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Abstract

Spatially  and  temporally  continuous  estimation  of  plant  photosynthetic

carbon  fixation  (or  gross  primary  production,  GPP)  is  crucial  to  our

understanding  of  the  global  carbon  cycle  and  the  impact  of  climate

change.  Besides  spatial,  seasonal  and  interannual  variations,  GPP  also

exhibits  strong  diurnal  variations.  Satellite  retrieved  solar-induced

chlorophyll  fluorescence  (SIF)  provides  a  spatially  continuous,  but

temporally  discrete measurement of  plant  photosynthesis,  and has the
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potential to be used to estimate GPP at global scale. However, it remains

unclear whether the seasonal time series of SIF snapshots taken at a fixed

time of the day can be used to infer daily total GPP variation at spatial and

seasonal scales. In this study, we first used GPP estimates from 135 eddy

covariance flux sites, covering a wide range of geographic locations and

biome types, to investigate the relationship between the instantaneous

GPP (GPPinst) and daily GPP (GPPdaily) on the seasonal course for different

times  of  the  day.  Latitudinal  and  diurnal  patterns  were  found  to

correspond to variations in photosynthetically active radiation (PAR) and

light  use  efficiency  (LUE),  respectively.  We  then  used  the  Soil-Canopy

Observation Photosynthesis and Energy Balance (SCOPE) model and the

FluxCom GPP product to investigate the instantaneous and daily SIF-GPP

relationships at five flux tower sites along a latitudinal gradient and at a

global scale for different biome types. The results showed that daily SIF

had a stronger linear correlation with daily GPP than instantaneous SIF at

the seasonal scale, with an instantaneous to daily SIF conversion factor

following the latitudinal and seasonal pattern driven by PAR. Our study

highlights  the necessity  to  take the latitudinal  and diurnal  factors  into

consideration  for  SIF-GPP  relationship  analyses  or  for  physiological

phenology analyses based on SIF.

Keywords: diurnal variation; photosynthetically active radiation; light use

efficiency; phenology; correction factor; FLUXNET; SCOPE; FluxCom
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1. Introduction

Photosynthetic carbon fixation by plants is the most influential CO2 flux

connecting the atmosphere and the biosphere. Every year, approximately

120  Pg  carbon  is  fixed  by  the  terrestrial  ecosystems  through

photosynthesis, providing food and materials for human beings while also

largely driving the global carbon cycle (Beer et al. 2010). The underlying

ecophysiological  mechanisms controlling  this  biochemical  process  have

been long studied, mostly at leaf or molecular scale (Farquhar et al. 1980;

Krause and Weis 1991). Actual estimation of the photosynthetic exchange

flux at  the ecosystem scale,  also  known as  gross  primary  productivity

(GPP), only became practical in the 1990s with the emergence of the eddy

covariance (EC) technique (Baldocchi et al. 2001). EC flux towers measure

the net ecosystems exchange (NEE) which can be further partitioned into

GPP  and  ecosystem respiration  (Lasslop  et  al.  2010;  Reichstein  et  al.

2005;  Wohlfahrt  and  Gu 2015).  These  ground  observations  have  been

critical to the development and testing of models used to simulate GPP at

a  larger  scale,  but  the  performance  of  these  models  is  still  not

satisfactory,  with  large  discrepancies  existing  among  different  models

(Anav et al. 2015). Using observations as a constraint can help to improve

the  model  performance  so  that  models  may  better  predict  the  global

carbon cycle under future climate scenarios (Luo et al. 2011; Peng et al.

2011). However, the sensitivity of different sub-modules, parameters or

input variables are usually associated with GPP variations at different time

or  spatial  scales,  which  need  to  be  taken  into  consideration  when

conducting this model-data fusion.

Plant  photosynthesis  is  powered  by  light  and  affected  by  numerous

environmental  factors  and  plant  phenology.  Its  variation  is  often
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characterized by four aspects: 

(1) Diurnal variation: as the solar radiation has a diurnal cycle, it directly

affects  the  incoming  energy  and  carbon  assimilation  of  plants.  Other

environmental or physiological variables affecting stomatal conductance

and CO2 uptake, such as air temperature, vapor pressure deficit (VPD), or

leaf water potential also show diurnal cycles.

(2)  Seasonal  variation:  driven by the climate (e.g.,  temperature,  water

availability, radiation) seasonality and plant phenology, it represents one

of the most important components of GPP overall variability. Most in situ

and remote observations are also conducted at this scale. 

(3)  Spatial  variation:  due  to  the  spatial  distribution  of  plant  species,

latitudinal  pattern  of  incoming  solar  radiation,  topography,  and  spatial

variations in climate and soil properties, GPP also exhibits strong spatial

variations. 

(4) Interannual variation: usually driven by climate anomalies and land

cover changes, it is one order of magnitude smaller than other types of

variations  and  are  therefore  the  most  challenging  level  for  models  to

simulate accurately (Verma et al. 2015). 

For some methods, e.g., the eddy covariance (EC) technique, a single site

can  capture  ecosystem  to  landscape-scale  diurnal,  seasonal,  and

interannual variations because continuous measurements occur at a high

sampling frequency (Aubinet et al. 2012). However, EC sites are spatially

dispersed  and,  therefore,  cannot  provide  spatially  continuous

measurements  (Schimel  et  al.  2015).  In  contrast,  remote  sensing

technologies usually have high spatial coverage with polar orbiting (low

Earth orbiting, LEO) satellites, while the continuous temporal sampling is

generally not possible. For LEO satellite platforms, we can only get from

zero to possibly a few observations per day depending on the swath width
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of the instrument and latitude (multiple observations per day with a single

instrument  are  only  possible  at  high  latitudes  and  with  a  wide  swath

instrument,  e.g.  (Guanter  et al.  2015)).  If  observing conditions  are not

favorable, e.g., owing to clouds or aerosols, a valid observation may not

be  present  over  several  days  (Sims  et  al.  2005).  For  optical  remote

sensing that uses vegetation indices (VIs) to quantify vegetation canopy

and leaf properties that change relatively slowly, usually over the course

of weeks to months, this low sampling frequency is adequate to quantify

the spatial, seasonal and interannual variations (Guan et al. 2015; Huete

et al. 2006; Zhang et al. 2016b). The diurnal variation of satellite observed

VI (an indicator of vegetation greenness) or canopy coverage is mostly

caused by leaf inclination or bidirectional reflectance (Los et al. 2005). As

long as the satellite overpass time is stable, these effects are minor and a

VI measurement at most time of the day (when the satellite and solar

zenith angles are low) may be a good proxy of the VI for that day (Chen

1996). However, as the sun-sensor geometry also gradually changes at

seasonal  scales,  seasonal  dynamics  of  VIs  should  take  this  effect  into

consideration,  especially  in  tropical  regions  where  backscattering  and

forward scattering shift within a year (Bi et al. 2015; Morton et al. 2014).

