, the required thermodynamic derivatives

. Pe and p, are often not available in real gas equation of state software. If they
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are available, their accurate computation requires extra work partially
offsetting the gain in convergence rate. In addition, the convergence rates for
the two processes are similar in theory, and in a practical vectorized computa-

tion only one or two iterates are calculated.

We now consider the problem of determining W(p«;U). For the jump across a
simple wave, this is trivial because both u. and 7. can be obtained directly from
the integration of (13) across the wave. Across a shock wave, we have

W2[e] = Y[p?]. Now,

e(pe, 7o)

e(pr-IEL).

[

Combining these two relations, one obtains a single nonlinear equation in the

single unknown W? which can be solved by any standard numerical procedure.

In the event that ¥. is somehow known a priori, the inner iteration for W?
across a shock wave can be eliminated. Indeed, it follows easily that
w2 %(P‘z —Pz)

- pe pP*—P ’ (24)
v (r- = ) -e

In this case, equation (24) can be solved for W? in closed form.

The algorithms developed in this section all involve equation of state evalua-
tions inside the iteration loop. Our strategy to avoid this, described in the next
section, is to obtain an approximate formula for 7s = 7+(p«;U) in closed form and
use (24) and the secant iteration (lé); alternatively, the Newton algorithm can
be similarly adapted if the appropriate equation of state derivatives are avail-
able. It is also essential to avoid numerical integrations of (13) because an equa-

tion of state evaluation is required at each step of the ODE integration.
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§2 Local Models for the Equation of State and the Approximate Solution to
the Riemann Problem

In using Godunov's method or any of its higher-order extensions, the solu-
tion of the Riemann problem must be calculated one or more times per mesh
point per dimension per time step. The exact algorithms of the preceding sec-
tion require numerous evaluations of the equation of state and therefore do not -
lead to solution algorithms for the equations of gas dynamics which are cost
competitive with conir_ent_ional finite difference methods. In this section, we
present a method for obtaining an apéroximate solution to the Riemann prob-
lem which is based on a local model for the equation of state. The resulting
numerical metﬁods require only one evaluation of the pressure per mesh point

per dimension per time step. In addition, the quantity I' defined by (7) must

also be supplied by the equation of state.

Our model is based on the idea of expressing the equation of state in terms
of 7, defined by (8). For the purpose of computing numerical fluxes, ¥ will be -
treated as a separate dependent variable; the solution of characteristic equa-
tions and Riemann problems will necessarily involve an approximate computa-

tion of the jump in ¥ across such waves.

Given the crudity of some of the approximations, our model leads to a
surprisingly effective numerical procedure for nonpolyttoéic gases. One reason
for this is that 7 is a slowly varyihg function of the thermodynamic variables for
real gases: although p,p,e may vary over many orders of magnitude, ¥ stays in
the range 1<y=<5/3. Another reason is that, given a prejump state, the
postjump pressure, and a postjump 7, the Rankine-Hugoniot conditicns for the o,
jump can be solved exactly at essentially the same cost as in the polytropic

case,

In the event that 7 is not a slowly varying state function, a different local

model corresponding to a different parametrization of the equation of state
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might be required; however, the principles of its construction would remain the
same. Our treatment here is restricted to models based on y. We remark that
we have performed successful computations using this model for problems

where ¥ changes by more than an order of magnitude across the shock.

We now consider the dynamic behavior of 7. Since ¥ is a function of the
thermodyna}nic state of the fluid, it is natural to consider its dynamics along the

streamline characteristic, which we parameterize by 0. By definition,

dog 0T dog de dog

Using (5).(7).(8), and the first law of thermodynamics, this becomes

9 - (1-2)y-1) L 90
dog (1 p)(?’ l)p dag (26)

Thus, the calculation of the dynamics of ¥ in smooth flow does not require the
total derivative of p with respect to (1, e.); the only information about these

derivatives that is required is contained in I".

