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Abstract A measurement is presented of the triple-
differential dijet cross section at a centre-of-mass energy
of 8 TeV using 19.7 fb−1 of data collected with the CMS
detector in proton-proton collisions at the LHC. The cross
section is measured as a function of the average trans-
verse momentum, half the rapidity separation, and the boost
of the two leading jets in the event. The cross section
is corrected for detector effects and compared to calcu-
lations in perturbative quantum chromodynamics at next-
to-leading order accuracy, complemented with electroweak
and nonperturbative corrections. New constraints on parton
distribution functions are obtained and the inferred value
of the strong coupling constant is αS(MZ) = 0.1199 ±
0.0015 (exp) +0.0031

−0.0020 (theo), where MZ is the mass of the Z
boson.

1 Introduction

The pairwise production of hadronic jets is one of the
fundamental processes studied at hadron colliders. Dijet
events with large transverse momenta can be described by
parton-parton scattering in the context of quantum chro-
modynamics (QCD). Measurements of dijet cross sec-
tions can be used to thoroughly test predictions of per-
turbative QCD (pQCD) at high energies and to constrain
parton distribution functions (PDFs). Previous measure-
ments of dijet cross sections in proton-(anti)proton col-
lisions have been performed as a function of dijet mass
at the Spp̄S, ISR, and Tevatron colliders [1–6]. At the
CERN LHC, dijet measurements as a function of dijet
mass are reported in Refs. [7–11]. Also, dijet events have
been studied triple-differentially in transverse energy and
pseudorapidities η1 and η2 of the two leading jets [12,
13].

� e-mail: cms-publication-committee-chair@cern.ch

In this paper, a measurement of the triple-differential dijet
cross section is presented as a function of the average trans-
verse momentum pT,avg = (pT,1+pT,2)/2 of the two leading
jets, half of their rapidity separation y∗ = |y1 − y2|/2, and
the boost of the dijet system yb = |y1+ y2|/2. The dijet event
topologies are illustrated in Fig. 1.

The relation between the dijet rapidities and the parton
momentum fractions x1,2 of the incoming protons at lead-
ing order (LO) is given by x1,2 = pT√

s
(e±y1 + e±y2), where

pT = pT,1 = pT,2. For large values of yb, the momentum
fractions carried by the incoming partons must correspond
to one large and one small value, while for small yb the
momentum fractions must be approximately equal. In addi-
tion, for high transverse momenta of the jets, x values are
probed above 0.1, where the proton PDFs are less precisely
known.

The decomposition of the dijet cross section into the
contributing partonic subprocesses is shown in Fig. 2 at
next-to-leading order (NLO) accuracy, obtained using the
NLOJet++ program version 4.1.3 [14,15]. At small yb and
large pT,avg a significant portion of the cross section corre-
sponds to quark-quark (and small amounts of antiquark-anti-
quark) scattering with varying shares of equal- or unequal-
type quarks. In contrast, for large yb more than 80% of the
cross section corresponds to partonic subprocesses with at
least one gluon participating in the interaction. As a con-
sequence, new information about the PDFs can be derived
from the measurement of the triple-differential dijet cross
section.

The data were collected with the CMS detector at√
s = 8 TeV and correspond to an integrated luminosity

of 19.7 fb−1. The measured cross section is corrected for
detector effects and is compared to NLO calculations in
pQCD, complemented with electroweak (EW) and nonper-
turbative (NP) corrections. Furthermore, constraints on the
PDFs are studied and the strong coupling constant αS(MZ) is
inferred.
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Fig. 1 Illustration of the dijet event topologies in the y∗ and yb kine-
matic plane. The dijet system can be classified as a same-side or
opposite-side jet event according to the boost yb of the two leading
jets, thereby providing insight into the parton kinematics

2 The CMS detector

The central feature of the CMS apparatus is a supercon-
ducting solenoid of 6 m internal diameter, providing a mag-
netic field of 3.8 T. Within the solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromag-
netic calorimeter (ECAL), and a brass and scintillator hadron
calorimeter (HCAL), each composed of a barrel and two
endcap sections. The silicon tracker measures charged par-
ticles within the pseudorapidity range |η| < 2.5. It consists
of 1440 silicon pixel and 15 148 silicon strip detector mod-
ules. The ECAL consists of 75 848 lead tungstate crystals,
which provide coverage in pseudorapidity |η| < 1.48 in a
barrel region and 1.48 < |η| < 3.0 in two endcap regions.
In the region |η| < 1.74, the HCAL cells have widths of
0.087 in pseudorapidity and 0.087 in azimuth (φ). In the
η-φ plane, and for |η| < 1.48, the HCAL cells map on to
5 × 5 arrays of ECAL crystals to form calorimeter tow-
ers projecting radially outwards from close to the nominal
interaction point. For |η| > 1.74, the coverage of the tow-
ers increases progressively to a maximum of 0.174 in Δη

