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THE PIECEWISE-PARABOLIC METHOD (PPM) FOR GASDYNAMICAL SIMULATIONS

Abstract

We present the piecewise-paraﬁolic method, a higher-order extension of
Godunov's méthdd. There are several new feature's of this method wfnich_distin—
guish it from other higher-order Godunov-type methods. We use a higher-order
spatial interpolation than previously used, which allows for a steeper representa-
tion of discontinuities, particularly contact discontinuities. We introduce a
simpler and more robust -algorithm for calculating the nonlinear wave interac-
tions used to compute fluxes. Finally, wevreco.gnize the need for additional dissi-
pation in any higher-order Godunov method of this type, and inf.roduce it in such -

a way so as not to degrade the the quality of the results.



0. Introduction

‘In[1], we presented an extensive comparison of various numer.ioal methods
for shock hydrodynamics. The most accurate of the methods.tested was the
piecewise parabolic method (PPM), developed by the authors. In this paper, we
present a detailed description of the PPM scheme for gas dynamics 1n Lagran-

gian and Eulerian coordinates. |

The PPM scheme is a higher order extension of Godunov's method [2],[3] of
a type first introduced by van Leerin his MUSCL algorithm [4]. A moi*e recent
version of the MUSCL algor"ithm. which is better suited for calc_ulating strong
shocks was presented in [5]. The PPM scheme represents a substantial advance
over both these versions of MUSCL in several respects. First, the introduction of
parabolae as the basic interpolation functions in a zone allows for a more accu-
rate representation of smooth spatial gradients. as well as a steeper ‘representa-
tion of captured discontinuities particularly contact discontinuities.‘s‘ Second,
the representation of the nonlinear wave interactions used to compute fluxes is
substantially simpler than that used in [5], gwmg rise to a iess comphcated and
more robust algorithm. Finally, we have determined that additional dissipation
beyond that given by monotonicity algorithms of the type discussed in [4], is
required to obtain acceptably accurate results from any higher-order Godunov
method of this type. We have made a careful study of the kind and amount of |
dissipation which is needed, and have found ways of introducing it which do not

significantly degrade the quality of the computed solution.

This paper is divided into five sections The ﬁrst section describes the PPVI
scheme for a scalar advection equation, and establishes the 1nterpolation formu-
lae and techniques required for solving the gas dynamics equations. ‘The second
and third sections describe, respectiveiy the bas1c PPM scheme for gas dynam-

ics in Lagrangian coordinates, and a smgle step formulation of the scheme for



gas dynamics in Eulerian coordinates. The Eulerian schemes déscribed'here" are
all for oné space variable; the extension to more than oné dimension is done
using operator splitting. The fourth section discusses, in general terms.'the
kinds of dissipation required in these schemes; the final section is for di.scussion
and conclusions. Th‘ere.' is also an appendix, which gives a detailed description of

the di‘ssi’pétionalgorithms used in the PPM calculations presented in [1].
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1. The PPM Advection Scheme

In this section, we describe the PPM scheme for solving a linear advection

equation

da da__ i N
rTH —+u aE =0 ‘ | (1.1}

a(£.0) = aq(é)

Let £,y be the boundary between the j** and the j +1% zones on the computa-
tional grid, and assume that we know al the average value of the solution a

between £;,3 and £;.y at time t™:

fym _ :
af = L [a(etn)de " (1.2)
5 ¢, |
é' = fJ+}ﬁ SJ—%

We want to calculate a,"” the average value of the solutlon at tlme

t"” = t™ + At, where Af satisfies the stability condltlon uAt<rnmA$J The

advection scheme we will describe here is constructed following the approach to
advection taken by van Leer in [6]. First, we construct a piecewise polynomial
interpolation function a(¢) satisfying the condition

a €44

B,

and constramed in such a way so that no new extrema appear in the 1nterpola-

a(€)ds

’.1, -—
a; =

tion function which do not already appear in the a"’s (ﬁgure 1). We can calculate
explicitly the exact solut1on to equation (1.1) with inital values a(g) ie.
a{(th+AL) = a(f - uAt) (figure 2). We integrate this solution over each zone to
obtain al*h: »
a1 fms : o
aftl = a(¢~ uAt)dé L {1.3)
Aé’ &% : .
The scheme is uniquely determinedv by our choice of interpolation polyno-

mial. The PPM scheme uses an interpolation which is piecewise coatinuous. with



a given by a parabolic profile in each zone:

a(€) =ag; + z(ba; + ag(1 —z)) (19
ziiigi' £ H=<€<tjy f | i}

It is a straightforward bit of algebra to verify that the coefficients of this polyno-

mial can be derived from a}, and the values hm a(¢) = a;, llm a(f) = ap ;:
-4 i +%

Cbay =gy — ey, Gey = 6(a] ~Hay + ag,)) (19)
We calculate a; ; and ag ; by first using an 1nterpolatlon scheme to calcu-
late g;,%, an approx1matlon to the value of a at ¢;.y, subject to the constramt
‘that a; ; + does not fall out of the range of values given by g; and g;,;. In sruooth
parts of the solution, away from ext_rerna, ap je1 = aR'j = a4y, SO that theinter-
polatlon function a( ) is contmuous at é, +% The values a;, j and ag ; are further ‘

modﬁed o) that a(f) isa monotone funct1on on each 1nterval (5, % fj +}€) It is

_ thls step that mtroduces the d1scont1nu1t1es at zone edges

leen the averages at of a in nearby zones, we want to 1nterpolate a va]ue

: aJ % Equ1va1ent1y we know the values of the indefinite 1ntegral of a,

¢
A(¢) = fa(f’,t")df’, at zone edges:

(&w-&m-za&k |
' To calculate aJ +” we mterpolate the quartlc polynomlal throuch the pomts

_ dA
(AJ vt f; +k+%) k= 0.+1,+2, and dlﬁerentlate it to obtam a4y = _S{‘“” The

formula for a;y so obtained, in terms of the ¢;,y4's and the a*'s is given by h >



| .. | . . 1
Yy = O + 3 +£113£ﬁ+1 (afyy —af) + ———x
375 2 M
k=-1
[ 2Afj+41A$j A€j~1+A£J' _ A£J'+2+A$j*1] (a”ﬁ _af;‘)‘
- RALj+AE .y RAE;, +AE; J ? ! o (1.6)

Ag; + Afjy

Atj i +AEG 2

Atj_ +AE
B, +2hE;, Y

= 8¢ RAE; +D¢4 4 8je1 + Ay

Here éa; is the average slope in the j%* zone of the parabola with zorie averages

al, and a}, af4;, and is given by

_ At '[zAg,-_l+Ag,- - Ag;+20¢54, .
TR prae v i Ly v v

(1.7)

6(1]'

In the calculations performed here and in [1], we have replacedidaj in the

above expression by 0ma;, defined to be

Sma; = min(|da;| , 2|af —al, |, 2[af - af,|) sgn(6a;) B ¥
if (@l —af)(al — a};)>0

= 0 otherwise » _
This modification leads to a somewhat steeper representation of discontinuities

in the s.olution.

This calculation yields a value for a;.y which is third order accu‘hte for vari-
able mesh spacing, even where the mesh spac';ng changes discontintiously. If the
zones are equally spaced, and if Gaj =6, a,:. then the values obtained are given

by the following simple formula: -

7 1 ; e
Q4 = E‘(@}'"* alyy) — 1—2—-(0,}12 +al,) : - (1.9)
_ In regions where the solution is smooth, énd in the limit of vanishing time step,_-
the PPM advection scheme for equally spaced zones is fourth-order accuraLé,
We constrain a;.y to lie in the range of values defined by a* and a4, . If [0

is the value obtained by the above procedure, then we take



a;,y = max(min(al,,.af) min(max(af,, .ar),a;,y)) {1.10) .

