
UC Merced
UC Merced Previously Published Works

Title
Remaining useful life estimation in prognostics using deep convolution neural networks

Permalink
https://escholarship.org/uc/item/5ns8r3fs

Authors
Li, Xiang
Ding, Qian
Sun, Jian-Qiao

Publication Date
2018-04-01

DOI
10.1016/j.ress.2017.11.021
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5ns8r3fs
https://escholarship.org
http://www.cdlib.org/


Remaining Useful Life Estimation in

Prognostics Using Deep Convolution

Neural Networks

Xiang Li a,1 Qian Ding b Jian-Qiao Sun c

aCollege of Sciences, Northeastern University, Shenyang 110819, China
bDepartment of Mechanics, Tianjin University, Tianjin 300072, China
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Abstract

Traditionally, system prognostics and health management (PHM) depends on suffi-
cient prior knowledge of critical components degradation process in order to predict
the remaining useful life (RUL). However, the accurate physical or expert models
are not available in most cases. This paper proposes a new data-driven approach
for prognostics using deep convolution neural networks (DCNN). Time window ap-
proach is employed for sample preparation in order for better feature extraction by
DCNN. Raw collected data with normalization are directly used as inputs to the
proposed network, and no prior expertise on prognostics and signal processing is
required, that facilitates the application of the proposed method. In order to show
the effectiveness of the proposed approach, experiments on the popular C-MAPSS
dataset for aero-engine unit prognostics are carried out. High prognostic accura-
cy on the RUL estimation is achieved. The superiority of the proposed method is
demonstrated by comparisons with other popular approaches and the state-of-the-
art results on the same dataset. The results of this study suggest that the proposed
data-driven prognostic method offers a new and promising approach.

Key words: Prognostics and health management, Remaining useful life, Deep
learning, Convolution neural network, C-MAPSS dataset.

1 Introduction

Engineering maintenance and prognostics are very crucial in many industry areas such as
aerospace, manufacturing, automotive, heavy industry and so forth. While traditional strate-
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gies such as breakdown corrective maintenance and scheduled preventive maintenance [1] are
becoming less capable of meeting the increasing industrial demand of efficiency and reliabil-
ity, intelligent prognostic and health management (PHM) technologies which is also known
as condition-based maintenance (CBM), are showing promising abilities for application in
industries [2]. The goals of PHM include maximizing the operational availability, reduction
of maintenance costs and improvement of system reliability and safety by monitoring the
facility conditions. Remaining useful life (RUL) can be estimated based on history trajec-
tory data, that is very important for improving maintenance schedules to avoid engineering
failures and save the resultant costs [3]. This paper proposes a novel deep learning method
for RUL estimation.

Generally, the existing methods for PHM can be grouped into three main categories, i.e.
model-based approaches [4], data-driven approaches [5] and hybrid approaches [6]. While
model-based approaches tend to be more accurate if the complex system degradation is
modeled precisely [7], they require extensive prior knowledge about physical systems which is
usually unavailable in practice, e.g. aircraft engines. Popular model-based approaches include
particle filter [8], Eyring model [9], Weibull distribution [10] etc. On the other hand, the
data-driven approaches are able to model the degradation characteristics based on historical
sensor data. The underlying correlations and causalities in the collected sensor data can be
revealed, and the corresponding system information such as RUL can be inferred. Data-
driven approaches usually require sufficient historical data for training models. Since they
do not rely on much prior expertise on prognostics and are easy to be generalized, many
data-driven algorithms have been proposed in the recent years and good prognostic results
have been achieved, including artificial neural network (NN) [11], support vector machine
(SVM) [12], hidden Markov models [13] etc. By combining model-based and data-driven
approaches, hybrid approaches aim to utilize the advantages of both the approaches and
avoid the disadvantages [14]. In this study, a data-driven approach in prognostics is proposed.

In the past years, discovering the relationship between the monitored system data and the
corresponding RUL has been receiving increasing attention in data-driven prognostics. A
number of machine learning techniques, especially neural network-based approaches, have
been developed to learn the mapping from the collected feature data to the associated RUL.
The advantage of applying neural networks on prognostic and health management lies in
that highly nonlinear, complex, multi-dimensional system can be well modeled without prior
expertise on the system physical behavior. Different kinds of system data, such as raw sensor
readings, can be directly used as model inputs. While the confidence limits for the RUL
predictions can not be naturally provided [15], the neural network-based approaches are
promising on prognostic problems.

Huang et al. [16] utilized the traditional multi-layer perceptron (MLP) approach for modeling
the remaining useful life of the laboratory-tested bearings, and reported the prediction results
were superior to the reliability-based approaches. Tian [17] developed an artificial neural
network (ANN) method for estimating the RUL of equipment. The ANN model takes the
age and multiple condition monitoring measurement values at the present and previous
inspection points as the inputs, and the equipment life percentage as the output. Fink and
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colleagues [18] proposed a multi-layer neural network with multi-valued neurons approach
to deal with the reliability and degradation time series prediction problem, and carried out
a case study on predicting the degradation of a railway turnout system. To overcome the
drawback that the confidence limits of RUL estimation can not be directly obtained with
the NN-based methods in general, Khawaja and colleagues [19] introduced a confidence
prediction neural network approach with a confidence distribution node. In addition, fuzzy
logic has been integrated into MLP networks to capture more information for PHM by many
researchers [20]. Malhi et al. [21] proposed a competitive learning-based approach to long-
term prognostics of machine health status using recurrent neural networks (RNN). Vibration
signals from a defect-seeded rolling bearing are pre-processed with the continuous wavelet
transform and used as the model inputs. As an improvement of the traditional RNN, a long
short term memory (LSTM) based neural network scheme was proposed by Yuan et al. [22]
for RUL estimation of aero-engines in the cases of complicated operations, hybrid faults and
strong noises. LSTM was also utilized by Zhao et al. [23] for a tool wear health monitoring
task.

