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hardware this conversion can be implemented by simply toggling 
the sign bit and considering the binary fraction point to be at the 
extreme left position. For example, i f x  = 1.001 ( = -0 .875)  and 
y = 0.100( = 0.5),  thenx’ = 0.001 ( = 0 . 6 2 5 )  andy‘ = 0.1100( = 
0.75) .  Sequences X and Y for x ’  and y ’  are generated as before. 
However, the multiplication is now performed by inverted XOR 
gates instead of AND gates. This ensures that Z has a 1 whenever 
X and Y are both 0 or 1. The number of 1’s are counted in Z to 
obtain z’.  The counters are initially offset by 1 to account for the 
missing 0 from the PN sequence. To get the desired product z ,  we 
use the inverse mapping z = 22’ - 1. In hardware this is achieved 
by toggling the most significant bit of z ’ ,  which now becomes the 
sign bit of z and the answer is in two’s complement binary notation. 

The above technique can be applied to computation of inner 
product of vectors used in digital filtering, correlation, Fourier 
transformation, etc. [ 7 ] .  An efficient implementation for this basic 
operation in signal processing is based on merged arithmetic [6]. 
In this design the boundaries between the multipliers and adders 
are dissolved. Let the required inner product be z = x, X y, + x2 
x y2 = z ,  + z2 .  The input data are provided in n-bit two’s com- 
plement form. The product sequences for z {  and z? are each 2*” bits 
long. Using one composite ( 2 ” + ’  I 2n + 1 )  parallel counter we 
obtain the product z ’ .  After inverse mapping we get z ” ,  which is 
half the desired value z .  This automatic scaling by 2 (on account 
of doubling of the product sequence) is required to ensure that the 
numbers involved in computation remain in the range 0 to 1. 

VI. CONCLUSION 
In summary, we have presented a sparse unary coding technique 

for binary numbers with built-in fault tolerance and the property 
that the product can be computed accurately by the use of simple 
logic gates. We have also included how this multiplication tech- 
nique can be used to implement digital filters using bit-serial or 
parallel architecture in VLSI. 
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Design of Optimum Discrete Finite Duration 
Orthogonal Nyquist Signals 

Y.  HUA AND T. K. SARKAR 

Abstract-This correspondence presents a design technique for con- 
struction of a discrete finite duration signal whose spectral energy is 
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maximized in a given band. The constructed signal is also orthogonal 
to the block shifted version of itself. 

I. INTRODUCTION 
The objective of this correspondence is to present a procedure 

for designing discrete signals which are of finite duration and whose 
energy is concentrated in a given frequency band. The generated 
signal also has no intersymbol interference, i.e., the signal is or- 
thogonal to its block shifted version. 

We limit our discussion to low-pass signals as any bandpass sig- 
nal can be represented by a modulated low-pass signal. The prob- 
lem of obtaining a finite duration continuous signal whose energy 
is concentrated in a given base band was investigated by Ville and 
Bouzitat [ l ]  and generalized by Slepian and Pollack [ 2 ]  and then 
by Landau and Pollack [3]. It has been known that the optimum 
signal of one baud time (interval time between successive pulses 
or a sample period), whose energy is concentrated in a given base 
band, is the truncated first prolate spheroidal wave function. How- 
ever, for signals of more than one baud time duration, it is neces- 
sary to remove intersymbol interference. There are two common 
constraints which are used to remove intersymbol interference. The 
first constraint is that the desired signal has zero values at all sam- 
pling instances but one. This is often referred to as the zero cross- 
ing property. Such signals are called “Nyquist signals.” A raised 
cosine signal falls in this category. This constraint leads to a linear 
design technique and was recently utilized by Panayirci and Tug- 
bay [5]. The other constraint is that the desired time limited signal 
is orthogonal to its shifted versions, i.e.,  its autocorrelation func- 
tion is a Nyquist signal. We call them orthogonal Nyquist signals. 
This orthogonality property is superior to the zero crossing in 
that the former is less sensitive to additive noise of zero mean on 
the signal. This is one of the reasons that matched or correlation 
filters are often used to process received signals. The orthogonality 
constraint leads to a nonlinear problem. Halpern [6]  has utilized 
the variational principle to analyze this problem, and has also uti- 
lized the prolate spheroidal functions to expand the unknown sig- 
nal. 

An alternate approach to the design of a finite time signal with 
its energy concentrated in a given band has been taken by MacCall 
[ 7 ] ,  Gerst and Diamond [8], and Dines and Hazony [9], where they 
produced a time limited signal by forming an entire function in the 
transformed domain. Detailed discussion of this method is given 
in Papoulis [lo]. The k-pulse concept due to Kennaugh [ 111 is along 
these lines. 

