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THE PIECEWISE-PARABOIJC MmIOD (PPM) FOR GAS-DYNAMICAL SIMULATIONS 

Abstract 

We present the piecewise-parabolic method, a higher-order extension of 

Godunov's method. There are several new features of this method whichdistin­

guish it from. other higher-order Go duno,v-typ e methods. We use a higher-order 

spatial interpolation than previously used, which allows for a steeper representa­

tion of discontinuities, particularly contact discontinuities. We introduce a 

simpler and more robust algorithm for calculating the nonlinear wave interac­

tions used to compute fluxes. Finally, we recognize the need for additional dissi­

pation in any higher-order Godunov method of this type, and introduce it in such 

a way so as not to degrade the the quality of the results. 
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o. Introduction· 

In [1], we presented an extensive comparison of various numer.ical methods 

for shock hydrodynamics. The most accurate of the methods tested was the 

piecewise parabolic method (PPM). developed by the authors. In thi~ paper. we 

present a detailed description of the PPM scheme for gas dynamics in Lagran­

gian and Eulerian coordinateft. 

The PPM scheme is a higher order extension of Godunov's method [2].[3] of 

a type first introduced by van Leer in his MUSCL algorithm [4]. A more recent 

version of the MUSCL algorithm which is better suited for calculating strong 

shocks was presented in [5]. The PPM scheme represents a substantial advance 

over both these versions of MUSCL in several respects. First. the introduction of 

parabolae as the basic interpolation functions in a zone allows for a more accu­

rate representation of smooth spatial gradients. as well as a steeper representa-

tion of captured discontinuities. particularly contact discontinuities. Second. 

the representation of the nonlinear wave interactions used to compute fluxes is 

substantially simpler than that used in [5]. giving rise to a less complicated and 

more robust algorithm. Finally. we have determined that additional diSSipation 

beyond that given by monotonicity algorithms of the type discussed in [4]. is 

required to obtain acceptably accurate results from any higher-order Godunov 

method of this type. We have made a careful study of the kind and amount of 

dissipation which is needed. and have found ways of introducing it which do not 

significantly degrade the quality of the computed solution. 

This paper is divided into five sections. The first section describes the PPM 

scheme for a scalar advection equation. and establishes the interpolation formu­

lae and techniques required for solving the gas dynamics equations. The second 

and third sections describe. respectively the basic PPM scheme for gas dynam-

ics in Lagrangian coordinates. and a single-step formulation of the scheme for 
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gas dynamics in Eulerian coordinates. The Eulerian schemes described here' are 

all for one space variable; the extension to more than one dimension is done 

using operator splitting. The fourth section discusses~ in general terms, the 

kinds of dissipation required in these schemes; the final section is for discussion 

and conclusions. There is also an appendix, which gives a. detailed description of 

the disslpatioIialgorithms used in the PPM calculations presented in [1]. 

",r 
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1. The PPM Advection Scheme 

In this section, we describe the PPM scheme for solving a linear advection 

equation 

oa oa 
F+ U a( = 0 

a((,O) = ao(O 

( 1.1) 

Let (j+* be the boundary between the jttl. and the j + l s& zones on the computa-

tional grid, and assume that we know aJ", the average value of the solution a 

between ~j+* and ~j""""* at time tn: 

tl+* 
a;n = _1_ Ia(~,tn)d( 

6~j tl-li 
. (1.2) 

6(j = (j+* - {j""""* 
We want to calculate a;n+l, the average value of the solution at time. 

. . 

tn+l = tn + 6t, where M satisfies the stability condition uM~m~nI:!.{j. The 
J 

advection scheme we will describe here is constructed following the approach to 

advection taken by van Leer in [6]. First, we construct a piecewise polynomial 

interpolation function a(O satisfying the condition 

1 (j+" . 

aJ" = 6~. J a({)d{ 
<;J ti-li 

and constrained in such a way so that no new extrema appear in the interpola-

tion function which do not already appear in the aJ"'s (figure 1). We can calculate 

explicitly the exact solution to equation (1.1) with inital values a({). i.e. 

a({,tn+l:!.t) = a(f- ul:!.t) (figure 2). We integrate this sol).l.tion over each zone to 

obtain aJ"+l: 

a'!'l+l = 
J (1. 3) 

The scheme is uniquely determined by our choice of interpolation polyno-

mial. The PPM scheme uses an interpolation which is piecewise continuous. with 
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a given by a parabolic profile in each zone: 

ci.CO = aL.j + x (flaj + aa.j(1 - x» 

'~-~'-7i 
x = J ~j~~~~j+* 

fl~j 

( 1.4) 

It is a straightforward bit of algel:?ra to verify that the coefficients of this polyno-

mial can be derived from ai,.and the values lim a(O = aL.j. lim a(O = aR.{ 
. NJ-li NJ+* 

A.a· = aR . - aL " a'6' = 6(a!l - *(ar . + aR .» J .J .J .J J "'.J .J ( 1.5) 

We calculate aL.j and aR.j by first using an interpolation scheme to calcu­

late a; +* ' an approximatlon to the value of a at ~j +*' subject to the constraint 

":' that aj +* does not fall out of the range of values given by aj and aj +l" In smooth 

parts of the solution, away from extrema, aL.j+i = aR.j = aj+*, so that the inter­

polation function a (0 is continuous at ~j +*' The values aL.j and aR,j are further 

mo.dfied so that aa) is a monotone function on each interval (~j-H'~j+*). It is 

this step that introduces the discontinuities at zone edges. 

Given the averages ap of a in nearby zones, we want to interpolate a value 

rij +*. Equivalently, we know the values of the indefinite integral of a, 

t 
A(O = J a(t',tn)df. <it zone edges: 

A(~j+*) = Aj +*= L: ar:fl~k 
k~j 

To ~alculate aj~*,we interpolate the quartic polynomial through the points 
. ...., '. .' dA' 
(Aj+k+*'~j+k+*)' k. = Q,±l,±2, and differentiate it to obtain aj+* = d~ Itj +lf The 

formula for aj+* so obtained. in terms of the ~i+*'s and the aj's is given b~" 
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( 1.6) 

Here oa; is the average slope in the jtlr. zone of the parabola with zone averages 

aJ"-l and ai. aJ"+l. and is given by 

(1,7) 

In the calculations performed here and in [1]. we have replaced, 6a; in the 

above expression by om,a;. defined to be 

6m'aj = min(16aj l . 21 ai - ai-ll .2l ai - ai-ll) sgn(6aj) 

, if (ai+l - ai)(aJ" - ai-l »0 
= 0 otherwise 

( 1.8) 

This modification leads to a somewhat steeper representation of discontinuities 

in the solution, 

This calculation yields a value for aj+* which is third order accuate for vari­

able mesh spacing. even where the mesh spacing changes discontinuously, If the 

zones are equally spaced. and if 6a; = 15m a;. then the values obtained are given 

by the following simple formula: 

-:LJn n) ---.Ltn n) a;+* - 12'a; + a;+l - W a;+2 + a;-l (1. 9) 

In regions where the solution is smooth. and in the limit of vanishing time step. 

the PPM advection scheme for equally spaced zones is fourth-order accuraLe, 

We constrain aj+* to lie in the ~ange of values defined by ai and a.j+l ' If aj+* 

is the value obtained by the above procedure. then we take 
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( 1.10) 

The value a;+* will be assigned toaL.; and an.;-l for most values of j. There are 

some cases, however, where this would lead to an interpolation function which 

takes on values not between aL.;. and an.;. In such cases, we reset one or both of 

these values. 

