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An estimation of the main wetting branch of the soil water
retention curve based on its main drying branch using the
machine learning method
Krzysztof Lamorski1, Ji�r�ı �Simůnek2, Cezary Sławi�nski1, and Joanna Lamorska3

1Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland, 2Department of Environmental Sciences, University
of California Riverside, Riverside, California, USA, 3Institute of Agricultural Sciences, State School of Higher Education in
Chełm, Chełm, Poland

Abstract In this paper, we estimated using the machine learning methodology the main wetting branch
of the soil water retention curve based on the knowledge of the main drying branch and other, optional,
basic soil characteristics (particle size distribution, bulk density, organic matter content, or soil specific
surface). The support vector machine algorithm was used for the models’ development. The data needed
by this algorithm for model training and validation consisted of 104 different undisturbed soil core samples
collected from the topsoil layer (A horizon) of different soil profiles in Poland. The main wetting and drying
branches of SWRC, as well as other basic soil physical characteristics, were determined for all soil samples.
Models relying on different sets of input parameters were developed and validated. The analysis showed
that taking into account other input parameters (i.e., particle size distribution, bulk density, organic matter
content, or soil specific surface) than information about the drying branch of the SWRC has essentially no
impact on the models’ estimations. Developed models are validated and compared with well-known
models that can be used for the same purpose, such as the Mualem (1977) (M77) and Kool and Parker
(1987) (KP87) models. The developed models estimate the main wetting SWRC branch with estimation
errors (RMSE 5 0.018 m3/m3) that are significantly lower than those for the M77 (RMSE 5 0.025 m3/m3) or
KP87 (RMSE 5 0. 047 m3/m3) models.

1. Introduction

Soil water retention curves (SWRCs) are one of the most important soil hydrological characteristics required
for both agricultural and environmental research related to the vadose zone. SWRCs link the soil water con-
tent with the soil water potential and represent indispensable information for the modeling of soil water
flow processes. Although laboratory measurements are the ultimate source of information about retention
curves, for many reasons SWRCs are commonly estimated using various statistical models, such as the so-
called pedotransfer functions (PTF) [e.g., Vereecken et al., 1989, 2016; Schaap et al., 2001]. The main reason
for using PTF estimations of SWRCs instead of direct measurements is their long duration and high cost.
Typical steady state equilibrium measurements of the retention curve for a full range of soil water potentials
can last several months.

PTFs estimate SWRCs based on various physical and chemical soil characteristics. For example, particle size dis-
tribution and dry bulk density are commonly used predictor variables in PTFs. Additional soil variables such as
organic carbon content, soil-specific surface area, and/or cation exchange capacity can also be used. There
were numerous PTF models developed utilizing different statistical and/or soft computing methods for SWRC
estimation. Early PTFs were often developed using statistical regression [Rawls et al., 1982; Vereecken et al.,
1989; W€osten et al., 1999; Walczak et al., 2006], leading to some still often used models. Various soft computing
methods of statistical inference such as artificial neural networks (ANN) [Schaap et al., 2001; Jana et al., 2008],
the k-nearest neighbors algorithm (k-NN) [Nemes et al., 2006; Botula et al., 2013], regression trees [T�oth et al.,
2012, 2015], or support vector machines (SVM) [Lamorski et al., 2008] were used later on.

Soil water retention curves of many soil materials exhibit hysteretic behavior, which means that the depen-
dence between the soil water potential (h) and the soil water content (h) is not unique and depends on the
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history of soil water content changes. As a result, soil can exhibit an interval of soil water contents for a sin-
gle soil water potential. Under natural conditions, available states in the h-h space are limited by the so-
called main drying and main wetting curves. The main wetting and drying curves are obtained when the
SWRC is measured starting at zero or full saturations, respectively. Since most laboratory methods for SWRC
measurements determine the main drying branch, existing PTFs usually produce values for the main drying
branch as well. However, for many modeling applications, it is advisable to consider hysteresis, and thus
necessary to also know the main wetting branch of the SWRC. Only when both wetting and drying branches
of the SWRC are known can numerical models consider soil hysteresis and determine actual values of soil
water content for given values of soil water potential, taking into account historical values of soil water
potential.

Hysteresis in the SWRC affects many vadose zone flow processes, often with practical implications. For
example, the influence of hysteresis on runoff predictions in catchments was demonstrated by Mirus [2015].
Other studies showed that hysteresis influences slope stability, and neglecting it can lead to an underesti-
mation of landslide conditions [Ebel et al., 2010; Bordoni et al., 2015]. Consideration of SWRC hysteresis in
vadose zone transport modeling has an influence on soil water flow [Trpko�sov�a and Mls, 2010; Ma et al.,
2011] and solute transport [Vereecken et al., 1995] modeling results, especially in the upper soil layer and in
the rhizosphere [Elmaloglou and Diamantopoulos, 2009; Carminati et al., 2010]. On the other hand,
the effects of soil heterogeneity may overshadow the effects of hysteresis on soil water flow processes
[Vereecken et al., 1995].