The value a;,y will be assigned to'a; ; and ag j-, for most values of j. There are
some cases, however, where this would lead to an interpolation function which -
takes on values not between a; ; and ag ;- In such cases, we reset one or both of

these values. _ ' .

Théré are two cases.‘Firsﬁ, if al is a: local maximum or minimum, then the
int,erp_olation functiqn is set to be_a.cpnstarl't. The second case is where of is '
between ap ; and g, ;, but sufficiently close to one of the véiues éo that the
interpolated parabola takes on a v&lue which is not between dR,j and g ;. The k
condition on the Coéﬁiciénts‘ of the interpolating parabola such that it doesi not
overshoot is that |Aa,;|=|ag;|. When this condition fails to hold, either >¢lz,.5' or
ag j is 'r;aéef, so that the interpolation parabola is mdnoﬁbne. and so that its
derivative at the opposite edge of the zone from t'hebne- where the value 1s‘being

reset is zero. The expressions for ¢, ; and ap ; are as follows:

a‘L.j —>(1Jn ) a‘R.j id G.JZ" if (G.R_J' —a}‘)(a}‘ - G.LJ)SO . (111)
a;; » 3a} — 2ep;

| | o lopy —agy)?
it (ag; —ap;)a} —¥la;; + ag;)) > —-igA—:

ag; - _Ba}‘ — Ray, 5

. (ary —ar;)? : L
it - ——LS—"J——>(GR.; —ag)af - ¥lap; + o))

This cokmplete_s our description of the calculation of a; ; énd -aR,j. Onée we
have these values, it is easy to write down an explicit expression for al*! We

define averages of the interpolation functions



s

£+

Fmi) = o [ a(®)de L (112
L EjinY ] )
1 §euty

IPurly) = = [ a(8)dt

- Y G

Where y is assumed to be positive. Then it is easy to check that

I1) = opy - Glda — (1~ Zw)ae). for z= g (113)
- : 7

Y
£i01

. ‘o v . B 2
» Fiur(Y) =ap i + ‘S—(Aajfl +(1- s—x)ae.jn) , for =z =

Then we can express the calculation of af*! in explicit conservation form;

Y A — :
aft! = af +u E—(‘l'j%‘ aju) . (1.14)

where

Ty = [Rpr(uht), ifu=0
= fJgﬂé.R("AuAt) Jifu<0.
We can modify the interpolation procedure slig’vh’t'ly so that, in the neighbor-

hobd_ of a discontinuity, it pfoduces a narrower profile than the scheme

described above. If the j* zone is determined to be inside a discontinuity, then,

instead of Sétting 'a;'q,‘j :equal to a,-";i using equation (1.6) and (1.10), we use the
piecewise linear distribution given by 6, a4, in equation (1.8). Similarly, to com-
pute g; ;, we use 6,,a;_;: ‘ :
a;; »af; = aj_1+}§6mva.,-_l ap; » af; = a.j,,,—}édmaj,,l;. (1.15)

This substitution should be performed just prior to applying the moriotom‘city
algorithm (1.11).

In figure 3, we show an example of the effect of such a substitution, which »
we shall refer to as discontinuity detectiéh. The dqtted line represents the o
interpolation function in the j* zone withbut detectizon. obtained by using the

difference formula (1.8) in calculating aL_Jl and ap ;. The solid line is the interpo-

lated distribution obtained by using for a; ; and ag ; values obtained from the



¢

piecewise linear distributions in neighboring zones determined by the equafions
(1.7) and (1.8). These linear distriblitions are shown bhere as dashed lines.-
Because of the mbnOtoméity constraint (1.8) which is imposed on these distribu-
tions, the dashed lines are néarly hor:izlontal,‘so that a; ; aﬁd ag; are nearly

| equal to the left and right limiting values for the fu”lffiiscontinuity. Conse-

- quently, the interpolaied"pyoﬁle is steeper, ap_,d the advected discontinuity
remains éharper. Another febature bf\this détection aigorithm is that if it detects
a dis'cont.inuity in“a region where in fact the solution is continuous, the scﬁeme
remains second-order accurate. |

For the purpose of switchiﬁg between (1.6) and (1.15), we consider a zone to
be inside a discontinuity if a finite difference approximation to the third deriva-
tive of the solution is sufficiently lar_'_ge\. and if a finite difference approximation
to the éecond derivative changes sign across t_hc; zone. In addition, we reqﬁiré
thét finite difference appr"okimations to the first aﬁd third Vdérivatives of the
solutipn r;ear_'_ the discontinuityha_\fe opposite signs. This last cAonditionfca»u‘sevs

. small plateaus within a general increase or decrease in the solution not ;co be
taken for discontinuities. Finally, we do not apply d_etpption to disconﬁir}uilties

with very small jumps.
- The rule by which we switch is giizen by
apj-ap (1 —n;) + el apj-ap;(l - n;) + afym; (1.186)

Here.n; is defined by -

.



p)

n;j = max(0,min(n(n; m®) ., 1)) o (1.17)
whefe :
B = - 6%a; 1 —0%a; 1 (&5—¢; 1) °+(&500—6;)°
£5e1— €51 Q1705 ' .
if —0%ay., 0%y, |aj—a; | —e min(] a4 . | aj’—il }>0
=0 ¢otherw1‘se ;

- and where

' 1 054170y j 251 ]
8% = j j a; —a,

) ALy 1 +085 +AE54 AfijAfj - A£j+A€j._1J' (1.18)

The parameters 77(1), 77(2). are constants which determine a continuous switch
between the schemes (1.6) and (1.15). The parameter ¢ determines how large a

relative change in the solution across a zone one wishes to call a discontinuity.

'In the calculations shown in [1], we have taken n{) = 20, n® = .05, £ = .01. In

gas dynamics calculations, the detection algorithm is applied only to the density

interpolation, and only to discontinuities which are contact discontinuities (see

equation (3.2)).
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2. Lagrangian Hydrodynamics -

The approach we will take to extending’the advection algorithm in the previ-
ous section to tﬁe equations of gas dynamics in Lagrangian coordinates consists
of the following three steps: 1) the int’erpelatien of distributions of the depen--
dent variables, 2) the calculation at the zone edges the solution as a funct;ion of
time to thev initial value problem implied be the interpolated distributions, using
characteristic equations and Rien;ann solvers, and 3) the ﬁse of theee soluﬁons
to calculate effective fluxes, which are differenced conservatively. It is po‘ssible
to perform thi_s calculation in such ;a' way that the'third-order accuracy in space
and time of the edvectionJalgorithn'{ is preserved; hewever, this requires
eumereus solutions of the Riemann problem, and is therefore rather expensive.
In the following, we present a simpler appfoach‘, following a suggestion of van
Leer-[?], In this.approach we sacrifice third.order ‘ac'cur'acy"in time tothe
‘extent that the‘nonlinear interaction between the two hydrodynamic waves-is
calculated only to second order. However; we retain the spatial accuracy and
the steep re‘presentation of the diecontinuities of the advection scheme. Test
calculations involving strong_s'hocke have shown that there is very httlevac'cu— _
racy lost in using the approach described here rather than the third-order accu-

rate formulation.

