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Properties of isoscalar-pair condensates
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It is pointed out that the ground state of n neutrons and n protons in a single-j shell, interacting through an
isoscalar (T = 0) pairing force, is not paired, J = 0, but rather spin aligned, J = n. This observation is explained
in the context of a model of isoscalar P (J = 1) pairs, which is mapped onto a system of p bosons, leading to an
approximate analytic solution of the isoscalar-pairing limit in jj coupling.

DOI: 10.1103/PhysRevC.94.024324

I. INTRODUCTION

In 1958, Bohr et al. [1] suggested a possible analogy
between the excitation spectra of nuclei and those of the super-
conducting metallic state. Since then, a wealth of experimental
data has been accumulated, supporting the important role
played by pairing correlations in defining properties of atomic
nuclei, such as deformation, moments of inertia, alignments,
etc. [2,3]. Today, the study of pairing correlations continues
to be a subject of active research in nuclear physics, with
an emphasis in exotic nuclei. Of particular interest is the
understanding of the role played by the isoscalar (T = 0) and
isovector (T = 1) pairing forces [4] in the structure of N ≈ Z
nuclei.

Given the charge independence of the nuclear force, T = 1
pairing is on an equal footing between the Tz = 0 neutron-
proton (np) and |Tz| = 1 neutron-neutron and proton-proton
(nn and pp) components. In addition, we have the unique
possibility of studying the formation of a condensate of T = 0
np pairs, thus implying the possible coexistence of so-called
Cooper pairs of isoscalar and isovector type. Although the
nuclear force is stronger in the T = 0 channel, it is still not
clear how effective the (in-medium) T = 0 correlations are in
giving rise to a ground-state isoscalar condensate [4].

In this paper we consider some interesting properties of the
isoscalar condensate in the jj coupling scheme, in particular
with regards to its angular momentum. Our motivation starts
by studying the numerical results of a shell-model calculation,
within the space of single-particle spin-orbit partners, showing
that when the isoscalar component is dominant, the ground
state is not paired to Jπ = 0+ but, rather, behaves as a state
of aligned 1+ quasideuterons. To gain further insight into the
peculiar structure of these condensates, we develop a boson
mapping of the shell model, leading to an approximate analytic
solution. Group-theoretical solutions of the pairing problem
are known in the isoscalar and isovector limits of LS coupling
[5–7] and in the isovector limit of jj coupling [8,9] but,
to our knowledge, not in the isoscalar limit of jj coupling.
Our results therefore provide, for the first time, approximate
analytic formulas for the energies of the lowest states in that

case. While we, of course, are aware that this limit is not
applicable to real nuclei, these states might exist close to the
ground state in specific regions of the N = Z line [10,11] and,
more interestingly perhaps, could be realized in atomic traps.

II. SINGLE- j SHELL MODEL

Single-shell models that capture the main ingredients of
the problem provide a useful framework to understand the
competition of isovector and isoscalar pairing interactions.
Here we start by considering the scattering of (L = 0,S =
0,T = 1) nn, np, and pp pairs as well as (L = 0,S = 1,T = 0)
np pairs, describing the large spatial overlap of the nucleons’
wave function in a relative L = 0 state. In the jj coupling
scheme the spin-orbit splitting v�s increases the energy
required to form the (L = 0,S = 1,T = 0) state, thus favoring
a (J = 1,T = 0) quasideuteron configuration. It then seems
of interest to consider a more realistic case, namely that of a
single-j shell that incorporates the jj coupling scheme, more
appropriate in heavier nuclei. The difference between these
simple LS and jj models has been discussed in terms of the
BCS approximation [12].

