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A B S T R A C T

Time-to-event methods have been proposed in the agricultural sciences, as one of the most suitable options for
the analysis of seed germination data. In contrast to traditional linear/nonlinear regression, time-to-event
methods can easily account for all statistical peculiarities inherited in germination assays, such as censoring, and
they can produce unbiased estimates of model parameters and their standard errors. So far, these methods have
only been used in combination with empirical models of germination, which are lacking biological under-
pinnings. We bridge the gap between statistical requirements and biological understanding by developing a
general method that formulates biologically-oriented hydro time (HT), thermal time (TT) and hydrothermal time
(HTT) models into a time-to-event framework. HT, TT, and HTT models are widely used for describing seed
germination and emergence of plants as affected by the environmental temperature and/or water potential.
Owing to their simplicity and the direct biological interpretation of model parameters, these models have be-
come one of the most common tools for both predicting germination as well as understanding the physiology of
germination responses to environmental factors. However, these models are usually fitted by using nonlinear
regression and, therefore, they fall short of statistical rigor when inference about model parameters is of interest.
In this study, we develop HT-to-event, TT-to-event and HTT-to-event models and provide a readily available
implementation relying on the package “drc” in the R statistical environment. Examples of usage are also
provided and we highlight the possible advantages of this procedure, such as efficiency and flexibility.

1. Introduction

Time-to-event methods have been widely used to model the time
until an event of interest occurs. Most frequently, these models have
been used in medical sciences, to model the time to e.g., death (survival
analysis), go out of remission, develop a certain pathology or other
types of events. More recently, time-to-event methods have also ap-
peared in the agricultural or crop sciences, e.g., to model the time-to-
flowering (Ritz et al., 2010), the time-to-emergence (Onofri et al.,
2010) or the time-to-germination (McNair et al., 2012; Onofri et al.,
2011). In spite of few examples, however, time-to-event methods re-
main highly under-utilized in all disciplines relating to agriculture.

Several recent studies have shown that time-to-event methods pro-
vide a very general platform for the analyses of data from many types of
germination experiments, leading to valid inferences and reliable hy-
potheses testing (Hay et al., 2014; Ritz et al., 2013). Indeed, germina-
tion assays naturally produce grouped time-to-event data (interval
censoring): when we find n seeds germinated at a certain assessment
time ti, we should only conclude that their germination timing must

have occurred between −ti 1 and ti. Grouping leads to loss of information
or, in other words, added uncertainty; if this is neglected, standard
errors will be underestimated and inferences will be unreliable (Ritz
et al., 2013). In this respect, time-to-event methods are specifically
devised to deal with all forms of censoring, as well as with the usual
forms of experimental error, supporting the idea that they should al-
ways be preferred over linear and nonlinear regression to describe the
progress to germination.

So far, time-to-event methods have only been used to empirically
model cumulative seed germination curves, with little biological un-
derpinnings. It is therefore relevant to use the time-to-event framework
to build models that are both biologically meaningful and of good
statistical quality. Specifically, we will focus on the use of time-to-event
methods to describe the germination progress, as affected by environ-
mental temperature and/or water potential.

The theoretical underpinning of hydro time (HT), thermal time (TT)
or hydrothermal time (HTT) models is that germination does not take
place below/above certain threshold temperature levels (base tem-
perature: Tb or ceiling temperature: Tc, respectively), or below a certain
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water potential threshold (base water potential: ψb). When the ambient
temperature or moisture level do not exceed these thresholds, the
germination rate (GR: rapidity of germination in 1/days or 1/hours
unit) for the gth percentile of a population can be described as a linear or
nonlinear function of water potential (ψ) and/or temperature (T). Due
to presence of temperature and water potential thresholds, these
models are also known as threshold models.

As an example, in an HT model, the germination rate of a given
percentile g (GRg) in response to water potential is described by
(Bradford, 2002):

=
−

GR
Ψ Ψ

θg
b g

H

( )

(1)

where Ψ is the water potential in the substrate, Ψb g( ) is the base osmotic
potential for the gth percentile within the population and θH (hydro-time
constant) is the hydro-time to germination (in MPa h or MPa d unit) for
the whole population.

In the same paper, Bradford (2002) also presents a TT model (see
Eqs. (2) and (4) in his paper) and an HTT model (see Eqs. (9) and (10)
in his paper; see also Alvarado and Bradford, 2002) where GRg values
linearly increase at sub-optimal temperatures and linearly decrease at
super-optimal temperatures, with a sharp change at the optimal tem-
perature level (To). Alternative models have been proposed to describe
a curved relationship between GRg and temperature around To (e.g.
Grundy et al., 2000; Rowse and Finch-Savage, 2003; Mesgaran et al.,
2017). More recently, the scope of threshold models has become more
general including the effect of other environmental or endogenous
factors on germination rates, such as hormones, ageing and oxygen
(Bello and Bradford, 2016).