We write the equations of gas dynamics in Lagrangian coordinates in conser-

vation form:

8T o(r®u) _ -
ot om =0 : (2.1)

ot om
0 | 8(r’up) _
ot * om 9

Here 7 is the spe=ific volume, u is the velocity, £ the total energy per unit

volume, g a body force depending on 7 and £, and m a mass coordinate. The
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«n o,
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internal energy e, the density p. and the pressure p are derived from the con-

served quantities via

-l ,op_vr
p=—, e=E—-== p=(y=-1pe

Here v, the ratio of speciﬁc heats, is assumed to be a constant greater than 1.
The spatial coordinate 7 is related to the mass coordinate m via
- r ' :
m(r) = fp(r')'r"‘d'r _ (2.2)

To ‘
where a = 0,1,2 depending on whether there is planar, cylindrical, or spherical

‘ "symmétry, respectively. The function r(m,t) satisfies the ordinary differential

Looodr _ »
équatlon T, =u(m.t).

Let Am; be the amount of mass contained in the 4 zone. We assume that

we know the mass-weighted averages of the conserved quantities at time t™:

1 Myl

_v A s

T
o U=ju
My = 3 Amy
k=) v
It is also convenient to define 7%y = r(mj %t") as a separate dependent vari-

up U(m t™)dm

(2.9)

able, given by

(T}L+%)'a+‘1 _ (,rJn —}‘z)aﬂ v . ,
Jo - m .
= = Tk Amk ‘ . 2.4
atl J'oszkz\sf , (%)
Then we wish to calculate U7*1, the average values for the conserved quantities

at time ™1 = ¢™ + At. The method we are about to describe is a direct exten-
sion of Godunov's first-order metﬁod Wh.lCh takes into éccoant the c.ereot Y
domain of dependence of zohe edges in caflculatiné tﬁe conservative I:ﬁuxes. This\ |
is done in the following three steps. We int;er‘pola.te profiles for the approximate

dependent variables 7, u, p as functions of the mass coordinate m, using the
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interpolation algorithm described in the preceeding section. We then solve -
appropriate Riemann problems (shock tube problems) to calculate the timie-
averagéd pressures and velocities at the edges of zones. Finally, we update the
conserved quantities by applying the forces implied by time-averaged pressures |
and velocities at the zone edges: | ) c |

The interpolation step is a straightfdrward application of the algorithr;n
described in section 1, with the .maés coordinate taking the role of the ind%apen—
dent variable ¢. We know Am,-, the mass increments, and 77" and u, the mass-
weighted averages of T and u across each zone; so the.interpolation-c.oefﬁéie.nts
are as in (1.6). The third quaritity we interpolate is the pressure p, rather ihan
the total energy, . The reason for interpolating pressure is that by applying the
mbnotoﬁibitylconstram'ts built into the interpolation algorithm to the pressure
profile directly‘, we obtain a better-behaved solution near shocks. We take our
average value of the pressure in the zone to be the pressure evaluated from the
averages of the conserved quantities: pJ* = p (Efw},7]"). Thisis a second-order
accurate value for the average of the pressure across the zone. Given pJ, fhen
the interpolation scheme forv the pressure is the same as fér the other two vari-
ables. We do not apply the discontinuity detection algorithm (1.16)-{1.18) to the
interpolation of any of the variables, since contact discontinuities autornafically
remain sharp in Lagrangian calculations. |

In the second step; we wish to obtain 2,y and pj,y time averagéd values
. for the velocity and pressure at the edges of zones. Th.ese'\zalues will be used to
compute'ﬁukes which are differenced in an approximation to the cqnserva}tion
laws (2.1). In smooth regions, Uiy and Py a:pproximate; time averages to the -

solution of the equations in characteristic form:

T—la--.d(r"‘u) t %LW: gdt along’ - dm =+r®Cdt (2.5)

where C = (ypp)% The derivation of theselequations is standard, (e.g‘,, see [B] ).
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We obtain the values %,y and p; ,y by first calculating averages of the
dependent variables over the spatial domains which can influence the zone edge
during the time step (ﬁgfu-e 4, a-b). ’I‘h_e interaction of these averaged states is
calculated by solving a Riemann problem for 4,y and p ;. (figure 4,c). The con-’
struction of these averaged states is done so that u ;. and p .y satisfy an aver-
aged form of the éharacteristic equations (2.5) in smﬁoth flow, and are well-

behaved at shocks.

We now describe the algorithm for calculating u ;. and p;,y in detail. We
consider first the case of planar symmetry, and no body forces (zx =g =0). We
déﬁhe Ti+% U5y, iy, the average values of the dependent variables over the
region between m;,y, and the point where the + characteristic through

(mj.y, t™*Y) intersects the line {t = t™§:

avy = [ (BECTAT) : (2.6)
ajvy = SRpr(BECTO AN )

wherea =p , 7, u, and

(,,.Jzz+%)a+l — (,,.Jn_%)ai—l
(a+1) Ty — 1)

AP = (2.7)

We obtain P4y and-u .y by solving a Riemann problefn with left and fight states .
Ayl = a,-ﬁk and gj,3p = 053y, Wherea =T, u ,p.bThus we perform the same
procedure here as fc;r Godunov's method to obtain numerical fluxes, except that
wé construct our left and right states to.be fhe averages over only the part of
“each of the .the zones to the left and right of m;y which are in the domain of
dependence of m;,y for the tlme interval (t" t"*1) . This ylelds values for pJ %

and u; 4y, whlch satlsfy the followmg nonlinear equations:
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p. —z)~t L . .
i +¥% WLJ‘% + (U —ujayp) =0 (2.8)
_ 7PJ+H\ ytl, Pi+h ]
7 -1
£=t J+)é [ 2y \pJ'\%L )
. — - R
p—————“” ;ij HE - (w0 - usyp) = 0

YPi+% 7+1/ Pjwy
/4 -1
ﬁ ( Ti+h - [ 27 Dji+%.Rr )]

In order to solve these equations, we use the Newton's method algorithrn dis-
enssed in [4] with a fixed nurnber of iterations, It is immediately clear that, in
‘smooth parts of the solution, the equations (2.8) are..a finite difference approxi-
mation to the characteristic equations (2.5) whlch yield t1rne -centered values for
Pj+y and uJ +¥%- In the neighborhood of strong dlscontlnmtles we retain the

advantages of using the Riemann problem to calcUlate fluxes.

In order to calculate 17 j+% and P .'i'*'}ﬁ in the case where a body force or non-
‘planar symmetry is present we look for a- modlﬁed definition of pJ +%L- uJ %L
Pj+%R. U1y R Such that the equations (2.8) are still a finite dlfference approx1-
matlon to the characteristic equa’uons_. If we define
Ay — Ajayur
WAty + Ajay)

Ay vy — ’+;{uL e1
- tC _ i b b | J J
Pioph = Pivp T BGOT kR S L )

then the equations (2 8) are again ﬁmte difference approximations to (2 5) which

(2.9)

Pyl = P +}€ + LG, +)é91 Uit = Upj t

yield time-centered values for p i+ and U % Here Afy are defined in the same
way as the other dependent variables, with the mterpolatmn coeflicients for
.A(r) = r% given by (1 5), Apj = AL,H = ,m = (7'] )% and A]" given by equatlon
(2.7). The interpolation of 4 is performed in the mass coordmate In the case
where a = g = 0, this procedure for calculating the fluxes reduces to the one
previously discussed. This modification technique has the prope rty that, in the

case where the initial data is a smooth steady solution to the equations of
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motion, then the effective left and right states differ from one another by terms
of second order. Thus we do not introduce a false _]ump into the Rlemann prob-

lem wh1ch might give rise to spurious transients.