Following the successful retrieval of solar-induced chlorophyll fluorescence

(SIF) signals from satellite sensors  (Frankenberg et al. 2011; Joiner et al.

2013;  Joiner  et  al.  2012),  we  have  access  to  a  new type  of  spatially

extensive vegetation observation, which is based on energy re-emitted by

plants rather than reflected. SIF is a small amount of energy re-emitted

during  the  light  reaction  of  the  photosynthesis  process  (Baker  2008;

Porcar-Castell et al. 2014). Studies have shown that it is highly correlated

with the energy absorbed by chlorophyll pigments and the photosynthetic

electron transport (Zhang et al. 2014; Zhang et al. 2016d). Like GPP, SIF is
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also driven by photosynthetically active radiation (PAR), and has a strong

diurnal  cycle  embedded  within  the  seasonal,  spatial,  and  interannual

variations.  Previous  studies  attempted  to  use  satellite-based  SIF  to

estimate  GPP,  however,  this  relationship  was  only  tested  at  individual

sites for cropland or broadleaf forest  (Guanter et al. 2014; Wagle et al.

2016;  Yang  et  al.  2015).  Moreover,  these  studies  mostly  compared

satellite derived instantaneous SIF with the daily GPP. The discrepancies

between the underlying different temporal scales, i.e., instantaneous SIF

observation at satellite overpass time vs. daily integrated GPP, so far have

not been fully evaluated.

Previous  studies  have shown that  SIF  and  GPP are  linked  through  the

photon  partitioning  after  absorption  by  plant  chlorophyll  (Genty  et  al.

1989).  Absorbed photons undergo three different pathways (i)  entering

the electron transport chain (ETC) and generate chemical energy further

used for the Calvin Cycle (ϕP
), (ii)  being dissipated as heat (ϕD

), or (iii)

being  reemitted  as  fluorescence  (ϕF
).  The  symbol  

ϕ
 represents  the

quantum yield for each pathway. These mechanisms can be used to build

up the link between instantaneous GPP and SIF  (Damm et al. 2010; van

der  Tol  et  al.  2014;  van  der  Tol  et  al.  2009a).  Many  studies  have

investigated these relationships at the scale of sub-seconds to minutes,

but the spatial and seasonal variation of this relationship remains unclear

(Porcar-Castell et al. 2014). In addition, because SIF measurements from

satellites are usually not continuous over time, we still need to understand

the scale conversion from instantaneous to daily  sums, i.e.,  whether a

snapshot  of  photosynthetic  activity  at  a  specific  time  of  the  day  can

represent  the  daily  total  carbon  fixation  at  both  spatial  and  temporal
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(seasonal and interannual) scales. Sims et al. (2005) and Ryu et al. (2012)

showed that the midday value of GPP or ET can be a representative of

daily or 8-day value. But those studies only focused on a limited number

of sites and the MODIS overpass time (10:00~11:00 and 13:00~14:00). As

the  satellites  from  which  SIF  retrievals  can  be  made  have  different

overpass  times  (Figure  1),  it  is  unclear  how  that  can  affect  the

relationships  between  instantaneous  SIF  and  daily  GPP  at  different

locations. 

Figure  1.  Schematic  graph  showing  the  diurnal  course  of  GPP  or  SIF

normalized by their daily maximum values. These schematic curves are

shown  for  different  seasons.  Overpass  time  (solar  time)  of  different

satellites/sensors measuring SIF are also indicated. 

This study aims to fill those gaps with both observations and modeling

approach: we used eddy flux data from 135 sites, covering a wide range

of  geographical  regions and biome types,  the global  GPP product  from

FluxCom, and SIF from Global Ozone Monitoring Experiment 2 (GOME-2)
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and Orbiting Carbon Observatory 2 (OCO-2), to explore the instantaneous-

daily relationship among GPP, PAR, light use efficiency (LUE) and SIF. In

particular, we focused on the following questions which have not yet been

addressed: (1) What is the relationship between the daily total GPP and

instantaneous GPP at different times of day (TOD) and different locations?

(2) What is the cause of these spatial and temporal patterns? (3) Does SIF

also exhibit these spatio-temporal patterns and how does this affect our

interpretation  of  the  SIF-GPP  relationship?  Besides  these  three  main

objectives, we also discussed how the instantaneous and daily SIF-GPP

relationships  affect  the retrieval  of  phenology using satellite  based SIF

data.

2. Materials and Method

2.1. GPP from FLUXNET data base and preprocessing

We used eddy flux data (Baldocchi et al. 2001) from 135 sites covering a

large  variety  of  biome types.  The  flux  dataset  was  acquired  from the

FLUXNET  2015  release  (December  2015,

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/) (Pastorello  et  al.

2017). The spatial distribution and the information about each site can be

found in Supporting Information (Figure S1, Table S1). This dataset was

processed using  a  standardized protocol,  which  enabled  us  to  make a

cross-site  comparison  (http://fluxnet.fluxdata.org/data/fluxnet2015-

dataset/data-processing/)  (Barr et al. 2013; Papale et al. 2006; Vuichard

and Papale 2015). To answer the question whether the seasonal cycle of

instantaneous GPP (GPP inst
)  at  a certain time of  day can represent the
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seasonal cycle of the daily GPP (GPPdaily
), we used both the original half-

hourly data and the daily data. The half-hourly data were aggregated into

2-hour bins from 6:00 am to 6:00 pm to represent the GPP inst
. A rigorous

data quality check was applied during this aggregation process: 1) Only

the half-hourly and daily data in the weeks with more than 75% of valid

(not gap-filled) radiation and net ecosystem exchange (NEE) observations

were used. 2) To reduce the uncertainty related to the NEE partitioning,

we compared the daily total GPP estimates from both the daytime method

(light response curve;  Lasslop et al.  (2010)) and the nighttime method

(nighttime  NEE  as  respiration;  Reichstein  et  al.  (2005)).  The  GPP

estimation was considered unbiased only  if  the difference of  GPP from

both methods were within 20% of their average or within 2 g C m-2 day-1,

in which case GPP was then calculated as the average of both methods.

We found that this criterion performed well and most rejected data were

extrapolated for very long gaps with low reliability. In addition, we also

analyzed  the  instantaneous  and  daily  GPP  relationships  using  GPP

estimated from either the daytime method or the nighttime method, as a

support for the robustness of our findings. We did not use the original half-

hourly data as it would generate too many GPP inst
-GPPdaily

 comparisons; six

two-hour bins were enough to get the diurnal change of their relationship.