There are two cases. First, if aj is a local maximum or minimum, then the 

interpolation function is set to be a constant. The second case is where aj is 

between an.; and aL.;, but sufficiently close to one of the values so that the 

interpolated parabola takes on a value which is not between an.; and aL.;' The 

condition on the coefficients of the interpolating parabola such that it does not 

overshoot is that ILla; I ~ I as.;I. When this condition fails to hold, either aL.; or 

an.; is reset, so that the interpolation parabola is monotone, and so that its 
. .. 

derivative at the opposite edge of the zone from the one where the value is being 

reset is zero. The expressions for aL.; and an.; are as follows: 

(1.11) 

aL' . ~ 3a~ - Zan' .J J .J 

(an' - aL .)2 . "" ". 
if - .J 6 .J >(an.; - aL.j)(aj - ~(an.; + aL.; )); 

This co~pletes our description of the calculation of aL.; ~nd ~n.;. Once we 

have these values, it is easy to write down an explicit expression for aj+l. We 

define averages of the interpolation functions 

• 

• 
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1 ~i+Jf , 

fl'+Yt,L(Y) = -Y J a(~)d~ 
, ~i+Ji-Y 

~i+Jf+Y 

fl'+Yt.R(Y) = yl J a(~)d~ 
, ti+Jf 

Where Y is assumed to be positive, Then it is easy to check that 

CJ () ... " ~A ( 2) ') f;+IJ2,L Y = aR.; - 2"ua; - 1 - 3"x a6.;, for 

Then we can express the calculation of aj+1 in explicit conservation form: 

where 

aj+Yt = fl+IJ2,L(uM) , if u ~ 0 

= f ;a.+Yt.R( -'uM) , if u ~ 0 , 

(1.12) 

( 1.13) 

( 1.14) 

We can modify the interpolation procedure slightly so that, in the neighbor­

hood of a discontinuity, it produces a narrower profile than the 'scheme 

described above. If the j'h zone is determined to be inside a discontinuity, then, 

instead of s~tting a~,;equal to a;+Yt using equation (1.6) and (1.10), we use the 

pieceWise linear distribution given by Om a; +1 in equation (1.8). Similarly, to com-

( 1.15) 

This substitution should be performed just prior to applying the monotonicity 

algorithm (1.11). 

In figure 3, we show an example of the effect of such a substitution, which 

we shall refer to as discontinuity detection. The dotted line represents the 

interpolation function in the jfh zone without detection, obtained by using the 

difference formula (1.6) in calculating aL,; and aR,;' The,solid line is the interpo­

lated distribution obtained by using for aL,; and aR,; values obtained from the 
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piecewise linear distributions. in neighboring zones determined by the equations 

(1. 7) and (1.B). These linear distributions are shown here as dashed lines. 

Because of the moncitonicity constraint (1.B) which is imposed on thes~ distribu­

tions, the dashed lines are nearly horizontal, so that aL,j and aR.j are nearly 

equal to the left and right limiting values for the fUJ.idiscontinuity. Conse, 

quently, the interpolated.profile is steeper, and the advected discontinuity 
, .. 

remains sharper. Another feature of this detection algorithm is that if it detects 
---

a discontinuity in a region where in fact thE:i solution is continuous, the scheme 

remains second-order accurate. 

For the purpose of switching between (1.6) and (1.15), we consider a zone to 

be inside a discontinuity if a finite difference approximation to the third deriva-

tive of the solution is sufficiently large, and if a finite difference approximation 

to the second derivative changes sign across the zone. In addition, we require 

that finite difference approximations to the first and third derivatives of the 

solution near the discontinuity.have opposite signs. This last condition caUses 
. " '. ' 

small plateaus within a general increase or decrease in the solution not to be 

taken for discontinuities. Finally, we do not apply de~ection to discontinui~ies 

with very small jumps. 

The rule by which we switch is given by 

aL ·-)aL ·(1-')')·) + ad.,),). aR · ...... aR ·(1 -n.) + ad .. ,),). ., ,J ·/JL.3 '/) , ,J..J ./) R.J'13 ( 1.16) 

Here'r}j is defined by 
.. 
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where 

= 0 othe~se; 

and where 

a; -a;-1 

D.~; +D.~;-:-1 

( 1.17) 

( 1.18) 

The parameters 1](1),1](2), are constants which determine a continuous switch 

between the schemes (1.6) and (1.15). The parameter t determines how large a 

relative change in the solution across a zone one wishes to call a discontinuity. 

In the calculations shown in [1], we have taken 1](1) = 20, 1](2) = .05, t= .01. In 

gas dynamics calculations, the detection algorithm is applied only to the density 

interpolation, and only to discontinuities which are contact discontinuities (see 

equation (3.2)) . 
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2. Lagrangian Hydrodynamics 

The approach we will take to extending'the advection algorithm in the previ-

ous section to the equations of gas dyn~mics in L1lgrangian coordinates consists 

of the following three steps: 1) the interpolation of distributions of the depen­

dent variables, 2) the calculation at the zone edges the solution as a function of 

time to the initial value problem implied by the interpolated distributions, using 

characteristic equations and Riemann solvers, and 3) the use of these solutions 

to calculate effective fluxes. which are differenced conservatively, It is possible 

to perform this calculation in such a way that the third-order accuracy in space 

and time of the advectionJalgorithm is preserved; however, this requires 

numerous solutions of the Riemann problem, and.is therefore rather expensive, 

In the following, we present a simpler approach; following a suggestion of van 

Leer [7]. In this approach we sacrifice third order accuracy'in time to the 

extent that the-nonlinear interaction between the two hydrodynamic waves·is 

calculated only to second order, However, we retain the spatial accuracy and 

the steep representation of the discontinuities of the advection scheme,Test 

calculations involving strongshocks have shown that there is very little accu-

racy lost in using the approach described here rather than the third-order accu-

rate formulation, 

We write the equations of gas dynamics in Lagrangian coordinates in conser-

vation form: 

a(rllu ) 
am o 

au + cx~­at r am -g 

8E + 8(rCXup ) 
at am ug 

Here T is the spe~ific volume, u is the velocity, E the total energy per unit 

volume, g a body force depending on rand t, and m a mass coordinate, The 

(2,1) 
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internal energy e, the density p, and the pressure p are derived fro~ the con-

served quantities via 

1 
p= 

T 

u 2 
e =E--

2 ' p = (-y-1)pe 

Here -y, the ratio of specific heats, is assumed to be a constant greater than 1. 