In general, threshold models for seed germination are well grounded
in plant physiology. Their key aspect is that the GRg for a given fraction
of the population is expressed as a function of environmental variables,
which is in contrast to what we really measure in a germination assay,
that is the number of germinated seeds in different times after the be-
ginning of the experiment. This raises the question as to how we should
fit these GR-based models to the actual observed counts.

Thus far, two different approaches have been used: (i) fitting as a
‘two-steps’ procedure or (ii) re-parameterising the model. The first ap-
proach has been widely used, e.g., in Finch-Savage et al. (1998); Catara
et al. (2016); Masin et al. (2017); Pace and Benincasa (2010) and Rowse
and Finch-Savage (2003). In the first step, the observed counts are
transformed into cumulative proportions and a sigmoidal model is
fitted to these cumulative data using nonlinear least squares estimation.
In the second step, the fitted sigmoidal model is used to derive the GR
for the desired percentile g and these GRg values are used to para-
meterise the selected HT, TT or HTT model. This two-steps approach
may not be very efficient; first of all, nonlinear regression is used in the
first step, which does not account for censoring. Secondly, some in-
formation from the first step will not be propagated to the second, i.e.,
uncertainty on estimatedGRg values is not carried forward. Third, it is
also a limitation that only one subpopulation percentile can be con-
sidered at a time (e.g., GR50, GR30 or GR10).

In the second approach, the dependent variable is the proportion/
percentage of germinated seeds, instead of GRg, and threshold models
are re-parameterised based on the assumption that one or several
threshold parameters (e.g., base water potential) vary between in-
dividuals within the population, following a specific probability dis-
tribution (e.g., Bradford, 2002; Mesgaran et al., 2013 and Watt et al.,
2010). For instance, if the distribution of base water potential is as-
sumed to be normal, it is easy to show that Eq. (1) can be re-para-
meterised as follows:

=
⎧

⎨
⎩

⎡⎣ − − ⎤⎦ ⎫

⎬
⎭

p t ψ ϕ
Ψ Ψ

σ
( , )

θ
t b

Ψ

(50)
H

b (2)

where p is the proportion of germinated seeds at time t and ϕ is the
cumulative normal distribution (Bradford, 2002). Mesgaran et al.
(2013) and Watt et al. (2010) have followed the same approach, but
using different distributions i.e., log-logistic and Weibull probability
distributions, respectively. In all cases, the re-parameterised model is
fitted to the observed proportions by using some optimisation algo-
rithm, such as nonlinear least squares (perhaps the most common
choice in the literature), repeated probit analysis, or similar procedures
(see Hardegree et al., 2015 for more details). These procedures either
do not produce reliable standard errors or do not produce them at all.

Although HT, TT, and HTT models are well grounded in seed
biology, they are often fitted by using inefficient or even questionable
methods, not respecting the actual manner in which data are acquired
from germination assays. Time-to-event methods can easily account for
all statistical peculiarities inherited in germination assays, but no sys-
tematic effort has been so far made to build HT, TT, and HTT models in
this framework, apart from a preliminary attempt of Pipper et al. (2013)
that only included a TT model.

To overcome this dichotomy in modeling approaches, the objectives
of this study were to:

1. develope a general method to re-formulate the commonly used HT,
TT, and HTT models within a fully parametric time-to-event fra-
mework;

2. implement our models within the R statistical environment and, in
particular, the package “drc”, which is commonly used for dose-
response analysis in various other areas of agricultural research
(Ritz et al., 2015);

3. examine the performance of these time-to-event models through a
number of exemplary datasets;

4. highlight the advantages and limitations of the time-to-event ap-
proach against the other approaches that are currently used for
modelling germination in response to temperature and water
availability.

2. Materials and methods

We collated published and unpublished data on seed germination of
four plant species from independent experiments, as described below.

2.1. Example 1: germination of rapeseed at different water potentials

This dataset was taken from previously published work (Pace and
Benincasa, 2010) with rapeseed (Brassica napus L. var. oleifera, cv. Ex-
calibur). Thirteen different osmotic potentials (−0.03, −0.15, −0.3,
−0.4, −0.5, −0.6, −0.7, −0.8, −0.9, −1, −1.1, −1.2, −1.5MPa)
were created by using a polyethylene glycol solution (PEG 6000). For
each water potential level, three replicated Petri dishes with 50 seeds
each were incubated at 20 °C. Germinated seeds were counted and re-
moved every 2–3 days for 14 days.