2.2. Relationship  between  instantaneous  and  daily  GPP  at

seasonal scale across sites

The  relationship  between  daily  GPP  (GPPdaily
)  and  instantaneous  GPP  (
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GPP inst
) can be built for each day using a conversion factor (

γGPP
):

γGPP=
GPPdaily

GPP inst

(1)

The GPPdaily
 (in 

gC m−2day−1) was calculated as the cumulative summation

of  half  hour  GPP  (expressed  in  μmolmolCO2m−2s−1 in  the  FLUXNET2015

dataset), but was converted to μmolmolCO2m−2s−1 (representing the average

instantaneous GPP over a 24-hour period) when compared with  GPP inst
.

γGPP
 can be calculated for each site each day at seasonal scale. If 

γGPP
 at

one  site  has  little  variation  across  time,  it  indicates  that  GPP inst
 can

represent  GPPdaily
 at temporal scale. Similarly, if  γGPP

 has little variation

across sites, it indicates that GPP inst
 can represent GPPdaily

 at across sites.

For  simplicity,  we  built  linear  regressions  with  zero  intercept  between

GPPdaily
 and 

GPP inst
 for each site at seasonal scale; a high R2 indicates 

γGPP

is  seasonally stable for a given site and  γGPP
 can be calculated as the

regression  slope  (Figure  2).  The  variability  of  regression  slopes  (γGPP
)

across sites is indicative of the variability of the relationship across space.
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2.3. Relationship  between  instantaneous  and  daily  LUE  at

seasonal scale across sites

LUE is a very important parameter that connects light absorption by the

ecosystem  and  the  carbon  fixation  through  photosynthesis  (Monteith

1972). The instantaneous and daily light use efficiency (LUE inst
 and LUEdaily

, respectively) are defined as follows:

LUE inst=
GPP inst

fPAR×PARinst

(2)

LUEdaily=
GPPdaily

fPAR× PARdaily

(3)

The GPP inst
 and PARinst

 were also averaged over 2-hours from 6:00 am to

6:00 pm local time for each site. For simplicity, both daily GPP and PAR are

in the same unit as instantaneous GPP and PAR, representing the average

value of  a 24-hour period.  Within one day, the diurnal variation of  the

fraction  of  the  PAR  absorbed  by  the  canopy  (fPAR)  is  relatively  small

(Fensholt et al. 2004) and is neglected. Following the definition of γGPP
, we

can also define the γ LUE
, i.e., the ratio of LUEdaily

 over LUE inst
. 

γ LUE=
LUEdaily

LUEinst

=

GPPdaily

APARdaily

GPPinst

APARinst

≈

GPPdaily

PARdaily

GPPinst

PARinst

=
E LUEdaily

E LUE inst

(4)

where the ELUE represents the ecosystem LUE and is calculated as GPP
PAR

.

Similarly, we did not calculate γ LUE
 for each day, but used the regression
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slope between daily and instantaneous ecosystem LUE (E LUEdaily=
GPPdaily

PARdaily

 and E LUE inst=
GPP inst

PARinst

, respectively) for each site. The use of ELUE rather

than LUE avoided the uncertainties related to the calculation of fPAR.

2.4. Analytical conversion from instantaneous to daily APAR

Both SIF and GPP are driven by the incident solar irradiance and therefore

both exhibit a diurnal cycle. Thus, the relationship between the daily APAR

(APARdaily
)  and  instantaneous  APAR  (APARinst

)  is  very  important  to

determine  the  relationship  between  SIFdaily
 and  SIF inst

,  and  GPPdaily
 and

GPP inst

.  As  diurnal  changes  in  incoming  solar  radiation  are  mostly

determined  by  the  solar  zenith  angle  (SZA),  we  can  calculate  the

conversion factor between APARinst
 and APARdaily

 (γ APAR
) as below:

γ APAR=
APARdaily

APARinst

≈
PARdaily

PARinst

≈
cos (SZA )daily

cos ( SZA )inst

(5)

This approach did not consider the minor diurnal variation of fPAR and the

cloud and atmospheric scattering effect on PAR. The cos  (SZA)daily
 can be

calculated following the method documented in Frankenberg (2015):

cos  (SZA)daily= ∫
t+12h

t−12h

cos  (SZA(t ))dt (6)
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The SZA for each site was calculated using the “RAtmosphere” package

(https://cran.r-project.org/web/packages/RAtmosphere/index.html)  in  R

language (https://www.r-project.org/). The “SZA” function can calculate the

SZA of a specific location based on its latitude, date, and local time of day.

The instantaneous SZA was calculated at a local time between 7:00 to

17:00 with a time-step of two hours corresponding to the mid-time of each

GPP aggregation bin. The cos  (SZA)daily
 was calculated numerically as the

integral of  cos  (SZA(t ))dt  at a 10-minute time-step. Similarly, we used a

linear regression between cos  (SZA)daily
 and cos  (SZA)inst

 to estimate  γ APAR

at different times of the day (TOD). The regression was forced to pass

through the origin and the regression slope represented γ APAR
 for a specific

location. Because SZA is a function of local time and latitude,  γ APAR
 only

varies with time and latitude.

2.5. SCOPE model simulations

To investigate the relationship between instantaneous and daily SIF (SIF inst

and  SIFdaily
,  respectively),  and the GPP and SIF  relationship both at  bi-

hourly and daily scales, we used the SCOPE model (van der Tol et al. 2014;

van  der  Tol  et  al.  2009b) to  simulate  both  SIF  and  GPP.  SIFdaily
 was

calculated  as  the  average  of  all  half-hourly  SIF inst
 within  each 24-hour

14
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period.  To  test  whether  γSIF
 (SIFdaily/SIF inst

,  unitless)  also  exhibits  a

latitudinal pattern similar to GPP, we selected five grassland or savannas

sites (DK-ZaH, US-Ivo, DK-Eng, US-Var, CG-Tch) along the latitude where

the cosines of latitudes of these sites are close to 0.2, 0.4, 0.6, 0.8, and 1

(Table S1, Figure S1). We chose the grassland/savannas biome types since

they  are  broadly  distributed  at  different  latitudes  and  their  canopy

structure is relatively simple. Except CG-Tch, all other sites are dominated

by  C3 species,  C3 and  C4 pathways  were  simulated  differently  in  the

SCOPE model. US-Var and CG-Tch also have sparse tree coverage in the

GOME-2  SIF  and  EVI/MTCI  footprint  (0.5°×0.5° and  5km×5km,

respectively),  while  the  tree  coverage  in  the  flux  tower  footprint  is

relatively  low.  This  can  cause  inconsistency  when  validating  model

simulation with flux tower measurements and satellite observations.