Physical phenomena which result in SWRC hysteresis [Bachmann and van der Ploeg, 2002; Albers, 2014]
include (a) an ink-bottle effect due to irregular shapes of pores, (b) hysteresis of the interface contact angle,
i.e., the difference between ascending and descending contact angles, (c) a rain drop effect, i.e., air bubble
entrapment or Haines jumps, and (d) temporal nonequilibrium due to fast pore filling events. The research
into SWRC hysteresis is still under active development, and different modeling approaches have been
developed to understand or predict the SWRC hysteretic behavior. Two main modeling methodologies can
be distinguished: physically based models and phenomenological models.

Physically based models take into account soil water interactions. These models focus on real physical phe-
nomena that occur at the level of soil pores and that together with soil structure influence unsaturated soil
hydrological properties [Mahmoodlu et al., 2016]. Real representations of pore spaces obtained from com-
puted microtomography scanning (mCT) [Ahrenholz et al., 2008] or equivalent pore network models [Joekar-
Niasar et al., 2013; Arroyo et al., 2015; Rostami et al., 2015] and individual phenomena leading to the hystere-
sis effect such as contact angle hysteresis [Zhou, 2013] or soil-water interactions and pore morphology
[Chan and Govindaraju, 2011; Gan et al., 2013] are used and analyzed in these models. While these models
provide insight into various physical factors leading to hysteresis, their practical applications are very limited
since they are very complicated and often dependent on hard-to-get input data.

Phenomenological models are based, on the other hand, on simplified assumptions regarding the soil
medium and/or on the general Everett’s domain hysteresis theory. The first attempt to apply the domain
theory to soil moisture hysteresis was the independent domain model of Poulovassilis [1962]. The similarity
hypothesis for the distribution of geometrical menisci curvatures for drying/wetting relationships was intro-
duced by Philip [1964], which allowed for the reduction of information needed to describe the hysteretic
process to only the main wetting and drying branches. The similarity concept was further developed by
Mualem [1973, 1984], who stated that the domain model for the water distribution function can be
expressed as a simple product of two functions, one solely dependent on wetting and the other only on
drying soil water potential. Another approach, which is based on a scaling hypothesis that assumes a simple
dependence between main and scanning curves, was proposed by Scott et al. [1983]. This approach is
equivalent to the Mualem model based on the similarity hypothesis. The Scott et al. [1983] model was then
adopted for SWRCs described using the van Genuchten [1980] analytical function [Kool and Parker, 1987;
Parker and Lenhard, 1987]. The van Genuchten [1980] model has been recently extended to take into
account deformation of soil pores due to swelling effects [Gallipoli, 2012]. Another approach to describing
the main and scanning curves is to define them indirectly, such as using different tangent inclinations
dependent on suction [Pedroso and Williams, 2010]. The scanning curves can then be determined by inte-
grating a differential equation introduced to describe the shapes of the curves. A comprehensive review of
these types of models of hysteresis was recently provided by Pham et al. [2005] and Albers [2014].
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Phenomenological models are still being further improved by taking into account additional multiple
effects or phenomena [Rudiyanto et al., 2013, 2015]. Phenomenological models are very important for the
soil water modeling practice because they allow for simple and easy-to-incorporate approaches for describ-
ing the hysteretic behavior of soils based on standard soil water retention information.

Most hysteretic retention models are based on information about the main drying and wetting branches of
SWRCs. However, laboratory measurements of the main wetting branch of the SWRC are rarely made during
soil surveys, and usually, only the main drying branch of SWRC is measured. It is thus necessary to somehow
estimate the main wetting branch when the soil hysteretic behavior is to be considered; some classical
models of the soil water hysteresis allow for that. For example, the universal domain model estimates hys-
teretic SWRCs, including the main wetting branch, based only on information about the main drying branch
[Mualem, 1977]. Kool and Parker [1987] suggested an approximate method for the estimation of the main
wetting branch of the SWRC parameterized using the van Genuchten [1980] function based on parameters
of the main drying branch. Other models need additional information regarding the main wetting branch,
such as the water entry value [Hogarth et al., 1988] or two points measured on the wetting branch [Pham
et al., 2003]. Despite the fact that these models give a more accurate estimation [Pham et al., 2005] of the
wetting branch of a SWRC, their practical applications are cumbersome due to prohibitive requirements on
additional input data characterizing the main wetting branch of a SWRC.

The aim of this work is to develop a statistical model that will allow for the estimation of the main wetting
branch of a SWRC based on knowledge of the main drying branch of the SWRC, while also providing the
option to take additional information about soil physical characteristics into account. The technique of sup-
port vector machines will be used to develop this model.