2.2. Example 2: germination of Hordeum spontaneum [C. Koch] Thell. at
different temperatures and water potentials

The second dataset was obtained from previously published work
(Mesgaran et al., 2017) with Hordeum spontaneum [C. Koch] Thell. The
germination assay was conducted using four replicates of 20 seeds
tested at six different water potential levels (0, −0.3, −0.6, −0.9,
−1.2 and−1.5MPa). Osmotic potentials were produced using variable
amount of polyethylene glycol (PEG, molecular weight 8000) adjusted
for the temperature level. Petri dishes were incubated at six constant
temperature levels (8, 12, 16, 20, 24 and 28 °C), under a photoperiod of
12 h. Germinated seeds (radicle protrusion >3mm) were counted and
removed daily for 20 days.
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2.3. Example 3: germination of Phalaris minor L. at different temperatures

The third dataset was also taken from Mesgaran et al. (2017). Four
replicates of 25 seeds of P. minor were placed in 9-cm-diameter Petri
dishes. Originally, this experiment consisted of six different water po-
tential levels, although here we will only use the data observed at
−0.6MPa, because at this water potential level the germination time-
course was well depicted at many temperature levels. Seeds were in-
cubated at six constant temperature levels (8, 12, 16, 20, 24 and 28 °C)
under a photoperiod of 12 h. Germinated seeds (radicle protrusion
>3mm) were counted and removed daily for 20 days.

2.4. Example 4: germination of barley at different temperatures

This unpublished dataset was obtained from a germination assays
performed at the Department of Agricultural, Food and Environmental
Sciences (University of Perugia, Italy), by using Hordeum vulgare L., cv.
Quenc. Three replicates of 50 seeds were placed over filter paper
(Watman #1) in 13-cm-diameter Petri dishes and moistened with 9ml
of distilled water i.e., 0 MPa. Petri dishes were sealed by plastic bags to
prevent water evaporation and incubated in climatic chambers at 9
constant temperature levels (1, 3, 7, 10, 15, 20, 25, 30, 35, 40 °C).
Germinated seeds were counted and removed daily for 10 days.

2.5. Principles of time-to-event models

In time-to-event modeling, timing of germination within the seed
population is considered to follow some types of probability density
functions, such as log-normal, log-logistic or Weibull. As a result, the
cumulative proportion of germinated seeds (P) increases over time
according to a S-shaped curve, such as a log-logistic cumulative prob-
ability function (if a log-logistic distribution is assumed):

=
+ −

P t P
exp b log t log t

( )
1 { [ ( ) ( )]}

MAX

50 (3)

In the above equation, t50 is the median germination time, PMAX is the
maximum germinated proportion, and b is the slope at the inflection
point, which is related to the standard deviation of the log-logistic
distribution. Indeed, the three parameters describe the main features of
germination, i.e., germination speed, capability, and uniformity, re-
spectively.

The above curve (Eq. 3) can be fitted to germination data in two
ways. For better clarity, let us consider a hypothetical example of a
germination assay where one seed germinated at some (unknown) time
point between 0 and 3 Days After the Beginning of assay (DAB), six
seeds germinated between 3 and 6 DAB, and so on (Table 1). At the end
of the assay, 8 seeds were still ungerminated and, therefore, their ger-
mination times, if any, would be larger than 16 days (i.e., from 16 to∞;
see Table 1).

The most common option for modelling the data presented in
Table 1 is to fit Eq. 3 to the observed cumulative proportion of ger-
minated seeds, by using the method of nonlinear least squares. In this
case, the time point when an observation is made (second column in
Table 1) is erroneously assumed to be the same as the timing of the

germination event, while the exact germination time is unknown and
we only know that the event has happened at some time point between
two consecutive inspections (interval censoring; see below).

The alternative (correct) option is to use directly the combined in-
formation about the counts of germinated seeds and the length and
position (on the time axis) of the corresponding time interval. In this
way, it is recognised that the seeds have germinated in an unknown
moment between the present and the previous scoring time. Obviously,
the variation of counts over time should follow the underlying dis-
tribution of germination times. Therefore, the best-fitting version of Eq.
(3) is obtained by selecting the values for parameters (t50, b, and PMAX ),
so that the observed counts are as likely as possible, i.e., by means of
maximum likelihood estimation. General (logarithm-transformed)
likelihood expressions for time-to-event data have been provided by
Onofri et al. (2011) and Ritz et al. (2013).

For the data presented in Table 1, if we assume that the cumulative
proportion of germinated seeds at time t [i.e., t( )] is described by the
log-logistic model (Eq. (3)), the probability of having one seed germi-
nated e.g., in the second interval (from 3 to 6 DAB) is equal to

−P P(6) (3). Likewise, the probability of having one seed ungerminated
at the end of the assay would be the sum of two probabilities: that is,
the probability that this seed has a germination time longer than the
last assessment time [i.e., −P P (16)MAX ] plus the probability that the
seed is in the ungerminated fraction [i.e., −P1 MAX]. Considering all the
seeds in the lot, the logarithm of the likelihood (LL) for the data in
Table 1 is therefore:

= ⋅ − + ⋅ − +
+ ⋅ − + ⋅ − +
+ ⋅ −

LL log P P log P P
log P P log P P

log P

1 [ (3) (0)] 3 [ (6) (3)]
12 [ (12) (6)] 1 [ (16) (12)]
8 [1 (16)]

