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R
NCORRECTED PAbstract

Successful monitoring of ecologically significant, vulnerable fluvial systems will require improved quantitative techniques for

mapping channel morphology and in-stream habitat. In this study, we assess the ability of remote sensing to contribute to these

objectives by (1) describing the underlying radiative transfer processes, drawing upon research conducted in shallow marine

environments; (2) modeling the effects of water depth, substrate type, suspended sediment concentration, and surface turbulence; (3)

quantifying the limitations imposed by finite detector sensitivity and linear quantization; and (4) evaluating two depth retrieval

algorithms using simulated and field-measured spectra and archival imagery. The degree to which variations in depth and substrate can

be resolved depends on bottom albedo and water column optical properties, and scattering by suspended sediment obscures substrate

spectral features and reduces the resolution of depth estimates. Converting continuous radiance signals to discrete digital numbers

implies that depth estimates take the form of contour intervals that become wider as depth increases and as bottom albedo and detector

sensitivity decrease. Our results indicate that a simple band ratio can provide an image-derived variable that is strongly linearly related

to water depth across a broad range of stream conditions. This technique outperformed the linear transform method used in previous

stream studies, most notably for upwelling radiance spectra [R2=0.79 for the ln(560 nm/690 nm) ratio]. Applied to uncalibrated

multispectral and hyperspectral images of a fourth-order stream in Yellowstone National Park, this flexible technique produced

hydraulically reasonable maps of relative depth. Although radiometric precision and spatial resolution will impose fundamental

limitations in practice, remote mapping of channel morphology and in-stream habitat is feasible and can become a powerful tool for

scientists and managers.

D 2004 Elsevier Inc. All rights reserved.
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U1. Introduction

The three-dimensional form of river channels is defined

by erosional and depositional processes that operate across a
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range of spatial and temporal scales to create a unique

physical habitat template for aquatic biota (Church, 2002;

Ward, 1989). The dynamic geomorphology of riverine

landscapes contributes to their heightened biodiversity and

establishes streams and floodplains as critical elements of

terrestrial ecosystems (Ward et al., 2002). These riparian

environments are increasingly threatened, however, by

disturbance impacts that can alter the flow of water and

sediment and render crucial habitats unsuitable for many

species (Wohl, 2000). Maintaining—and in some cases

attempting to restore—the physical integrity of fluvial
ent xx (2004) xxx–xxx
RSE-06183; No of Pages 18
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systems in the presence of dams, flow diversions, and other

anthropogenic influences has thus emerged as an important

research and policy initiative (Graf, 2001).

Achieving these objectives will require improved techni-

ques for consistent quantitative characterization of the spatial

distribution of channel forms and their evolution through

time (Newson & Newson, 2000). Remote sensing technol-

ogy (for review, see Mertes, 2002) is uniquely capable of

providing the synoptic detailed data needed to examine the

scaling of fluvial processes (Moody & Troutman, 2002) and

quantify aquatic habitat within a watershed (Frissell et al.,

1986; Poole, 2002). Digital image data have been used to

document channel change (Bryant & Gilvear, 1999), map in-

stream habitat (Marcus et al., 2003), and estimate water

depths (Lyon & Hutchinson, 1995; Lyon et al., 1992;

Winterbottom & Gilvear, 1997). While these studies have

demonstrated the potential utility of remote sensing, results

have been largely empirical, correlating ground-based

measurements or habitat maps with image pixel values or

classification products that are case-, scene-, and sensor-

specific. With the exception of Lyon et al. (1992) and Lyon

and Hutchinson (1995), little attention has been paid to the

underlying physical processes governing the interaction of

light with the water column and substrate, a fundamental

shortcoming that continues to compromise spectrally driven

approaches to characterizing streams (Legleiter, 2003;

Legleiter & Goodchild, in press). In the absence of a sound

theoretical basis, remote sensing of rivers remains inherently

limited to case studies, with the true potential of the

technique for large-scale, long-term mapping unrealized.

Significantly more progress has been made in coastal and

lacustrine environments, where the advantages of remote

sensing relative to in situ measurements are even more

pronounced. Spaceborne sensors have been long used to

retrieve optical properties for biophysical modeling andwater

quality assessment (for an introduction, see Bukata et al.,

1995; Mobley, 1994), and techniques for estimating bathy-

metry have been available for over three decades (Lyzenga,

1978; Philpot, 1989; Polcyn et al., 1970). Recently, increased

interest in coral reef ecosystems and other near-shore

environments has stimulated research into the unique

radiative transfer processes in shallow waters (Maritorena

et al., 1994; Mobley & Sundman, 2003; Zaneveld & Boss,

2003). In these settings, the presence of a reflective bottom

enables substrate types to be mapped, and applications

include spectral discrimination of coral reef communities

(Kutser et al., 2003), subpixel unmixing of benthic end-

members (Hedley & Mumby, 2003), and estimation of

seagrass leaf area index (Dierssen et al., 2003). Because

substrate spectral signals are modified by absorption and

scattering within the water column, these studies also require

estimation of water depth, and various bathymetric mapping

algorithms have been employed, often with very high

accuracies (Lee et al., 1999; Stumpf et al., 2003). The

impressive results obtained in coastal environments indicate

that both depth and substrate characteristics can be retrieved
ED P
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from remotely sensed data, but the extension of these

techniques to fluvial systems has not been explored.

Drawing upon the coastal literature, this paper represents

an initial attempt to describe the underlying physical

processes of radiative transfer in shallow stream channels

and assess the feasibility of mapping fluvial systems with

passive optical remote sensing. A physically based approach

has a number of important advantages relative to the image-

based methods used in previous stream research: (1) the

accuracy of depth retrieval and substrate mapping can be

simulated a priori for various stream conditions and sensor

configurations; (2) the amount of field data required for

calibration can be reduced, with ground-based measure-

ments used primarily for validation; and (3) the resulting

algorithms are generic, flexible, and can be applied to

archival imagery to document channel change through time

(Kutser et al., 2003). In this paper, we first provide a brief

theoretical overview, followed by a description of the

methods used to collect, simulate, and analyze data.

Radiative transfer model results are then used to quantify

the effects of water depth, substrate, suspended sediment

concentration, and surface turbulence on the upwelling

spectral radiance from a shallow stream channel. The

translation of this continuous signal into digital image data

is examined and, finally, two depth retrieval techniques are

evaluated using simulated spectra, ground-based spectral

measurements, and multispectral and hyperspectral imagery

from a fourth-order stream in Yellowstone National Park.
2. Theoretical background: an overview of the signal

chain

The following development is intended to introduce the

fluvial research community to the well-established theory

developed by oceanographers and remote sensing scientists

and is based primarily upon the work of Maritorena et al.

(1994), Mobley (1994), Philpot (1989), and Schott (1997);

the interested reader is referred to these publications for

additional detail. In essence, passive remote sensing of

aquatic environments involves measurement of visible and

near-infrared reflected solar energy following its interaction

with two attenuating media—the Earth’s atmosphere and

the water body of interest—and, in optically shallow waters,

a reflective substrate. Various atmospheric constituents

modify the incident spectral solar irradiance, E (W m�2

nm�1), through spectrally dependent absorption and scatter-

ing processes, which also impart a directional structure that

is described in terms of a sky radiance distribution, L (W

m�2 nm�1 sr�1). The downwelling irradiance Ed thus

consists of a direct solar beam and diffuse skylight that has

been scattered by the atmosphere, and possibly energy

reflected from surrounding objects. A portion of this

irradiance is reflected from the water’s surface without

entering the water column. The magnitude of this reflec-

tance can be calculated from Fresnel’s equations if the
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Fig. 1. Substrate field spectra (see Table 1) and other potential end-members

of the Soda Butte Creek fluvial system. Additional spectra for various

riparian cover types were measured to begin compiling a spectral library for

the rivers of northern Yellowstone.

C.J. Legleiter et al. / Remote Sensing of Environment xx (2004) xxx–xxx 3
UNCORREC

surface is level, but probabilistic approaches are needed for

irregular water surfaces. The remaining energy is trans-

mitted through the air–water interface and refracted

according to Snell’s law.

