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Deriving cloud velocity from an array of solar radiation

measurements

J.L. Bosch, Y. Zheng, J. Kleissl∗

Department of Mechanical and Aerospace Engineering

Center for Renewable Resources and Integration

University of California, San Diego

La Jolla, California 92093-0411

Abstract

Spatio-temporal variability of solar radiation is the main cause of fluctuating
photovoltaic power feed-in to the grid. Clouds are the dominant source of
such variability and their velocity is a principal input to most short-term fore-
cast and variability models. Two methods are presented to estimate cloud
speed using radiometric measurements from 8 global horizontal irradiance
sensors at the UC San Diego Solar Energy test bed. The first method as-
signs the wind direction to the direction of the pair of sensors that exhibits
the largest cross-correlation in the irradiance timeseries. This method is con-
sidered the ground truth. The second method requires only a sensor triplet;
cloud speed and the angle of the cloud front are determined from the time
delays in two cloud front arrivals at the sensors. Our analysis showed good
agreement between both methods and nearby METAR and radiosonde ob-
servations. Both methods require high variability in the input radiation as
provided only in partly cloudy skies.

Keywords: solar forecasting, solar radiation, cloud motion detection

1. Introduction

The key barrier against high PV penetration scenario is power output
variability. Clouds cause spatio-temporal variability of solar radiation that is
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the main cause of fluctuating photovoltaic power feed-in to the grid (e.g. Pel-
land et al. (2011)). Cloud velocity is a principal input to most short-term
forecast and variability models (Chow et al. (2011); Hoff and Perez (2010)).
For example, a simple estimate for the maximum possible ramp rate of a
solar power plant is dP/dt = Pcskktv/l, where Pcsk is the clear sky power
output, kt is the cloud clear sky index (related to its optical depth), v is the
cloud velocity, and l is the length of the power plant in the direction of cloud
motion. In words, the ramp magnitude depends on the kt; in addition the
ramp rate is a function of how long it takes for a cloud to cover the plant
(assuming that the cloud is larger than the plant). Short term forecasts of-
ten rely on advection of a frozen cloud field (Chow et al. (2011); Perez et al.
(2010)) using cloud motion vectors (CMVs).

The most common data source to estimate CMVs is satellite imagery
(Hammer et al. (1999); Leese et al. (1971); Lorenz et al. (2004)). An early au-
tomated technique to obtain CMVs was presented by Leese et al. (1971). As-
suming cloud features do not change significantly over a short time interval,
a CMV can be computed by locating a feature in successive images. Hammer
et al. (1999) developed a statistical method based on conditional probabil-
ities to compute CMVs and predict solar radiation up to 2 hours. Lorenz
et al. (2004) used a similar method that minimizes the mean square pixel
differences and forecast solar radiation up to 6 hours. Bedka and Mecikalski
(2005) improved the Velden et al. algorithm to derive CMVs including both
synoptic-scale and mesoscale flows.

Non-linearities in atmospheric motion and cloud formation and evapo-
ration cause Numerical Weather Prediction (NWP) models to outperform
satellite-based CMV forecasts for longer forecast time horizons. Perez et al.
(2010) and Lorenz et al. (2011) found that, based on the root mean square
error (RMSE) metric and point forecasts, on average NWP becomes more ac-
curate than satellite CMVs after 6 hours, which Miller et al. (2011) attributed
to the required spin-up time for NWP. For 1 h forecasts, satellite forecasts
based on CMVs were only as accurate as persistence forecasts, probably due
to satellite navigation and parallax uncertainties (Perez et al. (2010)).

