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African savanna vegetation is subject to extensive degradation as a result of rapid climate and land use
change. To better understand these changes detailed assessment of vegetation structure is needed across
an extensive spatial scale and at a fine temporal resolution. Applying remote sensing techniques to
savanna vegetation is challenging due to sparse cover, high background soil signal, and difficulty to dif-
ferentiate between spectral signals of bare soil and dry vegetation. In this paper, we attempt to resolve
these challenges by analyzing time series of four MODIS Vegetation Products (VPs): Normalized
Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Leaf Area Index (LAI), and
Fraction of Photosynthetically Active Radiation (FPAR) for Etosha National Park, a semiarid savanna in
north-central Namibia. We create models to predict the density, cover, and biomass of the main savanna
vegetation forms: grass, shrubs, and trees. To calibrate remote sensing data we developed an extensive
and relatively rapid field methodology and measured herbaceous and woody vegetation during both
the dry and wet seasons. We compared the efficacy of the four MODIS-derived VPs in predicting vegeta-
tion field measured variables. We then compared the optimal time span of VP time series to predict
ground-measured vegetation. We found that Multiyear Partial Least Square Regression (PLSR) models
were superior to single year or single date models. Our results show that NDVI-based PLSR models yield
robust prediction of tree density (R2 = 0.79, relative Root Mean Square Error, rRMSE = 1.9%) and tree cover
(R2 = 0.78, rRMSE = 0.3%). EVI provided the best model for shrub density (R2 = 0.82) and shrub cover
(R2 = 0.83), but was only marginally superior over models based on other VPs. FPAR was the best predic-
tor of vegetation biomass of trees (R2 = 0.76), shrubs (R2 = 0.83), and grass (R2 = 0.91). Finally, we
addressed an enduring challenge in the remote sensing of semiarid vegetation by examining the trans-
ferability of predictive models through space and time. Our results show that models created in the wet-
ter part of Etosha could accurately predict trees’ and shrubs’ variables in the drier part of the reserve and
vice versa. Moreover, our results demonstrate that models created for vegetation variables in the dry sea-
son of 2011 could be successfully applied to predict vegetation in the wet season of 2012. We conclude
that extensive field data combined with multiyear time series of MODIS vegetation products can produce
robust predictive models for multiple vegetation forms in the African savanna. These methods advance
the monitoring of savanna vegetation dynamics and contribute to improved management and conserva-
tion of these valuable ecosystems.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Savanna ecosystems cover about fifth of the Earth’s land surface
and just under half of Africa’s land area (Ciais et al., 2011;
Shackleton and Scholes, 2011). These ecosystems provide pivotal
ecosystem services including carbon sequestration, water filtra-
tion, soil stability, meat and dairy production, fuel wood provision,
tourism, and recreation (Solbrig, 1996; Vågen et al., 2005). In addi-
tion, African savannas harbor rich biodiversity and provide habitat
and connectivity for far-roaming wildlife (Sankaran et al., 2013).
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However, savanna ecosystems face degradation due to changes in
land use, climate change, fire, and management regimes
(Mathieu et al., 2009; Mitchard and Flintrop, 2013; Vogel and
Strohbach, 2009). Monitoring rapid changes in savannas requires
a method that maintains sufficiently high temporal resolution over
large spatial extents. Remote sensing is a viable tool to predict bio-
physical measurements of cover, density, and biomass of savanna
vegetation (Ban et al., 2015; Boschetti et al., 2013; Choudhury,
1992; Dube and Mutanga, 2015; Naidoo et al., 2012;
Rahimzadeh-Bajgiran et al., 2012; Zhu and Liu, 2015). For conve-
nience, we use the term ‘‘prediction” hereafter to refer to the mod-
eled relationship between reflectance data and field-based
vegetation measurements.

Savannas are extensive, and often remote and inaccessible,
complicating protocols for their monitoring. Field methodologies
for measuring vegetation change are typically limited in extent,
expensive, and time consuming. Therefore, the use of low and
moderate resolution remote sensing, including Moderate Resolu-
tion Imaging Spectroradiometer (MODIS), has been applied to
characterize savanna vegetation throughout Africa (Eisfelder
et al., 2012). Nonetheless, the sparse vegetation in these arid and
semi-arid areas and high reflectance of soil background continue
to present a major challenge to the use of remote sensing to predict
continuous vegetation variables (Ali et al., 2016; Ghulam et al.,
2007; Rahimzadeh-Bajgiran et al., 2012; Svoray et al., 2013). More-
over, savanna vegetation is senesced during prolonged periods of
the year (Eisfelder et al., 2012). Low chlorophyll content of senes-
cent vegetation reduces the red-to-near infrared (NIR) spectral
contrast, which impairs our ability to distinguish vegetation from
background soil. These characteristics present additional chal-
lenges when using remote sensing to directly predict dry biomass
(Homer et al., 2013; Huete, 1988; Mayr and Samimi, 2015; Meyer
and Okin, 2015). One approach to addressing these challenges is to
use spectral products targeted at enhancing vegetation that use
red, near infrared (NIR), and shortwave infrared (SWIR) wave-
lengths which are particularly sensitive to vegetation changes
(Houborg et al., 2007).

MODIS provides four preprocessed vegetation products. Two of
these products are vegetation indices, Normalized Difference Vege-
tation Index (NDVI), and Enhanced Vegetation Index (EVI). The
other two are vegetation quantities derived partly from spectral
vegetation indices: Leaf Area Index (LAI), and Fraction of Photosyn-
thetically Active Radiation (FPAR) (Knyazikhin et al., 1999). We
refer to these four MODIS-derived products as ‘‘Vegetation Prod-
ucts” (VPs). These MODIS VPs are freely available, atmospherically
and geometrically corrected, and based on extensive field valida-
tion campaigns (Solano et al., 2010). Therefore, these VPs are read-
ily available to practitioners, and particularly valuable for savanna
conservation applications (Li et al., 2015a; Tsalyuk et al., 2015).

NDVI has been widely applied to predict vegetation cover,
above-ground biomass and greenness (Jacquin et al., 2010). While
the relationship between NDVI and above-ground green biomass is
well established (Eisfelder et al., 2012; Li et al., 2012; Zhu and Liu,
2015), research has indicated the limited capacity of NDVI to pre-
dict senesced vegetation (Xu et al., 2014). Conversely, the EVI index
is sensitive to a wider range of canopy cover than NDVI (Huete
et al., 2002). The EVI index includes the red and IR bands of NDVI,
and additionally incorporates a blue band, soil adjustment factor,
and atmospheric resistance terms, which correct the influence of
aerosol on the red band (Sjostrom et al., 2011). This correction is
specifically useful in open canopies such as savanna and shrub-
lands, where the background signal may have prominent effect
on radiometric measurements of vegetation (Huete et al., 2002).
There is a strong correlation between EVI and gross primary pro-
ductivity (GPP) in African ecosystem (Jin et al., 2013; Sjostrom
et al., 2011). Li et al. (2012) show a strong relationship between
EVI, Net Primary Productivity (NPP), and forage production in
rangelands. Time series of MODIS EVI was successfully used to
classify land cover in Northern China (Zhang Xia et al., 2008), iden-
tify maize crop cultivation areas (Zhang et al., 2014), and monitor
global crop yield (Zhang and Zhang, 2016).

