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ABSTRACT OF THE DISSERTATION

Representation Learning based Query Answering on Knowledge Graphs

by

Xuelu Chen

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Carlo Zaniolo, Co-Chair

Professor Yizhou Sun, Co-Chair

Knowledge graphs provide structured representations of facts about real-world entities and rela-

tions, serving as a vital knowledge source for numerous artificial intelligence applications. This

dissertation seeks to extend the scope and provide theoretical guidance for representation learn-

ing based query answering on knowledge graphs. The incompleteness of knowledge graphs has

recently motivated the use of representation learning models to generalize from known facts and

infer new knowledge for query answering. Despite advances in answering atomic queries by repre-

senting deterministic facts within a monolingual knowledge graph, existing models must overcome

the following three challenges: (i) they must address the need to incorporate uncertainty informa-

tion into query answering, which is critical to many knowledge-driven applications; (ii) they must

effectively leverage complementary knowledge from knowledge graphs in different languages; (iii)

they must be able to embed complex first-order logical queries.

In this dissertation, we address the aforementioned challenges and extend the scope of query

answering on knowledge graphs through contributions on the following three fronts: (i) To capture

fact uncertainty and support reasoning under uncertainty, we propose two knowledge graph em-

bedding models that are capable of encoding uncertain facts in the embedding space. Our proposed

models thus learn entity and relation embeddings according to the confidence scores of uncertain

facts. We introduce probabilistic soft logic to infer confidence scores to provide extra supervi-

ii



sion for training. We also explore using box embeddings to embed uncertain knowledge graphs

and imposing relation property constraints to enhance performance on sparse uncertain knowledge

graphs. (ii) To effectively combine knowledge graphs in different languages, we introduce an en-

semble learning framework that embeds all knowledge graphs in a shared embedding space, where

the association of entities is captured based on self-learning. The framework performs ensemble

inference to combine prediction results from embeddings of multiple language-specific knowledge

graphs, for which multiple ensemble techniques are investigated. (iii) To support answering com-

plex first-order logical queries, we present a query embedding framework based on fuzzy logic

that allows us to define logical operators in a principled and learning-free manner, whereby learn-

ing is only required for entity and relation embeddings. The proposed model can further benefit

when complex logical queries are available for training. As a result of this research we were able

to identify some of the desirable properties that embedding models ought to possess and analyze

which of the existing models have these properties. Therefore, the results presented in this disser-

tation advance the state-of-the-art of query answering on knowledge graphs along different axes

and provide conceptual guidance for future research in this field.
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CHAPTER 1

Introduction

1.1 Motivation

Knowledge graphs, such as Freebase [8], YAGO [68], and NELL [60], provide structured repre-

sentations of facts about real-world entities and relations. They have been serving as a vital source

of knowledge for numerous artificial intelligence applications [23, 41, 38], by providing answers to

queries such as itendifying which songs John Lennon and Paul McCartney co-wrote. Despite their

great importance, knowledge graphs are often incomplete [6], which prevents directly answering

many queries by searching knowledge graphs; for example, 71% of people in Freebase [8] have no

known place of birth, and 75% have no known nationality [27].

The incompleteness of knowledge graphs has motivated the use of KG embedding models to

generalize and reason using known facts [9, 105, 91, 88]. These models encode entities as low-

dimensional vectors and relations as algebraic operations among entity vectors in order to cap-

ture entity similarity and preserve the semantic relations between entities in the embedding space.

Such models support automated knowledge graph completion in the form of atomic query answer-

ing, such as predicting the object for the subject-predicate-object triple (John Lennon, livedIn, ?)

[9, 105, 91, 88]. In addition, these models provide crucial features for incorporating symbolic

knowledge into machine learning to benefit numerous knowledge-driven tasks, including dialogue

agents [38], question answering [23, 41], item recommendation [39], story comprehension [13],

logic rule mining [105], and ontology population [16].

Despite extensive efforts devoted to knolwedge graph embedding [9, 98, 105, 91, 88], exist-

ing methods are limited to representing deterministic facts within a single monolingual KG and
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answering atomic queries while failing to address the following challenges:

1. Uncertainty. Existing models can neither encode uncertain facts such as (fork, atLoca-

tion, kitchen) with a confidence between 0 and 1 nor answer queries that involve reasoning

under uncertainty, such as determining the probability that two proteins interact. Uncertainty

is inherent in many forms of knowledge, however, and failure to capture this information may

adversely affect prediction accuracy. For instance, while both (Honda, competeswith, Toy-

ota) and (Honda, competeswith, Chrysler) appear somewhat correct, the former should have

higher confidence than the latter, since both Honda and Toyota are Japanese car manufac-

turers with highly overlapping customer bases. As another example, although (The Beatles,

genre, Rock) and (The Beatles, genre, Pop) are both true, the first may be given a higher

level of confidence due to the Beatles’ primary role as a rock band. This type of information

is crucial when recommending music online or answering questions, such as who is the main

competitor of Honda? Uncertainty information also facilitates extracting confident knowl-

edge for drug repurposing [78], short text understanding [103], question answering [107]

and named entity recognition [67].

2. Multilingualism. Existing embedding models cannot effectively leverage complementary

knowledge from knowledge graphs in different languages for query answering. Combining

several language-specific knowledge graphs for query answering offers potential benefits;

for example, embedding models of well-populated knowledge graphs (e.g. English knowl-

edge graphs) are expected to capture richer knowledge due to better data quality and denser

graph structures [66], consequently providing ampler signals to facilitate query answering on

sparser knowledge graphs. Furthermore, combining knowledge graphs across different lan-

guages enables leveraging knowledge that may be more prevalent in some knowledge graphs

than in others, which likely leads to improved prediction accuracy. The oldest Japanese

novel The Tale of Genji represents an example, as the English DBpedia [53] only records its

genre as Monogatari (story), whereas the Japanese DBpedia identifies more genres, includ-

ing Love Story, Royal Family Related Story, Monogatari and Literature-Novel. It is similarly

reasonable to expect a Japanese knowledge graph embedding model to provide significant
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advantages in answering queries about other Japanese cultural entities such as Nintendo and

Mount Fuji.

3. Complex query structure. Answering complex logical queries on knowledge graphs re-

mains an unresolved problem. This task involves multi-hop reasoning on knowledge graphs

and serves the key step to answering complex natural language questions. For instance, the

question “Who sang the songs written by John Lennon or Paul McCartney but never won

a Grammy Award?” can be expressed as the first-order logical query q : V? : ∃V Com-

pose(John Lennon, V ) ∨ Compose(Paul McCartney, V ) ∧ ¬AwardedTo(Grammy Award,

V ) ∧ SungBy(V, V?) and answered by executing the query on knowledge graphs. Recent

studies [35, 69, 71] attempt to address the challenges of time complexity and knowledge

incompleteness by embedding logical queries and entities into the same vector space. These

methods nonetheless entail several limitations: First, the logic operators in these models

are often defined ad-hoc, and many do not satisfy basic logic laws (e.g., the associative law

(ψ1∧ψ2)∧ψ3 ≡ ψ1∧ (ψ∧ψ3) for logical formulae ψ1, ψ2, ψ3), which limits their inference

accuracy; second, the logical operators of existing works are based on deep architectures,

which require many training queries containing such logical operations in order to learn the

parameters. This requirement greatly limits the models’ scope of application, since it is

challenging to collect a large number of reasonable complex queries with accurate answers.

1.2 Thesis Contributions

The contributions of this dissertation concern the aforementioned motivations and are summarized

as follows:

1. To address fact uncertainty in knowledge graph query answering, this dissertation proposes

two knowledge graph embedding methods that encode uncertain facts in the embedding

space and support reasoning under uncertainty for query answering. The first model learns a

non-linear regressor with a multi-relational structure encoder and incorporates Probablistic

Soft Logic into the learning process to provide additional training supervision. It is the first
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work that targets uncertain knowledge graph embedding and enables query answering, auto-

mated completion, fact ranking, and fact classification on uncertain knowledge graphs. The

second model considers each entity as a binary random variable and models each entity as a

box (i.e. axis-aligned hyperrectangle) in the vector space, with relations between two enti-

ties represented by affine transforms on the subject and object entity boxes. The geometry of

the boxes endows the model with calibrated probabilistic semantics and facilitates injecting

relation property constraints.

2. To transfer knowledge from knowledge graphs in different languages for query answering,

this dissertation proposes a framework for ensemble learning of knowledge graph embed-

ding models. This approach allows exchanging complementary knowledge across different

language-specific knowledge graphs, thereby providing a versatile method of leveraging spe-

cific knowledge that is better captured in some knowledge graphs compared to others. We

also investigate different ensemble techniques to combine prediction results from embed-

dings of multiple language-specific knowledge graphs, which enables assessing the credibil-

ity of prediction from different models and thus leads to a more accurate final prediction.

3. To support answering first-order logical queries, we present a fuzzy logic based logical query

embedding framework for answering logical queries on knowledge graphs. We borrow the

idea of fuzzy logic and use fuzzy conjunction, disjunction, and negation to implement log-

ical operators in a more principled and learning-free manner. In addition, this dissertation

identifies some of the basic properties that an embedding model ought to possess . This

analysis provides theoretical guidance for future research on embedding-based logical query

answering models.

1.3 Thesis Outline

The rest of this dissertation is organized as follows: We first survey the background in Section 2

before presenting two models that enable reasoning and query answering on uncertain knowledge

graphs. Chapter 3 introduces the first uncertain knowledge graph embedding model called UKGE,
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where the embeddings of entities and relations are learned according to confidence scores, unlike

previous models that characterize facts with binary classification techniques. We also introduce

probabilistic soft logic to infer confidence scores to provide extra supervision during training. We

propose two variants of UKGE based on various regression functions. In Chapter 4, we extend

the technique to improve reasoning on sparse uncertain knowledge graphs. We provide BEUrRE,

which is a novel uncertain knowledge graph embedding method endowed with probabilistic se-

mantics. BEUrRE considers each entity as a binary random variable and models each entity as

a box (i.e. axis-aligned hyperrectangle) in the vector space, with relations between two entities

representing affine transforms on the subject and object entity boxes. The geometry of the boxes

endows the model with calibrated probabilistic semantics and facilitates injecting relation property

constraints on sparse knowledge graphs. Such representation is aligned with the human perception

that entities or concepts have different levels of granularity.

In Chapter 5, we enhance question answering on deterministic knowledge graphs by trans-

ferring complementary knowledge across multiple language-specific knowledge graphs. The pro-

posed framework KEns embeds all knowledge graphs in a shared embedding space, where the

association of entities is captured based on self-learning. The KEns framework then performs

ensemble inference to combine prediction results from embedding models of different language-

specific knowledge graphs, for which multiple ensemble techniques are investigated.

Chapter 6 explores first-order logical query embedding. The proposed model FuzzQE fol-

lows fuzzy logic to define logical operators in a principled and learning-free manner, where only

entity and realtion embeddings require learning. FuzzQE can further benefit when complex log-

ical queries are available for training. In addition, Chapter 6 proposes basic properties that an

embedding model ought to possess.

Finally, Chapter 7 concludes the dissertation and discusses avenues for future research.

5



CHAPTER 2

Background

In this chapter, we present the background on representation learning based query answering on

knowledge graphs.

2.1 Knowledge Graphs

This section provides an introduction and categorization of knowledge graphs.

2.1.1 Monolingual and Multilingual Knowledge Graphs

A monolingual knowledge graph consists of entities and relations described in one language. Re-

cent decades have witnessed the emergence of large-scale multilingual knowledge graphs, includ-

ing Wikidata [95], DBpedia [53], ConceptNet [79], and YAGO [68]. In such multilingual knowl-

edge graphs, vast amounts of knowledge are created in various language-specific versions that

evolve independently. Multilingual knowledge graphs leverage entity and relation alignment to

synchronize different language-specific versions. Aligning relations is usually feasible and has

been de facto achieved in a number of major knowledge graphs, including the aforementioned

DBpedia [53] and YAGO [95]. In contrast, entities in those major knowledge graphs are often

so numerous that they cannot be easily aligned, and available entity alignment is only in small

amounts [17].
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2.1.2 Deterministic and Uncertain Knowledge Graphs

Knowledge graphs can be categorized into the following two types: (i) Deterministic knowledge

graphs, such as YAGO [68] and FreeBase [8], consist of deterministic facts that describe semantic

relations between entities; (ii) Uncertain knowledge graphs including ProBase [103], ConceptNet

[79] and NELL [60] associate every fact with a confidence score that represents the likelihood of

the fact to be true.

Recently, the development of relation extraction and crowdsourcing have enabled the con-

struction of large-scale uncertain knowledge bases. ConceptNet [79] is a multilingual uncertain

knowledge graph for commonsense knowledge that is collected via crowdsourcing. The confidence

scores in ConceptNet mainly come from the co-occurrence frequency of the labels in crowdsourced

task results. Probase [103] is a universal probabilistic taxonomy built by relation extraction. Ev-

ery fact in Probase is associated with a marginal probability. NELL [60] collects facts by reading

web pages and learns their confidence scores from semi-supervised learning with the Expectation-

Maximum (EM) algorithm. Aforementioned uncertain knowledge graphs have enabled numerous

knowledge-driven applications. For example, [100] utilizes Probase in short text understanding.

2.2 Representation Learning for Knowledge Graphs

Knowledge graph embedding models encode entities as low-dimensional vectors and relations as

algebraic operations among entity vectors. They seek to capture the similarity of entities and

preserve the structure of knowledge graphs in the embedding space. Embedding models for mono-

lingual deterministic knowledge graphs have been extensively explored recently. A recent survey

[97] categorizes these models into two groups: translational models and bilinear models.

Translational models share a common principle hr + r ≈ tr, where hr, tr are the entity em-

beddings projected in an identical or projected embedding space. The forerunner of this family,

TransE [9], lays hr and tr in a common space as h and t with regard to any relation r. Variants of

TransE, such as TransH [98], TransR [57], TransD [43], and TransA, [44] differentiate the trans-

lations of entity embeddings in different language-specific embedded spaces based on different
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forms of relation-specific projections. Despite their simplicity, translational models achieve satis-

fying performance on knowledge graph completion and are robust against the sparsity of data [66].

Bilinear models [42] model relations as the second-order correlations between entities, using the

scoring function f(h, r, t) = h>Wrt. This function is first adopted by RESCAL [62], a collective

matrix factorization model. DistMult [105] constrains Wr as a diagonal matrix which reduces the

computing cost and also enhances the performance. ComplEx extends the scoring function of Dist-

Mult into a complex embedding space, and HolE [61] substitutes the multiplication in DistMult

with circular correlation. Both ComplEx and HolE lead to better characterization of asymmet-

ric relations. There are also other models for deterministic knowledge graph embedding, such as

neural models like Neural Tensor Network (NTN) [77] and ConvE [26].

Though embedding models for deterministic knowledge graphs have been extensively studied,

embedding uncertain knowledge graphs has not been well explored. One recent work has proposed

a matrix-factorization-based approach to embed uncertain networks [40]. However, it cannot be

generalized to embed uncertain knowledge graphs because this model only considers the node

proximity in the networks with no explicit relations and only generates node embeddings.
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CHAPTER 3

Probabilistic Soft Logic Guided Uncertain Knowledge Graph

Embedding

In this chapter, we introduce an uncertain knowledge graph embedding model to handle fact un-

certainty for query answering on knowledge graphs.

3.1 Introduction

Knowledge graphs are categorized into the following two types: (i) Deterministic knowledge

graphs, such as YAGO [68] and FreeBase [8], consist of deterministic facts that describe semantic

relations between entities; (ii) Uncertain knowledge graphs including ProBase [103], ConceptNet

[79] and NELL [60] associate every fact with a confidence score that represents the likelihood of

the fact to be true.

While current embedding models focus on capturing deterministic knowledge, it is critical to

incorporate uncertainty information into knowledge sources for several reasons. First, uncertainty

is the nature of many forms of knowledge. An example of naturally uncertain knowledge is the

interactions between proteins. Since molecular reactions are random processes, biologists label the

protein interactions with their probabilities of occurrence and present them as uncertain knowledge

graphs called Protein-Protein Interaction (PPI) Networks. Second, uncertainty enhances inference

in knowledge-driven applications. For example, short text understanding often entails interpreting

real-world concepts that are ambiguous or intrinsically vague. The probabilistic knowledge graph

Probase [103] provides a prior probability distribution of concepts behind a term that has criti-

cally supported short text understanding tasks involving disambiguation [101, 100]. Furthermore,
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uncertain knowledge representations have largely benefited various applications, such as question

answering [107] and named entity recognition [67].

Capturing the uncertainty information with knowledge graph embeddings remains an unre-

solved problem. This is a non-trivial task for several reasons. First, compared to deterministic

knowledge graph embeddings, uncertain knowledge graph embeddings need to encode additional

confidence information to preserve uncertainty. Second, current knowledge graph embedding mod-

els cannot capture the subtle uncertainty of unseen facts, as they assume that all the unseen facts

are false beliefs and minimize the plausibility measures of facts. One major challenge of learning

embeddings for uncertain knowledge graphs is to properly estimate the uncertainty of unseen facts.

To address the above issues, we propose a new embedding model UKGE (Uncertain Knowledge

Graph Embeddings), which aims to preserve both structural and uncertainty information of

facts in the embedding space. Embeddings of entities and relations on uncertain knowledge graphs

are learned according to confidence scores. Unlike previous models that characterize facts with

binary classification techniques, UKGE learns embeddings according to the confidence scores of

uncertain facts. To further enhance the precision of UKGE, we also introduce probabilistic soft

logic to infer the confidence score for unseen facts during training. We propose two variants of

UKGE based on different embedding-based confidence functions. We conducted extensive experi-

ments using three real-world uncertain knowledge graphs on three tasks: (i) confidence prediction,

which seeks to predict confidence scores of unseen facts; (ii) fact ranking, which focuses on re-

trieving tail entities for the query (h, r, ?t) and ranking these retrieved tails in the right order; and

(iii) fact classification, which decides whether or not a given fact is a strong fact. Our models

consistently outperform the baseline models in these experiments.

3.2 Related Work

To the best of our knowledge, there has been no previous work on uncertain knowledge graph

embeddings. Three lines of research are closely related to this topic: uncertain knowledge graphs,

deterministic knowledge graph embedding models, and probabilistic reasoning. Uncertain knowl-
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edge graphs and deterministic knowledge graph embedding models are discussed in Sections 2.1.2

and 2.2 respectively. We hereby describe related work in probabilistic reasoning, particularly the

probabilistic soft logic (PSL) framework [48] . A PSL program consists of a set of first-order logic

rules. Every atom is assigned a soft truth value in [0, 1] and PSL uses Łukasiewicz t-norm [59] to

determine to which degree a rule is satisfied. In combination with Hinge-Loss Markov Random

Field (HL-MRF), PSL is widely used in probabilistic reasoning tasks, such as social-trust predic-

tion and preference prediction [4, 5]. In this chapter, we adopt PSL to infer confidence scores and

provide extra training supervision, thereby enhancing the embedding model prediction accuracy.