Chlorophyll a + b content (
Cab

) and maximum carboxylation rate (V cmax
)

and  the  leaf  area  index  (LAI)  are  the  most  influential  parameters  for

simulating SIF and GPP with the SCOPE model (Verrelst et al. 2015; Zhang

et al. 2016a). For  Cab, we followed the method used in previous studies

(Zhang et al. 2014; Zhang et al. 2016a). The Cab was inversely estimated

from a lookup table generated by the forward simulation of the PROSPECT

model  with  a  large  number  of  parameter  combinations.  The  8-day

Enhanced Vegetation Index (EVI) and MERIS Terrestrial Chlorophyll Index

(MTCI Dash and Curran, 2004) for those five sites were used as inputs and

Cab was  inverted  at  8-day  intervals.  All  other  climate  inputs  were

obtained from the flux tower measurements, and the LAI was obtained

from the  MODIS  LAI  product  using  the  Oak  Ridge  National  Laboratory

MODIS global subsets tool with a footprint of 5 km to match with that of

MTCI  (https://modis.ornl.gov/cgi-
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bin/MODIS/GLBVIZ_1_Glb/modis_subset_order_global_col5.pl).  The

maximum carboxylation rate at 25 
℃

 (V cmax
) were set to constant for each

site  following  previous  studies  (52  μmolmolm−2 s−1 for  C3  grass  and  30

μmolmolm−2 s−1 for C4 grass) (Kattge et al. 2009; Wullschleger 1993; Zhang et

al. 2016a). The canopy height was set to 0.5m throughout the growing

season and the leaf inclination angle distribution was empirically set to

spherical  (Asrar  et  al.  1986).  These parameter  settings  may introduce

uncertainties,  but  are  thought  to  have  limited  effects  on  the

instantaneous-daily relationship (Verrelst et al. 2015; Verrelst et al. 2016).

Other unspecified parameters were set to their  default values for each

ecosystem  type  in  SCOPE  v1.61

(https://github.com/Christiaanvandertol/SCOPE).

2.6. Comparison  of  satellite  retrieved  SIF  and  GPP  at  global

scale

Since SIF can also be expressed as a function of APAR (SIF=APAR×FE, FE:

apparent fluorescence efficiency), we can approximate SIFdaily from SIFinst

by assuming that FE has little variation at a diurnal scale. This is a first-

order approximation since two contributing factors of FE, namely quantum

yield for fluorescence (ϕF
) and escape coefficient for near-infrared SIF (f esc

,

how much SIF emitted by individual leaf can escape the canopy without

being  re-absorbed  by  other  leaves)  have  a  much  smaller  variation

compared to the diurnal variation of PAR (data not shown), especially at

the far-red band. The SIFdaily can be approximated as:

SIFdaily ≈
APARdaily

APARinst

SIF inst ≈
PARdaily

PARinst

SIF inst (7)
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where  SIFinst is  the  satellite  retrieved  SIF  and  PARdaily is  analytically

estimated  from SZA,  PARinst can  be estimated  from the SZA when the

observation was made, which is embedded in the GOME-2 and OCO-2 SIF

product. We did not use the PARinst for the satellite overpass time (e.g.,

9:30 am for GOME-2 and 1:30 pm for OCO-2) since that overpass time

only applies for equator, higher latitudes may have some variation. In this

study,  we  used  both  the  GOME-2  SIF  v26  product  from  the  MetOp-A

satellite  (Joiner et al. 2013; Joiner et al. 2016), and the OCO-2 SIF Lite

product  (B7101r)  (Frankenberg  2015;  Frankenberg  et  al.  2014).  The

MetOp-A satellite has an overpass time of ~9:30 am and SIF was retrieved

around the wavelength of 740 nm using a principle component analysis

algorithm (Joiner et al. 2013). These retrievals had a footprint of 40 km ×

80 km (40 km × 40 km after 15 July 2013) and were further aggregated to

a  0.5°×0.5° monthly  gridded  product.  The  OCO-2  SIF  was  retrieved

around 757 nm using an iterative least squares fitting technique. Each

day, around 100000 soundings were collected on land with a footprint of

~2 km × 1.3 km. We aggregated the raw SIF retrievals to monthly 0.5°×

0.5° gridded product following the quality check instructions. Since this

dataset  only  became  available  since  September  2014,  it  cannot  be

directly compared with GPP dataset. We used 2 year of data (2015, 2016)

to calculate the average SIF of each month. In this way, we ignored the

interannual variation and focused on the seasonal variation.

We used the monthly GPP product from FluxCom with a spatial resolution

of  0.5°×0.5°.  The  FluxCom  GPP  was  generated  using  three  machine

learning  algorithms,  combined  with  GPP  estimated  from  the  daytime

method  (Lasslop  et  al.  2010) and  nighttime  method  (Reichstein  et  al.

2005) from  the  EC  flux  towers,  and  the  remote  sensing  VIs  and

meteorological variables  (Jung et al. 2017; Tramontana et al. 2016). The
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averaged  GPP  from  6  methods  (3  machine  learning  algorithm  × 2

partitioning methods) between 2007 and 2013 were calculated to match

the GOME-2 SIF data availability. To compare with the OCO-2 SIF, GPP from

2007 to 2013 were used to calculated the average GPP for the 12 months

since these two products do not have overlapping period. This multi-year

average  can  well  represent  the  seasonal  dynamic  of  GPP  for  each

individual year (Figure S8). Because monthly gridded OCO-2 SIF do not

cover the entire global land surface due to the satellite’s orbit, we masked

the GPP with OCO-2 SIF for the corresponding months before comparison.

To  compare  the  SIF-GPP  relationship  within  each  biome  type,  we

aggregated  the  MODIS  MCD12C1  land  cover  product

(https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/m

cd12c1) to 0.5°×0.5° spatial resolution to match with GPP and SIF. For

each 0.5°×0.5° gridcell, we calculated the percentage of each land cover

type. Only the gridcells  dominated by one land cover type (more than

80%) were considered as “pure” gridcells and used for further analysis

(Zhang  et  al.  2016c).  Since  the  northern  hemisphere  and  southern

hemisphere have different growing season, SIF and GPP were averaged

within each biome type for each hemisphere.