2. Materials and Methods

2.1. Soil Material
Measured soil retention data are needed for the development and validation of SWRC estimating models.
In this study, 104 different undisturbed soil core samples collected from the top soil layer (A horizon) of dif-
ferent soil profiles in Poland were analyzed (Figure 1). Standard 100 cm3 (a 5 cm diameter) sampling rings
were used in the analysis. Soils were selected to be representative of the entire country (Poland) and were a
subset of the Soil Databank of Arable Mineral Soils of Poland [Bieganowski et al., 2013a]. Soils were mainly
classified as Haplic Luvisols and Eutric Cambisols, i.e., the two main soil types in Poland. Mollic Gleysols,

Eutric Fluvisols, Haplic Phaeozems, Distric
Fluvisols, Rendzic Leptosols, and Terric
Histosols were also represented.

Drying and wetting branches of the SWRC
were determined during a 3 year long
campaign of laboratory measurements.
Soil cores were initially saturated with
water and then subjected to drying; the
drying branch of the SWRC was measured
first and the wetting branch was deter-
mined afterward starting from a soil water
potential of 21554.78 kPa, which was
reached at the end of the drying phase.
Soil water contents were determined for
seven values of a soil water potential of
23.1, 29.81, 215.54, 249.16, 2155.47,
2491.66, and 21554.78 kPa for the dry-
ing branch and for six values of a soil
water potential of 21554.78, 2310.21,
298.1, 215.54, 29.81 and 23.90 kPa for
the wetting branch. Sandboxes and the
hanging water column method were

Figure 1. Textural distribution (PSD was determined by LDM) of the soil
samples used in this work.
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used for soil water potentials higher than or equal to 29.81 kPa, while pressure chambers were utilized for
lower potentials. The drying branch of SWRC was measured using the standard ceramic plate extractors (by
Soilmoisture Equipment Corp.), which allowed for the soil water potential to be only reduced between sub-
sequent measurements, as water could only be released from the measurement system.

For the determination of the wetting branches of the retention curves, different pressure chambers
were used, which allowed for wetting of measured soil cores through the chamber ceramics between
subsequent measurements. For that purpose, modified Soilmoisture Equipment volumetric pressure plate
extractors (Product #1250) were used. The system was originally designed to measure changes in the
soil water contents of the samples based on the extracted/applied soil water volume measured by
burette. This system was adapted so that TDR probes [Skierucha et al., 2012a, 2012b] could be used to
directly measure the soil water content in the samples (see Figure 2) rather than derive it from burette
measurements. In the new setup, the TDR probes were vertically installed in the soil samples from the
top, and such a TDR placement and the validity of their measurements were experimentally verified
[Pastuszka et al., 2014]. In addition to making measurements easier, this modification also allowed us to
place three soil samples in each chamber (the original system allowed only one soil core in a pressure
chamber), which allowed for the simultaneous determination of the drying branches of 21 soil cores
using seven pressure chambers.

In addition to SWRCs, other soil physical characteristics were determined including dry bulk density (BD),
particle size distribution (PSD), which was measured using the laser diffraction method (LDM), the total
organic carbon (OC), which was measured using high-temperature catalytic oxidation using TOC-VPCH
(Shimadzu), and soil specific surface (SSS), which was determined using the water vapor adsorption
method. The soil samples were initially sieved through the 2 mm sieve for PSD, OC, and SSS
determination.

A Malvern Mastersizer 2000 with a measurement range of 0.02 mm to 2 mm was used for PSD determina-
tion. For obtaining homogeneity in the measured soil suspension, a Hydro G dispersion unit was used
[Sochan et al., 2012]. The pump speed was 1750 rpm, and the stirrer speed was 700 rpm. The soil sample
was dispersed by ultrasonication, and the power of the probe was 35 W with the time interval equal to 4
min. Light intensity measured on the detectors was recalculated into PSD according to the Mie theory (ISO
13320:2009, 2009). The Mie model parameters were an absorption coefficient of 0.1 and a refractive coeffi-
cient of 1.52 [Bieganowski et al., 2013b]. For each soil, the PSD curve was determined as an average value of
three replications. Soil samples were not pretreated in any way before the LDM measurement.

The soil specific surface (SSS) area was determined for samples initially dried at 1058C for 24 h. The adsorp-
tion and desorption isotherms of water vapor were determined using the Dynamic Vapor Sorption-Intrinsic

Figure 2. Schematic of the measurement cell: (a) a side view and (b) a top view.
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(Surface Measurement Systems Ltd., UK)
for a relative humidity from 0 to 100% at
208C. The BET model was used for the
determination of SSS based on desorp-
tion isotherms [Brunauer et al., 1938].

While the data set collected for this study
is relatively large (104 soil samples), all
measurements were carried out with the
same experimental methodology. Such a
data set, which could be used for the

analysis of hysteresis, is rather unique, as most similar studies usually rely on much smaller data sets or data
sets collected from different sources. An overview of descriptive statistics for the soil data set is presented
in Table 1.

2.2. SWRC Data Pretreatment
Laboratory measurements provided information about the drying and wetting branches of SWRCs in the
form of measured pairs of soil water contents and soil water potentials. The soil hydraulic parameters of the
van Genuchten (vG) function were fitted to both drying and wetting branches of SWRCs for all soil samples.
An assumption was made that both branches had the same residual and saturated water contents. For fit-
ting of the vG model’s parameters, a custom script was written in R language that was based on the Nelder-
Mead minimization of RMSEs (root-mean-square errors) between measured and vG model predicted soil
water contents for given soil water potentials.