Water bodies are described in terms of their inherent

optical properties, which are characteristic of the water and

invariant with respect to the ambient light field, and their

apparent optical properties, which are more easily measured

but depend upon factors such as solar geometry and surface

state that affect the light field. Light is attenuated

exponentially with distance traveled through the aquatic

medium, with the rate and spectral shape of this attenuation

as functions of various absorption and scattering mecha-

nisms. In addition to pure water, a variety of optically

significant components such as chlorophyll, suspended

sediment, and colored dissolved organic matter combine

to determine the inherent optical properties of the water

column. A fraction of the radiance transmitted through the

air–water interface will be scattered back into the upward

hemisphere, imparting an irradiance reflectance R=Eu/Ed to

the water column itself, where Eu and Ed denote the

upwelling and downwelling (spectral) irradiance, respec-

tively. In optically shallow waters, a portion of the

downwelling light stream will also interact with the

substrate, with a fraction Ad of this energy reflected back

up toward the water surface, where Ad is the albedo or

reflectance of the substrate, which varies spectrally and with

illumination and viewing geometry. The upwelling spectral

radiance reflected from the bottom is again attenuated as it

travels through the water column, and a fraction of it will be

internally reflected upon reaching the air–water interface.

The remainder is transmitted through the interface,

refracted, and propagated upward through the atmosphere

toward the remote sensing platform.

A simple equation can be derived to summarize these

relationships:

LT ¼ LB þ LC þ LS þ LP ð1Þ

where, LT is the total upwelling spectral radiance reaching the

remote sensing system, which can be conceptually separated

into four components: (1) LB, which represents that portion of

LT that has entered the water, interacted with the substrate,

passed through the air–water interface, and traveled through

the atmosphere to the sensor; (2) LC, which is the radiance

that passed through the interface and was scattered into the

upward hemisphere by the water column before reaching the

bottom; (3) LS, which denotes radiance reflected from the

surface without entering the water column; and (4) LP, which

is the path radiance contributed by the atmosphere. Of these

four components, only the first, LB, is directly related to the

water depth and substrate characteristics, and estimation of

these quantities thus requires accounting for the surface,

water column, and atmospheric components. Furthermore,

LB is not simply related to depth, even for a given set of water

column optical properties, instead being a function of both

depth and irradiance reflectance of the streambed. Estimating
depth thus requires knowledge of the substrate and, con-

versely, mapping benthic cover types requires bathymetric

information. The availability of multiple spectral bands

provides additional measurable quantities, but retrieval of

bathymetry and bottom reflectance remains an underdeter-

mined inverse problem.
ED P
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3. Methods

3.1. Field data collection

Ground-based spectral measurements were collected

from three reaches of Soda Butte Creek, a tributary to the

Lamar River in Yellowstone National Park; descriptions of

the study area are given in Marcus et al. (2003). Spectral

data were acquired with an Analytical Spectral Devices

FieldSpec HandHeld spectroradiometer, which samples

between 325 and 1075 nm in 751 channels with a full-

width half maximum of 2–3 nm; due to noise at both ends of

this range, only data from 400–800 nm were used.

Measurements were acquired from above the water surface

at 33 locations spanning a range of stream conditions. Data

on flow depth and velocity were also collected at each site,

along with a qualitative assessment of periphyton density

and a digital photograph of the streambed. Substrate

reflectance spectra were obtained outside the channel by

wetting targets prior to measurement (Fig. 1, Table 1). The

raw digital counts for each target spectrum were normalized

by the digital counts recorded for a white reflectance panel,

which was in turn calibrated against a spectralon standard

(Kutser et al., 2003). We also made 1030 point measure-

ments of water depth to describe the stream’s bathymetric

variability and establish the range of depths to be used as

input to radiative transfer models (Fig. 2).
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Fig. 2. Histogram of stream depths measured in three reaches of Soda Butte

Creek.

t1.1 Table 1

Inputs to the Hydrolight radiative transfer modelt1.2

Parameter type Value or range

of inputs

Descriptiont1.3

Solar geometry 32.468 solar zenith
angle

11:00 a.m. MDT on

August 1 for study

area at 458N, 1108Wt1.4
Sea level pressure 30 in. of mercuryt1.5

Air mass type 10 Continentalt1.6
Relative humidity 20%t1.7

Precipitable water 0.5 cmt1.8
24-h average

wind speed

0 m s�1t1.9

Horizontal

visibility

100 kmt1.10

Water depth 5–100 cm in steps

of 5 cm

t1.11

Substrate reflectance

(ground-based

spectral

measurements)

Periphyton Samples scraped from

cobbles removed from

streambedt1.12

Wet gravel Mixture of rock types

and particle sizes,

measured on gravel barst1.13
Wet limestone Mississippian Madison

Limestone Group

(Prostka, Ruppel, &

Christiansen, 1975);

grey-white (Munsell

color chart: hue 0.19Y,

value 5.71, chroma 2.87)t1.14
Wet andesite Eocene Absaroka

Volcanic Supergroup

(Prostka, Ruppel, &

Christiansen, 1975);

dark grey (Munsell

color chart: hue 4.61

RP, value 1.83,

chroma 0.23)t1.15
Suspended

sediment

concentration

0, 2, 4, 6,

8 mg l�1

Typical values for July

and August Lamar

River datat1.16
Wind speed 0, 5, 10,

15 m s�1

Surrogate for flow

turbulencet1.17

C.J. Legleiter et al. / Remote Sensing of Environment xx (2004) xxx–xxx4
UNC3.2. Radiative transfer modeling

The radiative transfer equation provides an analytical

expression of the propagation of electromagnetic energy

through attenuating media such as water. Given initial and

boundary conditions, and granting certain critical assump-

tions, this equation can be solved using various numerical

techniques (Mobley, 1994). These solution methods are

implemented in the Hydrolight computer model (Mobley &

Sundman, 2001; www.hydrolight.info), which has been

widely utilized in the coastal research community to

simulate water column effects on benthic habitat mapping

and depth retrieval (e.g., Dierssen et al., 2003). Mobley

(1994) thoroughly describes both theoretical considerations

and implementation details for the Hydrolight model.

Inputs to Hydrolight include (1) solar geometry; (2)

atmospheric conditions and cloud cover; (3) the state of the
ED P
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water surface; (4) the amount and vertical distribution of

multiple optically significant components, as well as their

spectrally dependent optical properties; and (5) the depth

and irradiance reflectance of the bottom, which we have

assumed to be a Lambertian surface, although the model can

accommodate more complex BRDFs (Mobley et al., 2003).

Hydrolight assumes a plane-parallel water body of infinite

horizontal extent such that the only changes in the light field

occur in the vertical dimension. Although technically not

valid for topographically complex stream channels, this

plane-parallel approximation provides a useful and neces-

sary starting point that has been shown to be reasonable if

the bottom is uniform on a spatial scale larger than the water

depth (Mobley & Sundman, 2003).

The input parameters for the radiative transfer simula-

tions performed in this study are summarized in Table 1.

Cloud cover was assumed to be absent; the Gregg and

Carder (1990) atmospheric model provided with Hydrolight

was parameterized for the study area; and the sky radiance

distribution was obtained from the Harrison and Coombes

(1988) model. The four variables of primary interest were

water depth, substrate reflectance, suspended sediment

concentration, and surface turbulence, and simulations were

performed for all combinations of these. Depths were varied

between 5 and 100 cm in 5-cm increments. Field spectra for

four different substrate types were used, spanning a range

from dark grey andesite to bright white-gray limestone and

including the periphyton prevalent throughout the stream

(Fig. 1, Table 1).