Recently, deep learning network is emerging as a highly effective network structure for pat-
tern recognition, that holds the potential to improve performance in the current intelligent
prognostics. Deep learning is characterized by the deep network architecture where multiple
layers are stacked in the network to fully capture the representative information from raw
input data [24]. High-level abstractions of data can be modeled well with the help of the
complex deep structures, leading to more efficient feature extraction compared with the shal-
low networks. Deep learning methods have gained great interests and achieved significant
results in many fields, including image recognition [25], speech recognition [26] etc. Since the
raw data obtained from machinery health monitoring share similar high dimensionality with
those in image processing researches, deep learning architecture has great potential in PHM
and RUL estimation.

Ren et al. [27] proposed an integrated deep learning approach for multi-bearing remaining
useful life collaborative prediction by combining both time domain and frequency domain
features. Numerical experiments on a real dataset show the effectiveness and superiority
of the proposed approach. A new restricted Boltzmann machine (RBM) for representation
learning was proposed by Liao et al. [28] to predict RUL of machines, where a new regu-
larization term and unsupervised self-organizing map algorithm are used. Zhang et al. [29]
proposed a multi-objective deep belief networks (DBN) ensemble method, where an evo-
lutionary algorithm is integrated with the traditional DBN training technique to evolve
multiple DBNs simultaneously subject to accuracy and diversity. State-of-the-art prognos-
tic performance was achieved on the popular benchmarking problem, i.e. NASA’s turbofan
engine degradation problem [30].

Within the deep learning architecture, convolution neural networks (CNNs), that are specif-
ically designed for variable and complex signals, are further utilized in this study. CNNs
have shown remarkable success in various applications in the past few years. CNN was first
proposed by LeCun et al. for image processing. Its ability to maintain data information re-
gardless of scale, shift and distortion invariance is presented. A large number of researches on
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computer vision, speech processing etc. have benefited from CNN’s characteristics of local re-
ceptive fields, shared weights and spatial sub-sampling. Babu et al. [31] built a 2-dimensional
(2D) deep convolution neural network to predict the RUL of system based on normalized
variate time series from sensor signals, where one dimension of the 2D input is the number
of sensors. Average pooling is adopted in their work and a linear regression layer is placed
on the top layer. While deep CNN structure has shown great ability on feature extraction,
very limited research can be found on its applications on machinery remaining useful life
prediction problems. In this study, the CNN structure is employed to extract the local data
features through the deep learning network for better prognostics.

A new deep learning architecture for RUL estimation in prognostics is proposed in this
paper. Time window approach is employed for sample preparation in order for better fea-
ture extraction by CNN. Raw sensor measurements with normalization are directly used
as model inputs to the proposed network, and no prior expertise on prognostics and sig-
nal processing is required, that facilitates the industrial application of the proposed method.
High-level abstract features can be successfully extracted by the deep CNN architecture, and
the associated RUL value can be estimated based on the learned representations. Using time
window, data normalization and deep CNN structure, the proposed method is expected to
obtain higher prognostic accuracy compared with the traditional machine learning methods.
Comprehensive analysis of the proposed approach and comparisons with existing methods
are presented in this study.

In the recent years, development of modern aeronautical technology leads to a complex
aircraft system, where high reliability, quality and safety are required in very harsh environ-
ment. The engine is the key component of the aircraft and there is always a pressing need to
develop new approaches to better evaluate the engine performance degradation and estimate
the remaining useful life [32]. In this paper, the RUL for aero-engines is estimated as a case
study and the popular publicly available NASA C-MAPSS dataset [30] is used to validate
the effectiveness of the proposed method. Comparisons with the state-of-the-art results on
the same dataset show the superiority of the proposed network.

This paper starts with the description of the proposed deep learning structure in Section
2, along with brief introductions of CNN. The proposed method is experimentally validated
using the C-MAPSS dataset in Section 3. The effectiveness and superiority of the method
are demonstrated by comparisons with other popular methods. We close the paper with
conclusions in Section 4.

2 Proposed Deep Learning Architecture

In this section, the proposed deep learning architecture for prognostics is presented, as well
as its key components, i.e. convolution neural networks, and dropout technique.
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2.1 Convolutional Neural Network

Convolutional neural networks (CNNs) were first proposed by LeCun for image processing,
which has two characteristics, i.e. spatially shared weights and spatial pooling. CNNs have
achieved significant success in many research and industry fields including computer vision
[25], natural language processing, speech recognition [33] and so forth. The convolutional
layers convolve multiple filters with raw input data and generate features, and the following
pooling layers extract the most significant local features afterwards. The input data are
usually 2-dimensional (2D) data for CNNs to learn abstract spatial features by alternating
and stacking convolutional kernels and pooling operation.

In this study, the input data is prepared in 2D format where one dimension is the feature
number and the other is the time sequence of each feature (The details of data preparation
will be presented in Section 3.1). However, considering the collected machinery features
are from different sensors in this prognostic problem, the relationship between the spatially
neighboring features in the data sample is not remarkable. Therefore, while the input and
the corresponding feature maps have 2 dimensions, the convolution filters in the proposed
network are 1-dimensional (1D) in practice. In the following, the 1D CNN is briefly introduced
and [31,34,35] can be referred to for 2D CNN.