The final difference approxnnatmn to the fundamental conservatlon laws in

equatlons (2 1) is as follows

_ (T}l+§£l )a+l - (T}l+”)a+l

rn = N L - . . =
Y Top ¥ Ofusy o Apuy (o + L)y At |
(.,.p:;g Yo+t — ("'"—‘j{ Yo+t e
ntl — J J
7] (a+1)Amj | (2.10)

an+1 =ul + K4 J+)£ + ZJ—%) (PJ—% Pjwy) + (an + anH)

At
E"H E} + Am; A Ayl P i~ Zﬂ){uﬂiﬁpﬂ%) + (u n+un+lgf”)
The appearance of uf}*! in the equatwn for the energy does not make the calcu-

lation implicit, since u}**! does not depend on E7*1.

- This completes our discussion of the PPM Lagrangian scheme. Given aone-
dimensional Lagrangian method, and an advection scheme of the type discussed
in the previous section, it is straightfarward to combine them into a one-
dimensional Eulerian algorithm by pex_‘forming a Lagrangian step, an;d remap-
ping the results back onto the fixed Eulerian g.rid. This two-step technique, first
proposed by Noh, has been in widespread use for some time; therefore, we will

not discuss it in detail here (for an example of how such a scheme is imple-

mented for methods of this type, see [4]). There are, however, a nurmber of

minor modifications which must be made to the algorithms discussed in this sec-
tion and the previous one so that the resulting Eulerian method is well-behaved.

First, all the inﬁérpolations for both the Lagrangian step and the remap must be

‘ﬂ+l‘ : .
" 1", rather than the mass coordinate. In

. 1 7
performed in the volume coordinate o

particular, the density, rather than the specific volume, is interpolated for the

Lagrangian step. Second, the total energy interpola‘éion for the rem_ap must be
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performed by interpolating values at the edges of zones for p, p, u: then,}the

total energy per'unit mass at a zone edge is givén by EJ-,%' = (_7—%';/}5—% :}lgu,-zﬁ.
: N TPk :

These values are Lhen used, along with the values of the conserved total energy,
to coﬁsiruct v'mterpolated distributions. of total energy using (1.6) and (l.il).
which are then remapped in the usual fashion. Both of these modiﬁcatioris are
necessary in order to maintzﬁn consistency between the Lagrangian step'and the
remap. Finally. ‘the discontinuity detection algorithm (1.16)-(1.18) is applied to
the density interpolation Eor the remap, subject to the additional coristraint that
it be applied only at density jumps corresponding to contacpdiscontinuities. A

criterion for detecting such jumps is given in the next section {equation (3.2)).
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3. Eulerian Hydrodynamics

We will be calculatlng solutions to the equations of compress1ble hydro-

dynamics in one space var1able written in conservation form:

G(AF)

e el - (3.1)
. - pU o f{o
_ lpu - pu? : - 1 p
v=\%|  Fy=| fn | HO=|§|. 6=
pE |puFE+up : 0 - \pug

. a+l - . .
Here V(r) = Z+ 1 is avolume coordinate, A(r) = r® The notation here is that of
the previous section, except that u is the component of velocity in the direction
of the one dimensional sweep, v the velocity orthogonal to u (hereafter, « and v

w111 be referred to respectwely, as the velocxty and transverse veloc1ty) and

that we deﬁne e, the internal energy per unit mass to be £ — %(u? + 2.

Let 7,y be the boundary between zones j end Jj+1; we define

Arj = 1j =15y and AV, = V(r;g) — V(rjy). We assume that, at time tr, we

1 Tk . ' : .
know UP = = AV f U(r,t™)dV, the volume-weighted average values of the con-

iy - v .

served quantities in the interval (rjx. r,-;%); then we wish to calculate UP*!, the
‘averages of the conserved quantities at time t"*l = {™ + Af. The construction of
theksingle-step Eulerian scheme for performing such a calculation I;as the same
basic strﬁcture as the Lagrangian scheme: we 'u_lterpola_te piecewise parabolic
distributions of the dependent variables, construct effective left and right states
for Riemann problems, and difference fluxes determined by the solution to those
Riemann problems. The construction of the eﬁective left end right states for the
Riemann problems is m.ore\cornplieated than in the Legrangian case, since thefe
can be as many as three characteristics,igor as few as none, reaching the edée.ef

a zone from a given side. One approach to this difficulty is to use a ¢onstruction

similar to that used in [5] for solving the characteristic equations in the single-



18

step Eulerian MUSCL. In the following, we shall describe a different approaeh. in
which we construct a first guess to the left and right states using the largest and
' smallest values of the characteristic speeds; this first guess is then correete_d i

using the linearized characteristic equations.

First, we derive interpolation functions a(V), using the interpolation ;
scheme described in section 1, given af = a(U}‘) ,a=ppuv, and interpolating
with respect to the volume coordihate V As was the case for the pressure:inter-
- “polation_for theLagrangian scheme, the approximation tha_t up, v, pj’ are the

,:averages with respect to ¥V of the velocities and the pressure across the zone is
second-order accurate. We use the 1nterpolatlon scheme without d1scont1nu1ty
| detectlon for the quant1t1es P, U, V; for p. we use the 1nterpolat1on scheme w1th
dlscontmmty detectlon with the modlﬁcatxon that that we do not treat the ]
zone as being inside a discontinuity unless the following condition is also :
satisfied: o | | |
'P;H Pj-1 | > |PJ+1 Dj— |

mm(P;n 'y Py - 1) mm(P;ﬂ » Py - 1) ,
ThlS is to insure that the special interpolation at a detected dlscontlmuty is only

7Ko (3.2)

applied at jumps which are predominantly contact discontinuities. Here Kn is a

constant, which is problem dependent; in the calculationsin (1], Ko = .1. :
Usihg these interpolation'funct.ion's, we can now define E_,-%L .ah"d"ij +yl R

“our first guess at the effective left and right states of the Riemann problem. We

deﬁne'them to be

Giaps = SRy — V(Frans)) . Fiaps = Tiay—max(0,Af (u + ofY)

Tiayr = FEur(VT;mp) — View ?j+n,1?j= T+ max(0, — At (uf—cf))(3.3)

a=p.p.u,v

Thus a, sy (3 +%p) is the average over that part of the domam of dependence of
T4 for the time interval (¢™.£7*1) which lies to the left (right) of r,-,% If there

are no characteristics impinging on 7;,y frem the left (right), then @ is taken to

1

.

LN
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be the left (right) limit of the interpolation function at T;4y (figure 5).

As they stand, the states constructed above ‘are not suitable as.left and .
right states for the Riemann problem. For example, if x = g =0, and if the only
vaflation in the solution were a density gradient carried by a positive constant
velocity field, then the use of the above states for the Riemann problem would

imply that the amount of mass which had crossed 7,y during the time step had

wh Ty Tish '
~been n:cn f p{r)dr. This differs from f p(r)dr, the answer
¢} I oryay—at (u}"+c;‘) Ty ‘%—Atu“

obtained in section 1 for this problem, by terms which are O(cJ'At Ar,-)), making

the scheme first order accurate for the special case of advection. Therefore we
must make some correction to take 1nto account the fact that there can be
more than one wave moving in each direction. The corrected left and right
states are to be constructed in such a way that the amount of wave associated
with each family of characteristics transported across a zone edge is correct up
to terms of second order. Furthermore, we require that in the absenee of pres-
sure and velocity gradients the fluxes be exactly those given by the edvectio’n
algorithm discussed in section 1. |

We correct our initial guess for the v_left and right states by solving the e.qua-

tions of gas dynamics in characteristic form. We consider the equations of gas

dynamics in one space variable, written in nonconservation form.