Leaf Area Index (LAI) provides information on plant canopy
structure by measuring the total green leaf area per unit ground-
surface area (Lotsch et al., 2003). FPAR is a unitless fraction, mea-
suring the proportion of radiation absorbed by the canopy out of
the total available radiation in the photosynthetically active wave-
lengths of the spectrum 400–700 nm. FPAR is an important mea-
sure of carbon cycling and energy budget (Huete et al., 2002).
Both LAI and FPAR have been measured in the field as prominent
indicators of vegetation condition. Research has demonstrated that
both these vegetation properties have higher correlations with
senesced grass biomass than does NDVI (Asner et al., 1998;
Butterfield and Malmstrom, 2009). FPAR was shown to correlate
with both green grass biomass and litter canopy, indicating its abil-
ity to predict dry vegetation biomass (Machwitz et al., 2015).
Recently, LAI and FPAR have being used as satellite-derived prod-
ucts for calculating surface photosynthesis, evapotranspiration,
land cover, and net primary productivity (Huete et al., 2002;
Knyazikhin et al., 1999; LP DAAC, 2002-2012; Myneni et al., 2002).

The MODIS-based algorithm of LAI/FPAR products was designed
to use up to seven spectral bands of MODIS surface reflectance
(648, 858, 470, 555, 1240, and 2130 nm) (Knyazikhin et al.,
1998). However, until recently only the red (648 nm) and infrared
bands (858 nm) were used (Yan et al., 2016), similar to NDVI. The
relationships among NDVI and LAI and NDVI and FPAR have
received attention (Myneni et al., 2010). However, these relation-
ships are influenced by land cover and the vegetation canopy
structure (Lotsch et al., 2003). To deal with this, MODIS LAI/FPAR
algorithm uses NDVI bands and relies on world classification of
six biomes together with extensive field validation to define vege-
tation structure (Lotsch et al., 2003). The algorithm links surface
bi-directional reflectance factor (BRT) to structural and spectral
properties of vegetation and soil (Yan et al., 2016). Importantly,
LAI/FPAR in situ measurements show a good correlation with
MODIS-derived values (Fensholt et al., 2004; Zhao et al., 2007).

Anadditional challenge in applying remote sensing in savannas is
encompassing thehigh inter- and intra-annual variabilityof theveg-
etation in these ecosystems. Capturing seasonal and inter-annual
variation is especially important in savannas, where vegetation bio-
mass is highly dependent on variable rainfall (Scanlon et al., 2005).
Time series of VPs capture vegetation phenology over time; and,
therefore, they can improve the prediction of vegetation variables
(Rao et al., 2015; van Hoek et al., 2016; Zhu and Liu, 2015). Indeed,
integrated (summed) values and maximum annual NDVI and FPAR
values over the growth year show strong correlations with above-
ground herbaceous biomass (Li et al., 2015a; Zhang et al., 2016).
Annually integratedVI data showbetter correlationswithfieldmea-
sured herbaceous biomass than a single-date VI value (Verbesselt
et al., 2006; Yi et al., 2008; Zhou et al., 2013). Time series informa-
tion, such as times of green up and senescence/dormancy onset
and the length of the growing season have been used to describe
vegetation phenology (Lu et al., 2014a, 2014b; Zhang et al., 2003),
and to differentiate between growing cycles of trees or grasses
(Archibald and Scholes, 2007). Time series of MODIS-derived EVI
predict maize (Zhang et al., 2014) and winter wheat (Qiu et al.,
2017) cultivated areas across China with considerable accuracy.

In spite these recent developments, remote sensing of biophys-
ical variables of savanna vegetation remains a challenge (Mayr and
Samimi, 2015; Meyer and Okin, 2015). A major hindrance in the
application of remote sensing data for monitoring and manage-
ment is transferability of models between sites, when trying to
apply models developed for one area to predict vegetation
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variables in others (Cutler et al., 2012; Foody et al., 2003; Sumnall
et al., 2016). Eisfelder et al. (2012) identified the transferability of
remote sensing-based methods to measure biomass as a major
challenge in semi-arid environments. The high spatial and tempo-
ral variability in savanna vegetation present a challenge to transfer
established relationships between ground-based measurements
and satellite information.

The aim of this study is to improve the application of remote
sensing to predict vegetation in an African savanna in Etosha
National Park, Namibia. We examine to what degree incorporating
time series data of four Vegetation Products (VPs) derived from
MODIS improves the prediction of vegetation biophysical variables
in a savanna ecosystem. We compare the ability of these VPs to
predict the cover, density, and biomass of different savanna vege-
tation forms (grass, shrub, and trees), and assess the accuracy of
each product’s predictions. We hypothesize that since each VP
has unique radiometric and analytical properties, each will be best
suited to predict a specific vegetation variable. Finally, our study
addresses the challenge of transferring remote sensing-based mod-
els across space and time by using extensive field data, multiyear
satellite information, and using Partial Least Square Regression
(PLSR) to carry out robust statistical modeling. Our goals are to:

1. Create reliable and accurate remote sensing models to predict
density, cover, and biomass, of the three main vegetation forms
in savanna ecosystems: trees, shrubs, and grasses;

2. Use time series of MODIS VPs to predict vegetation and quantify
the improvements in prediction models with extended time
periods;

3. Compare four MODIS-derived VPs – NDVI, EVI, LAI, and FPAR –
in terms of their ability to predict accurately different vegeta-
tion form; and

4. Assess the transferability of our vegetation predictive models
across space and time.

2. Methods

2.1. Study site

Etosha National park is a 22,270 km2 reserve, located in north-
central Namibia (18�450S, 15�300E) (Fig. 1). It is a semi-arid savanna
Vegetation type

Bare soil/ Pan

Grass savanna

Shrub savanna

Tree savanna

Sample points

Water

Roads

Fig. 1. Map of the study area, Etosha National Park, Namibia. The location
with a gradient of 200–450 mm of rainfall per year. Etosha experi-
ences three main seasons: cold-dry (May–August), warm-dry
(September–December), and warm-wet (January–April) season
(Du Plessis et al., 1998). Etosha is primarily flat, transitioning to hil-
lier terrain in its far west. The main vegetation types in the reserve
are grassland savanna, steppe, shrubland, Mopani (Colophosper-
mum mopane) tree savanna, and a mix trees savanna (Du Plessis,
2001; Le Roux et al., 1988). Etosha pan is a natural saline lake
depression spanning 4410 km2, which is dry most of the year
and is seasonally filled with water (de Beer et al., 2006).
2.2. Vegetation measurement

We collected extensive vegetation data across Etosha over two
field seasons. During the dry season, June to August 2011, we mea-
sured 348 sites. The dry season is the suggested time for field val-
idation of remote sensing data, since then the differences between
the vegetation types are most pronounced (McCoy, 2005). During
the wet season of March to April 2012, we resampled 110 out of
the original 348 sites. We performed wet season sampling to eval-
uate seasonal differences in vegetation measurements, and to eval-
uate how well remote sensing-based models developed for one
season can be applied to predict vegetation in the other.

Sampling sites were at least 500 m away from each other to
minimize spatial correlation. We sampled at least 50 m away from
roads and at least 1 km away from watering points to minimize
sampling of possible edge effects of these features. To avoid off-
road driving, we sampled within a strip of 50–300 m away from
roads. Within this buffer, we used stratified random sampling
design to ensure equal representation of each vegetation class in
Etosha. We stratified the region based on physiognomic vegetation
classification derived from Landsat 5 TM that was created for
Etosha in 1996 (Sannier et al., 1996; Taylor et al., 1996). These veg-
etation classes are described in Table 1 and presented in Fig. 2.
Based on Sennier’s classification map, we choose sampling sites
located within at least 1 km2 of uniform vegetation class, to insure
sampling within uniform 250 � 250 m MODIS pixels.