The input 1-dimensional sequential data is assumed to be x = [x1, x2, ..., xN ] where N
denotes the length of the sequence. The convolution operation in the convolutional layer can
be defined as a multiply operation between a filter kernel w, w ∈ RFL , and a concatenation
vector representation xi:i+FL−1, which can be expressed as,

xi:i+FL−1 = xi ⊕ xi+1 ⊕ · · · ⊕ xi+FL−1, (1)

where xi:i+FL−1 represents a window of FL length sequential signal starting from the i-th
point, and ⊕ concatenates each data samples into a longer embedding. The final convolution
operation is defined as,

zi = φ(wTxi:i+FL−1 + b), (2)

where ∗T denotes the transpose of a matrix ∗, and b and φ represent the bias term and
non-linear activation function, respectively. The output zi can be considered as the learned
feature of the filter kernel w on the corresponding subsequence xi:i+FL−1. By sliding the filter
window from the first point to the last point in the sample data, the feature map of the j-th
filter can be obtained, which is denoted as,

zj = [z1j , z
2
j , ..., z

N−FL+1
j ], (3)

where j is the j-th filter kernel. In CNNs, multiple filter kernels can be applied in the
convolution layer with different filter length FL. The effect of filter number and length on the
network performance will be presented in Section 3.2. The framework for 1D CNN operation
is displayed in Figure 1.

Usually, a pooling layer is applied to the feature maps generated by the convolutional layer
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[31]. On the one hand, the pooling is able to extract the most significant local information in
each feature map. On the other hand, the feature dimensionality, i.e. the number of model
parameters, can be remarkably reduced by this operation. Therefore, pooling is well suited
for very high-dimensional problems such as image processing. However, while computing
efficiency can be improved by this operation, noticeable useful information is filtered to some
extent. Hence, despite the popular employment of pooling in convolution neural network,
pooling is not suggested in this prognostic problem where the raw feature dimension is
comparatively low.

2.2 Dropout

Dropout is a technique that can help to reduce data overfitting when training a neural
network especially with a small training dataset [36]. Training data overfitting generally
results in excellent network performance on the training dataset and poor performance on
the testing dataset. Dropout provides an easy and effective way to solve this problem. In
this study, the dropout technique is applied on the proposed network to prevent complex
co-adaptations on the training data and avoid the extraction of the same features repeatedly.

In practice, dropout can be realized by setting the activated outputs of some hidden neurons
to zero so that the neurons are not included in the forward propagation training process.
However, dropout is turned off in the testing process, that indicates all the hidden neurons
are involved during testing. In this way, the robustness of the network is enhanced. Dropout
can be also considered as a simple approach for model ensemble within the network, that
helps to improve the feature extraction capability of the network.

2.3 Proposed Network Structure

Deep neural networks are able to adaptively capture the representation information from
raw input signals through multiple non-linear transformations and approximate complex
non-linear functions, and are used as the main architecture in this study. In general, the
proposed deep learning method consists of two sub-structures, i.e. multiple convolution neural
networks and fully-connected layer for regression. Figure 2 shows the architecture of the
proposed method for RUL estimation.

First, the input data sample is prepared in 2-dimensional (2D) format, that facilitates the
application of convolution operation. The dimension of the input is Ntw × Nft, where Ntw

denotes the time sequence dimension and Nft is the number of selected features. The raw
features are usually obtained from multiple sensor measurements. The details of the data
preparation will be presented in Section 3.1.

Next, 4 convolution layers are stacked in the network for feature extraction. The 4 layers
have the same configuration that FN filters are used and the filter size is FL × 1. Zeros-
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padding operation is implemented to keep the feature map dimension unchanged [37]. So
far, the obtained output is FN feature maps whose dimension is Ntw ×Nft that is the same
with the original input sample. We use another convolution layer with 1 filter to combine the
previous feature maps to be a unique one. The filter size is 3× 1. In this way, the high-level
representation for each raw feature is obtained.

Afterwards, the 2-dimensional feature map is flattened and connected with a fully-connected
layer. Note that dropout technique is used on the last feature map, i.e. the flattened layer,
to relieve overfitting. Finally, one neuron is attached at the end of the proposed network for
RUL estimation.

All the layers use tanh as the activation functions, and Xavier normal initializer is em-
ployed for the weight initializations [38]. To further improve the prognostic performance,
a fine-tuning process using the back-propagation (BP) algorithm is applied [39], where the
parameters of the proposed model are updated to minimize the training error. The Adam
algorithm [40] is employed for optimization.

It should be pointed out that, while 2D convolution neural network is used for feature extrac-
tion, the convolution operation is actually carried out in 1 dimension, i.e. the time sequence
dimension for each feature. Therefore, at first, the multiple stacked convolution layers aim to
learn the high-level representations for each raw feature respectively, and the fully-connected
layer uses all the learned representations of the features for the final regression. Compar-
ing with most existing deep CNN methods on prognostics which try to learn the spatial
relationships of different features at the beginning and further extract information from the
learned abstract representation with many layers, the proposed method is more suitable for
the extraction of features from different sensor measurements.