In this correspondence, we present a design technique for dis- 
crete finite duration optimal signal with the orthogonality con- 
straints. We deal with discrete (sampled) signals rather than the 
continuous ones which have been dealt with by all the previous 
authors. In our formulation, we minimize a constrained nonlinear 
functional by the method of steepest descent. We feel that this it- 
erative method is computationally faster (especially for a few baud 
time) than expanding the unknown signal in terms of prolate sphe- 
roidal functions and the solving for their unknown coefficients. 

11. FORMULATION OF THE PROBLEM 
Let us assume a discrete signal sequencef(m) is defined for m 

= 0, 1, 2 ,  . . . , N ,  - 1 and is identically zero outside these N ,  
values. If the signal sequence extends over N ,  baud times and con- 
sists of N ,  samples per baud time, then we have N ,  = N,N,.  The 
DFT of the signal is defined by 

1 = 0 ,  l; . .  , N l -  1 

and its inverse transform by 
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(Halpern) I available 
New I 0.96595 0.9983 0.9996 0.99999 >0.99999 

TABLE I 
COMPARISON OF TWO METHODS FOR DESIGNING DISCRETE ORTHOGONAL NYQUIST SIGNALS (BAND MEANS 

THE ACTUAL BANDWIDTH DEVIDED BY BAUD RATE) 
I 

(in percentage) 

Band (in baud 
rate) 

Method 

I 0.6 0.8 1 .o 1.4 1.8 

In-Band . 1 [6] I not 0.924 0.998 0.9994 0.99949 

m = 0 , 1 ; . .  , N , , , -  1 (2) 
where N l  is the number of samples for the DFT sequence F ( 1 ) .  In 
the frequency domain if we assume N ,  samples per baud rate (in- 
verse of baud time) then Nl = N , N , .  Note that N ,  > N, .  and in- 
creasing N ,  increases resolution in frequency domain. 

Now our objective is to maximize the energy J within the set + 
= { -Nb 5 1 5 N h }  which corresponds to a frequency band of 
N b / N ,  baud rate, o r  equivalently, minimize the energy out of the 
above set, under the orthogonality constraint 

where 6 ( k )  is the delta function. So that the cost function can be 
defined as 

N , -  I 

N,-  I N,-I  N,- l  

= W l  f2(n) - l / N l  
n = O  m = o  " = n  

where Wis the weight on the out-of-band energy, ek's are the errors 
associated with the constraint equations (3), and dk's are the cor- 
responding weights. 

The minimization process can be outlined as follows while de- 
tails are available in [ 121. 

Step 1: Choose an initial guess o f f ( m )  and initial values of W 

Step 2: Compute the gradient vector of J ,  with respect to f (  m )  
and find an optimum step length to update the signal sequencef(m). 

Step 3: If the norm of the previous gradient vector is not small 
enough, go to step 2 .  Otherwise, see whether the orthogonality 
errors I 1 ( k  = 1, . . . , N ,  - 1 ) are small enough. If the errors 
are small enough. stop the process. If the errors are still considered 
to be large, increase each d , ( k  = 1, . . ., N ,  - 1 ) by a factor and 
then go to step 2 .  

Note that throughout the process, do may be a fixed nonzero 
value since the absolute value of the total energy is not important. 
However, the weight W can be increased during the process if the 
in-band energy is unexpectedly low; because the cost function may 
have more than one local minima and increasing W can make one 
jump out of an undesired local minimum. 

and dk'S. 

Q 10 20 Y) 4a m m 70 m m 1w 

u)IRxm x l o a  

Fig. 1 .  Orthogonal Nyquist signal. N ,  = 20; N ,  = 5 ;  band = 0.6 and the 
in-band energy J = 0.98681 percent (with N, = 100). 

Fig. 2.  Orthogonal Nyquist signal. N ,  = 20; N, = 5; band = 0.8 and the 
in-band energy J = 0.99955 percent (with N ,  = 100). 

111. NUMERICAL RESULTS 
We summarize our numerical experiments by presenting a table 

and two figures. Table I is for three baud time signals with the 
resulting normalized orthogonality errors all less than 0.00001. As 
we see, the in-band energies are improved over those obtained by 
the previous approach [6]. 