Suspended sediment concentration data were obtained

from USGS gaging station records for the Lamar River,

where daily measurements were made between 1985 and

1992. Past remote sensing missions in northern Yellowstone

occurred in early August because suspended sediment loads

in the area’s snowmelt-dominated rivers diminish by

midsummer; four quantiles of the suspended sediment

 http:www.hydrolight.info 


T

ARTICLE IN PRESS

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

334

335
336
337
338
339
340

341
342
343
344

345
346
347
348
349

350351

352

353

354

355

356

357

358

359

360361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379380

381

382

383

384

385
386
387
388
389
390
391

C.J. Legleiter et al. / Remote Sensing of Environment xx (2004) xxx–xxx 5
UNCORREC

concentration distribution for July and August were used as

inputs to the Hydrolight model. Concentrations were

translated to absorption and scattering coefficients a and b

using optical cross-sections that describe the spectral

variation in these inherent optical properties for a given

concentration of sediment. Optical cross-sections have units

of m2/g, which, when multiplied by a concentration in g/m3,

yield absorption or scattering coefficients with units of m�1,

allowing optical properties to be modeled from readily

available concentration data. Unfortunately, optical cross-

section data are sparse and inconsistent, reflecting the

natural variability of suspended sediment types (Bukata et

al., 1995). All radiative transfer simulations performed in

this study used the brown Earth optical cross-section

included with Hydrolight, and chlorophyll and colored

dissolved organic matter concentrations were assumed to be

negligible in the cold, shallow waters of Soda Butte Creek.

The distribution of suspended sediment was assumed to be

vertically uniform within the stream’s turbulent, well-mixed

flow.

Irregularity of the water surface modifies reflectance

and transmittance of the air–water interface, and these

effects were incorporated into the radiative transfer

simulations using stochastic surface realizations. Hydro-

light uses an azimuthally averaged form of the Cox and

Munk (1954) wave slope statistics, which describe

capillary (and gravity) waves in terms of a zero mean

Gaussian distribution with a variance proportional to wind

speed. In shallow stream channels, water surface top-

ography is primarily a function of flow hydraulics rather

than wind speed, but quantitative descriptions are lacking.

Surface realizations corresponding to various wind speeds

were thus used as a surrogate to introduce varying degrees

of surface turbulence. Additional Hydrolight simulations

were performed for the limiting cases of an infinitely deep

water column and perfectly absorbing substrates at depths

of 1–3 m in increments of 0.5 m.

In total, a synthetic database of 1685 Hydrolight-

simulated spectra was compiled. A fine spectral resolu-

tion of 4 nm (spacing between monochromatic runs) was

used in all models to provide nearly continuous simulated

data.

3.3. Evaluation and application of depth retrieval models

Two popular models developed for bathymetric mapping

in shallow coastal waters were compared in this study: (1)

the linear transform introduced by Lyzenga (1978) and

extended by Philpot (1989); and (2) a ratio-based technique

used more recently by Dierssen et al. (2003) and Stumpf et

al. (2003).

3.3.1. Linear transform

The linear transform method, also known as the deep-

water correction or Lyzenga (1978) algorithm, has been

widely used for estimating water depth in shallow waters
ED P
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including stream channels (e.g., Winterbottom & Gilvear,

1997). Because light is attenuated exponentially within the

aquatic medium, remotely sensed data are not linearly

related to water depth, an inconvenience circumvented by

the linear transform:

X ¼ ln LD � LWÞ;ð ð2Þ

where X is a variable linearly related to water depth; LD is

the radiance measured at a remote detector, which is

assumed to have interacted with the bottom; and LW is the

upwelling radiance from optically deep water, which is

assumed to have the same optical properties as the shallow

environment of interest. Philpot (1989) expanded this model

as the combination of one term sensitive to the substrate LB

and another, LW, attributable to the water column and

atmosphere:

LD ¼ LB þ LW ¼ C0TA AD � Rlð Þexp � gzbð Þ
þ TA C0Rl þ qaLKð Þ þ LP; ð3Þ

where C0 includes the downwelling spectral irradiance in air

and accounts for reflection and refraction at the air–water

interface, while TA is the atmospheric transmission. In

optically shallow water, LB is a function of substrate

reflectance and the contrast Ad�Rl between the bottom,

with albedo AD, and the volume (irradiance) reflectance of a

hypothetical infinitely deep water column, Rl; the bottom

depth is zb. This model implicitly assumes vertically

homogeneous optical properties, which are summarized by

a single beffective attenuation coefficientQ g. qa is the

reflectance of sky radiance LK from the water’s surface, and

LP is atmospheric path radiance. This formulation can be

applied to individual channels of a multispectral sensor and

a form of principal components analysis used to rotate the

axes defined by each band into alignment with the axis of

maximum variability in the data set, which is assumed to

correspond to water depth (Lyzenga, 1978). This procedure

can be summarized mathematically as:

Y ¼ aX ¼ aln LBÞ � agð Þzb;ð ð4Þ

where Y is a scalar variable linearly related to water depth

zb, X=ln(LD�LW) is a linearized measurement vector, a is

the leading eigenvector of the spectral covariance matrix of

X, and g is a vector of effective attenuation coefficients for

the spectral bands.

3.3.2. Log-transformed band ratio

A simpler ratio-based transform has been employed in

a pair of recent studies of shallow coastal environments

(Dierssen et al., 2003; Stumpf et al., 2003). The basic

premise of this technique is that because attenuation

varies spectrally, the upwelling radiance measured in a

spectral band experiencing greater attenuation will be less
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t2.1 Table 2

Remotely sensed data acquired over Soda Butte Creek and used to illustrate

spectrally based bathymetric mappingt2.2

Sensor Probe-1 ADAR 5500t2.3
Sensor type Airborne

hyperspectral

Airborne

multispectralt2.4
Spectral range 400–2500 nm 450–900 nmt2.5
Number of bands 128 4t2.6
Spectral resolution 12–16 nm 60–125 nmt2.7
Radiometric resolution 12-bit 8-bitt2.8
Spatial resolution (GIFOV) 1 m 0.75 mt2.9
Image acquisition date August 3, 1999 October 7, 1999t2.10
Discharge at USGS gage 3.94 m3 s�1 1.42 m3 s�1t2.11

t3.1

t3.2

t3.3

t3.4
t3.5
t3.6
t3.7

t3.8
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than that measured in a band with weaker attenuation.

Thus, as depth increases, radiance decreases in both bands

but more rapidly in the band with stronger attenuation.

The log of the ratio of the radiances will thus be sensitive

to changes in depth, especially if bands are selected such

that the ratio of bottom reflectances is approximately the

same for all benthic cover types present in the scene

(Dierssen et al., 2003). Substrate variability is implicitly

accounted for in the ratio-based approach because a

change in bottom albedo affects both bands similarly,

while changes in depth have a more pronounced effect on

the band with greater attenuation. Ratio values are thus

more sensitive to depth than to substrate reflectance, and

Stumpf et al. (2003) demonstrated that different substrates

at the same depth have approximately equal ratio values.

In this case, the ratio of the logarithms of the radiances in

the two bands is linearly related to water depth and need

only be scaled to the actual depth (i.e., with a simple

linear regression). The selection of a pair of spectral

bands depends on the range of water depths of interest

and, to a lesser extent, on the similarity of substrate types

present in the study area.

The linear transform and ratio-based approaches were

evaluated using a combination of Hydrolight-simulated

spectra, ground-based in-stream spectral measurements,

and archival imagery of Soda Butte Creek (Table 2). One

thousand spectra were randomly selected from the

Hydrolight database and used as inputs to the linear

transform and ratio-based models to assess the perform-

ance of these models across a range of depths, substrate

reflectances, sediment concentrations, and surface states.

To provide a more realistic indication of the performance

of these methods under conditions representative of the
Table 3

Sampling strategy for selecting simulated Hydrolight spectra representative

of the Soda Butte Creek fluvial system

Flow depth range (cm) Probability Substrate type Probability

5–25 0.36 Periphyton 0.6

30–50 0.40 Gravel 0.2

55–75 0.18 Limestone 0.1

75–100 0.06 Andesite 0.1

One hundred total spectra were selected according to these probability

distributions and used to evaluate depth retrieval models.
study area, a second set of 100 simulated spectra was

randomly selected to match the probability distribution of

stream depths observed in Soda Butte Creek (Fig. 2) and

relative abundances of four substrate types, based on

direct observation and streambed photographs (Table 3).