The spatial coordinate r is related to the mass coordinate m via 

T 

m( r) = J p (r)rD.dr (2.2) 
TO 

where ex = 0,1,2 depending on whether there is planar. cylindrical. or spherical 

symmetry, respectively. The function r(m.t) satisfies the ordinary differential 

. dr 
equation dt =u(m,t). 

Let 6mj be the amount of mass contained in the jth zone. We assume that 

we know the mass-weighted averages of the conserved quantities at time tn: 

u = [il 
mj+* = L:6mk 

k'!!:.j 

(2.3) 

It is also convenient to define rj+* = r(mj+*,t n ) as a separate dependent vari-

able, given by 

L: TJ:6mk 
jOSk,-5.j ex+l 

(2.4) 

Then we wish to c-alculate Uj+l, the average values for the conserved quantities 

at time t n +1 = t n + /).t. The method we are about to describe is a direct exten-

sion of Godunov's first-order method which takes into account the correct 

domain of dependence of zone edges in calculating the conservative fluxes. This 

is done in the following three steps. We in~erpolate profiles for the approximate 

dependent variables T, U, P as functions of the masscoordimite m, using the 



12 

interpolation algorithm described in the preceeding section. We then solve· 

appropriate Riemann problems (shock tube problems) to calculate the time­

averaged pressures and velocities at the edges of zones. Finally, we update the 

conserved quantities by applying the forces implied by time-averaged pressures 

and velocities at the zone edges. , 

The interpolation step is a straightforward application. of the algorithm 

described in section 1. with the mass coordinate taking the role of the indepen­

dent variable (. We know 6mj' the mass increments, and 'i and ui, the mass­

weighted averages of I and u across each.zone; so the interpolation coefficients 

are as in (1.6). The third quantity we interpolate is the pressure p, rather than 

the total energy, E. The reason for interpolating pressure is that by applying the 

mono tonicity constraints built into the interpolation algorithm to the pressure 

profile directly, we obtain a beUer-behaved solution near shocks. We take our 

average value of the pressure in the zone to be the pressure evaluated from the 

averages of the conserved quantities: pi = p (Ej,Uj"j). This is a second-order 

accurate value for the average of the pressure across the zone. Givenpj, then 

the interpolation scheme for the pressure is the same as for the other two vari­

ables. We do not apply the discontinuity detection algorithm (1.16)-(1.18) to the 

'interpol~tion of any of the variables, since contact discontinuities autornatically 

remain sharp in Lagrangian calculations. 

In the second step; we wish to obtain Uj+* and 15';+*, time averaged values 

for the velocity and pressure at the edges of zones. These v:alues will be used to 

compute fluxes which are differenced in an approximation to the conservation 

laws (2.1). In smooth regions, Uj+* and 1>j+* approximat~ time averages to the 

solution of the equations in characteristic form: 

along (2.5) 

where C = (Wp)Yz. The derivation of these equations is standard, (e.g'., see [8] ). 

• 
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. We obtain the values u; +~ and p; +~ by first calculating averages of the 

dependent variables over the spatial domains which can influence the zone edge 

• 
during the time step (figure 4. a-b). The interaction of these averaged states is 

calculated by solving a Riemann problem for Uj+~ andp;+~ (figure 4.c). The con-/ 

struction of these averaged states is done so that u;+*- and p;+~ satisfy an aver­

aged form of the characteristic equations (2.5) in smooth flow. and are well­

behaved at shocks. 

We now describe the algorithm for calculating Uj+~ and Pj+~ in detail. We 

consider first the case of planar symmetry. and no body forces (ex = g = 0). We 

define 7'A~. uA~. pA~. the average values of the dependent variables over the 

region between mj+~. and the point where the ± characteristic through 

(m;+~. tn+l) intersects the line ~t = tnJ: 

where a = p . 7' • u. and 

a;"+~ = f!+~.L(6tCjAf) 

a;+~ = f!+~.R(6tCj+lAf+l) . 

(2.6) 

(2.7) 

We obtainpj+~ andu;+~ by solving a Riemann problem with left and right states 

aj +~.L = a/+~ and aj +Ji,R = aj+~. where a = 7' • U • p. Thus we perform the same 

procedure here as for Godunov's method to obtain numerical fluxes. except that 

we construct our left and right states to be the averages over only the part of 

each of the the zones to the left and right of mj +~ which are in the domain of 

dependence of mj+~ for the time interval (tn .tn+i). This yields values for Pj+~ 

and Uj+~. which satisfy the following nonlinear equations: 
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wj = (1P~+*) [1 + .~. Pj+* '- 1)] 
Tj +* _ 2')' Pj +*.R 

(2.8) 

In order to solve these equations, we use the Newton's method algorithm dis-

c\.l.ssed in [4] with a fixed rlUmber of it~rations. It is imm~diately clear that, in 

smooth parts of the solution, the equations (2.8) are a finite differencea"pproxi­

mati on to the characteristic equations (2.5) which yield time-centered values for 

Pj+* arid uj+*.In the neighborhood of strong discontinuities, we retain the 

advantages of using the Riemann problem to calculate fluxes. 

In order to caLculate Uj +* and Pj+* in the case where a body force or non­

planar symmetry is present, we look for a"modified definition of Pj+*.L, Uj+*.L, 

pj+*.R, Uj+*.R such that the eqUations (2.8) are still a finite difference approxi-

mati on to the characteristic equations. If we define 

(2.9) 

then the equations (2.8) are again finite difference approximations to (2.5) which 

yield time-centered values for P;+* and uj +*. Here AA* are defined in the same 

way as the other dependent variables, with the interpolation coefficients for 

A{r) = ro. given by (1.5), A,R.j = AL.;+1 = Aj+* = (rp+*)o., and Aj given by equation 

(2.7). The interpolation of A is performed in the mass coordinate. In the case 

where ex = g = 0, this procedure for calculating the fluxes reduces to the one 

previously discussed. This modification technique has the property that, in the 

case where the initial data is a smooth steady solution to the equations of 

.... 
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motion, then the effective left and right states differ from one another by terms 

of second order. Thus we do not introduce a false jump into the Riemann prob­

lem which might give rise to spurious transients. 