In general, it is not possible to specify how 7y behaves across a discontinuity
without solving the full Rarikine-Hugoniot conditions. However, if the jump is not
too large, then the jump conditions for vy are well-approximated by an integrated

form of the characteristic equation (26):
ro0x (1-1) -0 2 oomp (27)

where 7,I,p and suitably centered across the jump. The relations (26),(27) will

be used to calculate the local dynamics ofj' in our scheme.

The above local model leads to the following approximate solition to the
Riemann problem. Suppose that we are given left and right states (ULLTL) and
(Uryg.I'R). We follow the general procedure of the preceding sections to calcu-

late the approximate value of the similarity solution at any point é =x/t. We use
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the secant iteration scheme (18) to determine (us,ps) except that the exact
values of Ws at each iterate are replaced by approximate ones based on (27).
Specifically, given ps from the main iteration, we define W = W(p+;Us,7s.I's) to be

the solution to the equation

We(eos —e5) = Y% (p? - pd) (28)

where

. PeTe. _~ Po . _P*—P

€eg = 7°S-v1 = Fes—1 (Ts— -—we_s-) , (29)
PsTs

= -1 (30)
;'3=7S+ (1 )(7 ) %(p ‘*‘Ps) b (31)
) Yes = MaX(Yiin,Min(Y o5, Ymax)) « (32)
7=%n+m) . T=%(L+TR). ~ (33)

and Ymin.¥max are limiting values for o which might, for example, be set by taking
the max and min of ¥ over several neighboring grid points in a finite difference
calculation. As noted in the discussion of (24), equations (28),(29) are easily

solved to give an explicit expression for W?:

w2 \P (Pe=ps)pe+ K (yes—1)(pe + Ps))
s—1 : (34)
¥s—1 PsTs

PeTs =

This expression is exact in the case of a polytropic equation of state. Also, tak-

ing the limit U, — Ugr -+ 0, we obtain

W2 = T'spsps + 0(UL, = Ug) (35)
so that the values obtained for (u.,ps) in the weak wave limit are correct to
second order in the jumps.

The shock jumpﬂvformula (28) is used to compute W? even for rarefaction

waves. Since the shock and rarefaction curves through Us have second-order
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contact at U, the error introduced can be expected to be of higher order than‘
the finite difference scheme's overall truncation error. Also, strong expansion
waves tend to spread out over several zones, thereby making the computation of
a strong rarefaction jump an extremely rare occurrence in a finite difference

computation.

The evaluation of the solution at a given point { = f—proceeds as in Section

2 mth one chﬁerence 1f {is locat.ed 1nsxde a rarefactlon fan, then linear interpo-
lation bet.ween the pre- and post-wave states is used to determine the desired
value. This approximates the exact procedure of integrating (13) through the

- fan until { is reached. The value of ¥(¢) inside a fan is also obtained by linear
interpolation, although an approximate form of (26) could be used once p(é) is
known. It is easy to check that the values of p,u,p,¥ obtained using this algo-
rithm are correct to second order in the jump. This level of accuracy is
sufficient to imf)ly that a Godunov-type scheme which is second order accurate
in smooth flow remains so if the exact Riemann problem solver is relacled by our

approximate Riemann problem solver.

To illustrate how our Riemann prolblem solver is implemented in a finite
difference scheme, we describe the extension of the scheme for a polytropic gas
inf.roduced in [6] to the case of a real gas. We restrict attention to the case of a
siﬁgle space dimension, Cartesian symmetry, and no source terms; the exten-
sion to ihe other situations as described in [6] are straightforward. Also, the dis-
sipation mechanisms discussed in [6] and [24] are required for the correspond-
ing real gas algorithms, and can be applied without modification. We denote by
X,y the boundary between the j* and j+1% zones, and define Axy = x5, - Xj-¥p
Xy = J{X;+3 + X;3). We assume that, at time t?, we know UP, an approximation to

Xt

f U(x,t")dx. We
X%

the average of the solution to (1) across the j* zone: Uj“ =
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wish to calculate UP*!, the approximate solution at time t"*! = t® + At. In out-

line, the second order Godunov algorithms for doing so consist of four steps:

1) the calculation of interpolated profiles for the dependent variables (not

neces\sarily the conserved quantities);
2) the construction of time-centered left and right states Vj§ 3&_ VJ;?R at Xy
3) the solution of the Riemann problem at x4y with left and right states con-
structed as in 2), to give VVj'iQf; and

4) the conservative differencing of the fluxes Fiuy = F(U( +jzf))

uptt =+ —(F,_;,—F,,,n)

We consider first the equations of Lagrangian hydrodynamics, i. e., equa-

tions of the form (1) with

T -u _
U=|uj , F=|p|. : (36)
E up

and where the mass coordinate m is used in place of x in (1). We begin by using
the equation of state to obtain pf* = p(7!, B! = %(uf)?), CP = C(rP . EP =% (uf)?)

We then calculate

R = _Ef.._..p n — m
7] Pjnejn 1. I-‘J ) pjn * (38)

We then interpolate the variables p,u, as functions of m using either the
piecewise parabolic algorithm described in [8], or the piecewise linear algorithm
described in [22],[3]. Interpolants are not constructed for ¥ or I'.

The left and right states at m;,y are constructed by averaging p.u, and T

over the domains of dependence of the point (m;.t™*!) to the left and right of

My i
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n'!,
(CPAY" [ a(m)am

QepL = -
ke B
aepr = (CRAL)! f a(m)dm
' My
for a=p,u,r, and
L =% . Dayp = T
7]"%1: 7) jthl i (4_0)

7i+%R = ‘.7j+1' ' Pj+}§,R = [y ®
The apf:roxﬁnate soluti.on toAt;hé Rlemann problem is .then computed with .
the left and right states given by (39),(40). Only the iteration procedure is per-

formed because only the central pressure Pej+3% and velocity uej4y is required to

c>alculate the fluxes.

The final conservative difference step is given by

= AAI:H-(%—;&‘U%%)

_ At .
uftl =y + Km_j(p'j—%_l)'jﬂi) . (41)

- At
Ejn+l = Ejn"' E(pﬁ—*u’j‘*—p.””u.j"”) )

In smooth flow, the scheme described heré is second order accurate.
Superficially, this appears to be incorrect since the piecewise constant interpo-
lation of ¥ is only first order. This is sufficient for the purpose of computing
second order accurate fluxes because these fluxes involve only pressures and
velocities. This can be seen quantitatively using the relation (35) adapted to
Lagrangian hydrodynamics:

TiopsPios | ~
W1+n.s=[ ”2“;;” +0(Uj;~U;) . S=LR. (42)

This is sufficient to imply that (Ueys3Pojsy) is correct except for errors

0((U,H - Uj)z) in smooth flow, and this is in turn sufficient to guarantee second
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order accuracy of the overall method. Unfortunately, this simplification disap-
pears for the single-step Eulerian algorithm discussed below; a value for Y is
required to compute the energy flux, so that ¥ must be interpolated in order to

preserve second order accuracy.

The extension of the single step Eulerian scheme for solving (2),(3) .-
described in §3 of [6] is equally straightforward, following the outline given
above. Since this algorithm is used to obtain the computational results

présented in the next section, we take some care to describe it in detail.

This »algorithrn. like the Lagrangian algorithm, consists of the four steps
given above. In the interpolation step, we calculate pr"oﬁles of the quantities‘
q-.“-p.p.u,'y. given qf' = q(UJ"). subject to monotonicity constraints. As before, one
can use piecewise linear interpolation or piecevﬁse quadratic interpolation. In

the results obtained below, we used the piecewise linear formulae, so that

q(x) = qf* + [XT::—L]A%" v X <x<Xjrko

where Aq; is calculated using the algorithm described in [3]. In regions where
L Ag; . -
the solution is smooth, Ay, 5@ fourth-order central difference approximation to
: :