LA A-él+ G=0 | (3.4)
ot | -
. apu
V=|u AV)=10 u 7 G(V.r. t)= v
P 0 pc? u acpu
T

Then A has left and right eigenvectors (l_g(V) L r_(V), (1(V), ro(V)),
(1.{V), r.(V)), with associated eigenvalues A=u-c,A=u,andA; =u +c.

The normalization of the eigenvectors can be chosen such that Lyry =644,
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# . # =+,—.0. Intais notation, we are given _v,-,%L and V,-%RAfrom _(3.3); and we
wish to calculate VJ %L and V;,y g, effective left and right states for the

r o

. Rlemann problem.

_Firjst. we define

fops = FPopt(Voy = Vrhyn)) . mhops = m — MEN(OF) (39)
afyr =71 }’+;gR(V(f;#+%.R) Ve mhor = Ti — AEN(UR)

a=p,p.u
If Ay (UF) >0 (A (UP) < 0) then Vg1 (Vi r) is the average of V over the part of

the domain of'dgpendence for the #-characteristic of 7;,y for the time interval

. (E™.t™*1) which lie.s‘t.o_ the left (right) of 7j,%. We then obtain, for example, Y,-+k, I
by subtracting from ¥;,y; the quantity 1,-(Vf,,; — Vi, + ALG)ry, for eéch
family of waves for which Ay (UFY) is positive. In the case G =0, we are subtpapt-
ing fromvj +% 2 the amount of wave of the # family contained in the diﬁerenée
vjf’i.L - f%L, This is the apprppriate nonlinear generalization of subtracping
from v,- +%1 the amount of wave in the # family coniained in v,- +%7 Which will not
reach 7;,y by the time ™ + At When source terms are present, we are modify-
ing VJ-,%L to properly account for all the characteristic information impinging on
~ Tjsy from the left. In pérticula;r. iful>cl Vi isa solution to the charac-
teristic form of jghé equations (3.4) at (Tjep . t7 +16AL) which.is cbrrect to te:_r'ms
‘of O(Ar;At) if the variation in the solution across the zone is O(Ar;). A sir’nﬂar
‘construction can be performed for V;,u 5. The result of this constructlon for

both suies modified slightly for the present apphcatlon is the followmg

Dj+ys = Djsps + bji—%S(ﬁ]i—%S + ﬁ;qﬁs)

Useps = Ujsys + Cisns (Bisms — Bisns) - (38) -
1 . -
. = - . gt
PR - : S
Pj+h.S Pihs 4 =§+5_51 +h.S
Vigs = Vs
nge, Z’f,,%,s = 7%,-‘%5 ;jﬂﬁ,S: and S = L,R. We also have
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Blmi=0 it A(UP)=0
ﬂ,,%}e—o if )\#(UJ"' )20

Otherwise'
Bfwps = + L« . (3.7)
’ RCjwps - '
k4
P44 — Pf oufiysciiy
(u,ms 1l-,+y,s)i=(p ths ~ Pisys) + At ( 50745 T 9fus)
iths TJ +}i .
Boups = (P,m,s ~Pigs) 11 ]
! E‘, %5 Pz’ %S p}’+x,s J

We have taken advantage of the fact that p is the natural variable to interpolate,
while 7 = ;17 is the natural variable for the characteﬁstic equations. We have

also exploited the decoupling of the equation for the transw}erse velocity from

the rest of the equa}tions when they are written in nonconservation form.

tﬂ+1
~ To obtain UJ +¥% an approximation to f U(r; et )dt, the time averaged
value of the solution at 7;,y, we solve the Riemann problem at 7;,y with left and

right states -

(Pi+L  PishL « Ujehl . VishL)
(o5 +uR  PijwhR . uj+}ﬁ,Rb 5%%1?) ,

We use the Riemann problem solver for the Cartesian equations heré; the effect
of the source terms on U,y is accoﬁnted for to second orderv in the construction
of Vsuy1. Viuyp. The Riemann solver we used for the calculations sflown in [1]
uses the same it‘eration_écheme as that described above for the Lagrangién PPM,
the evaluation of the solution at 7,y is performed in the usual fashion, except
that the evaluation of thé solution inside of a rarefaction fan is done by line:ar

interpolation between the states on either side of the fan.

The final conservative difference step is given by
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Uprl= UP + AL Ay (Usy) — AuyF (Ujy) | H(U; ) -H(Uﬁ%)]‘ + Tyt
Y7 by )

. O . i
Ralypnitlantl s -
@ﬂ?%~%-) (3.8)
(pfifgf +of Huf T gp ™)

Ay = Al . G =

‘The above ‘qleﬁniuon of G; does not make the method implicit, inasmuch as the
. values of p"*! do not depend upon w™*Y: nor do those of p™*lun+1 depehd upon

Entl L T
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4. Dissipation Mechansims

In[1] and [5], low—amplituc_lé post-shock oscillations were observed iﬁ calcu-
lations performed with the single-step Eulerian MUSCL scheme for §hocks whose
speed was smail reiative to the post-shock characteristic spveed. Unless extra
dissipation is added, the same type of noise occurs when the PPM séheme is for-
mulated either as a Lagrangiah step followed by a remap or as a single Eulerian
| step. In this section, we will ;lescribe in detail the circumstances under which
noise is present, and disbuss the fybéé of dissipétion employed in the calcula-

/ tions in [1] using the PPM scheme to reduce or eliminate the noise. - We shall dis-
cuss these issues in g.eneral terms in this section; in an appendix, we will give
detailed algoﬁthms for th‘e dissipation schemes used in the PPM calculations in
(1]

In figure 6 , we show a typical example of t}he type of errors which are
obéerved. This figure shows the results of a calculation of a very strbn'g planar
shock using the Lagrangian PPM scheme described in section 2. The calculation

is quite stable; however, there are substantial oscillations in both the entropy

and u - 2 s the Riemann invariant transported along the - characte'ristic,

which crosses the shock. The quantity u + 72C T the Riemann invariant tran-

sported along the + characteristic, is quite well-behaved; any errors generated
in that var_iabie are immediately driven back into the. shock transition layer.
'Ih_is"rveﬂect's the fact that this Qiﬁi;:uipy ariseé gnly.for- systems of e:qu.ations;
inde“ed',_th_esé methods produce‘shocks which afe perfectly well-behaved when

applied to a scalar equation.

A technique which is successful in eliminating this error in a large number
of cases is that of flattening the interpolation»proﬁles in the _neighb_brhood of
shocks which are sufficiently strong and steep. In effect, flattening is a means of

reducing locally the order of the method; in the limit that the interpolation
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function is totally flattened, we obtain locally Godunov's first order 'methedl

“We define f;, 0 < f; = 1 so that our interpolation function in the jth zone is
a(E)(1=f;) + Fja . & <& <& . where a(£) is the interpolation function

defined in section 1. This is most easily accomplished by defining

of = off; + o ;(1-F;) C(41)
ofl = af'f; + ap;(1 - f;)
and >substit-utin.g of % and af'# for ay ; end ag; in (1.5).