and Δφ. Within each tower, the energy deposits in ECAL
and HCAL cells are summed to define the calorimeter tower
energies, subsequently used to provide the energies and direc-
tions of hadronic jets. The forward hadron (HF) calorimeter
extends the pseudorapidity coverage provided by the bar-
rel and endcap detectors and uses steel as an absorber and
quartz fibers as the sensitive material. The two halves of the

HF are located 11.2 m from the interaction region, one on
each end, and together they provide coverage in the range
3.0 < |η| < 5.2. Muons are measured in gas-ionisation
detectors embedded in the steel flux-return yoke outside the
solenoid.

A more detailed description of the CMS detector, together
with a definition of the coordinate system used and the rele-
vant kinematic variables, can be found in Ref. [16].

3 Event reconstruction and selection

Dijet events are collected using five single-jet high-level trig-
gers [17,18], which require at least one jet with pT larger
than 80, 140, 200, 260, and 320 GeV, respectively. At trig-
ger level the jets are reconstructed with a simplified version
of the particle-flow (PF) event reconstruction described in
the following paragraph. All but the highest threshold trig-
ger were prescaled in the 2012 LHC run. The triggers are
employed in mutually exclusive regions of the pT,avg spec-
trum, cf. Table 1, in which their efficiency exceeds 99%.

The PF event algorithm reconstructs and identifies parti-
cle candidates with an optimised combination of information
from the various elements of the CMS detector [19]. The
energy of photons is directly obtained from the ECAL mea-
surement, corrected for zero-suppression effects. The energy
of electrons is determined from a combination of the electron
momentum at the primary interaction vertex as determined
by the tracker, the energy of the corresponding ECAL clus-
ter, and the energy sum of all bremsstrahlung photons spa-
tially compatible with originating from the electron track.
The energy of muons is obtained from the curvature of the
corresponding track. The energy of charged hadrons is deter-
mined from a combination of their momentum measured
in the tracker and the matching ECAL and HCAL energy
deposits, corrected for zero-suppression effects and for the
response function of the calorimeters to hadronic showers.
Finally, the energy of neutral hadrons is obtained from the
corresponding corrected ECAL and HCAL energies. The
leading primary vertex (PV) is chosen as the one with the
highest sum of squares of all associated track transverse
momenta. The remaining vertices are classified as pileup ver-
tices, which result from additional proton-proton collisions.
To reduce the background caused by such additional colli-
sions, charged hadrons within the coverage of the tracker,
|η| < 2.5 [20], that unambiguously originate from a pileup
vertex are removed.

Hadronic jets are clustered from the reconstructed par-
ticles with the infrared- and collinear-safe anti-kT algo-
rithm [21] with a jet size parameter R of 0.7, which is the
default for CMS jet measurements. The jet momentum is
determined as the vectorial sum of all particle momenta in
the jet, and is found in the simulation to be within 5–10%
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Fig. 2 Relative contributions of all subprocesses to the total cross sec-
tion at NLO as a function of pT,avg in the various y∗ and yb bins. The
subprocess contributions are grouped into seven categories according to

the type of the incoming partons. The calculations have been performed
with NLOJet++. The notation implies the sum over initial-state parton
flavors as well as interchanged quarks and antiquarks

of the true momentum over the whole pT range. Jet energy
corrections (JEC) are derived from the simulation, and are
confirmed with in situ measurements of the energy balance
of dijet, photon+jet, and Z boson+jet events [22,23]. After
applying the usual jet energy corrections, a small bias in the
reconstructed pseudorapidity of the jets is observed at the
edge of the tracker. An additional correction removes this
effect.

All events are required to have at least one PV that must
be reconstructed from four or more tracks. The longitudinal
and transverse distances of the PV to the nominal interaction
point of CMS must satisfy |zPV| < 24 cm and ρPV < 2 cm,
respectively. Nonphysical jets are removed by loose jet iden-
tification criteria: each jet must contain at least two PF can-
didates, one of which is a charged hadron, and the jet energy
fraction carried by neutral hadrons and photons must be less
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Table 1 List of single-jet trigger thresholds used in the analysis

Trigger threshold [GeV] pT,avg range [GeV]

80 123–192

140 192–263

200 263–353

260 353–412

320 >412

than 99%. These criteria remove less than 1% of genuine
jets.