3 Experimental Study

3.1 Experimental Setup

3.1.1 C-MAPSS Dataset

In this paper, the proposed method is evaluated on a prognostic benchmarking problem,
i.e. NASA’s turbofan engine degradation problem [30, 41]. This popular dataset contains
simulated data produced by a model-based simulation program, i.e. Commercial Modular
Aero-Propulsion System Simulation (C-MAPSS), which was developed by NASA. The C-
MAPSS dataset includes 4 sub-datasets that are composed of multi-variate temporal data
obtained from 21 sensors. Each sub-dataset contains one training set and one test set. The
training datasets include run-to-failure sensor records of multiple aero-engines collected un-
der different operational conditions and fault modes. Each engine unit starts with different
degrees of initial wear and manufacturing variation that is unknown and considered to be
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healthy. As time progresses, the engine units begin to degrade until they reach the system
failures, i.e. the last data entry corresponds to the time cycle that the engine unit is declared
unhealthy. On the other hand, the sensor records in the testing datasets terminate at some
time before system failure, and the goal of this task is to estimate the remaining useful life
of each engine in the test dataset. For verification, the actual RUL value for the testing en-
gine units are also provided. As a widely investigated dataset in the related researches, the
sub-dataset 1, which includes one operational condition and one fault mode, i.e. HPC degra-
dation, is used in the case studies in this paper. The detailed information of the sub-dataset
1 in the C-MAPSS dataset is presented in Table 1.

In the training process, all the available engine measurement data points are used as the
training samples, and each data point is associated with its RUL label as the target. A
piecewise linear degradation model [5] is used to obtain the RUL label with respect to each
training sample. During testing, the one data point corresponding with the last recorded
cycle for each engine unit is generally used as the testing sample. The actual RUL of the
testing samples are provided in the dataset.

3.1.2 Data Pre-processing

The multi-variate temporal data in the C-MAPSS dataset contains engine unit measurements
from 21 sensors [30]. However, some sensor readings have constant outputs in the engine’s
lifetime and they do not provide valuable information for RUL estimation. Therefore, 14
sensor measurements out of the total 21 sensors are used as the raw input features as did in
the literature [5, 29], whose indices are 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20 and 21.

For each of the 4 sub-datasets in C-MAPSS, the collected measurement data from each sensor
are normalized to be within the range of [−1, 1] using the min-max normalization method,

xi,j
norm =

2(xi,j − xj
min)

xj
max − xj

min

− 1, ∀i, j, (4)

where xi,j denotes the original i-th data point of the j-th sensor, and xi,j
norm is the normal-

ized value of xi,j. xj
max and xj

min denote the maximum and minimum values of the original
measurement data from the j-th sensor, respectively.

Different from common regression problems, the desired output value of the input data is
difficult to determine for a remaining useful life prediction problem. That is because in many
industrial applications, it is impossible to evaluate the precise health condition and estimate
the RUL of the system at each time step without an accurate physics-based model [29]. For
this popular dataset, a piece-wise linear degradation model has been validated to be suitable
and effective [42]. In general, the engine unit works normally in the early age and degrades
linearly afterwards. It is assumed to have a constant RUL label in the initial period. Following
the recent researches in the literature [2,5,42], Rearly which is a constant RUL value, is used
as the target labels for the data points in the early period. It should be noted that Rearly has
noticeable effect on the prognostic performance on the dataset. By comparing with existing
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related works, we demonstrate the effectiveness of the proposed method with suitable Rearly

in the following Section 3.2.

3.1.3 Time Window Processing

In the multi-variate time series-based problems such as RUL estimation, more information
can be generally obtained from the temporal sequence data compared with the multi-variate
data point sampled at a single time step. Time sequence processing has a large potential
for better prediction performance. In this paper, a time window is adopted for the data
preparation to use the multi-variate temporal information.

Let Ntw denote the size of the time window. At each time step, all the past sensor data
within the time window are collected to form a high-dimensional feature vector, and used as
the inputs for the network.

Figure 3 shows one normalized data sample from the 14 selected sensors within a time window
of size 30 with respect to a single engine unit in the training dataset. The shape of the data
sample corresponds with the input size of the proposed network, as presented in Figure 2.
The effect of time window on the network performance will be discussed in Section 3.2.3.

3.1.4 Performance Metrics

In this study, 2 metrics have been used for evaluating the performance of the proposed
prognostic method, i.e. scoring function and root mean square error.

The scoring function used in this study has been proposed by many researchers [2, 43, 44]
and also employed by the International Conference on Prognostics and Health Management
Data Challenge. The function is illustrated in Equation (5).

s =
N∑
i=1

si, (5)

si =

 e−
di
13 − 1, for di < 0,

e
di
10 − 1, for di ≥ 0,

where s denotes the score and N is the total number of testing data samples. di = RUL
′
i −

RULi, that is the error between the estimated RUL value and the actual RUL value for
the i-th testing data sample. The scoring function penalizes late prediction more than early
prediction, that is because late prediction usually leads to more severe consequences in many
fields such as aerospace industries.

Another popular metric to evaluate the effectiveness of the proposed method is Root Mean
Square Error (RMSE). The formulation of RMSE is as follows,
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RMSE =

√√√√ 1

N

N∑
i=1

d2i . (6)

Figure 4 shows the comparison between the two evaluation metrics.

3.1.5 Prognostic Procedure

The flow chart of the proposed prognostic method is presented in Figure 5. First, the C-
MAPSS sub-datasets are pre-processed that 14 raw sensor measurements are selected and
the corresponding data are normalized to be within the range [−1, 1]. Then the datasets for
training and testing are prepared with each sample containing the time sequence information
within the time window of Ntw length. It should be noted that the normalized data, which
are prepared in 2D format, are used directly as the model input. No hand-crafted signal
processing feature is needed, such as skewness, kurtosis etc. Therefore, no prior expertise on
prognostics and signal processing is required in the proposed method.

Next, based on the specific signal processing problem and the dataset information, the pro-
posed deep convolution neural network (DCNN) for RUL estimation starts to be built, and
its configuration is determined including the number of hidden layers, convolution filter num-
ber and length etc. The DCNN takes as the inputs the normalized training data, and the
labeled RUL values for the training samples are used as the target outputs of the network.