The final difference approximation to the fundamep.tal conservation laws in 

equations (2.1) is as follows: 

A _ (rj4f)0I+1 - (rj+*)OI+l 
rjN = rj+* + tltUj+*, .ftj+* - (ex + l)uj+~t 

-rt'+1 = 
J 

(rj+1l )0I+l - (rj~ )0I+l 

(o.+l)~mj 

n+1 n U(A A) 6t (-;;;" -) 6t ( n . n+l) 
Uj = Uj + n .ftj+* + .ftj"""* ~m. V'j"""* - F j+* + ""2" gj + gj 

J . 

(2.10) 

r;>n + 1 _ r;>n ~t (A - - A - - ) M ( n n n + 1 n + I) 
£Ii - £Ir + 6m . .ftj-7iUj~ j-7i - .ftj+HUj+~j+* + ""2" UjUj + Uj gj 

J 

The appearance of uj+l in the equation for the energy does not make the calcu-

lation implicit, since uj+l does not depend on Ej+I. 

This completes our discussion of the PPM Lagrangian scheme. Given a one­

dimensional Lagrangian method, and an advection scheme of the type discussed 

in the previous section, it is straightforward to combine them into a one­

dimensional Eulerian algorithm by performing a Lagrangian step, and remap-

ping the results back onto the fixed Eulerian grid. This two-step technique, first 

proposed by Noh, has been in widespread use for some time; therefore, we will 

not discuss.it in detail here (for an example of how such a scheme is imple­

mented for methods of this type, see [4]). There are, however, a number of 

minor modifications which must be made to the algorithms discussed in this sec­

tion and the previous one so that the resulting Eulerian method is well-behaved. 

First, all the interpolations for both the Lagrangian step and the remap must be 

01+1 . 
performed in the volume coordinate ~1·' rather than the mass coordinate. In 

0.+ 

particular, the density, rather than the specific volume, is interpolated for the , 

Lagrangian step. Second, the total energy interpolation for the remap must be 
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performed by intp.rpolating Values at the edges of zones for P, P, u; then, the 

d b E Pj+* + 'iL.. ,2 total energy per unit mass at a zone e ge is given y j+* = (-),-l)pj+* nUJ+*' 

These values are then used, along with the values of the conserved total energy, 

to construct interpolated distributions of total energy using (1.6) and (1.11), 

which are then remapped in the usual fashion, Both of these modifications are 

necessary in order to maintain consistency between the Lagrangian step and the 

remap. Finally, the discontinuity detection algorithm (1.16)-( 1.1 8) is applied to 

the density interpolation for the remap, subject to the additional constraint that 

it be applied only at density jumps corresponding to contact, discontinuities. A 

criterion for detecting such jumps is given in the next section (equation (3.2». 

( 

" . 
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3. Eulerian Hydrodynamics 

We will be calculating solutions to the equations of compressible hydro-

dynamics in one space variable. written in conservation form: 

au + a(AF} + BR = G (3.1) at av ar 

u = [fi 1 ' 
pu 

H(U) ~ [U G = [pJ F(U) ::;;. pu2 

. puv 
puE+up pug 

r a +1 .' Here V(r) = -. -i-iS a volume coordinate. A(r) = ra. The notation here is that of 
a+ 

the previous section. except that u is the component of velocity in the direction 

of the one dimensional sweep. v the velocity orthogonal to u (hereafter. u and v' 

will be referred to respectively. as the velo9ity and transverse velocity). and 

that'we define e. the internal energy per unit mass to be E - *(u2 + v 2). 

Let rj +H be the boundary between zones j and j + 1; we define 

~rj = rj+~""" Tj-M and /), V;.= V(ri+~) - V(ri-M)' We assume that. at time tn. we 

Ti+H 

lmow Uf = ~ ~ J U(r .tn)dV. the volume-weighted average values of the con-
J TJ--.H . 

served quantities in the interval (rj~ • rj+~); then we wish to calculate Uf+l. the 

averages of the conserved quantities at time t n +1 = t n + M. The construction of 

the single-step Eulerian scheme for performing such a calculation has the same 

basic structure as the Lagrangian scheme: we interpolate piecewise parabolic 

distributions of the dependent variables. construct effective left and right states 

for Riemann problems. and difference fluxes determined by the solution to those 

Riemann problems. The construction of the effective left and right states for the 

Riemann problems is more 'complicated than in the Lagrangian case. since there 

can be as many as three characteristics. or as few as none. reaching the edge of 

a zone from a given side. One approach to this difficulty is to use a construction 

similar to that used in [5] for solving lhecharacteristic equations in the single-
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step Eulerian MUSCL. In the following, we shall describe a different approach, in 

which we construct a first guess to the left and right states using the largest and 

smallest values of the characteristic speeds; this first guess is then corrected 

using the linearized characteristic equations. 

First, we derive interpolation functions a (V), using the interpolation; 

scheme described in section 1, given aj ~ a (Uj) , a = P ,p,u ,V, and interpolating 

with respect to the volume coordinate V, As was the case for the pressure inter­

polationfor the Lagrangian scheme, the approximation that uj, vj, pj are the 

, ,aver~ges with respect to Vof the velocities and the pressure across the zone is 

second-order accurate. We use the interpolation scheme without discontinuity 

detection for the quantities p, u, V; for P, we use the interpolation scheme with . , 

discontinuity detection, with the modification that that we do not treat the j'h 

zone as being inside a discontinuity unless the following condition is also 

satisfied: 

v IPj+l - pj-ll > 
')In 0 . ( ) mm Pj+l ,Pj-l 

I Pj+l - Pj-l I 
min(pj+l ,Pj-l) 

(3,2) 

This is to insure that the special interpolation at a detected discontinuity is only 

applied at jumps which are predominantly contact discontinuities. Here ko'is a 

constant, which is problem dependent; in the' calculations in [1], Ko = .1. : 

Using these interpolation functions, we can now define aj+*-L and'aj+~LR' 

, our first guess at the effective left and right states of the Riemann problem. We 

define them to be 

aj+*.L = ff+*.L(l'j+* - V(rj+*.L» , Tj+*.L = Tj+* -max(O,Llt (uj + cj}) 

aj+*.R = fj+*.R(V(rj+*.R) - VJ+*) , Tj+*.R'= Tj+*+max(O, -Llt(uj-cj»(3.3) 

a=p,p,u,V 

Thus aj+*-L (aj+*.p) is the average over that part of the domain of depend~rice of ' 

Tj+* for the time interval (tn ,tn+l) which lies to the left (right) of Tj+*. If there 

are no characteristics impinging on Tj+* from the left (right). then a is taken to 
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be the left (right) limit of the interpolation function at rj+* (figure 5). 