Our approach to study this problem is to use the shell-model
code OXBASH [13] with an effective two-body force of the form

V̂ (g,x) = −xgV̂J=0,T =1 − (1 − x)gV̂J=1,T =0, (1)

with

V̂J,T = 1
2 (a†

j t × a
†
j t )

(J,T ) · (ãj t × ãj t )
(J,T ), (2)

where a
†
jmj tmt

creates a nucleon with angular momentum j

and projection mj , isospin t = 1
2 and projection mt , and with

ãjmj tmt
= (−)j+mj +t+mt aj−mj t−mt

. The notation × implies the
coupling to angular momentum J and isospin T , and the dot
· denotes a scalar product in angular momentum and isospin.
The Hamiltonian (1) models the mixture of the two types of
competing pairing interactions by the parameter x, with x = 0
corresponding to the isoscalar and x = 1 to the isovector limits
respectively. The sign convention in Eq. (1) is such that g
is positive for an attractive interaction V̂ (g,x). We consider
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FIG. 1. Energies (in units of the pairing strength g) of the lowest
two T = 0 states for N = 4 particles in an f7/2 shell as a function of
the relative mixture x of isovector and isoscalar pairing.

two spin-orbit partners f7/2 and f5/2 and study the low-lying
spectra obtained as a function of the splitting v�s . In the limit
v�s = 0 we recover the results of the LS coupling scheme. The
results for v�s � 〈V̂ 〉 agree with those obtained for a single
f7/2 level only.

The intriguing phenomenon that motivated this study is seen
in Fig. 1, showing the evolution of the two lowest states in the
N = 4 particle system as a function of x. For an appreciable
amount of isoscalar pairing (x � 0.4) the ground state changes
from the expected 0+ to a 2+ state. Moreover, as seen in Fig. 2,
the ground state for N = 6 is 3+ and not 1+, and so on for
more particles. Considering that, for two particles interacting
with the force (1), x ∼ 0 favors deuteron-like pairing with
angular momentum J = 1, it appears that the ground state of
the many-particle system prefers the aligned configuration of
the n = N/2 pairs, i.e., the configuration with J = n.

FIG. 2. Energies (in units of the pairing strength g) of the lowest
two T = 0 states for N = 6 particles in the f7/2 shell as a function of
the relative mixture x of isovector and isoscalar pairing.

FIG. 3. Energies (in units of the pairing strength g) of the T = 0
ground state for N = 2 particles (top) and of the lowest two T = 0
states for N = 4 particles (bottom) as a function of the spin-orbit
splitting between the f7/2 and f5/2 orbits and for pure isoscalar pairing.
The shaded area in the top panel indicates the critical value of the
spin-orbit splitting, v∗

�s , at which the jj coupling takes on. (See text
for details.)

We can trace back the change in the properties of the ground
state to the spin-orbit splitting. In Fig. 3 we show the results for
the N = 4 system and a pure isoscalar force. The energies of
the 0+ and 2+ states are plotted as a function of the spin-orbit
splitting v�s . The two states cross, with a 0+ ground state in
LS coupling, which becomes a 2+ in jj coupling, as we saw
above.

To obtain an estimate of the critical value v∗
�s at which

the switch occurs, we consider the case of the N = 2 system,
also shown in Fig. 3. Taking the limit of large j , to simplify
the LS-jj recoupling coefficients, we have in jj coupling
Ejj (1+) = −g and in LS coupling ELS(1+) ≈ −6g.

The 3S1 state can be written in terms of the jj -coupled
wave functions as [14]

|3S1〉 ≈ 1√
6
|j 2

>〉 + 2√
6
|j>j<〉 − 1√

6
|j 2

<〉, (3)

from which we can treat perturbatively the effect of the spin-
orbit splitting v�s . This gives for an intermediate coupling

EIC(1+) ≈ ELS(1+) + 1
6 2v�s + 4

6v�s = ELS(1+) + v�s. (4)

The critical value is obtained when the energy above equals
that of the jj -coupling limit (dashed lines in Fig. 3)

Ejj (1+) = ELS(1+) + v∗
�s (5)

and we find (in the large-j limit)

v∗
�s

g
≈ 5. (6)

For the particular case of the f7/2-f5/2 pair (finite-j ) we find a
value of ∼3.5, in agreement with the estimate shown in Fig. 3
(shaded area).

To shed further light on the properties of the isoscalar
condensate discussed above, we develop in the next section
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a description based on a mapping to interacting p bosons of
angular momentum J = 1 and isospin T = 0. Based on the
results above, and on the fermionic nature of the problem, we
anticipate that the residual interaction between these bosons
favors their aligned coupling.