3.3 Problem Definition

We define the uncertain knowledge graph embedding problem in this section by first providing the

definition of uncertain knowledge graphs.

Definition 1. Uncertain Knowledge Graph. An uncertain knowledge graph represents knowledge

as a set of relations (R) defined over a set of entities (E). It consists of a set of weighted triples

G = {(l, sl)}. For each pair (l, sl), l = (h, r, t) is a triple representing a fact where h, t ∈ E (the

set of entities) and r ∈ R (the set of relations), and sl ∈ [0, 1] represents the confidence score for

this fact to be true.

Note that we assume the confidence score sl ∈ [0, 1] and interpret it as a probability to leverage

probabilistic soft logic-based inference. The range of original confidence scores for some uncertain

knowledge graph (e.g., ConceptNet) may not fall in [0, 1], and normalization will be needed in these

cases. Some examples of weighted triples are listed below.

Example 3.3.1. Weighted triples.

1. (choir, relatedto, sing): 1.00

2. (college, synonym, university): 0.99

3. (university, synonym, institute): 0.86
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4. (fork, atlocation, kitchen): 0.4

Definition 2. Uncertain Knowledge Graph Embedding Problem. Given an uncertain knowledge

graph G, the embedding model aims to encode each entity and relation in a low-dimensional space

in which structure information and confidence scores of facts are preserved.

Notation wise, boldfaced h, r, t are used to represent the embedding vectors for head h, rela-

tion r and tail t respectively. h, r, t are assumed lie in Rk.

3.4 Modeling

In this section, we propose our model for uncertain knowledge graph embeddings. The proposed

model UKGE encodes the knowledge graph structure according to the confidence scores for both

observed and unseen facts, such that the embeddings of facts with higher confidence scores receive

higher plausibility values.

We first design fact confidence score modeling based on embeddings of entities and relations,

then introduce how probabilistic soft logic can be used to infer confidence scores for unseen rela-

tions, and lastly describe the joint model UKGE and its two variants.

3.4.1 Embedding-based Confidence Score Modeling for facts

Unlike deterministic knowledge graph embedding models, uncertain knowledge graph embedding

models need to explicitly model the confidence score for each triple and compare the prediction

with the true score. We hereby first define and model the plausibility of triples, which can be

considered as a unnormalized confidence score.

Definition 3. Plausibility. Given a fact triple l, the plausibility g(l) ∈ R measures how likely this

fact holds. The higher plausibility value corresponds to the higher confidence score s.

Given a triple l = (h, r, t) and their embeddings h, r, t, we model the plausibility of (h, r, t)

by the following function:

g(l) = r · (h ◦ t) (3.1)
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where ◦ is the element-wise product, and · is the inner product. This function captures the related-

ness between embeddings h and t under the condition of relation r and is first adopted by DistMult

[105]. We employ this triple modeling technique for three reasons: (i) This technique has repre-

sented the state-of-the-art performance for modeling deterministic knowledge graphs [46], (ii) It

agrees with the nature of our model to quantify the confidence of an uncertain fact by comparing

the relation embeddings with the pair of head and tail embeddings, (iii) It does not introduce addi-

tional parameter complexity to the model like other techniques, such as TransH [98], TransR [57],

ConvE [26] and ProjE [75]. Nevertheless, this scoring function can be further explored in future

work.

3.4.1.1 From plausibility to confidence scores

In order to transform plausibility scores to confidence scores, we consider two different mapping

functions and test them in the experimental section. Formally, let a triple be l and its plausibility

score be g(l), a transformation function φ(·) maps g(l) to a confidence score f(l).

f(l) = φ(g(l)), φ : R→ [0, 1] (3.2)

Two choices of mapping φ are listed below.

Logistic function. One way to map plausibility values to confidence score is a logistic function as

follows:

φ(x) =
1

1 + e−(wx+b)
(3.3)

Bounded rectifier. Another mapping is a bounded rectifier [14]:

φ(x) = min(max(wx+ b, 0), 1) (3.4)

where w is a weight b is a bias.
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3.4.2 PSL-based Confidence Score Reasoning for Unseen facts

In order to better estimate confidence scores, both observed and unseen facts in knowledge graphs

should be utilized. Deterministic knowledge graph embedding methods assume that all unseen

facts are false beliefs, and use negative sampling to add some of these false relations into training.

One major challenge of learning embeddings for uncertain knowledge graphs, however, is to prop-

erly estimate the uncertainty of unseen triples, as simply treating their confidence score as 0 can no

longer capture the subtle uncertainty. For example, it is common that a Protein-Protein Interaction

Network knowledge graph may have no interaction records for two proteins that can be potentially

binded. Ignoring such possibility will result in information loss.

We thus introduce probabilistic soft logic (PSL) [48] to infer confidence scores for these unseen

facts to further enhance the embedding performance. PSL is a framework for confidence reasoning

that propagates confidence of existing knowledge to unseen triples using soft logic.

3.4.2.1 Probabilistic Soft Logic

A PSL program consists of a set of first order logic rules that describe logical dependencies between

facts (atoms). One example of logical rule is shown below:

Example 3.4.1. A Logical Rule on Transitivity of Synonym Relation.

(A,synonym,B) ∧ (B,synonym,C)→ (A,synonym,C)

This logical rule describes the transitivity of the relation synonym. In this logical rule, A,

B and C are placeholders for entities, synonym is the predicate that corresponds to the relation

in uncertain knowledge graphs, (A,synonym,B) ∧ (B,synonym,C) is the body of the rule, and

(A,synonym,C) is the head of the rule.

A logical rule serves as a template rule. By replacing the placeholders in a logical rule with

concrete entities and relations, we can get rule instances, which are called ground rules. Consider-

ing Example 3.4.1 and uncertain facts from Example 3.3.1, we can have the following ground rule

by replacing the placeholders with real facts in knowledge graph.
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Example 3.4.2. A Ground Rule on Transitivity of Synonym.

(college, synonym, university) ∧ (university, synonym, institute)→ (college, synonym, insti-

tute)

Different from Boolean logic, PSL associates every atom, i.e., a triple l, with a soft truth value

from the interval [0, 1], which corresponds to the confidence score in our context and enables fuzzy

reasoning. The assignment process of soft truth values is called an interpretation. We denote the

soft truth value of an atom l assigned by the interpretation I as I(l). Naturally, for observed facts,

their observed confidence scores are used for assignment; and for unseen triples, the embedding-

based estimated confidence scores will be assigned to them:

I(l) = sl, l ∈ L+

I(l) = f(l), l ∈ L−
(3.5)

where L+ denotes the observed triple set, L− denotes the unseen triples, sl denotes the confidence

score for observed triple l, and f(l) denotes the embedding-based confidence score function for l.

In PSL, Lukasiewicz t-norm is used to define the basic logical operations, including logical

conjunction (∧), disjunction (∨), and negation (¬), as follows:

I(l1 ∧ l2) = max{0, I(l1) + I(l2)− 1} (3.6)

I(l1 ∨ l2) = min{1, I(l1) + I(l2)} (3.7)

I(¬l1) = 1− I(l1) (3.8)

For example, according to Eq. (3.6) and (3.7), 0.8 ∧ 0.3 = 0.1 and 0.8 ∨ 0.3 = 1. For a rule

γ ≡ γbody → γhead, as it can be written as ¬γbody ∨ γhead, its value pγ can be computed as

pγbody→γhead = min{1, 1− I(γbody) + I(γhead)} (3.9)

PSL regards a rule γ as satisfied when the truth value of its head I(γhead) is the same or higher

than its body I(γbody), i.e., when its value is greater than or equal to 1.

dγ = 1− pγ = max{0, I(γbody)− I(γhead)} (3.10)
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Consider Example 3.4.2. Let (college, synonym, university) be l1, (university, synonym, col-

lege) be l2, and (college, synonym, institute) be l3. Assuming that l1 and l2 are observed triples

in knowledge graph, and l3 is unseen, according to Equation (3.5), (3.6), and (3.9), the distance to

satisfaction of this ground rule is calculated as below:

dγ = max{0, I(l1 ∧ l2)− I(l3)}

= max{0, sl1 + sl2 − 1− f(l3)}

= max{0, 0.85− f(l3)}

where sl1 and sl2 are the ground truth confidence scores of corresponding facts in the uncertain

knowledge graph.

This equation indicates that the ground rule in Example 3.4.2 is completely satisfied when

f(l3), the estimated confidence score of (college, synonym institute), is above 0.85. When f(l3)

is under 0.85, the smaller f(l3) is, the larger loss we have. In other words, a bigger confidence

score is preferable. In the above example, we can see that the embedding-based confidence score

for this unseen fact, f(l3), will affect the loss function, and it is desirable to learn embeddings that

minimize these losses. Note that if we simply treat the unseen relation l3 as false and use MSE

(Mean Squared Error) as the loss, the loss would be f(l3)2, which is in favor of a lower confidence

score mistakenly.

Moreover, we add a rule to penalize the predicted confidence scores of all unseen facts, which

can be considered as a prior knowledge, i.e., any unseen fact has a low probability to be true.

Formally, for an unseen fact l = (h, r, t) ∈ L−, we have a ground rule γ0:

γ0 : ¬l (3.11)

According to Eq. (3.8) and (3.10), its distance to satisfaction dγ0 is derived as:

dγ0 = f(l) (3.12)
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3.4.3 Embedding Uncertain knowledge graphs

In this subsection, we present the objective function of uncertain knowledge graph embeddings.

3.4.3.1 Loss on observed facts

Let L+ be the set of observed facts, the goal is to minimize the mean squared error (MSE) between

the ground truth confidence score sl and our prediction f(l) for each relation l ∈ L+:

J + =
∑
l∈L+

|f(l)− sl|2 (3.13)

3.4.3.2 Loss on unseen facts

Let L− be the sampled set of unseen relations, and Γl be the set of ground rules with l as the rule

head, the goal is to minimize the distance to rule satisfaction for each triple l. In particular, we

choose to use the square of the distance as the following loss [4]:

J − =
∑
l∈L−

∑
γ∈Γl

|ψγ(f(l))|2 (3.14)

where ψγ(f(l)) denotes the weighted distance to satisfaction wγdγ of the rule γ as a function of

f(l) where wγ is a hand-crafted weight for the rule γ.

Note that when l is only covered by γ0 : ¬l, we have
∑

γ∈Γl
|ψγ(f(l))|2 = |f(l)|2, which is

essentially the MSE loss by treating unseen facts as false.

3.4.3.3 The Joint Objective Function

Combining Eq. (3.13) and (3.14), we obtain the following joint objective function:

J =
∑
l∈L+

|f(l)− sl|2 +
∑
l∈L−

∑
γ∈Γl

|ψγ(f(l))|2 (3.15)

Similar to deterministic knowledge graph embedding algorithms, we sample unseen relations by

corrupting the head and the tail for observed facts to generate L− during training.
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Dataset #Ent. #Rel. #Rel. Facts Avg(s) Std(s)
CN15k 15,000 36 241,158 0.629 0.232
NL27k 27,221 404 175,412 0.797 0.242
PPI5k 4,999 7 271,666 0.415 0.213

Table 3.1: Statistics of the uncertain knowledge graph datasets. Ent. denotes entities and Rel. stands for
relations. Avg(s) and Std(s) are the average and standard deviation of the confidence scores.

Dataset Logical Rules Hit Ratio

CN15k (A, relatedTo, B)∧(B, relatedTo, C)→(A, relatedTo, C) 37.0%
(A, causes, B)∧(B, causes, C)→(A, causes, C) 35.6%

NL27k (A, atheletePlaysForTeam,B) ∧ (A, athletePlaysSport, C)→(B, teamPlaysSport, C) 42.9%
PPI5k (A, binding, B)∧(B, binding, C)→(A, binding, C) 80.8%

Table 3.2: Examples of logical rules. Hit ratio means the proportion of facts that have already existed in the
knowledge graph

We give two model variants that differ in the choice of f(l). We refer to the variant that adopts

Equation (3.3) as UKGElogi and name the one using Equation (3.4) as UKGErect.

3.5 Experiments

In this section, we evaluate our models on three tasks: confidence prediction, fact ranking, and fact

classification.

3.5.1 Datasets

The evaluation is conducted on three datasets named as CN15k, NL27k, and PPI5k, which are

extracted from ConceptNet, NELL, and the Protein-Protein Interaction Knowledge Base STRING

[89] respectively. CN15k matches the number of nodes with FB15k [9] - the widely used bench-

mark dataset for deterministic knowledge graph embeddings [9, 105, 91], while NL27k is a larger

dataset. PPI5k is a denser graph with fewer entities but more facts than the other two. Table 3.1

gives the statistics of the datasets, and more details are introduced below.
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3.5.1.1 CN15k

CN15k is a subgraph of the commonsense knowledge graph ConceptNet. This subgraph contains

15,000 entities and 241,158 uncertain facts in English. The original scores in ConceptNet vary

from 0.1 to 22, where 99.6% are less than or equal to 3.0. For normalization, we first bound

confidence scores to x ∈ [0.1, 3.0], and then applied the min-max normalization on log x to map

them into [0.1, 1.0].

3.5.1.2 NL27

NL27k is extracted from NELL [60], an uncertain knowledge graph obtained from webpage read-

ing. NL27k contains 27,221 entities, 404 relations, and 175,412 uncertain facts. In the process of

min-max normalization, we search for the lower boundary from 0.1 to 0.9. We have found out that

normalizing the confidence score to interval [0.1, 1] yields best results.

3.5.1.3 PPI5k

The Protein-Protein Interaction Knowledge Base STRING labels the interactions between proteins

with the probabilities of occurrence. PPI5k is a subset of STRING that contains 271,666 uncertain

facts for 4,999 proteins and 7 interactions.

In an uncertain knowledge graph, a fact is considered strong if its confidence score sl is above

a knowledge graph-specific threshold τ . Here we set τ = 0.85 for both CN15k and NL27k. We

follow the instructions from [89] and set τ = 0.70 for PPI5k. Under this setting, 20.4% of facts in

CN15k, 20.1% of those in NL27k, and 12.4% of those in PPI5k are considered strong.

3.5.2 Experimental Setup

We split each dataset into three parts: 85% for training, 7% for validation, and 8% for testing. To

test if our model can correctly interpret negative links, we add the same amount of negative links

as existing facts into the test sets.
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We use Adam optimizer [49] for training, for which we set the exponential decay rates β1 = 0.9

and β2 = 0.99. We report results for all models respectively based on their best hyperparameter

settings. For each model, the setting is identified based on the validation set performance. We se-

lect among the following sets of hyper-parameter values: learning rate lr ∈ {0.001, 0.005, 0.01},

dimensionality k ∈ {64, 128, 256, 512}, batch size b ∈ {128, 256, 512, 1024}, The L2 regulariza-

tion coefficient λ is fixed as 0.005. Training was stopped using early stopping based on MSE on

the validation set, computed every 10 epochs. The best hyper-parameter combinations on CN15k

and NL27k are {lr = 0.001, k = 128} and b = 128 for UKGErect, b = 512 for UKGElogi. On PPI5k

they are {lr = 0.001, k = 128, b = 256} for both variants.

3.5.3 Logical Rule Generation

Our model requires additional input as logical rules for PSL reasoning. We heuristically create can-

didate logical rules by considering length-2 paths (i.e., (E1,R1,E2) ∧ (E2,R2,E3)→ (E1,R3,E3))

and validate them by hit ratio, i.e. the proportion of facts implied by the rule to be truly existent in

the knowledge graph. The higher ratio implies that the rule is more convincing. When grounding

out the logical rules, to guarantee the quality of the ground rules, we only adopt observed strong

facts in our rule body. We eventually create 3 logical rules for CN15k, 4 for NL27k, and 1 for

PPI5k. Table 3.2 gives some examples of the logical rules and their hit ratios. How to systemati-

cally create more promising logical rules will be considered as future work.

3.5.4 Baselines

Three types of baselines are considered in our comparison, which include (i) deterministic knowl-

edge graph embedding models TransE [9], DistMult [105] and ComplEx [91], (ii) an uncertain

graph embedding model URGE [40], and (iii) UKGEn− and UKGEp− that are two simplified ver-

sions of our model.

• Deterministic knowledge graph Embedding Models. TransE, DistMult, and ComplEx have

demonstrated high performance on deterministic knowledge graphs. Only the high-confidence
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Dataset CN15k NL27k PPI5k
Metrics MSE MAE MSE MAE MSE MAE
URGE 10.32 22.72 7.48 11.35 1.44 6.00
UKGEn− 23.96 30.38 24.86 36.67 7.46 19.32
UKGEp− 9.02 20.05 2.67 7.03 0.96 4.09
UKGErect 8.61 19.90 2.36 6.90 0.95 3.79
UKGElogi 9.86 20.74 3.43 7.93 0.96 4.07

Table 3.3: Mean squared error (MSE) and mean absolute error (MAE) of fact confidence prediction
(×10−2).

facts from knowledge graphs are used for training. For each knowledge graph, we have a

knowledge graph-specific confidence score threshold τ to distinguish the high-confidence

facts from the low-confidence ones, which will be discussed later in Section 3.5.7. These

models cannot predict confidence scores. We compare our methods to them only on the rank-

ing and the classification tasks. For the same reason, the early stopping is based on mean

reciprocal rank (MRR) on the validation set. We adopt the implementation given by [91]

and choose the best hyper-parameters following the same grid search procedure. This im-

plementation uses [28] for optimization. The best hyper-parameter combinations on CN15k

and NL27k are b = 1024, {lr = 0.01, k = 128} for TransE and {lr = 0.05, k = 256} for

DistMult and ComplEx. On PPI5k they are lr = 0.1, {k = 128, b = 512} for DistMult and

{k = 256, b = 1024} for TransE and ComplEx.

• Uncertain Graph Embedding Model. URGE is proposed very recently to embed uncertain

graphs. However, it cannot deal with multiple types of relations in knowledge graphs, and

it only produces node embeddings. We simply ignore relation types when applying URGE

to our datasets. We adopt its first-order proximity version as our tasks focus on the edge

relations between nodes.