One of our goals was to create an efficient, accurate, and rela-
tively rapid method for field sampling of vegetation in the vast
landscapes savannas encompass. We compared and calibrated
visual estimation with detailed field measurements. To avoid bias,
0 10 20 30 40 505
Kilometers ¯

s of sampling sites (stars) and watering points (circles) are marked.



Table 1
Vegetation classes.

Class name % Tree cover % Shrub cover % Dwarfed shrubs Plant height (m)

Bare soil – – – –
Grassland – – <1% –
Steppe <1% <1% >1% <0.5
Grass savanna 1–5% 1–5% <1% –
Shrub savanna <5% >5% – 0.5–2
Low tree savanna >5% – – 2–5
High tree savanna >5% – – >5

Adapted from Du Plessis (1999).

High Tree Savanna Low Tree Savanna Shrub Savanna 

Grass Savanna Grassland Steppe

Fig. 2. Six main physiognomic vegetation classes in Etosha, based on Sannier et al. (1996).
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all visual estimations were performed by the same observer. We
compared the physiognomic vegetation class to visual cover esti-
mation of bare soil, grass, shrubs, and trees. We then calibrated
all visual estimations with field measurements of cover. Table 2
summarizes all vegetation variables and their measurement
methods.

2.2.1. Woody vegetation measurements
We used the plotless point-centered quarter (PCQ) method to

measure woody vegetation. PCQ is an accurate and labor efficient
method for vegetation measurement that does not assume plants
are randomly distributed (Engeman et al., 1994; White et al.,
2008). At each site, we picked a random central sampling point
around which we divided the area into four equal quarters. In each
quarter we measured the two shrubs and the two trees closest to
the central point, to obtain a set of eight distance values R1 to R8

(eight trees and eight shrubs in total). We measured the distance
from the central point to the trunk, the canopy area, height, and
the diameter at breast height (DBH, 1.37 m) of each individual
plant. The species of each measured plant was recorder. Tree den-
sity D (trees per hectare) at each sampling site was calculated
using the following equation (Pollard, 1971) in terms of a correc-
tion factor (CF) and the eight distances R1 to R8:

D ¼ 28 � CF � 104

p �P8
i¼1R

2
i

ð1Þ
CF accounts for the proportion of missing individuals in each
point (Warde and Petranka, 1981). The factor 104 converts density
measurement from plants per square meter to plants per hectare.
Same calculations were used to calculate shrub density.

Canopy cover C (m2/ha) was calculated for each sampling site as
the average of eight measured canopy sizes multiplied by the den-
sity. Woody biomass B (in metric tons) at each sampling site was
calculated, separately for trees and for shrubs, using the following
equation formulated by Henry et al. (2011) in terms of trunk radius
ri, tree height hi, and tree density D (as determined by Eq. (1)):

B ¼
X8

i¼1

ðpr2i � hi � 0:5 � 0:7 � 103ÞD
8

ð2Þ

We used average woody specific gravity = 0.7 Mg m�3 as sug-
gested for Etosha (Alleaume et al., 2005), and average coeffi-
cient = 0.5 for conic trees suggested by Henry et al. (2011).
2.2.2. Grass measurements
We used a 1 � 1 m frame to measure herbaceous vegetation.

We recorded percent cover of grass, soil, and forbs within the
frame and identified the two dominant grass species and their
cover. We used two complementary methods to measure grass
biomass: assigning a visual biomass class of 1–7 (C) for each
1 m2 frame, and measuring the height h (cm) of a Disc Pasture
Meter (DPM) (Trollope and Potgieter, 1986). We calibrated both



Table 2
Summary of the vegetation field measurements.

Vegetation
form

Variable Visual estimation Measurement method Comments

Vegetation
class

Visual estimation Calculation using measured cover of grass,
shrubs, and trees

Dominant vegetation species recorded

Grass Cover – Percent cover in 1 m2 square –
Biomass Biomass class 1–7 visual

estimation
Disc Pasture Meter (height) Both methods calibrated by clipping and weighting dry

biomass in 75 plots

Shrub Density – PCQa Eq. (1)
Cover V Canopy size � density –
Biomass – Canopy size � height � diameter � density Eq. (2)

Tree Density – PCQ Eq. (1)
Cover V Canopy size � density –
Biomass – Canopy size � height � diameter � density Eq. (2)

a PCQ = point-centered quarter method.
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methods by clipping and weighting dry biomass grass in a subsam-
ple of 75 points. Calibration of grass biomass showed strong, signif-
icant correlations between DPMmeasurements and direct biomass
weighting (R2 = 0.94, p < 0.001, n = 75); and between visual class
estimation C and field grass measurement (R2 = 0.87, p < 0.001).
We determined the grass biomass Btotal (g/m2) at each sampling
site by averaging the two methods over five measurements taken
at each site.

2.3. MODIS vegetation products

For each vegetation form: grasses, shrubs, and trees, we com-
pared models based on MODIS Vegetation Product (VP) that would
best correlate with its field measurements of cover, density, and
biomass (eight field variables in total). We used four MODIS-
derived VPs: MODIS MOD13Q1 provides Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI);
MODIS MOD15A2 provides Leaf Area Index (LAI) and Fraction of
Photosynthetically Active Radiation (FPAR) (Table 3). We acquired
MODIS data products for 2006–2012, collection 5, from NASA’s
Reverb website (EODIS, 2013). We extracted the values of each
VP in the pixel overlaying each sampling site, using the Spatial
Analyst Tools in ArcGIS 10.2 (ESRI, 2011).

MODIS images the earth daily. MOD13Q1 product for NDVI/EVI
provides data as a 16-days average in a 250 � 250 m resolution,
while MOD15A2 product for LAI/FPAR provides 8-day average with
a 1 � 1 km resolution (Table 3). There is limited cloud cover over
Etosha National park year round, providing good quality control
(QC) values in most pixels, as indicated by the products’ QC layers;
we also removed null values (249–255). Marginal quality pixels
occurred within the Etosha pan; therefore, we excluded this region
from the analysis. Pixel gaps in the MODIS dataset were removed
from the analyses to avoid introducing error that may result from
the application of various extrapolation or smoothing methods
(Weiss et al., 2014). We resampled FPAR and LAI data to match
NDVI’s 250 � 250 m resolution using nearest neighbor assignment
Table 3
Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation products used in thi

Vegetation product MODIS product Temporal resolution Spatial resolu

NDVI MOD13Q1 16-days 250 � 250 m

EVI MOD13Q1 16-days 250 � 250 m

FPAR MOD15A2 8-days 1 � 1 km

LAI MOD15A2 8-days 1 � 1 km
resampling technique through the application of the ‘‘Conditional”
function in Spatial Analysis tools of ArcGIS 10.2 in batch mode
(ESRI, 2011). Table 3 summarizes the products used.