Back-propagation learning is used for the updates of the weights in the network. The Adam
optimization algorithm is used with mini-batches for the updates. For each training epoch,
the samples are randomly divided into multiple mini-batches with each batch containing 512
samples, and put into the training system. Next, the network information, i.e. the weights
in each layer, are optimized based on the mean loss function of each mini-batch. It should
be noted that the selection of batch size affects the network training performance [45]. The
batch size of 512 samples is found appropriate based on the experiments and it is used in all
the case studies in this paper. In addition, varying learning rate is adopted. For the first 200
epochs from the beginning, the learning rate is 0.001 for fast optimization. The learning rate
of 0.0001 is used afterwards for stable convergence. The maximum number of the training
epochs is 250 by default.

Finally, the testing data samples are fed into the trained network for the RUL estimations,
and the prognostic accuracy can be obtained. The default parameters of the proposed method
are presented in Table 2.

3.1.6 Compared Approaches

The proposed deep learning framework is able to provide a systematic and accurate method
of prognostics. In order to show the superiority of the proposed method to existing popular
methods, its testing performance is compared with those of other network architectures in
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this paper. Different prognostic methods for RUL estimation are carried out, including basic
neural network (NN), deep neural network (DNN), recurrent neural network (RNN) and long
short-term memory (LSTM).

(1) NN
The basic neural network, which is also known as multi-layer perceptron (MLP), is

used for comparison, which has 1 hidden layer of 500 neurons. Dropout rate of 0.5 and
a softmax classifier are applied.

(2) DNN
The deep neural network has 4 hidden layers. The number of neurons in the hidden

layers is 500, 400, 300 and 100, respectively. Dropout is employed in each hidden layer.
(3) RNN

The recurrent neural network contains feedback connections from the hidden or out-
put layers to the preceding layers [21], thus having the ability of processing dynamic
information. RNN is a more effective model that involves time-series data. Instead of
using the convolution layers in the proposed DCNN for further feature extraction, we
adopt 5 recurrent layers in the RNN network for comparison. In this way, the two
methods have the same depth. A fully-connected layer is also attached in order to have
similar architecture with the proposed method.

(4) LSTM
Due to the vanishing gradient problem during back-propagation for model training,

traditional RNN may not capture long-term dependencies. Therefore, as a variant of
RNN, long-short term memory method is prefered by many researchers to prevent back-
propagated errors from vanishing or exploding [46]. Gates are introduced in LSTM to
enable each recurrent unit to adaptively capture dependencies of different time scales.
In order to share similar structure with the proposed network, 5 LSTM layers and 1
fully-connected layer are used for comparison.

For all the comparing methods in this study, the input and output layers are the same with
the proposed network, and RMSE is used as the loss function. Back-propagation is employed
for the updates of model parameters where the Adam optimization algorithm is used.

3.2 Experimental Results and Performance Analysis

In this section, the prognostic performance of the proposed method for RUL estimation
is presented. The effects of different factors on the results are investigated, including the
number of hidden layers and time window length. The comparisons with other popular neural
network architectures are carried out to show the effectiveness of the proposed structure.
Furthermore, the superiority of the proposed approach is demonstrated by comparing with
the latest state-of-the-art prognostic results on the same C-MAPSS dataset.

In this paper, the reported experimental results are averaged by 10 trials to reduce the
effect of randomness, and the mean values and standard deviations are provided. All the
experiments are carried out on a PC with Intel Core i7 CPU, 8-GB RAM and GEFORCE
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GTX 950M GPU.

3.2.1 Prognostic Performance

The RUL prediction results of the testing engine units regarding the last recorded data point
are presented in Figure 6. The testing engine units are sorted by labels from small to large
for better observation and analysis. It can be observed that the predicted RUL values by the
proposed method are close to the actual values generally. Especially, the prognostic accuracy
tends to be higher in the region where the RUL value is small. That is because when the
engine unit is working close to failure, the fault feature is enhanced and that can be captured
by the proposed network for better prognostics.

Furthermore, the RUL estimations for the life-time of the testing engine units before the last
recorded cycle are shown in Figure 7. 4 examples out of one hundred testing engine units,
whose unit number are 21, 24, 34 and 81 respectively, are presented for demonstrations.
One can notice that the RUL estimations of the last parts of the engine unit life-time are
not shown. That is due to the fact that in the testing dataset, the last parts of the sensor
measurements are not provided in order to exam the prognostic performance. The actual
RUL values for the last recorded cycles are given in the dataset, and the corresponding RUL
labels for the previous life-time can be obtained accordingly.

It can be observed that in the early periods in all the 4 cases, the proposed method manages
to estimate the RUL values as close to the constant Rearly. Afterwards, the estimations are
almost linearly decreasing with time until the end of the available testing samples. Specif-
ically, despite some noticeable error existing between the predictions and the actual RUL
values in general, the prognostic accuracy is high especially when the engine units are close
to failure. That is of industrial value since the late period in the engine life-time is very
critical for the health management. A good evaluation of the engine status in the late period
is able to enhance operation reliability and safety, reduce maintenance costs and improve
the whole system performance.

3.2.2 Comparing with Other Architectures

The comprehensive comparison results of the prognostic performance using different methods
are presented in Table 3 and Figure 8. The effectiveness of the proposed method is examined
with the default experimental setting on the dataset. It can be observed that the proposed
deep learning method achieves the best performance in the case study.

The experimental results indicate that the proposed deep convolution neural network archi-
tecture is well suited for the prognostic problem. The stacked convolution layers contribute
to the learning capability of the network. The RNN structure is the second best using the
recurrent information flow. While LSTM is a more advanced variant of RNN, its performance
is not as good as RNN in this case study. However, it can be further optimized to get better
results [22,47]. The basic neural networks NN and DNN are also competitive. That indicates
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the sample preparations with raw feature selection, data pre-processing and application of
time window are efficient for further feature extraction. Traditionally, the DNN with 4 hid-
den layers suffer from the overfitting problem. With the help of the regularization technique,
i.e. dropout, good prognostic performance is obtained.