As they stand, the states constructed above are not suitable as left and 

right states for the Riemann problem. For example, if ex = 9 = 0, and if the only 

variation in the solution were a density gradient carried by a positive constant 

v~locity field, then the use of the above states for the Riemann problem would 

imply that the amount of mass which had crossed rj +* during the time step had 

u~ ~4 ~~ 
been 'J J p(r)dr. This differs from J p(r)dr, the answer 

utl+c~ 
J J Tj +* -~ (u}'+c}') Tj 4-Atu}, 

obtained in section 1 for this problem, by terms which are O(cjM 6rj », making 

the scheme first order accurate for the special case of advection. Therefore, we 

must make some correction to take into account the fact that there can be 

more than one wave moving in each direction. The corrected left and right 

states are to be constructed in such a way that the amount of wave associated 

with each family of characteristics transported across a zone edge is correct up 

to terms of second order. Furthermore, we require that in the absence of pres­

sure and velocity gradients the fluxes be exactly those given by the advection 

algorithm discussed in section 1. 

We correct our initial guess for the left and right states by solving the equa-

tions of gas dynamics in characteristic form. We consider the equations of gas 

dynamics in one space variable, written in nonconservation form. 

(3.4) 

v = [~l [
UP 0] A(V) = 0 u

2 
1', 

o pc u 
G(V, r , t) = 

Then A has left and right eigenvectors (L(V) , r _(V», (Io(V) , ro(V», 

(1 + (V) , r + (V) ), with associated eigenvalues A_ = U - c, Ao = U, and A+ = U + c, 

The normalization of the eigenvectors can be chosen such that I#·r #'= 0# .#" 
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# ' #' =+.-.0., In t;:us notatiCln. we are given V;+*.L and V;+*.Rfrom (3.3); and we 

wish to calculate V;+*,L and Vj+*.R. effective left and right states for the 

Riemann problem, 

First, we define 

ri!+'Iz.L = f!+'!t.L(l';+* - V(r!+Yt.L). r!+'Iz.L = r;+* - /).t r..e (Uj) (3.5) 

a!+*,R = f!+JtR( V(r!+*.R) :- ~+*). r!+*.R = rj+'lz - .6.00/1 ( Uj+l) 

a=p,p,u 

If AI (OJ) > 0 (All (Uj) < 0). then V!+*'L (V!+JtR) is the averag'e of V over the pflrt of 

the domain of, dependence for the I-characteristic of,r;+'Iz for the time interval 

(tn,tn+l) which lies ,to the left (right) of rj+Yt., We then obtain. for examp~e. V,.+*.L 

by subtracting from Vj+*'L the quantityl/l,(V/+*'L - V/+*.L + .6.tG)r/l' for each 

family of waves for whichr..e (Uf) is positive. In the case G = 0, we are subtract­

ing fromV,.+*'L the, amount of wave of the # family contained in the difference 

V,.+*.L - V/+*.L· This is the appropriate nonline~r generalization of subtracting 

from 'ilj +*.L the amount of wave in the #, family contained in 'iI,. +*.L which will not 

reach rj+* by the time t n + /).t.' When source terrnsare present. we are modify­

ing Vj+~H to properly account for all the characteristic information impinging on 

rj+* from the left. In particular. if uj > cj. Vj+*.L is a solution to the charac­

teristic form of ,the equations (3.4) at (r;+* . t n +*.6.t) which is correct to terms 

of o (.6.rjM ) if the variation in the solutio~ across the zone is o (.6.rj ). A similar 

construction can be performed for Vj +*,R, The result of this construction for 

both sides. modified slightly for the present application. is the following: 

-'" 'C2 (+ -) Pj+*.s - Pj+*.s + j+*.s ~,.+*.s + ~j+*.s 

Uj+Yt.s = 71.j+*.s + ?::j+*.s({3/+*.s - ~,.-+*.S) (3,6) 

Pj+*.s = [po 1 - L: ~!+*.sl-l 
J +*.s fI :: 0.+;-

Vj+*'S = Vj+*.S 
')1.2 ,... '" 

Here. l-;+*,s = 'Y Pj+'lz.s Pj+*.s. and S = L,R. We also have 
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fJ/+Yr.L" = 0 if ~ (Uf) ~ 0 

fJ!+Yr.R = 0 if X, (Uj+l) ~ 0 

± _ - 1 
fJj+'lts - +-2""'X--'x 

Vj+'lts 

rC' ±)± (Pj+*.S - p/+'lts) ±!::.t (au!+Yr.sc!+'ltS 
[ Uj +*.s - 11; +'lts ?;<j +'lts r AYr.s 

RQ _ [(Pj+'ltS - pP+Yr.s) + 1 _ ~. ,..,+Ift.s - ')1,2 "" 0 
Vj +Ifr,S Pj +*'S Pj +*.s 

(3,7) 

+ g!+*.s)] 

We have taken advantage of the fact that p is the natural variable to interpolate, 

while r = .L is the natural variable for the characteristic equations, We have P . 

also exploited the decoupUng ·of the equation for the transverse velocity from 

the rest of the equations when they are written in nonconservation form. 

t n +1 

To obtain Uj +Yr, an approximation to ;t J U(rj+Yr,t )dt, the time averaged 
t n 

value of the solution at rj +*' we solve the Riemann problem at rj +Yr with left and 

right states 

(Pj+Yr.L ,Pi+'ltL , Uj+'ltL , Vj+li,L) 

(Pj+'ltR ,pj+Yr.R ,Uj+'ltR ,Vj+*.R) . 

We use the Riemann problem solver for the Cartesian equations here; the effect 

of the source terms on U;+* is accounted for to second order in the construction 

of Vj+'ltL, Vj+¥t.R. The Riemann solver we used for the calculations shown in [1] 

uses the same iterationscheme as that described above for the Lagrangian PPM; 

the evaluation of the solution at rj+Yr is performed in the usual fashion. except 

that the evaluation of the solution inside of a rarefaction fan is done by linear 

interpolation between the states on either side of the fan. 

The final conservative difference step is given by 
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- 1 G· =_. , 2· (3.B) 

The above ,4efinition of Gj does not make the method implicit. inasmuch as the 

values of pn+l do not depend uponJi,n+l; nor do those of pn+lun +1 depend upon 

p;n+l. ." ";"-
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4. Dissipation Mechansims 

In [1] and [5], low-amplitude post-shock oscillations were observed in calcu­

lations performed with the single-step Eulerian MUSCL scheme for shocks whose 

speed was small relative to the post-shock characteristic speed. Unless extra 

dissipation is added, the same type of noise occurs when the PPM scheme is for­

mulated either as a Lagrangian step followed by a remap or as a single Eulerian 

step. In this section, we will describe in detail the circumstances under which 

noise is present, and discuss the types of dissipation employed in the calcula­

tions in [1] using the PPM scheme to reduce or eliminate the noise.· We shall dis­

cuss these issues in general terms in this section; in an appendix, we will give 

detailed algorithms for the dissipation schemes used in the PPM calculations in 

[ 1]. 