Band combinations found to be strongly correlated with

depth for the simulated spectra were then applied to the

33 in-stream field spectra and two images of Soda Butte

Creek.
OOF4. Results

4.1. Radiative transfer modeling of shallow stream channels

Over 1600 individual spectra were simulated using the

Hydrolight radiative transfer model, spanning the range of

conditions described in Table 1. Figs. 3 and 4 illustrate the
Fig. 3. Effects of water depth (a), substrate type (b), and suspended

sediment concentration (c) on the remote sensing reflectance (Rrs) of a

stream channel.
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Fig. 4. Effects of an irregular water surface on upwelling spectral radiance,

using wind speed as a surrogate for flow-related surface turbulence.

Spectral shapes of (a) surface radiance, defined as the difference between

the total upwelling and water-leaving radiances, and (b) surface reflectance,

computed by normalizing the surface radiance (assumed isotropic) by the

downwelling irradiance in air.
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effects of the four variables of primary interest—flow depth,

substrate type, suspended sediment, and surface turbu-

lence—upon the remote sensing reflectance Rrs of the

stream channel. Rrs is defined as the ratio of the water

leaving-radiance (LB+LC in Eq. (1)) to the downwelling

irradiance incident upon the water’s surface (sr�1). Because

the confounding factors of first-surface reflectance and

atmospheric path radiance are excluded, Rrs represents an

ideal quantity for isolating the effects of depth, benthic

cover, and water column optical properties.

4.1.1. Effect of bottom depth on remote sensing reflectance

As depth increases, Rrs decreases rapidly in the red and

particularly the near-infrared spectral regions due to strong

absorption by pure water; although at very shallow depths

(i.e., 5 cm), high near-infrared reflectance can be observed

for periphyton-dominated substrates (Fig. 3a). The distinc-

tive spectral signal of periphyton, with a strong absorption

feature at 675 nm, persists to depths of up to 80 cm, but

the signal becomes progressively more subdued as depth

increases. Fig. 3a implies that discrimination among

substrate types will be most effective in the shallowest

areas of the channel, with the ability to resolve substrate

spectral features declining in deeper water. At shorter

wavelengths (b~560 nm in Fig. 3a), a different pattern is

observed, with Rrs increasing as depth increases. Although

the transmittance of pure water is significantly higher in

the blue, scattering by suspended sediment is also much

greater. Because the upwelling flux in this spectral region

originates primarily within the water column itself, this
ED P
ROOF

volume reflectance increases with depth. A cross-over

point of equal reflectance for all depths thus separates

scattering- and absorption-dominated regimes, with the

spectral position of this transition shifting to longer

wavelengths as suspended sediment concentration

increases.

4.1.2. Effect of substrate type on remote sensing reflectance

The effect of different substrate types on Rrs for a fixed

water depth, sediment concentration, and wind speed is

illustrated in Fig. 3b. These benthic cover types remain

spectrally distinctive in shallow stream channels, partic-

ularly the highly reflective limestone and the chlorophyll

absorption feature in the periphyton spectrum. The presence

of different substrates confounds the influence of depth on

the upwelling spectral radiance, with depths likely to be

underestimated in the presence of bright bottoms and

overestimated for substrates with low albedo. The influence

of the bottom decreases with increasing depth and wave-

length, and the optical properties of the water column itself

dominate the remotely sensed signal in the blue. Strong

absorption by water in the near-infrared implies that

substrate characteristics will be subdued in all but the

shallowest channels, and substrate mapping must thus rely

primarily upon the green and red portions of the visible

spectrum. Note that the simulated spectra presented here are

for pure end-members, whereas actual streambeds tend to be

composed of different rock types, grain sizes, and periph-

yton communities. The mixed nature of these substrates

complicates the classification of benthic cover types but

simplifies bathymetric mapping by reducing the range of

pixel-scale bottom albedos.

4.1.3. Effect of suspended sediment concentration on remote

sensing reflectance

For applications focused on depth retrieval and/or in-

stream habitat classification, the water column itself

represents an additional complicating factor that can be

difficult to account for without knowledge of the water’s

optical properties, which is the typical case in practice. The

simulated spectra in Fig. 3c indicate that the primary effect

of increased sediment concentration is to increase scattering,

and thus the volume reflectance of the water column, with

the most pronounced changes in the blue region of the

spectrum and very little impact in the near-infrared. This

effect is modulated by the depth because in a deeper

channel, more water and sediment are available to scatter

incident radiation back into the upper hemisphere and the

irradiance reflectance of the water column increases. At

wavelengths of up to 600 nm, this water column volume

reflectance exceeds the albedo of certain substrates,

reducing the bottom contrast to the point that the streambed

might be effectively invisible in some cases (Maritorena et

al., 1994). As sediment concentration increases and scatter-

ing events become more frequent, the range of wavelengths

dominated by volume reflectance extends farther into the
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Fig. 5. Vertical structure of attenuation in optically shallow stream channels.
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green and red, reducing the utility of these bands for depth

retrieval or habitat mapping.

4.1.4. Effect of surface turbulence on remote sensing

reflectance

Though not a perfect analogy for flow-related surface

turbulence in shallow stream channels, radiative transfer

simulations performed for different wind speeds did provide

an indication of the effect of an irregular water surface on

the upwelling spectral radiance. The Hydrolight model

reports both the water-leaving radiance (LB+LC) and the

total upwelling radiance LT, which includes the surface-

reflected component LS. For a level water surface with no

wind or flow turbulence, LS is small and can be determined

using Fresnel’s equations. As the surface becomes more

irregular, however, LS becomes a much larger proportion of

the total, particularly in the near-infrared, where the surface

component can be four to five times the actual water-leaving

radiance. Fig. 4 depicts the spectral shape of this surface-

reflected radiance, defined as the difference between the

total upwelling and water-leaving radiances. For a level

surface, LS consists of reflected diffuse skylight, with the

increase at the blue end of the spectrum due to atmospheric

Rayleigh scattering. As the wind speed or flow turbulence

increases, the orientation of wave facets becomes more

variable; a greater portion of the sky, including the sun, is

reflected; and LS begins to resemble the solar spectrum

(Mobley, 1999). In the limit, certain view geometries will

result in pure specular reflection or sun glint off of the

water’s surface and extremely high surface radiances.

Surface reflectance Rs was computed by converting the

surface radiance Ls (assumed isotropic) to irradiance

(multiplying by p; sr) and normalizing by the incident

irradiance Ed. The resulting irradiance reflectance increases

with wind speed but remains spectrally flat, implying that

surface turbulence affects all wavelengths equally. The

radiance observed in shortwave infrared bands, where

water-leaving radiance can safely be considered negligible,

could thus be interpreted as a pure surface radiance signal

and subtracted from the entire spectrum; this is the

procedure used for the SeaWiFS oceanographic sensor

(Gould et al., 2001). In fluvial systems, boils and other

fine-scale water surface topographic features will compli-

cate the identification and correction of surface-reflected

radiance.

4.1.5. Vertical and directional structure of attenuation

Although a single effective attenuation coefficient is

typically assumed [i.e., the recommended use of 2Kd in the

linear transform approach (Philpot, 1989), where Kd is the

diffuse attenuation coefficient for downwelling irradiance],

the attenuation of light in optically shallow waters is much

more complex than this simple approach would suggest.