By repeating the above calculations, we can see that the log-likelihood
is, e.g., higher with parameter values fixed at t50 =7, b =4 and
PMAX =0.95 (LL=−37.5), than with parameter values fixed at t50 =3,
b =4 and PMAX =0.8 (LL=−43.3), suggesting that former set of
parameter values is more likely given the observed counts. By using
some sort of optimisation algorithm, we can retrieve the optimal
combination of parameters that results in the maximum log-likelihood.
For this example data, the maximum log-likelihood estimates were
(standard errors in brackets) t50 =7.72 (SE=1.07), b =4.02
(SE=1.28) and PMAX =0.72 (0.11), while nonlinear regression using
the least squares method gave parameter estimates of t50 =7.63
(SE=0.75), b =4.95 (SE=1.68) and PMAX =0.70 (0.06). Point esti-
mates are very similar, but, with the exception of b, standard errors
obtained from the time-to-event fit are larger than those obtained from
nonlinear regression, as the uncertainty relating to censoring has been
correctly incorporated into the time-to-event fit. It is worth noting that,
with both methods, we are fitting the same equation (Eq. (3)), although
in two totally different ways (using two different metrics).

2.6. Building a general hydrothermal-time-to-event model

The time-to-event model in Eq. (3) can be made more general, by
using any types of cumulative distribution function Φ, as follows:

= −P t Ψ T P Φ b log t log t( , , ) { [ ( ) ( )]}MAX a (4)

where ta is the 50th percentile (t50) if Φ is e.g., log-normal or log-logistic
or some other specific percentiles in other cumulative distribution
functions (e.g., 63th in Weibull distribution). Using the above general
formulation, we can recast HT, TT, and HTT models as time-to-event
models by:

1 selecting an appropriate distribution for germination times (Φ) and,
2 expressing =t GR1/a a, b and PMAX as linear/nonlinear functions of
temperature (T in °C) and/or water potential (Ψ in MPa) in the
substrate.

Table 1
A hypothetical example showing germination counts recorded between con-
secutive monitoring events.

Beginning of
interval

End of
interval

No. of germinated
seeds

Cumulative
proportion

0 3 1 0.05
3 6 3 0.20
6 12 12 0.80
12 16 1 0.85
16 Inf 8 –
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If we write =GR f Ψ T( , )a , =P h Ψ T( , )MAX and =b z Ψ T( , ), a
general HTT-to-event model is:

= −P t Ψ T h Ψ T Φ z Ψ T log t log f Ψ T( , , ) ( , ) { ( , )[ ( ) (1/ ( , ))]} (5)

This modelling approach attains a very high level of flexibility: models
can be easily built by appropriately changing one or more of the above
model components, i.e., Φ, the functions h (PMAX sub-model), f (GRa
sub-model), and z (b sub-model). In this work, we initially built one HT-
to-event (HTE), one HTT-to-event (HTTE), and one TT-to-event (TTE)
model. Relating to theGR50 component, we used the equations provided
by Bradford (2002) and Mesgaran et al. (2017) (Eqs. (6), (9) and (12) in
Table 2). Several forms of a shifted exponential distribution function
were used for PMAX (Eqs. (7), (10) and (13) in Table 2), while b was
always found to be largely independent of temperature and water po-
tential. As a good candidate for Φ, throughout this paper we will use the
log-logistic distribution (Eqs. (8), (11) and (14) in Table 2), though any
other distribution can be used without loss of generality.

The whole model building process is detailed in the Appendix A. We
would like to emphasize that, for all time-to-event models, GR50 refers to
the 50th percentile of the germinated fraction and not to the whole seed lot.
This is an important difference with respect to the original HT or HTT
models, as formulated in Bradford (2002), even though the GR50 for the
whole seed lot can also be retrieved from the time-to-event fit (see later).
Furthermore, in every time-to-event model, germination velocity and
capability are described by two different sub-models, although they are not
totally independent, as they partly share the same parameters (Table 2).

2.7. Model implementation

All the models and their sub-models, including the appropriate self-
starting routines, were incorporated into the package “drc” (Ritz et al.,
2015) within the R statistical environment (R Core Team, 2016).
Maximum likelihood estimation requires initial guesses for all model
parameters, which, in our experience, is often a troublesome step. The

self-starting routines implemented in our modeling platform can, to
large extent, alleviate this problem.

User-defined models can also be inserted into the “drc” package as
shown in the example related to a TT time-to-event model (Appendix
B). Furthermore, all functions and datasets (“Rape”, “Hordeum”,
“Phalaris” and “Barley”) are available within the package
“drcSeedGerm”, which can be installed and loaded to repeat the ana-
lyses. The codes to reproduce all the analyses presented in this paper
are given in the Appendix C.