In summary, the comparison results presented above suggest the proposed method is promis-
ing for prognostic problems and able to provide reliable RUL estimations in different cases.
Next, the performance analysis of the proposed network is presented.

3.2.3 Effects of Number of Convolution Layers and Time Window

Figure 9 shows the effect of the number of convolution layers on the network prognostic
performance. It can be observed that generally, more hidden convolution layers lead to lower
RMSE values. That indicates the deep architecture is able to capture more useful information
than the shallow ones. On the other hand, while higher prognostic accuracy can be obtained
by deeper structure, the computing time for the training process increases almost linearly
with the hidden layer number. It is noted that the network with 5 convolution layers achieves
good performance with medium computing burden, and that is used as the default hidden
layer number of the proposed architecture in this paper.

Another important coefficient in the proposed method is the time window size in the sample
preparation. We present the effect of the time window size on the network performance in
Figure 10. It should be noted that in the testing set, the recorded data cycles for the testing
engine units have different length, and the shortest one has only 31 cycles specifically. In
order to provide a more comprehensive analysis of the time window, the testing engine units
which have shorter recorded cycles than Ntw are removed in the corresponding cases.

It is clearly showed in the figure that larger time window size results in better RUL esti-
mations. More raw information can be covered by larger time window, which is the basis
for further feature extraction. It is also observed that there is significant reduction in RUL
estimation error when Ntw increases from 20 to 30. No remarkable further improvement in
the prognostic performance is achieved when Ntw exceeds 30. Similar with the effect of the
hidden layer number, the computing load for the training process rises as the time window
size increases. In addition, as stated previously, the presented results can not represent the
whole testing dataset when Ntw is larger than 31. However, the general display patterns of
the time window effect can be reflected.

Based on the experiments and dataset information, Ntw = 30 is used as the default setting
in this paper.

3.2.4 Comparing with Related Works

The C-MAPSS dataset used in this paper is very popular in prognostic researches, and many
state-of-the-art results have been reported in the recent years. Table 4 summaries the latest
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research results of the advanced machine learning methods on this RUL estimation problem,
specifically applied on the C-MAPSS sub-dataset 1. Many neural network-based approaches
have shown their merits on this prognostic problem, including LSTM, CNN, DBN etc.

The proposed deep learning method has achieved promising performance compared with the
state-of-the-art results. It should be noted that in this paper, we artificially set an RUL
threshold Rearly for the healthy condition, which has noticeable effect on the experimental
performance. The prognostic results without the threshold are also provided. Despite the
increase of the RMSE value of the RUL estimation, the results of the proposed method
are still competitive. On the other hand, the constant RUL value for the early period is
widely used in the corresponding researches [2, 5, 42]. However, the detailed information of
the threshold is reported in limited papers. While different Rearly is employed in different
studies, the presented results in Table 4 are still able to provide general comparisons of the
advanced approaches.

4 Conclusions

In this paper, a new deep learning method for prognostics is proposed based on convolution
neural networks. Dropout technique is employed to relieve overfitting problem. Experiments
are carried out on the popular C-MAPSS dataset to show the effectiveness of the proposed
method. The goal of the task is to estimate the remaining useful life of aero-engine units
accurately. With raw feature selection, data pre-processing and sample preparation using
time window, good prognostic performance is achieved with the proposed method, and small
error between the prediction and the actual RUL value is obtained for the testing data. The
RUL in the life-time of the engine units can be well predicted, especially for the late period
close to failure.

Based on the comparisons with other popular neural network structures, it is noted that
the proposed deep convolution architecture is well suited for the prognostic problem. The
effects of the number of hidden layers and time window size on the prognostic performance
are investigated. Considering the estimation accuracy, computing burden for the training
process and the dataset information, the time window with Ntw = 30 is used for the sample
preparation, and five convolution layers are adopted in the proposed network.

Furthermore, the prognostic results obtained by the proposed method are compared with
the state-of-the-art results on the same dataset in the literature. The proposed network has
shown its superiority on the prognostic accuracy, and is promising for industrial applications.

While good experimental results have been obtained by the proposed method, further ar-
chitecture optimization is still necessary, since the current training time is longer than most
shallow networks in the literature. Deep learning methods generally suffer from high com-
puting load, and that will be focused on in further research. In addition, the score function is
suitable to be applied on the prognostic problem like the C-MAPSS dataset. Efforts should
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be made on including the score function into the loss function of the neural network in the
future.

Acknowledgements

?

References

[1] A. Azadeh, S. M. Asadzadeh, N. Salehi, M. Firoozi, Condition-based maintenance effectiveness
for series-parallel power generation system - A combined Markovian simulation model,
Reliability Engineering & System Safety 142 (2015) 357–368.

[2] Z. Zhao, L. Bin, X. Wang, W. Lu, Remaining useful life prediction of aircraft engine based on
degradation pattern learning, Reliability Engineering & System Safety 164 (2017) 74–83.

[3] J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao, D. Siegel, Prognostics and health management
design for rotary machinery systems - Reviews, methodology and applications, Mechanical
Systems and Signal Processing 42 (12) (2014) 314–334.

[4] M. Pecht, J. Gu, Physics-of-failure-based prognostics for electronic products, Transactions of
the Institute of Measurement and Control 31 (3-4) (2009) 309–322.