Beer’s law, the classical equation describing the propaga-

tion of electromagnetic radiation through an attenuating

medium, does not hold in shallow stream channels because
ED P
ROOF

the attenuation of the upwelling flux is different than that

of the downwelling flux due to the presence of a reflective

bottom, which acts as a source of radiant energy (Dierssen

et al., 2003). Furthermore, attenuation of upwelling

radiance reflected from the bottom differs from that

scattered into the upper hemisphere by the water column

itself, implying that three attenuation coefficients are

required even if optical properties are assumed to be

vertically homogenous (Maritorena et al., 1994). Diffuse

attenuation coefficients for downwelling (Kd) and upwell-

ing (Ku) irradiance computed at different depths within a

50-cm-thick water column bounded by a periphyton-coated

substrate are depicted in Fig. 5. Kd is essentially constant

with respect to depth, but Ku, defined as (�1/Eu)(dEu/dz),

where Eu is the upwelling irradiance and z is the depth

(Mobley, 1994), varies considerably within the water

column, especially in the near-infrared where absorption

is strongest. These coefficients behave differently because

whereas the magnitude of the downwelling flux decreases

monotonically with depth within the water column (dEd/

dzb0), the depth derivative of the upwelling flux can

become positive if sufficient upwelling flux is reflected

from a shallow substrate. In Fig. 5, Ku is negative beyond

625 nm, implying that the upwelling radiant flux actually

increases with increasing depth due to the reflection from

the bottom. The magnitude of the upwelling irradiance

attenuation coefficients will thus be highly sensitive to

bottom albedo, particularly at longer wavelengths.

Although the near-infrared spectral region is most sensitive

to changes in depth due to strong absorption by pure

water, this will also be the most difficult portion of the

spectrum for assigning an effective attenuation coefficient.

Directional dependence, sensitivity to substrate conditions,

and vertical structure of attenuation within shallow streams

imply that defining a unique operational attenuation

coefficient will be difficult, if not impossible, in most

applications.
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Fig. 6. Above: Effects of spectral resolution on the ability to resolve

changes in (a) depth and (b) substrate type. Broadband spectra were derived

from Hydrolight-simulated spectra by convolving with a square wave filter

with the specified band width. Sediment concentration was fixed at 2 mg

l�1 and wind speed was fixed at 5 m s�1. Substrate is periphyton in (a) and

depth is 30 cm in (b).

Fig. 7. Three-dimensional representation of the change in water-leaving

radiance corresponding to 5-cm incremental increases in depth over the

range from 5 to 140 cm with a gravel substrate, a sediment concentration of

2 mg l�1, and a wind speed of 5 m s�1.
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4.2. Remotely sensed digital image data

The upwelling spectral radiance from the surface, water

column, and substrate of a shallow stream channel varies

continuously, but this radiance is measured within discrete

spectral bands of variable width using detectors of finite

radiometric sensitivity. Sensor characteristics thus become

an important consideration for mapping streams (Legleiter

et al., 2002), and the following sections describe how the

conversion of radiometric quantities into digital data affects

the ability to discriminate among substrate types and resolve

changes in water depth across a range of depths.
ED P
ROOF

4.2.1. Spectral resolution

The Hydrolight-modeled spectra, consisting of 100

evenly spaced monochromatic bands between 400 and 800

nm, were convolved with a simple square wave filter to

simulate the effect of reduced sensor spectral resolution on

the ability to detect differences in depth and benthic cover.

Even when averaged over 100-nm intervals, the depth-

related signal persists in red and near-infrared bands (Fig.

6a), although effective attenuation coefficients become even

more difficult to define because absorption and scattering

can vary considerably over these broader spectral regions.

Gross differences in bottom albedo are preserved in the

degraded spectra (Fig. 6b), but the ability to resolve fine

spectral features is lost as spectral resolution is reduced. The

chlorophyll absorption feature prominent in periphyton

spectra, for example, can be detected with 20-nm bands

but disappears for broader-band sensors. High spectral

resolution is thus desirable, if not essential, for mapping

in-stream habitat. For depth retrieval, hyperspectral sensors

are also advantageous because spectral differences in

attenuation are more faithfully preserved, allowing for

selection of bands that are sensitive to changes in depth

but relatively unaffected by substrate variability.

4.2.2. Detector sensitivity, quantization, and bathymetric

contour intervals

Remote sensing instruments have a finite radiometric

resolution, converting the continuous upwelling spectral

radiance signal into discrete digital numbers. A change in

depth, or bottom albedo, can only be detected if the resulting

change in radiance exceeds the fixed amount of radiance

corresponding to one digital number. The change in water-

leaving radiance dLW, resulting from a 5-cm increase in

depth at depths ranging from 5 to 140 cm, decreases with

depth and increases with wavelength (Fig. 7). dLW attains a
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maximum in near-infrared bands, where absorption by pure

water is strongest, but this sensitivity decreases rapidly as

depth increases. In the blue and green portions of the

spectrum, weaker absorption and more pronounced scatter-

ing dictate that a fixed depth increment will produce a very

small change in water-leaving radiance, even in shallow

water. dLW also depends on bottom albedo and will be

greatest for highly reflective substrates such as limestone.

The discretization of the upwelling radiance signal will, in

part, determine whether these effects can be disentangled

using digital image data.

The finite fixed sensitivity of remote sensing instruments

implies that truly continuous maps of depth cannot be

derived from digital image data and, furthermore, that depth

estimates are subject to an inherent uncertainty related to the

sensor’s (linear) quantization. This effect can be conceptual-

ized as a contour interval, defined by the at-sensor radiance

necessary to induce a transition from one digital number to

the next. The width of this contour interval, and hence the

uncertainty of depth estimates, increases with depth,

decreases with increased bottom albedo, and increases as

scattering predominates over absorption. Depth remains the

primary control in most cases, and Fig. 8 illustrates the effect

of this variable on the ability to resolve changes in depth in

the red and near-infrared where sensitivity is greatest. The

change in at-sensor radiance dLd corresponding to a fixed

change in depth dzb at depth zb can be determined by

differentiating Eq. (3) with respect to depth. Recalling that
UNCORREC

Fig. 8. Effects of sensor quantization on the ability to resolve changes in depth for a

5 m s�1. (a) Change in at-sensor radiance dLd corresponding to a 1-cm increase in

corresponding to the fixed change in radiance equivalent to one digital number f

DN�1 at depths of 20, 40, and 60 cm. The troughs at 760 nm are due to reduced
ED P
ROOF

LB=C0TA(AD�Rl), the result can be expressed as a simple

differential:

dLD ¼ � gLBexp � gzbÞdzb;ð ð5Þ

where the effective attenuation coefficient g was assigned

the value 2Kd (Maritorena et al., 1994; Philpot, 1989). The

change in at-sensor radiance dLD calculated for various

contour intervals dzb and depths zb is displayed in Fig. 8a.

At a shallow depth of 5 cm, even a 1-cm increase in depth

results in a relatively large decrease in radiance that could be

detected by many imaging systems, but as depth increases,

1-cm depth increments correspond to very small changes in

upwelling radiance, which will probably be undetectable for

most instruments and a broader contour interval will be

necessary. Although the near-infrared spectral region is

clearly the most sensitive to bathymetric variability, as

depths approach 1 m, even a 10-cm change in depth will

result in a very small change in radiance. The utility of near-

infrared bands is thus limited by their saturation in deeper

water, particularly for low-albedo substrates.

Eq. (5) can be rearranged to describe the change in depth

dzb corresponding to the fixed change in at-sensor radiance

dLD equivalent to one digital number. This calculation

yields the fundamental limit of bathymetric resolution for an

imaging system, and the contour interval dzb at three

different depths is plotted for different detector sensitivities

dLD in Fig. 8b. For a detector sensitivity of 0.0001 W m�2

nm�1 sr�1 DN�1, depth resolution is 4 cm or better for
gravel substrate, a sediment concentration of 2 mg l�1, and a wind speed of

depth at four different depths. (b) Minimum detectable change in depth dzb
or sensor radiometric sensitivities of 0.001 and 0.0001 W m�2 nm�1 sr�1

solar irradiance caused by oxygen absorption in the atmosphere.
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Fig. 9. Maximum detectable depth for (a) a range of sensor radiometric

sensitivities LDN in increments of 0.0001Wm�2 nm�1 sr�1, and (b) different

substrates. The broken lines for periphyton, gravel, and andesite substrates in

(b) indicate spectral regions in which the bottom cannot be distinguished

from the water column (AdcRl), precluding estimation of depth.
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depths up to 60 cm, but for a less sensitive imaging system

with dLD=0.001 W m�2 nm�1 sr�1 DN�1, contour intervals

at 700 nm range from 7.5 cm at 20 cm depth to 15 cm at 60

cm depth. Again, bathymetric resolution is seen to be

greatest in the near-infrared, but a balance must be attained

between sensitivity to changes in depth and saturation in

deeper water. Contour intervals could be reduced by

measuring in broader bands to increase the number of

photons reaching a detector, but the loss of spectral detail

implies another tradeoff. These results indicate that sensor

radiometric resolution exerts a fundamental control on the

level of detail that can be achieved through remote sensing.