Not only are satellite data complex to acquire and process, but infrequent
data update (every 15 to 30 min) and data transfer delays also may not allow
detection of mesoscale convective clouds in a timely manner. There also can
be a significant difference in the CMV determined from the mesoscale cloud
field by the satellite and the speed of individual clouds (Perez, 2012, personal
communication). Consequently, local ground measurements of cloud speed
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are advantageous for short-term solar variability and solar forecasting.
Different methods have been proposed or used to obtain the cloud speed

from ground point sensors. Baldwin and Collins (2011) proposed a network
of two concentric circles of sensors around a PV power plant for early cloud
detection and cloud speed measurements, but no algorithm to compute cloud
speeds was included. Hammer and Stolzenburg (1993) deployed a sensor
network across a few buildings and analysed the signal cross-correlations to
obtain cloud speed and direction; however, a large number of distributed
sensors were required and cross-correlation results needed to be evaluted
manually (an automated method was not successful). Similarly, Hinkelman
et al. (2011) determined cloud speed by analyzing the lag in the maximum
cross-correlation between sensors aligned with the cloud direction, but the
method also cannot be automated since cloud direction has to be known a
priori.

The main goal in this study is to design a sensor array and automated al-
gorithm to estimate CMV using time delays in cloud arrival times estimated
using ground-based pyranometers. In Section 2 the data are described. Sec-
tion 3 presents two methods for measurements of CMVs. In Section 4 the
results from applying these methods on three days are presented and conclu-
sions are provided in Section 5.

2. Data

Global Horizontal Irradiance (GHI) was measured using 8 photodiode
pyranometers (Li-200SZ, Licor, Inc.) and logged to a single CR1000 (Camp-
bell Scientific Inc.) datalogger with an acquisition frequency of 20 Hz (Ta-
ble 1). The sensors were deployed in a semicircular shape with a radius
r of 6m as shown in Fig. 1, at the UCSD Solar Energy Test Bed (UCSD-
SETB). The sensors were placed onto an exposed rooftop without obstacles
or shading and were cross-calibrated on a clear day using linear regression
fits.

From MCAS Miramar (KNKX) located 10 km south-east we obtained
radiosonde data from the Integrated Global Radiosonde Archive (IGRA)
(Durre et al. (2006)) including profiles of pressure, wind speed and direction,
and relative humidity. Colocated METAR surface weather data was ob-
tained from the National Oceanic and Atmospheric Administration (NOAA)
database (NOAA (2012)). Cloud heights were measured by a ceilometer at
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Figure 1: Pyranometer setup showing cardinal direction angles measured counter-clockwise
about the origin o and circle radius r.

Table 1: Coordinates and measurement frequency for the utilized databases.

Dataset UCSD IGRA METAR
Lat. [o] 32.885 32.867 32.867
Lon. [o] -117.240 -117.150 -117.150
Alt. [m] 131 146 146
Sampling 0.05 s 12 h ∼1 h

Automated Surface Observation Station (ASOS). Table 1 shows the main
characteristics of the different data sets.

3. Methods

Two different methods to determine CMVs were developed based on the
correlation between the GHI timeseries. Following Hinkelman et al. (2011)
and Hammer and Stolzenburg (1993), the basic premise is that the GHI time-
series for a pair of sensors aligned with the CMV will be highly correlated,
but the correlation is largest if the upwind sensor timeseries is lagged by the
travel time of the cloud between the two sensors. Once the lag has been
determined, cloud speed can be calculated from the sensor spacing. Since
cloud direction is variable several pairs of sensors covering many directions
are needed. The direction of cloud motion is then given by the alignment of
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Figure 2: Sample sensor pair with spacing D aligned in the cloud motion direction and
irradiance timeseries IA and IB .

the most correlated pair. An alternative method to calculate CMV is pro-
posed using a reduced set of three sensors. However, in this case the angle
of the cloud shadow edge relative to the array also has to be determined.