Only events with at least two jets up to an absolute rapidity
of |y| = 5.0 are selected and the two jets leading in pT are
required to have transverse momenta greater than 50 GeV
and |y| < 3.0. The missing transverse momentum is defined
as the negative vector sum of the transverse momenta of all
PF candidates in the event. Its magnitude is referred to as
pmiss

T . For consistency with previous jet measurements by
CMS, pmiss

T is required to be smaller than 30% of the scalar
sum of the transverse momenta of all PF candidates. For dijet
events, which exhibit very little pT imbalance, the impact is
practically negligible.

4 Measurement of the triple-differential dijet cross
section

The triple-differential cross section for dijet production is
defined as

d3σ

dpT,avgdy∗dyb
= 1

εLeff
int

N

ΔpT,avgΔy∗Δyb
,

where N denotes the number of dijet events within a given
bin,Leff

int the effective integrated luminosity, and ε the product
of trigger and event selection efficiencies, which are greater
than 99% in the phase space of the measurement. Contribu-
tions from background processes, such as tt production, are
several orders of magnitude smaller and are neglected. The
bin widths are ΔpT,avg, Δy∗, and Δyb.

The cross section is unfolded to the stable-particle level
(lifetime cτ > 1 cm) to correct for detector resolution effects.
The iterative D’Agostini algorithm with early stopping [24–
26], as implemented in the RooUnfold package [27], is
employed for the unfolding. The response matrix, which
relates the particle-level distribution to the measured distri-
bution at detector level, is derived using a forward smearing
technique. An NLOJet++ prediction, obtained with CT14
PDFs [28] and corrected for NP and EW effects, is approxi-
mated by a continuous function to represent the distribution
at particle level. Subsequently, pseudoevents are distributed
uniformly in pT,avg and weighted according to the theoreti-

cal prediction. These weighted events are smeared using the
jet pT resolution to yield a response matrix and a predic-
tion at detector level. By using large numbers of such pseu-
doevents, statistical fluctuations in the response matrix are
strongly suppressed.

The jet energy (or pT) resolution (JER) is determined
from the CMS detector simulation based on the Geant4
toolkit [29] and the pythia 6.4 Monte Carlo (MC) event gen-
erator [30] and is corrected for residual differences between
data and simulation following Ref. [23]. The rapidity depen-
dence of both the JER from simulation and of the residual
differences have been taken into account. The Gaussian pT

resolution in the interval |y| < 1 is about 8% at 100 GeV
and improves to 5% at 1 TeV. Non-Gaussian tails in the JER,
exhibited for jet rapidities close to |y| = 3, are included in a
corresponding uncertainty.

The regularisation strength of the iterative unfolding pro-
cedure is defined through the number of iterations, whose
optimal value is determined by performing a χ2 test between
the original measured data and the unfolded data after smear-
ing with the response matrix. The values obtained for χ2

per number of degrees of freedom, ndof , in these compar-
isons approach unity in four iterations and thereafter decrease
slowly for additional iterations. The optimal number of iter-
ations is therefore determined to be four. The procedure is in
agreement with the criteria of Ref. [31]. The response matri-
ces derived in this manner for each bin in y∗ and yb are nearly
diagonal. A cross check using the pythia 6 MC event gen-
erator as theory and the detector simulation to construct the
response matrices revealed no discrepancies compared to the
baseline result.

Migrations into and out of the accepted phase space in y∗
and yb or between bins happen only at a level below 5%.
The net effect of these migrations has been included in the
respective response matrices and has been cross checked suc-
cessfully using a 3-dimensional unfolding.

As a consequence of these migrations, small statistical
correlations between neighbouring bins of the unfolded cross
sections are introduced during the unfolding procedure. The
statistical uncertainties after being propagated through the
unfolding are smaller than 1% in the majority of the phase
space, and amount up to 20% for highest pT,avg.