QEL|
» ox

To obtain our left and right states, we use our interpolation functions and

the nonconservative form of the differential equation (9) to extrapolate left and

right limiting values at time t"+ == At s
At 3V Bxy av Ax; A, |[av i
Vv =S Vn $+ —_— = f— 2
Pk 2otz o Ut 2| %,

Ax. (43)
Vﬁﬁz Vi - [‘——2)H + Az—tAju][gv

AV,
If we replace [g-] by —= Bx, : where the AVj's were obtained from the slopes calcu-
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lated in the interpolation step, then this is essentially the algorithm used in
smooth regions. In that case, the states V{iﬁ,Vj‘}.ﬁfﬂ, are constructed such that

-V]’ijzf is an approximation to a solution to the characteristic form of the equation
at (xjy, t" + AZL). up to terms of second order, so that the algorithm is second

order in space and time. However, we make several rnodiﬁcatiohs to (43), which _
have an effect only at discontinuities. We do not include all the corrections to

VP, Vi1, given by (43), but only those components in an expansion in terms of the
right e'igéh\;eé't.o'r‘s of A correspondmgto QaQ'eS approachmg x],% We also take
advantage of the fact that increments of the solution propégate along charac-
teristics, so that the reference state against which we measure those inci‘e-

ments is, within limits, arbitrary. We obtain, then

Vj&%‘ = VL + P)(an - VL)

(
_ JAX; At AV;
MR P z—AfHij

~ ~ 44
V‘m&z = VR + P(VR, - VR) (44)

(Ax
- j+1 At Avy,,
P ‘——-2 + 5 A]f-l] [m] ;

Where the operators P, , P are defined by
Pyw= 3 (fw)rf
M0

Pow = > (Awirh,
x"<o

Here, and in what follows, we take expressions involving # to mean # ranging

over +,-,0.

The reference states VL,VR are chosen so as to reduce to as great an extent
as possible the degree to which we rely on the linearized equations in calculating

V,’l}ﬁ,.vj'l%. For example, if we take
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Ax; + m At [ AY;
2— max(?\ .0)2‘][ij‘ )
| (45)

v _ Axyyy oy~ At 1AV
Ve=va, - [-—2—+ rmn(}\M,O)z—] Axl

j+1

3

vL=an +

then we eliminate one component of the correction to VPV in particular, if
the flow velocity is zero VA = . VEYe = Vg Finally, we replace 7, At by
expressions involving p, Ap, in such a way that, in the absence of p and u gra-
die‘nts. the amount of mass transporﬁed across a zone edge is equal to the
ir‘)tegraull of p under the'stt.ea'trnline‘ ieaétﬁhg (qu-.”,t"“.l). The result, then, is the

following:

a=qt+ %[1 - KA):Tf(rnax()\*.O)]qu g=p.p.uv

- (48)
ST AR Y
Axjyy
Apy| At :
ﬁ— - _Fu— —] lf A_>0
L PG ) 2opay 1
= 0 otherwise
Ap; _ A A
g0 = - ___n_]c._ if A\°>0
Cf prof | T _Ax; !
= 0 otherwise i
Apjr] At ,
g = —|Aujy, + it A% <0 )
Br P i+1 Cin szjrixiju i+ -
= 0 otherwise T

_ |4pje1 Apj+y At e 10
R = [CJTI ;;ﬁﬂ I 2By  Am <o

= 0 otherwise
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Aﬁjt;x uj*.‘)Aqi”' Given

where qf = q; + }(1 - AAXLju])AqJ-. and qf = g}, - K1+

these expansion coefficients, then Vj’}.ﬁ = '\71, + Eﬂﬂrj". Vj‘},% = VR + Zﬁfqﬁ]:
pEf = (G -pL-6D)™) |

PAifL

i,

PRk =

Pk = Pr+BRCA:

PL+BLCE

- B Gy

(47)

((or -8R —B ™

uith = Ur+BRCin
That equations (46), (47) are equivalent to (44),(45) is easily derived, using the

identities P,Aw = T M(1f-w)rf, PAw = I M(1Fw)rf.
M>o M<o

Since the above steps are well-defined for a general equation of state, we .
need only define 7j,ys[jsys S=LR Asinthe Lagrangian case, we take
TispL = T Tjagr = j+1. We take 7j4ys to be the value given by the characteristic

equation (28) when the velocity has the appropriate sign; otherwise, we use ;s:

(Pm& _PI?)