3.1. Most Correlated Pair Method (MCP)

The basic premise is that for a pair of sensors Sa and Sb aligned with
the cloud motion, separated by a distance D, the irradiances Ia and Ib are
highly correlated, but with a time lag tab (Fig. 2). Once the lag has been
determined (e.g. by analyzing the signal cross correlation), cloud speed can
be calculated as

v = D/tab (1)

For the experiment, 8 sensors are grouped in 7 pairs, where all pairs share
the central sensor. The cross correlation was performed for all 7 pairs with
a timestep of 5s, and using a time window of 30s (600 data points). The
pair with the largest cross correlation coefficient ρ(tab) is assumed to be the
most aligned with the CMV. Cloud speed is then calculated using the most
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Table 2: Example MCP results for October 20th, 1205PST. Each pair is characterized by
their aligment direction θ. Resulting time lag tAB and speed v for the most correlated
pair are higlighted.

Pair # θ [o] ρ(tAB) tAB [s] v [m s−1]
1 0 0.7140 1.65 3.6
2 30 0.7062 1.70 3.5
3 60 0.7433 1.35 4.4
4 90 0.8123 0.80 7.5
5 120 0.8483 1.05 5.7

6 150 0.8268 0.85 7.1
7 180 0.7629 0.30 20

correlated pair according to Eq. 1. Table 2 shows an example of MCP results
for 7 pairs of sensors.

With the MCP method there is a tradeoff between the resolution at which
the cloud direction can be determined (here for n = 7 pairs, 180/(n − 1) =
30o) and the number of sensors. If more sensors are deployed the cloud direc-
tion becomes more accurate. More accurate cloud direction also translates
into more accurate cloud speed. For our setup, cloud direction errors of up
to 30o/2 = 15o result in cloud speed errors of up to 1−cos 15o = 3.4%, which
is acceptable. However, in general to obtain errors of less than 5% at least 7
sensors are needed.

Since the MCP method is based on a relatively simple and proven concept
it will be used together with the measured METAR and radiosonde data for
validation purposes.

3.2. Linear Cloud Edge Method (LCE)

Note that the method is presented conceptually in terms of the passing
of a cloud edge, since it is more intuitive. However, the implementation
is based on maxima and minima in the irradiance timeseries which will be
described near the end of this section. The simple Eq. 1 cannot be applied for
a (more readily available) triplet of sensors since the cloud edge is generally
not aligned with the axes of the sensor setup. Consequently, the irradiance
ramp observed by the sensors is caused by different parts of the cloud front
and the cloud speed cannot be determined simply from the time delays of
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Figure 3: Schematic of a linear cloud edge passing a sensor triplet. β is the angle between
the cloud edge and the x axis, and α is the angle between the CMV v and the x axis. Ce

and Cn are the cloud edge points that pass over sensors N and E.

the sensors. The main implication is that maximum cross correlation cannot
be applied to this reduced setup. An alternative method is proposed using a
triplet of sensors; CMVs are calculated assuming a linear cloud shadow edge
(LCE) passing through the array. LCE method uses the sensors labeled as
o, E and N in Fig. 1, where the distances oN = oE = D = 6 m (Fig. 3).

We assume (i) a linear cloud edge shape across the sensor array; (ii)
constant CMV while passing over the three sensors; (iii) the cloud is large
enough to cover all three sensors. For closely spaced sensors of O(10 m), (ii)
will always hold. (i) and (iii) are generally satisfied if the sensor spacing
∼ 1–10m is small compared to the cloud dimensions ∼ 102–103m. We define
the time needed for the cloud to move from Cn to N (ton) and from Ce to E
(toe). The cloud motion direction is given by either the lines NCn, CeE or
the motion vector. Equations 2-11 show the steps to calculate the CMV.