3. Results

3.1. Comparison between instantaneous GPP and daily GPP at

seasonal scale

Figure  2  shows  a  comparison  between  GPPdaily
 and  GPP inst

 at  seasonal

scale for the Tchizalamousite site in the Congo (CG-Tch) as an example. All

GPP inst

 values at different times of the day (TOD) generally followed the
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variation of GPPdaily
, and the γGPP

 was also relatively stable across time for

TODs between 8:00 ~ 16:00 (Figure 2  (a,  b)).  The regression analysis

between GPPdaily
 and GPP inst

 also showed a similar pattern: TOD with less

γGPP

 variation  exhibited  a  higher  R2 and  the  regression  slope  between

GPPdaily
 and  

GPP inst
 corresponded to the value of  

γGPP
.  This confirms the

feasibility of using regressions between GPPdaily
 and GPP inst

 to investigate

the seasonal and spatial variations of γGPP
.
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Figure 2. Seasonal variation of (a) GPPinst, GPPdaily, and (b) γGPP
 of different

time of  day from a savanna flux tower site  CG-Tch.  (c)  The regression

between GPPdaily and GPPinst from different times of the day (TOD). R2 and

the regression slope for each TOD are shown at the top left corner and will

be  used  for  cross-site  statistics.  Large  gaps  in  2007  and  2009  are

observations that did not pass the quality checks. Note that the units for
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GPPdaily (gC m−2day−1) and GPPinst (μmolmolCO2m−2s−1) are different.

Using the correlation analysis  between  GPPdaily
 and  GPP inst

 from all  135

sites at a seasonal scale, we gathered information of the coefficient of

determination (R2) and the regression slopes for each site. For most sites,

GPP inst
 showed  a  good  correlation  with  

GPPdaily
,  especially  for  

GPP inst

between 8:00 to  16:00 (Figure 3a).  The correlation was lower  for  very

early morning and late afternoon, but the average R2 values for these two

periods were still higher than 0.8. The regression slopes between GPPdaily

and  GPP inst
 also  varied  for  different  TODs.  The  averages  of  regression

slopes  slightly  declined  from  early  morning  to  midday  and  increased

afterwards. For the period between 8:00 to 16:00 when GPPdaily
 and GPP inst

relationships  were  stronger,  the  regression  slopes  also  showed  less

variation.
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Figure 3. Boxplots of bi-hourly (a) coefficient of determination (R2) and (b)

linear regression slope between the daily and instantaneous GPP (γGPP
) at

seasonal scale across 135 flux tower sites. The linear regressions were

forced to pass the origin. Different colors represent GPP estimates from

the daytime method (red), nighttime method (blue) or the average of both

(grey). The unit of the instantaneous GPP was converted from μmolmol CO2 m-

2 s-1 to g C m-2 day-1 so that the regression slope is unitless.

We also explored the spatial patterns of the regression slopes between

GPPdaily
 and 

GPP inst
, by comparing the regression slopes with the cosine of

the latitude for each site (Figure 4). The regression slopes increased from

tropical regions (cos(latitude) = 1) to polar regions (cos(latitude) = 0) for

22



most TODs. Between 8:00 to 16:00, the regression slopes between GPPdaily

and  GPP inst
 can  be  approximated  as  a  function  of  cos(latitude),  with

relatively high R2 during the midday period (0.81 and 0.87). Biome types

did  not  show  much  effect  on  this  relationship.  Using  the  analytical

approach based on the calculated SZA (Eq. 5), we obtained the  γ APAR
 at

each latitude. The resultant black lines in Figure 4 generally well-predicted

this latitudinal pattern, especially between 8:00 to 16:00. The R2 between

GPPdaily
 and  

GPP inst
 also  exhibited  a  latitudinal  pattern  that  could  be

predicted by  the  analytical  solution  of  APAR variation  (Figure S2).  GPP

from daytime and nighttime partitioning methods also exhibited a similar

pattern (Figure S3, S4).
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Figure 4. Latitudinal distribution of regression slopes between daily and

instantaneous  GPP  (γGPP
).  GPP  from  the  average  of  both  partitioning

methods  were  used.  All  biome  types  (shown  in  different  colors)  are

aggregated to forest (ENF,  EBF,  DNF,  DBF,  MF),  shrubland (WSA,  OSH,

CSH),  grassland  (GRA,  WET,  SAV),  and  cropland  (CRO),  as  shown  in

different colors. For the full names of the biome types, please refer to the

supplementary information Table S1. Black lines represent the relationship

derived from the analytical approximation for γ APAR
 and cos(latitude). The

red dashed lines represent the fitted logarithmic regressions for all sites

and not shown in (a) and (f) since the relationship was not significant.

3.2. Comparison between sub-daily instantaneous LUE and daily

LUE at seasonal scale

Figure 5 shows the comparison between the instantaneous LUE and daily

LUE for each site at the seasonal scale. Except for the early morning and

late afternoon, LUEinst values were generally highly correlated with LUEdaily,

and  this  correlation  was  highest  during  the  middle  of  the  day

(10:00~14:00).  The  regression  slopes  between LUEdaily and  LUEinst were

also relatively stable for TODs when R2 values were high. In addition, the

slope  showed  an  “U”  shape  along  time  with  the  lowest  value  being

reached during the middle of the day (Figure 5b). The regression slopes

were close to 1 around 10:00 or 14:00, which indicated that the LUE inst at

those times can be an approximation of LUEdaily.
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Figure  5.  Comparison  between  bi-hourly  LUEinst and  LUEdaily across  flux

tower  sites  at  the  seasonal  scale.  For  each  site,  the  correlation  and

regression slope between LUEdaily and LUEinst (γ LUE
) at seasonal scale were

calculated.  Different  colors  represent  GPP  estimates  from the  daytime

method (red), nighttime method (blue) or the average of both (grey).

The  difference between the  fitted  γGPP
 curve  (red)  and  simulated  γ APAR

curve (black) at different TODs in Figure 4 can be explained by the diurnal

change of the LUEdaily and LUEinst relationship (γ LUE
). This diurnal change of

γ LUE

 is  caused  by  light  saturation  of  GPP  as  shown  in  Figure  6.  GPP

increases  almost  linearly  with  APAR  until  a  light  saturating  period  is
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reached, when GPP becomes less responsive to radiation (Figure 6b). This

lead to lowest LUE values close to midday, when incident PAR and APAR

are the highest (Figure 6a). The light response curve also suggests that

the LUEinst around 9:00 and 15:00 solar time is close to the  LUEdaily
. This

explains the overlap of the fitted  γGPP
 and simulated  γ APAR

 curves during

8:00-10:00 and 14:00~16:00; and the higher  γGPP
 between 10:00~14:00

over the latitudinal gradient (Figure 4).