) L4\ .
71.+2[1- (y,=1)DIAL7PL) L 5
O " (prsfh +pP) ]

PR

(48)
= ;L otherwise

(PR¥R —pf)

Yi+1 . .
+ 2/1 - -1)—F—+—if
7]9 [ PJ*H (7]4»'1 ) (p;i%+ pﬁ) 1 qu.] <0

o]

;}z ‘otherwise _
YERS = max(Ymin » MIn(Ymax « YRHS))-
Thus we have all the data we need to solve the Riemann problem at x;,y using the

algorithm described in this section. If we denote by q/i¥%%, q=p.p.u,7, the values

so obtained, the conservative flux Fj,y is given by
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Fiay = | pR(uf3)? + pigt

aentt )|

ntky2
onst gt | R,

PRYORY-1))

(49)
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§ 3. Results

We have implemented the methods described in § 2 and tested them for a
variety of equations of state. The calculations discussed here have been per-

formed with the Eulerian second order Godunov scheme described in the previ-

. ous section. We srhall present the results of two test calculations here: one a

"sirnple shock tube in one space variable, the other a complicated shock

reflection problem in two space variables, where the real gas EOS has substan-
tial effect on the nature of waves generated. The latter calculation was per-
formed using the standard second order operator splitting technique, with the
component one-dimensiqnal algorithm as in § 2.

The first test problem is a shock tube in one space dimension in Cartesian
coordinates. The material to the left of the initial discontinuity is air, initially at
atmospheric conditions, the equation of state for which is that given by Gilmore
[10] The material on the left consists of high explosive product gases, the equa-

tion of state for which is given by the JWL formula [9].[21]:

P= A[ ——-]exp(—Rlv) + B[l-@']exp(—RzV) + = ~ (50)

where V = -T—- T = po ! and pq is a reference density. The JWL coefﬁcxents A, B,
o

" Ri.Re,w and the reference density pg have been chosen for the explosive PBX-

9404 [21].

In Figure 3, we illustrate the results of this Cartesian shock tube calculation
by comparing the computed solution with the exact solution. The latter was
obtained with the exact Riemann problem solver described in § 1. There are 180
zones in the computational domain, with the initial discontinuity located
between zones 80 and 61. These materials are modeled by the JWL and Gilmore
EQS routines. The initial data were (pr,ep,up) = (2.0,6.0x10'},0.0) and

(Pr.er.up) = (1.2913x1073,2.0x10°,0.0). Here and in the figures, all quantities are
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in cgs units. The boundary between the two materials is "tracked” by solving an
-additional advection equation for the fraction of air in a zone. If the fraction is
not 0 or 1, we take 7;,['; in a zone to be a weighted average, Yaw!aw Of these quan-
tities for each of the two materials. The pressure is then computed using the
formula p = (Yay— 1)pé. The computed solution is in good agreerhent with the
exact solution. The slight undershoot in the internal energy to the left of the
contact discontinuity is a starting error, ‘which occupies a fixed number of zones
as the. mesh is refined. The density, energy, and pressure profiles are all mono-

tone across the shock.