Using the cloud speed v

v = [v cos α, v sin α], (2)
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the sensor and cloud edge positions

ro = [0, 0]
rN = [0, D]
rE = [D, 0]
rCe

= [Cex, Cey]
rCn

= [Cnx, Cny],

(3)

and the edge equation at the origin

tanβ = Cey/Cex = Cny/Cnx, (4)

the following basic kinematic equations

rE − rCe
= toev

rCn
− rN = tonv

(5)

can be used to yield the analytic expressions for ton and toe

toe = −
D tan β

v(sin α − cos α tan β)
(6)

ton = −
D

v(− sin α + cos α tanβ)
. (7)

Solving Eqs. 6 and 7 or applying the Law of sines to the triangles oNCn,
and oECe yields

β = arctan
[

−
toe

ton

]

. (8)

Finally, replacing β from Eq. 8 into Eqs. 6-7,

ton sin α + toe cos α = D/v. (9)

Since the time lags ton and toe can be obtained from the measurements, we are
left with two unknowns (α and v), and one equation (Eq. 9). The additional
information needed to solve Eq. 9, can be obtained from a second cloud edge
passing through the sensors, with same v and α, but with a different β. Since
β can take on any value in [0, 180] different ton and toe will result.

Assigning the indeces 1 and 2 for the first and second pass, respectively,
leads to Eq. 10

ton1 sin α + toe1 cos α = D/v
ton2 sin α + toe2 cos α = D/v,

(10)
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that can be reduced to

α = arctan
[

−
toe2 − toe1

ton2 − ton1

]

. (11)

Once α is obtained from Eq. 11, v can be calculated using Eq. 10.
Attempts to determine the time lags from the cross-correlation method

or from the timing of the largest ramps (edge overpass) were unsuccessful.
Rather toe and ton are determined from the timing of local maxima and min-
ima of the measured GHI. The maxima can occur when cloud enhancement
causes an increase in GHI just before of after a cloud shades the sensors, while
minima in GHI occur near the cloud center. More often, localized maxima
and minima occur during the shading event due to variability in intra-cloud
opacity. Time lags between the maxima and minima observed at different
sensor locations yield toe and ton for particular cloud events.

High data acquisition frequency can lead to noisy signals. Local maxima
and minima could then be caused by noise rather than atmospheric effects
leading to errors in both the cloud speed and direction. To avoid this and
other erroneus maxima and minima detection, preprocessing is conducted.
It consists of:

• Moving average: First, data is preprocessed by applying a 5-point (cor-
responding to 0.25 s) moving average. Applying the moving average
had little effect in periods of high irradiation variability, but improved
results for lower irradiation variability. Some noisy variability persisted
after the smoothing, but this will be addressed in the third step.

• Global maxima: Global maxima over a moving window of 15 s are
selected and local maxima are discarded. This step ensures that the
cloud-edge-passing events with the largest variability are selected.

• Broad shoulders: From the remaining maxima, only peaks with “broad
shoulders” are selected, i.e. those whith three monotonous ascending
values before the maxima and three monotonous descending values after
the maxima. This step further reduces noise effects.

• Simultaneous peaks: The earlier steps lead to a set of maxima can-
didates at different times for each sensor, but only near-simultaneous
peaks could have been caused by the same cloud edge. The three
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maxima obtained by the different sensors are considered to be “simul-
tatenous” if the north and east sensor peaks occur less than 3 seconds
before or after the origin sensor peak.

• The three different times for the simultaneous maxima yield the time
lags toe and ton for each event, but two events are needed to obtain
the CMV. If two events were too far separated in time, the assumption
of constant CMVs may be violated. Consequently, two cloud events
are required to occur within 5 min. Generally, a sufficient amount of
maxima or minima should be available from a single cloud passage,
but the extrema may also come from separate cloud events within the
5 min window.

• The same process is repeated for the minima, producing another set of
CMVs which is added to the one obtained from the analyzed maxima.
In general minima detection was found to be less robust, so minima
and maxima were not mixed and CMVs were determined separately
for minima and maxima. For example 461 maxima and 430 minima
passed the broad shoulders test for October 20th, leading to 255 and
229 simultaneos maxima and minima respectively (i.e. 484 CMVs).
The number of calculated CMVs for a given day will depend on the
GHI variability.