NDVI is calculated in terms of qred and, qNIR, which are the
reflectance measured by the satellite sensor in the red (620–
670 nm) and near infrared (841–876 nm) wavelengths, respec-
tively, using Eq. (3) (Tucker et al., 1981):

NDVI ¼ qNIR � qred

qNIR þ qred
ð3Þ

In addition to the red and the NIR wavelengths used above, EVI
includes an atmospheric resistance term by adding qblue which is
the reflectance measure at the blue wavelength (459–479 nm).
Addition of canopy background adjustment L, and aerosol correc-
tion factors C1 and C2, correct the blue and red bands relative to
the NIR band. The correction and adjustment factors used in the
MODIS EVI algorithm are: L = 1, C1 = 6 and C2 = 7.5, using Eq. (4)
(Huete et al., 2002):

EVI ¼ qNIR � qred

qNIR þ C1qred � C2qblue þ L
ð4Þ

The MODIS-based LAI/FPAR products currently use only the red
(648 nm) and IR bands (858 nm) of MODIS (Yan et al., 2016). The
algorithm then uses one of six biomes for each location to solve
a radiative transfer equation to estimate LAI and FPAR values. LAI
values range from 0 to 10 and FPAR ranges from 0 to 1
(Knyazikhin et al., 1999; Myneni et al., 2002).

2.4. Statistical analysis

2.4.1. Summary statistics
We used six years of MODIS VPs data (October 2006 to October

2012) to incorporate inter- and intra-annual variations into our
vegetation predictive models. Inspecting time series patterns of
each VP revealed that there is one annual growth cycle in Etosha.
The annual minimum values of all four VPs occur in the hot-dry
s research and the parameters of each product.

tion Boolean dates/years used Data range Scale factor

289/2006–273/2012 �2000, 10,000 0.0001
Fill value: �3000

289/2006–273/2012 �2000, 10,000 0.0001
Fill value: �3000

289/2006–281/2012 0–100 0.01
Null values: 249–255

289/2006–281/2012 0–100 0.1
Null values: 249–255
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season, around mid-October. Therefore, we used ‘‘growth year” for
all the analyses, calculating one year from October 16th of the pre-
vious year to October 15th of the current year. For each year and
each VP, we calculated summary statistics for all MODIS data
points provided for one year, 23 data points per year for NDVI/
EVI, or 46 points for LAI/FPAR. We calculated the following nine
summary statistics values: annual minimum; annual maximum;
annual median; annual sum defined as: sumvp =

Pn
i¼1VPi, where i

is each date the VP is calculated by MODIS (n = 23 for NDVI/EVI,
or n = 46 for LAI/FPAR); annual average calculated as:
VPvp ¼ 1

n �
Pn

i¼1VPi; and annual standard deviation calculated as:

SDvp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1 �
Pn

i¼1ðVPi � VPiÞ2
q

. Additionally, we identified the
Julian date of annual minimum occurrence and date of annual
maximum occurrence. The length of the growing season was calcu-
lated as the number of consecutive days that VP values were above
the 50th percentile for that year. We multiplied value by 8 or 16, to
match MOD15A2 or MOD13Q1 time intervals, respectively. Finally,
for each sampling point we extracted the VP values at the closest
date to the field sampling.

As a baseline analysis, we performed univariate regressions
between each of the eight vegetation variables (density, cover,
and biomass of grasses, shrubs, and trees) and a single VP value,
calculated for the closest date to vegetation measurement in the
field. We also calculated the correlation between each variable
and each of the four VPs summary statistics for one year, 2011,
the year when the primary field sampling took place.

2.4.2. Partial Least Square Regression (PLSR)
To create predictive models that incorporate up to six years of

VP data while reducing the dimensionality of the data, we used
Partial Least Square Regression (PLSR) (Darvishzadeh et al., 2011;
Hansen and Schjoerring, 2003; Huang et al., 2004). PLSR is a pow-
erful regression technique that is able to handle datasets with mul-
tiple predictor variables that exhibit high levels of
multicollinearity. The method generates orthogonal latent vari-
ables (components) that are linear combinations of the standard-
ized predictor variables, such that each component explains the
maximum covariance between the response and the predictor vari-
ables (Mevik and Wehrens, 2007). The loadings are the regression
coefficients, or relative weights, of each of the original predictor
variables in the new component (Asner and Martin, 2008;
Hansen and Schjoerring, 2003; Mitchell et al., 2012; Ramoelo
et al., 2013; Schmidtlein and Sassin, 2004). PLSR is a good
collinearity reduction technique for time series analysis, and was
successfully used with multitemporal MODIS data (Lazaridis
et al., 2011). Woody vegetation measurements (shrubs and trees)
appeared to be log-normally distributed; therefore, we used the
natural log of these measurements as the response variable
(Wold et al., 2001). For grass and shrub measurements, we per-
formed analysis using only sample points at open cover types
(grassland, grass savanna, steppe, and shrub savanna). We per-
formed these analyses using package pls in R (Mevik and
Wehrens, 2007).

To validate the statistical robustness of PLSR models, we per-
formed leave-one-out cross-validation and used the resulting
root-mean-squared error of prediction (RMSEP) as a measure of
model quality (Mevik and Cederkvist, 2004). This method is
regarded as the best estimation of error andmodel quality for PLSR,
while avoiding over-fitting the model (Lazaridis et al., 2011; Mevik
and Cederkvist, 2004). We used the exponents of RMSEP values for
log models.

To choose the optimal number of PLSR components we plotted
the leave-one-out cross-validation RMSE as a function of the num-
ber of components for every combination of vegetation variable
(density, cover, and biomass of grass, shrubs, and trees) and Vege-
tation Product (NDVI, EVI, LAI, FPAR) (Supplemental materials
Fig. S1). We chose to use the first ten PLSR components because
this number minimized the model error (RMSE) while optimizing
the percent of variance explained (equivalent to R2) for all vegeta-
tion variables (Darvishzadeh et al., 2008; Geladi and Kowalski,
1986). We used the same number of components (10) for all the
models, to be able to compare between them.

2.4.3. Time series analysis
We hypothesized that including time series of remote sensing

data will encompass the temporal variability and phenological pat-
terns of savanna vegetation, and therefore will better predict veg-
etation variables. To test this hypothesis, we compared the
relationship between VP-based models and each vegetation vari-
able at three time scales: (1) one VP date, closest to date of field
sampling, (2) summary statistics of one year of VP, and (3) multi-
year VP data of two to six years. We assumed that a period of
few years would incorporate average annual rainfall fluctuations
that affect vegetation growth. We performed cross validation of
the models by randomly separating the data 50–50, to test and pre-
diction datasets, and assessed how well each model predicted the
data, as estimated by R2 and RMSEP. We further performed contin-
ues analysis comparing models that incorporated one, two, and up
to six years of VP data. We compared models quality using their R2

and RMSEP.

2.4.4. Comparing MODIS vegetation product (VPs)
We compared the ability of each VP to predict each vegetation

form (grasses, shrubs, tress), and their measurements (cover, den-
sity, and biomass). For each vegetation form, we constructed sepa-
rate PLSR prediction model, based on one of the four VPs (32
models total). For each vegetation variable, we compared four mul-
tivariate PLSR models, based on one of the four VPs. We assessed
the quality and robustness of the model that each VP produced
using four methods: First, to provide a more intuitive measure of
error, we calculated percent error as Relative Root Mean Squared
Error (rRMSE), by dividing the RMSEP of each model by the average
value of the vegetation variable (Song et al., 2013). Second, we
compared which of the four VP-based models has the highest R2.
We calculated the relative ability of each VP to predict each vege-
tation variable as: DR2

i ¼ ðR2
i � R2

maxÞ=R2
max, where i is one of the four

VP-based models, and R2
max is the R2 of the best model among the

four. Third, we compare the VPs by plotting the R2 and RMSEP
for the first 25 PLSR model components, of each of the four models,
and assessing the number of components needed in each model to
reach higher R2 with the lowest model error. Finally, we assessed
the models’ quality by cross validation: we trained the model on
two-thirds of the data (randomly selected) testing it on the
remaining one-third, and examining the RMSE of the predicted val-
ues. We compared the resulting predicted versus measured values
and their RMSEP.