Our second test problem is a two-dimensional calculation of the reflection
of a planar shock off an oblique surface, illustrated schematically in figure 4.
Setting the origin of coordinates at the corner and measuring time with respect
to the confluence of the incident shock and the corner, the solution for t>0 is a
function of (x/t,y/t). This solution depends on the parameters a = ramp angle,
M; = incident shock Mach number, and the equation of state of the fluid. This ..
problem is well known and has generated a great deal of analytical, experimen-
tal, and computational work in the last forty years; for a review of the experi-
mental work in this area, see [18]. We consider here the case of a Mach
reflection in air, with a = 20°, Mg = 7.19. The ambient air for this experiment
was (pg.Po) = (9.29X10‘°.8.0X104). Due to the low ambient pressure (less than 8
percent of atmospheric pressure ) the results are sensitive to the correct
representation of the equation of state; it is for this reason that we chose this -5
particular problem as a test. |
For real air, we consider three different equations of state: (1) a perfect gas e
with ¥ = 1.4, (2) the Gilmore real air EOS [10], and (3) the Hansen real air EOS
[15]. Both the Gilmore and Hansen EOS routines are based on a detailed

analysis of the satistical mechanics and kinetic theory of the constituents of air

at high temperatures. The Hansen EOS is based on the analysis of [15] with some
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modification, described in [16]. The Gilmofe EOS is specifically designed for
efficiently computing the propagation of blast waves into atmospheric ambient
conditions and is less valid fbr low density ambients, while the Hansen EOQS is
accurate at the low densities typical of shoék-tube studies. Each of these rou-
tines has béen modified into a vectorized table lookup format. Table entries for
7 and I" are stored in arrays; at each EOS evaluation, linear interpolation
between tabulated values is used. |

Figuré 5 11sa photograph of an inﬁriitle .fringe;a.'int.;ei'ferogram 'of f.his experi-
ment, first published in [8]. The boundaries between the light and dark bands
are isopycnics, i.e., lines of constant density. The density jump between succes-
sive bands is a constant. The experimental résults contain physiéal phenomena
which are not modeled by the Euler equations. The principal such effect is due to
vibrational nonequilibrium [23]. The Euler equations are valid under the assump-
tion that all the thermodynamic degrees of freedom relax to equilibrium instan-
taneously behind shock waves. For the range of ambient conditions and shocl;
Mach numbers considered in [8] , this is true for the translational and rotational
degrees of freedom of the gas, but not always for f.he vibrational degrees of free-
dom [23], [16]; in particular, the vibrational degrees of freedom for the example
given here relax on time scales comparable to the hydrodynamic time scales.
This is seen in the experimental results by the presence of isopycnics behind the
incident shock, indicating the zone over which the gas relaxes to complete
equilibrium. The curvature in the isopycnics under the reflected shock near the
compiession corner is also indicative of a rélaxation zone. The effect of vibra-
tional nonequilibrium on the density field is relatively small (about 10% of the
shock jumps) and confined to relatively narrow bands near the shocks. Since

our computational resuits are épproximate solutions to the Euler equations, the

! Figure 5 appears here with the permission of the authors of (8], the Journal of Fluid Mechanics,
and the Cambridge University Press.
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assumption is being made that the gas relaxes instantaneously to its equilibrium
values. Thus, one might expect good agreement between computational and
experimental results away from the relaxation zone, assuming the equilibrium
equation of state is correct. In any case, our main purpose is to demonstrate
the sensitivity of the numerical solution to the equation of state; an extensive .

comparison between numerical results and the experiments will appear in [12].

In figures 6-8 we presént_ the density confours from the numerical calcula-
tions of the shock reflection problem using the three equations of state. All the
calculations obtain the same large scal;a structure whif:h is also apparenf. in the
experimenf.. There is a leading Mach triple point, with the reflected shock
attached at the compression corner. -Extending from the Mach triple point to
f.he right is a slip surface, which, as it approaches the ramp, turns back toward
the Mach st.erh to forfn a jet. The leading edge of this jet is Rayleigh-Taylor
unstable, and has the characteristic rounded and Blur_lt shape. There are, how—b
ever, substantial differences in the détailed features of the three calculations“.
The length of the Mach stem, and the angles between the various discontinuities
at the triple point, differ considerably. Also, the structure of the reflected shock
for the ¥ = 1.4 case is considerably different from that for the other two cases.
In the latter, the reflected shock near the compression corner is a straight line,
separating two constant states. There is also a discontinuity in the derivative of
the path of the reflected shock, forming a second Mach triple point. In the
7 = 1.4 results, the reflected shock is curved all the way to the compression
corner, and a second Mach configuration does not form, the nonconvex portion ' _—
of the reflected shock remaining smooth. Finally, we see considerable |
differences in the jet. The jet becomes longer, and the density contours become T
more numerous and complicated, going from 7 = 1.4 to the Hansen EOS to the
Gilmore EOS. This is due to the increasing acceleration of the jet as a functibn