The coefficient f; should be equal to 0 away from strong shocks. Excessive
~ broadening of the shocks is undesirable; consequently, we set f; to 0if the
shock profile is sufficiently broad. We measure the width of the profile for a

( JH J l)
( J+2 qJ—Z)

shock transition centered on the j* zone By calculating the ratio
where q is some variable which jumps across the shock, such as the pressure or
energy. ='If this ratio is sufficiently close to 1, then the profile is considered
sufficiently steep for f; to be nonzero (figure 7). For Legrangian calculations,
we have found that we obtain all of the'required dissipation when the effective
. shock width is barely more than one mesh length. We see in figure 6 that the

flattening nearly eliminates the oscillation behind the shock, while broadem’ng

the shock only sliahtly.

For Eulerian calculatlons there are cu‘cumstancee in which ﬂattemng is
ineffectual. We present in ﬁgure 8 a calculatlon of an extremely strong nearly
stationary shock performed using the sméle -step Eulerian Godunov method 3] A
Even though this is a ﬁrst order method, we still see a 3% error in the del’lS]tV
immediately behind the shock. The error has‘disappeared farther downstream .
from the shock, due to the strongly dis‘éii{ative character of Godunov's method. .

No amount of local flattening can eliminate such an error from a higher order

method, since it is still present in calculations performed with a scheme with all

£,
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the interpolation functions totally flattened. A second kind o.fv error which can-
not be effectively eliminated by flattening was obser\;ed in the singlej—step
Eulerian MUSCL and Godunov results for the Mach 3 wind tunnel calc‘ullz‘ation
p-r;ese'rlted in [1]. Inthe finely zoned runs of that problem, we saw oscillations
behind the incident shock near the point where the shock intersects the bottom

of the channel, and behind the Mach stem.

Both of thesé e.rrors 6ccur when a characteristic spéed associated with a
sfrong shock, méasured r.elative' to the grid, vanishes. The'dissipatio'n intro-
dﬁced by Godunov's method at a shqvck, as measured, for example, by the
numberrof mesh points over which the shock is spread, vanishes as the speed .of
thé shock goés to zero. What we afe observing in the first example mentioned
above is that the residuai dissipation present in-a slowly moving stro’ng shock
calculated using Godunov's method is not suﬁicien£ to guarantee the correct
ent'ropy productibn across the shock. In the second example, tﬁe component of
the velocity tangent to the shock, which is also the velocity in one of the coordi-

nate directions, is nearly zero. In the column of zones where the shock transi-

tion occurs, a small disturbance develops in the tangential velocity, due to

numerical error. These small velocities transport large amounts of the con-

served quanititiés, creating, in effect, large sources and sinks in the shock tran-
sition zone for the essentially one—dime.nsional calculations of the motion of the

shock in each row o'f zones. Finally, although we have discussed these errors in

terms of the single-step Eulerian schemes, they occur as well when the PPM

Eulerian scheme is formulated as a Lagrangian step followed by a remap. Thus
we must find a means for eliminating these errors for either type of Eulerian cal-
culation. . o
In ord_e‘r, to reduce these errors, we introduce a small amount of additional
dissipati.on beyond that which can _bg obtained by ﬁatténi,ng._ One w§}7 of doing

this is to add an explicit diffusive flux to the numerical fluxes.

.
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Fiay~= Fiy + Vj+)ﬁ(Uj_Uj+1)' (42)
Another way of introducing dissipation’is to perform the calculation in a con-

- stantly moving grid. If the mesh edges have values 7%y at time ¢™, then

~ nA =P8~ Vit = R
ThlS is equivalent to superimposing an advection veloc1ty to the ﬂmd mot.lon

which alternates direction every other time step. The dissipation obtained in
this fashion is that of the PPM advection scheme This form of d1ss1patlon can
also be used in operator split multldxmensmnal calculatlons as long as two one-
dimensional sweeps in succession are performed in each coordmate d1rect1on
ThlS is the case, for example, for second order operator sphttmg in two dlmen-
s1ons Then the mesh is ahgned properly at the beginning and end of each palr of

one d1mens1onal sweeps

In both types of d1ss1pat10n Vj 4 is a velocity Whl.Ch should be large only in

the neighborhood of shocks. In one dimension, one might take
Vi = K max(u; —uy,,,0)- | (4‘4_)

In the first example, this yields an artificial viscosity similar to the one used by

- Lapidus [9]. In more than one dimension, the velocity should be of the forrn
Vioge = K max[—(D-2");e 0] (@5)

where (D 4" )_, ,%k is a discrete undivided difference approx1rnatxon to the mul- -

tidimensional dlvergence ofd. It is necessary Lo use a velomty such as thls one,

whioh can detect the presence of a shock jump in the direction perpendicular to

that of the one-dimensional sweep, in order to eliminate the multidimensional

oscillation discussed above.

The amount of dissipation required is quite small, relative to what is-typi-
cally used in conver.tional finite difference schemes. For example, in the results

presented in [1] the value of the coefficient K used with (4.2) and (4.5) for the

v

.
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single-step Fulerian PPM was K = .1, while MacCormack’s method needed aﬁ
artificial Viscosity of the form (4.2) and (4.4) with K = 1 in order to produce
acéeptable results. In the casé whére- the dissipation is added by introducing a
local grid velocity, thelamount of additional dissipation in smooth parts of the
flow is even less, even for mpderate (K ~1) ‘}alﬁes for the grid velocity. This is
because the dissipation is essentially that of the PPM advection schéme, Which is
very _sméll, in smoo£h parts of the solutién. _F‘ﬁrf.herr‘_ﬁore, the grid motién itself

va_nishes with u%; = U4
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5. Disussion and Conclusions

We have presented here the PPM scheme for gas dynamics. Although the

- scheme is quite comphcated relatwe to conventlonal dlfference methods we
feel that the numerical results in [1] prove that the addltlonal expense and pro-

v“gramming. effort are worthwhile. Our own investige.tions indicate tha.:tl't-he e.lgo-
rlthrns presented here are the rmmmal ones, in the following sense: any further
sxmphﬁcatlons which we have attempted to mtroduce into them led to some

degradation of the results.

The addition of more compﬁcated physics to this algorithm appears to be A
quite straightforward. Multifluid capability can be easily added, particularlyvto
the two-step ‘Euleria.n version of the method; the ektenSion of the method to
more general equationé of state can be done- using the techniques described in
[10]. These and other extensions ‘o'.f the basic PPM scheme are currently being

implemented.
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Appendix

In this appendix, wé wﬂl describe inb detéil the dissipation algorithms intro-
duced into the PPM schéme for the calculations présénted here and in [1]. We
will describe three dissipation schemes. The first is a combination of a
simplified flattening algofithm, and a small amoﬁnt, of artificial viscbsity, which
was used in all but one of the,single-step Eulerian calculations in [1]. The |
second is a flattening algoritl:n'n, suitable for Lagrangian calculatioﬁ in one
dimension. Finally, we will describe a combination of flattening and local mesh
motion for use in multidimensional Eulerian calculations, which was used in the
two-step Eulerian calculations presented in [1] as well as for the single step

Eulerian calculations presented in figure 3 of that paper.