2.3. SVM SWRC Modeling
The support vector machines approach (SVM), one of many algorithms among machine learning methodol-
ogies, was selected for the SWRC model development. The SVM approach has been previously used in sub-
surface hydrology for facies delineation [Tartakovsky and Wohlberg, 2004; Wohlberg et al., 2006], SWRC
modelling [e.g., Lamorski et al., 2008; Twarakavi et al., 2009], or for predictions of time-variable soil water
contents [e.g., Lamorski et al., 2013; Karandish and �Simůnek, 2016]. While SVM was originally developed for
solving classification problems, its usage has later been extended to regression-type problems [Vapnik,
1995]. When used for regression modeling, SVM estimates one output variable based on a set of indepen-
dent input variables. Since SVM is a supervised learning method, it requires a training data set for the mod-
el’s development. The resulting model reproduces input-output relationships present in the training data
set and is able to make estimations for any values of input variables. A model based on a training data set is
subject to validation based on a testing data set. SVM models, similarly like ANN or k-NN-based models,
have to be developed and used by means of software because their final form is not a simple, explicit rela-
tionship. In this study, the R statistical computing environment was used for that purpose.

Support vectors (SV), a kernel function, and model parameters are selected during the SVM model develop-
ment and together constitute the model. The core of the SVM model are so-called support vectors (SV),
which are a subset of a training data set, thoroughly selected during the model development procedure.
There is a strict dependence between the number of SVs and the generalization capability of the model. An
optimal number of SVs is about half of a training data set. Incorporating more SVs in the model will lead to
overtraining, i.e., model estimations will be very good for a training data set, while estimation errors will be
very high for a testing data set [Lamorski et al., 2014].

The SVM methodology used in this paper was previously applied for the development of pedotransfer func-
tions (PTF) for the estimation of SWRCs by Lamorski et al. [2014], in which all details can be found. The m-
SVM algorithm was used for the estimation of SWRCs. SVM rely on a selectable model component, the so-
called kernel function; a radial basis kernel function was used in the study of Lamorski et al. [2014]. The
model parameters were searched for using the genetic algorithm optimization technique. The objective
function that was used in this process was based on RMSE between measured and estimated SWRC, while
also explicitly taking into account the number of support vectors used in the developed model. The use of
such an objective function instead of one only based on RMSE avoids overtraining during the model
development.

Table 1. Statistical Properties of the Entire Soil Data Seta

Statistic Mean St. Dev. Min Max

BD (g/cm3) 1.395 0.143 1.02 1.76
Sand (%) 55.802 25.45 11.28 91.572
Silt (%) 39.695 23.119 7.615 78.818
Clay (%) 4.504 2.638 0.518 12.713
OC (%) 1.87 0.799 0.722 5.547
SSS (m2/g) 17.617 12.911 3.14 80.46

aBD, bulk density; OC, organic carbon; SSS, specific soil surface; Sand, Silt,
and Clay are percentages of particular particle sizes.
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2.4. SVM Model Development
The soil data set was randomly divided into
the training (78 soils) and testing (26 soils)
data sets for the SVM model development.
Five different types of models (M0 through
M4) were developed based on the regression
analysis of available soil data. While all five
models allowed for the determination of the
wetting branch of SWRC, they used different
sets of input parameters. All models used
information about the drying branches of
SWRCs. All models, except for M0, used addi-
tional soil characteristics as input parameters
(i.e., PSD, BD, OC, and SSS; see Table 2). Soil

physical parameters were included as input for the developed models since they were correlated with the
wetting branch of SWRC, and thus their inclusion into the analysis could have a positive impact on model
estimations.

SWRC data were either directly (subscript d) or parametrically (subscript p) considered in each SVM model.
In both cases, the first step was to fit the van Genuchten model to measured retention data points. In the
direct approach, 15 soil water contents evaluated from the van Genuchten functions fitted to the drying
branches of SWRCs for the following soil water potentials were considered: 20.00981, 20.031, 20.0981,
20.310, 20.981, 23.102, 29.81, 215.547, 231.021, 249.166, 298.1, 2155.478, 2310.21, 2491.664, and
21554.780 kPa. The direct models estimated soil water contents for the wetting branches of SWRCs for the
same set of soil water potentials. In the parametric models, SWRC input information was represented using
the van Genuchten parameters fitted to the drying branches of SWRCs. Similarly, the parametric models
estimated the vG parameters of the wetting branches of SWRCs. Altogether, 10 different SVM models were
constructed and validated (see Table 2).

Both direct and parametric approaches for the model development were considered here since there is still
an ongoing discussion regarding the best SWRC modeling methodology. While some researchers report
better accuracy of the direct approach [Schaap, 2004; Børgesen and Schaap, 2005], others reported no differ-
ences between direct and parametric approaches [Merdun, 2006].