The dominant systematic uncertainties in the cross section
measurement arise from uncertainties in the JEC. Summing
up quadratically all JEC uncertainties according to the pre-
scription given in Ref. [23], the total JEC uncertainty amounts
to about 2.5% in the central region and increases to 12% in
the forward regions. The 2.6% uncertainty in the integrated
luminosity [32] is directly propagated to the cross section.
The uncertainty in the JER enters the measurement through
the unfolding procedure and results in an additional uncer-
tainty of 1–2% of the unfolded cross section. Non-Gaussian
tails in the detector response to jets near |y| = 3.0, the
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Fig. 3 Overview of all experimental uncertainties affecting the cross
section measurement in six bins of yb and y∗. The error bars indicate
the statistical uncertainty after unfolding. The different lines show the
uncertainties resulting from jet energy corrections, jet energy resolu-

tion, integrated luminosity, non-Gaussian tails in the resolution, and
from residual effects included in the uncorrelated uncertainty. The total
uncertainty is obtained by adding all uncertainties in quadrature

maximal absolute rapidity considered in this measurement,
are responsible for an additional uncertainty of up to 2%.
Residual effects of small inefficiencies in the jet identifi-
cation and trigger selection are covered by an uncorrelated
uncertainty of 1% [11]. The total systematic experimental
uncertainty ranges from about 3–8% in the central detector
region and up to 12% for absolute rapidities near the selection
limit of 3.0. Figure 3 depicts all experimental uncertainties
as well as the total uncertainty, which is calculated as the
quadratic sum of all the contributions from the individual
sources.

5 Theoretical predictions

The NLO predictions for the triple-differential dijet cross
section are calculated using NLOJet++ within the frame-
work of fastNLO version 2.1 [33,34]. The renormalisa-
tion and factorisation scales μr and μf are both set to
μ = μ0 = pT,max · e0.3y∗

, a scale choice first investigated in
Ref. [35]. The variation of these scales by constant factors as
described below is conventionally used to estimate the effect
of missing higher orders. The scale uncertainty is reduced
in regions with large values of yb with the above-mentioned
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Fig. 4 Overview of the theoretical correction factors. For each of the
six analysis bins the NLO QCD (top left), the electroweak (top right),
and the NP correction factor (bottom) are shown as a function of pT,avg.

The NLO QCD correction has been derived with the same NLO PDF
in numerator and denominator and is included in the NLO prediction
by NLOJet++

choice for μ0 compared to a prediction with μ0 = pT,avg.
The predictions for cross sections obtained with different
central scale choices are compatible within the scale uncer-
tainties. The calculation is performed using the PDF sets
CT14, ABM11 [36], MMHT2014 [37], and NNPDF 3.0 [38]
at next-to-leading evolution order which are accessed via the
LHAPDF 6.1.6 interface [39,40] using the respective val-
ues of αS(MZ) and the supplied αS evolution. The size of the
NLO correction is shown in Fig. 4 top left and varies between
+10% and +30% at high pT,avg and low yb.

The fixed-order calculations are accompanied by NP cor-
rections, cNP

k , derived from the LO MC event generators
pythia 8.185 [41] and herwig++ 2.7.0 [42] with the tunes
CUETP8M1 [43] and UE-EE-5C [44], respectively, and the
NLO MC generator powheg [45–48] in combination with
pythia 8 and the tunes CUETP8M1 and CUETP8S1 [43].

The correction factor cNP
k is defined as the ratio between

the nominal cross section with and without multiple parton

interactions (MPI) and hadronisation (HAD) effects

cNP
k = σ PS+HAD+MPI

k

σ PS
k

,

where the superscript indicates the steps in the simulation:
the parton shower (PS), the MPI, and the hadronisation. The
corresponding correction factor, as displayed in Fig. 4 bot-
tom, is applied in each bin k to the parton-level NLO cross
section. It differs from unity by about +10% for lowest pT,avg

and becomes negligible above 1 TeV.
To account for differences among the correction

factors obtained by using herwig++, pythia 8, and
powheg+pythia 8, half of the envelope of all these predic-
tions is taken as the uncertainty and the centre of the envelope
is used as the central correction factor.

The contribution from EW effects, which arise mainly
from virtual exchanges of massive W and Z bosons, is rel-
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Fig. 5 Overview of the theoretical uncertainties. The scale uncertainty dominates in the low-pT,avg region. At high pT,avg, and especially in the
boosted region, the PDFs become the dominant source of uncertainty

evant at high jet pT and central rapidities [49,50]. These
corrections, shown in Fig. 4 top right, are smaller than 3%
below 1 TeV and reach 8% for the highest pT,avg. Theoreti-
cal uncertainties in this correction due to its renormalisation
scheme and indirect PDF dependence are considered to be
negligible.