of the equation of state. In the case of the Gilmore EOS results, there is an
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additional effect, which is the bulging, or "toeing out"” of the Mach stem near the

wall as it is pushed forward by the jet.

In figure 9, we give a more quantitative comparison of the various numerical
results, as well as to the experimental data, by plotting the density at the wall as
a function of the distance along the wall. The values of the density plotted for

x

I > 1 are the values of the density behind the compression corner, and are

equal to the density behind the incident shock. As Q'n‘evcan' see, there are large
diﬁ’erences in thé results for t;he three numerical calculations. This is due to the
increasing compressibility of the fluid, going from ¥ = 1.4 to the Hansen EOS to
the Gilmore EOS. The differences are largest in back of the leading edge of the
jet. since the fluid has been compressed by two shocks, with the compression

being the product of the compression due to each of the shocks.

The comparison to the experimént in this case is complicated by the fact
that the density cannot be completely determined from the experiment, since
the number of isopycnics inside the shock cannot be resolved. Thus, it is neces-
sary to make some assumption about the transition across the shock. The
assumption made in [8] in interpreting the data was that the shock jumps adja-
cent to the ambient gas, as well as at the triple point, are given by the vy = 1.4
shock jump relations, even though the final equilibrium value of ¥ far down- -

stream of the shock is not 1.4. Since the value of the density thus derived from

x

L > 1 region should be the equilibrium value (since

the experimental data in the

it is well behind the relaxation zone), the difference between the computed den-
sity and the density derived from the experimental data is a measure of the
incompatibility of the various equations of state with the assumptions made in
deriving the experimental values of the density. For the correct equation of
state, shifting the data by thé fixed amount required to obtain agreement in the

X

L >1 region should bring the experimental results into very close agreement
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with the experiment [12]. This is indeed the case for the Hansen EOS: most of
the density profile is within 2-3% of the experimental results if this shift of the
data is performed. The main disagreement is near the leading edge of the jet,
where there are substantial viscous effects, as evidenced by the fact that the .-
experimehtal isopycnics intersect the wall at an oblique angle. In contrast, the
data from the other two equations of state disagree with the experimental

results by substantial percentages, even after the data is shifted.

I

-3
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§ 4. Discussion and Conclusions

The use of numerical calculations for compressible flow problems arising in
physics and engineering applications often requires the ability to calculate solu-
tions for fluids having a general equation of state. Our results for planar shock
diffraction illustrate this need by demonstrating that substantial EOS effects are
present for flowfields with complicated wave interactions. The equation of state
not only affects detailed quantitative properties such as the jump conditions, tri-
ple point trajectory, and the precise values for the isébycnics', but also the quali-
tative behavior of the important structures in the flowfield. We refer especially
to the dynamics of the jet behind the Mach stem. A question which remains
open concerning tﬁe shock wave diffraction calculations is the extent to which
nonequilibrium effects cause the experimental and calculated ﬂoﬁﬁelds to differ,
even after the data reduction has been calibrated from the equilibrium equation
of state. This issue will be discussed further in [12]. An obvious resolution to
this problem would be the generalization of the second-order Godunov scheﬁé
used here to trea_t the thermodynamic degreeé of freedom which relax to equili-
brium on time scales comparable to the hydrodynamic time scales with the

appropriate rate equation [23].