2.5. Models’ Cross Validation
Different cross-validation techniques can be utilized to assess the quality of the developed models
and their selected parameters when the data learning concept is used [Hastie et al., 2009]. The k-fold
cross validation was used for that purpose in this study. The training data set, which was used for
model development and consists of 78 soil data records, was randomly divided into five disjunctive
subsets (i.e., folds), with 15 or 16 soil data records in each subset (fold 1–16, fold 2–16, fold 3–16, fold
4–15, fold 5–15). The folds used for data preparation were sequentially rotated five times, which
allowed for the preparation of five sets of data, which were then used for model development. Five
training data sets were set up, each with four joined folds (62 or 63 samples). One SVM submodel
was then created for each of the five different training data sets. The resulting final models, which
were developed using the k-fold method, estimate water contents as an average outcome from the
five submodels.

2.6. Classical Models for Estimating Wetting Branches of SWRCs
The wetting branch of the SWRC may be estimated using several approaches suggested in the literature
[Mualem, 1977; Kool and Parker, 1987; Hogarth et al., 1988; Pham et al., 2003]. However, if only the knowl-
edge of the drying branch of the SWRC is to be used as input information for this estimate, only two models
are currently available [Mualem, 1977; Kool and Parker, 1987].

Mualem’s [1977] model, which is based on the dependent-domain theory of hysteresis, is described by
equation (1). This model directly relates soil water contents of the wetting branch of the SWRC with soil
water contents of the drying branch of the SWRC for a given soil water potential:

Table 2. Names and Definitions of SVM Modelsa

Model
Name

Input
Variables

Estimation
Method

M0d SWRC Direct
M0p Parametric
M1d SWRC, BD Direct
M1p Parametric
M2d SWRC, BD, Sand, Silt, Clay Direct
M2p Parametric
M3d SWRC, BD, Sand, Silt, Clay, OC Direct
M3p Parametric
M4d SWRC, BD, Sand, Silt, Clay, OC, SSS Direct
M4p Parametric

aA list of variables considered by the estimation methods of
different SVM models.

Water Resources Research 10.1002/2016WR019533

LAMORSKI ET AL. ESTIMATION OF WETTING FROM DRYING BRANCH OF RC 6



Se
w hð Þ512

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12Se

d hð Þ
q

(1)

where h is the pressure head (m), and Se
w hð Þ and Se

d hð Þ are effective degrees of saturation for the wetting
and drying branches, respectively, described by equations:

Se
w hð Þ5 hw hð Þ2hres

hsat2hres
(2)

and

Se
d hð Þ5 hd hð Þ2hres

hsat2hres
(3)

where hres and hsat are the residual and saturated water contents, respectively, and hd(h) and hw(h) are the
water contents on the draining and wetting branches of the SWRC, respectively.

The model of Kool and Parker [1987], contrary to the model of Mualem [1977] that operates directly with the
water contents of the drying branch of the SWRC, relates parameters of the van Genuchten parametric rep-
resentation of the drying and wetting branches of the SWRC. The model of Kool and Parker [1987] assumes
that the n parameters for the wetting and drying branches of the SWRC are the same and that the a param-
eters of the two branches are related as follows:

aw52ad (4)

where aw and ad are vG function parameters for the wetting and drying branches of the SWRC, respectively.
The other vG function parameters have the same values for both wetting and drying branches of SWRC.
The Kool and Parker [1987] model of hysteresis is, for example, implemented into the widely used vadose
zone HYDRUS [�Simůnek et al., 2008] and SWAP [van Dam et al., 2008] models.

3. Results and Discussion

The developed SVM models were validated against the testing data set, which is a basic source of informa-
tion about a model’s quality of estimation. Additionally, estimates made by the SVM models were compared
with estimates made by the alternative—literature models that allow for the estimation of the SWRC wet-
ting branch based only on information about the SWRC drying branch. These models will be further referred
to as M77 [Mualem, 1977] and KP87 [Kool and Parker, 1987].

The results presented in Table 3 indicate that there are no substantial differences between estimations
made by different SVM models and that improvements obtained by the more complex SVM models with
respect to R2 or RMSE as a comparison criterion are not significant. Models M0d and M0p, which only use
information about the drying branches of SWRCs, have the same statistical indices as models M1d and M1p,