2.8. Model fitting

In order to perform time-to-event analyses in “drc”, the dataset
needs to be organised as outlined in Table 1.

After loading the data, the equations can be fit to the whole dataset,
by using the function “drm()” in the “drc” package and by setting the
argument “type” to “event” in the function call. The estimated para-
meters and standard errors can be retrieved by using the function
“summary()” and passing the model object as an argument (See
Appendix C).

It should be noted that in most germination assays, the observa-
tional units are clustered within Petri dishes and thus they are not in-
dependent. It has been shown that random variability at the Petri dish
level may be very small and negligible from a practical point of view
(Onofri et al., 2014). As suggested for clustered survival data (Yu and
Peng, 2008), we decided to calculate cluster robust sandwich standard
errors (Carroll et al., 1998), which can be easily done by using the fa-
cilities included in the “sandwich” package (Berger et al., 2017), to-
gether with the function “coeftest” in the “lmtest” package (Zeileis and
Hothorn, 2002). Code snippets are given in the Appendix C.

The goodness of fit was checked graphically, while the Akaike’s
Information Criterion (AIC; Akaike, 1974) was used to compare models,
wherever necessary.

2.9. Making predictions

Our time-to-event modeling approach retains the same capacity as
the conventional GDD and HTT models in predicting seed germination
or seedling emergence (e.g., in the field) based on the daily soil tem-
perature and moisture data. Using Eq. (9) (Table 2), as an example, we
can derive an expression for the daily HTT accumulation (HTTd)

= − − − −HTT T T Ψ Ψ k T T( )[ ( )]d b b b (15)

and incorporate it into Eq. (11) to obtain a prediction of the proportion
of germinated seeds at day n:

=
+ ⎧

⎨⎩
⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦

⎫
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∑ =

P t Ψ T h Ψ T

exp b log
( , , ) ( , )

1
HTT i

Θ

2

( )i
n

d

HT
1

(16)

When the daily accumulation of HTT reaches the value of ΘHT , the
proportion of germinated seeds will be 50% of the maximum germin-
able fraction i.e., PMAX , where PMAX itself can be predicted using Eq.
(10).

Predicting GR for any percentile g can be achieved by using the
following equation:

⎜ ⎟= ⎡

⎣
⎢−⎛

⎝
⎞
⎠

+ ⎛
⎝

⎞
⎠

⎤

⎦
⎥GR exp

b
logΔ log

f T Ψ
1 1

( , )g
2 (17)

where Δ is equal to −g g(1 )/ or −h T Ψ g g[ ( , ) ]/2 , depending on whether
the percentile g refers to the germinated fraction or to the whole po-
pulation. Predicting the GRg levels for the whole population is funda-
mental whenever we intend to compare seed populations with a dif-
ferent PMAX .

Table 2
List of sub-models used for hydro-time-to-event (HTE), hydrothermal-time-to-
event (HTTE), and thermal-time-to-event (TTE) models of seed germination.

Model Sub-model Equation Eq. No.

HTE GR50 = −f Ψ( ) Ψ Ψb
ΘH1

(6)

PMAX
⎜ ⎟= ⎡

⎣⎢
− ⎛

⎝
⎞
⎠

⎤
⎦⎥

−h Ψ G exp( ) 1 Ψ Ψb
σΨb

1
(7)

Distribution
⎜ ⎟
⎛
⎝

⎞
⎠

=
+ −

P t Ψ, h Ψ
exp b log t log f Ψ1

1( )
1 { [ ( ) (1 / 1 ( ))]}

(8)

HTTE GR50 = − − −−f Ψ T Ψ Ψ k T T( , ) [ ( )]T Tb
ΘHT

b b2
(9)

PMAX
⎜ ⎟= ⎡

⎣⎢
− ⎛

⎝
⎞
⎠

⎤
⎦⎥

− − −h Ψ T G exp( , ) 1 Ψ Ψb k T Tb
σΨb

2
( ) (10)

Distribution
⎜ ⎟
⎛
⎝

⎞
⎠

=
+ −

P t Ψ T, , h Ψ T
exp b log t log f Ψ T2

2 ( , )
1 { [ ( ) (1 / 2 ( , ))]}

(11)

TTE GR50 = ⎡
⎣

− ⎤
⎦

− −
−

f T( ) 1T Tb
ΘT

T Tb
Tc Tb3
( )
( )

(12)

PMAX = − ⎡
⎣

− ⎤
⎦

−{ }h T G exp( ) 1 Tc T
σTc

3
( ) (13)

Distribution
⎜ ⎟
⎛
⎝

⎞
⎠

=
+ −

P t T, h T
exp b log t log f T3

3( )
1 { [ ( ) (1 / 3 ( ))]}

(14)

Ψ : water potential (MPa); T : temperature (C); t : time (days or hours); Ψb: base
water potential (MPa); ΘH : hydrotime constant (MPa day or MPa hour); G:
maximum proportion of germinated seeds; b : slope of germination curve; Tb:
base temperature (°C); Tc: ceiling temperature (°C); k, σΨb and b are regression
coefficients; see Appendix A for more detail. Eq. (6) is taken from Bradford
(2002), Eq. (9) is taken from Mesgaran et al (2017), while Eq. (12) is derived
from Eq. 9.
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The function “drm()”, embedded in the “drc” package, includes a
“predict()” method to obtain the predicted proportions of germinated
seeds as a function of time, temperature and water potential, while we
modified the function “ED()” of the “drc” package to accommodate
prediction of GRg values as a function of temperature and water po-
tential.