• Two Simplified Versions of Our Model. To justify the use of negative links and PSL rea-

soning in our model, we propose two simplified versions of UKGErect , called UKGEn− and

UKGEp−. In UKGEn−, we only keep the observed facts and remove negative sampling, and

in UKGEp−, we remove PSL reasoning and use the MSE loss for unseen facts.
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metrics CN15K NL27k PPI5k
Dataset linear exp. linear exp. linear exp.
TransE 0.601 0.591 0.730 0.722 0.710 0.700

DistMult 0.689 0.677 0.911 0.897 0.894 0.880
ComplEx 0.723 0.712 0.921 0.913 0.896 0.881

URGE 0.572 0.570 0.593 0.593 0.726 0.723
UKGEn− 0.236 0.232 0.245 0.245 0.514 0.517
UKGEp− 0.769 0.768 0.933 0.929 0.940 0.944
UKGErect 0.773 0.775 0.939 0.942 0.946 0.946
UKGElogi 0.789 0.788 0.955 0.956 0.970 0.969

Table 3.4: Mean normalized DCG for global ranking task. Here linear stands for linear gain, and exp. stands
for exponential gain.

3.5.5 Confidence Prediction

The objective of this task is to predict confidence scores of unseen facts.

3.5.5.1 Evaluation Protocol

For each uncertain fact (l, sl) in the test set, we predict the confidence score of l and report the

mean squared error (MSE) and mean absolute error (MAE).

3.5.5.2 Results

Results are reported in Table 3.3. Both our variants UKGErect and UKGElogi outperform the base-

lines URGE, UKGEn−, and UKGEp−, since URGE only takes node proximity information and can-

not model the rich relations between entities, and UKGEn− does not adopt negative sampling and

cannot recognize negative links. The better results of UKGErect than UKGEp− demonstrate that

introducing PSL into embedding learning can enhance the model performance. Between the two

model variants, UKGErect results in smaller MSE and MAE than UKGElogi. We notice that all the

models achieve much smaller MSE on PPI5k than CN15k and NL27k. We hypothesize that this is

because the much higher density of PPI5k facilitates embedding learning [66].
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Dataset head relation true tail conf. pred. tail pred. conf. true conf.

CN15k

rush relatedto

fast 0.968 fast 0.703 0.968
motion 0.709 move 0.623 0.557
rapid 0.709 hour 0.603 0.654

urgency 0.709 time 0.601 0.105

hotel usedfor

sleeping 1.0 relaxing 0.858 N/A
rest 0.984 sleeping 0.849 1.0

bed away from home 0.709 rest 0.827 0.984
stay overnight 0.709 hotel room 0.797 N/A

NL27k Toyota competeswith

Honda 1.0 Honda 0.942 1.0
Ford 1.0 Hyundai 0.910 0.719

BMW 0.964 Chrysler 0.908 N/A
General Motors 0.930 Nissan 0.896 0.859

Table 3.5: Examples of fact ranking (global) results using UKGElogi. Top 4 results are shown. N/A denotes
facts that are not observed in knowledge graph. conf. stands for confidence and pred. is the abbreviation for
predicted.

3.5.6 Fact Ranking

The next task focuses on ranking tail entities in the right order for the query (h, r, ?t).

3.5.6.1 Evaluation Protocol

For a query (h, r, ?t), we rank all the entities in the vocabulary as tail candidates and evaluate the

ranking performance using the normalized Discounted Cumulative G ain (nDCG) [55]. We define

the gain in retrieving a relevant tail t0 as the ground truth confidence score s(h,r,t0). We take the

mean nDCG over the test query set as our ranking metric. We report the two versions of nDCG

that use linear gain and exponential gain respectively. The exponential gain version puts stronger

emphasis on highly relevant results.

3.5.6.2 Results

Table 3.4 shows the mean nDCG over all test queries for all compared methods. Though TransE,

DistMult, and ComplEx do not encode the confidence score information, they maximize the plau-

sibility of all observed facts and therefore rank these existing facts high. We observe that Dist-
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Mult and ComplEx have considerably better performance than TransE, as TransE does not handle

1-to-N relations well. ComplEx embeds entities and relations in the complex domain and han-

dles asymmetric relations better than DistMult. It achieves the best results among the deterministic

knowledge graph embedding models on this task. As UKGEn− removes negative sampling from

the loss function, it cannot distinguish the negative links from existing facts and results in the worst

performance. UKGEp− yields slightly worse performance than UKGErect. Besides ranking the ex-

isting facts highly, our models also preserve the order of the observed facts and thus achieve higher

nDCG scores. Both UKGErect and UKGElogi outperform all the baselines under all settings, while

UKGElogi yields higher nDCG on all three datasets than UKGErect. Considering the confidence

prediction results of UKGElogi in Section 3.5.5, we hypothesize that the easy saturation of logis-

tic function allows UKGElogi to better distinguish negative links from true facts, while this feature

compromises its ability to fit confidence scores more precisely.

3.5.6.3 Case study

Table 3.5 gives some examples of fact ranking results by UKGElogi. Given a query (h, r, ?t), the top

4 predicted tails and true tails are given, sorted by their scores in descending order. The predictions

are consistent with our common-sense. It is worth noting that some quite reasonable unseen facts

such as hotel is used for relaxing, can be predicted correctly. In other words, our proposed approach

can be potentially used to infer new knowledge from the observed ones with reasonable confidence

scores, which may shed light on another line of future study.

3.5.7 Fact Classification

This last task is a binary classification task to decide whether a given fact l is a strong fact or not.

A fact is considered strong if its confidence score sl is above a knowledge graph-specific threshold

τ . The embedding models need to distinguish facts in the knowledge graph from negative links

and high-confidence facts from low-confidence ones.
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Metrics CN15k NL27k PPI5k
Dataset F-1 Accu. F-1 Accu. F-1 Accu.
TransE 23.4 67.9 65.1 53.4 83.2 98.5

DistMult 27.9 71.1 72.1 70.1 86.9 97.1
ComplEx 18.9 73.2 63.3 53.4 83.2 98.9

URGE 21.2 86.0 83.6 88.7 85.2 98.6
UKGEn− 23.6 86.1 64.4 65.5 92.7 99.3
UKGEp− 26.2 88.7 89.7 93.4 94.2 99.3
UKGErect 28.8 90.4 92.3 95.2 95.1 99.4
UKGElogi 25.9 90.1 88.4 93.0 94.5 99.5

Table 3.6: F-1 scores (%) and accuracies (%) of fact classification

3.5.7.1 Evaluation Protocol

We follow a procedure that is similar to [98]. Our test set consists of facts from the knowledge

graph and randomly sampled negative links equally. We divide the test cases into two groups,

strong and weak/false, by their ground truth confidence scores. A test fact l is strong when l is in

the knowledge graph and sl > τ , otherwise weak/false. We fit a logistic regression classifier as a

downstream classifier on the predicted confidence scores.

3.5.7.2 Results

F-1 scores and accuracies are reported in Table 3.6. These results show that our two model vari-

ants consistently outperform all baseline models. The deterministic knowledge graph models can

distinguish the existing facts from negative links, but they do not leverage the confidence infor-

mation and cannot recognize the high-confidence ones. URGE does not encode the rich relations.

Although UKGEn− fits confidence scores in the knowledge graph, it cannot correctly interpret neg-

ative links as false. Consistent with the previous two tasks, the performance of UKGEp− is worse

than UKGErect.
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3.6 Conclusion

This chapter introduces the first work that generalizes knowledge graph embeddings to the un-

certainty scenario. Our model UKGE learns embeddings according to fact confidence score, and

effectively preserves both the facts and uncertainty information in the embedding space of KG. To

further enhance accuracy, we introduce probabilistic soft logic to infer confidence scores to provide

extra supervision during training. We propose two variants of UKGE based on different regression

functions. Experiments are conducted on three real-world uncertain knowledge graphs via three

tasks, i.e. confidence prediction, fact ranking, and fact classification. UKGE shows effectiveness

in capturing uncertain knowledge by achieving promising results, and it consistently outperforms

baselines on these tasks.
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CHAPTER 4

Box Embeddings for Uncertain Knowledge Graph Reasoning

In this chapter, we propose to embed uncertain knowledge graphs with box embeddings for query

answering.

4.1 Introduction

Chapter 3 introduces the first uncertain knowledge graph embedding model UKGE, which models

triple-level uncertainty and has limitations regarding enforcing logical reasoning rules. Particu-

larly, UKGE models the triple plausibility in the form of embedding product [105] and trains the

embedding model as a regressor to predict the confidence score. One interpretation of the model

is that it models each triple using a binary random variable, where the latent dependency structure

between different binary random variables is captured by vector similarities. Without an explicit

dependency structure it is difficult to enforce logical reasoning rules to maintain global consistency.

In this chapter, in order go beyond triple-level uncertainty modeling, we consider each entity as

a binary random variable. However, representing such a probability distribution in an embedding

space and reasoning over it is non-trivial. It is difficult to model marginal and joint probabilities for

entities using simple geometric objects like vectors. In order to encode probability distributions in

the embedding space, recent works [52, 94, 56, 24] represent random variables as more complex

geometric objects, such as cones and axis-aligned hyperrectangles (boxes), and use volume as the

probability measure. Inspired by such advances of probability measures in embeddings, we present

BEUrRE (Box Embedding for Uncertain RElational Data)1. BEUrRE represents entities as

1“Beurre” is French for “butter”.
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Figure 4.1: BEUrRE models entities as boxes and relations as two affine transforms.

boxes. Relations are modeled as two separate affine transforms on the head and tail entity boxes.

Confidence of a triple is modeled by the intersection between the two transformed boxes. Fig. 4.1

shows how a fact about the genre of the Beatles is represented under our framework.

Such representation is not only inline with the human perception that entities or concepts have

different levels of granularity, but also allows more powerful domain knowledge representation.

UKGE has demonstrated that introducing domain knowledge about relation properties (e.g. tran-

sitivity) can effectively enhance reasoning on uncertain knowledge graphs. While UKGE uses

Probabilistic Soft Logic (PSL) [5] to reason and add the extra training samples to training, PSL has

a limited scope of application when an uncertain knowledge graph is sparse. In this chapter, we

propose sufficient conditions for these relation properties to be preserved in the embedding space

and directly model the relation properties by regularizing relation-specific transforms. This tech-

nique is more robust to noise and has wide coverage that is not restricted by the scarcity of existing

triples. Extensive experiments on two benchmark datasets show that BEUrRE effectively captures

the uncertainty information and consistently outperforms the baseline models on fact confidence

prediction and fact ranking.
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4.2 Related Work

Developing embedding methods to represent elements using geometric objects with more complex

structures than (Euclidean) vectors is an active area of study. Poincaré embeddings [63] represent

entities in hyperbolic space, leveraging the inductive bias of negative curvature to fit hierarchies.

Order embeddings [93] take a region-based approach, representing nodes of a graph using infinite

cones, and using containment between cones to represent edges. Hyperbolic entailment cones [33]

combine order embeddings with hyperbolic geometry. While these methods show various degrees

of promise when embedding hierarchies, they do not provide scores between entities that can be

interpreted probabilistically, which is particularly useful in our setting.

[52] extend order embeddings with a probabilistic interpretation by integrating the volume of

the infinite cones under the negative exponential measure, however the rigid structure imposed by

the cone representation limits the representational capacity, and the resulting model cannot model

negative correlation or disjointness. Introduced by [94], probabilistic box embeddings represent

elements using axis-aligned hyperrectangles (or boxes). Box embeddings not only demonstrate im-

proved performance on modeling hierarchies, such embeddings also capture probabilistic seman-

tics based on box volumes, and are capable of compactly representing conditional probability dis-

tributions. A few training improvement methods for box embeddings have been proposed [56, 24],

and we make use of the latter, which is termed GumbelBox after the distribution used to model

endpoints of boxes.

While box embeddings have shown promise in representing hierarchies, our work is the first

use of box embeddings to represent entities in multi-relational data. Query2Box [70] and BoxE [1]

make use of boxes in the loss function of their models, however entities themselves are represented

as vectors, and thus these models do not benefit from the probabilistic semantics of box embed-

dings, which we rely on heavily for modeling uncertain knowledge graphs. In [64], the authors

demonstrate the capability of box embeddings to jointly model two hierarchical relations, which is

improved upon using a learned transform in [25]. Similarly to [70] and [25], we also make use of

a learned transform for each relation, however we differ from [70] in that entities themselves are

boxes, and differ from both in the structure of the learned transform.

29



4.3 Preliminaries

Before we move on to the proposed method in this chapter, we use this section to introduce the

background of box embeddings.

4.3.1 Probabilistic Box Embeddings

In this section we give a formal definition of probabilistic box embeddings, as introduced by [94].

A box is an n-dimensional hyperrectangle, i.e. a product of intervals

d∏
i=1

[xm
i , x

M
i ], where xm

i < xM
i .

Given a space ΩBox ⊆ Rn, we define B(ΩBox) to be the set of all boxes in ΩBox. Note that B(ΩBox) is

closed under intersection, and the volume of a box is simply the product of side-lengths. [94] note

that this allows one to interpret box volumes as unnormalized probabilities. This can be formalized

as follows.

Definition 4. Let (ΩBox, E , PBox) be a probability space, where ΩBox ⊆ Rn and B(ΩBox) ⊆ E . Let

Y be the set of binary random variables Y on ΩBox such that Y −1(1) ∈ B(ΩBox). A probabilistic

box embedding of a set S is a function : S → Y . We typically denote f(s) =: Ys and Y −1
s (1) =:

Box(s).

Essentially, to each element of S we associate a box which, when taken as the support set of a

binary random variable, allows us to interpret each element of S as a binary random variable. Using

boxes for the support sets allows one to easily calculate marginal and conditional probabilities, for

example if we embed the elements {CAT,MAMMAL} as boxes in ΩBox = [0, 1]d with PBox as

Lebesgue measure, then

P (MAMMAL | CAT) = PBox(XMAMMAL|XCAT)

=
Vol(Box(MAMMAL) ∩ Box(CAT))

Vol(Box(CAT))
.
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4.3.2 Gumbel Boxes

We further give a brief description of the GumbelBox method, which we rely on for training our

box embeddings [24].

As described thus far, probabilistic box embeddings would struggle to train via gradient de-

scent, as there are many settings of parameters and objectives which have no gradient signal. (For

example, if boxes are disjoint but should overlap.) To mitigate this, [24] propose a latent noise

model, where the min and max coordinates of boxes in each dimension are modeled via Gumbel

distributions, that is

Box(X) =
d∏
i=1

[xm
i , x

M
i ] where

xm
i ∼ GumbelMax(µm

i , β),

xM
i ∼ GumbelMin(µM

i , β).

µm
i thereof is the location parameter, and β is the (global) variance. The Gumbel distribution was

chosen due to its min/max stability, which means that the set of all “Gumbel boxes” are closed

under intersection. [24] go on to provide an approximation of the expected volume of a Gumbel

box,

E [Vol(Box(X))] ≈
d∏
i=1

β log
(

1 + exp
(
µM
i −µm

i

β
− 2γ

))
.

A first-order Taylor series approximation yields

E[PBox(XA | XB)] ≈ E[Vol(Box(A) ∩ Box(B))]

E[Vol(Box(B))]
,

and [24] empirically demonstrate that this approach leads to improved learning when targeting

a given conditional probability distribution as the latent noise essentially ensembles over a large

collection of boxes which allows the model to escape plateaus in the loss function. We therefore
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use this method when training box embeddings.

Remark 4.3.1. While we use Gumbel boxes for training, intuition is often gained by interpret-

ing these boxes as standard hyperrectangles, which is valid as the Gumbel boxes can be seen as

a distribution over such rectangles, with the Gumbel variance parameter β acting as a global

measure of uncertainty. We thus make statements such as Box(X) ⊆ Box(Y ), which, strictly

speaking, are not well-defined for Gumbel boxes. However we can interpret this probabilistically

as P (Y | X) = 1 which coincides with the conventional interpretation when β = 0.

4.4 Modeling

In this section, we present our uncertain knowledge graph embedding model BEUrRE. The pro-

posed model encodes entities as probabilistic boxes and relations as affine transforms. We also

discuss how this method incorporates logical constraints into learning.

4.4.1 Modeling Uncertain Knowledge Graphs with Box Embeddings

BEUrRE represents entities as Gumbel boxes, and a relation r acting on these boxes by translation

and scaling. Specifically, we parametrize a Gumbel box Box(X) using a center cen(Box(X)) ∈ Rd

and offset off(Box(X)) ∈ Rd
+, where the location parameters are given by

µm
i = cen(Box(X))− off(Box(X)),

µM
i = cen(Box(X)) + off(Box(X)).

We consider transformations on Gumbel boxes parametrized by a translation vector τ ∈ Rd and a

scaling vector ∆ ∈ Rd
+ such that

cen(f(Box(X); τ,∆)) = cen(Box(X)) + τ,

off(f(Box(X); τ,∆)) = off(Box(X)) ◦∆,
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where ◦ is the Hadamard product. We use separate actions for the head and tail entities of a relation,

which we denote fr and gr, and omit the explicit dependence on the learned parameters τ and ∆.

Remark 4.4.1. Note that these relations are not an affine transformations of the space, ΩBox, rather

they perform a transformation of a box. These functions form an Abelian group under composition,

and furthermore define a transitive, faithful group action on the set of (Gumbel) boxes.

Given a triple (h, r, t), BEUrRE models the confidence score using the (approximate) condi-

tional probability given by

φ(h, r, t) =
E[Vol(fr(Box(h)) ∩ gr(Box(t)))]

E[Vol(gr(Box(t)))]
.

We can think of the box fr(Box(h)) as the support set of a binary random variable representing

the concept h in the context of the head position of relation r, for example Box(THEBEATLES) is

a latent representation of the concept of The Beatles, and fGENRE(Box(THEBEATLES)) represents

The Beatles in the context of genre classification as the object to be classified.

4.4.2 Logical Constraints

The sparsity of real-world uncertain knowledge graphs makes learning high quality representa-

tions difficult. To address this problem, previous work [19] introduces domain knowledge about

the properties of relations (e.g., transitivity) and uses PSL over first-order logical rules to reason

for unseen facts and create extra training samples. While this technique successfully enhances

the performance by incorporating constraints based on relational properties, the coverage of such

reasoning is still limited by the density of the graph. In UKGE, the confidence score of a triple

can be inferred and benefit training only if all triples in the rule premise are already present in

the knowledge graph. This leads to a limited scope of application, particularly when the graph is

sparse.

In our work, we propose sufficient conditions for these relation properties to be preserved in

the embedding space and directly incorporating the relational constraints by regularizing relation-

specific transforms. Compared to previous work, our approach is more robust to noise since it does
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Figure 4.2: Illustration of how the constraint that gr(u) contains fr(u) preserves transitivity of relation r in
the embedding space. A triple (h, r, t) is true if and only if fr(Box(h)) contains gr(Box(t))). By adding
this constraint, fr(Box(A)) is guaranteed to contain gr(Box(C)) if (A, r,B) and (B, r, C) are true.

not hardcode inferred confidence for unseen triples, and it has wide coverage that is not restricted

by the scarcity of the existing triples.