Throughoﬁt the following, we will use the notation and terminolbgy
developed in section 4, In partic'ular, we will be deﬁnjng flattening coefficients
fj to be applied in modifying the interpolation functions using (4.1). A quantity
we will use throughout this discussion is w;, which is equal to 1 if the jth zone is
 inside a pressure and velocity jump in the direction of the sweep.‘consistent with -
the possibility of there being a shock, and zero elsewhere. Specifically, we will

define w;

(Pj+1 '4le-~1)
min (pj+ltpj~1)

w; =1 if >e and u;_; —uj, >0 o (A1)

=0 otherwise.

In all the‘calculations presented here and in[1], ¢ = .33. "Another quantity which
we will need is s;, whichis equal to 1 if p;,; ~D;_; < O. , and is equal to -1 if

Pj+1 —Pj-1 >0, i.e, the zone j+s_,-.is the zone just upstream from zone j if zone
j isin a shock. In what follows, we assume that two-dimensional caleulations Are
performed on a rectangular grid in one dimensional sweepé. We denote the coor-

dinate in the direction of the sweep by r, and the coordinate in the direction
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perpendicular to the sweep by z. We assume we are sweeping through»th'e kth

row of zones; the centers of zones are denoted by (75, 2).

The simplest form of dissipation of the types discussed in section 4is a
flattening based on the steepness.of the pressure jump across a zone, plus the

.. addition of a dissipative flux of the form (4.2). Specifically, if we define

S =max(Fy.fe,) . | ‘ (A.2)
where
Pje1 — Pj—l (DY@ .
.= 1 — w,; max -\ ,
? 7 (© (Pj+z —DBj-2 ) )
and
Visha = V(l)rnax((u —uia)t | _Y (A.3)

Z(Zku*zk—i) (('Uj+1.k—,l+vj;k>~l)_(vj,+1.k+1+,'§)j.k+,l))-o) e

with w(‘) w® ) constants, ther‘l.we obtain sufficient d‘issipatien to reduce the
“’ errors in all but a few instances to a fractlon of a percent in the postshock
Values and to less than two percent in all the cases we tested. The smgle—step
Eulerian calculatmns presented in[1] used thlS dlSSlpatlon algonthm thh the
constants set at o = .75, 0@ = 10, AV = 1. v ‘

The defect in this simple approach is t.WOfOlv.(.i:. ﬁ;{st;_ iﬁ_does not totally elim-
inate the error in all cases; second, it introduces extra dissipation ini regions
where it is not needed. For this reason, we will introduce dissipation schemes

which are more discriminating.

We consider first the case of Lagrangian hydrodynamics. In this case, we
can obtain acceptable results by using two parjameters: wj, which measures the -
steepness of a shcek near j, and «;, which depends on the wavelength of any

potential noise:

o?



31

w; = max(0., 0N (w® - 8;)), ' (A.4)
where ‘
a;. - DPj+1 ;pj—l :
Pj+z —Pj-2
(% kD) o |
x; = max|0., pareroy U 3 (A.B)
where
Wj+c‘j—2lj
K = ————
J py,,
and

_ { mex(pseep D HO-Dipseatps) |

. W.
’ maX(ijg,Tj__g)

Hefe. W; is an estimate of the Lagrangian shock speed, and Cj-za, the post-
shock wave speed. The quantity E,- is the number of equally spaced zones that a
signal can travel from a shock in the length of time that it takes a shock to. cross
one such zoné; in the limit of very small time steps it is a measure of the
wavelength of the furidamental mode of any potential noise behind tl;le shock.

The ﬁatterﬁng coefficient is then defined to be

fi =max(F ;o F 5. F 501 » . (A.8)
where
Thus we are. using the smaller of the two amounts of flattening given by the ' ‘
wavelength and steepness criteria. In the calculations shown above, (V) = 2,
@ = 01 0l = 75, 0@ = 10. The flattening provides enough dissipation so that

the Lagrangian scheme produces acceptably oscillation-free steady shock
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profiles. However, it is neéessary to introduce a small amount of dissipation such
as in (4.2) or (4.3) if one wishes to eliminate some types of starting errors, such

as those occuring for shock tube initial data. ]

For multidimensional Euiérian'éalculations-._ we use a combination of flatten-
ing and local mesh motion (4.3) to introduce the required dissipation. For the
. ; flattening, we have the parameters x; and w;, which, as before, depend on the
wavelength of the noise and the étc;epness of the shock profile. We also introduce

a third parameter, o;, which depends on the strength of the wave:

. 'Ej - 0(1)
o; = max | 0, m (A7)
where
-0 = W5 n y :
J 7 min(pjsa , Pj-2)
C W= -maX(O..&?(l)(”(av) - E;J)) ' S (AB)
By = max | BB BB |
P2 =Piz’ Ejsz = Ej
YD) |
K; — K
. = 3 0‘. NJ ' ’
< max[ —————-’cj ) ] .(A 9)
where
N =,
and
 Wf=s; + Uj g,

Pj—25j

0’&&
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 with .

max(p; +2.P; 2) Ay~ 1) () +2+P;-2)) * '

W, =
! max(T;2.Tj-3)

The flattening coeflicient is then defined to be
fi = max(f; -rfjﬂ,) - ('A»"KO)
where ) |

f, = mln(wJ&)] . wJUJ . ICJ) .

We also use the parameters defined above in constructing our grid velocity v;:

Vo = vmax(—(D-2)juyx . 0) (A1)
[where
. Tiyo — T
(D"ll)]q%k S Ujep —Ujg t (_('Uj+1_k+z + 'Uj,k+2) — (Ujs1k-2 + ’Uj+uc—2)) 112 — L
. . | Zk'_z zk,_z
" and
. 'IV5+% = 574 min ( max (Vj_y . Vj . v~/j+g_) .
_ AT 4,
(V@ + vVP®¥max(s;x? . 0j,,6%4)) -——A—tli) .

When using this dissipation with the two-step Eulerian method, the flatten-
ing is applied at‘ the beginning of the Lagrangian 'ste;.>;' no flattening ifs applied to
the interpolations performed for the remap. Obviélisly, the local grid mbuén‘
only affects the remap step, in determining the grid which one m’apé back to.
The constants which were used in this form of dissipation for the calculations i
(1] were V) = 2, V@ = 13 = 2333, o) = .75, W@ = 10, k(1 = 2, k@=.01,

o) = 5, 0(2)- = 1. For one-dimensional caliculations. we set Y@ = 0 aﬂd |
3 = 3333, Fairly exhaustive test.calculations of steady shock structures cov-
ering the whole parameter space for a po.lytropic gas with ¥y = 1.4 gave rise to

this choice of parameters. The arhplitude’ of oscillations in the post-éhock
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density was 2/3 Z% of the density jump in the worst case, and is more typically
1/4 %. The oscillations in other variables were much smaller. lFor all but nearly
stationary shocks, any such éscillations'are rapidly darﬁped downstream from
the shock. The effective shock width is never more than two mesh lengths, and
for rapidly moving shocks it is one mesh length. Expérimentation with different
values of the pararnetérs is not i‘ecommended, as these choices have been made

on the basis of considerable experience.

P
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Figure Captions

1.  The interpolation step of the PPM advection scheme. The initial data is given
as values of the variéble a averaged over the four zones showh. These aver-
| aged values are represente;d by d.ashed‘ lihe__es. f‘_rorn this data vaiues of the
variable a are intérpoléted a£ .zone edges, Lisiﬁg cﬁbic curves v;rhich héve
the prescribed average values in the four zones nearest thé edge. The inter-
polation parabolae within the zones, which are shown as sélid lines, connect
theée:edg'e values and give'back the initial data when averaged over the

Zones.