2.5. Transferability

We assessed whether our models could be transferred across
space and time by applying a predictive model built using a train-
ing dataset to predict vegetation variables of a test dataset. The
ability to transfer vegetation prediction models across space and
time is also a strong measure of models’ robustness and an indica-
tion that the variables were not over-fitted (Sumnall et al., 2016).
We compared the RMSEP of predicted versus measured vegetation
variables. We examined model transferability in space by dividing
Etosha to a drier area, where the annual rainfall was below the
reserve’s ten-year annual rainfall average (360 mm/year), and a
wetter area. This roughly separated Etosha into the east versus
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the central/west parts of the reserve. We then applied predictive
models trained using field sites from the wetter area to predict
vegetation variables in the dried area, and vice versa. This analysis
also examined whether precipitation had an effect on models’ pre-
diction quality.

We examined model transferability in time, by applying models
trained using field measurements from the dry season of 2011 to
predict vegetation measured in the wet season of 2012.
3. Results

3.1. Using MODIS to predict vegetation variables

Univariate regressions of vegetation variables on MODIS-VPs
provided weak but significant predictions. (Please see Supplemen-
tary Tables S1–S12 for complete results of univariate models.)
When we used only one VP date, from the date closest to field mea-
surement, NDVI was the best predictor, with R2 ten-fold or more
than the other three VPs. NDVI annual average was the best predic-
tor of grass cover (R2 = 0.43, p < 0.001), shrub cover (R2 = 0.3,
p < 0.00), tree density, tree cover (R2 = 0.34, p < 0.001), and tree bio-
mass (R2 = 0.37, p < 0.001) (S1–S12).

Univariate regressions with VP summary statistics of one year
(2011) improved the results (Fig. 3). Here, again, NDVI gave better
predictive models than the other VPs for tree density (R2 = 0.44,
p < 0.001), cover (R2 = 0.42, p < 0.001), and biomass (R2 = 0.37,
p < 0.001) (S9–S12).

Partial Least Square Regression (PLSR) significantly improved
the models’ ability to predict measured vegetation variables. PLSR
models using first 10 components predicted up to 84% of variability
in grass cover (RMSEP = 30% cover), and 91% of variability in grass
biomass, but with high error margins (RMSEP = 47 g/m2) (Table 4).

Using NDVI, LAI, and FPAR-based PLSR models we achieved
robust prediction of shrub density and shrub cover (82–83% vari-
ance explained with <1% error, RMSEP = 11 shrubs/ha for EVI
model). All VPs produced similar quality prediction of shrub bio-
mass (83% of variability explained), but the error was high
(rRMSE = 15%) (Table 5).

NDVI PLSR model produced good prediction of tree density (79%
variability explained, RMSEP = 4.3 trees/ha). NDVI and FPAR gave
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similarly good prediction of tree canopy cover (79% variability,
RMSEP = 4.3 m2/ha). FPAR produced good model for tree biomass
(76% variability, RMSEP = 0.89%) (Table 6).

3.2. Optimal time span for predicting vegetation variables

We assessed the contribution of integrating VP data over time
to model prediction quality, comparing the predicted versus mea-
sured values of models built for three different time spans (Fig. 3,
Tables 4–6 and S1–S12). Summary statistics VP values for one year
(2011) gave 30% better predictions of vegetation variables than VP
acquired at a single date. For example, NDVI-based model for tree
density had R2 = 0.54 between measured and predicted values
when using NDVI data of one year (mean of 23 biweekly NDVI data
points), whereas NDVI at one date produced R2 = 0.41 (p < 0.001).
Furthermore, the PLSR model using six years of NDVI data provided
considerable improvement (110%) in prediction of tree density
(R2 = 0.89) (Fig. 3).

The quality of PLSR prediction models continued to improve
when adding from one up to six years of VP data to the analysis
(Fig. 4). Percent variance explained (R2) increased by about 40%
over the range, for both tree and grass cover, while there was little
to no increase in the error (Fig. 4).

Both the time span and the timing (date) of VP values used in
the PLSR models affected the quality of the predictions. While
these results varied across different vegetation variables, we
observed the following common patterns. VP values from the rainy
season (January–March) and the maximum annual VP values had
the largest loadings on the PLSR components (Fig. 5). Interestingly,
rainy season values from two or three years prior to the field mea-
surement had the highest model coefficients (Fig. 5).

3.3. Comparing MODIS vegetation products (VPs)

We compared four PLSR models for each vegetation variable,
where each model was based on one of the four VPs. Each vegeta-
tion form had a different VP that gave its best prediction (Table 7).
However, often the differences between the VPs were not pro-
nounced (Tables 4–6, Supplemental materials Fig. S1). In most
cases, EVI was a good predictor of vegetation cover, while FPAR
was the best predictor of biomass (Tables 4–7).
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Table 4
Results of partial least square regression for grass variables.

MODIS
product

Variable RMSEPa rRMSEb

(percent error)
R2 DR2 RMSEP

randomc
RMSEP wet
to dryd

RMSEP dry
to wete

RMSEP
2012f

RMSEP
2011–2012g

NDVI Grass cover 30 55.41 83 �1 27 24 26 21 25
EVI Grass cover 30 55.17 84 – 32 30 34 23 27
LAI Grass cover 24 43.69 82 �3 25 25 29 16 24
FPAR Grass cover 24 44.16 82 �2 31 27 26 17 24

NDVI Grass biomass 57.69 58.96 90 �1 66.01 69.44 64.61 115.57 172.68
EVI Grass biomass 60.68 62.01 84 �7 48.6 77.62 81.36 155.19 161.86
LAI Grass biomass 50.99 52.11 90 �1 53.5 55.29 66.39 88.83 176.22
FPAR Grass biomass 47.15 48.18 91 – 50.03 55.29 61.54 86.42 181.68

Best results marked in italics.
a RMSEP – Root Mean Square Error of Prediction. RMSEP units are percent cover and gram/m2, for grass cover and grass biomass, respectively.
b rRMSE – Relative root mean square error. DR2 – percent difference in R2 relative to R2 of the best model.
c RMSEP of a model built with random two-thirds of the data and tested on the remained third.
d RMSEP of model trained with data from the wet areas and tested in the dry areas.
e RMSEP of models trained with data from the dry areas and tested in the wet areas.
f RMSEP of models built for 2012 wet season data.
g RMSEP for models trained with data from the dry season of 2011 and tested in the wet seasons of 2012.

Table 5
Results of partial least square regression for shrub variables.