Figure  6.  (a)  Dynamic  of  sub-daily  GPP,  APAR,  and  LUE,  and  (b)  the

relationship between APAR and GPP at sub-daily scale. One clear day (June
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13th, 2014) of data from the US-WCr site is used as an example. The GPP is

estimated  from  the  daytime  (light  response  curve)  method.  All  the

indicators  are  normalized  by  their  maximum  values.  The  two  vertical

dashed lines in (a) indicate the time at which LUE inst
 equals to LUEdaily

. The

slopes of the solid lines in (b) represent LUE inst
 (GPP inst

normalized
/APARinst

normalized) at

different times of the day and LUEdaily
.

3.3. Comparison between simulated instantaneous and daily SIF

from the SCOPE model

To explore whether the instantaneous SIF (SIF inst
)  and daily SIF (SIFdaily

)

also exhibit a similar latitudinal pattern, we used the SCOPE model and

simulated both SIF and GPP for five grassland (or savannas) sites, which

cover a wide latitudinal range. The model was run at 30-minute intervals

for one year to be consistent with the EC data. The simulated GPP and SIF

data generally agreed well  with the EC tower derived GPP and the SIF

retrievals  from  the  GOME-2  satellite  instrument  (Figure  S5,  S6).  Most

discrepancies were caused by the mismatch of the satellite and flux tower

footprints and the uncertainty of LAI or Cab inversions (both the method

and the vegetation indices used).
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Figure  7.  Latitudinal  pattern  of  regression  slopes  between  daily  and

instantaneous SCOPE simulated GPP, SIF, and GPP derived from EC tower

(open circles). Only one year of data is used (Figure S5). The red dashed

line is from the fitted relationship between daily and instantaneous GPP

from EC towers as shown in Figure 4. The black lines represent the γ APAR

from the analytical estimation.

Using  the  SCOPE  model,  we  found  that  SIF  also  followed  a  similar

latitudinal pattern driven by the seasonal variation of PAR. Since we only

used one year of data, the γGPP
 values for the five sites were sometimes

higher than the fitted relationship for some times of  day.  However,  for

8:00~10:00  and  14:00~16:00  when  the  fitted  γGPP
 was  close  to  the
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analytical γ APAR
, the regression slopes for simulated SIF from the five sites

were close to that of simulated GPP. For 10:00~14:00 when the fitted γGPP

was higher than the analytical  γ APAR
, the regression slopes for simulated

GPP were also higher than those of simulated SIF. Unlike GPP, which has a

light saturation period that makes the fitted  γGPP
 deviate from the  γ APAR

during the midday, SIF did not show much light saturation and directly

followed the γ APAR
 latitudinal pattern.

We  further  compared  the  relationship  between  the  simulated

instantaneous SIF and the daily total GPP at the seasonal scale for these

five sites (Figure 8). The linear relationships between GPP and SIF were

usually stronger at midday for low to mid- latitude sites, i.e., CG-Tch, US-

Var, DK-Eng. But this advantage was not evident for higher latitude sites

(DK-ZaH).  The  daily  total  SIF  and  daily  total  GPP  had  the  highest

correlation for both C3 and C4 sites. For C3 sites (all sites except CG-Tch),

the regression slopes for  SIF and GPP exhibited a smaller  variation for

early morning and late afternoon (CV = 0.18 and 0.12 for 6:00~8:00 and

16:00~18:00, respectively). While during midday, the variation was larger

(CV = 0.31 and 0.27 for  10:00~12:00 and 12:00~14:00,  respectively).

When  comparing  SIFdaily with  GPPdaily,  the  regression  slopes  for  all  C3

vegetation sites tended to converge to a constant  value (0.066,  CV =

0.10).
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Figure  8.  Scatter  diagrams  showing  the  relationship  between  the

instantaneous (upper panels) and daily (bottommost panel) SIF with daily

GPP as computed with the SCOPE model for the five sites (color coded) as

indicated in the legend. The solid lines with different colors represent the

linear regression between SIF and GPP.

3.4. GPP-SIF comparison at global scale

Figure 9 shows the comparison between SIF inst or SIFdaily with GPP from

FluxCom.  SIFinst are from direct  observations  from GOME-2 and OCO-2,

while  SIFdaily values are from analytical  approximation using Eq.  7.  The

SIFdaily showed a slightly higher linear correlation (R2=0.94±0.08 for GOME-

2 and R2=0.90±0.20 for OCO-2) with GPP than SIFinst (R2=0.92±0.11 for

GOME-2 and R2=0.85±0.25 for OCO-2). Except savannas in the southern

hemisphere  for  GOME-2  (0.963  vs.  0.961),  all  other  biome  types’

coefficient of determination are higher for SIFdaily than SIFinst. In addition,

the regression slopes among all  the biome types for both hemispheres

had smaller variation for SIFdaily than SIFinst. The use of SIFdaily rather than

SIFinst showed better improvement of the GPP-SIF relationship for OCO-2

than for GOME-2. Although the comparison between GPP and OCO-2 SIF

are from different years, it is expected to have limited effect on our results

as  the  year-to-year  variation  could  be  ignored  for  most  biome  types

(Figure S8).
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Figure 9. Comparison between SIFinst and SIFdaily from GOME-2 (a, b) and

OCO-2 (c,d) with GPP from FluxCom. Only the biome types with more than

100 gridcells were analyzed. Each point represents the average of SIF or

GPP for all the gridcells within this biome type for each month for northern

or southern hemisphere. For GOME-2, altogether 84 months are used; for

OCO-2, 12 months are used (see methods). The solid lines represent the

linear regression for northern hemisphere and the dashed lines represent

that  for  southern  hemisphere.  The  insets  show  the  boxplot  of  the

coefficients for all the regressions. For the full names of the biome type,

please refer to the supplementary information Table S1
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4. Discussion

4.1. The relationship between daily GPP and instantaneous SIF

across space and time.

The  spatial  and  seasonal  relationship  between  GPPdaily
 and  satellite

observed  SIF inst
 is complicated because both SIF and GPP are driven by

solar radiation and have diurnal and seasonal cycles. In this study, using

data from multiple flux tower sites, which cover a large spatial extent, we

investigated  the  key  issues  for  estimating  spatial  and  seasonal  GPP

dynamics using satellite-retrieved SIF signals. 

To link GPPdaily
 with SIF inst

, we use:

GPPdaily

SIF inst

=
APARdaily ×LUEdaily

APARinst× FEinst

=
APARdaily

APARinst

×
LUEdaily

LUE inst

×
LUEinst

FEinst

=γ APAR×γLUE×
LUE inst

FEinst

(8)

In  our  study,  we  have  demonstrated  that  the  γ APAR
 is  related  to  the

latitude, which is controlled by the seasonal change of day length. As the

latitude increases from tropical to polar regions, the day length during the

growing season also increases. The instantaneous PAR observation will be

close to the average daily PAR during the polar daytime (during the peak

growing  season  in  summer),  but  will  be  much  larger  when  sun  only

illuminates for half of the day. We also demonstrated that the variation of

γ LUE

 is  related  to  the  observation  time  mostly  caused  by  the  light

saturation  of  photosynthesis  and  midday  depression.  The  midday

depression can be found in  some low latitude sites  (cos(latitude)≈0.8)

where the estimated R2 for GPPinst-GPPdaily deviates from the R2 predicted
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with PAR during the midday (10:00~14:00), indicating γGPP
 at midday may

have  higher  variation  throughout  the  growing  season  (Figure  S2).