In the following, we discuss the incorporation of two logical constraints — transitivity and

composition — in the learning process. We use capital letters A,B,C to represent universally

quantified entities from uncertain knowledge graph and use Φ to denote a set of boxes sampled

from B(ΩBox).

4.4.2.1 Transitivity Constraint

A relation r is transitive if (A, r,B)∧(B, r, C) =⇒ (A, r, C). An example of a transitive relation

is hypernymy.

The objective of imposing a transitivity constraint in learning is to preserve this property of the

relation in the embedding space, i.e. to ensure that (A, r, C) will be predicted true if (A, r,B) and

(B, r, C) are true. This objective is fulfilled if gr(Box(B)) contains fr(Box(B)). An illustration

of the box containment relationships is given in Fig 4.2. Thus, we constrain fr and gr so that gr(u)
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contains fr(u) for any u ∈ ΩBox. We impose the constraint with the following regularization term:

Ltr(r) =
1

|Φ|
∑
u∈Φ

‖PBox(gr(u) | fr(u))− 1‖2 .

4.4.2.2 Composition Constraint

A relation r3 is composed of relation r1 and relation r2 if (A, r1, B)∧(B, r2, C) =⇒ (A, r3, C).

For example, the relation atheletePlaysSports can be composed of relations atheletePlaysForTeam

and teamPlaysSports.

To preserve the relation composition in the embedding space, we constrain that the relation-

specific mappings fr3 and gr3 are the composite mappings of fr1 , fr2 and gr1 , gr2 respectively:

fr3 = fr2 · fr1

gr3 = gr2 · gr1

where · is the mapping composition operator. Thus, for any u ∈ ΩBox, we expect that fr3(u) is

the same as fr2(fr1(u)) and gr3(u) is the same as gr2(gr1(u)). We accordingly add the following

regularization term

Lc(r1, r2, r3) =
1

|Φ|
∑
u∈Φ

fr3(u)⊕ fr2(fr1(u))

+ gr3(u)⊕ gr2(gr1(u))

where ⊕ is defined as

Box1⊕Box2 = ‖1− PBox(Box1 | Box2)‖2

+ ‖1− PBox(Box2 | Box1)‖2 .
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4.4.3 Learning Objective

The learning process of BEUrRE optimizes two objectives. The main objective optimizes the loss

for a regression task and, simultaneously, a constrained regularization loss enforces the aforemen-

tioned constraints.

Let L+ be the set of observed facts in training data. The goal is to minimize the mean squared

error (MSE) between the ground truth confidence score sl and the prediction φ(l) for each relation

l ∈ L+. Following UKGE [19], we also penalize the predicted confidence scores of facts that are

not observed in UKG. The main learning objective is as follows:

J1 =
∑
l∈L+
|φ(l)− sl|2 + α

∑
l∈L−
|φ(l)|2.

where L− is a sample set of the facts not observed in UKG, and α is a hyper-parameter to weigh

unobserved fact confidence penalization. Similar to previous works, we sample those facts by

corrupting the head and the tail for observed facts to generate L− during training.

In terms of constraints, letRtr be the set of transitive relations,Rc be the set of composite rela-

tion groups, and wtr and wc be the regularization coefficients. We add the following regularization

to impose our constraints on relations:

J2 = wtr

∑
r∈Rtr

Ltr(r) + wc

∑
(r1,r2,r3)∈Rc

Lc(r1, r2, r3).

Combining both learning objectives, the learning process optimizes the joint loss J = J1 + J2.

4.4.4 Inference

Once BEUrRE is trained, the model can easily infer the confidence of a new fact (h, r, t) based on

the confidence score function φ(h, r, t) defined in Section 4.4.1. This inference mechanism easily

supports other types of reasoning tasks, such as inferring the plausibility of a new fact, and ranking

multiple related facts. The experiments presented in the next section will demonstrate the ability

of BEUrRE to perform those reasoning tasks.
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Dataset #Ent. #Rel. #Rel. Facts Avg(s) Std(s)
CN15k 15,000 36 241,158 0.629 0.232
NL27k 27,221 404 175,412 0.797 0.242

Table 4.1: Statistics of the datasets. Ent. and Rel. stand for entities and relations. Avg(s) and Std(s) are the
average and standard deviation of confidence.

4.5 Experiments

In this section we present evaluation of our model on two uncertain knowledge graph reasoning

tasks, i.e. confidence prediction and fact ranking. More experimentation details are in Appendices.

4.5.1 Experiment Settings

4.5.1.1 Datasets

We follow [19] and evaluate our models on CN15k and NL27k benchmarks, which are subsets of

ConceptNet [79] and NELL [60] respectively. Table 4.1 gives the statistics of the datasets. We

use the same split provided by [19]: 85% for training, 7% for validation, and 8% for testing. We

exclude the dataset PPI5k, the subgraph of the protein-protein interaction (PPI) network STRING

[89], where the supporting scores of PPI information are indicators based on experimental and

literary verification, instead of a probabilistic measure.

4.5.1.2 Logical Constraints

We report results of both versions of our model with and without logical constraints, denoted as

BEUrRE (rule+) and BEUrRE respectively. For a fair comparison, we incorporate into BEUrRE (rule+)

the same set of logical constraints as UKGE [19]. Table 4.2 gives a few examples of the relations

on which we impose constraints.
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Dataset Transitivity Composition
CN15k causes N/A

NL27k locationAtLocation
(atheletePlaysForTeam,

teamPlaysSport)
→ atheletePlaysSport

Table 4.2: Examples of relations with logical constraints.

4.5.1.3 Baselines

We compare our models with uncertain knowledge graph embedding models as well as determin-

istic knowledge graph embedding models.

UKG embedding models include UKGE [19] and URGE [40]. While UKGE has multiple ver-

sions incorporated with different regression functions, we report the results of the best performing

one with the logistic function. We also include results for both settings with and without con-

straints, marked as UKGE (rule+) and UKGE in result tables respectively. URGE was originally

designed for probabilistic homogeneous graphs and cannot handle multi-relational graphs, so ac-

cordingly we ignore relation information when embedding a UKG. UOknowledge graphE [10]

cannot serve as a baseline because it requires additional ontology information for entities that is

not available to these UKGs.

Deterministic knowledge graph embedding models TransE [9], DistMult [105], ComplEx [91],

RotatE [88], and TuckER [7] have demonstrated high performance on reasoning tasks for deter-

ministic knowledge graphs, and we also include them as baselines. These models cannot predict

confidence scores for uncertain facts, so we compare our method with them only on the ranking

task. Following [19], we only use facts with confidence above the threshold τ = 0.85 to train

deterministic models.

4.5.1.4 Model Configurations

We use Adam [49] as the optimizer and fine-tune the following hyper-parameters by grid search

based on the performance on the validation set, i.e. MSE for confidence prediction and normalized

Discounted Cumulative Gain (nDCG) for fact ranking. Training terminates with early stopping
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based on the same metric with a patience of 30 epochs. We repeat each experiment five times and

report the average results. We search for the best hyper-parameter combination in the following

space: Learning rate lr in {0.001, 0.0001, 0.00001}, Embedding dimension d in {30, 64, 128,

300}, Batch size b in {256, 512, 1024, 2048, 4096}, Gumbel box temperature in β {0.1, 0.01,

0.001, 0.0001}, L2 in regularization λ {0.001, 0.01, 0.1, 1}. We performed grid search to choose

the final setting.

The best hyper-parameter combinations for confidence prediction are {lr = 0.0001, b =

1024, d = 64, β = 0.01}, b = 2048 for CN15k and b = 4096 for NL27k. L2 regularization

is 1 for box sizes in logarithm scale and 0.001 for other parameters. For fact ranking they are

{lr = 0.0001, d = 300, b = 4096, λ = 0.00001}, β = 0.001 for CN15k and β = 0.0001 for

NL27k. The number of negative samples is fixed as 30. Rule weights are empirically set as

wtr = wcp = 0.1.

We conduct our experiments on CPU Intelr Xeonr E5-2650 v4 12-core and a single GPU

NVIDIAr GP102 TITAN Xp (12GB). RAM is 256GB. On this machine, training BEUrRE for

the confidence prediction task takes around 1-1.5 hours. Training BEUrRE for the ranking task

takes around 1-2 hours for CN15k and 3 hours for NL27k. For the reported model, on CN15k,

BEUrRE has around 2M parameters for confidence prediction and 9M parameters for ranking. On

NL27k, BEUrRE has 9M parameters for confidence prediction and 17M for ranking.

4.5.2 Confidence Prediction

This task seeks to predict the confidence of new facts that are unseen to training. For each uncertain

fact (l, sl) in the test set, we predict the confidence of l and report the mean squared error (MSE)

and mean absolute error (MAE).

4.5.2.1 Results

Results are reported in Table 4.3. We compare our models with baselines under the uncon-

strained and logically constrained (marked with rule+) settings respectively. Under both settings,
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Dataset CN15k NL27k
Metrics MSE MAE MSE MAE
URGE 10.32 22.72 7.48 11.35
UKGE 9.02 20.05 2.67 7.03
BEUrRE 7.80 20.03 2.37 7.12

UKGE(rule+) 8.61 19.90 2.36 6.90
BEUrRE(rule+) 7.49 19.88 2.01 6.89

Table 4.3: Results of fact confidence prediction (×10−2).

BEUrRE outperforms the baselines in terms of MSE on both datasets.

Under the unconstrained setting, BEUrRE improves MSE of the best baseline UKGE by 0.012

(ca. 14% relative improvement) on CN15k and 0.003 (ca. 11% relative improvement) on NL27k.

The enhancement demonstrates that box embeddings can effectively improve reasoning on UKGs.

It is worth noting that even without constraints in learning, BEUrRE can still achieve comparable

MSE and MAE to the logically constrained UKGE (rule+) on both datasets and even outperforms

UKGE (rule+) on CN15k. Considering that constraints of relations in CN15k mainly describe

transitivity, the aforementioned observation is consistent with the fact that box embeddings are

naturally good at capturing transitive relations, as shown in the recent study [94].

With logical constraints, BEUrRE (rule+) further enhances the performance of BEUrRE and

reduces its MSE by 0.0031 (ca. 4% relative improvement) on CN15k and 0.0036 (ca. 15% relative

improvement) on NL27k. This is as expected, since logical constraints capture higher-order rela-

tions of facts and lead to more globally consistent reasoning. We also observe that BEUrRE (rule+)

brings larger gains over BEUrRE on NL27k, where we have both transitivity constraints and com-

position constraints, than on CN15k with only transitivity constraints incorporated.

In general, with box embeddings, BEUrRE effectively improves reasoning on uncertain knowl-

edge graphs with better captured fact-wise confidence. Furthermore, the results under the logically

constrained setting show the effectiveness of improving reasoning with higher-order relations of

uncertain facts.
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Variants uncons. rule+
Metrics MSE (×10−2)
BEUrRE 7.80 7.49
—w/o Gumbel distribution 8.13 8.14
—Single relation-specific transform 7.81 7.60

Table 4.4: Ablation study results on CN15k. uncons. represents the unconstrained setting, and rule+ denotes
the logically constrained setting.

4.5.2.2 Ablation Study

To examine the contribution from Gumbel distribution to model box boundaries and the effective-

ness of representing relations as two separate transforms for head and tail boxes, we conduct an

ablation study based on CN15k. The results for comparison are given in Table 4.4. First, we resort

to a new configuration of BEUrRE where we use smoothed boundaries for boxes as in [56] instead

of Gumbel boxes. We refer to boxes of this kind as soft boxes. Under the unconstrained setting,

using soft boxes increases MSE by 0.0033 on CN15k (ca. 4% relative degradation), with even

worse performance observed when adding logical constraints. This confirms the finding by [24]

that using Gumbel distribution for boundaries greatly improves box embedding training. Next, to

analyze the effect of using separate transforms to represent a relation, we set the tail transform gr

as the identity function. For logical constraint incorporation, we accordingly update the constraint

on transitive relation r as PBox(u | fr(u)) = 1, u ∈ ΩBox, which requires that u always contains

fr(u), i.e. the translation vector of fr is always zero and elements of the scaling vector are always

less than 1. Although there is little difference between using one or two transforms under the

unconstrained setting, under the logically constrained setting, the constraint is too stringent to be

preserved with only one transform.

4.5.2.3 Case Study

To investigate whether our model can encode meaningful probabilistic semantics, we present a

case study about box volumes. We examine the objects of the atLocation predicate on CN15k

and check which entity boxes have larger volume and cover more entity boxes after the relation
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transformation. Ideally, geographic entities with larger areas or more frequent mentions should

be at the top of the list. When using the BEUrRE(rule+) model, the top 10 in all entities are

place, town, bed, school, city, home, house, capital, church, camp, which are general concepts.

Among the observed objects of the atLocation predicate, the entities that have the least coverage

are Tunisia, Morocco, Algeria, Westminster, Veracruz, Buenos Aires, Emilia-Romagna, Tyrrhenian

sea, Kuwait, Serbia. Those entities are very specific locations. This observation confirms that the

box volume effectively represents probabilistic semantics and captures specificity/granularity of

concepts, which we believe to be a reason for the performance improvement.

4.5.3 Fact Ranking

Multiple facts can be associated with the same entity. However, those relevant facts may appear

with very different plausibility. Consider the example about Honda Motor Co. in Section 4.1,

where it was mentioned that (Honda, competeswith, Toyota) should have a higher belief than

(Honda, competeswith, Chrysler). Following this intuition, this task focuses on ranking multiple

candidate tail entities for a query (h, r, ?t) in terms of their confidence.

4.5.3.1 Evaluation Protocol

Given a query (h, r, ?t), we rank all the entities in the vocabulary as tail entity candidates and

evaluate the ranking performance using the normalized Discounted Cumulative Gain (nDCG) [55].

The gain in retrieving a relevant tail t0 is defined as the ground truth confidence s(h,r,t0). Same as

[19], we report two versions of nDCG that use linear gain and exponential gain respectively. The

exponential gain puts stronger emphasis on the most relevant results.

4.5.3.2 Results

We report the mean nDCG over the test query set in Table 4.5. Although the deterministic models

do not explicitly capture the confidence of facts, those models are trained with high-confidence

facts and have a certain ability to differentiate high confidence facts from lesser ones. URGE
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Dataset CN15K NL27k
Metrics linear exp. linear exp.
TransE 0.601 0.591 0.730 0.722

DistMult 0.689 0.677 0.911 0.897
ComplEx 0.723 0.712 0.921 0.913

RotatE 0.715 0.703 0.901 0.887
TuckER 0.736 0.724 0.877 0.870
URGE 0.572 0.570 0.593 0.593
UKGE 0.769 0.768 0.933 0.929
BEUrRE 0.796 0.795 0.942 0.942

UKGE(rule+) 0.789 0.788 0.955 0.956
BEUrRE(rule+) 0.801 0.803 0.966 0.970

Table 4.5: Mean nDCG for fact ranking. linear stands for linear gain, and exp. stands for exponential gain.

ignores relation information and yields worse predictions than other models. UKGE explicitly

models uncertainty of facts and is the best performing baseline.

The proposed BEUrRE leads to more improvements under both the unconstrained and logically

constrained settings. Under the unconstrained setting, BEUrRE offers consistently better perfor-

mance over UKGE. Specifically, on CN15k, BEUrRE leads to 0.027 improvement in both linear

nDCG and exponential nDCG. On NL27k, it offers 0.009 higher linear nDCG and 0.013 higher

exponential nDCG. Similar to the results on the confidence prediction task, even unconstrained

BEUrRE is able to outperform the logically constrained UKGE (rule+) on CN15k without incor-

porating any constraints of relations. This further confirms the superior expressive power of box

embeddings.

In summary, box embeddings improve accuracy and consistency of reasoning and BEUrRE de-

livers better fact ranking performance than baselines.

4.6 Conclusion

This chapter presents a novel uncertain knowledge graph embedding method with calibrated prob-

abilistic semantics. Our model BEUrRE encodes each entity as a Gumble box representation

whose volume represents marginal probability. A relation is modeled as two affine transforms on
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the head and tail entity boxes. We also incorporate logic constraints that capture the high-order

dependency of facts and enhance global reasoning consistency. Extensive experiments demonstra-

tion the promising capability of BEUrRE on confidence prediction and fact ranking for uncertain

knowledge graphs.
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CHAPTER 5

Knowledge Graph Completion via Ensemble Knowledge

Transfer

In this chapter, we present our ensemble learning framework that combines multiple knowledge

graphs in different languages for query answering.

5.1 Introduction

Existing representation learning methods mainly investigate knowledge graph query answering

within a single monolingual knowledge graph. As different language-specific knowledge graphs

have their own strengths and limitations on data quality and coverage, we investigate a more nat-

ural solution, which seeks to combine embedding models of multiple knowledge graphs in an

ensemble-like manner. This approach offers several potential benefits. First, embedding mod-

els of well-populated knowledge graphs (e.g. English knowledge graphs) are expected to capture

richer knowledge because of better data quality and denser graph structures. Therefore, they would

provide ampler signals to facilitate inferring missing facts on sparser knowledge graphs. Sec-

ond, combining the embeddings allows exchanging complementary knowledge across different

language-specific knowledge graphs. This provides a versatile way of leveraging specific knowl-

edge that is better known in some knowledge graphs than the others. For example, consider the

facts about the oldest Japanese novel The Tale of Genji. English DBpedia [53] only records its

genre as Monogatari (story), whereas Japanese DBpedia identifies more genres, including Love

Story, Royal Family Related Story, Monogatari and Literature-Novel. Similarly, it is reasonable to

expect a Japanese knowledge graph embedding model to offer significant advantages in inferring
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Figure 5.1: A depiction of the ensemble inference process answering the query (The Tale of Genji,
genre, ?t) with multiple language-specific knowledge graph embeddings. Ground truth answers are
markedMonogatari is a traditional Japanese literary form.

knowledge about other Japanese cultural entities such as Nintendo and Mount Fuji. Moreover,

ensemble inference provides a mechanism to assess the credibility of different knowledge sources

and thus leads to a more accurate final prediction.

Despite the potential benefits, combining predictions from multiple knowledge graph embed-

dings represents a non-trivial technical challenge. On the one hand, knowledge transfer across dif-

ferent embeddings is hindered by the lack of reliable alignment information that bridges different

knowledge graphs. Recent works on multilingual knowledge graph embeddings provide support

for automated entity matching [18, 15, 84, 85]. However, the performance of the state-of-the-art

entity matching methods is still far from perfect [85], which may cause erroneous knowledge trans-

fer between two knowledge graphs. On the other hand, independently extracted and maintained

language-specific knowledge graphs may inconsistently describe some facts, therefore causing

different knowledge graph embeddings to give inconsistent predictions and raising a challenge to

identifying the trustable sources. For instance, while the English DBpedia strictly distinguishes the

network of a TV series (e.g. BBC) from its channel (e.g. BBC One) with two separate relations,

i.e., network and channel, the Greek DBpedia only uses channel to represent all of those.