In figure 6 , we show a typical example of the type of errors which are 
\ 

observed. This figure shows the results of a calculation of a very strong planar 

shock using the Lagrangian PPM scheme described in section 2. The calculation 

is quite stable; however, there are substantial oscillations in both the entropy 

and u - ~1 ' the Riemann invariant transported along the - characte'ristic, 
1-

which crosses the shock. The quantity u + ')':: 1 ' the Riemann invariant tran-

sported along the + characteristic, is quite well-behaved; any errors generated 

in that variable are immediately driven back into the shock transition layer. 

Thisrefiects the fact that this difficulty arises only for systems of equations; 

indeed, these methods produce shocks which are perfectly well-behaved when 

applied to a scalar equation. 

A technique which,is successful in eliminating this error in a large number 
'.- -, 

of cases is that of flattening the interpolation profiles in the neighborhood of 

shocks which are suffiCiently strong and steep. In effect, flattening is a means of 

reducing locally the order of the method; in the limit that the interpolation 
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function is totally flattened. we obtain locally Godunov's first order method, 

,We define f j. a ~ f j ~ 1 so that our interpolation function in the jth zone is 

a({)(1-:-fj) + fjar . {j < ~ < {j+* . where a(O is the interpolation function 

defined in section 1, This is most easily accomplished by defining 

a[t\ll = a~J' + aL ·(1-f·) 
.J " .J J 

(4,1) 

a flqt = a~f' + aR ·(1 -f·) fl.J _ 1 J .J J 

and substituting al'f and ak~r for aL.j and aR.j in (1.5). 

The coefficient f j should be equal to a away from strong shocks. Excessive 

broadening o~ t~e shocks is undesirable; consequently. we set 1; to a if the 

shock profile is suffi~iently broad. We measure the width of the profile for a 

shock transition centered on the,jth zone by calculating the ratio ~qj+l - qj-l~. 
qj+2 - q;-2 

where q is some variable which jumps across, the shock. such as the pressure or 

energy. : If this ratio is sufficiently close to 1. then the profile is considered 

sufficiently steep for f j to be nonzero (figure 7): ,"For Lagrangian calculations. 

we have found that we obtain all of the'tequired dissipation when the effective 

,shock width is barely more than,one mesh length~ Vfe see in figure 6 that the 

flattening nearly eliminates the oscillation behind the shock. while broadening 

the shock only slightly. 

For Eulerian calculations. there a~e circumstances in which flattening is 

ineffectual. We present in figure 8 a calculation of an extremely strong. nearly 
" , 

, . 
stationary shock performed using the Single-step Eulerian Godunov method L3] 

. . 
Even though this is a first-order method. we still see a 3% error in the density 

immediately behi:1d the shock. The error has disappeared farther downstream 

from the shock. due to the strongly dis'sip'ative char'acter of Godunov's met.hod 

No amount of locul flattening can eliminate such an error from a big'her order 

method. since it is still present in calculations performed with a scheme with all 
t" • 
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the interpolation functions totally flattened. A second kind of error which can-

not be effectlvely eliminated by flattening was observed in the single-step 

Eulerian MUSCL and Godunov results for the Mach 3 wind tunnel calculation 

presented in [1]. In the finely zoned runs of that problem. we saw oscillations 

behind the incident shock near the point where the shock intersects. the bottom 

of the channel. and behind the Mach stem. 

Both of these errors occur when a characteristic speed associated with a 

strong shock. measured relative to the grid. vanishes. The dissipation intro-

duced by Godunov's method at a shock. as measured. for example. by the 

number of mesh pOints over which the shock is spread. vanishes as the speed of 

the shock goes to zero. What we are observing in the first example mentioned 

above is that the residual dissipation present in a slowly moving strong shock 

calculated using Godunov's method is not sufficient to guarantee thE:: correct 

entropy production across the shock. In the second example, the component of 

the velocity tangent to the shock, which is also the velocity in one of the coordi-

nate directions, is nearly zero. In the column of zones where the shock transi-

lion occurs, a small disturbance develops in the tangential velocity, due to 

numerical error. These small velocities transport large amounts of the con-

served quanitities, creating, in effect, large sources and sinks in the shock tran-

sition zone for the essentially one-dimensional calculations of the motIon of the . . 

shock in each row of zones. Finally, although we have discussed these errors in 

terms of the single-step Eulerian schemes, they occur as well when the PPM 

Eulerian scheme is formulated as a Lagrangian step followed by a remap. Thus 

we must find a means for eliminating these errors for either type of Eulerian cal-

culation. 

In order to reduce these errors, we introduce a small amount of ddditional 

dissipation beyond that which can be obtained by flattening One way of doing 

this is to add an explicit diffusive flux to the numerical fluxes. 
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(4.2) 

Another way of introducing dissipationis to perform the calculation in a con­

stantly moving grid. If the mesh edges have values rf+Yz at time tn, then 

.(4.3) 

r.;n/i = rfAI - v; +Yz 6t = rf+Yz· 
This is equivalent to superimposing an advection velocity to the fluid motion 

which alternates direction every other time step. The dissipation obtained in 

this fashion is that of the PPM advection scheme. This form of dissipation can 

also be used in operator split multidimensional calculations, as long as two one-

dimensional sweeps i.n succession are performed in each coordinate direction. 

This is the case, for example, for second order operator splitting in two dimen-

sions. Then the mesh is aligned properly at the beginning and end of each pair of 

one dimensional sweeps. 

In both types of dissipation v; +Yz is a velocity which should be large only in 

the neighborhood.of shocks. In one dimension, one might take 

(4.4) 

In the first example, this yields an artificl.al viscosity similar to -the one used by 

Lapidus [9]. In more than one dimension, the velocity should be of the form 

(4.5) 

where (D ·un ); +*,k is a discrete undivided difference approximation to the mul-
, . . , 

tidimenSional divergence of U. It is necessary to use a'velocity such as this one, 

which can detect the presence of a shock jump in the direction perpendicular to 

that of the one-dimensional sweep, in order to eliminate the multidimensional 

oscillation discussed. above. 

The amount of dissipation required is quite small, relative to what istypi­

cally used in conver"tional finite difference schemes. - For example: in the results 

presented in [1], tha value of the coefficient K used with (4.2) and (4.5) for'the 

\. 