MODIS
product

Variable RMSEPa rRMSEb

(percent error)
R2 DR2 RMSEP

randomc
RMSEP wet
to dryd

RMSEP dry
to wete

RMSEP
2012f

RMSEP
2011–2012g

NDVI Shrub density 8.83 0.24 81 �2 9.52 14.19 12.34 18.48 13.07
EVI Shrub density 11.51 0.32 82 – 20.96 19.14 24.44 34.96 14.15
LAI Shrub density 11.28 0.31 81 �1 14.58 11.17 12.30 13.10 8.22
FPAR Shrub density 9.63 0.27 81 �1 11.01 9.24 9.83 11.86 8.47

NDVI Shrub cover 9.72 0.75 80 �4 10.88 20.80 15.09 16.32 8.02
EVI Shrub cover 10.58 0.82 83 – 8.93 24.85 15.31 19.75 7.65
LAI Shrub cover 11.73 0.91 83 0 13.29 11.67 12.26 8.14 6.13
FPAR Shrub cover 10.56 0.82 83 0 11.76 10.62 11.72 8.48 6.15

NDVI Shrub biomass 11.53 15.62 82 �2 18.49 19.00 23.89 18.92 8.21
EVI Shrub biomass 12.19 16.52 83 – 10.55 35.30 16.38 33.76 8.64
LAI Shrub biomass 15.37 20.82 82 �2 22.97 12.39 15.53 10.40 8.36
FPAR Shrub biomass 11.38 15.41 83 �1 12.09 12.86 15.14 12.46 8.00

Best results marked in italics.
a RMSEP – Root Mean Square Error of Prediction. RMSEP units are shrubs/hectare, m2/ha, and metric tons, for shrub density, cover, and biomass, respectively.
b rRMSE – Relative root mean square error. DR2 – percent difference in R2 relative to R2 of the best model.
c RMSEP of a model built with random two-thirds of the data and tested on the remained third.
d RMSEP of model trained with data from the wet areas and tested in the dry areas.
e RMSEP of models trained with data from the dry areas and tested in the wet areas.
f RMSEP of models built for 2012 wet season data.
g RMSEP for models trained with data from the dry season of 2011 and tested in the wet seasons of 2012.
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Grass cover was best predicted by an EVI-based model, since it
explained the highest proportion of the variance (R2 = 84%). How-
ever, LAI/FPAR showed lower, but still high, model error for grass
cover (rRMSE = 43% vs. 55%). For grass biomass, FPAR gave a strong
prediction of R2 = 91, but the error was high (rRMSE = 48%)
(Table 4).

Shrub density, cover, and biomass, were best modeled with EVI,
but the difference from the other VPs was small (1–2%). FPAR and
EVI produced similar predictions of shrub biomass (R2 = 0.83),
though FPAR had a smaller error (rRSME = 15%) (Table 5).

Tree density was best predicted by NDVI, with 3–7% higher R2

than the other models. Tree canopy was predicted equally well
by FPAR and NDVI; the latter had slightly smaller error. Tree bio-
mass was best predicted by FPAR (R2 = 0.76). These results were
very close (1%) to the NDVI model, which also produced lowest
error (Table 6).

3.4. Model transferability

We examined model transferability in space and time: in other
words, how well did a VP-based model created in one region pre-
dict vegetation in a different region or in another season. Based on
the models selected for each vegetation variable (Tables 4–6), we
used NDVI to assess transferability of models for tree variables
and FPAR to assess transferability models for grass variables.

3.4.1. Transferability in space
When applying a model built with field data from the wetter

area of Etosha to predict tree variables in the drier area, we
achieved good correlation between predicted and measured values
of tree density (RMSE = 8.51 trees/ha), cover (RMSE = 6.42 m2/ha),
and biomass (RMSE = 11.74 trees/ha) (Fig. 6A, Table 6). There were
also good correlations between predicted and measured tree val-
ues for models created for the drier part of Etosha and applied in
the wetter part (RMSE = 7.57 trees/ha). Generally, there was a good
fit between predicted and measured values for all tree variables,
and particularly for tree biomass. A few values in the higher range
of tree density were overestimates (Fig. 6B).

For grass cover and biomass, prediction models trained for the
wet area of Etosha overestimated measures in the drier area
(RMSEP = 24% cover) (Fig. 7A). Transferring models from drier to
wetter area produced slightly better fit (Fig. 7B). All RMSE values
were quite high, around 50%. For all vegetation forms, the error
was generally lower for models created the dry part of Etosha



Table 6
Results of partial least square regression for trees variables.

MODIS
product

Variable RMSEPa rRMSEb

(percent error)
R2 DR2 RMSEP

randomc
RMSEP wet
to dryd

RMSEP dry
to wete

RMSEP
2012f

RMSEP
2011–2012g

NDVI Tree density 4.30 1.98 79 – 4.78 8.51 7.57 5.05 2.98
EVI Tree density 5.17 2.39 75 �5 6.15 11.34 6.14 7.86 2.95
LAI Tree density 7.62 3.52 73 �7 7.95 12.56 12.81 6.31 3.90
FPAR Tree density 6.37 2.94 76 �3 7.02 12.50 14.94 7.12 3.83

NDVI Tree cover 4.34 0.30 78 �1 5.06 6.42 8.83 6.76 3.00
EVI Tree cover 5.02 0.35 74 �5 6.52 10.12 5.87 7.06 2.82
LAI Tree cover 6.79 0.47 77 �1 6.80 8.38 10.05 6.06 3.89
FPAR Tree cover 5.67 0.39 78 – 5.34 8.49 10.31 7.42 4.01

NDVI Tree biomass 8.08 0.62 75 �1 9.74 11.74 13.07 10.39 4.20
EVI Tree biomass 9.23 0.71 73 �4 8.10 15.52 15.52 7.68 3.76
LAI Tree biomass 13.54 1.04 73 �4 16.84 20.55 30.00 9.25 5.13
FPAR Tree biomass 11.63 0.89 76 – 11.48 16.95 22.63 12.14 5.78

Best results marked in italics.
a RMSEP – Root Mean Square Error of Prediction. RMSEP units are trees/hectare, m2/ha, and metric tons, for tree density, cover, and biomass, respectively.
b rRMSE – Relative root mean square error. DR2 – percent difference in R2 relative to R2 of the best model.
c RMSEP of a model built with random two-thirds of the data and tested on the remained third.
d RMSEP of model trained with data from the wet areas and tested in the dry areas.
e RMSEP of models trained with data from the dry areas and tested in the wet areas.
f RMSEP of models built for 2012 wet season data.
g RMSEP for models trained with data from the dry season of 2011 and tested in the wet seasons of 2012.

Fig. 4. Model prediction quality as a function of length of time series used to fit the
model. A. NDVI model for tree canopy cover (m2/ha). B. NDVI model for grass cover
(%). CD = NDVI at the closest date to field measurement. Mean = NDVI annual
average of the year of field measurement (2011).

Fig. 5. Loadings on the first four components of NDVI time series Partial Least
Square Regression (PLSR) model to predict tree density. Each line denotes one
component. Variables with the highest loadings are marked on the horizontal-axis.

Table 7
Summary of best MODIS vegetation product (VP) to predict each vegetation variables.