Another example of inconsistent information is that Chinese DBpedia labels the birth place of the
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ancient Chinese poet Li Bai as Sichuan, China, which is mistakenly recorded as Chuy, Kyrgyz

in English DBpedia. Due to the rather independent extraction process of each knowledge graph,

such inconsistencies are inevitable, calling upon a reliable approach to identify credible knowledge

among various sources.

In this chapter, we propose KEns (Knowledge Ensemble), which, to the best of our knowledge,

is the first ensemble framework of knowledge graph embedding models. Fig. 5.1 depicts the

ensemble inference process of KEns. KEns seeks to improve knowledge graph completion in

a multilingual setting, by combining predictions from embedding models of multiple language-

specific knowledge graphs and identifying the most probable answers from those prediction results

that are not necessarily consistent. Experiments on five real-world language-specific knowledge

graphs show that KEns significantly improves state-of-the-art fact prediction methods that solely

rely on a single knowledge graph embedding. We also provide detailed case studies to interpret

how a sparse, low-resource knowledge graph can benefit from embeddings of other knowledge

graphs, and how exclusive knowledge in one knowledge graph can be broadcasted to others.

5.2 Related Work

We hereby discuss two lines of work that are closely related to this topic, in addition to monolingual

knowledge graph embedding models, which have been discussed in Section 2.2

5.2.1 Multilingual Knowledge Graph Embeddings

Recent studies have extended embedding models to bridge multiple knowledge graphs, typically

for knowledge graphs of multiple languages. MTransE [18] jointly learns a transformation across

two separate translational embedding spaces along with the knowledge graph structures. BootEA

[84] introduces a bootstrapping approach to iteratively propose new alignment labels to enhance

the performance. MuGNN [12] encodes knowledge graphs via multi-channel Graph Neural Net-

work to reconcile the structural differences. Some others also leverage side information to enhance

the alignment performance, including entity descriptions [15, 108], attributes [92, 83, 106], neigh-
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borhood information [99, 54, 86, 85] and degree centrality measures [65]. A systematic summary

of relevant approaches is given in a recent survey by [87]. Although these approaches focus on the

knowledge graph alignment that is different from the problem we tackle here, such techniques can

be leveraged to support entity matching between knowledge graphs, which is a key component of

our framework.

5.2.2 Ensemble Techniques

Ensemble learning has been widely used to improve machine learning results by combining mul-

tiple models on the same task. Representative approaches include voting, bagging [11], stacking

[102] and boosting [31]. Boosting methods seek to combine multiple weak models into a single

strong model, particularly by learning model weights from the sample distribution. Representative

methods include AdaBoost [31] and RankBoost [30], which target at classification and ranking

respectively. AdaBoost starts with a pool of weak classifiers and iteratively selects the best one

based on the sample weights in that iteration. The final classifier is a linear combination of the

selected weak classifiers, where each classifier is weighted by its performance. In each iteration,

sample weights are updated according to the selected classifier so that the subsequent classifiers

will focus more on the hard samples. RankBoost seeks to extend AdaBoost to ranking model com-

bination. The model weights are learned from the ranking performance in a boosting manner. In

this chapter, we extend RankBoost to combine ranking results from multiple knowledge graph em-

bedding models. This technique addresses knowledge graph completion by combining knowledge

from multiple sources and effectively compensates for the inherent errors in any entity matching

processes.

5.3 Method

In this section, we introduce KEns, an embedding-based ensemble inference framework for mul-

tilingual knowledge graph completion.

KEns conducts two processes: embedding learning and ensemble inference. The embedding
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learning process trains the knowledge model that encodes entities and relations of every knowledge

graph in a shared embedding space, as well as the alignment model that seizes the correspondence

in different knowledge graphs and enables the projection of queries and answers across different

knowledge graph embeddings. The ensemble inference process combines the predictions from

multiple knowledge graph embeddings to improve fact prediction. Particularly, to assess the con-

fidence of predictions from each source, we introduce a boosting method to learn entity-specific

weights for knowledge models.

5.3.1 Preliminaries

A knowledge graph G consists of a set of (relational) facts {(h, r, t)}, where h and t are the head

and tail entities of the fact (h, r, t), and r is a relation. Specifically, h, t ∈ E (the set of entities in

G), and r ∈ R (the set of relations). To cope with knowledge graph completion, the fact prediction

task seeks to fill in the right entity for the missing head or tail of an unseen triple. Without loss

of generality, we hereafter discuss the case of predicting missing tails. We refer to a triple with

a missing tail as a query q = (h, r, ?t). The answer set Ω(q) consists of all the right entities that

fulfill q. For example, we may have a query (The Tale of Genji, genre, ?t), and its answer set will

include Monogatari, Love Story, etc.

Given knowledge graphs in M languages G1, G2, . . . , GM (|Ei| ≤ |Ej|, i < j), we seek to

perform fact prediction on each of those by transferring knowledge from the others. We consider

fact prediction as a ranking task in the knowledge graph embedding space, which is to transfer the

query to external knowledge graphs and to combine predictions from multiple embedding models

into a final ranking list. Particularly, given the existing situation of the major knowledge graphs,

we use the following settings: (i) entity alignment information is available between any two knowl-

edge graphs, though limited; and (ii) relations in different language-specific knowledge graphs are

represented with a unified schema. The reason for the assumption is that unifying relations is

usually feasible, since the number of relations is often much smaller compared to the enormous

number of entities in knowledge graphs. This has been de facto achieved in a number of influential

knowledge bases, including DBpedia [53], Wikidata [95] and YAGO [68]. In contrast, knowledge

49



graphs often consist of numerous entities that cannot be easily aligned, and entity alignment is

available only in small amounts.

5.3.2 Embedding Learning

The embedding learning process jointly trains the knowledge model and the alignment model fol-

lowing [18], while self-learning is added to improve the alignment learning. The details are de-

scribed below.

5.3.2.1 Knowledge Model

A knowledge model seeks to encode the facts of a knowledge graph in the embedding space. For

each language-specific knowledge graph, it characterizes the plausibility of its facts. Notation-

wise, we use boldfaced h, r, t as embedding vectors for head h, relation r and tail t respectively.

The learning objective is to minimize the following margin ranking loss:

J G
K =

∑
(h,r,t)∈G,

(h′,r,t′)/∈G

[f(h′, r, t′)− f(h, r, t) + γ]+ (5.1)

where [·]+ = max(·, 0), and f is a model-specific triple scoring function. The higher score indi-

cates the higher likelihood that the fact is true. γ is a hyperparameter, and (h′, r, t′) is a negative

sampled triple obtained by randomly corrupting either head or tail of a true triple (h, r, t).

We here consider two representative triple scoring techniques: TransE [9] and RotatE [88].

TransE models relations as translations between head entities and tail entities in a Euclidean space,

while RotatE models relations as rotations in a complex space. The triple scoring functions are

defined as follows.

fTransE(h, r, t) = −‖h + r − t‖2 (5.2)

fRotatE(h, r, t) = −‖h ◦ r − t‖2 (5.3)
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where ◦ : Cd × Cd → Cd denotes Hadamard product for complex vectors, and ‖ · ‖2 denotes L2

norm.

5.3.2.2 Alignment Model

An alignment model is trained to match entity counterparts between two knowledge graphs on the

basis of a small amount of seed entity alignment. We embed all knowledge graphs in one vector

space and make each pair of aligned entities embedded closely. Given two knowledge graphs Gi

and Gj with |Ei| ≤ |Ej|, the alignment model loss is defined as:

J Gi↔Gj

A =
∑

(ei,ej)∈ΓGi↔Gj

‖ei − ej‖2 (5.4)

where ei ∈ Ei, ej ∈ Ej and ΓGi↔Gj
is the set of seed entity alignment between Gj and Gi.

Assuming the potential inaccuracy of alignment, we do not directly assign the same vector to

aligned entities of different language-specific knowledge graphs.

Particularly, as the seed entity alignment is provided in small amounts, the alignment pro-

cess conducts self-learning, where training iterations incrementally propose more training data on

unaligned entities to guide subsequent iterations. At each iteration, if a pair of unaligned enti-

ties in two knowledge graphs are mutual nearest neighbors according to the CSLS measure [21],

KEns adds this highly confident alignment to the training data.

5.3.2.3 Learning Objective

We conduct joint training of knowledge models for multiple knowledge graphs and alignment

models between each pair of them via minimizing the following loss function:

J =
M∑
m=1

J Gm
K + λ

M∑
i=1

M∑
j=i+1

J Gi↔Gj

A (5.5)

where J Gm
K is the loss of the knowledge model on Gm as defined in Eq (5.1), J Gi↔Gj

A is the
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alignment loss between Gi and Gj . λ is a positive hyperparameter that weights the two model

components. Following [18], instead of directly optimizing J in Eq. (5.5), our implementation

optimizes each J G
K and each λJ Gi↔Gj

A alternately in separate batches. In addition, we enforce

L2-regularization to prevent overfitting.

5.3.3 Ensemble Inference

We hereby introduce how KEns performs fact prediction on multiple knowledge graphs via en-

semble inference.

5.3.3.1 Cross-Lingual Query and Knowledge Transfer

To facilitate the process of completing knowledge graph Gi with the knowledge from another

knowledge graph Gj , KEns first predicts the alignment for entities between Gi and Gj . Then, it

uses the alignment to transfer queries from Gi to Gj , and transfer the results back. Specifically,

alignment prediction is done by performing an kNN search in the embedding space for each entity

in the smaller knowledge graph (i.e. the one with fewer entities) and find the closest counterpart

from the larger knowledge graph. Inevitably, some entities in the larger knowledge graph will not

be matched with a counterpart due to the 1-to-1 constraint. In this case, we do not transfer queries

and answers for that entity.

5.3.3.2 Weighted Ensemble Inference

We denote the embedding models of G1, . . . , GM as f1, . . . , fM . On the target knowledge graph

where we seek to make predictions, given each query, the entity candidates are ranked by the

weighted voting score of the models:

s(e) =
M∑
i=1

wi(e)Ni(e) (5.6)
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where e is an entity on the target knowledge graph, and wi(e) is an entity-specific model weight,

Ni(e) is 1 if e is ranked among top K by fi, otherwise 0.

We propose three variants of KEns that differ in the computing of wi(e), namely KEnsb ,

KEnsv and KEnsm. Specifically, KEnsb learns an entity-specific weight wi(e) for each entity in a

boosting manner, KEnsv fixes wi(e) = 1 for all fi and e (i.e. majority voting), and KEnsm adopts

mean reciprocal rank (MRR) of fi on the validation set of the target knowledge graph as wi(e).

We first present the technical details of the boosting-based KEnsb.

5.3.3.3 Boosting based Weight Learning

KEnsb seeks to learn model weights for ranking combination, which aims at reinforcing correct

beliefs and compensating for alignment error. An embedding model that makes more accurate

predictions should receive a higher weight. Inspired by RankBoost [30], we reduce the ranking

combination problem to a classifier ensemble problem. KEnsb therefore learns model weights in

a similar manner as AdaBoost.

To compute entity-specific weights wi(e), KEnSb evaluates the performance of fi on a set of

validation queries related to e. These queries are converted from all the triples in the validation set

that mention e. An example of validation queries for the entity The Tale of Genji is given as below.

Example 5.3.1. Examples of triples and validation queries for the entity The Tale of Genji.

Triples:

{(The Tale of Genji, country, Japan)

(The Tale of Genji, genre, Monogatari)

(The Tale of Genji, genre, Love Story)}

Queries:

Q = {q1 = (The Tale of Genji, country, ?t)

q2 = (The Tale of Genji, genre, ?t)}

Similar to RankBoost [30], given a query q, KEnsb evaluates the ranking performance of a model
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by checking if each of the critical entity pairs {(e, e′)} is ranked in correct order, where e is a

ground truth tail and e′ is an incorrect one. An example of critical entity pairs is given as below:

Example 5.3.2. Critical entity pairs for the query (The Tale of Genji, genre, ?t). Ground truth

tails are boldfaced. Pairs with x-marks indicate wrong prediction orders.

Correct ranking :

Monogatari, Love Story, Modernist, Science Fiction

Predicted ranking:

Modernist, Monogatari, Love Story, Science Fiction

Critical pair ranking results:

(Monogatari, Modernist) 7, (Love Story, Modernist) 7

(Monogatari, Science Fiction) X,

(Love Story, Science Fiction) X

Uncritical pairs:

(Monogatari, Love Story), (Modernist, Science Fiction)

The overall objective of KEnSb is to minimize the sum of ranks of all correct answers in the

combined ranking list
∑

q

∑
e∈Ω(q) r(e), where Ω(q) is the answer set of query q and r(e) is the

rank of entity e in the combined ranking list of the ensemble inference. Essentially, the above

objective is minimizing the number of mis-ordered critical entity pairs in the combined ranking

list. Let the set of all the critical entity pairs from all the validation queries of an entity as P . [30]

have proved that, when using RankBoost, this ranking loss is bounded as follows:

|{p : p ∈ P, p is mis-ordered}| ≤ |P |
M∏
m=1

Zm

where M is the number of knowledge graphs and therefore the maximum number of rounds in
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boosting. Zm is the weighted ranking loss of the m-th round:

Zm =
∑
p∈P

Dm(p)e−w
mJpKm (5.7)

where JpKm = 1 if the critical entity pair p is ranked in correct order by the selected embedding

model in the m-th round, otherwise JpKm = −1, Dm(p) is the weight of the critical entity pair

p in the m-th round, and wm is the weight of the chosen model in that round. Now the ranking

combination problem is reduced to a common classifier ensemble problem.

The boosting process alternately repeats two steps: (i) Evaluate the ranking performance of

the embedding models and choose the best one fm according to the entity pair weight distribution

in that round; (ii) Update entity pair weights to put more emphasis on the pairs which fm ranks

incorrectly.

Entity pair weights are initialized uniformly over P as D1(p) = 1
|P | , p ∈ P . In the m-th round

(m = 1, 2, ...,M), KEnSb chooses an embedding model fm and sets its weight wm, seeking to

minimize the weighted ranking loss Zm defined in Eq.(5.7). By simple calculus, when choosing

the embedding model fi as the model of the m-th round, wmi should be set as follows to minimize

Zm:

wmi =
1

2
ln(

∑
p∈P,JpK=1 D

m(p)∑
p∈P,JpK=−1D

m(p)
) (5.8)

As we can see from Eq. (5.8), the higher wmi indicates the better performance of fi under the

current entity pair weight distribution Dm. We select the best embedding model in the m-th round

fm based on the maximum weight wm = max{wm1 , ..., wmM}.

After choosing the best model fm at this iteration, we update the entity pair weight distribution

to put more emphasis on what fm ranked wrong. The new weight distribution Dm+1 is updated as:

Dm+1(p) =
1

Zm
Dm(p)e−w

mJpKm (5.9)

where Zm works as a normalization factor. KEnSb decreases the weight of D(p) if the selected

model ranks the entity pair in correct order and increases the weight otherwise. Thus, D(p) will
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Lang. EN FR ES JA EL
#Ent. 13,996 13,176 12,382 11,805 5,231
#Rel. 831 178 144 128 111

#Triples 80,167 49,015 54,066 28,774 13,839

Table 5.1: Statistics of DBP-5Ldataset. Ent. and Rel. stand for entities and relations respectively.

tend to concentrate on the pairs whose relative ranking is hardest to determine.

For queries related to a specific entity, this process is able to recognize the embedding mod-

els that perform well on answering those queries and rectify the mistakes made in the previous

iteration.

5.3.3.4 Other Ensemble Techniques

We also investigate two other model variants with simpler ensemble techniques.

1. Majority Vote (KEnsv): A straightforward ensemble method is to re-rank entities by their

nomination counts in the prediction of all knowledge models, which substitutes the voting

score (Eq. 5.6) with s(e) =
∑M

i=1Ni(e), where Ni(e) is 1 if e is ranked among the top K by

the knowledge model fi, otherwise 0. When there is a tie, we order by the MRR given by

the models on the validation set.

2. MRR Weighting (KEnsm): MRR is a widely-used metric for evaluating the ranking perfor-

mance of a model [9, 105, 91], which may also serve as a weight metric for estimating the

prediction confidence of each language-specific embedding in ensemble inference [74]. Let

the MRR of fi be ui on the validation set, the entities are ranked according to the weighted

voting score s(e) =
∑M

i=1 uiNi(e).

5.4 Experiments

In this section, we conduct the experiment of fact prediction by comparing KEns variants with

various knowledge graph embeddings. We also provide a detailed case study to help understand
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the principle of ensemble knowledge transfer.

5.4.1 Experiment Settings

To the best of our knowledge, existing datasets for fact prediction contain only one monolingual

knowledge graph or bilingual knowledge graphs. Hence, we prepared a new dataset DBP-5L,

which contains five language-specific knowledge graphs extracted from English (EN), French

(FR), Spanish (ES) and Japanese (JA) and Greek (EL) DBpedia [53]. Table 5.1 lists the statis-

tics of the contributed dataset DBP-5L. The relations of the five knowledge graphs are represented

in a unified schema, which is consistent with the problem definition in Section 5.3.1. The English

knowledge graph is the most populated one among the five. To produce knowledge graphs with a

relatively consistent set of entities, we induce the subgraphs by starting from a set of seed entities

where we have alignment among all language-specific knowledge graphs and then incrementally

collecting triples that involve other entities. Eventually between any two knowledge graphs, the

alignment information covers around 40% of entities. Based on the same set of seed entities,

the Greek knowledge graph ends up with a notably smaller vocabulary and fewer triples than the

other four. We split the facts in each knowledge graph into three parts: 60% for training, 30% for

validation and weight learning, and 10% for testing.

5.4.1.1 Experimental Setup

We use the Adam [49] as the optimizer and fine-tune the hyper-parameters by grid search based

on Hits@1 on the validation set. We select among the following sets of hyper-parameter val-

ues: learning rate lr ∈ {0.01, 0.001, 0.0001}, dimension d ∈ {64, 128, 200, 300}, batch size

b ∈ {256, 512, 1024}, and TransE margin γ ∈ {0.3, 0.5, 0.8}. The best setting is {lr = 0.001,

d = 300, b = 256} for KEns(TransE) and {lr = 0.01, d = 200, b = 512} for KEns(RotatE). The

margin for TransE is 0.3. The L2 regularization coefficient is fixed as 0.0001.
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5.4.1.2 Evaluation Protocol

For each test case (h, r, t), we consider it as a query (h, r, ?t) and retrieve top K prediction results

for ?t. We compare the proportion of queries with correct answers ranked within top K retrieved

entities. We report three metrics with K as 1, 3, 10. Hits@1 is equivalent to accuracy. All three

metrics are preferred to be higher. Although another common metric, Mean Reciprocal Rank

(MRR), has been used in previous works [9], it is not applicable to the evaluation of our framework

because our ensemble framework combines the top entity candidates from multiple knowledge

models and yields top K final results without making any claims for entities out of this scope.