Less sophisticated sensors with lower quantization (e.g.,

eight-bit systems) will thus be limited in terms of their

ability to map subtle channel features, particularly in deeper

water.

4.2.3. Maximum detectable depth

The finite sensitivity of imaging systems also implies that

depths exceeding a certain detection limit cannot be mapped

effectively. Philpot (1989) defines this threshold as the

depth at which the difference between the observed at-

sensor radiance and that for a hypothetical optically deep

water body is equivalent to the radiance corresponding to

one digital number (p. 1576):

zmax ¼ � ln DLDN=LBÞ=g:ð ð6Þ

Here DLDN=LD�LW is the radiance corresponding to one

digital number, while LW denotes the radiance from an

optically deep water body, and LB is the radiance influenced

by the bottom through the term (AD�Rl). Sensor radio-

metric resolution thus plays a critical role in defining the

dynamic range over which depths can be retrieved, and

maximum detectable depths at 700 nm range from 1.7 to 3.3

m as detector sensitivity varies from 0.001 to 0.0001 W m�2

nm�1 sr�1 DN�1 (Fig. 9a). zmax also depends upon water

column optical properties because depths can only be

estimated when the observed radiance differs from that of

optically deep water. The concept of bottom contrast

(AD�Rl) thus becomes critical, and three cases can be

distinguished: (1) ADNRl and the bottom is detectable as an

increase in upwelling radiance relative to deep water; (2)

ADbRl and the substrate can be detected by a reduction in

radiance due to the truncation of the hypothetical infinitely

deep water column by a bottom at finite depth; and (3)

ADcRl, in which case the bottom is effectively invisible

and depth cannot be estimated remotely. For the Hydrolight

simulations in this study, all three conditions were observed

due to scattering by suspended sediment (Fig. 9b). For

bright limestone substrates, the bottom contrast is positive at

all wavelengths, but the albedo of the other substrates is less

than the volume reflectance of the water column for

wavelengths as high as 600 nm. In these cases, depths can

be estimated at shorter wavelengths based on a reduction in

observed radiance and at longer wavelengths from increased

radiance relative to optically deep water. At intermediate
wavelengths from 550 to 600 nm, the Hydrolight-simulated

spectra suggest that periphyton, gravel, and andesite

substrates will not be visible. The results in Fig. 9 illustrate

a single combination of suspended sediment concentration

and optical cross-section, and Rl could vary widely for

streams with different optical properties. Nevertheless,

substrate reflectance and bottom contrast, together with

the radiometric characteristics of the sensor, will determine

the detection limit for water depth.

4.3. Evaluation of linear transform and ratio-based depth

retrieval models

The potential utility of the linear transform and ratio-based

techniques for estimating water depth in shallow stream

channels was assessed using a combination of simulated

Hydrolight spectra, in-stream spectral measurements, and

digital image data. We explored our database of simulated

Hydrolight spectra in search of a pair of wavelengths with
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Evaluation of linear transform and ratio-based depth estimation models

using n=100 simulated spectra from the Hydrolight database, randomly

selected according to the probability distributions in Table 3 to provide a

realistic indication of the performance of these techniques under the actual

conditions experienced in Soda Butte Creek t5.2

Variable Linear transform Band ratio t5.3

Rrs R Lu Rrs R Lu t5.4

Slope �1.0466 0.8858 0.1232 0.8968 1.6361 1.2513 t5.5
Intercept 0.5146 0.2589 0.258 0.2553 0.1883 �0.0874 t5.6
R2 0.9132 0.8989 0.1025 0.882 0.8852 0.7888 t5.7

t4.1

t4.2

t4.3

t4.4

t4.5
t4.6
t4.7
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different effective attenuation coefficients but similar

responses to variations in bottom albedo and ultimately

selected bands centered at 560 and 690 nm. Shorter wave-

lengths were avoided because scattering by suspended

sediment obscures the depth and substrate signals. Although

longer wavelengths were more sensitive to changes in depth,

strong absorption in the near-infrared limited the range of

depths over which these bands would be useful. Although this

band combination will not be optimal in all cases, the 560

nm–690 nm pair provided an initial starting point for

evaluating these two depth retrieval algorithms.

Initially, the linear transform and ratio-based models

were applied to 1000 randomly selected spectra from the

Hydrolight database, spanning the full range of depth,

substrate type, sediment concentration, and surface turbu-

lence listed in Table 1. Separate calculations were

performed for three radiometric quantities: (1) remote

sensing reflectance Rrs, which represents an ideal measure-

ment in that the confounding influence of surface-reflected

radiance is removed; (2) irradiance reflectance R, which

includes the surface contribution but is a more common

measure that can be retrieved using various radiometric

and atmospheric calibration techniques (Schott, 1997); and

(3) the total upwelling radiance Lu, which is the

fundamental quantity measured by a remote detector and

thus does not necessarily require any form of reflectance

retrieval. For all three quantities, the transformed variable

Y was computed by substituting the 560- and 690-nm band

values into Eq. (4). For the ratio-based technique, values

were computed as ln(X560/X690), where X represents Rrs, R,

or Lu. The strength of the linear correlation between the

transformed variable Y or ratio value and water depth was

then quantified through simple linear regression. The results

summarized in Table 4 suggest that both the linear transform

and ratio values are strongly correlated (R2N0.85) with

water depth across the full range of stream conditions. The

two approaches performed similarly for Rrs and R spectra,

but for Lu, the R2 value for the linear transform dropped to

0.16 while the ratio method’s R2 was much less affected

(0.68). This result implies that the ratio-based technique is

more robust and can be applied to at-sensor radiance data

that have not been converted to reflectance. Presumably,

uncalibrated digital numbers could be used if sensor gains

and offsets are unavailable; the regression coefficients

would change, but the ratio value will still be linearly

related to water depth.
Table 4

Evaluation of linear transform and ratio-based depth estimation models

using n=1000 randomly selected simulated spectra from the Hydrolight

database

Variable Linear transform Band ratio

Rrs R Lu Rrs R Lu

Slope �1.1055 0.8991 �0.2589 0.9455 1.6841 1.1867

Intercept 0.6821 0.4487 0.4915 0.2479 0.198 �0.0296

R2 0.902 0.8824 0.1623 0.8593 0.8551 0.6858
ROOFIn order to assess the accuracy of these techniques under

more realistic conditions representative of the Soda Butte

Creek study area, a second round of calculations was

performed using 100 simulated spectra selected at random

but stratified according to the probability distributions of

depth and substrate listed in Table 3. The resulting relation-

ships between the linear transform and ratio values and water

depth were slightly stronger than for the random spectra, with
Fig. 10. Application of the ratio-based technique to (a) n=100 simulated

upwelling radiance spectra randomly selected from the Hydrolight database

to be representative of the actual conditions observed in Soda Butte Creek,

and (b) n=33 in-stream field spectra collected at three sites along Soda

Butte Creek, stratified by periphyton density.
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t6.1 Table 6

Evaluation of linear transform and ratio-based depth estimation models

using in-stream field spectra collected from three reaches of Soda Butte

Creekt6.2

Data Band ratiot6.3

All sites Low velocity excludedt6.4

Slope 0.0086 0.0062t6.5
Intercept �0.2394 �0.1489t6.6
R2 0.6495 0.6835t6.7
N 33 25t6.8
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R2 values of 0.88 or better for reflectance spectra (Table 5).