3. Results

3.1. Example 1

The estimated parameters are given in Table 3, together with two
sets of standard errors: the first set is obtained from the simple time-to-
event model fit, assuming independence between all germination times,
while the second set (sandwich standard errors) accounts for the fact
that seeds are clustered within Petri dishes. We can see that the two sets
of standard errors are not much different from each other.

As shown in Fig. 1, the model fitted the rapeseed germination data
reasonably.

The HTE model matched closely the observed PMAX (Fig. 2, left) and
the observed median germination rates (Fig. 2 right). For this latter
variable, the figure reports only the water potential levels for which the
GR could be derived with enough precision (see also Fig. 1).

As mentioned above, in time-to-event models the GR50 stands for the

Table 3
Parameter estimates and standard errors for the HTE model (Eq. 8) fitted to the
rapeseed data.

Parameter Estimate Naive SE Sandwich SE

G 0.958 0.006 0.008
Ψb −1.040 0.005 0.005
σΨb 0.111 0.009 0.012
θH 0.906 0.030 0.041
b 4.027 0.196 0.193

Fig. 1. Effect of water potential on the time-course of germinations in rapeseed (Brassica napus var. Excelsior; Example 1). Symbols denote the observed data and
lines show the HTE model fits (Eq. (8); model parameters are reported in Table 3) with vertical bars representing the 95% confidence limits.
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germinated fraction. For instance, if PMAX is 0.9, theGR50 corresponds to
the 50th percentile of the germinated fraction, that is the 45th percentile
of the whole population. Owing to this, it would not be appropriate to
compare GRg values across populations with a different PMAX . However,
the function “ED()” can be used in “drc” to calculate GRg values both for
the germinated fraction and for the whole population. Examples are
given in the Appendix C.

If we consider the GRg values for the whole population (Fig. 2 right),
the relationship between water potential and GRs is no longer linear,
and base water potential varies among subpopulations, being more
negative for the quicker percentiles. We see that this time-to-event
model retains at least part of the biological assumptions made in
Bradford (2002).

3.2. Example 2

Fitting the hydro-thermal-time-to-event model (Eq. (11)) is also
straightforward and only required small changes in the R codes, as
shown with the dataset from H. spontaneum (see Appendix C). The
parameter estimates (cluster-robust standard errors in brackets) are
reported in Table 4.

As shown in Fig. 3, the HTT time-to-event model provided good fits
to cumulative germination data from all temperature by moisture
combinations. Changes in germination capacity (i.e., PMAX ) and rapidity
(i.e., GR) in responses to temperature were also well described by the
sub-models (Fig. 4). Considering the GR s based on the whole popula-
tion, we see thatTc varies among germination percentiles and is warmer
for early germinating seeds (Fig. 4, right).

3.3. Example 3

To construct a thermal-time-to-event model, we simply removed the
parameters related to the effects of water potential from Eq. (11). The
modified model (Eq. (14)) fitted well to the germination data of P.
minor (Example 3), with some deviations observed at 12 °C (Fig. 5),
probably due to the existence of distinct subpopulations in the seed lot.
For this species, some parameters could not be estimated with high
precision (Table 5).

3.4. Example 4: a more complex analysis

For the fourth example, the TTE model, which well fitted to the P.
minor data (Fig. 5), failed to adequately describe the germination pat-
tern in barley (Fig. 6, dashed, blue line). This example, therefore, re-
presents a case where one needs to resort to the ‘empirical’ process of
model building from the scratch. As the first step, we fitted the log-
logistic distribution function to germination time courses of each tem-
perature level separately, to obtain separate estimates of the three main
features of seed germination (PMAX , =GR t1/50 50 and b). The code to
accomplish this is reported in the Appendix C. We then investigated the
shape of responses to temperature for these three germination para-
meters. For example, plotting the estimated GR50 values against tem-
perature showed a slow rise with temperature up until 30 °C, followed
by a quick drop afterwards, down to 0 at 40 °C (Fig. 7).