Following previous works, we use the “filtered” setting with the premise that the candidate space

has excluded the triples that have been seen in the training set [98].

5.4.1.3 Competitive Methods

We compare six variants of KEns, which are generated by combining two knowledge models and

three ensemble inference techniques introduced in in Section 5.3. For baseline methods, besides

the single-embedding TransE [9] and RotatE [88], we also include DistMult [105], TransD [43],

and HolE [61]. After extensive hyperparameter tuning, the baselines are set to their best config-

urations. We also include a baseline named RotatE+PARIS, which trains RotatE on 5 knowledge

graphs and uses the representative non-embedding symbolic entity alignment tool PARIS [80] for

entity matching. PARIS delivered entity matching predictions for 58%-62% entities in the English,

French, and Spanish knowledge graph, but almost no matches are delivered for entities in the Greek

and Japanese knowledge graph, since PARIS mainly relies on entity label similarity. The results

on the Greek and Japanese knowledge graph are thus omitted for RotatE+PARIS.

5.4.2 Main Results

The results are reported in Table 5.2. As shown, the ensemble methods by KEns lead to consistent

improvement in fact prediction. Overall, the ensemble inference leads to 1.1%-13.0% of improve-

ment in Hits@1 over the best baseline methods. The improved accuracy shows that it is effective
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KG Greek Japanese Spanish French English
Hits@k (%) 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10

TransD 2.8 16.9 29.8 4.2 16.3 28.8 2.12 20.4 11.5 3.3 14.4 25.7 2.9 15.4 27.4
DistMult 8.9 13.0 11.3 9.3 18.4 27.5 7.4 15.0 22.4 6.1 14.3 23.8 8.8 19.4 30.0

HolE 4.2 9.5 18.3 25.5 29.5 32.8 20.1 26.8 29.4 22.4 24.4 28.9 12.3 20.4 25.4
TransE 13.1 23.4 43.7 21.1 34.4 48.5 13.5 29.4 45.0 17.5 33.1 48.8 7.3 16.4 29.3

KEnsv(TransE) 23.1 36.7 64.7 22.6 35.2 52.5 15.0 28.3 49.0 18.7 29.4 52.0 10.8 20.4 39.4
KEnsm(TransE) 26.3 42.1 65.8 26.1 37.7 55.3 16.8 32.9 48.6 20.5 35.6 52.8 11.4 21.2 31.3
KEnsb(TransE) 26.4 42.4 66.1 26.7 39.8 56.4 17.4 32.6 48.3 20.8 35.9 53.1 11.7 21.8 32.0

RotatE 14.5 18.8 36.2 26.4 36.2 60.2 21.2 31.6 53.9 23.2 29.4 55.5 12.3 25.4 30.4
RotatE+PARIS - - - - - - 20.8 39.4 59.1 22.8 32.4 60.8 12.4 22.7 31.5
KEnsv(RotatE) 20.5 34.3 50.1 31.9 50.0 65.0 20.8 41.0 59.9 23.7 42.7 61.9 13.4 23.6 34.2
KEnsm(RotatE) 22.0 35.0 51.4 32.0 49.9 65.0 21.2 41.6 60.0 24.5 44.8 62.5 12.1 24.5 34.3
KEnsb(RotatE) 27.5 40.6 56.5 32.9 49.9 64.8 22.3 42.4 60.6 25.2 44.5 62.6 14.4 27.0 39.6

Table 5.2: Fact prediction results on DBP-5L. The overall best results are under-scored.

to leverage complementary knowledge from external knowledge graphs for knowledge graph com-

pletion. We also observe that KEns brings larger gains on sparser knowledge graphs than on the

well-populated ones. Particularly, on the low-resource Greek knowledge graph, KEnsb(RotatE)

improves Hits@1 by as much as 13.0% over its single-knowledge graph counterpart. This finding

corroborates our intuition that the knowledge graph with lower knowledge coverage and sparser

graph structure benefits more from complementary knowledge.

Among the variants of ensemble methods, KEnsm offers better performance than KEnsv,

and KEnsb outperforms the other two in general. For example, on the Japanese knowledge

graph, KEnsv(TransE) improvesHits@1 by 3.5% from the single-knowledge graph TransE, while

KEnsm leads to a 5.0% increase, and KEnsb further provides a 5.6% of improvement. The results

suggest that MRR is an effective measure of the trustworthiness of knowledge models during en-

semble inference. Besides, KEnsb is able to assess trustworthiness at a finer level of granularity

by learning entity-specific model weights and can thus further improve the performance.

In summary, the promising results by KEns variants show the effectiveness of transferring

and leveraging cross-lingual knowledge for knowledge graph completion. Among the ensemble

techniques, the boosting technique represents the most suitable one for combining the prediction

results from different models.
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Figure 5.2: Average model weights learned by KEnsb(TransE).

5.4.3 Case Studies

In this section, we provide case studies to show how KEns is able to transfer cross-lingual knowl-

edge to populate different knowledge graphs.

5.4.3.1 Model Weights

The key to the significantly enhanced performance of KEnsb is the effective combination of mul-

tilingual knowledge from multiple sources. Fig 5.2 shows the average model weight learnt by

KEnsb(TransE), which depicts how external knowledge from cross-lingual knowledge graphs con-

tributes to target knowledge graph completion in general. The model weights imply that sparser

knowledge graphs benefit more from the knowledge transferred from others. Particularly, when

predicting for the Greek knowledge graph, the weights of other languages sums up to 81%. This

observation indicates that the significant boost received on the Greek knowledge graph comes with

the fact that it has accepted the most complementary knowledge from others. In contrast, when

predicting on the most populated English knowledge graph, the other language-specific models

give a lesser total weight of 57%.

Among the three KEns variants, the superiority of KEnsb is attributed to identification of more
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11% 25% 18% 18% 28%
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EN
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FR
EL

Figure 5.3: Examples of language-specific model weights learned by KEnsb(TransE). Percentages have
been rounded.

credible knowledge sources, thus making more accurate predictions. For language-specific knowl-

edge graphs, the higher level of credibility often stems from the cultural advantage the knowledge

graph has over the entity. Fig 5.3 presents the model weights for 6 culture-related entities learned

by KEnsb(TransE). It shows that KEns can locate the language-specific knowledge model that has

a cultural advantage and assign it with a higher weight, which is the basis of an accurate ensemble

prediction.

5.4.3.2 Ensemble Inference

To help understand how the combination of multiple knowledge graphs improves knowledge graph

completion and show the effectiveness of leveraging complementary culture-specific knowledge ,

we present a case study about predicting the fact (Nintendo, industry, ?t) for English

knowledge graph. Table 5.3 lists the top 3 predicted tails yielded by the KEns(TransE) variants,

along with those by the English knowledge model and supporter knowledge models before ensem-

ble. The predictions made by the Japanese knowledge graph are the closest to the ground truths.

The reason may be that Japanese knowledge graph has documented much richer knowledge about

this Japanese video game company, including many of the video games that this company has re-
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Table 5.3: An example of fact prediction on the English knowledge graph by the English knowledge
model, four supporter knowledge models, and KEns(TransE) variants. Top 3 predicted tails for the query
(Nintendo, industry, ?t) are listed. Ground truths are boldfaced.

Model Top 3 Predicted Tails
English Television, Publishing, Information technology
Japanese Video game, Anime, Consumer electronics
Spanish Music, Telecommunication, Retail
French Retail, Television, Video game,
Greek Nintendo, Music, Wii
KEnsv [Video game, Television](tie), Music
KEnsm Television, Video game, Music
KEnsb Video game, Television, Consumer electronics

leased. Among the three KEns variants, KEnsb correctly identifies Japanese as the most credible

source and yields the best ranking.

5.5 Conclusion

In this chapter, we have proposed a new ensemble prediction framework aiming at collaboratively

predicting unseen facts using embeddings of different language-specific knowledge graphs. In the

embedding space, our approach jointly captures both the structured knowledge of each knowledge

graph and the entity alignment that bridges the knowledge graphs. The significant performance im-

provements delivered by our model on the task of knowledge graph completion were demonstrated

by extensive experiments. This work also suggests promising directions of future research. One is

to exploit the potential of KEns on completing low-resource knowledge graphs, and the other is

to extend the ensemble transfer mechanism to population sparse domain knowledge in biological

[36] and medical knowledge bases [109]. Pariticularly, we also seek to ensure the global logical

consistency of predicted facts in the ensemble process by incorporating probabilistic constraints

[19].
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CHAPTER 6

Answering Complex First-Order Logical Queries

6.1 Introduction

One of the fundamental tasks over knowledge graphs is to answer complex queries involving log-

ical reasoning, e.g., answering First-Order Logical (FOL) queries with existential quantification

(∃), conjunction (∧), disjunction (∨), and negation (¬). For instance, the question “Who sang the

songs that were written by John Lennon or Paul McCartney but never won a Grammy Award?”

can be expressed as the FOL query shown in Fig 6.1.

This task is challenging due to time complexity and incompleteness of knowledge graphs.

FOL query answering has been studied as a graph query optimization problem in the database

community [37, 111, 73]. These methods traverse the knowledge graph to retrieve answers for each

sub-query and then merge the results. Though being extensively studied, these methods cannot well

resolve the above-mentioned challenges. The time complexity of traversing on knowledge graph

exponentially grows with the query complexity and is affected by the size of the intermediate

results. This makes it difficult to scale to modern knowledge graphs, whose entities are often

numbered in millions [8, 95]. For example, Wikidata is one of the most influential knowledge

graphs and reports that their query engine fails when the number of entities in a sub-query (e.g.

people born in Germany) exceeds a certain threshold1. In addition, real-world knowledge graphs

are often incomplete, which prevents directly answering many queries by searching knowledge

graphs. A recent study shows that only 0.5% of football players in Wikidata have a highly complete

profile, while over 40% contain only basic information [6].

1https://www.wikidata.org/wiki/Wikidata:SPARQL query service/query optimization
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Figure 6.1: FOL query and its dependency graph for the question “Who sang the songs that were written by
John Lennon or Paul McCartney but never won a Grammy Award?”.

To address the challenges of time complexity and knowledge graph incompleteness, a line of

recent studies [35, 69, 71] embed logical queries and entities into the same vector space. The idea

is to represent a query using a tree-shaped dependency graph (Figure 6.1) and embed a complex

logical query by iteratively computing embeddings from anchor entities to the target node in a

bottom-up manner. The continuous and meaningful entity embeddings empower these approaches

to handle missing edges. In addition, these models significantly reduce time and space complexity

for inference, as they reduce query answering to dense similarity matching of query and entity

embeddings and can speed it up using methods like maximum inner product search (MIPS) [76].

These methods nonetheless entail several limitations: First, the logic operators in these models

are often defined ad-hoc, and many do not satisfy basic logic laws (e.g. the associative law (ψ1 ∧

ψ2) ∧ ψ3 ≡ ψ1 ∧ (ψ ∧ ψ3) for logical formulae ψ1, ψ2, ψ3), which limits their inference accuracy.

Second, the logical operators of existing works are based on deep architectures, which require

many training queries containing such logic operations to learn the parameters. This greatly limits

the models’ scope of application, since it is challenging to collect a large number of reasonable

complex queries with accurate answers.

Our goal is to create a logical query embedding framework that satisfies logical laws and pro-

vides learning-free logical operators. We hereby present FuzzQE (Fuzzy Query Embedding), a

fuzzy logic based embedding framework for answering logical queries on knowledge graphs. We

borrow the idea of fuzzy logic and use the fuzzy conjunction, disjunction, and negation to imple-

ment logical operators in a more principled and learning-free manner. Our approach provides the
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following advantages over existing approaches: (i) FuzzQE employs differentiable logical opera-

tors that fully satisfy the axioms of logical operations and can preserve logical operation properties

in vector space. This superiority is corroborated by extensive experiments on two benchmark

datasets, which demonstrate that FuzzQE delivers a significantly better performance compared

to state-of-the-art methods in answering FOL queries. (ii) Our logical operations do not require

learning any operator-specific parameters. We conduct experiments to show that even when our

model is only trained with link prediction, it achieves better results than state-of-the-art logical

query embedding models trained with extra complex query data. This represents a huge advantage

in real-world applications since complex FOL training queries are often arduous to collect. In ad-

dition, when complex training queries are available, the performance of FuzzQE can be further

enhanced.

In addition to proposing this novel and effective framework, we propose some basic properties

that an embedding model ought to possess as well as analyze whether existing models can fulfill

these conditions. The analysis provides theoretical guidance for future research on embedding-

based logical query answering models.

6.2 Related Work

Embedding entities in Knowledge Graphs (knowledge graphs) into continuous embeddings have

been extensively studied [9, 105, 91, 88], which can answer one-hop relational queries via link

prediction. These models, however, cannot handle queries with multi-hop [34] or complex logical

reasoning. [35] thus propose a graph-query embedding (GQE) framework that encodes a conjunc-

tive query via a dependency graph with relation projection and conjunction (∧) as operators. [69]

extend GQE by using box embedding to represent entity sets, where they define the disjunction

(∨) operator to support Existential Positive First-Order (EPFO) queries. [81] concurrently propose

to represent sets as count-min sketch [22] that can support conjunction and disjunction operators.

More recently, [71] further include the negation operator (¬) by modeling the query and entity set

as beta distributions. [32] extend FOL query answering to probabilistic databases. These query
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embedding models have shown promising results to conduct multi-hop logical reasoning over in-

complete knowledge graphs efficiently regarding time and space; however, we found that these

models do not satisfy the axioms of either Boolean logic [20] or fuzzy logic [50], which limits

their inference accuracy. To address this issue, our approach draws from fuzzy logic and uses the

fuzzy conjunction, disjunction, and negation operations to define the logical operators in vector

space.

In addition to the above logical query embedding models, a recent work CQD [2] proposes

training an embedding-based knowledge graph completion model (e.g. ComplEx [91]) to impute

missing edges during inference and merge entity rankings with t-norms and t-conorms [50]. Using

beam search for inference, CQD has demonstrated strong capability of generalizing from knowl-

edge graph edges to arbitrary EPFO queries. However, CQD has severe scalability issues since it

involves scoring every entity for every atomic query. This is undesirable in real-world applications,

since the number of entities in real-world knowledge graphs are often in millions [8, 95]. Further-

more, its inference accuracy is thus bound by knowledge graph link prediction performance. In

contrast, our model is highly scalable, and its performance can be further enhanced when additional

complex queries are available for training.

6.3 Preliminaries

A knowledge graph consists of a set of triples 〈es, r, eo〉, with es, eo ∈ E (the set of entities)

denoting the subject and object entities respectively and r ∈ R (the set of relations) denoting the

relation between es and eo. Without loss of generality, a knowledge graph can be represented as a

First-Order Logic (FOL) Knowledge Base, where each triple 〈es, r, eo〉 denotes an atomic formula

r(es, eo), with r ∈ R denoting a binary predicate and es, eo ∈ E as its arguments.

We aim to answer FOL queries expressed with existential quantification (∃), conjunction (∧),

disjunction(∨), and negation (¬). 2 The disjunctive normal form (DNF) of an FOL logical query q

2As in previous works [69, 2, 71], we do not consider FOL queries with universal quantification (∀). Queries
with universal quantification do not apply in real-world knowledge graphs since no entity connects with all the other
entities.
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is defined as follows:

q[V?] , V? : ∃V1, ..., Vk(v11 ∧ ... ∧ v1N1) ∨ ... ∨ (vM1 ∧ ... ∧ vMNM
)

where V? is the target variable of the query, and V1, ..., VK denote the bound variable nodes. Each

vmn (m = 1, ...,M, n = 1, ..., Nm) represents a literal, i.e. a logical atom or the negation of a

logical atom:

vmn =



r(e, V ) r ∈ R, e ∈ E , V ∈ {V?, V1, ..., Vk}

¬r(e, V ) r ∈ R, e ∈ E , V ∈ {V?, V1, ..., Vk}

r(V, V ′) r ∈ R, V, V ′ ∈ {V?, V1, ..., Vk}, V 6= V ′

¬r(V, V ′) r ∈ R, V, V ′ ∈ {V?, V1, ..., Vk}, V 6= V ′

The goal of answering the logical query q is to find a set of entities Sq = {a|a ∈ E , q[a] holds true},

where q[a] is a logical formula that substitutes the query target variable V? with the entity a.

A query can be considered as a combination of multiple sub-queries. For example, the query

q[V?] = V? :Compose(John Lennon, V?) ∧ Compose(Paul McCartney, V?) can be considered as

q1 ∧ q2, where

q1[V?] = V? : Compose(John Lennon, V?)

q2[V?] = V? : Compose(Paul McCartney, V?)

Formally, we have:

Sq1∧q2 = Sq1 ∩ Sq1 ;

Sq1∨q2 = Sq1 ∪ Sq1 ;

S¬q = S{
q

where (·){ denote set complement respectively.

Notation wise, we use boldfaced notations pe and Sq to represent the embedding for entity e
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Table 6.1: Here we list eight logic laws (I - VIII) from classical logic [110] and give the corresponding
properties that a query embedding model should possess. ψ1, ψ2, ψ3 represent logical formulae. φ denotes
the scoring function that estimates the probability that the entity e can answer the query q. φ(q, e) ↑⇒
φ(¬q, e) ↓ means φ(¬q, e) is monotonically decreasing with regard to φ(q, e).

Logic Law Model Property

∧

Conjunction
Elimination

I ψ1 ∧ ψ2 → ψ1 φ(q1 ∧ q2, e) ≤ φ(q1, e)
ψ1 ∧ ψ2 → ψ2 φ(q1 ∧ q2, e) ≤ φ(q2, e)

Commutativity
II ψ1 ∧ ψ2 ↔ ψ2 ∧ ψ1 φ((q1 ∧ q2), e) = φ((q2 ∧ q1), e)

Associativity
III (ψ1 ∧ ψ2) ∧ ψ3 ↔ φ((q1 ∧ q2) ∧ q3, e)

ψ1 ∧ (ψ2 ∧ ψ3) = φ(q1 ∧ (q2 ∧ q3), e)

∨

Disjunction
Amplification

IV ψ1 → ψ1 ∨ ψ2 φ(q1, e) ≤ φ(q1 ∨ q2, e)
ψ1 → ψ1 ∨ ψ1 φ(q2, e) ≤ φ(q1 ∨ q2, e)

Commutativity
V ψ1 ∨ ψ2 ↔ ψ2 ∨ ψ1 φ((q1 ∨ q2), e) = φ((q2 ∨ q1), e)

Associativity
VI (ψ1 ∨ ψ2) ∨ ψ3 ↔ φ((q1 ∨ q2) ∨ q3, e)

ψ1 ∨ (ψ2 ∨ ψ3) = φ(q1 ∨ (q2 ∨ q3), e)

¬

Involution
VII ¬¬ψ1 → ψ1 φ(q, e) = φ(¬¬q, e)

Non-Contradiction
VIII ψ1 ∧ ¬ψ1 → 0 φ(q, e) ↑ ⇒ φ(¬q, e) ↓

and the embedding for Sq, i.e. the answer entity set for query q, respectively. We use ψ1, ψ2, ψ3

denote logical formulae.