2. The inte'gratilon step of the PPM advection scheme. New averages of the vari-
_ éb_le a within the zones are obtained by integrating over the interpolated
initial distribution shifted to the right by wAt. This shifted distribution is
shoWn by the dashed lines, and the ﬁew 'zone éverages rare shown by the
solid lines. The scheme is tlﬂfd-qrder_‘ accurate in general; in thé lirﬁit'of

very small time steps, for equally spaced zones, it is fourth-order accurate.

3. PPM discontinuity detection. The central zone in this ﬁgure is judged to be
within a discontinuity, according to the detection criterion given in equa-
tions (1.16)-(1.18) of the text. The usual interpolatéd zc;ne sty:ucture: shown
by the dotted line is therefore feplacéd by the sfeepér structure shown by
the solid line. The two edge values 'jo.ined by this line are obtained from the
linear distributions in the neighboring zones, which afe indicated by the
daShed:lines. A moﬁotofﬁcity constraint on thése linear distributions has

kept their slopes small and caused the distribution derived for the central

zone to be gquite steep.
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' The computation of Lagrangian fluxes with PPM.

The two domains of dependence for a zone interface during the time step
are determined by tracing the paths of sound waves arriving at the inter-

face at the end of the time step.

The detailed interpolated distribution of each variable within each domain
of dependence is réplaced by its mass-weighted average. This replacement

facilitates thé computation of the nonlinear interaction of the two domains

" of dependence. .

The interaction of the two average‘d states adjaéent to the interface is

d‘es‘cribed by a solution to Riemann's shock tube problem. Such a solution

is indicated here. The nonlinear waves moving away from the interface

- reach the edges of the averaged domains at the éhd v.of the timé'step. The

Lagrangian fluxes needed to update the zone volume, momentum, and

energy are obtained from the parameters of the constant state at the zone

_interface.

The locations of the charac_terisfic domains of dependence referred to in
the constructioh of eﬁec:tive left- and right-hand statés for the Riemann
problem in the éingle-step .Euieridn formu'lation'ofPPM. 'I‘he characteristics
labelled with + and - are thé_ paths traversed by sound waves travelling to
the right and left with respect to the fluid. The dashed characteristics are

fluid streamlines. The other symbols in the figure are deﬁhed in the text.

The results of the Lagrangian PPM sc.heme for the propagation of an

extremely strong isolated shock in a polytropic gas with y = -g— The pres-

sure jurnp in the shock exceeds six orders of magnitude. 30 zones are .
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. displayed forytwo separate calculations. The dots show results of the PPM
scheme described in section 2. Small oscillations of about 1.3% amplitude
can be seen in the post-shock flow for this calculation. These ‘oscillations
occur mainly‘in the two Riemann invariants whose associated characteris-
tics cross the shock. The solid lines display results of the PPM scheme aug-

“mented by the algorithm for selectively flattening ‘mternal zone structures
which is descnbed in section 4. The amplitude of post-shock osc111at10ns

has been dramatlcally reduced by this ﬂattemng procedure

A shock discontinuity which requires flattening of the interf‘nal'zone struc-
tures within the shock. ‘The solid lines show the internal zone structures
interpolated by the PPM algorithm; The dashed lines show these structures
after they have been flattened. This ﬁattemng procedure ehmmates the

mild post- shock oscillations displayed in figure 8.

(

Results of the propagation of an extremely stfong, 'isolated’shock obtained .
using the singie-step Fulerian method of_ Godunov. The pressure jumps by
more than 8 orders of magnitude in the shock, while the velocity jump is
unity. The shock is nearly steady; it has taken-nearly 8000 time steps to
cross 160 zones. Only 30 zones near the shock are d1sp1ayed with dots
»showmg the averages of the varlables Wlt.hln the zones. Because this shock
is strong and nearly stationary, the shock structure is very thin. Thls
causes 3% errors in the entropy of the post—shock gas Note that thls calcu-
lation performed 6 iterations 1n solving each Rlemann problem If only 2
-iterations are perforrned, very large errors are generated in the smgle zone

just behind the shock.



39

—
o
ol
<

Fig. 2

Y
--uJ

An"'|ll|ll

Pl"'ll'l'l

. !
/ , '

b e e e e D



40




41

Fig. 4a

/
m
a— Pitn.L
Fig, 4b
pr-\'-‘/ﬁ. R
m
. ) pj+‘/z
| . _
| 7 .
' Fig. 4C
|
|
-}
|
: ]
| '
1 !




Tk

Vi

e — —

Viwe = Vi

T e
v)'a)f,R = V;.”_R

SUBSONIC CASE

Figure 5

42

1
1
Tjo)s\ '

N~

V;.o XL

v)'c*)i.l-
R e

Vs = Vi

L

v;")s.R =V

" SUPERSONIC CASE



P> S "(fbv-

PRESSURE

o ol =+ O o

U + 2*C7/ (GAMMA - 1)

DOTTED: TIME=7.011E+00 TIME STEP
SOLID: TIME=7.005£+00 TIME STEP

TITLE FOR RUN:

STRONG SHOCK. LAGRANG!AN PPM.‘ COURANT=.75
FLATTEN USING P. FLTIMX=0, ONSET=.75, FULLON=.85, WVLNG1=2, WVLNG2=2.125

FLOW-IN BOUNDARY AT THE RIGHT.

TITLE FOR "EXACT' RUN:
STRONG SHOCK. LAGRANGIAN PPM. COURANT=.75

FLATTEN USING P. FLTIMX=1, ONSET=.75, FULLON=.85, WVLNGl=2, WVLNG2=2.125

FLOW-IN BOUND/RY AT THE RIGHT.

43

.05

.00,

o el =+ © W

. .

" P / RHO**GAMMA

-1.0
-1.5
-2.0
o QU] T o (e8]
U - 2*C / (GAMMA - 1)
636 DT=1.119E-02 30 ZONES
592 DT=1.197E-02 30 ZONES:

N=200 GAMMA=5/3 7/1/82

N=200 GAMMA=S/3  7/1/82

Figure 6



44

[ ¥ \l/
v & ©

Fig.



L|.
1.0
3
13
.
B .
o
» .5 e
«
t
.0 1
o o + s) 00) o o u + © o o
PRESSURE DENSITY
_.8 { A W n
— 4
' .10
-.B
-.8
.05
-1.0
1.2
.00
-1.4
o u + © ® o o o T © ® o
VELOCITY P/ RHO**GAMMA
»
DOTTED: TIME=2.20BE+02 TIME STEP 7934 DT=2.518E-02 30 ZONES
SOLID: TIME=2.208E+02 TIME STEP 7934 DT=2.518E-02 30 ZONES
TITLE FOR RUN:
STRONG SHOCK. EULERIAN GODUNOV. COURANT=.75 N=200 GAMMA=5/3  7/1/82
‘ FLOW-IN BOUNDARY AT THE RIGHT.
, SIX RIEMANN I1TERATIONS.
2
- TITLE FOR 'EXACT' RUN: )
e STRONG SHOCK. EULERIAN GODUNOV. COURANT=.75  N=200 GAMMA=5/3  7/1/82

FLOW-IN BOUNDARY AT THE RIGHT.
SIX RIEMANN ITERATIONS.

Figure 8



h»".. >

. <F

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory, or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.




1

"i;‘?°'13

TECHNICAL INFORMATION DEPARTMENT
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720