The total theoretical uncertainty is obtained as the
quadratic sum of NP, scale, and PDF uncertainties. The
scale uncertainties are calculated by varying μr and μf

using multiplicative factors in the following six combi-
nations: (μr/μ0, μf/μ0) = (1/2, 1/2), (1/2, 1), (1, 1/2),
(1, 2), (2, 1), and (2, 2). The uncertainty is determined as
the maximal upwards and downwards variation with respect
to the cross section obtained with the nominal scale set-
ting [51,52]. The PDF uncertainties are evaluated according

to the NNPDF 3.0 prescription as the standard deviation from
the average prediction. Figure 5 shows the relative size of the
theoretical uncertainties for the phase-space regions studied.
The scale uncertainty dominates in the low-pT,avg region. At
high pT,avg, and especially in the boosted region, the PDFs
become the dominant source of uncertainty. In total, the the-
oretical uncertainty increases from about 2% at low pT,avg to
at least 10% and up to more than 30% for the highest accessed
transverse momenta and rapidities.

6 Results

The triple-differential dijet cross section is presented in Fig. 6
as a function of pT,avg for six phase-space regions in y∗ and
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Fig. 6 The triple-differential dijet cross section in six bins of y∗ and yb.
The data are indicated by different markers for each bin. The theoretical
predictions, obtained with NLOJet++ and NNPDF 3.0, and comple-
mented with EW and NP corrections, are depicted by solid lines. Apart
from the boosted region, the data are well described by the predictions
at NLO accuracy over many orders of magnitude

yb. The theoretical predictions are found to be compatible
with the unfolded cross section over a wide range of the
investigated phase space.

The ratios of the measured cross section to the theoreti-
cal predictions from various global PDF sets are shown in
Fig. 7. The data are well described by the predictions using
the CT14, MMHT 2014, and NNPDF 3.0 PDF sets in most
of the analysed phase space. In the boosted regions (yb ≥ 1)
differences between data and predictions are observed at high
pT,avg, where the less known high-x region of the PDFs is
probed. In this boosted dijet topology, the predictions exhibit
large PDF uncertainties, as can be seen in Fig. 5. The signifi-
cantly smaller uncertainties of the data in that region indicate
their potential to constrain the PDFs.

Predictions using the ABM 11 PDFs systematically under-
estimate the data for yb < 2.0. This behavior has been
observed previously [53] and can be traced back to a soft
gluon PDF accompanied with a low value of αS(MZ).

Figure 8 presents the ratios of the data to the predictions
of the powheg+pythia 8 and herwig 7.0.3 [54] NLO MC
event generators. Significant differences between the predic-
tions from both MC event generators are observed. How-
ever, the scale definitions and the PDF sets are different. For
powheg and herwig 7 the CT10 and MMHT 2014 PDF sets
are used, respectively. In general, herwig 7 describes the
data better in the central region whereas powheg prevails in
the boosted region.

7 PDF constraints and determination of the strong
coupling constant

The constraints of the triple-differential dijet measurement
on the proton PDFs are demonstrated by including the cross
section in a PDF fit with inclusive measurements of deep-
inelastic scattering (DIS) from the H1 and ZEUS experiments
at the HERA collider [55]. The fit is performed with the open-
source fitting framework xFitter version 1.2.2 [56]. The
PDF evolution is based on the Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi (DGLAP) evolution equations [57–59] as
implemented in the QCDNUM 17.01.12 package [60]. To
ensure consistency between the HERA DIS and the dijet
cross section calculations, the fits are performed at NLO.

The analysis is based on similar studies of inclusive jet
data at 7 TeV [53] and 8 TeV [61] and all settings were cho-
sen in accordance to the inclusive jet study at 8 TeV [61].
The parameterisation of the PDFs is defined at the starting
scale Q2

0 = 1.9 GeV2. The five independent PDFs xuv(x),
xdv(x), xg(x), xU (x), and xD(x) represent the u and d
valence quarks, the gluon, and the up- and down-type sea
quarks and are parameterised as follows:

xg(x) = Agx
Bg (1 − x)Cg − A′

gx
B′
g (1 − x)C

′
g , (1)

xuv(x) = Auv x
Buv (1 − x)Cuv (1 + Duv x + Euv x

2) , (2)

xdv(x) = Adv x
Bdv (1 − x)Cdv (1 + Ddv x) , (3)

xU (x) = AU x
BU (1 − x)CU (1 + DU x) , (4)

xD(x) = ADx
BD (1 − x)CD , (5)

where xU (x) = xu(x), and xD(x) = xd(x) + xs(x).
In these equations, the normalisation parameters Ag , Auv ,