6.3.1 Logic Laws and Model Properties

The general idea of logical query embedding models is to recursively define the embedding of

a query (e.g., q1 ∧ q2) based on logical operations on its sub-queries’ embeddings (e.g., q1 and

q2). These logical operations have to satisfy logic laws, which serve as additional constraints to

learning-based query embedding models. Unfortunately, most existing query embedding models

have (partially) neglected these laws, which result in inferior performance.
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Table 6.2: Comparisons of different models regarding the properties of logical operations. Expr. stands
for expressivity and indicates whether the model can handle such logical operations, and closed indicates
whether the embedding is in a closed form. Commu., Asso., Elim., Ampli., Inv. and Non-contra. stand
for commutativity, associativity, conjunction elimination, disjunction amplification, involution, and non-
contradiction respectively.

∧ ∨ ¬

Expr. (Closed) Com. Asso. Elim. Expr. (Closed) Com. Asso. Ampli. Expr. (Closed) Inv. Non-Contra.

GQE X(X) X 7 7 X(7) X X X 7 N/A N/A

Query2Box X(X) X X X X(7) X X X 7 N/A N/A

BetaE X(X) X 7 7
(i) DNF X(7) X X X

X(X) X 7(ii) DM X(X) X X 7

FuzzQE X(X) X X X X(X) X X X X(X) X X

Figure 6.2: Illustration of query embeddings and embeddings of conjunctive queries in GQE, Query2Box,
and BetaE. The conjunction operators takes embeddings of queries q1, q2 as input and produce an embedding
for q1 ∧ q2.

In this section, we study these logic laws shared by both classical logic and basic fuzzy logic

[110] and deduce several basic properties that the logical operators should possess. The logic laws

and corresponding model properties are summarized in Table 6.1.

6.3.1.1 Axiomatic Systems of Logic

Let L be the set of all the valid logic formulae under a logic system, and ψ1, ψ2, ψ3 ∈ L represent

logical formulae. I(·) denotes the truth value of a logical formula. The semantics of Boolean

Logic are defined by (i) the interpretation I : L → {0, 1}, (ii) the Modus Ponen inference rule

“from ψ1 and ψ1 → ψ2 infer ψ2”, which characterizes logic implication (→) as follows:

ψ1 → ψ2 holds if and only if I(ψ2) ≥ I(ψ1)
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and (iii) a set of axioms written in Hilbert-style deductive systems [51]. Those axioms define other

logic connectives via logic implication (→); for example, the following three axioms characterize

the conjunction (∧) of Boolean logic [20]:

ψ1 ∧ ψ2 → ψ1

ψ1 ∧ ψ2 → ψ2

(ψ3 → ψ1)→ ((ψ3 → ψ2)→ (ψ3 → ψ1 ∧ ψ2))

The first two axioms guarantee that the truth value of ψ1 ∧ ψ2 never exceeds the truth values of ψ1

and ψ2, and the last one enforces that I(ψ1∧ψ2) = 1 if I(ψ1) = I(ψ2) = 1. The three axioms also

imply commutativity and associativity of ∧.

6.3.1.2 Model Properties

Let φ(q, e) be the embedding model scoring function estimating the probability that the entity e can

answer the query q. This means that φ(q, e) estimates the truth value I(q[e]), where q[e] is a logical

formula that uses e to fill q. For example, given the query q = V? : Compose(John Lennon, V?) and

the entity e = “Let it Be”, φ(q, e) estimates the truth value of the logical formula Compose(John

Lennon, Let it Be). We can thus use logic laws to deduce reasonable properties that a query

embedding model should possess. For instance, ψ1 ∧ ψ2 → ψ1 is an axioms that characterizes

logic conjunction (∧), which enforces that I(ψ1 ∧ ψ2) ≤ I(ψ1), and we accordingly expect the

embedding model to satisfy φ(q1 ∧ q2, e) ≤ φ(q1, e), i.e., an entity e is less likely to satisfy q1 ∧ q2

than q1.

Based on the the axioms and deduced logic laws of classical logic [29], we summarize a series

of model properties that an embedding model should possess in Table 6.1. The list is not exhaustive

but indicative.
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6.3.2 Analysis of Prior Models on Model Properties

This section examines three representative logical query embedding models, namely GQE [35],

Query2Box [69], and BetaE [71], regarding their capability of satisfying the properties in Table 6.1.

We summarize our findings in Table 6.2. GQE, Query2Box, BetaE represent queries as vectors,

boxes (axis-aligned hyper-rectangles), and Beta distributions, respectively. The embedding-based

logical operators transform embeddings of sub-queries into embeddings of the outcome query.

6.3.2.1 Conjunction (∧)

Fig. 6.2 illustrates embedding-based conjunction operators of the three models, which takes em-

beddings of queries q1, q2 as input and produce an embedding for q1 ∧ q2. GQE, Query2Box, and

BetaE are purposely constructed to be permutation invariant [35, 69, 71], and their conjunction

operators all satisfy commutativity (Law II). The conjunction operators of GQE and BetaE do not

satisfy associativity (III) since they rely on the operation of averaging, which is not associative.

GQE does not satisfy conjunction elimination (I); for example, supposing that pe = 1
2
(Sq1 + Sq2)

and Sq1 6= Sq2, we have φ(q1 ∧ q2, e) > φ(q1, e). BetaE does not satisfy conjunction elimination

(I) for similar reasons.

6.3.2.2 Disjunction (∨)

Previous works handle disjunction in two ways: the Disjunctive Normal Form (DNF) rewriting

approach proposed by Query2Box [69], and the De Morgan’s law (DM) approach proposed by

BetaE [71]. The DNF rewriting method involves rewriting each query as a DNF to ensure that

the disjunction only appears in the last step, which enables the model to simply retain all input

embeddings. The model correspondingly cannot represent the disjunction result as a closed form;

for example, the disjunction of two boxes remains two separate boxes instead of one [69]. The

DM approach uses De Morgan’s law ψ2 ∨ ψ1 ≡ ¬(¬ψ2 ∧ ¬ψ1) to compute the disjunctive query

embedding, which requires the model to have a conjunction operator and a negation operator.

This approach advantageously produces representation in a closed form, allowing disjunction to
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Table 6.3: Prominent examples of t-norms and the corresponding t-norms derived by De Morgan’s law and
the negator c(a) = 1− a. a, b ∈ [0, 1]. We list the special properties of the formulas in addition to the basic
properties (i.e. commutativity, associativity, monotonicity, and boundary condition) of t-norm and t-conorm.

t-norm (∧) t-conorm (∨) Special Properties

minimum (Gödel) t(a, b) = min(a, b) s(a, b) = max(a, b) idempotent
product t(a, b) = ab s(a, b) = a+ b− ab strict monotonicity
Łukasiewicz t(a, b) = max(a+ b− 1, 0) s(a, b) = min(a+ b, 1) nilpotent

Figure 6.3: Illustration of fuzzy conjunction and disjunction, which is equivalent to fuzzy set intersection
and union respectively.

be performed at any step of the computation. The disadvantage is that if the negation operator does

not work well, the error will be amplified and affect disjunction. The BetaEDM does not satisfy

disjunction amplification (IV) since its negation operator violates non-contradiction (VIII).

6.3.2.3 Negation

To the best of our knowledge, BetaE is the only previous model that can handle negation. BetaE

has proved that its negation operator is involutory (VII). However, this operator lacks the non-

contradiction property (VIII), as for BetaE φ(¬q, e) is not monotonically decreasing with regard

to φ(q, e).

6.3.3 Fuzzy Logic

Fuzzy logic differs from Boolean logic by associating every logical formula with a truth value in

[0, 1]. Fuzzy logic systems usually retain the axioms of Boolean logic, which ensures that all logi-

cal operation behaviors are consistent with Boolean logic when the truth values are 0 or 1. Different
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Table 6.4: Comparison between classical logic and product logic. FmL denote all valid logic formulae under
the logic system, and ϕ,ψ ∈ FmL are logical formulae. I(·) denotes the truth value of a logical formula.

Classical Logic Product Logic

Interpretation I I : FmL → {0, 1} I : FmL → [0, 1]

I(ϕ ∧ ψ) I(ϕ)I(ψ) I(ϕ)I(ψ)

I(ϕ ∨ ψ) I(ϕ) + I(ψ)− I(ϕ)I(ψ) I(ϕ) + I(ψ)− I(ϕ)I(ψ)

I(ϕ→ ψ)

{
1, if I(ϕ) ≤ I(ψ)
I(ψ), otherwise

{
1, ifI(ϕ) ≤ I(ψ)
I(ψ), otherwise

fuzzy logic systems add different axioms to define the logical operation behavior for the case when

the truth value is in (0, 1) [51]. A t-norm> : [0, 1]× [0, 1] 7→ [0, 1] represents generalized conjunc-

tion in fuzzy logic. Prominent examples of t-norms include Gödel t-norm>min{x, y} = min(x, y),

product t-norm>prod{x, y} = xy, and Łukasiewicz t-norm>Łukasiewicz(x, y) = max{0, x+y−1},

for x, y ∈ [0, 1]. Any other continuous t-norm can be described as an ordinal sum of these three

basic ones [50]. Analogously, t-conorm are dual to t-norms for disjunction in fuzzy logic – given

a t-norm >, the t-conorm is defined as ⊥(x, y) = 1−>(1− x, 1− y) based on De Morgan’s law

and the negator n(x) = 1− x for x, y ∈ [0, 1] [50]. The formulas of t-conorms that correspond to

the minimum (Gödel), product, and Łukasiewicz t-norms are given in Table 6.3. An illustration of

t-norm and t-conorm based conjunction and disjunction in fuzzy logic is given in Fig. 6.3. In Ta-

ble 6.4, we compare the semantics of classical logic and product logic and show that product logic

operations are fully compatible with classical logic. This technique inspired numerous subsequent

works. For example, CQD [2] uses t-norms and t-conorms to rank entities for query answering on

knowledge graphs.

6.4 Methodology

In this section, we propose our model FuzzQE, a framework for answering FOL queries in the

presence of missing edges. FuzzQE embeds entities as stochastic vectors and queries as fuzzy

vectors [47]. Logical operators are implemented via fuzzy conjunction, fuzzy disjunction and

fuzzy negation in the embedding space.
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6.4.1 Queries and Entities in Fuzzy Space

Predicting whether an entity can answer a query means predicting the probability that the entity

belongs to the answer set of this query. In our work, we embed queries and entities to the fuzzy

space [0, 1]d, a subspace of Rd [47].

6.4.1.1 Query Embedding

Consider a query q and its fuzzy answer set Sq, its embedding Sq is defined as a fuzzy vector

Sq ∈ [0, 1]d [47]. Intuitively, let Ω denote the universe of all the elements, and let {Ui}di=1 denote

a partition over Ω as follows:

Ω = ∪di=1Ui

Ui ∩ Uj = ∅ for i 6= j

Each dimension i of Sq denotes the probability whether the corresponding subset Ui is part of the

answer set Sq:

Sq(i) = Pr(Ui ⊆ Sq).

6.4.1.2 Entity Embedding

For an entity e, we consider its embedding pe from the same fuzzy space. To model its uncertainty,

we model it as a categorical distribution to fall into each subset Ui as follows:

pe ∈ [0, 1]d

pe(i) = Pr(e ∈ Ui)
d∑
i=1

pe(i) = 1.
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6.4.1.3 Score Function

Accordingly, the score function φ(q, e) is defined as the expected probability that e belongs to the

fuzzy set Sq:

φ(q, e) = Ee∼pe [e ∈ Sq]

=
d∑
i=1

Pr(e ∈ Ui) Pr(Ui ⊆ Sq)

= Sq
ᵀpe

Note for query embedding in FuzzQE, the all-one vector 1 represents the universe set (i.e. Ω), and

the all-zero vector 0 represents an empty set ∅.

The above representation and scoring provides the following benefits: (i) The representation

is endowed with probabilistic interpretation, and (ii) each dimension of the embedding vector is

between [0, 1], which satisfies the domain and range requirements of fuzzy logic and allows the

model to execute element-wise fuzzy conjunction/disjunction/negation.

6.4.2 Relation Projection for Atomic Queries

Atomic queries like q = Compose(John Lennon, V?) serve as the building blocks to compute the

complex queries. To embed atomic queries, we associate each relation r ∈ R with a projection

operator Pr, which is modeled by a neural network with a weight matrix Wr ∈ Rd×d and a bias

vector br ∈ Rd, and transforms an anchor entity embedding pe into a query embedding:

Sq = Pr(pe) = g(LN(Wrpe + br))
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where LN is Layer Normalization [3], and g : Rd 7→ [0, 1]d is a mapping function that constrains

Sq ∈ [0, 1]d. Particularly, we consider two different choices for g:

Logistic function : g(x) =
1

1 + e−(x)

Bounded rectifier : g(x) = min(max(x, 0), 1)

We follow [72] and adopt basis-decomposition to define Wr and br:

Wr =
K∑
j=1

αrjMj

br =
K∑
j=1

αrjvj

Namely, Wr as a linear combination of K basis transformations Mj ∈ Rd×d with coefficients αrj

that depend on r. Similarly, br is a linear combination ofK basis vectors vj ∈ Rd with coefficients

αrj . This form prevents the rapid growth in the number of parameters with the number of relations

and alleviates overfitting on rare relations. It can be seen as a form of effective weight sharing

among different relation types [72]. Atomic queries that project from one set to another can be

embedded similarly.

In principle, any sufficiently expressive neural network or translation-based knowledge graph

embedding model [9, 43] could also be employed as the relation projection operator in our frame-

work.

6.4.3 Fuzzy Logic based Logical Operators

Fuzzy logic is mathematically equivalent to fuzzy set theory [51], with fuzzy conjunction equiva-

lent to fuzzy set intersection, fuzzy disjunction equivalent to fuzzy set union, and fuzzy negation

to fuzzy set complement. Fuzzy logic is thus used to define operations over fuzzy vectors. Partic-

ularly, we present FuzzQE with reference to product logic, one of the most prominent fuzzy logic
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systems [50]. The embeddings of q1 ∧ q2, q1 ∨ q2, and ¬q are computed as follows:

q1 ∧ q2 : C(Sq1,Sq2) = Sq1 ◦ Sq2

q1 ∨ q2 : D(Sq1,Sq2) = Sq1 + Sq2 − Sq1 ◦ Sq2

¬q : N (Sq) = 1− Sq

where ◦ denotes element-wise multiplication (fuzzy conjunction), 1 is the all-ones vector, and

C,D,N denote the embedding based logical operators respectively.

6.4.4 Model Learning and Inference

Given a query q, we optimize the following objective:

L = − log σ(φ(q, e)− γ)− 1

k

k∑
i=1

log σ(γ − φ(q, e′))

where e ∈ Sq is an answer to the query, e′ /∈ Sq represents a random negative sample, and γ denotes

the margin. In the loss function, we use k random negative samples and optimize the average. We

seek to maximize φ(q, e) for e ∈ Sq and minimize φ(q, e′) for e′ ∈ Sq.

For the model inference, given a query q, FuzzQE embeds it as Sq and rank all the entities by

φ(q, ·).

6.5 Theoretical Analysis

For FuzzQE, we present the following propositions with proof.

Proposition 1. Our conjunction operator C is commutative, associative, and satisfies conjunction

elimination.

Proposition 2. Our disjunction operator D is commutative, associative, and satisfies disjunction

amplification.
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Proposition 3. Our negation operator N is involutory and satisfies non-contradiction.

6.5.1 Proof of Proposition 1

Commutativity: φ(q1 ∧ q2, e) = φ(q2 ∧ q1, e)

Proof. We have C(Sq1,Sq2) = q1 ◦ q2 = q2 ◦ q1 = C(Sq2,Sq1) where ◦ denotes element-wise

multiplication.

Therefore, φ(q1 ∧ q2, e) = pe
ᵀC(Sq1,Sq2) = pe

ᵀC(Sq2,Sq1) = φ(q2 ∧ q1, e).

Associativity: φ((q1 ∧ q2) ∧ q3, e) = φ(q1 ∧ (q2 ∧ q3), e)

Proof. Since C(C(Sq1,Sq2)),Sq3) = q1 ◦ q2 ◦ q3 = C(Sq1, C(Sq2,Sq3)), we have

φ((q1 ∨ q2) ∨ q3, e)

=pe
ᵀC(C(Sq1,Sq2)),Sq3)

=pe
ᵀC(Sq1, C(Sq2,Sq3))

=φ(q1 ∨ (q2 ∨ q3), e)

Conjunction elimination: φ(q1 ∧ q2, e) ≤ φ(q1, e), φ(q1 ∧ q2, e) ≤ φ(q2, e)
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Proof. φ(q1 ∧ q2, e) ≤ φ(q1, e) can be proved by

φ(q1 ∧ q2, e)

=pe
ᵀC(Sq1,Sq2)

=pe
ᵀ(Sq1 ◦ Sq2)

=
d∑
i=1

peiSq1i
Sq2i

≤
d∑
i=1

peiSq1i

=φ(q1, e)

φ(q1 ∧ q2, e) ≤ φ(q2, e) can be proved similarly.

6.5.2 Proof of Proposition 2

Commutativity: φ(q1 ∨ q2, e) = φ(q2 ∨ q1, e)

Proof. We have D(Sq1,Sq2) = Sq1 + Sq2 − Sq1 ◦ Sq2 = Sq2 + Sq1 − Sq2 ◦ Sq1 = D(Sq2,Sq1).

Therefore, φ(q1 ∨ q2, e) = pe
ᵀD(Sq1,Sq2) = pe

ᵀD(Sq2,Sq1) = φ(q2 ∨ q1, e).

Associativity: φ((q1 ∧ q2) ∧ q3, e) = φ(q1 ∧ (q2 ∧ q3), e)

Proof.