Vegetation form Variable MODIS vegetation producta

Grass Cover EVI
Biomass FPAR

Shrubs Density EVI
Cover FPAR
Biomass FPAR

Trees Density NDVI
Cover NDVI
Biomass FPAR

a Best VP for PLSR model selected by highest R2 and lowest error.
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and transferred to predict data in the wet part, than the other way
around (Tables 4–6).
3.4.2. Transferability in time
We achieved good model transferability in time: models that

were built using field data from the dry season of 2011 gave robust
predictions of tree density, canopy cover, and biomass in the wet
season of the following year, 2012 (Fig. 6C). The RMSEPs were
<1% for temporal transferability of models for shrubs and trees
(Tables 5 and 6). The models created for grass in the dry season
overestimated grass cover but underestimated grass biomass in
the wet season (Fig. 7C).
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3.5. Vegetation maps

Using the best PLSR model for each vegetation form (see Sec-
tion 3.2) we created a series of maps to predict each vegetation
variable for Etosha National Park. Fig. 8 is one example of percent
tree cover for Etosha, based on the NDVI PLSR model.

4. Discussion

The prediction of vegetation variables using remote sensing is
challenging in savanna ecosystems due to low vegetation cover,
high background signal, soil reflectance, and senesced vegetation.
Variability in space and time hinders the transferability of remote
sensing models to other regions. Creating accurate and transferable
predictive models is further challenged by limited availability of
field data and by the reflectance properties of savanna ecosystems.
In this paper, we addressed these challenges by combining four key
Fig. 6. Transferability of NDVI-based models for tree variables, as assessed by model pre
Transferability in space: from wet to dry areas. B. Transferability in space: from dry to w
metric tons.
components: (1) developing methodology for extensive field sam-
pling, (2) using time series data to account for vegetation temporal
variability, (3) comparing between four MODIS-derived VPs that
contain different radiometric information, (4) creating vegetation
prediction models that are transferable through space and time,
hence demonstrating that these methods are robust.

4.1. Field sampling methodology

Measuring vegetation for remote sensing validation in savanna
ecosystems is often challenging and time consuming due to the
vast landscapes and limited accessibility to these areas. In this
research, we demonstrate an extensive and relatively rapid field
methodology to measure multiple vegetation variables for field
validation of remote sensing data. Calibration of remote sensing
data is often performed either by coarse visual estimation or by
detailed measurement in a relatively limited area (McCoy, 2005).
dicted versus field measured log values. Diagonal lines have an aspect ratio of 1. A.
et areas. C. Transferability in time: from 2011 to 2012. t/ha = trees per hectare; mt –



Fig. 7. Transferability of FPAR-based models for grass variables, as assessed by model predicted versus field measured log values. Diagonal lines have an aspect ratio of 1.
n = 83. A. Transferability in space: from wet to dry areas. B. Transferability in space: from dry to wet areas. C. Transferability in time: from 2011 to 2012. Upper panel shows
grass cover (percent cover); lower panel shows grass biomass (g/m2).
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Here we combine visual estimation with detailed measurement of
vegetation variables over large area and multiple sampling points.
The point centered quarter (PCQ) method we use to measure
woody vegetation proves to be a rapid and efficient technique for
collecting large amount of data points. Indeed, PCQ has been sug-
gested to be a good method that combines accuracy and efficiency
(Engeman et al., 1994).

Our extensive field sampling methodology enabled us to use
remote sensing to predict three key vegetation variables: density,
/
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cover, and biomass. While these variables are somewhat corre-
lated, they are not identical. Each of these variables has comple-
mentary ecological importance, and contributes unique
information to the overall understanding of the vegetation com-
munity structure (Abdallah et al., 2016; Tsalyuk and Getz 2015;
Vander Yacht et al., 2016). Moreover, we sampled three different
vegetation forms: grass, shrubs, and trees. Each of these vegetation
forms has a different ecosystem function; for example, in distribu-
tion of grazing versus browsing wildlife, fire intensity (Alleaume
nal park as predicted by NDVI PLSR model.
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et al., 2005; Sow et al., 2013), protection of soil, and water reten-
tion. Therefore, the ability of our methodology to predict all three
vegetation forms adds a valuable remote sensing-based tool for
savanna vegetation monitoring.

There was difference in the ability of different MODIS-based
models to predict vegetation variables. Models predicted all tree
measurements and shrub density and cover well, with high
explained variance and low error (Table 5). During the dry season,
shrubs and trees are clearly distinct from the surrounding grass
and soil by maintaining some moisture and photosynthetic activ-
ity, and therefore can be better detected by remote sensing. Con-
versely, while models for grass cover and biomass gave high
prediction (high R2 values), they exhibited high error (Table 4);
possibly due to large variation in grass cover in different parts of
Etosha and to limited ability to measure understory grass.

4.2. Time series data

Predictive models based on summary statistics of one year of VP
data perform much better than a model based on only a single
closest-date value. This coincides with a large body of research that
has demonstrated that integrated or annual maximum VI values
allow better mapping of biomass and cover, of both woody and
herbaceous vegetation (Gaughan et al., 2013; Sannier et al., 2002;
Zhang et al., 2016; Zhou et al., 2013). Here, we further demonstrate
that including time series data of up to six years significantly
improves ability to predict vegetation variables. Individual dates
of VP values had large coefficients in the prediction models, indi-
cating that fine scale temporal VP information improves model
predictive ability, beyond the annually averaged data. Interest-
ingly, the maximum annual VP values had important role in the
prediction (Fig. 5). Indeed, previous research has shown that tran-
sition dates in vegetation phenological cycle can be useful in
MODIS-based vegetation monitoring (Hmimina et al., 2013; Lu
et al., 2014a, 2014b; Zhang et al., 2003).

We show that VP values from two or three years prior to the
time of field measurement had large coefficients in the prediction
model (Fig. 5). This might indicate a lag in vegetation response to
previous climate conditions, which further confirms the impor-
tance of using time series in predictive vegetation models. In arid
environments water availability, which is determined by mean
annual rainfall, constrains vegetation cover (Sankaran et al.,
2005). Dry savannas respond rapidly to rainfall event and produce
a signal that can be captured by remote sensing (Schmidt and
Karnieli, 2000). However, current biomass is also determined by
the relative fraction of herbaceous and woody cover and by the dis-
tribution of moisture in the soil (D’Odorico et al., 2007; Knoop and
Walker, 1985). Therefore, how vegetation growth responds to rain-
fall varies between years, which results in a multiannual lag
between rainfall and the resulting biomass (Goward and Prince,
1995). Integrating remote sensing information over few years
incorporates these variations, hence providing a better prediction
of vegetation cover and biomass (Scanlon et al., 2005). Overall,
our results demonstrate that time series of MODIS data can signif-
icantly improve model prediction of vegetation variables.

4.3. Predictive power of MODIS-derived vegetation products

We demonstrate that the four MODIS-based Vegetation Prod-
ucts (VPs) have complementary ability to predict different field
vegetation variables. EVI produced the best model of grass and
shrub cover, NDVI was the best predictor of tree density and cover,
while FPAR was the best predictor of biomass (Tables 4–6). How-
ever, the differences between the VPs were rather small.

We demonstrate good prediction ability of NDVI-based models
for all vegetation forms (R2 = 75–84%), coinciding with previous lit-
erature (Li et al., 2015a; Zhang et al., 2016; Zhu and Liu, 2015).
However, for grass and shrub vegetation other VPs exceeded
NDVI’s performance. As expected, EVI was a good predictor of
savanna vegetation cover. EVI incorporates reduction in soil back-
ground and aerosol scattering, which particularly constitute a chal-
lenge in sparse vegetation cover (Jin et al., 2013; Sjostrom et al.,
2011). EVI has been previously demonstrated to provide land cover
information at a broad scale (Zhang Xia et al., 2008).