• 
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single-step Eulerian PPM was K =.1. while MacCormack's method needed an 

artificial viscosity of the form (4.2) and (4.4) with K = 1 in order to produce 

acceptable results. In the case where the dissipation is added by introducing a 

local grid velocity, the amount of additional dissipation in smooth parts of the 

flow is even less, even for moderate (K '" 1) values for the grid velocity. This is 

because the dissipation is essentially that of the PPM advection scheme, which is 

very small, in smooth parts of the solution. Furthermore, the grid motion itself 

vanishes with Uj - Uj +l . 



5. Disussion and Conclusions 

We have presented here the PPM scheme for gas dynamics. Although the 

. scheme is quite complicated, relative to conventional difference methods, we 

feel that the numerical results in [1] prove that the additional expense and pro­

gramming effort are worthwhile. Our own investigations indicate that the algo­

rithms presented here are the minimal ones, in the following sense: any further 

simplifications which we have attempted to introduce into them led to some 

degradation of the results. 
, ' 

The addition of more complicated physics to this algorithm appears to be 

quite straightforward. Multifiuid capability can be easily added, particularly to 

the two~step .Eulerian version of the method: the extension of the method to 

more general equations of state can be done using the techniques described in 

[10], These and other extensions of the basic PPM scheme are currently being 

implemented. 

, . 
• 
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Appendix 

In this appendix, we will describe in detail the dissipation algorithms intro­

duced into the PPM scheme for the calculations presented here and in [1]. We 

will describe three dissipation schemes. The first is ·a combination of a 

simplified flattening algorithm, and a small amount of artificial viscosity, which 

was used in all but one of the. single-step Eulerian calculations in [1]. The 

second is a flattening algorithm. suitable for Lagrangian calculation in one 

dimension. Finally. we will describe a combination of flattening and local mesh 

motion for use in multidimensional Eulerian calculations. which was used in the 

two-step Eulerian calculations presented in [1] as well as for the single step 

Eulerian calculations presented in figure 3 of that paper. 

Throughout the following, we will use the notation and terminology 

developed in section 4. In particular. we will be defining flattening coefficients 

f i to be applied in modifying the interpolation functions using (4.1). A quantity 

we will use throughout this discussion is Wj. which is equal to 1 if the jth zone is 

inside a pressure and velocity jump in the direction of the sweep consistent with 

the possibility of there being a shock. and zero elsewhere. Specifically. we will 

define Wi 

Wi = 1 if (A. 1) 

= 0 otherwise. . 

In all the calculations presented here and in [1]. t = .33. Another quantity which 

we will need is Sj. which is equal to 1 if Pj+l - Pj-l < 0 . and is equal to-l if 

Pi+l - Pj-l > O. Le .. the zone j +Sj is the zone just upstream from zone j if zone 

j is in a shock. In what follows. we assume that two-dimensional calculations are 

performed on a rectangular grid in one dimensional sweeps. We denote the coor­

dinate in the direction of the sweepby T. and the coordinate in the direction 
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perpendicular to the sweep by z. We assume we are sweeping throughthe kth 

row of zones; the r!enters of zones are denoted by (rj . Zk)' 
. . 

The simplest form of diss~pation of the types dis?ussed in section 4 is a 

flattening based on the steepness of the pressure jump across a zone. plus the 

addition of.a dissipativeftux of the form (4.2). Specifically. if we define 

(A.2) 

where 

and 

(A.S) 

with c.>(l) • c.>(2) • 1/(1) constants. then we obtain sufficient dissipation to reduce the 

. errors in all but a few instances to a fraction of a percent in the postshock 

values. and to less than two percent in all the cases we tested. The Single-step 

Eulerian calculatio~s presented in [1] used this dissipation algorithm. with the 
constants set at c.>(I) = .75 . (.)(2) = 10 . Jl) = .1. 

. . 

The defect in this simple approach is twofold: first; it does not totally elim-

inate the error in all cases; second. it introduces extra dissipation in regions 

where it is not neede.d. For this reason. we will introduce dissipation schemes 

which are more discriminating. 

We consider first the case of Lagrangian hydrodynamics. In this case. we 

can obtain acceptable results by using two parameters: c.>j. whicp. measur~s the 

steepness of a she ck near j . and ICj • which depends on the wavelength of any 

potential noise: 

,J .. 
• 
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(A.4) 

where 

..... Pj+} - PJ-l 
CtJj = ; 

pj+2 - Pj-2 

. (A. 5) 

where 

and 

Here. Wj is an estimate of the Lagrangian shock speed. and Cj - 28j the post­

shock wave speed. The quantity ~j is the number of equally spaced zones that a 

signal can travel from a shock in the length of time that it takes a shock to cross 

one such zone; in the limit of very small time steps it is a measure of the 

wavelength of the fundamental mode of any potential noise behind the shock. 

The fiattening coefficient is then defined to be 

where 

Thus we are using the smaller of the two amounts of flattening given by the 

wavelength and steepness criteria. In the calculations shown above. 1C(1) = 2. 

(A. 6) 

1C(2) = .01 CtJ(1) = .75. CtJ(2) = 10. The flattening provides enough dissipation so that 

the Lagrangian scheme produces acceptably oscillation-free steady shock 
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profiles. However, it is necessary to introduce a small amount of dissipation such 

as in (4.2) or (4.3) if one wishes to eliminate some types of starting errors, such 

as those occuring for shock tube initial data. 

For mUltidimensional Eulerian calculations, we use a combination of fiatten-

ing and local mesh motion (4.3) to introduce the required dissipation. For the 

: ftatteni,ng, we have the parameters "j and G.>j' ,which, as before, depend on the 

wavelength of the noise and the steepness of the shock profile. We also introduce 

a third parameter, aj' which depends on the strength of the wave: 

where 

where .' 

where 

and 

[
a. - a(l) ] 

aj = max 0, u; + a(2) 

" 

",I pj+2 - pj:"21 
aj = Wj (p ) min j+2, Pj-2 . 

"'.' =max(O ",(1)(",(2) - ~.» J, ., , J ' 

...... [pj+! - Pj-l' E;+! ~ Ej - 1 ]. " 
G.>j = max . E 

pj+2 - Pj-2" ;+2 - Ej - 2 

- . [ K:j - ,,(1) ] 
"i - max lO" K:j + ~2) , 

w· w$ = s· , + u,· -2 8i. ' J J P . 
;-28j 

(A.7) 

(A.8) 

(A.9) 

• 
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with. 