Applied to the Lu spectra, the ratio method (R2=0.79) again

outperformed the linear transform. Fig. 10a illustrates the

relationship between the upwelling radiance ratio and the

water depth, and indicates that deviations from this trend are

related to bottom albedo, which also influences the upwelling

radiance. Dark-colored andesite substrates consistently plot

below the trend, suggesting that depths will tend to be

underestimated for these substrates; an opposite pattern is

observed for bright limestone bottoms. This result suggests

that stratification by substrate can improve the accuracy of

depth retrievals, or, conversely, substrate types can be linked

to residuals from the ratio value–water depth regression.

Similar plots (not shown) suggested that suspended sediment

does not modify the relationship between depth and the ratio

value, and that the effect of surface turbulence is also

minimal. Fig. 10a indicates that ratio-based depth estimates

will be least accurate in the deepest areas of the channel, with

additional uncertainty introduced by the sensor’s quantiza-
UNCORRE

Fig. 11. Application of the ratio-based bathymetric mapping to multispectral and hyp

National Park. Relative depths are expressed as a proportion of the mean depth in
ED P
ROOF

tion. The relationship between the band ratio and the water

depth remained strong when the simulated spectra were

averaged to 20-, 50-, and 100-nm-wide bands, with R2 values

of 0.77, 0.72, and 0.71, respectively. As an empirical

verification of these results, the ln(560 nm/690 nm) ratio

was also computed for 33 in-stream spectra measured in Soda

Butte Creek (Table 6). The relationship was somewhat

weaker, but an R2 value of 0.64 indicated a moderately

strong linear association between the ratio values and water

depth, which was not significantly modified by variations in

periphyton density (Fig. 10b).

The consistently strong correlation between the ln(560

nm/690 nm) ratio and water depth implies that this simple

technique could be used to obtain a variable linearly related

to depth from uncalibrated digital image data. To test this

possibility, we derived maps of relative depth from ADAR

5500 multispectral and Probe-1 hyperspectral data by

dividing the band ratio computed for each in-stream pixel

by the mean value within the reach (Fig. 11). The resulting

spatial patterns are hydraulically reasonable, with the deep

pool at the Pebble Creek–Soda Butte confluence clearly

distinguished, along with the pool exit slope and the

increase in depth as the channel bends to the right.

Comparing the low-flow ADAR scene to the Probe-1 image

acquired when the discharge was 2.77 times greater also

indicates that the relative depth of the confluence pool

increases with flow stage. Ground reference data collected at

the time of the flight would be required to link ratio values

to absolute depths and directly assess accuracy, but the

visual impression of the imagery is encouraging.
erspectral images of the Soda Butte–Pebble Creek confluence in Yellowstone

the reach and displayed as deciles of the distribution of relative depths.
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This ratio-based technique possesses a number of

important advantages over the linear transform method that

has been used in previous stream studies. Most importantly,

whereas the linear transform involves a bdeep-water
correctionQ that implicitly assumes homogeneous atmos-

pheric and water column properties throughout the scene,

band ratios are calculated independently for each pixel and

can be applied in the absence of optically deep water. The

ratio-based algorithm is thus more robust to variations in

illumination, atmospheric conditions, and water column

optical properties. The band ratio is also more computa-

tionally efficient than the linear transform, which involves

calculating eigenvectors of the spectral covariance matrix, a

process that will be affected by outlying observations such

as mixed pixels along the stream bank. Finally, our results

suggest that the band ratio significantly outperforms the

linear transform for upwelling radiance data (Tables 4 and

5), and Fig. 11 illustrates that hydraulically reasonable maps

of relative depth can be obtained from uncalibrated, archival

imagery. Because only two spectral bands are required and

complex, potentially error-prone reflectance retrievals are

unnecessary; this simple ratio-based technique provides a

more flexible, easily implemented approach to mapping

channel morphology.
T
963
964
965
966
967
968
969
970

971
972

973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
UNCORREC
5. Discussion

5.1. Additional limiting factors

The preceding results have demonstrated that variations

in water depth and benthic cover type are expressed as small

changes in upwelling radiance, and sensor signal-to-noise

characteristics thus become an important control on the

ability to retrieve water depth and discriminate among

substrates. In practice, the relatively small signal from the

streambed can be overwhelmed by extraneous sources of at-

sensor radiance including that reflected from the water

surface, scattered upward by the atmosphere, and reflected

into the sensor’s field of view from adjacent terrestrial

features such as gravel bars. The water-leaving radiance will

also be subject to transmission losses along the path from

the stream to the sensor, and data acquired under poor

atmospheric conditions are likely to be of limited value.

These atmospheric considerations are a primary advantage

of airborne platforms and an obstacle to satellite-based

mapping of small streams, even for commercial sensors with

fine spatial resolution.

The size of the stream relative to the sensor’s ground

instantaneous field of view will largely determine the utility

of remote sensing for mapping channel morphology and in-

stream habitat. For systems with coarser spatial resolution, a

greater proportion of pixels will be contaminated by

radiance from the stream banks, and a pixel size of one-

half the mean channel width is a basic minimum require-

ment. Aggregating depth measurements that would typically
ED P
ROOF

be collected at points over larger areas (i.e., image pixels)

reduces the variance of the data and can obscure subtle

channel features. Because disturbance history, process

regime, and spatial structure vary among stream reaches, a

pixel size that is appropriate for one reach might be

inadequate for other, more complex channel segments.

The selection of an appropriate spatial resolution thus

requires knowledge of the stream of interest and a

thoughtful evaluation of the study’s objectives. These

considerations must also be balanced with the sensor’s

technical specifications, with some compromise reached

between spatial detail, spectral discrimination, and radio-

metric sensitivity.

Additional physical factors will also limit the accuracy

with which channel morphology and in-stream habitat can

be remotely mapped. The simulated spectra produced with

the Hydrolight radiative transfer model only approximate

the true three-dimensional radiance distribution in optically

shallow waters with mixed substrates and sloping bottoms.

Under these circumstances, radiative transfer processes are

better modeled stochastically, although Mobley and Sund-

man (2003) demonstrated a close agreement between Monte

Carlo simulations and one-dimensional model results

corrected to account for substrate heterogeneity and bottom

slope. Zaneveld and Boss (2003) also caution that the far-

field reflectance measured by a remote sensing system can

be overestimated if topographic effects are ignored. The

magnitude of these slope-related errors will be a function of

solar geometry and the slope and aspect of the bottom,

which will be highly variable in meandering streams.

Remote sensing of channel morphology will thus be

complicated by the channel morphology itself.

5.2. Remote mapping of river channel morphology:

problems and prospects

Estimating water depth and mapping benthic cover types

in stream channels represents a challenging application of

remote sensing technology. The preceding sections have

outlined the complex radiative transfer processes governing

the interaction of light and water in optically shallow waters,

some of which have only recently drawn attention in the

coastal research community. Nevertheless, the physical

basis for remote sensing of rivers is sound, providing a

solid foundation for large-scale, long-term mapping and

monitoring of fluvial systems. While our results suggest that

these goals are not unreasonable, a number of fundamental

limitations must also be acknowledged. Foremost among

these are (1) the large number of unknown and, for all

practical purposes, unknowable quantities influencing the

upwelling spectral radiance; (2) the inherent uncertainty

introduced by the use of remote detectors with finite

sensitivity and linear quantization; and (3) the compromises

that must be reached between spatial, spectral, and radio-

metric resolution for narrow low-reflectance aquatic targets.

These factors combine to place a ceiling upon the accuracy
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and resolution with which depths can be estimated and

substrates can be discriminated, and the utility of remote

sensing techniques will ultimately depend on the specific

objectives of each application.

Granting these concerns, our results also suggest that, in

spite of the complex radiative transfer processes involved,

simple algorithms can provide quantitative results of

sufficient accuracy for many, if not most, stream studies.