In order to account for this behavior, we used a model derived from
Rowse and Finch-Savage (2003). In this model, the negative effect of
temperature on GR takes place only at = >T T Td b, where Td is a tem-
perature threshold close to, but not equal to the optimal temperature,
To:
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In contrast to Eq. 12, this model predicts a curvilinear and asym-
metric trend for the response of GR to temperature. Accordingly, the
new TTE model is:

Fig. 2. Effect of water potential on the germination of rapeseed (Brassica napus L. var. Excelsior; Example 1). Symbols denote the observed data and lines show the
HTE model fit (Eq. (8); model parameters are reported in Table 3). Left: maximum germinated proportion (PMAX ); Right: germination rate (GR) for the 20th, 50th and
80th percentiles for the whole population.

Table 4
Parameter estimates and standard errors for the HTTE model (Eq. (11)), fitted
to the H. spontaneum data.

Parameter Estimate SE

G 0.99 0.012
Ψb −2.91 0.035
k 0.07 0.001
Tb −0.75 0.353
σΨb 0.55 0.029

ΘHT 1309.06 40.638
b 4.17 0.113
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The above model is defined for temperature levels between Tb and
Tc, while it is 0 for temperatures ≤T Tb or ≥T Tc. Using above equation
(Eq. (19)) with its modified sub-model for GR, we achieved a sensibly
improved fit (Fig. 6, solid, red line) compared with Eq. (14) (Fig. 6,
dashed, blue line), as evidenced by a decrease in the AIC value (6,479
vs 5,731). The final parameter estimates are reported in Table 6.

Although we could achieve further improvement in fit by imposing
a linear decrease in b1/ with temperature (see the black line in Fig. 6),
the additional parameter and increased complexity may not be war-
ranted from exploration of a single dataset. We therefore used the more
parsimonious model, with a constant parameter b, as this model also
gave a good description of the temperature-dependent variations in
PMAX and GR50 (Fig. 7).

4. Discussion and conclusions

Several excellent population-based threshold models exist to assess
the effect of temperature, moisture content and other environmental
variables on seed germination. These models incorporate physiologi-
cally relevant threshold parameters that are fundamental for under-
standing the responses of plants to their environments. In this paper, we
used four such models, i.e., the HT model by Bradford (2002), the HTT
model by Mesgaran et al. (2017) and two TT models, derived by
Mesgaran et al. (2017) and Rowse and Finch-Savage (2003), respec-
tively. These models are based on the GR for a certain population
fraction as the response variable and, therefore, they do not im-
mediately comply with the results of germination assays, which are
based on the counts of germinated seeds over time. For this reason,
fitting these models has usually been performed either: (i) by a two-
steps fitting procedure (first-step: use the counts to derive GRg values;
second-step: fit the threshold model), or (ii) by re-formulating threshold
models as nonlinear regression models, based on the time-course of the

Fig. 3. Effect of water potential and temperature on the time-course of germinations in Hordeum spontaneum [C. Koch] Thell. (Example 2). Symbols denote the
observed data and lines show the HTTE model fits (Eq. (11); model parameters are reported in Table 4), with vertical bars representing the 95% confidence limits.
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proportion/percentage of germinated seeds.
We showed, by way of several examples, that there is a third pos-

sible option, that has been, so far, largely neglected. In detail, we
showed how the HT, HTT, and TT models can be formulated into a
time-to-event framework. We also showed a general method to ac-
complish this task and defined a general hydrothermal-time-to-event
model.

To make our modeling approach readily available, we implemented

these models within the “drc” package in the R environment. We chose
the R environment and the “drc” package because they are free and the
function “drm()” can be used for various parametric time-to-event
model and, moreover, it can easily account for the final fraction of
ungerminated seeds, which is not possible in other time-to-event fra-
meworks and packages, such as the “survival” package (Therneau,
2012). Besides R, the time-to-event models described in this paper can
also be fitted by using the NLMIXED procedure of SAS, although this

Fig. 4. Effect of temperature on the germination characteristics of Hordeum spontaneum [C. Koch] Thell. (Example 2). Symbols denote the observed data and lines
show the HTTE model fit (Eq. (11); model parameters are reported in Table 4). Left: maximum germinated proportion (PMAX ); Right: germination rate (GR) for the
20th, 50th and 80th percentiles for the whole population. The example data shown above are from seeds tested atΨ =−0.6 where the differences between germination
percentiles were more visible than with other water potentials.

Fig. 5. Effect of temperature on the time-course of germinations in Phalaris minor (Example 3). Symbols denote the observed data and lines show the TTE model fits
(Eq. (14); parameter estimates are reported in Table 5), with vertical bars representing 95% confidence limits.
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requires some manual work.
Time-to-event models may have several advantages over other

modeling approaches, but, at present, they remain underutilized in seed
biology studies. Compared with the two-steps fitting, time-to-event
models can better represent the germination performance of the seed
population, as they make use of the whole dataset to describe the time-
course of germination and to estimate model parameters. On the con-
trary, with the two-steps fitting approach much information in the first

step will not be propagated to the second, as we need to work only with
one subpopulation at a time (e.g., GR50, GR30 or GR10). Of course, we do
not intend to totally rule out the two-steps approach: very recently
Jensen et al. (2017) proposed a meta-analytic model for seed germi-
nation assays, where the information available in the first step can be
re-used in the second one. This approach may be useful when dealing
with complex experimental designs, although further work is needed to
test whether this is also applicable to the parameterisation of HT, TT,
and HTT models.