Table 3. Statistics of Various SVM and Classical Modelsa

Model Name

R2 RMSE

Value SD Group Value (m3/m3) SD (m3/m3) Group

M0d 0.984 0.02 A 0.018 0.014 A
M0p 0.985 0.02 A 0.017 0.016 A
M1d 0.984 0.02 A 0.018 0.015 A
M1p 0.984 0.021 A 0.018 0.017 A
M2d 0.986 0.017 A 0.018 0.017 A
M2p 0.986 0.016 A 0.018 0.017 A
M3d 0.986 0.017 A 0.018 0.018 A
M3p 0.985 0.015 A 0.02 0.021 A
M4d 0.985 0.017 A 0.019 0.018 A
M4p 0.986 0.015 A 0.019 0.02 A
M77 [Mualem, 1977] 0.97 0.036 AB 0.025 0.014 AB
KP87 [Kool and Parker, 1987] 0.939 0.061 B 0.047 0.022 B

aR2, coefficient of determination; RMSE, root-mean-square error; SD, standard deviation; Group, grouping based on the Tukey test for
group mean differences. The RMSE and R2 values for the SVM models average results obtained by five submodels generated for each
fold. SDs are related to the spread of results achieved for different folds.
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which additionally consider the bulk density (BD) as an independent variable for estimations. In fact, the
inclusion of BD has no discernible impact on estimations. A similar observation was made by Schaap et al.
[2001], who showed that consideration of BD in their pedotransfer functions produced better estimates
only for the saturated water content, which in our study, we kept the same as for the SWRC drying branch.
No improvements in estimations were also observed when PSD information was considered among input
variables. Consideration of additional soil variables, such as OC or SSS, produces only a limited increase in
prediction quality (Table 3).

Since consideration of other soil information, in addition to the drying branches of SWRCs, has not substan-
tially improved SVM models’ predictive capabilities, from a practical point of view, it is not necessary to use
such information for the estimation of the SWRC wetting branch. This result can be interpreted in the fol-
lowing way. In the statistical sense, information about soil physical parameters is already taken into account
and thus ‘‘hidden’’ in information about the drying branches of SWRCs. As a result, an explicit use of these
parameters as additional input variables for the estimation of the wetting branches has no discernible
impact on the results.

The developed SVM models performed better than the M77 model (Table 3), which also estimates the wet-
ting branch of the SWRC solely based on the drying branch. Although, the differences in predictions by the
SVM models and the M77 model were not significant in a statistical sense (using the Tukey test for group
mean differences with a confidence level of 0.95), the RMSE for the M77 model was higher (0.025) than for
the SVM models (0.018).

Significant differences (the Tukey test) in the quality of estimations of the wetting branches of SWRCs were
observed (Table 3) between the SVM models and the KP87 model [Kool and Parker, 1987]. For the randomly
selected testing data set, the RMSE for the KP87 model was about 3 times larger than for the SVM models.
While Kool and Parker [1987] suggested the use of aw 5 2ad, other authors proposed different relations
depending on the soil type. For example, Likos et al. [2014], for a soil data set involving 25 samples, deter-
mined the average relation of aw 5 2.24ad, while for subsets of cohesive soils, aw 5 1.74ad, and cohesionless
soils, aw 5 3.14ad. A comparison of the KP87 model with our experimental data shows that this model signif-
icantly underestimates hysteresis of SWRCs and that both the SVM models and the M77 model provide bet-
ter predictions. Our data further indicate that the constrains of the KP77 model, requiring the same n
parameter for both the drying and wetting branches, are too restrictive and prevent successful application
of this model to our data set.

One of the reasons for these differences may be the fact that the KP87 model [Kool and Parker, 1987] was
proposed based on SWRC data that were only measured for a narrow range of soil water potentials
between 0 cm and about 2100 cm, while the measurement range for our data set was significantly larger.
The other reason for relatively high KP87 model estimation errors may be the fact that for our data set, the

Figure 3. Comparisons between the vG parameters (a) a and (b) n fitted to the measured wetting and drying branches of SWRCs for the
entire data set. Dotted lines represent 1:1 lines and solid lines represent linear regression lines fitted to measured and estimated water
contents.
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n parameters for wetting and related drying branches are not the same, which is an assumption of the KP87
model. In this study, both of the vG parameters a and n were independently optimized for the wetting and dry-
ing SWRC branches. Their dependence is displayed in Figure 3. The n parameter for the wetting branch is usually
larger than for the drying branch, and there is a correlation between these two values (R2 5 0.45). On the other
hand, values of the wetting and drying a parameters are not correlated (R2 5 0.03; Figure 3). The awet values are
in most cases, although not all, higher than the adry values. The mean values of a and n parameters for the entire
data set are: <adry>5 0.0789, <awet>5 0.233, <ndry>5 1.23, and <nwet>5 1.35, i.e., <awet>5 2.95<adry>.
However, this ratio of a values cannot be used for estimating the wetting branch from the drying branch as is
done in the KP87 model because there is no correlation between awet and adry, and thus this ratio does not
express any trend between the awet and adry values.