Fig. 1 shows that severe discontinuity in the optimized wave- 
form spanning five baud times (which did not occur in three baud 
time signal case) appears if the bandwidth is chosen to be very 
small. The optimization process was repeated with several initial 
guesses but all ended up with the same discontinuous solution.' 
However, when we increased the band, the discontinuity disap- 
peared. Fig. 2 shows the result where band is 0.8 baud rate as 
opposed to 0.6 of Fig. 1 .  

'By discontinuous signal we mean the discrete sequence where large jumps 
exist. This term should not be confused with the continuous or discontin- 
uous analog signals. 
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One would obtain a continuous signal by expanding the signal 
in terms of sampled prolate spheroidal or Legendre functions. 
However, if the band is greater than 0.8, for example, then the 
“continuous” signal can be obtained in a more efficient way by 
the present approach which exploits more degrees of freedom than 
the prolate spheroidal expansion approach. 

IV. CONCLUSION 
A nonlinear optimization technique is presented for the design 

of optimum discrete finite duration orthogonal Nyquist signals. This 
approach is believed to be more efficient than expanding the signal 
in terms of finite duration functions (like prolate spheroidal, Le- 
gendre, and so on), particularly when the signals last a few baud 
times. 
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Performance Contours of Autoregressive Estimates 

SHIPING LI AND BRADLEY W. DICKINSON 

Abstract-Given an autoregressive (AR) model, to what region of 
parameter space will parameter estimates belong if the prediction er- 
ror variance is not minimized? Given a set of distorted LMS estimates, 
in what region will the true parameters lie? We investigate these ques- 
tions. Several examples involving second-order AR models are given. 

I. INTRODUCTION 
The least mean-square (LMS) criterion has been widely used in 

system identification and parameter estimation for numerous ap- 
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plications. There is a vast body of literature on this subject. In this 
correspondence, we explore relations between parameter estimates 
and the prediction error variance functional for autoregressive 
models. Given a pth-order AR process, we obtain an explicit for- 
mula which relates the true parameters and their estimates (or dis- 
torted versions) to the variance of the prediction error process. For 
a second-order AR model, we determine contours within which the 
parameter estimates must lie, corresponding to a set of prediction 
error variance values. Conversely, for a given set of parameter es- 
timates, we obtain contours within which the true parameters would 
lie, corresponding to a set of prediction error variance values. These 
results provide some interesting insights about AR modeling prob- 
lems. 

Suppose we have an AR ( p )  process x ( n )  described by 
P 

X(.) + c a , x ( n  - i )  = w ( n )  ( 1 )  
t = I  

where w ( n )  is a white Gaussian process with zero mean and vari- 
ance a’,, and the parameters {a , ,  1 I i 5 p }  are such that the 
roots {z,, 1 5 i 5 p }  of 

P 

r = l  
A ( 2 )  = 1 + c a,Z-’ = 0 ( 2 )  

are located inside the unit circle. The LMS estimation of ,an AR 
model can be schematically described as in Fig. 1 ,  where A ( z )  = 
1 + E!= 2,z --I and { ri,, 1 I i 5 are estimated by minimizing 
the prediction error variance E { e (n) } . It can be shown that B’ 

a: = E { e 2 ( n ) }  2 ~ { w ~ ( n ) }  = a’, (3) 
where equality holds if and only if r i ,  = a,, 1 I i 5 p .  That is, 
the prediction error process e ( n )  will have minimum power if and 
only if the estimates { ri, } are exactly the true parameters { a, }. 

In practice, the estimates { 6,) must be obtained from a finite 
sample of observations of { x (n) } and will never be exact; con- 
sequently, ua > a’,. The Cramer-Rao lower bound for mean-square 
parameter estimation error provides one means of characterizing 
relationships between parameter estimates and “true” parameter 
values. In our analysis, we determine such relationships that arise 
from structural considerations, without regard to a criterion for es- 
timator quality. These considerations may be of importance not 
only in situations involving parameter estimation, but also in cases 
where numerical accuracy of solving for “theoretical” LMS pa- 
rameter values is a concern. 

Two questions of interest will be considered. Given an AR( p )  
process, if we set the prediction error variance a: = c u t ,  c > 1 ,  
in what region will the estimates { ri,, 1 5 i 5 p }  be? Alternately, 
given a set of estimates { r i , ,  1 5 i I p } , in what region will the 
true parameters be and with what distortion in terms of prediction 
error variance which we try to minimize? 

11. RESULTS 
From Fig. 1 ,  we see that the prediction error variance can be 

expressed as 

where the integration is around the unit circle. Using the Residue 
Theorem and writing the integration result in terms of the corre- 
sponding roots, we have 

0096-3518/88/0400-0608$01 .OO 0 1988 IEEE 