Time-to-event models can be used to predict the time course of
germination. In this respect, they are very similar to nonlinear regres-
sion models, such as Eq. (2), or similar equations (e.g., Mesgaran et al.,
2013, 2017, and Rowse and Finch-Savage, 2003). However, there are
several important conceptual differences between these two modeling
platforms. For example, Eq. (2) and other similar nonlinear regression
models are fitted to the cumulative proportions of germinated seeds,
while time-to-event models are parameterised by using the observed
counts. We have seen that this is an advantage of time-to-event models,
because the fitting method fully respects the actual manner in which
data are acquired from germination assays and produces reliable

Table 5
Parameter estimates and standard errors for the TTE model (Eq. (14)), fitted to
the P. minor data.

Parameter Estimate SE

G 1.00 0.081
Tc 48.80 3.933
σTc 33.37 5.557
Tb 3.35 0.525
ΘT 1655.56 128.040
b 3.16 0.081

Fig. 6. Effect of temperature on the time-course of germinations in barley (Example 4). Symbols denote the observed data; the solid, red lines show the TTE model fits
(Eq. 19; Rowse and Finch-Savage, 2003; parameter estimates are reported in Table 6). The dotted, blue lines show the fit from a simpler TTE model (Eq. (12);
Mesgaran et al., 2017), while the black, dashed lines represent the improvement in fit when the germination uniformity parameter (i.e., b) was allowed to vary as a
function of temperature (model parameters for these latter two models are not shown) (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article).
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estimates of parameters and standard errors. This is not necessarily true
for nonlinear regression models and proposed improvements, such as
the “deacumulation” of counts (Mesgaran et al., 2013) or the use of
resampling methods (i.e., the jackknife or bootstrap; Onofri et al.,
2014), are not immediately available in statistical packages and may
require some tedious coding, which is beyond the interests of most
biologists. In our opinion, this is a strong argument in favour of time-to-
event models: reliable standard errors are a fundamental requirement
of inference and hypothesis testing, which are the basis of scientific
progress.

Another important aspect of the Eq. 2 is that it considers the per-
centiles in relation to the whole seed population, including the un-
germinated fraction. Therefore, germination velocity and capacity are
modelled altogether, based on the distribution of base water potential
within the population. The advantage of such an approach is that the
resultant model becomes very parsimonious, although it may be “rigid”
in some instances. On the contrary, time-to-event models decouple the
germinated and the ungerminated fractions and, accordingly, two dif-
ferent sub-models are used for characterisation of germination velocity
and capacity. This is usually a less parsimonious approach, but it may
be more flexible or more realistic. Furthermore, the two sub-models are
not totally independent, as they are partly based on the same para-
meters.

Flexibility can be a crucial aspect for further development and us-
ability of HTT models, as no single equation has so far proven able to
describe the germination pattern of all plant species. Models that make
fewer a priori assumptions about the shape of response might therefore
be preferred (Hardegree and Winstral, 2006), as they can provide more
flexibility as well as better prediction power. In this vein, some authors
have recently attempted a totally non-parametric approach to seed

germination modeling (Gonzalez-Andujar et al., 2016). Although flex-
ible, the non-parametric methods resemble a black box with little bio-
logical underpinnings and are prone to overfitting. Building parametric
models with high flexibility is therefore needed to both improve the
model predictive power and gain a better understanding of the biology
of seed germination. Reformulating HTT, TT, or HT models into their
time-to-event equivalents is a stride to address the above need: we can
represent virtually every type of relationships between germination and
temperature or water potential by simply changing the shape of the
cumulative distribution of germination times and the sub-models for
GR50, PMAX and b, while maintaining the same biological interpretation
of germination parameters.

Despite their vast usefulness to accommodate almost all types of
data analysis in seed germination/emergence studies, time-to-event
models have largely been overlooked, perhaps because, in their formal
format, they are rather statistical than biological models. In this study,
by incorporating threshold models into a time-to-event platform, we
attempted to overcome this apparent gap in modeling approaches and
devised germination models that are both statistically robust and bio-
logically comprehensible. Future work based on a comprehensive meta-
analysis should say whether the biological assumptions behind time-to-
event models are realistic and can address a wide range of germination
patterns. In this respect, in our “drcSeedGerm” package, we have also
implemented most GR-based threshold models (e.g. Eq. (1) and other
similar equations) and re-parameterised nonlinear regression models
(e.g. Eq. (2) and other similar equations). We are confident that our R
codes should enable biologists, including those who are less skilled in
statistics, to use and experiment with these time-to-event methods and
compare them with other more traditional germination models.
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