D(D(Sq1,Sq2)),Sq3)

=D(Sq1 + Sq2 − Sq1 ◦ Sq2,Sq3)

=(Sq1 + Sq2 − Sq1 ◦ Sq2) + Sq3 − (Sq1 + Sq2 − Sq1 ◦ Sq2) ◦ Sq3

=Sq1 + Sq2 + Sq3 − Sq1 ◦ Sq2 − Sq1 ◦ Sq3 − Sq2 ◦ Sq3 + Sq1 ◦ Sq2 ◦ Sq3

=D(Sq1,D(Sq2,Sq3))
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Therefore

φ((q1 ∨ q2) ∨ q3, e)

=pe
ᵀD(D(Sq1,Sq2)),Sq3)

=pe
ᵀD(Sq1,D(Sq2,Sq3))

=φ(q1 ∨ (q2 ∨ q3), e)

Disjunction amplification: φ(q1 ∨ q2, e) ≥ φ(q1, e), φ(q1 ∨ q2, e) ≥ φ(q2, e)

Proof. φ(q1 ∨ q2, e) ≥ φ(q1, e) can be proved by

φ(q1 ∨ q2, e)

=pe
ᵀD(Sq1,Sq2)

=pe
ᵀ(Sq1 + Sq2 − Sq1 ◦ Sq2)

=
d∑
i=1

pei(Sq1i
+ Sq2i

− Sq1i
Sq2i

)

=
d∑
i=1

peiSq1i
+ peiSq2i

(1− Sq1i
)

≥
d∑
i=1

peiSq1i

=φ(q1, e)

φ(q1 ∨ q2, e) ≥ φ(q2, e) can be proved similarly.

6.5.3 Proof of Proposition 3

Involution: φ(q, e) = φ(¬¬q, e)
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Figure 6.4: Query structure types used in training and evaluation. Naming convention: p for relation projec-
tion, i for conjunction (intersection), n for negation (complement), u for disjunction (union).

Proof.

N (N (q)) = 1− (1− Sq) = Sq

Therefore φ(¬¬q, e) = pe
ᵀN (N (Sq)) = φ(q, e)

Non-Contradiction: φ(q, e) ↑⇒ φ(¬q, e) ↓

Proof. The Łukasiewicz negation c(x) = 1 − x is monotonically decreasing with regard to x.

Therefore, φ(¬q, e) is monotonically decreasing with regard to φ(q, e).

6.6 Experiments

In this section, we evaluate the ability of FuzzQE to answer complex FOL queries over incomplete

knowledge graphs.

6.6.1 Evaluation Setup

6.6.1.1 Datasets

We evaluate our model on two benchmark datasets provided by [71], which contain 14 types of

logical queries on FB15k-237 [90] and NELL995 [104] respectively. These queries are generated

based on the official training/validation/testing edge splits of those knowledge graphs. The knowl-
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Table 6.5: Knowledge graph dataset statistics as well as training, validation, and test edge splits.

Dataset Entities Relations Training Edges Validation Edges Test Edges Total Edges

FB15k-237 14505 237 272115 17526 20438 310079
NELL 63361 200 114213 143234 14267 142804

Table 6.6: Number of training, validation, and test queries for different query structures. For columns that
list multiple query structures, the number in the table represents the number of each query structure.

Training Validation Test

Dataset 1p/2p/3p/2i/3i 2in/3in/inp/pin/pni 1p others 1p others

FB15k-237 149,689 149,68 20,101 5,000 2,812 5,000
NELL995 107,982 10,798 16,927 4,000 17,034 4,000

edge graph statistics are summarized in Table 6.5. The 14 types of query structures in the datasets

are shown in Fig. 6.4. We list the number of training/validation/test queries in Table 6.6. Note

that these datasets provided by BetaE [71] are an improved and expanded version of the datasets

provided by Query2Box [69]. Compared to the earlier version, the new datasets [71] contain 5

new types of queries that involve negation. The validation/test set of the original 9 query types are

regenerated to ensure that the number of answers per query is not excessive, making this task more

challenging. We exclude FB15k [9] as this dataset suffers from major test leakage [90].

6.6.1.2 Evaluation Protocol

We follow the evaluation protocol in [71]. To evaluate the model’s generalization capability over

incomplete knowledge graphs, the datasets are masked out so that each validation/test query answer

pair involves imputing at least one missing edge. For each answer of a test query, we use the Mean

Reciprocal Rank (MRR) as the major evaluation metric. We use the filtered setting [9] and filter

out other correct answers from ranking before calculating the MRR.

6.6.1.3 Baselines

We consider three logical query embedding baselines for answering complex logical queries on

knowledge graphs: GQE [35], Query2Box [69], and BetaE [71]. We also compare with one recent
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state-of-the-art query optimization model CQD [2]. For BetaE and CQD, we compare with the

model variant that generally provides better performance, namely BetaEDNF and CQD-BEAM.

Note that CQD cannot process complex logical queries during training and is thus trained with

knowledge graph edges. To the best of our knowledge, BetaE is the only available baseline that

can handle negation. Therefore, for GQE, Query2Box, and CQD, we compare with them only on

EPFO queries (queries with ∃,∧,∨ and without negation).

6.6.1.4 Model Configurations and Hyperparameters

We use AdamW [58] as the optimizer. Training terminates with early stopping based on the average

MRR on the validation set with a patience of 15k steps. We run each method up to 450k steps. We

repeat each experiment three times and report the average results. For GQE [35], Query2Box [69],

and BetaE [71], we use the implementation from https://github.com/snap-stanford/knowledgegraphReasoning.

For CQD, we use the implementation at https://github.com/uclnlp/cqd.

As in [69, 71], for fair comparison, we use the same embedding dimensionality d and the

number of negative samples k for all the methods. With reference to [71], we set the embdding

dimensionality to d = 800 and use k = 128 negative samples per positive sample. We fine-

tune other hyperparameters and the choice of the subspace mapping function g : Rd → [0, 1]d

by grid search based on the average MRR on the validation set. We search hyperparameters in

the following range: learning rate from {0.001, 0.0005, 0.0001}, number of relation bases from

{30, 50, 100, 150}, batch size b from {128, 512, 1000}. g is chosen from from {Logistic function,

Bounded rectifier}.

The best hyperparameter combination on FB15k-237 is learning rate 0.001, number of relation

bases 150, batch size 512, g as a logistic function. The best combination on NELL995 is learning

rate 0.0005, number of relation bases 30, batch size 1000, g as a bounded rectifier. For baselines

GQE , Q2B, and BetaE, we use the best combinations reported by [71]. For CQD, we use the

ones reported in [2]. We follow the setting in the official code repository for any hyperparameter

unspecified in the chapter.

Each single experiment is run on CPU Intelr Xeonr E5-2650 v4 12-core and a single NVIDIAr
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Table 6.7: MRR results (%) on answering FOL queries. Report MRR results (%) on test FOL queries.
AvgEPFO and AvgNeg denote the average MRR on EPFO queries (queries with ∃,∧,∨ and without negation)
and queries containing negation respectively. Results of GQE, Query2Box, and BetaE are taken from [71].

Type of Model Model AvgEPFO AvgNeg 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

FB15k-237

Query Embedding

GQE 16.3 N/A 35.0 7.2 5.3 23.3 34.6 16.5 10.7 8.2 5.7 N/A N/A N/A N/A N/A
Query2Box 20.1 N/A 40.6 9.4 6.8 29.5 42.3 21.2 12.6 11.3 7.6 N/A N/A N/A N/A N/A

BetaE 20.9 5.5 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.7 5.1 7.9 7.4 3.5 3.4
FuzzQE 24.2 8.5 42.2 13.3 10.2 33.0 47.3 26.2 18.9 15.6 10.8 9.7 12.6 7.8 5.8 6.6

Query Optimization CQD 21.7 N/A 46.3 9.9 5.9 31.7 41.3 21.8 15.8 14.2 8.6 N/A N/A N/A N/A N/A

NELL995

Query Embedding

GQE 18.6 N/A 32.8 11.9 9.6 27.5 35.2 18.4 14.4 8.5 8.8 N/A N/A N/A N/A N/A
Query2Box 22.9 N/A 42.2 14.0 11.2 33.3 44.5 22.4 16.8 11.3 10.3 N/A N/A N/A N/A N/A

BetaE 24.6 5.9 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.5 5.1 7.8 10.0 3.1 3.5
FuzzQE 29.3 8.0 58.1 19.3 15.7 39.8 50.3 28.1 21.8 17.3 13.7 8.3 10.2 11.5 4.6 5.4

Query Optimization CQD 28.4 N/A 60.0 16.5 10.4 40.4 49.6 28.6 20.8 16.8 12.6 N/A N/A N/A N/A N/A

GP102 TITAN Xp (12GB) GPU. RAM size is 256GB. The operating system is Ubuntu 18.04.01.

Our framework is implemented wtih Python 3.9 and Pytorch 1.9.

6.6.2 Main Results: Trained with FOL queries

We fist test the ability of FuzzQE to model arbitrary FOL queries when complex logical queries

are available for training. Results are reported in Table 6.7.

6.6.2.1 Comparison with Query Embedding

As shown in Table 6.7, FuzzQE consistently outperforms all the logical query embedding base-

lines. For EPFO queries, FuzzQE improves the average MRR of best baseline BetaE [71] by

3.3% (ca. 15% relative improvement) on FB15k-237 and 4.7% (ca. 19% relative improvement)

on NELL995. For queries with negation, FuzzQE significantly outperforms the only available

baseline BetaE. On average, FuzzQE leads to 3.0% (54% relatively) improvement in MRR on

FB15k-237 and 1.9% (32% relatively) on NELL995. On average, FuzzQE improves the MRR by

3.0% (54% relatively) on FB15k-237 and 2.1% (36% relatively) on NELL995 for queries contain-

ing negation. We hypothesize that this significant enhancement comes from the principled design

of our negation operator that satisfies the axioms, while BetaE fails to satisfy the non-contradiction
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Table 6.8: MRR results (%) of logical query embedding models that are trained with only link pre-
diction. This task tests the ability of the model to generalize to arbitrary complex logical queries, when no
complex logical query data is available for training. AvgEPFO and AvgNeg denote the average MRR on EPFO
(∃,∧,∨) queries and queries containing negation respectively.

Model AvgEPFO AvgNeg 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

FB15k-237

GQE 17.7 N/A 41.6 7.9 5.4 25.0 33.6 16.3 10.9 11.9 6.2 N/A N/A N/A N/A N/A
Query2Box 18.2 N/A 42.6 6.9 4.7 27.3 36.8 17.5 11.1 11.7 5.5 N/A N/A N/A N/A N/A

BetaE 15.8 0.5 37.7 5.6 4.4 23.3 34.5 15.1 7.8 9.5 4.5 0.1 1.1 0.8 0.1 0.2
FuzzQE 21.8 6.6 44.0 10.8 8.6 32.3 41.4 22.7 15.1 13.5 8.7 7.7 9.5 7.0 4.1 4.7

NELL995

GQE 21.7 N/A 47.2 12.7 9.3 30.6 37.0 20.6 16.1 12.6 9.6 N/A N/A N/A N/A N/A
Query2Box 21.6 N/A 47.6 12.5 8.7 30.7 36.5 20.5 16.0 12.7 9.6 N/A N/A N/A N/A N/A

BetaE 19.0 0.4 53.1 6.0 3.9 32.0 37.7 15.8 8.5 10.1 3.5 0.1 1.4 0.1 0.1 0.1
FuzzQE 27.1 7.3 57.6 17.2 13.3 38.2 41.5 27.0 19.4 16.9 12.7 9.1 8.3 8.9 4.4 5.6

property.

6.6.2.2 Comparison with Query Optimization: CQD

We next compare FuzzQE with a recent query optimization baseline, CQD [2] on EPFO queries.

On average, FuzzQE provides 2.5% and 0.9% absolute improvement in MRR on FB15k-237

and NELL995 respectively. It is worth noting that FuzzQE outperforms CQD on most complex

query structures on NELL995 even with slightly worse 1p performance. We hypothesize that the

1p performance difference on NELL995 comes from the differenct ability of different relation

projection/link prediction models to encode sparse graphs.

A major motivation for learning logical query embedding is its high inference efficiency. We

compare with CQD with regard to the time for answering a query. For CQD, we use its official

experiment setting [2]. The beam search candidate number for CQD is set as 64, i.e. CQD finds

top 64 entity candidates for each sub-query and uses it as seeds for search in the next round. For

FuzzQE, we retrieve top 64 entity candidates for each query as well. We use FAISS [45] to speed

up dense similarity search, where exact measurement matching is adopted instead of approximate

measurement matching. FAISS cannot be applied to CQD, because (i) CQD is not a logical query

embedding framework that retrieves entity answers by dense similarity search, and (ii) scoring an
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Figure 6.5: Average time (milliseconds) for answering an FOL query on a single NVIDIAr GP102 TITAN
Xp (12GB) GPU. FB15k-237 contains 14,505 entities. NELL995 contains 63,361 entities, roughly 4 times
the number of FB15k-237.

entity for a query involves computation in the complex number domain.

Fig 6.5 shows the average time of CQD and FuzzQE for answering a complex FOL query.

On a NVIDIAr GP102 TITAN Xp (12GB), the average time for CQD to answer a FOL query

on FB15k-237 is 13.9 ms (milliseconds), while FuzzQE takes only 0.3 ms. On NELL995, where

the number of entities is 4 times the number in FB15k-237, the average time for CQD is 68.1 ms,

whereas FuzzQE needs only 0.4 ms. CQD takes 170 times longer than FuzzQE. The reason is

that CQD is required to score all the entities for each node in the dependency graph to obtain the

top-k candidates for beam search. Consistent with the observation in [2], the main computation

bottleneck of CQD are multi-hop queries (e.g. 3p queries), since the model is required to invoke

the link prediction model for each node in the dependency graph to obtain the top-k candidates

for the next step. We also note that as the number of entities increases, the time required by

CQD to answer a query significantly grows. In contrast, the inference time of FuzzQE is almost

independent of the number of entities and the complexity of the query.
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6.6.3 Trained with only Link Prediction

This experiment tests the ability of the model to generalize to arbitrary complex logical queries

when it is trained with only the link prediction task. To evaluate it, we train FuzzQE and other

logical query embedding models using only knowledge graph edges (i.e. 1p queries). For baseline

models GQE, Query2Box, and BetaE, we adapt them following the experiment settings of the

Q2B-AVG-1P model discussed in [69]. Specifically, we set all the sub-query weights to 1.0 for

this experiment.

As shown in Table 6.8, FuzzQE is able to generalize to complex logical queries of new query

structures even if it is trained on link prediction and provides significantly better performance than

baseline models. Compared to the best baseline, FuzzQE improves the average MRR by 3.6% for

EPFO queries on FB15k-237 and 5.4% on NELL995. Regarding queries with negation, our model

drastically outperforms the only available baseline BetaE across datasets. In addition, compared

with the ones trained with complex FOL queries (in Table 6.7), It is worth nothing that FuzzQE

trained with only link prediction can outperform BetaE that are trained with extra complex logical

queries (in Table 6.7). This demonstrates the superiority of the logical operators in FuzzQE,

which are designed in a principled and learning-free manner. Meanwhile, FuzzQE can still take

advantage of additional complex queries as training samples to enhance entity embeddings.

6.7 Conclusion

We propose a novel logical query embedding framework FuzzQE for answering complex logical

queries on knowledge graphs. Our model FuzzQE borrows operations from fuzzy logic and im-

plements logical operators in a principled and learning-free manner. Extensive experiments show

the promising capability of FuzzQE on answering logical queries on knowledge graphs.
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CHAPTER 7

Conclusion and Future Directions

In this dissertation, we provide the following contributions regarding three key aspects of repre-

sentation learning based query answering on knowledge graphs:

1. We propose two new methods to encode uncertain facts in the embedding space, enable

reasoning on uncertain knowledge graphs, and address fact uncertainty in query ansewring.

2. We enhance query answering accuracy by leveraging complementary knowledge from knowl-

edge graphs in various languages. We propose an ensemble learning framework that can

populate entity alignment and assess the credibility of different knowledge sources thereby

leading to a more accurate final prediction.

3. We propose a fuzzy logic based logical query embedding framework for answering logi-

cal queries on knowledge graphs, where logical operators are implemented in a principled

and learning-free manner. In addition, we identify some basic properties that an embedding

model ought to possess as well as analyze whether existing models can fulfill these condi-

tions. This analysis provides theoretical guidance for future research on embedding-based

logical query answering models.

Chapters 3 and 4 introduce our uncertain knowledge graph embedding models UKGE and

BEUrRE respectively. Unlike previous models that characterize facts using binary classification

techniques, UKGE learns embeddings according to confidence scores of facts. We also introduce

probabilistic soft logic to infer the confidence scores and provide extra training supervision, and we

propose two variants of UKGE based on different regression functions. Chapter 4 extends the previ-

ous chapter’s technique to improve reasoning on sparse uncertain knowledge graphs by providing
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BEUrRE, which is a novel uncertain knowledge graph embedding model with probabilistic seman-

tics. BEUrRE considers each entity as a binary random variable and models each entity as a box

(i.e. axis-aligned hyperrectangle) in the vector space, with relations between two entities represent-

ing affine transforms on the subject and object entity boxes. The geometry of the boxes endows

the model with calibrated probabilistic semantics and facilitates incorporating relation property

constraints. The results are encouraging and suggest various extensions, including deeper trans-

formation architectures and alternative geometries to allow imposing additional rules. We are also

interested in extending the use of the proposed technologies into more downstream tasks, such as

knowledge association [82] and event hierarchy induction [96] as well as for ontology construction

and population, since box embeddings are capable of capturing concepts’ granularities.

Chapter 5 enhances deterministic knowledge graph completion by transferring complementary

knowledge across language-specific knowledge graphs. The proposed framework KEns embeds

all knowledge graphs in a shared embedding space, where the association of entities is captured

based on self-learning. KEns then performs ensemble inference to combine prediction results

from embeddings of multiple language-specific knowledge graphs, whereby multiple ensemble

techniques are investigated. Experiments demonstrate that our model delivers significant perfor-

mance improvements to query answering on knowledge graphs. This work also suggests that

future research exploits the potential of KEns for query answering on low-resource knowledge

graphs and to extend the ensemble transfer mechanism to populate sparse domain knowledge in

biological [36] and medical knowledge bases [109].

Chapter 6 presents the logical query embedding framework FuzzQE for answering first-order

logical queries on knowledge graphs. This model FuzzQE borrows operations from fuzzy logic

and implements logical operators in a principled and learning-free manner, and extensive experi-

ments show promising capability of FuzzQE for answering logical queries on knowledge graphs.

The results are encouraging and suggest various extensions, including introducing logical rules into

learning, as well as studying the potential use of predicate fuzzy logic systems and other deeper

transformation architectures. Future research could also use the defined logical operators to incor-

porate logical rules to enhance reasoning on knowledge graphs. Furthermore, we are interested
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in jointly learning embeddings for logical queries, natural language questions ,and entity labels to

enhance question answering on knowledge graphs.

90



BIBLIOGRAPHY
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