III. ISOSCALAR PAIRING BETWEEN FERMIONS
IN A SINGLE- j SHELL

Consider a system of N particles, n neutrons, and n protons,
in a single-j shell, interacting through an isoscalar pairing
interaction with angular momentum J = 1 and isospin T = 0,
corresponding to the x = 0 limit of Eq. (1), V̂ (g,x = 0) =
−gV̂10.

As discussed in the previous section, a possible strategy
for simplifying the problem starts from the observation that,
by definition of the interaction, the dominant pair in the two-
particle system has J = 1 and T = 0. We attempt to represent
a subset of the 2n-particle eigenstates of this interaction,
including those at lowest energies, in terms of a single state
|P 〉 ≡ P †|o〉 (with |o〉 the vacuum), which has J = 1 and
T = 0,

P
†
MJ

≡ (a†
j t × a

†
j t )

(J=1,T =0)
MJ ,MT =0 . (7)

The natural framework to test this idea is provided by the
nucleon-pair shell model (NPSM), which assumes a basis con-
structed from nucleon pairs [15–18]. In this approximation the
full T = 0 shell-model space is truncated to one constructed
out of P pairs with basis states |P nJ2 . . . Jn−1J 〉 that are
proportional to

{· · · [(P † × P †)(J2) × P †](J3) × · · · × P †}(J )|o〉. (8)

This 2n-particle state is characterized by the set of intermediate
angular momenta {J2, . . . ,Jn−1}, with J1 = 1 and Jn = J , the
total angular momentum of the state. All pairs have T = 0 and
the coupling in isospin need not be considered. In principle,
several intermediate couplings {J2, . . . ,Jn−1} are possible for a
given total angular momentum J . Such is the case for arbitrary
pairs but not for P pairs since the number of independent
states with angular momentum J constructed out of n P pairs
cannot exceed the corresponding number constructed out of n
p bosons, which is 1 if n − J is non-negative and even, and 0
otherwise. We conclude therefore that, for a given J , at most
one state |P nJ2 . . . Jn−1J 〉 exists, for which the intermediate
angular momenta can be chosen as{

Ji = i mod 2, 1 � i � n − J,

Ji = i − n + J, n − J � i � n,
(9)

where it is implicitly assumed (as will be from now on) that
n − J is non-negative even. We denote normalized states as
|P nJ 〉, tacitly assuming the intermediate coupling convention
(9). In this convention the paired and spin-aligned states of
particular interest here correspond to the choice

paired : Ji = i mod 2, 1 � i � n,

spin aligned : Ji = i, 1 � i � n. (10)

As long as n � (2j + 1)/2 all states (9) exist. This is
no longer necessarily true if the shell is more than half

filled, in which case it is advantageous to reconsider the
problem in terms of holes. We then construct basis states
|P̃ 2j+1−nJ2 . . . Jn−1J 〉 that are proportional to

{· · · [(P̃ × P̃ )(J2) × P̃ ](J3) × · · · × P̃ }(J )|õ〉, (11)

where |õ〉 represents a full shell and P̃ annihilates a P pair,

P̃MJ
≡ (ãj t × ãj t )

(J=1,T =0)
MJ ,MT =0 . (12)

The angular momentum and antisymmetry considerations con-
cerning the states (8) and (11) are the same, and consequently
the latter lead to the same allowed basis states (9) with n
replaced by n̄ ≡ 2j + 1 − n. We denote such states as |P̃ n̄J 〉.

In general, |P nJ 〉 and |P̃ n̄J 〉 are not the same state,

|P nJ 〉 
= |P̃ n̄J 〉, (13)

and it is possible that the state on the left-hand side exists while
the one on the right-hand side does not (or vice versa). Only
if the shell-model state with a given J and T = 0 is unique do
the particle and hole representations become equivalent, as is
the case, for example, for the states

|P 2j+1J = 0〉 = |õ〉, |P 2j J = 1〉 = |P̃ J = 1〉. (14)

The choice |P nJ 〉 if n � (2j + 1)/2 and |P̃ n̄J 〉 if n �
(2j + 1)/2, apart from being computationally simpler, gives
the best approximation of shell-model states in terms of P
pairs.