For example, a log-transformed band ratio can be used to

obtain a variable that is strongly linearly related to water

depth across a range of plausible stream conditions. These

spatially distributed estimates of relative depth could be

used to quantify and map important habitat features such as

pools and riffles. If absolute values are needed, ground-

based depth measurements collected at the time of the flight

can be used to derive a regression equation for translating

the band ratio to actual depth estimates. Because bottom

albedo also influences the upwelling spectral radiance,

residuals from this relationship can be used to identify

different substrate types. Benthic cover maps can also be

derived by parameterizing a radiative transfer model such as

Hydrolight using either suspended sediment concentration

data and an optical cross-section or in situ measurements of

the stream’s optical properties. The modeled attenuation

coefficients for downwelling irradiance and upwelling

radiance, together with image-derived depth estimates, can

then be used to calculate bottom albedo and discriminate

among various substrates (Dierssen et al., 2003). A

synergistic combination of field work and remotely sensed

data could thus be used to efficiently and quantitatively map

channel morphology and in-stream habitat on a watershed

scale, where logistical constraints limit the spatial coverage

of ground-based surveys.

5.3. Operational guidelines

Some general guidelines may be proposed to assist in the

planning and execution of such remote sensing campaigns.

The results presented here indicate that high radiometric

sensitivity, fine spatial resolution, and a large number of

narrow spectral bands are highly desirable, if not necessary,

for stream studies. If a detailed topographic representation is

needed for flow modeling or sediment transport calcula-

tions, for example, sensor quantization becomes a crucial

consideration and detector sensitivities on the order of

0.0001 W m�2 nm�1 sr�1 DN�1 are necessary to ensure a

bathymetric resolution on the order of 2–3 cm across a range

of depths. Twelve- or 16-bit sensors will likely satisfy this

specification, but less sensitive eight-bit systems will

probably not be adequate. For classification of in-stream

habitat, spectral resolution takes on greater significance

(Marcus, 2002), as detection of subtle chlorophyll absorp-

tion features, for example, requires narrow bands at the

corresponding wavelengths. Near-infrared bands will be

most sensitive to changes in depth, but in deeper waters, the

upwelling radiance in this spectral region will be below the
ED P
ROOF

detection limit of most sensors. The selection of an

appropriate spatial resolution will be dictated by the size

of the channel features of interest, but the small pixels that

might be desirable for mapping subtle bathymetric varia-

tions will often come at the expense of spectral detail and

radiometric precision.

Surface-reflected radiance can be a large proportion of

the signal from stream channels characterized by complex

water surface topography, but this confounding influence

can be reduced using longer-wavelength bands and careful

flight planning. Because first surface reflectance is spec-

trally flat, anomalously high values in near- or mid-infrared

bands where the water-leaving radiance is negligible can be

attributed to surface-reflected radiance and then subtracted

from the entire spectrum. For multispectral scanners with a

single near-infrared band, this technique is inappropriate

because the water-leaving radiance in the 700–900-nm

range cannot be assumed negligible in shallow streams. The

availability of additional bands in the shortwave-infrared

thus constitutes another advantage of more sophisticated

hyperspectral sensors. Surface reflectance effects can also be

minimized by developing flight plans that provide a

favorable combination of solar and view geometry. Mobley

(1999) cautions that sun glint is inevitable when both solar

and view zenith angles are small and advocates a view

zenith of 408 from nadir and a view azimuth of 1358 from
the sun. While the view azimuth will be controlled by the

channel’s orientation, sun glint could be reduced by

acquiring data earlier or later in the day, possibly at off-

nadir views. Again, a balance must be reached because

higher solar zenith angles reduce the incident solar

irradiance and thus the magnitude of the water-leaving

radiance, which could be problematic for sensors with poor

signal-to-noise characteristics.

In practice, planning must involve careful coordination

with field personnel and collection of ground reference data.

Specifically, the timing of in situ depth measurements

should coincide with image acquisition to facilitate accurate

calibration of the relationships between image-derived

variables and water depth. Because this calibration proce-

dure relies upon the ability to link point measurements to the

corresponding image pixels, precise geometric control is

necessary; registration can be achieved using surveying

techniques and reference panels clearly visible in the

imagery.

5.4. Alternative approaches and complementary

technologies

The ratio-based algorithm advocated here provides an

image-derived quantity that is linearly related to water depth

and can be used to document spatial patterns of relative

depth. An inherent weakness of this approach, however, is

that obtaining absolute depths still requires supplemental

information to calibrate the relationship between the band

ratio and the water depth. Continued reliance upon simulta-
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neous ground data collection will hinder the utility of

remote sensing technology for long-term and/or large-scale

monitoring, and the development of alternative calibration

methods thus becomes an important area of research. One

option receiving considerable attention in the shallow

marine community is the use of calibrated hyperspectral

imagery, together with spectral databases developed from

radiative transfer models (e.g., Louchard et al., 2003).

Unlike band ratios, which neglect magnitude information

and must be tuned for each application, measurement of the

spectral upwelling radiance could potentially be used to map

absolute depth and bottom albedo across a range of stream

environments in the absence of ancillary location-specific

data. This level of flexibility would be ideal, but such an

approach would also place a premium on (1) advanced,

carefully calibrated instrumentation (Davis et al., 2002); (2)

accurate characterization of both the atmosphere and the

inherent optical properties of the water column; and (3) the

development of comprehensive substrate spectral libraries.

Pursuit of these objectives is justified, but the requirements

in terms of both data and remote sensing expertise are

onerous. Until this degree of sophistication is achieved, we

propose the simple ratio-based algorithm as a practical tool

for applied studies.

This study has focused on the application of passive

optical remote sensing to fluvial environments, but active

LiDAR (light detection and ranging) systems also play a

prominent role in river research (e.g., Bates et al., 2003;

French, 2003). LiDAR has been used primarily as a source

of high-resolution topographic data for hydrodynamic flood

models (Cobby et al., 2003), but at typical red wavelengths,

laser pulses only penetrate the water column to a very

shallow depth and thus cannot be used to map submerged

portions of the channel. Conversely, passive optical remote

sensing provides no elevation data outside the wetted

channel unless photogrammetric techniques are employed

(e.g., Lane et al., 2003). Another important limitation of

passive optical remote sensing is that conversion of depth

estimates to bed elevations for monitoring erosion and

deposition requires supplemental topographic information

for estimating water surface gradients. Active and passive

optical remote sensing technologies thus complement one

another, and thorough characterization of both channel and

floodplain would perhaps best be achieved through a

combination of high spatial resolution hyperspectral and

LiDAR data. Stereo coverage acquired with multispectral

digital photographic systems could also provide a viable

alternative for remote mapping of fluvial systems.
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6. Conclusion

While the potential utility of remote sensing technol-

ogy for mapping fluvial systems has long been realized,

the approach has not been widely applied due, at least in

part, to a lack of understanding of the principles that both
ED P
ROOF

enable and limit the technique. In this paper, we made an

initial attempt to elucidate the physical processes govern-

ing the interaction of light and water in shallow stream

channels and to describe the translation of upwelling

spectral radiance into digital image data. Field spectra and

geomorphic data from a fourth-order stream in Yellow-

stone National Park were used to parameterize a

numerical radiative transfer model, and simulated spectra

illustrating the effects of water depth, substrate reflec-

tance, suspended sediment concentration, and surface

turbulence were generated. The fundamental limitations

imposed by the use of remote detectors with discrete band

passes and finite radiometric sensitivities were explored

using these spectra, and sensor quantization was shown to

be an important consideration. Linear transform and ratio-

based algorithms were evaluated using simulated spectra,

in-stream spectral measurements, and archival imagery

from northern Yellowstone. The results of this analysis

suggest that the ratio-based technique can be applied to

uncalibrated at-sensor radiance spectra to produce a

variable linearly related to water depth; encouraging

results were obtained using the ln(560 nm/690 nm) ratio

for simulated and measured spectra and multispectral and

hyperspectral imagery.

Despite the complexity of radiative transfer in shallow

streams and the compromises that must be made between

spatial, spectral, and radiometric resolution, our results

suggest that remote mapping of river channel morphology

and in-stream habitat is feasible. With appropriate field data,

water depth can be estimated using a ratio-based algorithm

and radiative transfer models can be used to retrieve bottom

albedo and map benthic cover types. Although certain

fundamental constraints must be acknowledged, geomor-

phologists, hydrologists, ecologists, and resource managers

all stand to benefit from the application of remote sensing

technology to the fluvial environment.
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