Figure 4 shows a comparison of measured and estimated wetting and drying SWRC branches for six
soils selected from the testing data set. It presents experimentally measured values of soil water con-
tents for the drying branch of SWRCs and their fit with the vG function. Figure 4 additionally shows
experimentally measured values of soil water contents for the wetting branch (dots), vG functions

Figure 4. Comparison of measured (points) and fitted (lines) main drying (‘‘dry. measurement’’) and wetting (‘‘wet. measurement’’) SWRC branches for six selected soils from the testing
data set. Estimated main wetting branches by direct and parametric PTFs are shown as ‘‘wet. M0d’’ and ‘‘wet. M0p’’ lines, respectively. Main wetting branches estimated using the method
of Mualem [1977] and Kool and Parker [1987] are displayed as ‘‘wet. M77’’ and ‘‘wet. KP87’’ lines, respectively. Soil_id is the soil identification number in the database, and PSD 5 (sand/silt/
clay) are percentages of particular particle sizes.
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estimated using the SVM parametric
models or fitted to water contents esti-
mated using the SVM direct models
for the wetting branch of SWRCs, as
well as estimations made using the
KP87 and M77 models. These exam-
ples provide visual confirmations of
conclusions discussed above related to
Table 3.

Residuals, i.e., mean absolute values
of the estimation error for the testing
data set, between the vG functions fit-
ted to the measured soil water con-
tents of the SWRC wetting branches
and vG functions estimated using the

Figure 5. Mean residuals between the vG functions fitted to the measured soil
water contents for the wetting SWRC branches and those estimated by different
models for the testing data set.

Figure 6. Scatterplots of residuals as a function of texture for different models (a) M0d, (b) M0p, (c) M77, and (d) KP87, used for the estimation of the wetting branches of SWRCs.
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Figure 7. Comparison between measured and estimated (i.e., derived from estimated vG functions by the M0d model) soil water contents for selected soil water potentials. Dotted lines
represent the 1:1 line, solid lines represent a linear regression line fitted to measured and estimated water contents.

Figure 8. Comparison between measured and estimated (i.e., derived from estimated vG functions by the M77 model) soil water contents for selected soil water potentials. Dotted lines
represent the 1:1 line, solid lines represent a linear regression line fitted to measured and estimated water contents.
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M0d, M0p, M77, and KP87 models, are presented in Figure 5. The estimation errors for the KP87 model are
highest almost throughout the entire interval of soil water pressure heads, except below the pressure head
of �25 cm where the estimation errors for the M77 model are larger. Interestingly, the M77 model has a
different trend of estimation errors than the other models, especially near saturation (see subplot in Figure
5). Its estimation errors almost up to the saturation point have large values when compared to the other
models. The errors of the parametric SVM model (M0p) are larger than those of the direct SVM model (M0d)
in the range of the pressure heads from �23 to �2300 cm.

Residuals for each soil from the testing data set were also individually analyzed using scatter plots for any
possible dependency on the particle size distribution (Figure 6). One can observe a similar dependency of
the M0p, M0d, and M77 models on texture with the estimation errors being smaller for soils with higher
sand (lower silt) contents than for fine textured soils. The KP87 model does not display such dependency,
and residuals are approximately in the same wide range regardless of soil texture.

The analyses of estimation errors reported so far were based on differences between the vG functions of
the wetting branches of SWRCs estimated by different models and the vG fits to measured points of the
wetting branches. Figure 7 shows the comparisons between measured and estimated (i.e., derived from
estimated vG functions) soil water contents for selected soil water potentials. The coefficients of determina-
tion show a fairly good agreement with R2 2 0:7; 0:88ð Þ between measured and estimated soil water con-
tents. All fitted linear models have slopes less than 1 and small values of positive intercepts (see Figure 7),
which indicates that the models underestimated water contents. The comparisons between measured and
estimated (using the M77 model) soil water contents for selected soil water potentials are presented on Fig-
ure 8. The coefficients of determination between measured and estimated soil water contents R2

2 0:56; 0:80ð Þ are slightly lower than for the SVM models, but still relatively high considering that the M77
model was not calibrated on the basis of this soil data set. In this case the results are also biased and the
M77 model underestimates water contents compared to measured values of the wetting branch of SWRC.

4. Conclusions

Statistical models were developed in this study that estimate wetting branches of the soil water retention
curve using the information about the routinely determined drying branch and other optional soil physical
characteristics (PSD, BD, OM, or SSS). Developed models for the estimation of the wetting branch of SWRC
utilize soft computing methodology that is based on the SVM algorithm. The developed models were vali-
dated against testing data, producing a good agreement between measured and estimated wetting
branches of SWRCs. The RMSE was about 0.018 m3/m3, which compares well with typical estimation errors
obtained by statistical methods used for SWRC modeling [e.g., Schaap et al., 2001].

It was observed that taking soil information other than about the drying branches of SWRCs into account
has essentially no impact on the models’ estimations. It can be concluded that developed SVM models can
estimate the wetting branches of SWRCs solely based on information about the drying branches of SWRCs.
Other than the drying branches of SWRCs, consideration of any soil physical properties as model input
parameters is of no use and leads only to a needless increase in model complexity. The developed M0d or
M0p models may be used for most practical applications.

Two types of models were developed and validated in this study: the direct and parametric models, which
either directly use SWRC data points or the van Genuchten parameters of the drying branches of SWRCs,
respectively. These two approaches are alternatively used in many PTF modeling studies, and different
authors advocate one of these two modeling approaches. Our results (Table 3 and Figures 5 and 6) show
that there are only minor differences between the PTF models that were developed directly using SWRC
data points or the van Genuchten parameters as input variables. There are no substantial differences
between the parametric and direct approaches for hysteretic SWRC modeling.