The flattening coefficient is' then defined to be 

(A.l0) 

where 

We also use the parameters defined above in constructing our grid velocity Vj: 

(A, 11 ) 

where 

and 

When using this dissipation with the two-step Eulerian method, the flatlen­

ing is applied at the beginning of the Lagrangian step; no flattening i's applied to 

the interpolations performed for the remap, Obviously, the local grid motion 

only affects the remap step, in determining the grid which one maps back to, 

The constants which were used in this form of dissipation for the calculations in 

[1] were V{l) = 2, ,)2) = ,1, V(3) = .2333, d l ) = .75, CJ(2) = 10, /C(I) = 2, X;(2)=.0';, 

(1{l) = .5, (1(2) = 1. For one-dimensional calculations, we set v(2) = 0 a~d 

1)3) = .3333. fairly exhaustive test calculations of steady shock structures cov-

ering the wh')\e parameter space for a polytropic gas with)' = 1.4 gave rise to 

this choice of parameters. The amplitude of oscillations in the post-shock 
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density was 2/3 % of the density jump in the worst case, and is more typically· 

1/4 %. The oscillations in other variables were much smaller. For all but nearly 

stationary shocks, any such oscillations are rapidly damped downstream from 

the shock. The efip-ctive shock width is never more than two mesh lengths, and 

for rapidly moving shocks it is one mesh length. Experimentation with different 

values of the parameters is not recommended, as these choices have been made 

on the basis of considerable experience. 

~. 

" 
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Figure Captions 

1. The interpolation step of the PPM advection scheme. The initial data is given 

as values of t'J.e variable a averaged over the four zones shown. These aver-

aged values are represented by dashed lines. From this data values of the 

variable a are interpolated at zone edges, using cubic c'urves which have 

the prescribed average values in the four zones ,nearest the edge, The inter-

polation parabolae within the zones, which'are shown as solid lines, connect 

these edge values and give'back'the initial data when averaged over the 

zones. 

2. The integration step of the PPM advection scheme. New averages of the vari-

able a within the zones are obtained by integrating over the interpolated 

initial distribution shifted to the right by uAt, This shifted distribution is 

shown by the dashed lines, and the new zone averages are shown by the 

soltd lines. The scheme is third-order: acc,urate in general; in the limit of 

very small time steps, for equally spaced zones, it is fourth-order accurate. 

3, PPM discontinuity detection. The central zone in this figure is judged to be 

within a discontinuity, according to the detection criterio~ given in equa­

tions (1.16)-( 1.18) of the text. The usual interpolated zone str,ucture shown 

by the dotted line is therefore replaced by the steeper structure shown by 

the solid line, The two edge values joined by this line are obtained from the 

linear distributions in the neighboring zones, which are indicated by the 

dashed lines. A monotorucity constraint on. these linear distributions has 

kept their slc'pes small and caused the distribution derived for the central 

.' 
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4. The computation of Lagrangian fluxes with PPM. 

a) 
' .. 

b) 

The two domains of dependence for a zone interface during the time step 

are determined by tracing the paths of sound waves arriving at the inter-

face at the end of the time step. 

The detailed interpolated distribution of each variable within each domain 

of dependence is replaced by its mass-weighted average. This replacement 

facilitates the computation of the nonlinear interaction of the two domains 

of dependence .. 

c) The interaction of the two averaged states adjacent to the interface is 

described by a solution to Riemann's shock tube problem. Such a solution 

is indicated here. The nonlinear waves moving away from the interface 

Feach the edges of the averageddomains at the end of the time step. The 

Lagrangian fluxes needed to update the zone volume, momentum, and 

energy are obtained from the parameters of the constant state at the zone 

interface. 

5. The locations of the characteristic domains of dependence referred to in 

the construction of effective left- and right-hand states for the Riemann 

problem in the ~ingle-step. Eulerian formulation of' PPM.' The characteristics 

labelled with + arid - are the paths traversed by sound waves travelling to 

the right and left with respect to the fluid. The dashed characteristics are 

fluid streamlines. The other symbols in the figure are defined in the text. 

6. The results of the Lagrangian PPM scheme for the propagation of an 

extremely strong isolated shock in a polytropiC gas with "'I = ~. The pres-

sure jump in the shock exceeds six orders of magnitude. 30 zones are 
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displayed for two separate calculations. The dots show results of the PPM 

scheme described in section 2. Small oscillations of about 1.3% amplitude 

can be seen in the post-shock flow for this calculation. These oscillations 

occur mainly in the two Riemann invariants whose associated characteris-

tics cross the sho'ck. The solid lines display results of the PPM scheme aug-

. mented by the algorithm for selectively fiattening internal zone structures 

which is described in section 4. The amplitude of post-shock oscillations 

has been dramatically reduced by this fiattening procedure. 

7. A shock discontinuity which requires fiattening of the internal zone struc-

tures within the shock. The solid lines show the internal zone structures 

interpolated by the PPM algorithm. The dashed lines show these structures 

after they have beenftattened. This fiattening procedure eliminates the 

mild post-shock oscillations displayed in figure 6. 

8. Results of the propagation of an extremely strong. isolated shock obtained. 

using the single-step Eulerian method of Godunov. The pressure jumps by 

more than 6 orders of magnitude in the shock. while the velocity jump is 

unity. The shock is nearly steady; it has taken nearly BODO time steps to 
. ;' ' 

cross 160 zones. Only 30 zones near the shock are displayed. with dots 
'. . .-,.' , ' ~ 

showing the averages of the variables within the zone~. Because this shock 

is strong and nearly stationary. the shock structure is very thin. This 

causes 3% errors in the, entropy of the post-sho.ck gas. Note that this calcu­

lation performed 6 iterations in solving each Riemann problem. If oIlly 2 

. iterations are performed. very large errors' are generated in the single zone 

just behind the shock. 
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DOTTED: TlME=7,01IE+00 TIME STEP 636 DT=I,li9E-02 30 ZONES 
SOLI D:" TIME=7,005E+00 TIME STEP 592 DT=I,197E-02 30 ZONES 

TITLE FOR RUN: 
STRONG SHOCK, LAGRANGIAN PPM. COURANT=.75 N=200 GAMMA=5/3 7/1/82 

FLATTEN USING P. FLTIMX=O, ONSET=.75, FULLON=.85, WVLNGI=2, WVLNG2=2.125 
FLOW-IN BOUNDARY AT THE RIGHT. 

TITLE FOR 'EXACT' RUN: 
STRONG SHOCK. LAGRANGIAN PPM. COURANT=.75 N=200 GAMMA=5/3 7/1/82 

FLATTEN USING P. FLTIMX=I, ONSET=.75, FULLON=.85, WVLNGI=2, WVLNG2=2.125 
FLOW-IN BOUNDfRY AT THE RIGHT. 
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