3.3. Quality control

Quality control is applied to both the raw MCP and LCE results. Poorly
correlated measurements that occur in overcast and clear periods leads to
random MCP derived directions as those shown in Fig. 5. While in principal
the variability in cloud optical depth in overcast layers should yield MCP
results, the correlation obtained from different pairs are so close that random
correlations in signal noise dominate. Based on empirical evidence, CMVs
are excluded if the maximum cross-correlation coefficient

ρi < 0.775, (12)

where ρi is the maximum correlation coefficient for the most correlated
pair of sensors at instant i.

Raw LCE results were also highly variable and needed to be quality con-
trolled. The reason is that – even after the preprocessing described in Sec-
tion 3.2 – GHI maxima and minima were detected that are not related to
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cloud passages; however, when there are a sufficient number of cloud pas-
sages the LCE method yields consistent results. Unphysical cloud speeds
and speed and direction outliers are excluded as follows:

vi > 50ms−1

|vi − vmean| > 2vσ

|αi − αmean| > 2ασ,
(13)

where vi and αi are the cloud speed and direction calculated at instant i,
vmean and αmean are the average calculated speed and direction; and vσ and
ασ are the standard deviations of the calculated speeds and directions. Mean
and the standard deviations are calculated over the preceeding 30 minutes.

4. Results

From a set of 10 days of ground measurements, 4 days were clear or almost
clear and 3 days were overcast with small GHI variability for most of the day.
For clear and overcast days, cloud speeds are of little value since variability is
small and power output is highly predictable. The methods were tested the
three remaining days with partial cloud cover, October 20th, 21st, and 25th

2011. Review of total sky images indicated that cumulus was the main type
of cloud observed for October 20th and stratocumulus for October 21st, while
overcast skies were observed for most of October 25th. METAR reported
low cloud heights for October 20th and 21st, in the range [274-640] m, and
higher clouds of [1200-1800] m for October 25th. For October 20th clouds were
reported to be broken from 8 to 11PST, scattered/few from 11 to 17 PST and
then overcast for the rest of the day. For October 21st clouds were reported
to be few for most of the day with periods of clear sky and scattered clouds.
For October 25th the sky was reported as overcast for most of the day. Fig. 4
shows the two radiosonde profiles for wind direction α and speed v taken on
October 20th. The only daytime measurement occurs at 1623 PST, which
does not overlap but is only 30 min after the last results for cloud direction
were obtained from the MCP and LCE methods. METAR cloud height h at
the closest time was used to select the cloud altitude in the radiosonde wind
profile. Table 3 shows the measured α and v values at 1623 PST that serve
as a reference in the LCE and MCP model validation.

To illustrate the performance of the MCP method, Fig. 5 shows 20 min
of data on October 21st. During the first 10 min in clear skies MCP out-
puts a random direction α in the range [-180,180]. In this interval both the
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Figure 4: Profiles of radiosonde wind direction and speed on October 20, 2011. The cloud
height reported by METAR at KNKX at 1655 PST is shown as a horizontal line.

maximum cross correlation coefficient and the standard deviation of GHI
are small. After 12.7 h, α becomes consistent at 30oSE. Solar irradiance in
this second interval shows larger variability and maximum cross correlation
coefficient due to cumulus clouds.

Figure 6 shows the results obtained for the study days. For October 20th,
both methods fail to extract usable CMVs during the overcast morning. In
the interval 1300-1600 PST, both methods produce similar directions, also
comparable to the 1623 PST IGRA radiosonde data. Again, for October 21st,
small variability in the measured GHI during overcast or clear sky periods
causes both MCP and LCE results to fail the quality control, and this is also
the reason for the reduced number of points obtained for October 25th. The
cloud direction was different for the three study days; both methods reflect
the intra and inter-day variability and agree with the radiosonde measure-
ment. The α results also agree with cloud directions determined visually
from total sky imagery (movies are provided in the added online content to
this paper).