The estimation errors of developed models were compared with the alternative classical models (Mualem
[1977] or Kool and Parker [1987]) that can be used for the same purpose. In both cases, the new SVM-based
models produced much lower estimation errors. The RMSE for the M77 model was about 1.4 times larger
than for the SVM model. Much worse results were obtained using the KP87 model, which had a RMSE 2.6
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larger than the SVM model. This was mainly due to the fact that the assumptions of the KP87 model were
not valid for the underlying database.

However, taking into account the complexity of the SVM-based models (M0d and M0p), which cannot be
described explicitly, and the simplicity of the M77 model, which is described by a single equation, one may
still prefer using the M77 model for practical applications.
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Twarakavi, N. K. C., J. �Simůnek, and M. G. Schaap (2009), Development of pedotransfer functions for estimation of soil hydraulic parameters

using support vector machines, Soil Sci. Soc. Am. J., 73(5), 1443–1452.
van Dam, J. C., P. Groenendijk, R. F. A. Hendriks, and J. G. Kroes (2008), Advances of modeling water flow in variably saturated soils with

SWAP, Vadose Zone J., 7(2), 640–653, doi:10.2136/vzj2007.0060.
van Genuchten, M. T. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J.,

44(5), 892–898.
Vapnik, V. N. (1995), The Nature of Statistical Learning Theory, Springer, New York.
Vereecken, H., J. Maes, J. Feyen, and P. Darius (1989), Estimating the soil moisture retention characteristic from texture, bulk density, and

carbon content, Soil Sci., 148(6), 389–403.
Vereecken, H., J. Diels, and P. Viaene (1995), The effect of soil heterogeneity and hysteresis on solute transport: Numerical experiment,

Ecol. Modell., 77(2–3), 273–288, doi:10.1016/0304-3800(94)00183-I.
Vereecken, H., et al. (2016), Modeling soil processes: Review, key challenges and new perspectives, Vadose Zone J., 15(5), doi:10.2136/

vzj2015.09.0131.
Walczak, R. T., F. Moreno, C. Sławi�nski, E. Fernandez, and J. L. Arrue (2006), Modeling of soil water retention curve using soil solid phase

parameters, J. Hydrol., 329(3–4), 527–533, doi:10.1016/j.jhydrol.2006.03.005.
Wohlberg, B., D. M. Tartakovsky, and A. Guadagnini (2006), Subsurface characterization with support vector machines, IEEE Trans. Geosci.

Remote Sens., 44(1), 47–57, doi:10.1109/TGRS.2005.859953.
W€osten, J. H. M., A. Lilly, A. Nemes, C. Le Bas, J. H. M. Wosten, and H. Otto (1999), Development and use of a database of hydraulic proper-

ties of European soils, Geoderma, 90(3–4), 169–185.
Zhou, A.-N. (2013), A contact angle-dependent hysteresis model for soil–water retention behaviour, Comput. Geotech., 49, 36–42, doi:

10.1016/j.compgeo.2012.10.004.

Water Resources Research 10.1002/2016WR019533

LAMORSKI ET AL. ESTIMATION OF WETTING FROM DRYING BRANCH OF RC 14

http://dx.doi.org/10.2136/sssaj2005.0128
http://dx.doi.org/10.1029/WR023i012p02187
http://dx.doi.org/10.1016/j.measurement.2013.11.051
http://dx.doi.org/10.1016/j.compgeo.2009.12.004
http://dx.doi.org/10.1680/geot.53.2.293.37264
http://dx.doi.org/10.1139/T05-071
http://dx.doi.org/10.1029/JZ069i008p01553
http://dx.doi.org/10.1029/JZ069i008p01553
http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000315
http://dx.doi.org/10.2136/sssaj2012.0339n
http://dx.doi.org/10.1002/2015WR017703
http://dx.doi.org/10.1016/S0022-1694(01)00466-8
http://dx.doi.org/10.2136/vzj2007.0077
http://dx.doi.org/10.3390/s121013545
http://dx.doi.org/10.2478/v10247-012-0027-5
http://dx.doi.org/10.2478/v10247-012-0027-5
http://dx.doi.org/10.2478/v10247-012-0015-9
http://dx.doi.org/10.1029/2004GL020864
http://dx.doi.org/10.1080/15324982.2012.657025
http://dx.doi.org/10.1111/ejss.12192
http://dx.doi.org/10.2136/vzj2007.0060
http://dx.doi.org/10.1016/0304-3800(94)00183-I
http://dx.doi.org/10.2136/vzj2015.09.0131
http://dx.doi.org/10.2136/vzj2015.09.0131
http://dx.doi.org/10.1016/j.jhydrol.2006.03.005
http://dx.doi.org/10.1109/TGRS.2005.859953
http://dx.doi.org/10.1016/j.compgeo.2012.10.004

	l
	l