and Adv are fixed using QCD sum rules. The constraints
BU = BD and AU = AD(1 − fs) are imposed to ensure
the same normalisation for the U and D PDF for the x → 0
region. The strange quark PDF is defined to be a fixed frac-
tion fs = 0.31 of xD(x). The generalised-mass variable-
flavour number scheme as described in [62,63] is used and
the strong coupling constant is set to αS(MZ) = 0.1180.
The set of parameters in Eqs. (1)–(5) is chosen by first per-
forming a fit where all D and E parameters are set to zero.
Further parameters are included into this set one at a time.
The improvement of χ2 of the fit is monitored and the pro-
cedure is stopped when no further improvement is observed.
This leads to a 16-parameter fit. Due to differences in the sen-
sitivity of the various PDFs to dijet and inclusive jet data, the
parameterisation of the present analysis differs from that in
Ref. [61]. In particular, the constraint Bdv = Buv at the start-
ing scale has been released. This results in a d valence quark
distribution consistent with the results obtained in Ref. [61]
and in a similar CMS analysis of muon charge asymmetry in
W boson production at 8 TeV [64].
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Fig. 7 Ratio of the triple-differential dijet cross section to the NLO-
Jet++ prediction using the NNPDF 3.0 set. The data points including
statistical uncertainties are indicated by markers, the systematic exper-
imental uncertainty is represented by the hatched band. The solid band

shows the PDF, scale, and NP uncertainties quadratically added; the
solid and dashed lines give the ratios calculated with the predictions for
different PDF sets

The PDF uncertainties are determined using the HERA-
PDF method [55,56] with uncertainties subdivided into the
three categories of experimental, model, and parameterisa-
tion uncertainty, which are evaluated separately and added in
quadrature to obtain the total PDF uncertainty.

Experimental uncertainties originate from statistical and
systematic uncertainties in the data and are propagated to the
PDFs using the Hessian eigenvector method [65] and a toler-
ance criterion of Δχ2 = +1. Alternatively, the Monte Carlo
method [66] is used to determine the PDF fit uncertainties
and similar results are obtained.

The uncertainties in several input parameters in the PDF
fits are combined into one model uncertainty. For the evalu-
ation of the model uncertainties some variations on the input
parameters are considered. The strangeness fraction is cho-
sen in agreement with Ref. [67] to be fs = 0.31 and is var-
ied between 0.23 and 0.39. Following Ref. [55], the b quark
mass, set to 4.5 GeV, is varied between 4.25 and 4.75 GeV.
Similarly, the c quark mass, set by default to 1.47 GeV, is var-
ied between 1.41 and 1.53 GeV. The minimum Q2 imposed
on the HERA DIS data is set in accordance with the CMS
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Fig. 8 Ratio of the triple-differential dijet cross section to the NLO-
Jet++ prediction using the NNPDF 3.0 set. The data points including
statistical uncertainties are indicated by markers, the systematic exper-
imental uncertainty is represented by the hatched band. The solid band

shows the PDF, scale, and NP uncertainties quadratically added. The
predictions of the NLO MC event generators powheg+pythia 8 and
herwig 7 are depicted by solid and dashed lines, respectively

inclusive jet analysis described in [53] to Q2
min = 7.5 GeV2,

and is varied between Q2
min = 5.0 GeV2 and 10.0 GeV2.

The parameterisation uncertainty is estimated by includ-
ing additional parameters in the fit, leading to a more flexi-
ble functional form of the PDFs. Each parameter is succes-
sively added in the PDF fit, and the envelope of all changes to
the central PDF fit result is taken as parameterisation uncer-
tainty. The increased flexibility of the PDFs while estimating
the parameterisation uncertainty may lead to the seemingly
paradoxical effect that, although new data are included, the
total uncertainty can increase in regions, where direct con-

straints from data are absent. This may happen at very low or
at very high x , where the PDF is determined through extrap-
olation alone. Furthermore, the variation of the starting scale
Q2

0 to 1.6 and 2.2 GeV2 is considered in this parameterisation
uncertainty.