However,  this  midday  variability  does  not  have  much  effects  on  the

GPPinst-GPPdaily regression slopes (Figure 4). The combination of γ APAR ×γ LUE

can  explain  the  latitudinal  and  diurnal  pattern  of  the  GPPdaily
-GPP inst

relationship.  For  a  specific  satellite,  we  do  not  need  to  take  γ LUE
 into

consideration as the observation time is often stable (except for the Polar

Regions where multiple observations may be obtained within one day),

but the latitudinal pattern of  γ APAR
 still needs to be considered. However,

when  comparing  GPP  with  SIF  data  from  different  satellites,  the

observation time will affect the γ LUE
 and needs to be taken into account.

This means that the GPP-SIF relationship derived from one satellite cannot

be directly applied to another if the overpass times of the satellites are

different.

Simulations using the SCOPE model suggest that γSIF
 tends to follow γ APAR

during  midday  (Figure  7).  This  is  consistent  with  the  relatively  stable

fluorescence yield (ϕF
) under high light intensity found in previous studies

(Lee et al. 2015; van der Tol et al. 2014). But a larger variation of ϕF
 may

occur during the shift  from low to high irradiance,  i.e.,  when the non-

photochemical  quenching  begins  to  take  effect  and  the  negative
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correlation between ϕF
 and ϕP

 shifts to positive (Porcar-Castell et al. 2014).

The relatively  stable  ϕF
 under high light  intensity  can also explain the

higher  GPP-SIF  correlation  during  midday  (10:00~14:00)  than  early

morning or late afternoon for low latitude sites (Figure 8). However, this

advantage  is  not  evident  for  higher  latitude  sites,  where  the  growing

season in summer is characterized by a very long daytime length and PAR

is already/still high at 6:00~8:00 and 16:00~18:00. The regression slopes

between GPPdaily and SIFinst also had relatively larger variations for midday

than early morning or late afternoon, which may be related to the light

saturation: lower latitude sites are more likely to be light-saturated during

the midday than higher latitude sites. It should also be noted that current

version of  the SCOPE model did not  consider the relationship between

nitrogen content  (or  chlorophyll  a+b) and maximum carboxylation rate

(Vcmax) (Ollinger et al. 2008; van der Tol et al. 2009b), therefore the GPP-SIF

relationship  may  be  better  evaluated  with  a  variable  Vcmax value.  We

conducted some preliminary analysis using a variable Vcmax that is linearly

correlated with Cab. The Vcmax was allowed to drop to 50% of its maximum

value when Cab was at its minimum. We reproduced Figure 8 with this

variable Vcmax settings (Figure S9), but the results were very similar: high

linear correlation were still found when comparing GPPdaily with SIFdaily.

The  relationships  between  LUE inst
 and  fluorescence  efficiency  (FE inst

,

includes the information of both  ϕf
 and the escape coefficient) are still

unclear  at  the  seasonal  and  spatial  scale  (Porcar-Castell  et  al.  2014).

Recent  modeling studies  suggested a  nonlinear  SIF-GPP relationship  at

half-hour scale and a strong linear relationship at daily and 16-day scale
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(Damm et al.  2015; Zhang et al.  2016a). Our comparison between the

GOME-2 SIF and FluxCom GPP also showed higher correlation when using

the SIFdaily value.  The variations  of  the  regression slopes  across  biome

types may be related to the C3-C4 species composition (Guan et al. 2016;

Liu et al. 2017), average cloud cover during the growing season which

affects the direct/diffuse radiation (Gu et al. 2002), canopy characteristics

which  affect  the  energy  partitioning  in  different  layers  and  SIF  re-

absorption  (Damm  et  al.  2015;  Migliavacca  et  al.  2017),  and

environmental limitations of photosynthesis (temperature, water, etc.) (Ac

et  al.  2015;  van  der  Tol  et  al.  2014).  These factors  together  with  the

latitudinal pattern need to be taken into account when interpreting the

relationship between the satellite-based SIFinst and GPPdaily at spatial and

seasonal scales. In addition, since the midday SIF signal is stronger and

the  FE inst
 is more stable and close to the daily average, satellites SIFinst

observations  with  a  midday  overpass  time  may  have  a  more  linear

relationship with GPPdaily than those with a morning or afternoon overpass

(Figure 10). However, it should still be noted that the GPP-SIF relationship

is  affected  by  the  canopy  architecture  (leaf  angle  distribution,  leaf

clumping) but is considered invariant in our simulation. We also tested the

SCOPE simulation  using  other  leaf  angle  distributions  (e.g.,  planophile,

erectphile),  but  the  results  are  similar  (data  not  shown).  Some recent

studies suggest that 3-dimension canopy structure can be important for

canopy  energy  and  carbon  fluxes  simulations  for  grass-tree  mixed

ecosystems  (Kobayashi  et  al.  2012).  A  more  comprehensive

representation of 3-dimension canopy structure needs to be incorporated

into the SCOPE model to further investigate the effect of canopy structure

on SIF-GPP relationship.
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Figure  10.  Schematic  diagram showing  the  relationships  between PAR,

APAR,  SIF  and  GPP  at  sub-daily  and  daily  scales.  The  FEdaily and  FEinst

relationship is close to a constant only under high light intensity, e.g., mid-

noon. Solid lines represent that the two variables can be directly linked,

while  the  dashed  line  represents  the  relationship  cannot  be  directly

established. Abbreviations: PAR: photosynthetically active radiation; APAR:

absorbed photosynthetically active radiation; fPAR: fraction of absorbed

photosynthetically active radiation; FE: fluorescence efficiency; SIF: solar-

induced  chlorophyll  fluorescence;  LUE:  light  use  efficiency;  GPP:  gross

primary production; TOD: time of day.