In addition, a self-consistency test was performed on the LCE method
by using different (rotated) triplets of sensors from the semicircular shape
(i.e. the triplet formed by the origin, 30o and 120o sensors). This indepen-
dent analysis yielded consistent cloud directions (not shown) confirming the
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Table 3: Cloud speed and direction obtained from radiosonde data for the cloud height h

observed by METAR (Fig. 4).

Date Oct 20th Oct 21st Oct 25th

PSTIGRA 1623 1623 1623
PSTMETAR 1655 1655 1655
Cloud Type Scattered Scattered Broken
h [m] 457 610 1463
α [o] 165 5 270
v [m s−1] 3.6 2 4.6

robustness of the LCE method.
While cloud direction serves as a point of comparison of the different

methods, the primary output relevant to solar power variability is cloud
speed. The results confirm those obtained for the cloud direction, with a
similar output from both MCP and LCE methods of about 5 m s−1 on
October 20th and 21st and 5 to 10 m s−1 on the 25th, in agreement with
radiosonde observations. The LCE results are more variable than the MCP
results. The variability could be caused by several factors: (i) Resolution of
the measurements. With cloud speeds of about 5 m s−1 cloud passage takes
about 1.2 sec. Consequently, the measurement resolution of 0.05 sec can
cause errors of up to 4%. (ii) Physical variability in cloud speed due to the
flow over topography causing convergence of streamlines and larger velocity
gradients with height (the site sits on top of a ridge that slopes about 10%
towards the ocean). (iii) Clouds are naturally turbulent and may not travel
exactly with the speed of the ambient atmosphere.

MCP and LCE results are not temporarily aligned. To objectively ana-
lyze the consistency of both methods, 30 min vector averages of speed and
direction were compared on the three study days. Figures 7a and 7b show
the results for direction and speed, respectively. Linear regression between
the LCE α and MCP directions show a regression factor R2 of 0.977 and a
root mean squared error of RMSE=16.5o. The same regression performed for
the speeds resulted in a regression factor R2 of 0.875 and RMSE=0.40ms−1.

From the LCE method, cloud edge angles β were obtained from Eq. 8 as
ancillary products. β is predominantly perpendicular to α (Fig. 8). A similar
relationship between the angles would be obtained if circles moved over the
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Figure 8: Polar histogram for β and α directions for October 20th.

sensors as then the likelihood of β = α would be zero. If β perpendicular to α
could be generally assumed, it would allow simplifying the set of equations 4-
11 requiring just one cloud pass to derive the CMV. However, instantaneous
β − α shows a wide distribution centered around 90o, so our more general
method should be applied.

5. Conclusions

Encouraging CMV results are obtained from an array of ground mea-
surements after quality control is conducted. On three days with variable
cloud directions and speeds, the CMVs were well characterized by both MCP
and LCE methods. Cloud directions from the LCE method were consistent
with the more established MCP approach and visual analysis of sky im-
agery. LCE cloud speeds were similar to MCP speeds and consistent with
radiosonde data. The MCP has the advantage of simplicity, robustness, and
computational speed. The LCE method is superior in reduced installation
and maintenance costs of the sensor array. Both methods require high vari-
ability in the radiation from clear-cloudy or cloudy-clear transitions. Cloud
speed of an overcast cloud layer or the atmospheric velocity in clear skies
cannot be obtained, but there is also little practical relevance at these times.
Just like with the satellite CMV approach, the absolute accuracy of the cloud
speed method is difficult to ascertain due to the lack of high quality reference
measurements.

The MCP is the more robust approach and should be considered the
ground truth. However, the LCE showed similar results and is viable as a
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low-budget approach whenever the installation/maintenance of a large array
of pyranometers is not possible.

Future work will focus on the analysis of different combinations of ac-
quisition frequencies and array sizes, in order to optimize the output from
both methods. Also, although completely clear skies will not produce a CMV
output, the other low variability case corresponding to completely overcast
skies will be further analyzed to improve the methods results in those situ-
ations. Finally techniques that enable the detection of two cloud layers will
be investigated.
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