In order to assess the relative costs of the various changes we have made in
the second order Godunov algorithms to accomodate the general equaﬁon of
state, we performed a series of t.imirig comparisons, using as the test problem
the one-dimensional shock tube problerﬁ discussed in the previous section. The
timings were performed on the Cray 1 at the Magnetic Fusion Energy Computer
Center, with the programs compiled using the CFT compiler. We considered four

cases:

1) the algorithm implemented as in § 2;
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2) the same program as for 1), but with the EOS call replaced by a dummy call

which set 7, =} = 1.4;

3) the same program as for 2), but with the Riemann problem solution algo-
rithm given in § 2 replaced by the c-on_stant v algorithm given in [2];

4) the same program as for 3), but with the interpolation and characteristic

calculations given by (48) omitted. -

The times are given in the table below, in microseconds per zone per time
step. The programs were vectorized in such a way that the results are indepen-
dent of the initial data, and depend only on the number of mesh points in the

calculation.

Cray 1 Timing Results
Case 1 24.2 usecs.
Case 2 18.2 usecs.
Case 3 14.2 usecs.
-Case 4 12.8 usees.

_ T’bus, the difference in the time used between the real gas algorithm, excluding
the call to the equation of state, and the polytropic algorithm, is 5.4 HUsecs.

( = (Case 2) — (Case 4)), about a 40% increase. Most of this increase is in the
Riemann problem solver. A major source of this overhead is the necessity of
guarding against ierov denominators in the formulas for W2 in (34), and in the
secant iteration (18). Nonetheless, this increase is still smaller than the time

required to perform the single EOS evaluation.

In order to generalize Godunov-type schemes originally designed for <
polytropic gases to the case of a general EOS, one must confront a number of
; . &)

issues. The principal one is the avoidance of numerous equation of state calls in '

the course of solving the Riemann problem. A related issue is the formulation of

an algorithm which requires as little detailed information about the equation of
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state as poésible. For example, an algorithrnvsuch as the one described in [18],
which requires integration along i:he isentrope, could bé quite expensive (see,
for example, {11]); furthermore, if the sound speed is obtainéd by numerically
differentiating a tabulated pressure function using (5), instabilities might arise -
in regions where the table is sparse. We feel that we have successfully dealt with
these issues. In particular, the sound speeds in the Gilmore EOS were obtained
by numerically differentiating tabulated values of pressure, and we obtained the
. 'same stability and robustness in the calculations performed with this EOS as
those performed uéing the Hansen EOS, in which the sound speeds were obtained
analytically. One area which we have not explbred_thoroughly is the applicability
of this method for fluids in which ¥ varies strongly at shocks. We. have done

some experiments calculating shock propagation in compressible water, in
cases where there is an order of magnitude jump in 7 across the shock, and have
obtained results of comparable quality as those obtained for gases. We feel that
the limiting of  given by (32) is cﬁtical to the success of the algorithm in these
regimes. For a strong shock wave, this guarantees that 7 remains between the
pre- and post- shock values. We intend to explore the applicability of this

method to high ¥ materials in future work.
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Figure Captions

The solution of the Riemann problem in physical space.

’

Wave curves and solution of the Riemann problem in the pressure-particle

velocity plane.

Solution for a Cartesian shock tube with explosive product gases on the left
and atmospheric air on the right. The solid line is the exact solution, com-
puted using the algorithm in § 1; the dashed line is the solution computed

using the Eulerian second order Godunov method with 180 zones.

Planar shock wave diffraction. The case illustrated is complex Mach

reflection.

Experimehtal isopycnics for complex Mach reﬁectioh. a =20° My =7.19,

taken from [8].p.39.

Computed isopycnics for complex Mach reflection, a = 20°, M, = 7.19, using

a polytropic EOS with = 1.4. The calculation was performed on a 510x120

grid consisting of square zones of length 3_15-cm'

Same as Figure 8, using the Hansen EQS. ,
)

Same as Figure 6, using the Gilmore EOS.
Density vs. distance along the wall for the flowfields of Figures 5-9; 1 -

polytropic EQS, 2 - Hansen EOS, 3 - Gilmore EOS, solid dots - experimental

data points taken from [8].
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Figure 1
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Figure 2
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