4.2. Potential uncertainty for phenological analysis using GOME-

2 SIF

As  SIF  is  a  measure  of  energy  and  has  strong  diurnal  dynamics,  the

interpretation of SIF signals at seasonal scale should also be taken with

caution. This is directly related to phenology studies, which used SIF as an
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indicator  of  vegetation  activity  (Jeong  et  al.  2017;  Joiner  et  al.  2014;

Walther et al. 2016). Previous phenology studies either used leaf/canopy

development or seasonal change of plant physiological properties (e.g.,

GPP, APAR, termed as “physiological phenology”) (Migliavacca et al. 2015;

Piao et al.  2006;  Wu et al.  2013;  Zhou et al.  2016).  The physiological

phenology, being different from conventional phenology definition of leaf

development or flowering time, is more related to the ecosystem carbon

fluxes  that  directly  controlled  by  plant  physiology.  The  leaf/canopy

development measurement can either come from in situ observations (Fu

et al. 2015) or satellite-based VIs  (Zhang et al. 2003). For the satellite-

based VI studies, the start of the growing season is usually determined by

detecting  the  maximum change of  rate  of  VI  (second order  derivative

equals to zero) (Wang et al. 2015; Wu and Liu 2013; Zhang et al. 2013), or

using a threshold (Cong et al. 2013; Zhang et al. 2016b). Since VIs have

little diurnal variation, the VIs obtained from different overpass times on a

seasonal course can be regarded as the seasonal vegetation growth. In

contrast, SIF is a measurement of the energy, and its seasonal variation is

controlled by both the seasonal variation of incoming solar radiation, the

leaf phenology (fraction of energy being absorbed) and the photosynthetic

physiology (fraction of light being emitted as SIF). The contribution from

solar radiation is higher at high latitude since PAR at a specific time of day

also  has  large  seasonal  variations.  Therefore,  phenology  derived  from

satellite-based  SIF  measurements  cannot  be  directly  compared  with

phenology  derived  from  VI  measurements  unless  SIF  is  properly

normalized by SZA or instantaneous PAR.

Another question is whether SIF-based phenology can be comparable with

GPP or  net  ecosystem exchange (NEE)  based  phenology  (physiological

phenology)? As concluded above, daily SIF has a strong linear relationship
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with daily GPP within each specific site and should have an advantage

over  VI  at  high latitude evergreen ecosystems.  When doing phenology

analysis,  each  pixel  is  analyzed  in  the  temporal  domain  therefore  the

latitudinal pattern of instantaneous to daily conversion can be ignored.

Then  the  question  becomes whether  the  conversion  from the SIF inst to

SIFdaily is stable across seasons? Figure 11 (a) shows that the correction

factor for GOME-2 and OCO-2 overpass time is not stable even during the

growing  season  for  the  site  US-Ivo.  This  correction  factor  has  larger

variations at higher latitudes, and differs for different satellite overpass

times,  which  may  explain  the  different  phenology  retrievals  of  using

GOME-2 SIF and GOSAT SIF for boreal forest (Jeong et al. 2017). 
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Figure 11.  (a)  Relationship between instantaneous PAR at  GOME-2 and

OCO-2  satellite  overpass  and  the  daily  average  PAR  for  site  US-Ivo

(latitude=68.49°N). (b) The start of season (SOS) estimates using SIF from

both GOME-2 (SIFGOME-2) and calculated SIFdaily. To reduce the relatively high

uncertainty in SIF retrieval from one pixel, an average of 5×5 pixels were

used. The phenology retrieval algorithm is well documented in Joiner et al.
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(2014) and Zhang et al. (2003). Correction factor for (c) GOME-2 and (d)

OCO-2 at different latitude throughout the year. These correction factors

were calculated only considering the PARinst-PARdaily relationship.

To reconcile the discrepancy between SIF and VI observations (Walther et

al. 2016), we can either calculate the SIF normalized by the incoming solar

radiation at the satellite overpass, represented by the cosine of the solar

zenith angle (cos(SZA)). SIF/cos(SZA) will be a measure of fPAR×FEinst and

can be used for leaf/greenness based phenology estimation. Alternatively,

we can convert the satellite measured SIFinst to SIFdaily
 using Eq. 7, which

will  be  closely  linked  to  the  daily  GPP.  This  will  give  another  robust

estimation of the photosynthetically active period that can be compared

with site level gas exchange data. However, it should be noted that many

studies show that fPAR also has a diurnal variation which is related to the

SZA, ratios of diffuse to total radiation, and LAI (Chen 1996; Nouvellon et

al. 2000), this may affect the SIFinst to SIFdaily conversion using this SZA

approximation method as well as the GPPinst-GPPdaily relationship. However,

fPAR is usually found to be higher in early morning or the late afternoon

when PAR is low; the product of fPAR and PAR during those times will have

limited  contribution  to  daily  total  APAR  and  GPP.  In  addition,  as  most

satellites that can retrieve SIF signals have an overpass close to midday,

when the fPAR is relatively stable, SIFinst is also considered less affected by

the diurnal variation of fPAR.

5. Conclusions

As satellite observations are often snapshots of the vegetation activity,

the usage of satellite observations to infer vegetation activity at seasonal
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and spatial scales needs to be treated with caution, especially for energy-

based measurements such as SIF that exhibit a large diurnal variation.

Analyzing data from 135 flux tower sites, we found that both spatial and

diurnal  patterns  exist  between daily  and instantaneous (bi-hourly)  GPP.

The latitudinal pattern is caused by the variation of PAR and the diurnal

pattern is caused by the diurnal variation of LUE.

SIF has shown a high potential to predict GPP across broad spatial and

seasonal  scales.  However,  satellite-derived  instantaneous  SIF  retrievals

and  daily  GPP  relationships  on  spatial  and  seasonal  courses  are  still

affected by several factors such as latitude, satellite overpass time, C3/C4

composition,  environmental  stress,  canopy  architecture,  etc.  Using  the

SCOPE model simulation and the comparison between GOME-2 SIF and

FluxCom GPP, we have shown that the relationship between daily average

SIF and daily total GPP are more consistent across latitudinal gradients

and biome types than those between instantaneous SIF and daily GPP,

and the correction factor from instantaneous to daily SIF improved the

linear  relationship  between satellite-based SIF  retrievals  and daily  GPP.

This  factor  should  also  be  applied  when  using  SIF  to  derive  the

physiological  phenology.  Since  this  correction  factor  is  based  on  the

analytical approximation of solar zenith angle and does not consider the

diurnal variation of other environmental factors (e.g., temperature, water

stress), more  in situ measurements of SIF are needed at sub-daily time

scale for different ecosystems to better interpret the GPP-SIF relationship

globally. Canopy architecture that directly affects the energy absorption

and partitioning in different layers can be another important issue that

warrants further study. The NASA Tropospheric Emissions: Monitoring of

Pollution (TEMPO),  Geostationary Carbon Cycle Observatory (GeoCARB),

as  well  as  European  Sentinel  4  missions  will  provide  further  valuable
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insights about the diurnal SIF variation at regional and larger scales. 
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