The quality of the resulting PDF fit with and without the
dijet measurement is reported in Table 2. The partial χ2 per
data point for each data set as well as the χ2/ndof for all data
sets demonstrate the compatibility of the CMS dijet measure-
ment and the DIS data from the H1 and ZEUS experiments
in a combined fit.
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Table 2 The partial χ2 (χ2
p ) for

each data set in the HERA DIS
(middle section) or the
combined fit including the CMS
triple-differential dijet data
(right section) are shown. The
bottom two lines show the total
χ2 and χ2/ndof. The difference
between the sum of all χ2

p and

the total χ2 for the combined fit
is attributed to the nuisance
parameters

Data set ndata HERA data HERA & CMS data

χ2
p χ2

p /ndata χ2
p χ2

p /ndata

NC HERA-I+II e+p Ep = 920 GeV 332 382.44 1.15 406.45 1.22

NC HERA-I+II e+p Ep = 820 GeV 63 60.62 0.96 61.01 0.97

NC HERA-I+II e+p Ep = 575 GeV 234 196.40 0.84 197.56 0.84

NC HERA-I+II e+p Ep = 460 GeV 187 204.42 1.09 205.50 1.10

NC HERA-I+II e−p 159 217.27 1.37 219.17 1.38

CC HERA-I+II e+p 39 43.26 1.11 42.29 1.08

CC HERA-I+II e−p 42 49.11 1.17 55.35 1.32

CMS triple-differential dijet 122 – – 111.13 0.91

Data set(s) ndof χ2 χ2/ndof χ2 χ2/ndof

HERA data 1040 1211.00 1.16 – –

HERA and CMS data 1162 – – 1372.52 1.18

Fig. 9 The gluon (top left), sea quark (top right), d valence quark (bot-
tom left), and u valence quark (bottom right) PDFs as a function of x
as derived from HERA inclusive DIS data alone (hatched band) and in

combination with CMS dijet data (solid band). The PDFs are shown at
the scale Q2 = 104 GeV2 with their total uncertainties

The PDFs obtained for the gluon, u valence, d valence,
and sea quarks are presented for a fit with and without the
CMS dijet data in Fig. 9 for Q2 = 104 GeV2. The uncertainty
in the gluon PDF is reduced over a large range in x with the
largest impact in the high-x region, where some reduction
in uncertainty can also be observed for the valence quark
and the sea quark PDFs. For x values beyond ≈ 0.7 or below
10−3, the extracted PDFs are not directly constrained by data

and should be considered as extrapolations that rely on PDF
parameterisation assumptions alone.

The improvement in the uncertainty of the gluon PDF
is accompanied by a noticeable change in shape, which is
most visible when evolved to low scales as shown in Fig. 10.
Compared to the fit with HERA DIS data alone, the gluon
PDF shrinks at medium x and increases at high x . A similar
effect has been observed before, e.g. in Ref. [53].
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Fig. 10 The gluon PDF as a function of x as derived from HERA
inclusive DIS data alone (hatched band) and in combination with CMS
dijet data (solid band). The PDF and its total uncertainty are shown at
the starting scale Q2 = 1.9 GeV2 of the PDF evolution

The PDFs are compared in Fig. 11 to those obtained with
inclusive jet data at

√
s = 8 TeV [61]. The shapes of the PDFs

and the uncertainties are similar. Somewhat larger uncertain-
ties in the valence quark distributions are observed in the fit
using the dijet data with respect to those obtained from the
inclusive jet cross section. This behaviour can be explained
by a stronger sensitivity of the dijet data to the light quark

distributions, resulting in an increased flexibility of the PDF
parameterisation, however, at the cost of an increased uncer-
tainty.

The measurement of the triple-differential dijet cross sec-
tion not only provides constraints on the PDFs, but also on the
strong coupling constant. Therefore, the PDF fit is repeated
with an additional free parameter: the strong coupling con-
stant αS(MZ). The value obtained for the strong coupling
constant is

αS(MZ) = 0.1199 ± 0.0015(exp)+0.0002
−0.0002(mod)+0.0002

−0.0004(par),

where the quoted experimental (exp) uncertainty accounts
for all sources of uncertainties in the HERA and CMS data
sets, as well as the NP uncertainties. The model (mod) and
parameterisation (par) uncertainties are evaluated in the same
way as in the PDF determination. The consideration of scale
uncertainties in a global PDF fit is an open issue in the PDF
community because it is unclear how to deal with the cor-
relations in scale settings among the different measurements
and observables. Therefore they are not taken into account
in any global PDF fit up to now, although an elaborate study
of the effect of scale settings on dijet cross sections has been
performed in Ref. [68], which also reports first combined
PDF and αS(MZ) fits using LHC inclusive jet data. Follow-
ing Ref. [53], where the final uncertainties and correlations