The summary of the above discussion is that the truncated
shell-model basis constructed out of P pairs is spanned by
the states |P nJ 〉 if n � (2j + 1)/2 and by the states |P̃ n̄J 〉 if
n � (2j + 1)/2. These basis states exist (provided n − J or
n̄ − J is non-negative even) and are unique for a given n and
J , so that no additional labels are needed. Therefore, in the
P -pair approximation of the NPSM, the correlation energy due
to isoscalar pairing in the state with n neutrons and n protons,
coupled to total angular momentum J and isospin T = 0, is1

Ẽf (n,J ) ≡ 〈P nJ | − gV̂10|P nJ 〉, (15)

for n � (2j + 1)/2, and by

Ẽf (n̄,J ) ≡ 〈P̃ n̄J | − gV̂10|P̃ n̄J 〉, (16)

for n � (2j + 1)/2. The computation of the matrix elements of
an arbitrary interaction between nucleon-pair states is possible
with the recurrence relation devised by Chen [16]. In the
general formulation of the NPSM care should be taken of the
overcompleteness and nonorthogonality of the pair basis. This
is not an issue in the present application since basis states are
unique for a given n and J . It should be stressed that Eqs. (15)
and (16) yield an approximation to the exact isoscalar-pairing
correlation energy.

The energy Ef(n,J ) of a particle state is calculated
with respect to the vacuum |o〉 while that of a hole state,
Ef(n̄,J ), is with respect to the full shell |õ〉. The particle-hole
transformation gives a relation between both quantities, which

1We reserve the notation Ef (n,J ) and Ef (n̄,J ) (i.e., expressions
without tilde) for the exact correlation energy of the yrast state with
angular momentum J calculated in the full shell-model space.
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is exact in the full shell-model space. For our particular case
of isoscalar pairing this relation is

Ef(n,J ) = −3(2j + 1 − 2n̄)

2j + 1
g + Ef(n̄,J ). (17)

We use the same equation to relate the approximate energies
Ẽf (n,J ) and Ẽf(n̄,J ). In the following absolute energies are
quoted with respect to the vacuum |o〉. For a particle state they
are obtained directly while for a hole state they follow from
Eq. (17).

A further approximation is to replace the P pairs by p
bosons, with single-boson energies and boson-boson interac-
tions derived from the two-particle and four-particle systems,
respectively.

With use of the Otsuka, Arima, and Iachello (OAI) mapping
[19] a p-boson Hamiltonian Ĥb is obtained, which can be
written as

Ĥb = εp p† · p̃ + 1

2

∑
λ=0,2

vb
λ(p† × p†)(λ) · (p̃ × p̃)(λ), (18)

where εp is the p-boson energy and vb
λ are the two-body

interaction matrix elements between the p bosons. The def-
inition of the adjoint operator p̃m ≡ (−)1−mp−m ensures that
p̃m is an annihilation operator with transformation properties
under rotations that are the same as those for the creation
operator p

†
m [20]. With the above definitions we have that

p† · p̃ = ∑
m p

†
mpm is the number operator n̂p.

The single-boson energy is

εp ≡ 〈p|Ĥb|p〉 .= 〈P | − gV̂10|P 〉 = −g, (19)

where the notation
.= is used to indicate that the equality

holds by virtue of the mapping procedure. The two-body boson
matrix elements with λ = 0,2 are

vb
λ ≡ 〈p2λ|Ĥb|p2λ〉 − 2εp

.= −g(〈j 4[10,10]λ0|V̂10|j 4[10,10]λ0〉 − 2), (20)

where the bra and ket represent normalized, antisymmetric
two-pair states,

|j 4[J1T1,J2T2]JT 〉 ∝ A|j 2(J1T1)j 2(J2T2)JT 〉. (21)

The notation in square brackets [J1T1,J2T2] implies that the
state (21) is constructed from a parent state with interme-
diate angular momenta and isospins J1T1 and J2T2. The
antisymmetrized states |j 4[J1T1,J2T2]JT 〉 can be expanded in
terms of the two-pair states |j 2(J1T1)j 2(J2T2)JT 〉 by means
of four-to-two-particle coefficients of fractional parentage
(CFPs) [14],