FPAR was the best predictor of tree biomass (1–4% higher R2

than other VPs), and predicted grass biomass 7% better than EVI,
with 10% lower error than the model using NDVI (Table 4).
Although these differences of FPAR to the other VP-based models
are not very high, we believe MODIS-FPAR has a strong potential
to predict vegetation variables in savannas. FPAR may be superior
predictor of vegetation biomass because while NDVI/EVI are good
measures of green vegetation, FPAR measures structural and func-
tional properties of vegetation, which are more relevant to
senesced vegetation prevalent in savanna ecosystems
(Knyazikhin et al., 1999; Myneni et al., 2002). FPAR measures the
photosynthetic activity of vegetation, which continues, to some
extent, in dry vegetation as well (Butterfield and Malmstrom,
2009). Indeed, previous research demonstrated that FPAR has a
strong relationship with both green and senescent grassland bio-
mass (Malmstrom, et al. 2009; Tsalyuk, et al. 2015).

The MODIS algorithm for FPAR includes the red and infrared
wavelengths, the same as used in NDVI. In addition, MODIS FPAR
uses information on the local biome and canopy structure, to cre-
ate an accurate relationship between NDVI and the vegetation
properties at each location, with extensive ground validation
(Knyazikhin et al., 1999). These additional data sets may improve
the correlation between FPAR and the ground-based measure-
ments of vegetation (Fensholt et al., 2004). Indeed, since MODIS-
FPAR captures leaf structure and photosynthetic activity, it was
demonstrated to correlate well with seasonal ecosystem produc-
tivity in Australian tropical savanna (Restrepo-Coupe et al.,
2015). FPAR is an important vegetation structural measures that
are often collected in the field (Baret and Guyot, 1991). In this
paper, we demonstrate the ability of satellite-based FPAR to
improve prediction of savanna vegetation, beyond the traditional
use of NDVI. Improvements to the MODIS LAI/FPAR model in Col-
lection 6 (MOD15A2H) may enhance the advantage of this product
even further by increasing its accuracy and resolution (Yan et al.,
2016).

MODIS FPAR and LAI have higher temporal resolution than
MODIS NDVI and EVI, while the latter have finer spatial resolution.
MODIS FPAR and LAI are calculated as an 8-day composite mea-
sure, while NDVI and EVI are calculated for every 16-days. The
finer temporal resolution of FPAR may encompass fine-scale vari-
ability in the vegetation and therefore provide better prediction
of field measurements. Nonetheless, temporal composition of veg-
etation indices over longer periods may produce better prediction
of vegetation measurements by removing angular effects and using
minimum aerosol contamination (Yi et al., 2008; Zhou et al., 2013).
MODIS NDVI/EVI have a finer spatial resolution of 250 � 250 m
while MODIS FPAR and LAI are calculated for 1 � 1 km pixels. Coar-
ser spatial resolution may increase vegetation prediction accuracy
at a regional scale (Li et al., 2015a). Conversely, higher spatial res-
olution can detect fine scale spatial heterogeneity in vegetation
variables. Our results demonstrate that each vegetation type is best
predicted by another MODIS vegetation product, in spite of the dif-
ferences in the products’ spatial and temporal scales. Therefore, it
is recommended that choice of vegetation product to use should be
based on the vegetation variable in interest, while the imagery res-
olution should be dictated by the specific management need: a
higher spatial resolution is necessary for small regions with high
spatial heterogeneity, while higher temporal resolution is needed
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for regions with rapid environmental change (Boschetti et al.,
2013; Dube and Mutanga, 2015; Li et al., 2015a, 2015b; Lu et al.,
2014a; Zhou et al., 2013).
4.4. Transferability

One of the primary challenges in using remote sensing for veg-
etation prediction in semiarid environments is transferability, the
ability to use models created in one place for vegetation prediction
in another (Cutler et al., 2012; Eisfelder et al., 2012; Lu, 2006;
Wenger and Olden, 2012). Different regions or times may have dif-
ferent probability distribution of the data, different variance, and,
importantly, value ranges that extend beyond the data range of
the model. Here we address the challenge of transferability
between areas with different environmental conditions and
between seasons.

Foody et al. (2003) identified the necessary components to pro-
duce a transferable remote sensing model: accurate field data,
clean remote sensing information, and a region-specific relation-
ship between biophysical information and reflectance data. Our
work supports their general rule. We achieved a good spatial trans-
ferability of shrub and tree models, with good correlation between
predicted and measured data and low error. We were able to
achieve these results because of extensive field validation com-
bined with high dimensionality remote sensing data. PLSR models
are able to use extensive information, which encompasses most
variability of field measurement, while reducing collinearity in
the data by creating new orthogonal latent variables (Mevik and
Wehrens, 2007). The successful transferability suggests that we
were able to produce robust predictive model without over-
fitting the data (Darvishzadeh et al., 2011; Foody et al., 2003).

Interestingly, transferring a model created in a drier area to pre-
dict vegetation in wetter areas provided better predictions than the
reverse. In drier areas, the reflectance contrasts and the differences
in greening periods among the savanna vegetation forms (grass,
shrubs, and trees) are more pronounced, allowing better predic-
tions of each form. A robust predictive model created in drier areas
identifies the critical changing points of a narrower phenology
cycle (Archibald and Scholes, 2007), and therefore may produce
better prediction for wetter areas as well (Cutler et al., 2012;
Foody et al., 2003). This suggests that it might be advisable to
use a training dataset from areas with a lower precipitation gradi-
ent when calibrating remote sensing-based models.

The relationship between remote sensing reflectance data and
field vegetation variables depends on canopy structure and cover-
age (Schoettker et al., 2010). The MODIS LAI/FPAR products are
based on a radiance transfer model calibrated specifically for each
biome (Yan et al., 2016). Our results show that FPAR indeed
improves model transferability for a wider range of data, as long
it is within the same global biome.

A promising result we show here is the ability to use remote
sensing models built for one year to predict vegetation variables
in another. This has important practical implications for applying
remote sensing-based models to monitoring vegetation change in
savannas. To apply this method to quantify change over time, it
should be further investigated whether or not temporal transfer-
ability can be applied in areas with larger variations in vegetation
conditions.
5. Conclusions

In this paper, we have presented a rapid, low cost methodology
for assessing savanna vegetation, using freely available and prepro-
cessed MODIS satellite data. We showed that comparing few
MODIS-derived Vegetation Products over time can produce reliable
and robust models to predict a large suite of vegetation variables.
Additionally, we demonstrate the ability of MODIS-based FPAR to
predict vegetation biomass of all vegetation forms. Furthermore,
we demonstrated reasonable model transferability across space
and time. Based on our results, we created full cover maps for
the density, cover, and biomass of grasses, shrubs, and trees for
Etosha National Park (e.g. Fig. 8). These maps can be used to further
understand key ecological processes in savanna ecosystems, such
as spatial patterns of Gross Primary Productivity (GPP), carbon
sequestration, fire load prediction, and soil and vegetation degra-
dation processes. Applying our approach to other large savanna
landscapes, will allow researchers to use freely available, high
quality remote sensing products, to manage and conserve ecosys-
tems that provide livelihood to hundreds of millions of people
and preserve the rich biodiversity upon which crucial ecosystems
services depend.
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