[5] F. O. Heimes, Recurrent neural networks for remaining useful life estimation, in: Proceedings
of International Conference on Prognostics and Health Management, 2008, pp. 1–6.

[6] A. Heng, S. Zhang, A. C. C. Tan, J. Mathew, Rotating machinery prognostics: State of the art,
challenges and opportunities, Mechanical Systems and Signal Processing 23 (3) (2009) 724–739.

[7] Y. Qian, R. Yan, R. X. Gao, A multi-time scale approach to remaining useful life prediction in
rolling bearing, Mechanical Systems and Signal Processing 83 (2017) 549–567.

[8] M. Jouin, R. Gouriveau, D. Hissel, M.-C. Pra, N. Zerhouni, Particle filter-based prognostics:
Review, discussion and perspectives, Mechanical Systems and Signal Processing 7273 (2016)
2–31.

[9] M. Jouin, R. Gouriveau, D. Hissel, M.-C. Pra, N. Zerhouni, Degradations analysis and aging
modeling for health assessment and prognostics of PEMFC, Reliability Engineering & System
Safety 148 (2016) 78–95.

[10] J. B. Ali, B. Chebel-Morello, L. Saidi, S. Malinowski, F. Fnaiech, Accurate bearing remaining
useful life prediction based on Weibull distribution and artificial neural network, Mechanical
Systems and Signal Processing 5657 (2015) 150–172.

[11] N. Gebraeel, M. Lawley, R. Liu, V. Parmeshwaran, Residual life predictions from vibration-
based degradation signals: a neural network approach, IEEE Transactions on Industrial
Electronics 51 (3) (2004) 694–700.

15

David Laredo Razo




[12] T. Benkedjouh, K. Medjaher, N. Zerhouni, S. Rechak, Remaining useful life estimation based on
nonlinear feature reduction and support vector regression, Engineering Applications of Artificial
Intelligence 26 (7) (2013) 1751–1760.

[13] M. Dong, D. He, A segmental hidden semi-Markov model (HSMM)-based diagnostics and
prognostics framework and methodology, Mechanical Systems and Signal Processing 21 (5)
(2007) 2248–2266.

[14] P. Baraldi, M. Compare, S. Sauco, E. Zio, Ensemble neural network-based particle filtering for
prognostics, Mechanical Systems and Signal Processing 41 (12) (2013) 288–300.

[15] J. Z. Sikorska, M. Hodkiewicz, L. Ma, Prognostic modelling options for remaining useful life
estimation by industry, Mechanical Systems and Signal Processing 25 (5) (2011) 1803–1836.

[16] R. Huang, L. Xi, X. Li, C. R. Liu, H. Qiu, J. Lee, Residual life predictions for ball bearings based
on self-organizing map and back propagation neural network methods, Mechanical Systems and
Signal Processing 21 (1) (2007) 193–207.

[17] Z. Tian, An artificial neural network method for remaining useful life prediction of equipment
subject to condition monitoring, Journal of Intelligent Manufacturing 23 (2) (2012) 227–237.

[18] O. Fink, E. Zio, U. Weidmann, Predicting component reliability and level of degradation with
complex-valued neural networks, Reliability Engineering & System Safety 121 (2014) 198–206.

[19] T. Khawaja, G. Vachtsevanos, B. Wu, Reasoning about uncertainty in prognosis: a confidence
prediction neural network approach, in: Proceedings of Annual Meeting of the North American
Fuzzy Information Processing Society, 2005, pp. 7–12.

[20] W. Q. Wang, M. F. Golnaraghi, F. Ismail, Prognosis of machine health condition using neuro-
fuzzy systems, Mechanical Systems and Signal Processing 18 (4) (2004) 813–831.

[21] A. Malhi, R. Yan, R. X. Gao, Prognosis of defect propagation based on recurrent neural
networks, IEEE Transactions on Instrumentation and Measurement 60 (3) (2011) 703–711.

[22] M. Yuan, Y. Wu, L. Lin, Fault diagnosis and remaining useful life estimation of aero engine
using LSTM neural network, in: Proceedings of IEEE International Conference on Aircraft
Utility Systems, 2016, pp. 135–140.

[23] R. Zhao, J. Wang, R. Yan, K. Mao, Machine health monitoring with LSTM networks, in:
Proceedings of 10th International Conference on Sensing Technology, 2016, pp. 1–6.

[24] G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks,
Science 313 (5786) (2006) 504.

[25] A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classification with deep convolutional
neural networks, in: Proceedings of 26th Annual Conference on Neural Information Processing
Systems, Vol. 2, 2012, pp. 1097–1105.

[26] G. E. Hinton, L. Deng, D. Yu, G. Dahl, A. R. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath, B. Kingsbury, Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups, IEEE Signal Processing Magazine 29 (6)
(2012) 82–97.

16



[27] L. Ren, J. Cui, Y. Sun, X. Cheng, Multi-bearing remaining useful life collaborative prediction:
A deep learning approach, Journal of Manufacturing Systems 43, Part 2 (2017) 248–256.

[28] L. Liao, W. Jin, R. Pavel, Enhanced restricted boltzmann machine with prognosability
regularization for prognostics and health assessment, IEEE Transactions on Industrial
Electronics 63 (11) (2016) 7076–7083.

[29] C. Zhang, P. Lim, A. K. Qin, K. C. Tan, Multiobjective deep belief networks ensemble for
remaining useful life estimation in prognostics, IEEE Transactions on Neural Networks and
Learning Systems PP (99) (2016) 1–13.

[30] A. Saxena, K. Goebel, D. Simon, N. Eklund, Damage propagation modeling for aircraft engine
run-to-failure simulation, in: Proceedings of International Conference on Prognostics and Health
Management, 2008, pp. 1–9.