[j 2(JaTa)j 2(JbTb)JT |}j 4[J1T1,J2T2]JT ], (22)

which are known in closed form.
From the general expression for the matrix element (20) the

following results are obtained:

vb
0/g = − 6[j 2(10)j 2(10)00|}j 4[10,10]00]2 + 2,

vb
2/g = − 6[j 2(10)j 2(10)20|}j 4[10,10]20]2

− 6[j 2(30)j 2(10)20|}j 4[10,10]20]2 + 2, (23)

which, with the help of

[j 2(10)j 2(10)00|}j 4[10,10]00]2 = 2j 3 − 2j + 3

3j (j + 1)(2j + 1)
,

[j 2(10)j 2(10)20|}j 4[10,10]20]2 = 10j 3 + 9j 2 − j − 3

15j (j + 1)(2j + 1)
,

[j 2(30)j 2(10)20|}j 4[10,10]20]2

= 9(j − 1)(j + 2)(2j + 3)

10j (j + 1)(2j + 1)(5j 2 + 7j + 3)
, (24)

lead to the following expressions for the p-boson matrix
elements:

vb
0 = 6(j 2 + j − 1)

j (j + 1)(2j + 1)
g

j→∞−→
[

3

j
+ O

(
1

j 2

)]
g,

vb
2 = 3(4j 4 + 6j 3 + j 2 + 7j + 12)

j (j + 1)(2j + 1)(5j 2 + 7j + 3)
g

j→∞−→
[

6

5j
+ O

(
1

j 2

)]
g. (25)

As anticipated, for an attractive isoscalar pairing interaction
the boson-boson matrix elements are repulsive. This is a
finite-space effect, due to the Pauli principle, since the matrix
elements vanish in the large-j limit. A difference between
the λ = 0 and λ = 2 matrix elements also arises due to Pauli
effects, and it is seen that vb

2 is less repulsive. This favors the
spin-aligned ground state, not only for two but also for more
bosons as a result of the following argument.

Since a system of n interacting identical p bosons is
solvable by virtue of a U(3) ⊃ SO(3) dynamical symmetry
[20], the eigenvalues of the Hamiltonian (18) are known in
closed form,

Eb(n,J ) = nεp + n(n + 1) − J (J + 1)

6
vb

0

+ 2n(n − 2) + J (J + 1)

6
vb

2, (26)

where the allowed angular momenta are J = n,n − 2, . . . ,1
or 0. The only possible ground states of a p-boson system
are either paired or spin aligned [21,22]. The paired state has
J = 0 or J = 1 with energies

Eb(n,J = 0) = nεp + n(n + 1)

6
vb

0 + n(n − 2)

3
vb

2,

Eb(n,J = 1) = nεp + (n − 1)(n + 2)

6
vb

0 + (n − 1)2

3
vb

2,

(27)

depending on whether n is even or odd, respectively. The
spin-aligned state has J = n with energy

Eb(n,J = n) = nεp + n(n − 1)

2
vb

2 . (28)

The breaking of the rotational invariance in gauge space [23]
leads to the emergence of isoscalar pairing rotational bands, as
seen in the quadratic dependence of the energies as a function
of the number of pairs n, Eqs. (27) and (28).
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The difference in energy between the paired and the spin-
aligned states can be written as

�b(n) = (n − n2)(n + 1 + n2)

6

(
vb

0 − vb
2

)

≈ g
3(n − n2)(n + 1 + n2)

10j
, (29)

where n2 is 0 for even n and 1 for odd n, n2 ≡ n mod 2. This
shows that for all n the difference in energy between the paired
and the spin-aligned states is positive for an attractive pairing
interaction, that is, the spin-aligned configuration is the ground
state.

We recall that the preceding results, valid for an isoscalar
pairing interaction in a single-j shell, are derived under the
following simplifying assumptions:

(1) The full shell-model space is truncated to one con-
structed out of P pairs. The expectation value of the
isoscalar pairing Hamiltonian −gV̂10 in the (unique)
P -pair state takes full account of the Pauli principle and
leads to the approximate correlation energy Ẽf(n,J ).