Fig. 11 The gluon (top left), sea quark (top right), d valence quark
(bottom left), and u valence quark (bottom right) PDFs as a function
of x as derived from a fit of HERA inclusive DIS data in combination

with CMS inclusive jet data (solid band) and CMS dijet data (hatched
band) at 8 TeV. The PDFs are shown at the scale Q2 = 104 GeV2 with
their total uncertainties
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of CMS inclusive jet data at 7 TeV are used in such combined
fits, two different methods to evaluate the scale uncertainty
of the jet cross section on αS(MZ) are studied. First, the
renormalisation and factorisation scales are varied in the cal-
culation of the dijet predictions. The fit is repeated for each
variation. The uncertainty is evaluated as detailed in Sect. 5
and yields ΔαS(MZ) =+0.0026

−0.0016 (scale, refit).
The second procedure is analogous to the method applied

by CMS in previous determinations of αS(MZ) without
simultaneous PDF fits, cf. Refs. [53,61,69,70]. The PDFs are
derived for a series of fixed values of αS(MZ) and the nominal
choice of μr and μf. Using this series, the best fit αS(MZ)

value of the dijet data is determined for each scale varia-
tion. Here, the evaluated uncertainty is ΔαS(MZ) =+0.0031

−0.0019
(scale, αS(MZ)series).

Both results, αS(MZ) = 0.1199+0.0015
−0.0016 (all except scale)

with +0.0026
−0.0016 (scale, refit) and +0.0031

−0.0019 (scale, αS(MZ) series),
are in agreement with Ref. [53], which reports αS(MZ) =
0.1192+0.0023

−0.0019 (all except scale) and +0.0022
−0.0009 (scale, refit)

respectively +0.0024
−0.0039 (scale, αS(MZ) series). Similarly, it is

observed that the second procedure leads to somewhat larger
scale uncertainties, because there is less freedom for com-
pensating effects between different gluon distributions and
the αS(MZ) values. Since this latter uncertainty is the most
consistent to be compared with previous fixed-PDF deter-
minations of αS(MZ), it is quoted as the main result. The
dominant source of uncertainty is of theoretical origin and
arises due to missing higher order corrections, whose effect
is estimated by scale variations.

This value of αS(MZ) is in agreement with the results
from other measurements by CMS [53,61,69–71] and
ATLAS [72], with the value obtained in a similar analy-
sis complementing the DIS data of the HERAPDF2.0 fit
with HERA jet data [55], and with the world average of
αS(MZ) = 0.1181 ± 0.0011 [73]. In contrast to the other
CMS results, this analysis is mainly focused on PDF con-
straints. The running of the strong coupling constant was
tested only indirectly via the renormalisation group equa-
tions. No explicit test of the running was carried out by
subdividing the phase space into regions corresponding to
different values of the renormalisation scale.

8 Summary

A measurement of the triple-differential dijet cross section is
presented for

√
s = 8 TeV. The data are found to be well

described by NLO predictions corrected for nonperturba-
tive and electroweak effects, except for highly boosted event
topologies that suffer from large uncertainties in parton dis-
tribution functions (PDFs).

The precise data constrain the PDFs, especially in the
highly boosted regime that probes the highest fractions x

of the proton momentum carried by a parton. The impact
of the data on the PDFs is demonstrated by performing a
simultaneous fit to cross sections of deep-inelastic scattering
obtained by the HERA experiments and the dijet cross sec-
tion measured in this analysis. When including the dijet data,
an increased gluon PDF at high x is obtained and the over-
all uncertainties of the PDFs, especially those of the gluon
distribution, are significantly reduced. In contrast to a fit that
uses inclusive jet data, this measurement carries more infor-
mation on the valence-quark content of the proton such that
a more flexible parameterisation is needed to describe the
low-x behaviour of the u and d valence quark PDFs. This
higher sensitivity is accompanied by slightly larger uncer-
tainties in the valence quark distributions as a consequence
of the greater flexibility in the parameterisation of the PDFs.

In a simultaneous fit the strong coupling constant αS(MZ)

is extracted together with the PDFs. The value obtained at
the mass of the Z boson is

αS(MZ) = 0.1199 ± 0.0015 (exp)

± 0.0002 (mod) +0.0002
−0.0004 (par) +0.0031

−0.0019 (scale)

= 0.1199 ± 0.0015 (exp) +0.0031
−0.0020 (theo),

and is in agreement with previous measurements at the LHC
by CMS [53,61,69–71] and ATLAS [72], and with the world
average value of αS(MZ) = 0.1181 ± 0.0011 [73]. The dom-
inant uncertainty is theoretical in nature and is expected to be
reduced significantly in the future using pQCD predictions
at next-to-next-to-leading order [74].
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