[31] G. S. Babu, P. Zhao, X.-L. Li, Deep convolutional neural network based regression approach
for estimation of remaining useful life, in: Database Systems for Advanced Applications: 21st
International Conference, Springer International Publishing, Cham, 2016, pp. 214–228.

[32] J. Xu, Y. Wang, L. Xu, PHM-oriented integrated fusion prognostics for aircraft engines based
on sensor data, IEEE Sensors Journal 14 (4) (2014) 1124–1132.

[33] O. Abdel-Hamid, A. Mohamed, J. Hui, G. Penn, Applying convolutional neural networks
concepts to hybrid NN-HMM model for speech recognition, in: Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Processing, 2012, pp. 4277–80.

[34] C. Szegedy, W. Liu, J. Yangqing, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
A. Rabinovich, Going deeper with convolutions, in: Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 1–9.

[35] W. Ren, S. Liu, H. Zhang, J. Pan, X. Cao, M.-H. Yang, Single image dehazing via multi-
scale convolutional neural networks, in: European Conference on Computer Vision, Springer
International Publishing, Cham, 2016, pp. 154–169.

[36] W. Sun, S. Shao, R. Zhao, R. Yan, X. Zhang, X. Chen, A sparse auto-encoder-based deep neural
network approach for induction motor faults classification, Measurement 89 (2016) 171–178.

[37] B. Liu, J. Liu, X. Bai, H. Lu, Regularized hierarchical feature learning with non-negative
sparsity and selectivity for image classification, in: Proceedings of 22nd International
Conference on Pattern Recognition, 2014, pp. 4293–4298.

[38] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks,
Journal of Machine Learning Research 9 (2010) 249–256.

[39] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations by back-propagating
errors, Nature 323 (6088) (1986) 533–536.

[40] D. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980
.

[41] A. Saxena, K. Goebel, Turbofan engine degradation simulation data set, NASA Ames
Prognostics Data Repository (http://ti.arc.nasa.gov/project/prognostic-data-repository),
NASA Ames Research Center, Moffett Field, CA .

17



[42] E. Ramasso, Investigating computational geometry for failure prognostics, International
Journal of Prognostics and Health Management 5 (1) (2014) 005.

[43] J. B. Coble, J. W. Hines, Prognostic algorithm categorization with PHM challenge application,
in: Proceedings of International Conference on Prognostics and Health Management, 2008, pp.
1–11.

[44] P. Wang, B. D. Youn, C. Hu, A generic probabilistic framework for structural health prognostics
and uncertainty management, Mechanical Systems and Signal Processing 28 (2012) 622–637.

[45] X. Guo, L. Chen, C. Shen, Hierarchical adaptive deep convolution neural network and its
application to bearing fault diagnosis, Measurement 93 (2016) 490–502.

[46] L. Guo, N. Li, F. Jia, Y. Lei, J. Lin, A recurrent neural network based health indicator for
remaining useful life prediction of bearings, Neurocomputing 240 (2017) 98–109.

[47] P. Malhotra, V. TV, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, G. Shroff, Multi-
sensor prognostics using an unsupervised health index based on LSTM encoder-decoder, arXiv
preprint arXiv:1608.06154 .

[48] P. Lim, C. K. Goh, K. C. Tan, A time window neural network based framework for remaining
useful life estimation, in: Proceedings of International Joint Conference on Neural Networks,
2016, pp. 1746–1753.

18



Table 1
Information of the C-MAPSS sub-dataset 1.

Dataset information Value

Engine units for training 100

Engine units for testing 100

Operating conditions 1

Fault modes 1

Training samples (default) 17731

Testing samples 100

Table 2
Default parameters of the proposed method and the experimental setting.

Parameter Value Parameter Value

FN 10 Convolution Layers 5

FL 10 Neurons in fully-connected layer 100

Nft 14 Dropout rate 0.5

Ntw 30 Batch size 512

Rearly 125 Epoch number 250
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Table 3
Performance comparisons of different methods on the C-MAPSS dataset. STD: Standard deviation.

NN DNN RNN LSTM DCNN

Mean STD Mean STD Mean STD Mean STD Mean STD

RMSE 14.80 0.31 13.56 0.21 13.44 0.43 13.52 0.61 12.61 0.19

Score 496.3 14.3 348.3 17.5 339.2 29.0 431.7 42.4 273.7 24.1

Table 4
Performance comparisons of the proposed method and the latest related papers on the C-MAPSS
dataset.

Method RMSE Rearly

First attempt of deep CNN [31] 18.45 Not provided

Time window based NN [48] 15.16 Not provided

Multi-objective deep belief networks ensemble [29] 15.04 Not applied

RULCLIPPER [42] 13.27 135

LSTM [47] 12.81 125

Proposed method with rectified labels 12.61 125

Proposed method without rectified labels 13.32 Not applied
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Fig. 3. Illustration of one training sample with 14 selected features within a time window of length
30.
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Fig. 4. Comparison between the scoring function and RMSE with respect to different error values.
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Fig. 6. Sorted prediction for the 100 testing engine units.
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Fig. 7. Four examples of life-time RUL predictions for the testing engine units.
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Fig. 8. Prognostic performance by different methods.

� � � � 	 
 �

����������#��"!������$�� 

����

���	

����

���	

����

���	

��
��

�

���

���


��

���

����



#�

��
��

��
��
��
��
��
��

�
��
� 
�

Fig. 9. The effect of the number of convolution layers in the proposed network on the prognostic
performance and computing time for the training process.
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Fig. 10. The effect of the time window size on the prognostic performance and computing time for
the training process.
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