(2) The fermionic Hilbert space constructed out of P pairs
is mapped onto a corresponding bosonic Hilbert space
constructed out of p bosons. The mapping of the
Hamiltonian is carried out in the two- and four-nucleon
spaces and leads to a boson Hamiltonian with up to
two-body interactions.

(3) The boson Hamiltonian is used to calculate the energies
Eb(n,J ) of n-boson states.

To gauge the adequacy of the different approximations, we
show in Table I the exact energies Ef(n,J ) (wherever they can
be calculated) and the corresponding approximations Ẽf(n,J )
and Eb(n,J ) for 7/2 � j � 15/2. Several comments are in
order. First of all, we observe the identity

Ẽf(n = 2,J ) = Eb(n = 2,J ); (30)

that is, the P -pair spectrum of the four-particle system
coincides with that obtained for two p bosons. This is a generic
property of the mapping and follows from the fact that up to
two-body interactions between the bosons are considered. In
fact, if up to q-body interactions are considered, the identity
(30) remains valid up to the n = q. Second, we observe the
identity

Ef(n = 2,J = 0) = Ẽf(n = 2,J = 0). (31)

This is not a generic property but is valid for the isoscalar
pairing interaction, for which |P 2J = 0〉 decouples from the
rest of the shell-model space. This property of the isoscalar
pairing interaction was already pointed out by Fu et al. [24]
on the basis of analytic expressions for four-nucleon overlaps.
Furthermore, we observe from Table I the following hierarchy:

Ef(n,J ) � Ẽf(n,J ) � Eb(n,J ), (32)

valid for any j , n, and J . The first inequality results from
the fact that the lowest eigenvalue of any Hamiltonian in a
certain Hilbert space is lower than the lowest eigenvalue of
the same Hamiltonian in a truncated subspace. We remark that
an equality Ef(n = 4,J ) = Ẽf(n = 4,J ) can be obtained by

TABLE I. Exact energies Ef (n,J ) of paired (J = 0 or 1) and
aligned (J = n) states with T = 0 of a system of n neutrons
and n protons in a single-j shell interacting through an isoscalar
pairing force, in units of the strength g, and the corresponding
energies Ẽf (n,J ) and Eb(n,J ) obtained in the P -pair and p-boson
approximations. A dash — means that a P -pair state does not exist
while the absence of an entry indicates that the numerical result could
not be obtained.

E(n,J ) j = 7/2 j = 9/2 j = 11/2 j = 13/2 j = 15/2

Ef (2,0) −1.298 −1.424 −1.514 −1.580 −1.631
Ẽf (2,0) −1.298 −1.424 −1.514 −1.580 −1.631
Eb(2,0) −1.298 −1.424 −1.514 −1.580 −1.631
Ef (2,2) −1.793 −1.825 −1.847 −1.865 −1.879
Ẽf (2,2) −1.757 −1.799 −1.828 −1.850 −1.866
Eb(2,2) −1.757 −1.799 −1.828 −1.850 −1.866

Ef (3,1) −1.793 −1.953 −2.086 −2.192 −2.277
Ẽf (3,1) −1.636 −1.848 −2.010 −2.135 −2.233
Eb(3,1) −1.505 −1.772 −1.961 −2.100 −2.207
Ef (3,3) −2.365 −2.466 −2.537 −2.591 −2.634
Ẽf (3,3) −2.279 −2.403 −2.488 −2.552 −2.601
Eb(3,3) −2.271 −2.397 −2.484 −2.549 −2.599

Ef (4,0) −2.080 −2.251 −2.424
Ẽf (4,0) −1.628 −1.887 −2.141 −2.353 −2.526
Eb(4,0) −1.010 −1.545 −1.921 −2.200 −2.413
Ef (4,4) −2.767 −2.925
Ẽf (4,4) −2.577 −2.818 −2.985 −3.110 −3.207
Eb(4,4) −2.541 −2.794 −2.968 −3.098 −3.198

Ef (5,1) −2.543
Ẽf (5,1) −2.386 −1.975 −2.284 −2.566 −2.806
Eb(5,1) −2.255 −1.241 −1.815 −2.239 −2.564
Ef (5,5)
Ẽf (5,5) −3.052 −3.324 −3.528 −3.687
Eb(5,5) −2.990 −3.281 −3.496 −3.663

Ef (6,0) −2.798 −2.851
Ẽf (6,0) −2.798 −2.487 −2.206 −2.539 −2.847
Eb(6,0) −2.798 −2.145 −1.222 −1.858 −2.347
Ef (6,6)
Ẽf (6,6) −3.511 −3.810 −4.045
Eb(6,6) −3.421 −3.744 −3.994

Ef (7,1) −3.250 −3.153
Ẽf (7,1) −3.250 −3.048 −2.784 −2.534 −2.892
Eb(7,1) −3.250 −2.972 −2.315 −1.417 −2.074
Ef (7,7)
Ẽf (7,7) −3.962 −4.284
Eb(7,7) −3.842 −4.192

Ef (8,0) −3.000 −3.224 −3.424
Ẽf (8,0) −3.000 −3.224 −3.141 −2.968 −2.776
Eb(8,0) −3.000 −3.224 −2.921 −2.287 −1.431
Ef (8,8)
Ẽf (8,8) −4.408
Eb(8,8) −4.256

constructing effective operators in the truncated space, which
is not done in the present application. The second inequality
in Eq. (32) is a consequence of performing the mapping
in the four-particle systems with an unnormalized (i.e., not
an effective) Hamiltonian. For a variety of bosonic systems
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(p, sd, sdp, etc.) we have consistently found that the boson
Hamiltonian, as it is derived here from the four-particle system,
gives an upper limit for the fermionic interaction energy of the
n-particle system.

It is seen from Table I that the quality of the approximation
varies with j , n, and J . Two effects are rather obvious: The ap-
proximation becomes (i) better with increasing j and (ii) worse
with increasing n [as long as n � (2j + 1)/2]. These effects
result from the increasing importance of Pauli corrections that
are neglected (i.e., beyond two-body interactions between the
bosons). A more subtle effect is the dependence on J . It is seen
that the approximation for the aligned state J = n is adequate,
even close to midshell, n ≈ (2j + 1)/2, and for low j . On
the other hand, it is often rather poor for the paired state with
J = 0 or 1. It can be conjectured that this is a generic property
of phonon approximations in fermionic systems: while such
descriptions are good for high-angular-momentum states, they
become highly anharmonic at low angular momenta.

Despite the varying quality of the boson approximation,
depending on j , n, and J , the overall conclusion is that the
predicted feature of the lower energy of the aligned state as
compared to the paired state is confirmed by the exact fermion
calculation.

IV. CONCLUSION

We have considered some intriguing properties of a T = 0
isoscalar condensate in single j shell, in particular with regards
to its angular momentum coupling. We developed a description
based on a mapping of the shell model to interacting p bosons

of angular momentum J = 1 and isospin T = 0, providing for
the first time approximate analytic formulas for the energies
of the lowest states. Our results show that, due to the Pauli
principle, the residual interaction between these bosons favors
(a priori unexpected) the aligned configuration of n = N/2
quasideuteron pairs, i.e., that with J = n.

While we realize this limit may not be applicable to
real nuclei, these states might exist close to the paired
ground states in specific regions close to the N = Z line.
In fact, it was shown recently in Refs. [10,11], using a
phenomenological Hamiltonian within the framework of the
Hartree-Fock-Bogoliubov theory, that the spin-triplet phase is
favored over the spin-singlet one in the mass region A ≈ 130
with Z ≈ 64 (for example 132Gd). This is found to depend on
the occupation of specific low-j orbitals near the Fermi energy
for which the spin-orbit splitting is small. More interestingly
perhaps, it is envisioned that these condensates might be
realized by tunable spin-orbit coupling in ultracold atomic
traps [25], whereby the control parameter x in Eq. (1) could
be adjusted to drive the system from diamagnetic to magnetic.

A full extension of the present formalism including the
effect of the spin-orbit splitting will be the subject of a future
publication.
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